Science.gov

Sample records for accelerating wound healing

  1. Acceleration Of Wound Healing Ny Photodynamic Therapy

    SciTech Connect

    Hasan, Tayyaba; Hamblin, Michael R.; Trauner, Kenneth

    2000-08-22

    Disclosed is a method for accelerating wound healing in a mammal. The method includes identifying an unhealed wound site or partially-healed wound site in a mammal; administering a photosensitizer to the mammal; waiting for a time period wherein the photosensitizer reaches an effective tissue concentration at the wound site; and photoactivating the photosensitizer at the wound site. The dose of photodynamic therapy is selected to stimulate the production of one or more growth factor by cells at the wound site, without causing tissue destruction.

  2. Acceleration of cutaneous wound healing by brassinosteroids

    PubMed Central

    Esposito, Debora; Rathinasabapathy, Thirumurugan; Schmidt, Barbara; Shakarjian, Michael P.; Komarnytsky, Slavko; Raskin, Ilya

    2013-01-01

    Brassinosteroids are plant growth hormones involved in cell growth, division and differentiation. Their effects in animals are largely unknown, although recent studies showed the anabolic properties of brassinosteroids possibly mediated through the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. Here we examined biological activity of homobrassinolide (HB) and its synthetic analogues on in vitro proliferation and migration assays in murine fibroblast and primary keratinocyte cell culture. HB stimulated fibroblast proliferation and migration, and weakly induced keratinocyte proliferation in vitro. The effects of topical HB administration on progression of wound closure were further tested in the mouse model of cutaneous wound healing. C57BL/6J mice were given a full thickness dermal wound, and the rate of wound closure was assessed daily for 10 d alongside adenosine receptor agonist CGS-21680 as a positive control. Topical application of brassinosteroid significantly reduced wound size and accelerated wound healing in treated animals. mRNA levels of TGF-β and ICAM-1 were significantly lower, while TNF-α was nearly suppressed in the wounds from treated mice. Our data suggest that topical brassinosteroids accelerate wound healing by positively modulating inflammatory and re-epithelialization phases of the wound-repair process, in partby enhancing Akt signaling in the skin at the edges of the wound and enhancing migration of fibroblasts in a wounded area. Targeting this signaling pathway with brassinosteroids may represent a promising approach to the therapy of delayed wound healing. PMID:23937635

  3. Electrical stimulation to accelerate wound healing

    PubMed Central

    Thakral, Gaurav; LaFontaine, Javier; Najafi, Bijan; Talal, Talal K.; Kim, Paul; Lavery, Lawrence A.

    2013-01-01

    Background There are several applications of electrical stimulation described in medical literature to accelerate wound healing and improve cutaneous perfusion. This is a simple technique that could be incorporated as an adjunctive therapy in plastic surgery. The objective of this review was to evaluate the results of randomized clinical trials that use electrical stimulation for wound healing. Method We identified 21 randomized clinical trials that used electrical stimulation for wound healing. We did not include five studies with treatment groups with less than eight subjects. Results Electrical stimulation was associated with faster wound area reduction or a higher proportion of wounds that healed in 14 out of 16 wound randomized clinical trials. The type of electrical stimulation, waveform, and duration of therapy vary in the literature. Conclusion Electrical stimulation has been shown to accelerate wound healing and increase cutaneous perfusion in human studies. Electrical stimulation is an adjunctive therapy that is underutilized in plastic surgery and could improve flap and graft survival, accelerate postoperative recovery, and decrease necrosis following foot reconstruction. PMID:24049559

  4. HoxD3 accelerates wound healing in diabetic mice

    SciTech Connect

    Hansen, Scott L.; Myers, Connie A.; Charboneau, Aubri; Young, David M.; and Boudreau, Nancy

    2003-12-01

    Poorly healing diabetic wounds are characterized by diminished collagen production and impaired angiogenesis. HoxD3, a homeobox transcription factor that promotes angiogenesis and collagen synthesis, is up-regulated during normal wound repair whereas its expression is diminished in poorly healing wounds of the genetically diabetic (db/db) mouse. To determine whether restoring expression of HoxD3 would accelerate diabetic wound healing, we devised a novel method of gene transfer, which incorporates HoxD3 plasmid DNA into a methylcellulose film that is placed on wounds created on db/db mice. The HoxD3 transgene was expressed in endothelial cells, fibroblasts, and keratinocytes of the wounds for up to 10 days. More importantly, a single application of HoxD3 to db/db mice resulted in a statistically significant acceleration of wound closure compared to control-treated wounds. Furthermore, we also observed that the HoxD3-mediated improvement in diabetic wound repair was accompanied by increases in mRNA expression of the HoxD3 target genes, Col1A1 and beta 3-integrin leading to enhanced angiogenesis and collagen deposition in the wounds. Although HoxD3-treated wounds also show improved re-epithelialization as compared to control db/db wounds, this effect was not due to direct stimulation of keratinocyte migration by HoxD3. Finally, we show that despite the dramatic increase in collagen synthesis and deposition in HoxD3-treated wounds, these wounds showed normal remodeling and we found no evidence of abnormal wound healing. These results indicate that HoxD3 may provide a means to directly improve collagen deposition, angiogenesis and closure in poorly healing diabetic wounds.

  5. Immobilized thrombin receptor agonist peptide accelerates wound healing in mice.

    PubMed

    Strukova, S M; Dugina, T N; Chistov, I V; Lange, M; Markvicheva, E A; Kuptsova, S; Zubov, V P; Glusa, E

    2001-10-01

    To accelerate the healing processes in wound repair, attempts have been repeatedly made to use growth factors including thrombin and its peptide fragments. Unfortunately, the employment of thrombin is limited because of its high liability and pro-inflammatory actions at high concentrations. Some cellular effects of thrombin in wound healing are mediated by the activation of protease activated receptor-1 (PAR-1). The thrombin receptor agonist peptide (TRAP:SFLLRN) activates this receptor and mimics the effects of thrombin, but TRAP is a relatively weak agonist. We speculated that the encapsulated peptide may be more effective for PAR-1 activation than nonimmobilized peptide and developed a novel method for TRAP encapsulation in hydrogel films based on natural and synthetic polymers. The effects of an encapsulated TRAP in composite poly(N-vinyl caprolactam)-calcium alginate (PVCL) hydrogel films were investigated in a mouse model of wound healing. On day 7 the wound sizes decreased by about 60% under TRAP-chitosan-containing PVCL films, as compared with control films without TRAP. In the case of TRAP-polylysine-containing films no significant decrease in wound sizes was found. The fibroblast/macrophage ratio increased under TRAP-containing films on day 3 and on day 7. The number of proliferating fibroblasts increased to 150% under TRAP-chitosan films on day 7 as compared with control films. The number of [3H]-thymidine labeled endothelial and epithelial cells in granulation tissues was also enhanced. Thus, the immobilized TRAP to PVCL-chitosan hydrogel films were found to promote wound healing following the stimulation of fibroblast and epithelial cell proliferation and neovascularization. Furthermore, TRAP was shown to inhibit the secretion of the inflammatory mediator PAF from stimulated rat peritoneal mast cells due to augmentation of NO release from the mast cells. The encapsulated TRAP is suggested to accelerate wound healing due to the anti-inflammatory effects

  6. Substance P enhances EPC mobilization for accelerated wound healing.

    PubMed

    Um, Jihyun; Jung, Nunggum; Chin, Sukbum; Cho, Younggil; Choi, Sanghyuk; Park, Ki-Sook

    2016-03-01

    Wound healing is essential for the survival and tissue homeostasis of unicellular and multicellular organisms. The current study demonstrated that the neuropeptide substance P (SP) accelerated the wound healing process, particularly in the skin. Subcutaneous treatment of SP accelerated wound closing, increased the population of α-smooth muscle actin positive myofibroblasts, and increased extracellular matrix deposition at the wound site. Moreover, SP treatment enhances angiogenesis without a local increase in the expression levels of vascular endothelial growth factor and stromal cell-derived factor-1. Importantly, SP treatment increased both the population of circulating endothelial progenitor cells in the peripheral blood and in CD31 positive cells in Matrigel plugs. The tube forming potential of endothelial cells was also enhanced by SP treatment. The results suggested that the subcutaneous injection of SP accelerated the wound healing in the skin via better reconstitution of blood vessels, which possibly followed an increase in the systemic mobilization of endothelial progenitor cells and a more effective assembly of endothelial cells into tubes. PMID:26749197

  7. Hyaluronidase Modulates Inflammatory Response and Accelerates the Cutaneous Wound Healing

    PubMed Central

    Fronza, Marcio; Caetano, Guilherme F.; Leite, Marcel N.; Bitencourt, Claudia S.; Paula-Silva, Francisco W. G.; Andrade, Thiago A. M.; Frade, Marco A. C.; Merfort, Irmgard; Faccioli, Lúcia H.

    2014-01-01

    Hyaluronidases are enzymes that degrade hyaluronan an important constituent of the extracellular matrix. They have been used as a spreading agent, improving the absorption of drugs and facilitating the subcutaneous infusion of fluids. Here, we investigated the influence of bovine testes hyaluronidase (HYAL) during cutaneous wound healing in in vitro and in vivo assays. We demonstrated in the wound scratch assay that HYAL increased the migration and proliferation of fibroblasts in vitro at low concentration, e.g. 0.1 U HYAL enhanced the cell number by 20%. HYAL presented faster and higher reepithelialization in in vivo full-thickness excisional wounds generated on adult Wistar rats back skin already in the early phase at 2nd day post operatory compared to vehicle-control group. Wound closured area observed in the 16 U and 32 U HYAL treated rats reached 38% and 46% compared to 19% in the controls, respectively. Histological and biochemical analyses supported the clinical observations and showed that HYAL treated wounds exhibited increased granulation tissue, diminished edema formation and regulated the inflammatory response by modulating the release of pro and anti-inflammatory cytokines, growth factor and eicosanoids mediators. Moreover, HYAL increased gene expression of peroxisome proliferator-activated receptors (PPAR) γ and PPAR β/δ, the collagen content in the early stages of healing processes as well as angiogenesis. Altogether these data revealed that HYAL accelerates wound healing processes and might be beneficial for treating wound disorders. PMID:25393024

  8. Hyaluronidase modulates inflammatory response and accelerates the cutaneous wound healing.

    PubMed

    Fronza, Marcio; Caetano, Guilherme F; Leite, Marcel N; Bitencourt, Claudia S; Paula-Silva, Francisco W G; Andrade, Thiago A M; Frade, Marco A C; Merfort, Irmgard; Faccioli, Lúcia H

    2014-01-01

    Hyaluronidases are enzymes that degrade hyaluronan an important constituent of the extracellular matrix. They have been used as a spreading agent, improving the absorption of drugs and facilitating the subcutaneous infusion of fluids. Here, we investigated the influence of bovine testes hyaluronidase (HYAL) during cutaneous wound healing in in vitro and in vivo assays. We demonstrated in the wound scratch assay that HYAL increased the migration and proliferation of fibroblasts in vitro at low concentration, e.g. 0.1 U HYAL enhanced the cell number by 20%. HYAL presented faster and higher reepithelialization in in vivo full-thickness excisional wounds generated on adult Wistar rats back skin already in the early phase at 2nd day post operatory compared to vehicle-control group. Wound closured area observed in the 16 U and 32 U HYAL treated rats reached 38% and 46% compared to 19% in the controls, respectively. Histological and biochemical analyses supported the clinical observations and showed that HYAL treated wounds exhibited increased granulation tissue, diminished edema formation and regulated the inflammatory response by modulating the release of pro and anti-inflammatory cytokines, growth factor and eicosanoids mediators. Moreover, HYAL increased gene expression of peroxisome proliferator-activated receptors (PPAR) γ and PPAR β/δ, the collagen content in the early stages of healing processes as well as angiogenesis. Altogether these data revealed that HYAL accelerates wound healing processes and might be beneficial for treating wound disorders. PMID:25393024

  9. Recombinant basic fibroblast growth factor accelerates wound healing.

    PubMed

    McGee, G S; Davidson, J M; Buckley, A; Sommer, A; Woodward, S C; Aquino, A M; Barbour, R; Demetriou, A A

    1988-07-01

    Basic fibroblast growth factor (bFGF) stimulates extracellular matrix metabolism, growth, and movement of mesodermally derived cells. We have previously shown that collagen content in polyvinyl alcohol sponges increased after bFGF treatment. We hypothesized that bFGF-treated incisional wounds would heal more rapidly. After intraperitoneal pentobarbital anesthesia, male, 200- to 250-g, Sprague-Dawley rats (n = 27) each underwent two sets of paired, transverse, dorsal incisions closed with steel sutures. On Day 3 postwounding, 0.4 ml of bFGF (recombinant, 400 ng. Synergen) or normal saline was injected into one of each paired incisions. Animals were killed with ether on postwounding Days 5, 6, and 7 and their dorsal pelts were excised. Fresh or formalin-fixed wound strips were subjected to tensile strength measurements using a tensiometer. Breaking energy was calculated. Wound collagen content (hydroxyproline) was measured in wound-edge samples following hydrolysis using high-performance liquid chromatography. There was an overall significant increase in fresh wound tensile strength (13.7 +/- 1.06 vs 19.1 +/- 1.99 g/mm, P less than 0.01) and wound breaking energy (476 +/- 47 vs 747 +/- 76 mm2, P less than 0.001) in bFGF-treated incisions. There was an increase in wound collagen content which was not statistically significant and there was no difference in fixed incisional tensile strength. Histologic examination showed better organization and maturation in bFGF wounds. Recombinant bFGF accelerates normal rat wound healing. This may be due to earlier accumulation of collagen and fibroblasts and/or to greater collagen crosslinking in bFGF-treated wounds. PMID:3392988

  10. Topical 5-azacytidine accelerates skin wound healing in rats.

    PubMed

    Gomes, Fabiana S; de-Souza, Gabriela F; Nascimento, Lucas F; Arantes, Eva L; Pedro, Rafael M; Vitorino, Daniele C; Nunez, Carla E; Melo Lima, Maria H; Velloso, Lício A; Araújo, Eliana P

    2014-01-01

    The development of new methods to improve skin wound healing may affect the outcomes of a number of medical conditions. Here, we evaluate the molecular and clinical effects of topical 5-azacytidine on wound healing in rats. 5-Azacytidine decreases the expression of follistatin-1, which negatively regulates activins. Activins, in turn, promote cell growth in different tissues, including the skin. Eight-week-old male Wistar rats were submitted to 8.0-mm punch-wounding in the dorsal region. After 3 days, rats were randomly assigned to receive either a control treatment or the topical application of a solution containing 5-azacytidine (10 mM) once per day. Photo documentation and sample collection were performed on days 5, 9, and 15. Overall, 5-azacytidine promoted a significant acceleration of complete wound healing (99.7% ± 0.7.0 vs. 71.2% ± 2.8 on day 15; n = 10; p < 0.01), accompanied by up to threefold reduction in follistatin expression. Histological examination of the skin revealed efficient reepithelization and cell proliferation, as evaluated by the BrdU incorporation method. 5-Azacytidine treatment also resulted in increased gene expression of transforming growth factor-beta and the keratinocyte markers involucrin and cytokeratin, as well as decreased expression of cytokines such as tumor necrosis factor-alpha and interleukin-10. Lastly, when recombinant follistatin was applied to the skin in parallel with topical 5-azacytidine, most of the beneficial effects of the drug were lost. Thus, 5-azacytidine acts, at least in part through the follistatin/activin pathway, to improve skin wound healing in rodents. PMID:25039304

  11. Hydrogen sulfide accelerates wound healing in diabetic rats

    PubMed Central

    Wang, Guoguang; Li, Wei; Chen, Qingying; Jiang, Yuxin; Lu, Xiaohua; Zhao, Xue

    2015-01-01

    Aim: The aim of this study was to explore the role of hydrogen sulfide on wound healing in diabetic rats. Methods: Experimental diabetes in rats was induced by intraperitoneal injection of streptozotocin (STZ) (in 0.1 mol/L citrate buffer, Ph 4.5) at dose of 70 mg/kg. Diabetic and age-matched non-diabetic rats were randomly assigned to three groups: untreated diabetic controls (UDC), treated diabetic administrations (TDA), and non-diabetic controls (NDC). Wound Healing Model was prepared by making a round incision (2.0 cm in diameter) in full thickness. Rats from TDA receive 2% sodium bisulfide ointment on wound, and animals from UDC and NDC receive control cream. After treatment of 21 days with sodium bisulfide, blood samples were collected for determination of vascular endothelial growth factor (VEGF), intercellular cell adhesion molecule-1 (ICAM-1), antioxidant effects. Granulation tissues from the wound were processed for histological examination and analysis of western blot. Results: The study indicated a significant increase in levels of VEGF and ICAM-1 and a decline in activity of coagulation in diabetic rats treated with sodium bisulfide. Sodium bisulfide treatment raised the activity of superoxide dismutase (SOD) and heme oxygenase-1 (HO-1) protein expression, and decreased tumor necrosis factor α (TNF-α) protein expression in diabetic rats. Conclusions: The findings in present study suggested that hydrogen sulfide accelerates the wound healing in rats with diabetes. The beneficial effect of H2S may be associated with formation of granulation, anti-inflammation, antioxidant, and the increased level of vascular endothelial growth factor (VEGF). PMID:26191204

  12. Diazoxide accelerates wound healing by improving EPC function.

    PubMed

    Li, Zhang-Peng; Xin, Ru-Juan; Yang, Hong; Jiang, Guo-Jun; Deng, Ya-Ping; Li, Dong-Jie; Shen, Fu-Ming

    2016-01-01

    Endothelial cell dysfunction is the primary cause of microvascular complications in diabetes. Diazoxide enables beta cells to rest by reversibly suppressing glucose-induced insulin secretion by opening ATP-sensitive K+ channels in the beta cells. This study investigated the role of diazoxide in wound healing in mice with streptozotocin (STZ)-induced diabetes and explored the possible mechanisms of its effect. Compared to the controls, mice with STZ-induced diabetes exhibited significantly impaired wound healing. Diazoxide treatment (30 mg/kg/d, intragastrically) for 28 days accelerated wound closure and stimulated angiogenesis in the diabetic mice. Circulating endothelial progenitor cells (EPCs) increased significantly in the diazoxide-treated diabetic mice. The adhesion, migration, and tube formation abilities of bone marrow (BM)-EPCs were impaired by diabetes, and these impairments were improved by diazoxide treatment. The expression of both p53 and TSP-1 increased in diabetic mice compared to that in the controls, and these increases were inhibited significantly by diazoxide treatment. In vitro, diazoxide treatment improved the impaired BM-EPC function and diminished the increased expression of p53 and TSP-1 in cultured BM-EPCs caused by high glucose levels. We conclude that diazoxide improved BM-EPC function in mice with STZ-induced diabetes, possibly via a p53- and TSP-1-dependent pathway. PMID:27100489

  13. Liposome-encapsulated hemoglobin accelerates skin wound healing in mice.

    PubMed

    Fukui, Tsuyoshi; Kawaguchi, Akira T; Takekoshi, Susumu; Miyasaka, Muneo; Tanaka, Rica

    2012-02-01

    Effects of liposome-encapsulated hemoglobin with high O₂ affinity (m-LEH, P₅₀O₂ = 17 mm Hg) on skin wound healing in mice were examined. Two full-thickness dorsal wounds 6 mm in diameter encompassed by silicone stents were created in Balb/c mice. Two days later (day 2), the animals randomly received intravenous m-LEH (2 mL/kg, n = 12), homologous blood transfusion (red blood cell [RBC], n = 11), or saline (n = 12). The same treatment was repeated 4 days after wounding (day 4), and the sizes of the skin defects and ulcers were monitored on days 0, 2, 4, and 7, when all animals were euthanized for morphological studies. While the size of the skin defect in relation to the stent ring remained the same in all groups, the size of the ulcer compared with the skin defect (or silicone stent) became significantly reduced on days 4 and 7 in mice treated with m-LEH (46 ± 10% of pretreatment size, P < 0.01) compared with mice treated with RBC transfusion (73 ± 6%) or saline (76 ± 7%). m-LEH treatment significantly accelerated granulation, increased epithelial thickness, suppressed early granulocyte infiltration, and increased Ki67 expression in accordance with the ulcer size reduction, while there was no difference in surface blood flow or CD31 expression among the groups. The results suggest that m-LEH (2 mL/kg) may accelerate skin wound healing in Balb/c mice via mechanism(s) involving reduced inflammation and increased metabolism, but not by improved hemodynamics or endothelial regeneration. PMID:22339725

  14. Acceleration of diabetic wound healing using a novel protease–anti-protease combination therapy

    PubMed Central

    Gao, Ming; Nguyen, Trung T.; Suckow, Mark A.; Wolter, William R.; Gooyit, Major; Mobashery, Shahriar; Chang, Mayland

    2015-01-01

    Nonhealing chronic wounds are major complications of diabetes resulting in >70,000 annual lower-limb amputations in the United States alone. The reasons the diabetic wound is recalcitrant to healing are not fully understood, and there are limited therapeutic agents that could accelerate or facilitate its repair. We previously identified two active forms of matrix metalloproteinases (MMPs), MMP-8 and MMP-9, in the wounds of db/db mice. We argued that the former might play a role in the body’s response to wound healing and that the latter is the pathological consequence of the disease with detrimental effects. Here we demonstrate that the use of compound ND-336, a novel highly selective inhibitor of gelatinases (MMP-2 and MMP-9) and MMP-14, accelerates diabetic wound healing by lowering inflammation and by enhancing angiogenesis and re-epithelialization of the wound, thereby reversing the pathological condition. The detrimental role of MMP-9 in the pathology of diabetic wounds was confirmed further by the study of diabetic MMP-9–knockout mice, which exhibited wounds more prone to healing. Furthermore, topical administration of active recombinant MMP-8 also accelerated diabetic wound healing as a consequence of complete re-epithelialization, diminished inflammation, and enhanced angiogenesis. The combined topical application of ND-336 (a small molecule) and the active recombinant MMP-8 (an enzyme) enhanced healing even more, in a strategy that holds considerable promise in healing of diabetic wounds. PMID:26598687

  15. Calcium-Based Nanoparticles Accelerate Skin Wound Healing

    PubMed Central

    Ishise, Hisako; Carre, Antoine Lyonel; Nishimoto, Soh; Longaker, Michael; Lorenz, H. Peter

    2011-01-01

    Introduction Nanoparticles (NPs) are small entities that consist of a hydroxyapatite core, which can bind ions, proteins, and other organic molecules from the surrounding environment. These small conglomerations can influence environmental calcium levels and have the potential to modulate calcium homeostasis in vivo. Nanoparticles have been associated with various calcium-mediated disease processes, such as atherosclerosis and kidney stone formation. We hypothesized that nanoparticles could have an effect on other calcium-regulated processes, such as wound healing. In the present study, we synthesized pH-sensitive calcium-based nanoparticles and investigated their ability to enhance cutaneous wound repair. Methods Different populations of nanoparticles were synthesized on collagen-coated plates under various growth conditions. Bilateral dorsal cutaneous wounds were made on 8-week-old female Balb/c mice. Nanoparticles were then either administered intravenously or applied topically to the wound bed. The rate of wound closure was quantified. Intravenously injected nanoparticles were tracked using a FLAG detection system. The effect of nanoparticles on fibroblast contraction and proliferation was assessed. Results A population of pH-sensitive calcium-based nanoparticles was identified. When intravenously administered, these nanoparticles acutely increased the rate of wound healing. Intravenously administered nanoparticles were localized to the wound site, as evidenced by FLAG staining. Nanoparticles increased fibroblast calcium uptake in vitro and caused contracture of a fibroblast populated collagen lattice in a dose-dependent manner. Nanoparticles also increased the rate of fibroblast proliferation. Conclusion Intravenously administered, calcium-based nanoparticles can acutely decrease open wound size via contracture. We hypothesize that their contraction effect is mediated by the release of ionized calcium into the wound bed, which occurs when the p

  16. Nitric oxide-releasing nanoparticles accelerate wound healing by promoting fibroblast migration and collagen deposition.

    PubMed

    Han, George; Nguyen, Long N; Macherla, Chitralekha; Chi, Yuling; Friedman, Joel M; Nosanchuk, Joshua D; Martinez, Luis R

    2012-04-01

    Wound healing is a complex process that involves coordinated interactions between diverse immunological and biological systems. Long-term wounds remain a challenging clinical problem, affecting approximately 6 million patients per year, with a high economic impact. To exacerbate the problem, these wounds render the individual susceptible to life-threatening microbial infections. Because current therapeutic strategies have proved suboptimal, it is imperative to focus on new therapeutic approaches and the development of technologies for both short- and long-term wound management. In recent years, nitric oxide (NO) has emerged as a critical molecule in wound healing, with NO levels increasing rapidly after skin damage and gradually decreasing as the healing process progresses. In this study, we examined the effects of a novel NO-releasing nanoparticle technology on wound healing in mice. The results show that the NO nanoparticles (NO-np) significantly accelerated wound healing. NO-np modified leukocyte migration and increased tumor growth factor-β production in the wound area, which subsequently promoted angiogenesis to enhance the healing process. By using human dermal fibroblasts, we demonstrate that NO-np increased fibroblast migration and collagen deposition in wounded tissue. Together, these data show that NO-releasing nanoparticles have the ability to modulate and accelerate wound healing in a pleiotropic manner. PMID:22306734

  17. Engineered human vascularized constructs accelerate diabetic wound healing.

    PubMed

    Shen, Yu-I; Cho, Hongkwan; Papa, Arianne E; Burke, Jacqueline A; Chan, Xin Yi; Duh, Elia J; Gerecht, Sharon

    2016-09-01

    Stem cell-based therapy is emerging as a promising approach for chronic diabetic wounds, but strategies for optimizing both cellular differentiation and delivery remain as major obstacles. Here, we study bioengineered vascularized constructs as a therapeutic modality for diabetic wound healing. We developed a wound model in immunodeficient rodent and treated it with engineered vascularized constructs from endothelial progenitors or early vascular cells-derived from human induced pluripotent stem cells (hiPSCs) reprogrammed either from healthy donor or type-1 diabetic patient. We found that all vascularized constructs expedited wound closure and reperfusion, with endothelial progenitor constructs having the earliest maximum closure rate followed closely by healthy and diabetic hiPSC-derivative constructs. This was accompanied by rapid granulation layer formation and regression in all vascularized construct groups. Macrophage infiltration into the hydrogel matrix occurred during early stages of healing, seeming to facilitate rapid neovascularization of the wound that could then better persist in the vascularized constructs. Blood perfusion of the human vasculature could be detected after three days, indicating rapid integration with the host vasculature. Overall, we propose a potential therapeutic strategy using allograft or autologous vascularized constructs to treat type-1 diabetic wounds. This approach highlights the unprecedented prospects of designing patient-specific stem cell therapy. PMID:27328431

  18. Sodium humate accelerates cutaneous wound healing by activating TGF-β/Smads signaling pathway in rats

    PubMed Central

    Ji, Yuanyuan; Zhang, Aijun; Chen, Xiaobin; Che, Xiaoxia; Zhou, Kai; Wang, Zhidong

    2016-01-01

    Sodium humate (HA-Na) has been topically used as a wound healing and anti-inflammatory agent in folk medicine. In the present study, HA-Na was investigated for cutaneous wound healing in Sprague–Dawley rats. HA-Na solution (1.0%, w/v) was topically administered to rats undergoing excision wound models. Healing was assessed with a recombinant bovine basic fibroblast growth factor for external use as positive control. Wound healing rates were calculated on Day 3, 6, 9, 14 and 21 after injury, and tissues were also harvested after the same intervals for histological analysis. In addition, tissue hydroxyproline levels were measured. Furthermore, mRNA levels and protein expressions of transforming growth factor-β1, 2, 3 (TGF-β1, 2, 3) were determined by RT-PCR and western blot. Protein expression levels of Smad-2, -3, -4 and -7 were also detected by western blot. Our study demonstrates that HA-Na has the capacity to promote wound healing in rats via accelerated wound contraction and increased hydroxyproline content. More importantly, these wound healing effects of HA-Na might be mediated through the TGF-β/Smad signaling pathway. HA-Na may be an effective agent for enhanced wound healing. PMID:27006897

  19. Selective estrogen receptor modulators accelerate cutaneous wound healing in ovariectomized female mice.

    PubMed

    Hardman, Matthew J; Emmerson, Elaine; Campbell, Laura; Ashcroft, Gillian S

    2008-02-01

    A lack of systemic hormones in elderly postmenopausal women leads to delayed cutaneous wound healing. This effect can be reversed by systemic or topical estrogen replacement in both humans and rodent models. Over recent years selective estrogen receptor modulators have been developed in an attempt to achieve the beneficial effects of estrogen clinically, while minimizing the detrimental side effects. The effects of selective estrogen receptor modulators on the skin are poorly understood, and the effects on wound healing have not been assessed. In this study we treated 10-wk-old ovariectomized mice with estradiol, tamoxifen (TAM), raloxifene (RAL), or vehicle and examined the effect on healing of full-thickness incisional wounds. Both TAM and RAL substantially accelerate healing, associated with a dampened inflammatory response and altered inflammatory cytokine profile. In vitro TAM and RAL demonstrate antiinflammatory activity comparable to estrogen. These results have significant implications for the clinical modulation of wound healing. PMID:17974625

  20. Biafine topical emulsion accelerates excisional and burn wound healing in mice.

    PubMed

    Krausz, Aimee E; Adler, Brandon L; Landriscina, Angelo; Rosen, Jamie M; Musaev, Tagai; Nosanchuk, Joshua D; Friedman, Adam J

    2015-09-01

    Macrophages play a fundamental role in wound healing; therefore, employing a strategy that enhances macrophage recruitment would be ideal. It was previously suggested that the mechanism by which Biafine topical emulsion improves wound healing is via enhanced macrophage infiltration into the wound bed. The purpose of this study was to confirm this observation through gross and histologic assessments of wound healing using murine full-thickness excisional and burn wound models, and compare to common standards, Vaseline and silver sulfadiazine (SSD). Full-thickness excisional and burn wounds were created on two groups of 60 mice. In the excisional arm, mice were divided into untreated control, Biafine, and Vaseline groups. In the burn arm, mice were divided into untreated control, Biafine, and SSD groups. Daily treatments were administered and healing was measured over time. Wound tissue was excised and stained to appropriately visualize morphology, collagen, macrophages, and neutrophils. Collagen deposition was measured and cell counts were performed. Biafine enhanced wound healing in murine full-thickness excisional and burn wounds compared to control, and surpassed Vaseline and SSD in respective wound types. Biafine treatment accelerated wound closure clinically, with greater epidermal/dermal maturity, granulation tissue formation, and collagen quality and arrangement compared to other groups histologically. Biafine application was associated with greater macrophage and lower neutrophil infiltration at earlier stages of healing when compared to other study groups. In conclusion, Biafine can be considered an alternative topical therapy for full-thickness excisional and burn wounds, owing to its advantageous biologically based wound healing properties. PMID:25794496

  1. Epidermal stem cells (ESCs) accelerate diabetic wound healing via the Notch signalling pathway

    PubMed Central

    Yang, Rong-Hua; Qi, Shao-Hai; Shu, Bin; Ruan, Shu-Bin; Lin, Ze-Peng; Lin, Yan; Shen, Rui; Zhang, Feng-Gang; Chen, Xiao-Dong; Xie, Ju-Lin

    2016-01-01

    Chronic, non-healing wounds are a major complication of diabetes. Recently, various cell therapies have been reported for promotion of diabetic wound healing. Epidermal stem cells (ESCs) are considered a powerful tool for tissue therapy. However, the effect and the mechanism of the therapeutic properties of ESCs in the diabetic wound healing are unclear. Herein, to determine the ability of ESCs to diabetic wound healing, a dorsal skin defect in a streptozotocin (STZ)-induced diabetes mellitus (DM) mouse model was used. ESCs were isolated from mouse skin. We found that both the mRNA and protein levels of a Notch ligand Jagged1 (Jag1), Notch1 and Notch target gene Hairy Enhancer of Split-1 (Hes1) were significantly increased at the wound margins. In addition, we observed that Jag1 was high expressed in ESCs. Overexpression of Jag1 promotes ESCs migration, whereas knockdown Jag1 resulted in a significant reduction in ESCs migration in vitro. Importantly, Jag1 overexpression improves diabetic wound healing in vivo. These results provide evidence that ESCs accelerate diabetic wound healing via the Notch signalling pathway, and provide a promising potential for activation of the Notch pathway for the treatment of diabetic wound. PMID:27129289

  2. Epidermal stem cells (ESCs) accelerate diabetic wound healing via the Notch signalling pathway.

    PubMed

    Yang, Rong-Hua; Qi, Shao-Hai; Shu, Bin; Ruan, Shu-Bin; Lin, Ze-Peng; Lin, Yan; Shen, Rui; Zhang, Feng-Gang; Chen, Xiao-Dong; Xie, Ju-Lin

    2016-08-01

    Chronic, non-healing wounds are a major complication of diabetes. Recently, various cell therapies have been reported for promotion of diabetic wound healing. Epidermal stem cells (ESCs) are considered a powerful tool for tissue therapy. However, the effect and the mechanism of the therapeutic properties of ESCs in the diabetic wound healing are unclear. Herein, to determine the ability of ESCs to diabetic wound healing, a dorsal skin defect in a streptozotocin (STZ)-induced diabetes mellitus (DM) mouse model was used. ESCs were isolated from mouse skin. We found that both the mRNA and protein levels of a Notch ligand Jagged1 (Jag1), Notch1 and Notch target gene Hairy Enhancer of Split-1 (Hes1) were significantly increased at the wound margins. In addition, we observed that Jag1 was high expressed in ESCs. Overexpression of Jag1 promotes ESCs migration, whereas knockdown Jag1 resulted in a significant reduction in ESCs migration in vitro Importantly, Jag1 overexpression improves diabetic wound healing in vivo These results provide evidence that ESCs accelerate diabetic wound healing via the Notch signalling pathway, and provide a promising potential for activation of the Notch pathway for the treatment of diabetic wound. PMID:27129289

  3. A bioengineered drug-Eluting scaffold accelerated cutaneous wound healing In diabetic mice.

    PubMed

    Yin, Hao; Ding, Guoshan; Shi, Xiaoming; Guo, Wenyuan; Ni, Zhijia; Fu, Hong; Fu, Zhiren

    2016-09-01

    Hyperglycemia in diabetic patients can greatly hinder the wound healing process. In this study we investigated if the engagement of F4/80(+) murine macrophages could accelerate the cutaneous wound healing in streptozotocin induced diabetic mice. To facilitate the engagement of macrophages, we engineered a drug-eluting electrospun scaffold with a payload of monocyte chemoattractant protein-1 (MCP-1). MCP-1 could be readily released from the scaffold within 3 days. The electrospun scaffold showed no cytotoxic effects on human keratinocytes in vitro. Full-thickness excisional cutaneous wound was created in diabetic mice. The wound fully recovered within 10 days in mice treated with the drug-eluting scaffold. In contrast, the wound took 14 days to fully recover in control groups. The use of drug-eluting scaffold also improved the re-epithelialization. Furthermore, we observed a larger population of F4/80(+) macrophages in the wound bed of mice treated with drug-eluting scaffolds on day 3. This marked increase of macrophages in the wound bed could have contributed to the accelerated wound healing. Our study shed new light on an immuno-engineering solution for wound healing management in diabetic patients. PMID:27187186

  4. Accelerated healing of excisional skin wounds by PL 14736 in alloxan-hyperglycemic rats.

    PubMed

    Seveljević-Jaran, D; Cuzić, S; Dominis-Kramarić, M; Glojnarić, I; Ivetić, V; Radosević, S; Parnham, M J

    2006-01-01

    PL 14736 is a synthetic peptide, originally isolated from human gastric juice, that has anti-inflammatory and tissue-protective actions in experimental models of gastrointestinal inflammation. To investigate its possible benefit in poorly healing skin wounds, the effects of the topical application of PL 14736 in a gel formulation have been studied on full-thickness excisional wounds in rats, either healthy or made hyperglycemic by alloxan (175 mg/kg s.c.) 5 days previously. The effects of becaplermin gel (platelet-derived growth factor, PDGF-BB, Regranex, a standard therapy for diabetic foot ulcers, were investigated for comparison. Healing was evaluated for up to 7 days after wounding, using digital planimetry analysis, macroscopic scoring and histology. While healing was too rapid in healthy rats to observe enhancement by either treatment, in the hyperglycemic rats which exhibited delayed healing, PL 14736 (10-1,000 microg/wound) produced a dose-dependent acceleration of wound healing (determined by macroscopic scoring) equivalent at the highest doses to that observed with becaplermin. The beneficial effect on healing was associated with increased deposition of organized granulation tissue by day 7 for both PL 14736 and becaplermin, as determined histologically. PL 14736 tended to have a greater effect than becaplermin on the formation of granulation tissue containing mature collagen. Wound contraction, as measured by planimetry, was not significantly affected. In conclusion, topical PL 14736 produces a dose-dependent acceleration of deficient skin wound healing in hyperglycemic rats by facilitating granulation tissue formation, similar to the response seen with topical becaplermin, the standard therapy for diabetic skin wounds. PL 14736 may represent an alternative therapy for delayed wound healing, such as that seen with diabetic foot ulcers, without the proliferative concerns or immunogenicity associated with growth factors. PMID:16785777

  5. Serpina3n accelerates tissue repair in a diabetic mouse model of delayed wound healing

    PubMed Central

    Hsu, I; Parkinson, L G; Shen, Y; Toro, A; Brown, T; Zhao, H; Bleackley, R C; Granville, D J

    2014-01-01

    Chronic, non-healing wounds are a major complication of diabetes and are characterized by chronic inflammation and excessive protease activity. Although once thought to function primarily as a pro-apoptotic serine protease, granzyme B (GzmB) can also accumulate in the extracellular matrix (ECM) during chronic inflammation and cleave ECM proteins that are essential for proper wound healing, including fibronectin. We hypothesized that GzmB contributes to the pathogenesis of impaired diabetic wound healing through excessive ECM degradation. In the present study, the murine serine protease inhibitor, serpina3n (SA3N), was administered to excisional wounds created on the dorsum of genetically induced type-II diabetic mice. Wound closure was monitored and skin wound samples were collected for analyses. Wound closure, including both re-epithelialization and contraction, were significantly increased in SA3N-treated wounds. Histological and immunohistochemical analyses of SA3N-treated wounds revealed a more mature, proliferative granulation tissue phenotype as indicated by increased cell proliferation, vascularization, fibroblast maturation and differentiation, and collagen deposition. Skin homogenates from SA3N-treated wounds also exhibited greater levels of full-length intact fibronectin compared with that of vehicle wounds. In addition, GzmB-induced detachment of mouse embryonic fibroblasts correlated with a rounded and clustered phenotype that was prevented by SA3N. In summary, topical administration of SA3N accelerated wound healing. Our findings suggest that GzmB contributes to the pathogenesis of diabetic wound healing through the proteolytic cleavage of fibronectin that is essential for normal wound closure, and that SA3N promotes granulation tissue maturation and collagen deposition. PMID:25299783

  6. Saliva and wound healing.

    PubMed

    Brand, Henk S; Veerman, Enno C I

    2013-01-01

    Wounds in the oral cavity heal faster and with less scarring than wounds in other parts of the body. One of the factors implicated in this phenomenon is the presence of saliva, which promotes the healing of oral wounds in several ways. Saliva creates a humid environment, which improves the survival and functioning of inflammatory cells that are crucial for wound healing. Furthermore, saliva contains a variety of proteins that play a role in the various stages of the intraoral wound healing. Tissue factor, present in salivary exosomes, accelerates the clotting of blood dramatically. The subsequent proliferation of epithelial cells is promoted by growth factors in saliva, especially epidermal growth factor. The importance of secretory leucocyte protease inhibitor is demonstrated by the observation that in the absence of this salivary protein, oral wound healing is considerably delayed. Members of the salivary histatin family promote wound closure in vitro by enhancing cell spreading and cell migration. Cell proliferation is not enhanced by histatin. Cyclization of histatin increased its biological activity approximately 1,000-fold compared to linear histatin. These studies suggest that histatins could potentially be used for the development of new wound healing medications. PMID:23878824

  7. Potential Activity of 3-(2-Chlorophenyl)-1-phenyl-propenonein Accelerating Wound Healing in Rats

    PubMed Central

    Dhiyaaldeen, Summaya M.; Alshawsh, Mohammed A.; Salama, Suzy M.; Alwajeeh, Nahla S. I.

    2014-01-01

    Wound healing involves inflammation followed by granular tissue development and scar formation. In this study, synthetic chalcone 3-(2-Chlorophenyl)-1-phenyl-propenone (CPPP) was investigated for a potential role in enhancing wound healing and closure. Twenty-four male rats were divided randomly into 4 groups: carboxymethyl cellulose (CMC) (0.2 mL), Intrasite gel, and CPPP (25 or 50 mg/mL). Gross morphology, wounds treatment with the CPPP, and Intrasite gel accelerate the rate of wound healing compared to CMC group. Ten days after surgery, the animals were sacrificed. Histological assessment revealed that the wounds treated with CPPP showed that wound closure site contained little amount of scar and the granulation tissue contained more collagen and less inflammatory cells than wound treated with CMC. This finding was confirmed with Masson's trichrome staining. The antioxidant defence enzymes catalase (CAT) and superoxide dismutase (SOD) were significantly increased in the wound homogenates treated with CPPP (P < 0.05) compared to CMC treated group. However, in the CPPP treatment group, lipid peroxidation (MDA) was significantly decreased (P < 0.05), suggesting that the CPPP also has an important role in protection against lipid peroxidation-induced skin injury after ten days of treatment with CPPP, which is similar to the values of cytokines TGF-β and TNF-α in tissue homogenate. Finally the administration of CPPP at a dosage of 25 and 50 mg/kg was suitable for the stimulation of wound healing. PMID:24587992

  8. How wounds heal

    MedlinePlus

    ... How puncture wounds heal; How burns heal; How pressure sores heal; How lacerations heal ... bleed. For example, burns, some puncture wounds, and pressure sores don't bleed. Once the scab forms, your ...

  9. Carcinogenic Parasite Secretes Growth Factor That Accelerates Wound Healing and Potentially Promotes Neoplasia.

    PubMed

    Smout, Michael J; Sotillo, Javier; Laha, Thewarach; Papatpremsiri, Atiroch; Rinaldi, Gabriel; Pimenta, Rafael N; Chan, Lai Yue; Johnson, Michael S; Turnbull, Lynne; Whitchurch, Cynthia B; Giacomin, Paul R; Moran, Corey S; Golledge, Jonathan; Daly, Norelle; Sripa, Banchob; Mulvenna, Jason P; Brindley, Paul J; Loukas, Alex

    2015-10-01

    Infection with the human liver fluke Opisthorchis viverrini induces cancer of the bile ducts, cholangiocarcinoma (CCA). Injury from feeding activities of this parasite within the human biliary tree causes extensive lesions, wounds that undergo protracted cycles of healing, and re-injury over years of chronic infection. We show that O. viverrini secreted proteins accelerated wound resolution in human cholangiocytes, an outcome that was compromised following silencing of expression of the fluke-derived gene encoding the granulin-like growth factor, Ov-GRN-1. Recombinant Ov-GRN-1 induced angiogenesis and accelerated mouse wound healing. Ov-GRN-1 was internalized by human cholangiocytes and induced gene and protein expression changes associated with wound healing and cancer pathways. Given the notable but seemingly paradoxical properties of liver fluke granulin in promoting not only wound healing but also a carcinogenic microenvironment, Ov-GRN-1 likely holds marked potential as a therapeutic wound-healing agent and as a vaccine against an infection-induced cancer of major public health significance in the developing world. PMID:26485648

  10. Carcinogenic Parasite Secretes Growth Factor That Accelerates Wound Healing and Potentially Promotes Neoplasia

    PubMed Central

    Smout, Michael J.; Sotillo, Javier; Laha, Thewarach; Papatpremsiri, Atiroch; Rinaldi, Gabriel; Pimenta, Rafael N.; Chan, Lai Yue; Johnson, Michael S.; Turnbull, Lynne; Whitchurch, Cynthia B.; Giacomin, Paul R.; Moran, Corey S.; Golledge, Jonathan; Daly, Norelle; Sripa, Banchob; Mulvenna, Jason P.

    2015-01-01

    Abstract Infection with the human liver fluke Opisthorchis viverrini induces cancer of the bile ducts, cholangiocarcinoma (CCA). Injury from feeding activities of this parasite within the human biliary tree causes extensive lesions, wounds that undergo protracted cycles of healing, and re-injury over years of chronic infection. We show that O. viverrini secreted proteins accelerated wound resolution in human cholangiocytes, an outcome that was compromised following silencing of expression of the fluke-derived gene encoding the granulin-like growth factor, Ov-GRN-1. Recombinant Ov-GRN-1 induced angiogenesis and accelerated mouse wound healing. Ov-GRN-1 was internalized by human cholangiocytes and induced gene and protein expression changes associated with wound healing and cancer pathways. Given the notable but seemingly paradoxical properties of liver fluke granulin in promoting not only wound healing but also a carcinogenic microenvironment, Ov-GRN-1 likely holds marked potential as a therapeutic wound-healing agent and as a vaccine against an infection-induced cancer of major public health significance in the developing world. PMID:26485648

  11. Combination of low level light therapy and nitrosyl-cobinamide accelerates wound healing

    PubMed Central

    Spitler, Ryan; Ho, Hsiang; Norpetlian, Frederique; Kong, Xiangduo; Jiang, Jingjing; Yokomori, Kyoko; Andersen, Bogi; Boss, Gerry R.; Berns, Michael W.

    2015-01-01

    Abstract. Low level light therapy (LLLT) has numerous therapeutic benefits, including improving wound healing, but the precise mechanisms involved are not well established; in particular, the underlying role of cytochrome C oxidase (C-ox) as the primary photoacceptor and the associated biochemical mechanisms still require further investigation. We previously showed the nitric oxide (NO) donating drug nitrosyl-cobinamide (NO-Cbi) enhances wound healing through a cGMP/cGMP-dependent protein kinase/ERK1/2 mechanism. Here, we show that the combination of LLLT and NO-Cbi markedly improves wound healing compared to either treatment alone. LLLT-enhanced wound healing proceeded through an electron transport chain-C-ox-dependent mechanism with a reduction of reactive oxygen species and increased adenosine triphosphate production. C-ox was validated as the primary photoacceptor by three observations: increased oxygen consumption, reduced wound healing in the presence of sodium azide, and disassociation of cyanide, a known C-ox ligand, following LLLT. We conclude that LLLT and NO-Cbi accelerate wound healing through two independent mechanisms, the electron transport chain-C-ox pathway and cGMP signaling, respectively, with both resulting in ERK1/2 activation. PMID:25562608

  12. Combination of low level light therapy and nitrosyl-cobinamide accelerates wound healing

    NASA Astrophysics Data System (ADS)

    Spitler, Ryan; Ho, Hsiang; Norpetlian, Frederique; Kong, Xiangduo; Jiang, Jingjing; Yokomori, Kyoko; Andersen, Bogi; Boss, Gerry R.; Berns, Michael W.

    2015-05-01

    Low level light therapy (LLLT) has numerous therapeutic benefits, including improving wound healing, but the precise mechanisms involved are not well established; in particular, the underlying role of cytochrome C oxidase (C-ox) as the primary photoacceptor and the associated biochemical mechanisms still require further investigation. We previously showed the nitric oxide (NO) donating drug nitrosyl-cobinamide (NO-Cbi) enhances wound healing through a cGMP/cGMP-dependent protein kinase/ERK1/2 mechanism. Here, we show that the combination of LLLT and NO-Cbi markedly improves wound healing compared to either treatment alone. LLLT-enhanced wound healing proceeded through an electron transport chain-C-ox-dependent mechanism with a reduction of reactive oxygen species and increased adenosine triphosphate production. C-ox was validated as the primary photoacceptor by three observations: increased oxygen consumption, reduced wound healing in the presence of sodium azide, and disassociation of cyanide, a known C-ox ligand, following LLLT. We conclude that LLLT and NO-Cbi accelerate wound healing through two independent mechanisms, the electron transport chain-C-ox pathway and cGMP signaling, respectively, with both resulting in ERK1/2 activation.

  13. Combination of low level light therapy and nitrosyl-cobinamide accelerates wound healing.

    PubMed

    Spitler, Ryan; Ho, Hsiang; Norpetlian, Frederique; Kong, Xiangduo; Jiang, Jingjing; Yokomori, Kyoko; Andersen, Bogi; Boss, Gerry R; Berns, Michael W

    2015-05-01

    Low level light therapy (LLLT) has numerous therapeutic benefits, including improving wound healing, but the precise mechanisms involved are not well established; in particular, the underlying role of cytochrome C oxidase (C-ox) as the primary photoacceptor and the associated biochemical mechanisms still require further investigation. We previously showed the nitric oxide (NO) donating drug nitrosyl-cobinamide (NO-Cbi) enhances wound healing through a cGMP/cGMP-dependent protein kinase/ERK1/2 mechanism. Here, we show that the combination of LLLT and NO-Cbi markedly improves wound healing compared to either treatment alone. LLLT-enhanced wound healing proceeded through an electron transport chain-C-ox-dependent mechanism with a reduction of reactive oxygen species and increased adenosine triphosphate production. C-ox was validated as the primary photoacceptor by three observations: increased oxygen consumption, reduced wound healing in the presence of sodium azide, and disassociation of cyanide, a known C-ox ligand, following LLLT. We conclude that LLLT and NO-Cbi accelerate wound healing through two independent mechanisms, the electron transport chain-C-ox pathway and cGMP signaling, respectively, with both resulting in ERK1/2 activation. PMID:25562608

  14. Potential use of blood bank platelet concentrates to accelerate wound healing of diabetic ulcers.

    PubMed

    Han, Seung-Kyu; Kim, Deok-Woo; Jeong, Seong-Ho; Hong, Yong-Taek; Woo, Hong-Suh; Kim, Woo-Kyung; Gottrup, Finn

    2007-11-01

    Many clinical trials have shown the effectiveness of platelet releasates on diabetic wound healing, but large volumes of blood must be aspirated from patients and a platelet separator is required. This study was undertaken to investigate the potential of blood bank platelet concentrate (BBPC) for accelerating diabetic wound healing. Platelet-derived growth factor-BB (PDGF-BB) contents in BBPC were determined by enzyme-linked immunosorbent assay in vitro, and the in vivo study involved comparing extents of wound healing in BBPC-treated and control groups using diabetic mouse wound models. In the in vitro study, 5.2 +/- 1.2 pg of PDGF-BB was found to be released by 1 million platelets in fresh BBPC, and adding thrombin to BBPC significantly increased the levels of PDGF-BB released. Our in vivo study in diabetic mice revealed that BBPC treatment greatly accelerated wound healing. Our results suggest that BBPC has potential to accelerate the healing of diabetic ulcers. PMID:17992147

  15. Reduced FOXO1 Expression Accelerates Skin Wound Healing and Attenuates Scarring

    PubMed Central

    Mori, Ryoichi; Tanaka, Katsuya; de Kerckhove, Maiko; Okamoto, Momoko; Kashiyama, Kazuya; Tanaka, Katsumi; Kim, Sangeun; Kawata, Takuya; Komatsu, Toshimitsu; Park, Seongjoon; Ikematsu, Kazuya; Hirano, Akiyoshi; Martin, Paul; Shimokawa, Isao

    2015-01-01

    The forkhead box O (FOXO) family has been extensively investigated in aging and metabolism, but its role in tissue-repair processes remains largely unknown. Herein, we clarify the molecular aspect of the FOXO family in skin wound healing. We demonstrated that Foxo1 and Foxo3a were both up-regulated during murine skin wound healing. Partial knockout of Foxo1 in Foxo1+/− mice throughout the body led to accelerated skin wound healing with enhanced keratinocyte migration, reduced granulation tissue formation, and decreased collagen density, accompanied by an attenuated inflammatory response, but we observed no wound phenotype in Foxo3a−/− mice. Fibroblast growth factor 2, adiponectin, and notch1 genes were significantly increased at wound sites in Foxo1+/− mice, along with markedly altered extracellular signal–regulated kinase 1/2 and AKT phosphorylation. Similarly, transient knockdown of Foxo1 at the wound site by local delivery of antisense oligodeoxynucleotides enhanced skin wound healing. The link between FOXO1 and scarring extends to patients, in particular keloid scars, where we see FOXO1 expression markedly increased in fibroblasts and inflammatory cells within the otherwise normal dermis. This occurs in the immediate vicinity of the keloid by comparison to the center of the mature keloid, indicating that FOXO1 is associated with the overgrowth of this fibrotic response into adjacent normal skin. Overall, our data indicate that molecular targeting of FOXO1 may improve the quality of healing and reduce pathological scarring. PMID:25010393

  16. Combination of adrenomedullin with its binding protein accelerates cutaneous wound healing.

    PubMed

    Idrovo, Juan-Pablo; Yang, Weng-Lang; Jacob, Asha; Ajakaiye, Michael A; Cheyuo, Cletus; Wang, Zhimin; Prince, Jose M; Nicastro, Jeffrey; Coppa, Gene F; Wang, Ping

    2015-01-01

    Cutaneous wound continues to cause significant morbidity and mortality in the setting of diseases such as diabetes and cardiovascular diseases. Despite advances in wound care management, there is still an unmet medical need exists for efficient therapy for cutaneous wound. Combined treatment of adrenomedullin (AM) and its binding protein-1 (AMBP-1) is protective in various disease conditions. To examine the effect of the combination treatment of AM and AMBP-1 on cutaneous wound healing, full-thickness 2.0-cm diameter circular excision wounds were surgically created on the dorsum of rats, saline (vehicle) or AM/AMBP-1 (96/320 μg kg BW) was topically applied to the wound daily and wound size measured. At days 3, 7, and 14, skin samples were collected from the wound sites. AM/AMBP-1 treated group had significantly smaller wound surface area than the vehicle group over the 14-day time course. At day 3, AM/AMBP-1 promoted neutrophil infiltration (MPO), increased cytokine levels (IL-6 and TNF-α), angiogenesis (CD31, VEGF and TGFβ-1) and cell proliferation (Ki67). By day 7 and 14, AM/AMBP-1 treatment decreased MPO, followed by a rapid resolution of inflammation characterized by a decrease in cytokines. At the matured stage, AM/AMBP-1 treatment increased the alpha smooth muscle actin expression (mature blood vessels) and Masson-Trichrome staining (collagen deposition) along the granulation area, and increased MMP-9 and decreased MMP-2 mRNA expressions. TGFβ-1 mRNA levels in AM/AMBP-1 group were 5.3 times lower than those in the vehicle group. AM/AMBP-1 accelerated wound healing by promoting angiogenesis, collagen deposition and remodeling. Treatment also shortened the days to reach plateau for wound closure. Thus, AM/AMBP-1 may be further developed as a therapeutic for cutaneous wound healing. PMID:25781901

  17. Application of Coenzyme Q10 for Accelerating Soft Tissue Wound Healing after Tooth Extraction in Rats

    PubMed Central

    Yoneda, Toshiki; Tomofuji, Takaaki; Kawabata, Yuya; Ekuni, Daisuke; Azuma, Tetsuji; Kataoka, Kota; Kunitomo, Muneyoshi; Morita, Manabu

    2014-01-01

    Accelerating wound healing after tooth extraction is beneficial in dental treatment. Application of antioxidants, such as reduced coenzyme Q10 (rCoQ10), may promote wound healing after tooth extraction. In this study, we examined the effects of topical application of rCoQ10 on wound healing after tooth extraction in rats. After maxillary first molars were extracted, male Fischer 344 rats (8 weeks old) (n = 27) received topical application of ointment containing 5% rCoQ10 (experimental group) or control ointment (control group) to the sockets for 3 or 8 days (n = 6–7/group). At 3 days after extraction, the experimental group showed higher collagen density and lower numbers of polymorphonuclear leukocytes in the upper part of socket, as compared to the control group (p < 0.05). Gene expression of interleukin-1β, tumor necrosis factor-α and nuclear factor-κB were also lower in the experimental group than in the control group (p < 0.05). At 8 days after tooth extraction, there were no significant differences in collagen density, number of polymorphonuclear leukocytes and bone fill between the groups. Our results suggest that topical application of rCoQ10 promotes wound healing in the soft tissue of the alveolar socket, but that rCoQ10 has a limited effect on bone remodeling in rats. PMID:25514392

  18. Young coconut juice can accelerate the healing process of cutaneous wounds

    PubMed Central

    2012-01-01

    Background Estrogen has been reported to accelerate cutaneous wound healing. This research studies the effect of young coconut juice (YCJ), presumably containing estrogen-like substances, on cutaneous wound healing in ovairectomized rats. Methods Four groups of female rats (6 in each group) were included in this study. These included sham-operated, ovariectomized (ovx), ovx receiving estradiol benzoate (EB) injections intraperitoneally, and ovx receiving YCJ orally. Two equidistant 1-cm full-thickness skin incisional wounds were made two weeks after ovariectomy. The rats were sacrificed at the end of the third and the fourth week of the study, and their serum estradiol (E2) level was measured by chemiluminescent immunoassay. The skin was excised and examined in histological sections stained with H&E, and immunostained using anti-estrogen receptor (ER-α an ER-β) antibodies. Results Wound healing was accelerated in ovx rats receiving YCJ, as compared to controls. This was associated with significantly higher density of immunostaining for ER-α an ER-β in keratinocytes, fibroblasts, white blood cells, fat cells, sebaceous gland, skeletal muscles, and hair shafts and follicles. This was also associated with thicker epidermis and dermis, but with thinner hypodermis. In addition, the number and size of immunoreactive hair follicles for both ER-α and ER-β were the highest in the ovx+YCJ group, as compared to the ovx+EB group. Conclusions This study demonstrates that YCJ has estrogen-like characteristics, which in turn seem to have beneficial effects on cutaneous wound healing. PMID:23234369

  19. Expectation-induced placebo responses fail to accelerate wound healing in healthy volunteers: results from a prospective controlled experimental trial.

    PubMed

    Vits, Sabine; Dissemond, Joachim; Schadendorf, Dirk; Kriegler, Lisa; Körber, Andreas; Schedlowski, Manfred; Cesko, Elvir

    2015-12-01

    Placebo responses have been shown to affect the symptomatology of skin diseases. However, expectation-induced placebo effects on wound healing processes have not been investigated yet. We analysed whether subjects' expectation of receiving an active drug accelerates the healing process of experimentally induced wounds. In 22 healthy men (experimental group, n = 11; control group, n = 11) wounds were induced by ablative laser on both thighs. Using a deceptive paradigm, participants in the experimental group were informed that an innovative 'wound gel' was applied on one of the two wounds, whereas a 'non-active gel' was applied on the wound of the other thigh. In fact, both gels were identical hydrogels without any active components. A control group was informed to receive a non-active gel on both wounds. Progress in wound healing was documented via planimetry on days 1, 4 and 7 after wound induction. From day 9 onwards wound inspections were performed daily accompanied by a change of the dressing and a new application of the gel. No significant differences could be observed with regard to duration or process of wound healing, either by intraindividual or by interindividual comparisons. These data document no expectation-induced placebo effect on the healing process of experimentally induced wounds in healthy volunteers. PMID:24373522

  20. Accelerating skin wound healing by M-CSF through generating SSEA-1 and -3 stem cells in the injured sites

    PubMed Central

    Li, Yunyuan; Jalili, Reza Baradar; Ghahary, Aziz

    2016-01-01

    Wound healing is a complicated process requiring the collaborative efforts of different cell lineages. Our recent studies have found that one subset of hematopoietic cells can be induced to dedifferentiate into multipotent stem cells by means of a proliferating fibroblast releasable factor, M-CSF. Understanding the importance of stem cells on skin wound healing, here we evaluate the biological significance of M-CSF on skin wound healing. In an in vivo mouse skin excisional wound model, we found that SSEA-positive stem cells were present in wounded but not normal skin. After isolating skin cells from either normal or wounded skin by collagenase digestion, and analyzing the SSEA-1 positive cells by flow cytometry, we found a significant increase in the number of SSEA-1 positive cells in wounded skin. Topical application of M-CSF in skin wounds accelerated healing remarkably, while application of M-CSF-neutralizing antibody slowed wound healing. Furthermore, injection of EGFP-labeled hematopoietic cell-derived stem cells generated from M-CSF treated splenocytes resulted in EGFP-labeled cells being enriched in the skin wound site and further differentiated into functional organ-specific cells. Together, these data demonstrated that M-CSF makes a significant contribution to the healing process by inducing hematopoietic cell dedifferentiation into stem cells. PMID:27363517

  1. Drug loaded composite oxidized pectin and gelatin networks for accelerated wound healing.

    PubMed

    Tummalapalli, Mythili; Berthet, Morgane; Verrier, Bernard; Deopura, B L; Alam, M S; Gupta, Bhuvanesh

    2016-05-30

    Biocomposite interactive wound dressings have been designed and fabricated using oxidized pectin (OP), gelatin and nonwoven cotton fabric. Due to their inherent virtues of antimicrobial activity and cytocompatibility, these composite structures are capable of redirecting the healing cascade and influencing cell attachment and proliferation. A novel in situ reduction process has been followed to synthesize oxidized pectin-gelatin-nanosilver (OP-Gel-NS) flower like nanohydrocolloids. This encapsulation technology controls the diffusion and permeation of nanosilver into the surrounding biological tissues. Ciprofloxacin hydrochloride has also been incorporated into the OP-Gel matrix to produce OP-Gel-Cipro dressings. While OP-Gel-NS dressings exhibited 100% antimicrobial activity at extremely low loadings of 3.75μg/cm(2), OP-Gel-Cipro dressings were highly antimicrobial at 1% drug loading. While NIH3T3 mouse fibroblasts proliferated remarkably well when cultured with OP-Gel and OP-Gel-Cipro dressings, OP-Gel-NS hindered cell growth and Bactigras(®) induced complete lysis. Full thickness excisional wounds were created on C57BL/6J mice and the wound healing potential of the OP-Gel-NS dressings led to accelerated healing within 12days, while OP-Gel-Cipro dressings healed wounds at a rate similar to that of Bactigras(®). Histological examination revealed that OP-Gel-NS and OP-Gel-Cipro treatment led to organized collagen deposition, neovascularization and nuclei migration, unlike Bactigras(®). Therefore, the OP-Gel-NS and OP-Gel-Cipro biocomposite dressings exhibiting good hydrophilicity, sustained antimicrobial nature, promote cell growth and proliferation, and lead to rapid healing, can be considered viable candidates for effective management. PMID:27063849

  2. The accelerating effect of negative pressure wound therapy with Prevena™ on the healing of a closed wound with persistent serous secretion.

    PubMed

    Altintas, Burak; Biber, Roland; Brem, Matthias H

    2015-12-01

    Negative pressure wound therapy has been lately used on closed incisions in the immediate postoperative period to accelerate wound healing. However, there are no data in the literature regarding the use of this type of therapy for wounds with persistent secretion in the early postoperative care. We present the first report of persistent postoperative serous wound secretion in a patient after femoral nailing treated successfully with Prevena™ (KCI), a closed incision negative pressure management system (CINPWT). PMID:24393137

  3. He-Ne laser irradiation acceleration of healing process of open gingival wounds in cats

    NASA Astrophysics Data System (ADS)

    Abramovici, Armand; Roisman, P.; Hirsch, A.; Segal, S.; Fischer, J.

    1994-09-01

    A histopathological study on the effect of He-Ne laser treatment on the evolution of cat gingiva open wounds is presented. The irradiation initiates first a massive inflammatory cell exudate together with an antiedematic effect after the second postoperative day. A substantial acceleration of the healing process is noted on the sixth day among irradiated tissues as compared to the operated gingiva which still shows, at this period of time, inflammatory exudate and isolated fibroblasts. The persistence of inflammatory exudate and edema among the untreated gingiva seemed to have a delaying effect upon the healing process. The biostimulatory effect of soft laser seems to act photodynamically both at the intracellular level and extracellular millieu, thus promoting the proliferative capacity of fibroblasts and capillary buds formation necessary for a rapid differentiation of connective tissue. The controlled application of He-Ne laser treatment is suggested in dental healing procedures.

  4. Cinnamtannin B-1 Promotes Migration of Mesenchymal Stem Cells and Accelerates Wound Healing in Mice.

    PubMed

    Fujita, Kosuke; Kuge, Katsunori; Ozawa, Noriyasu; Sahara, Shunya; Zaiki, Kaori; Nakaoji, Koichi; Hamada, Kazuhiko; Takenaka, Yukiko; Tanahashi, Takao; Tamai, Katsuto; Kaneda, Yasufumi; Maeda, Akito

    2015-01-01

    Substances that enhance the migration of mesenchymal stem cells to damaged sites have the potential to improve the effectiveness of tissue repair. We previously found that ethanol extracts of Mallotus philippinensis bark promoted migration of mesenchymal stem cells and improved wound healing in a mouse model. We also demonstrated that bark extracts contain cinnamtannin B-1, a flavonoid with in vitro migratory activity against mesenchymal stem cells. However, the in vivo effects of cinnamtannin B-1 on the migration of mesenchymal stem cells and underlying mechanism of this action remain unknown. Therefore, we examined the effects of cinnamtannin B-1 on in vivo migration of mesenchymal stem cells and wound healing in mice. In addition, we characterized cinnamtannin B-1-induced migration of mesenchymal stem cells pharmacologically and structurally. The mobilization of endogenous mesenchymal stem cells into the blood circulation was enhanced in cinnamtannin B-1-treated mice as shown by flow cytometric analysis of peripheral blood cells. Whole animal imaging analysis using luciferase-expressing mesenchymal stem cells as a tracer revealed that cinnamtannin B-1 increased the homing of mesenchymal stem cells to wounds and accelerated healing in a diabetic mouse model. Additionally, the cinnamtannin B-1-induced migration of mesenchymal stem cells was pharmacologically susceptible to inhibitors of phosphatidylinositol 3-kinase, phospholipase C, lipoxygenase, and purines. Furthermore, biflavonoids with similar structural features to cinnamtannin B-1 also augmented the migration of mesenchymal stem cells by similar pharmacological mechanisms. These results demonstrate that cinnamtannin B-1 promoted mesenchymal stem cell migration in vivo and improved wound healing in mice. Furthermore, the results reveal that cinnamtannin B-1-induced migration of mesenchymal stem cells may be mediated by specific signaling pathways, and the flavonoid skeleton may be relevant to its effects on

  5. Cinnamtannin B-1 Promotes Migration of Mesenchymal Stem Cells and Accelerates Wound Healing in Mice

    PubMed Central

    Fujita, Kosuke; Kuge, Katsunori; Ozawa, Noriyasu; Sahara, Shunya; Zaiki, Kaori; Nakaoji, Koichi; Hamada, Kazuhiko; Takenaka, Yukiko; Tanahashi, Takao; Tamai, Katsuto; Kaneda, Yasufumi; Maeda, Akito

    2015-01-01

    Substances that enhance the migration of mesenchymal stem cells to damaged sites have the potential to improve the effectiveness of tissue repair. We previously found that ethanol extracts of Mallotus philippinensis bark promoted migration of mesenchymal stem cells and improved wound healing in a mouse model. We also demonstrated that bark extracts contain cinnamtannin B-1, a flavonoid with in vitro migratory activity against mesenchymal stem cells. However, the in vivo effects of cinnamtannin B-1 on the migration of mesenchymal stem cells and underlying mechanism of this action remain unknown. Therefore, we examined the effects of cinnamtannin B-1 on in vivo migration of mesenchymal stem cells and wound healing in mice. In addition, we characterized cinnamtannin B-1-induced migration of mesenchymal stem cells pharmacologically and structurally. The mobilization of endogenous mesenchymal stem cells into the blood circulation was enhanced in cinnamtannin B-1-treated mice as shown by flow cytometric analysis of peripheral blood cells. Whole animal imaging analysis using luciferase-expressing mesenchymal stem cells as a tracer revealed that cinnamtannin B-1 increased the homing of mesenchymal stem cells to wounds and accelerated healing in a diabetic mouse model. Additionally, the cinnamtannin B-1-induced migration of mesenchymal stem cells was pharmacologically susceptible to inhibitors of phosphatidylinositol 3-kinase, phospholipase C, lipoxygenase, and purines. Furthermore, biflavonoids with similar structural features to cinnamtannin B-1 also augmented the migration of mesenchymal stem cells by similar pharmacological mechanisms. These results demonstrate that cinnamtannin B-1 promoted mesenchymal stem cell migration in vivo and improved wound healing in mice. Furthermore, the results reveal that cinnamtannin B-1-induced migration of mesenchymal stem cells may be mediated by specific signaling pathways, and the flavonoid skeleton may be relevant to its effects on

  6. Acceleration of Wound Healing by α-gal Nanoparticles Interacting with the Natural Anti-Gal Antibody

    PubMed Central

    Galili, Uri

    2015-01-01

    Application of α-gal nanoparticles to wounds and burns induces accelerated healing by harnessing the natural anti-Gal antibody which constitutes ~1% of human immunoglobulins. α-gal nanoparticles present multiple α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R), the carbohydrate ligand of anti-Gal. Studied α-gal nanoparticles were comprised of glycolipids with α-gal epitopes, phospholipids, and cholesterol. Binding of anti-Gal to α-gal nanoparticles in wounds activates the complement cascade, resulting in formation of chemotactic complement cleavage peptides that induce rapid recruitment of many macrophages. The Fc/Fcγ receptors interaction between anti-Gal coating α-gal nanoparticles and the recruited macrophages activates macrophages to produce cytokines/growth factors that promote wound healing and recruit stem cells. Studies of wound healing by α-gal nanoparticles were feasible in α1,3galactosyltransferase knockout mice and pigs. In contrast to other nonprimate mammals, these mice and pigs lack the α-gal epitope, and thus they are not immunotolerant to it and produce anti-Gal. Treatment of skin wounds and burns with α-gal nanoparticles resulted in 40–60% decrease in healing time in comparison with control wounds treated with saline. This accelerated healing is associated with increased recruitment of macrophages and extensive angiogenesis in wounds, faster regrowth of epidermis, and regeneration of the dermis. The accelerated healing further decreases and may completely eliminate fibrosis and scar formation in wounds. Since healing of internal injuries is mediated by mechanisms similar to those in external wound healing, it is suggested that α-gal nanoparticles treatment may also improve regeneration and restoration of biological function following internal injuries such as surgical incisions, myocardial ischemia following infarction, and nerve injuries. PMID:25922849

  7. Acceleration of wound healing by α-gal nanoparticles interacting with the natural anti-Gal antibody.

    PubMed

    Galili, Uri

    2015-01-01

    Application of α-gal nanoparticles to wounds and burns induces accelerated healing by harnessing the natural anti-Gal antibody which constitutes ~1% of human immunoglobulins. α-gal nanoparticles present multiple α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R), the carbohydrate ligand of anti-Gal. Studied α-gal nanoparticles were comprised of glycolipids with α-gal epitopes, phospholipids, and cholesterol. Binding of anti-Gal to α-gal nanoparticles in wounds activates the complement cascade, resulting in formation of chemotactic complement cleavage peptides that induce rapid recruitment of many macrophages. The Fc/Fcγ receptors interaction between anti-Gal coating α-gal nanoparticles and the recruited macrophages activates macrophages to produce cytokines/growth factors that promote wound healing and recruit stem cells. Studies of wound healing by α-gal nanoparticles were feasible in α1,3galactosyltransferase knockout mice and pigs. In contrast to other nonprimate mammals, these mice and pigs lack the α-gal epitope, and thus they are not immunotolerant to it and produce anti-Gal. Treatment of skin wounds and burns with α-gal nanoparticles resulted in 40-60% decrease in healing time in comparison with control wounds treated with saline. This accelerated healing is associated with increased recruitment of macrophages and extensive angiogenesis in wounds, faster regrowth of epidermis, and regeneration of the dermis. The accelerated healing further decreases and may completely eliminate fibrosis and scar formation in wounds. Since healing of internal injuries is mediated by mechanisms similar to those in external wound healing, it is suggested that α-gal nanoparticles treatment may also improve regeneration and restoration of biological function following internal injuries such as surgical incisions, myocardial ischemia following infarction, and nerve injuries. PMID:25922849

  8. Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation.

    PubMed

    Zhou, Tian; Wang, Nanping; Xue, Yang; Ding, Tingting; Liu, Xin; Mo, Xiumei; Sun, Jiao

    2016-07-01

    The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4(+)/CD8(+) lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6.72±0.44MPa and 26.71±4.88°, respectively. They also had good thermal stability and swelling property. Furthermore, the nanofibers could significantly promote the proliferation of human keratinocytes (HaCaTs) and stimulate epidermal differentiation through the up-regulated gene expression of involucrin, filaggrin, and type I transglutaminase in HaCaTs. The collagen nanofibers could also facilitate rat skin regeneration. In the present study, electrospun biomimetic tilapia skin collagen nanofibers were succesfully prepared, were proved to have good bioactivity and could accelerate rat wound healing rapidly and effectively. These biological effects might be attributed to the biomimic extracellular matrix structure and the multiple amino acids of the collagen nanofibers. Therefore, the cost-efficient tilapia collagen nanofibers could be used as novel wound dressing, meanwhile effectively avoiding the risk of transmitting animal disease in the future clinical apllication. PMID:27037778

  9. Factors Affecting Wound Healing

    PubMed Central

    Guo, S.; DiPietro, L.A.

    2010-01-01

    Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutaneous wound healing and the potential cellular and/or molecular mechanisms involved. The factors discussed include oxygenation, infection, age and sex hormones, stress, diabetes, obesity, medications, alcoholism, smoking, and nutrition. A better understanding of the influence of these factors on repair may lead to therapeutics that improve wound healing and resolve impaired wounds. PMID:20139336

  10. Metalloproteinases and Wound Healing

    PubMed Central

    Caley, Matthew P.; Martins, Vera L.C.; O'Toole, Edel A.

    2015-01-01

    Significance: Matrix metalloproteinases (MMPs) are present in both acute and chronic wounds. They play a pivotal role, with their inhibitors, in regulating extracellular matrix degradation and deposition that is essential for wound reepithelialization. The excess protease activity can lead to a chronic nonhealing wound. The timed expression and activation of MMPs in response to wounding are vital for successful wound healing. MMPs are grouped into eight families and display extensive homology within these families. This homology leads in part to the initial failure of MMP inhibitors in clinical trials and the development of alternative methods for modulating the MMP activity. MMP-knockout mouse models display altered wound healing responses, but these are often subtle phenotypic changes indicating the overlapping MMP substrate specificity and inter-MMP compensation. Recent Advances: Recent research has identified several new MMP modulators, including photodynamic therapy, protease-absorbing dressing, microRNA regulation, signaling molecules, and peptides. Critical Issues: Wound healing requires the controlled activity of MMPs at all stages of the wound healing process. The loss of MMP regulation is a characteristic of chronic wounds and contributes to the failure to heal. Future Directions: Further research into how MMPs are regulated should allow the development of novel treatments for wound healing. PMID:25945285

  11. Combined nitric oxide-releasing poly(vinyl alcohol) film/F127 hydrogel for accelerating wound healing.

    PubMed

    Schanuel, Fernanda Seabra; Raggio Santos, Karen Slis; Monte-Alto-Costa, Andréa; de Oliveira, Marcelo G

    2015-06-01

    Nitric oxide (NO) releasing biomaterials represent a potential strategy for use as active wound dressings capable of accelerating wound healing. Topical NO-releasing poly(vinyl alcohol) (PVA) films and Pluronic F127 hydrogels (F127) have already exhibited effective skin vasodilation and wound healing actions. In this study, we functionalized PVA films with SNO groups via esterification with a mixture of mercaptosucinic acid (MSA) and thiolactic acid (TLA) followed by S-nitrosation of the SH moieties. These films were combined with an underlying layer of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), i.e., PEO-PPO-PEO (Pluronic F127) hydrogel and used for the topical treatment of skin lesions in an animal model. The mixed esterification of PVA with MSA and TLA led to chemically crosslinked PVA-SNO films with a high swelling capacity capable of spontaneously releasing NO. Real time NO-release measurements revealed that the hydrogel layer reduces the initial NO burst from the PVA-SNO films. We demonstrate that the combination of PVA-SNO films with F127 hydrogel accelerates wound contraction, decreases wound gap and cellular density and accelerates the inflammatory phase of the lesion. These results were reflected in an increase in myofibroblastic differentiation and collagen type III expression in the cicatricial tissue. Therefore, PVA-SNO films combined with F127 hydrogel may represent a new approach for active wound dressings capable of accelerating wound healing. PMID:25907598

  12. Topical Aloe Vera (Aloe barbadensis Miller) Extract Does Not Accelerate the Oral Wound Healing in Rats.

    PubMed

    Coelho, Fernanda Hack; Salvadori, Gabriela; Rados, Pantelis Varvaki; Magnusson, Alessandra; Danilevicz, Chris Krebs; Meurer, Luise; Martins, Manoela Domingues

    2015-07-01

    The effect of topical application of Aloe Vera (Aloe barbadensis Miller) extract was assessed on the healing of rat oral wounds in an in vivo model using 72 male Wistar rats divided into three groups (n = 24): control, placebo and Aloe Vera (0.5% extract hydroalcoholic). Traumatic ulcers were caused in the dorsum of the tongue using a 3-mm punch tool. The Aloe Vera and placebo group received two daily applications. The animals were sacrificed after 1, 5, 10 and 14 days. Clinical analysis (ulcer area and percentage of repair) and histopathological analysis (degree of re-epithelialization and inflammation) were performed. The comparison of the differences between scores based on group and experimental period, both in quantitative and semi-quantitative analyses, was performed using the Kruskal-Wallis test. The significance level was 5%. On day 1, all groups showed predominantly acute inflammatory infiltrate. On day 5, there was partial epithelialization and chronic inflammatory infiltrate. On the days 10 and 14 total repair of ulcers was observed. There was no significant difference between groups in the repair of mouth ulcers. It is concluded that treatment using Aloe Vera as an herbal formulation did not accelerate oral wound healing in rats. PMID:25891093

  13. Chitosan-based copper nanocomposite accelerates healing in excision wound model in rats.

    PubMed

    Gopal, Anu; Kant, Vinay; Gopalakrishnan, Anu; Tandan, Surendra K; Kumar, Dinesh

    2014-05-15

    Copper possesses efficacy in wound healing which is a complex phenomenon involving various cells, cytokines and growth factors. Copper nanoparticles modulate cells, cytokines and growth factors involved in wound healing in a better way than copper ions. Chitosan has been shown to be beneficial in healing because of its antibacterial, antifungal, biocompatible and biodegradable polymeric nature. In the present study, chitosan-based copper nanocomposite (CCNC) was prepared by mixing chitosan and copper nanoparticles. CCNC was applied topically to evaluate its wound healing potential and to study its effects on some important components of healing process in open excision wound model in adult Wistar rats. Significant increase in wound contraction was observed in the CCNC-treated rats. The up-regulation of vascular endothelial growth factor (VEGF) and transforming growth factor-beta1(TGF-β1) by CCNC-treatment revealed its role in facilitating angiogenesis, fibroblast proliferation and collagen deposition. The tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) were significantly decreased and increased, respectively, in CCNC-treated rats. Histological evaluation showed more fibroblast proliferation, collagen deposition and intact re-epithelialization in CCNC-treated rats. Immunohistochemistry of CD31 revealed marked increase in angiogenesis. Thus, we concluded that chitosan-based copper nanocomposite efficiently enhanced cutaneous wound healing by modulation of various cells, cytokines and growth factors during different phases of healing process. PMID:24632085

  14. The Use of Growth Factors and Other Humoral Agents to Accelerate and Enhance Burn Wound Healing

    PubMed Central

    Ching, Yiu-Hei; Sutton, Thomas L.; Pierpont, Yvonne N.; Robson, Martin C.; Payne, Wyatt G.

    2011-01-01

    Objective: Certain cytokines, especially those known as growth factors, have been demonstrated to mediate or modulate burn wound healing. Experimental and clinical evidence suggests that there are therapeutic advantages to the wound healing process when these agents are utilized. Positive effects have been reported for 4 types of wounds seen in the burn patient: partial-thickness wounds, full-thickness wounds, interstices of meshed skin grafts, and skin graft donor sites. Methods: A comprehensive literature search was performed using the MEDLINE, Ovid, and Web of Science databases to identify pertinent articles regarding growth factors and other cytokines in burns and wound healing. Results: The current knowledge about cytokine growth factors and their potential therapeutic applications in burn wound healing are discussed and reviewed. Conclusions: Platelet-derived growth factor, fibroblast growth factors, epidermal growth factors, transforming growth factor alpha, vascular endothelial growth factor, insulin-like growth factor I, nerve growth factor, transforming growth factor beta, granulocyte-macrophage colony-stimulating factor, and amnion-derived cellular cytokine solution have all been suggested to enhance the rate and quality of healing in 1 or more of these wounds encountered in burn care. PMID:22084646

  15. Wound healing in urology.

    PubMed

    Ninan, Neethu; Thomas, Sabu; Grohens, Yves

    2015-03-01

    Wound healing is a dynamic and complex phenomenon of replacing devitalized tissues in the body. Urethral healing takes place in four phases namely inflammation, proliferation, maturation and remodelling, similar to dermal healing. However, the duration of each phase of wound healing in urology is extended for a longer period when compared to that of dermatology. An ideal wound dressing material removes exudate, creates a moist environment, offers protection from foreign substances and promotes tissue regeneration. A single wound dressing material shall not be sufficient to treat all kinds of wounds as each wound is distinct. This review includes the recent attempts to explore the hidden potential of growth factors, stem cells, siRNA, miRNA and drugs for promoting wound healing in urology. The review also discusses the different technologies used in hospitals to treat wounds in urology, which make use of innovative biomaterials synthesised in regenerative medicines like hydrogels, hydrocolloids, foams, films etc., incorporated with growth factors, drug molecules or nanoparticles. These include surgical zippers, laser tissue welding, negative pressure wound therapy, and hyperbaric oxygen treatment. PMID:25500273

  16. Green light emitting diodes accelerate wound healing: characterization of the effect and its molecular basis in vitro and in vivo.

    PubMed

    Fushimi, Tomohiro; Inui, Shigeki; Nakajima, Takeshi; Ogasawara, Masahiro; Hosokawa, Ko; Itami, Satoshi

    2012-01-01

    Because light-emitting diodes (LEDs) are low-coherent, quasimonochromatic, and nonthermal, they are an alternative for low level laser therapy, and have photobiostimulative effects on tissue repair. However, the molecular mechanism(s) are unclear, and potential effects of blue and/or green LEDs on wound healing are still unknown. Here, we investigated the effects of red (638 nm), blue (456 nm), and green (518 nm) LEDs on wound healing. In an in vivo study, wound sizes in the skin of ob/ob mice were significantly decreased on day 7 following exposure to green LEDs, and complete reepithelialization was accelerated by red and green LEDs compared with the control mice. To better understand the molecular mechanism(s) involved, we investigated the effects of LEDs on human fibroblasts in vitro by measuring mRNA and protein levels of cytokines secreted by fibroblasts during the process of wound healing and on the migration of HaCat keratinocytes. The results suggest that some cytokines are significantly increased by exposure to LEDs, especially leptin, IL-8, and VEGF, but only by green LEDs. The migration of HaCat keratinocytes was significantly promoted by red or green LEDs. In conclusion, we demonstrate that green LEDs promote wound healing by inducing migratory and proliferative mediators, which suggests that not only red LEDs but also green LEDs can be a new powerful therapeutic strategy for wound healing. PMID:22380691

  17. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts.

    PubMed

    Hu, Li; Wang, Juan; Zhou, Xin; Xiong, Zehuan; Zhao, Jiajia; Yu, Ran; Huang, Fang; Zhang, Handong; Chen, Lili

    2016-01-01

    Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell migration, proliferation and collagen synthesis in a dose-dependent manner, with increased genes expression of N-cadherin, cyclin-1, PCNA and collagen I, III. In vivo tracing experiments demonstrated that ASCs-Exos can be recruited to soft tissue wound area in a mouse skin incision model and significantly accelerated cutaneous wound healing. Histological analysis showed increased collagen I and III production by systemic administration of exosomes in the early stage of wound healing, while in the late stage, exosomes might inhibit collagen expression to reduce scar formation. Collectively, our findings indicate that ASCs-Exos can facilitate cutaneous wound healing via optimizing the characteristics of fibroblasts. Our results provide a new perspective and therapeutic strategy for the use of ASCs-Exos in soft tissue repair. PMID:27615560

  18. Curcuma purpurascens BI. rhizome accelerates rat excisional wound healing: involvement of Hsp70/Bax proteins, antioxidant defense, and angiogenesis activity

    PubMed Central

    Rouhollahi, Elham; Moghadamtousi, Soheil Zorofchian; Hajiaghaalipour, Fatemeh; Zahedifard, Maryam; Tayeby, Faezeh; Awang, Khalijah; Abdulla, Mahmood Ameen; Mohamed, Zahurin

    2015-01-01

    Purpose Curcuma purpurascens BI. is a member of Zingiberaceae family. The purpose of this study is to investigate the wound healing properties of hexane extract of C. purpurascens rhizome (HECP) against excisional wound healing in rats. Materials and methods Twenty four rats were randomly divided into 4 groups: A) negative control (blank placebo, acacia gum), B) low dose of HECP, C) high dose of HECP, and D) positive control, with 6 rats in each group. Full-thickness incisions (approximately 2.00 cm) were made on the neck area of each rat. Groups 1–4 were treated two-times a day for 20 days with blank placebo, HECP (100 mg/kg), HECP (200 mg/kg), and intrasite gel as a positive control, respectively. After 20 days, hematoxylin and eosin and Masson’s trichrome stainings were employed to investigate the histopathological alterations. Protein expressions of Bax and Hsp70 were examined in the wound tissues using immunohistochemistry analysis. In addition, levels of enzymatic antioxidants and malondialdehyde representing lipid peroxidation were measured in wound tissue homogenates. Results Macroscopic evaluation of wounds showed conspicuous elevation in wound contraction after topical administration of HECP at both doses. Moreover, histopathological analysis revealed noteworthy reduction in the scar width correlated with the enhanced collagen content and fibroblast cells, accompanied by a reduction of inflammatory cells in the granulation tissues. At the molecular level, HECP facilitates wound-healing process by downregulating Bax and upregulating Hsp70 protein at the wound site. The formation of new blood vessel was observed in Masson’s trichrome staining of wounds treated with HECP (100 and 200 mg/kg). In addition, HECP administration caused a significant surge in enzymatic antioxidant activities and a decline in lipid peroxidation. Conclusion These findings suggested that HECP accelerated wound-healing process in rats via antioxidant activity, angiogenesis

  19. Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice.

    PubMed

    Geiger, Adolf; Walker, Audrey; Nissen, Erwin

    2015-11-13

    Diabetic ulcers represent a substantial societal and healthcare burden worldwide and scarcely respond to current treatment strategies. This study was addressed to evaluate the therapeutic potential of exosomes secreted by human circulating fibrocytes, a population of mesenchymal progenitors involved in normal wound healing via paracrine signaling. The exosomes released from cells sequentially stimulated with platelet-derived growth factor-BB and transforming growth factor-β1, in the presence of fibroblast growth factor 2, did not show potential immunogenicity. These exosomes exhibited in-vitro proangiogenic properties, activated diabetic dermal fibroblasts, induced the migration and proliferation of diabetic keratinocytes, and accelerated wound closure in diabetic mice in vivo. Important components of the exosomal cargo were heat shock protein-90α, total and activated signal transducer and activator of transcription 3, proangiogenic (miR-126, miR-130a, miR-132) and anti-inflammatory (miR124a, miR-125b) microRNAs, and a microRNA regulating collagen deposition (miR-21). This proof-of-concept study demonstrates the feasibility of the use of fibrocytes-derived exosomes for the treatment of diabetic ulcers. PMID:26454169

  20. A deficiency in cold-inducible RNA-binding protein accelerates the inflammation phase and improves wound healing.

    PubMed

    Idrovo, Juan Pablo; Jacob, Asha; Yang, Weng Lang; Wang, Zhimin; Yen, Hao Ting; Nicastro, Jeffrey; Coppa, Gene F; Wang, Ping

    2016-02-01

    Chronic or non-healing wounds are a major concern in clinical practice and these wounds are mostly associated with diabetes, and venous and pressure ulcers. Wound healing is a complex process involving overlapping phases and the primary phase in this complex cascade is the inflammatory state. While inflammation is necessary for wound healing, a prolonged inflammatory phase leads to impaired healing. Cold-inducible RNA-binding protein (CIRP) belongs to a family of cold-shock proteins that are expressed in high levels under stress conditions. Recently, we demonstrated that a deficiency in CIRP led to decreased inflammation and mortality in an experimental model of hemorrhagic shock. Thus, we hypothesized that a deficiency in CIRP would accelerate the inflammatory phase and lead to an improvement in cutaneous wound healing. In this study, to examine this hypothesis, a full-thickness wound was created on the dorsum of wild-type (WT) and CIRP-/- mice. The wound size was measured every other day for 14 days. The wound area was significantly decreased in the CIRP-/- mice by day 9 and continued to decrease until day 14 compared to the WT mice. In a separate cohort, mice were sacrificed on days 3 and 7 after wounding and the skin tissues were harvested for histological analysis and RNA measurements. On day 3, the mRNA expression of tumor necrossis factor (TNF)-α in the skin tissues was increased by 16-fold in the WT mice, whereas these levels were increased by 65-fold in the CIRP-/- mice. Of note on day 7, while the levels of TNF-α remained high in the WT mice, these levels were significantly decreased in the CIRP-/- mice. The histological analysis of the wounded skin tissue indicated an improvement as early as day 3 in the CIRP-/- mice, whereas in the WT mice, infiltrated immune cells were still present on day 7. On day 7 in the CIRP-/- mice, Gr-1 expression was low and CD31 expression was high, whereas in the WT mice, Gr-1 expression was high and CD31 expression was low

  1. Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing

    PubMed Central

    Schneider, A.; Wang, X.Y.; Kaplan, D.L.; Garlick, J.A.; Egles, C.

    2010-01-01

    Materials able to deliver topically bioactive molecules represent a new generation of biomaterials. In this article, we describe the use of silk mats, made of electrospun nanoscale silk fibers containing epidermal growth factor (EGF), for the promotion of wound healing processes. In our experiments, we demonstrated that EGF is incorporated into the silk mats and slowly released in a time-dependent manner (25% EGF release in 170 h). We tested these materials using a new model of wounded human skin-equivalents displaying the same structure as human skin and able to heal using the same molecular and cellular mechanisms found in vivo. This human three-dimensional model allows us to demonstrate that the biofunctionalized silk mats, when placed on the wounds as a dressing, aid the healing by increasing the time of wound closure by the epidermal tongue by 90%. The preservation of the structure of the mats during the healing period as demonstrated by electronic microscopy, the biological action of the dressing, as well as the biocompatibility of the silk demonstrate that this biomaterial is a new and very promising material for medical applications, especially for patients suffering from chronic wounds. PMID:19162575

  2. Topical N-Acetylcysteine Accelerates Wound Healing in Vitro and in Vivo via the PKC/Stat3 Pathway

    PubMed Central

    Tsai, Min-Ling; Huang, Hui-Pei; Hsu, Jeng-Dong; Lai, Yung-Rung; Hsiao, Yu-Ping; Lu, Fung-Jou; Chang, Horng-Rong

    2014-01-01

    N-Acetylcysteine (Nac) is an antioxidant administered in both oral and injectable forms. In this study, we used Nac topically to treat burn wounds in vitro and in vivo to investigate mechanisms of action. In vitro, we monitored glutathione levels, cell proliferation, migration, scratch-wound healing activities and the epithelialization-related proteins, matrixmetalloproteinase-1 (MMP-1) and proteins involved in regulating the expression of MMP-1 in CCD-966SK cells treated with Nac. Various Nac concentrations (0.1, 0.5, and 1.0 mM) increased glutathione levels, cell viability, scratch-wound healing activities and migration abilities of CCD-966SK cells in a dose-dependent manner. The MMP-1 expression of CCD-966SK cells treated with 1.0 mM Nac for 24 h was significantly increased. Levels of phosphatidylinositol 3-kinase (PI3K), protein kinase C (PKC), janus kinase 1 (Jak1), signal transducer and activator of transcription 3 (Stat3), c-Fos and Jun, but not extracellular signal-regulated protein kinases 1 and 2 (Erk1/2), were also significantly increased in a dose-dependent manner compared to the controls. In addition, Nac induced collagenous expression of MMP-1 via the PKC/Stat3 signaling pathway. In vivo, a burn wound healing rat model was applied to assess the stimulation activity and histopathological effects of Nac, with 3.0% Nac-treated wounds being found to show better characteristics on re-epithelialization. Our results demonstrated that Nac can potentially promote wound healing activity, and may be a promising drug to accelerate burn wound healing. PMID:24798751

  3. Phytochemicals in Wound Healing

    PubMed Central

    Thangapazham, Rajesh L.; Sharad, Shashwat; Maheshwari, Radha K.

    2016-01-01

    Significance: Traditional therapies, including the use of dietary components for wound healing and skin regeneration, are very common in Asian countries such as China and India. The increasing evidence of health-protective benefits of phytochemicals, components derived from plants is generating a lot of interest, warranting further scientific evaluation and mechanistic studies. Recent Advances: Phytochemicals are non-nutritive substances present in plants, and some of them have the potential to provide better tissue remodeling when applied on wounds and to also act as proangiogenic agents during wound healing. Critical Issues: In this review, we briefly discuss the current understanding, important molecular targets, and mechanism of action(s) of some of the phytochemicals such as curcumin, picroliv, and arnebin-1. We also broadly review the multiple pathways that these phytochemicals regulate to enhance wound repair and skin regeneration. Future Directions: Recent experimental data on the effects of phytochemicals on wound healing and skin regeneration establish the potential clinical utility of plant-based compounds. Additional research in order to better understand the exact mechanism and potential targets of phytochemicals in skin regeneration is needed. Human studies a2nd clinical trials are pivotal to fully understand the benefits of phytochemicals in wound healing and skin regeneration. PMID:27134766

  4. Progress in corneal wound healing.

    PubMed

    Ljubimov, Alexander V; Saghizadeh, Mehrnoosh

    2015-11-01

    Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β (TGF-β) system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal

  5. Fibrin biomatrix-conjugated platelet-derived growth factor AB accelerates wound healing in severe thermal injury.

    PubMed

    Mittermayr, Rainer; Branski, Ludwik; Moritz, Martina; Jeschke, Marc G; Herndon, David N; Traber, Daniel; Schense, Jason; Gampfer, Jörg; Goppelt, Andreas; Redl, Heinz

    2016-05-01

    Controlled delivery of growth factors from biodegradable biomatrices could accelerate and improve impaired wound healing. The study aim was to determine whether platelet-derived growth factor AB (PDGF.AB) with a transglutaminase (TG) crosslinking substrate site released from a fibrin biomatrix improves wound healing in severe thermal injury. The binding and release kinetics of TG-PDGF.AB were determined in vitro. Third-degree contact burns (dorsum of Yorkshire pigs) underwent epifascial necrosectomy 24 h post-burn. Wound sites were covered with autologous meshed (3:1) split-thickness skin autografts and either secured with staples or attached with sprayed fibrin sealant (FS; n = 8/group). TG-PDGF.AB binds to the fibrin biomatrix using the TG activity of factor XIIIa, and is subsequently released through enzymatic cleavage. Three doses of TG-PDGF.AB in FS (100 ng, 1 µg and 11 µg/ml FS) were tested. TG-PDGF.AB was bound to the fibrin biomatrix as evidenced by western blot analysis and subsequently released by enzymatic cleavage. A significantly accelerated and improved wound healing was achieved using sprayed FS containing TG-PDGF.AB compared to staples alone. Low concentrations (100 ng-1 µg TG-PDGF.AB/ml final FS clot) demonstrated to be sufficient to attain a nearly complete closure of mesh interstices 14 days after grafting. TG-PDGF.AB incorporated in FS via a specific binding technology was shown to be effective in grafted third-degree burn wounds. The adhesive properties of the fibrin matrix in conjunction with the prolonged growth factor stimulus enabled by this binding technology could be favourable in many pathological situations associated with wound-healing disturbances. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23723146

  6. Integrins in Wound Healing

    PubMed Central

    Koivisto, Leeni; Heino, Jyrki; Häkkinen, Lari; Larjava, Hannu

    2014-01-01

    Significance: Regulation of cell adhesions during tissue repair is fundamentally important for cell migration, proliferation, and protein production. All cells interact with extracellular matrix proteins with cell surface integrin receptors that convey signals from the environment into the nucleus, regulating gene expression and cell behavior. Integrins also interact with a variety of other proteins, such as growth factors, their receptors, and proteolytic enzymes. Re-epithelialization and granulation tissue formation are crucially dependent on the temporospatial function of multiple integrins. This review explains how integrins function in wound repair. Recent Advances: Certain integrins can activate latent transforming growth factor beta-1 (TGF-β1) that modulates wound inflammation and granulation tissue formation. Dysregulation of TGF-β1 function is associated with scarring and fibrotic disorders. Therefore, these integrins represent targets for therapeutic intervention in fibrosis. Critical Issues: Integrins have multifaceted functions and extensive crosstalk with other cell surface receptors and molecules. Moreover, in aberrant healing, integrins may assume different functions, further increasing the complexity of their functionality. Discovering and understanding the role that integrins play in wound healing provides an opportunity to identify the mechanisms for medical conditions, such as excessive scarring, chronic wounds, and even cancer. Future Directions: Integrin functions in acute and chronic wounds should be further addressed in models better mimicking human wounds. Application of any products in acute or chronic wounds will potentially alter integrin functions that need to be carefully considered in the design. PMID:25493210

  7. Nutritional aspects of wound healing.

    PubMed

    Ayello, E A; Thomas, D R; Litchford, M A

    1999-01-01

    Proper nutrition is essential to prevent the development of pressure ulcers and to support adequate and timely wound healing. Additionally, research and clinical observation suggest nutrients play a major role in wound healing. How the nutrients Vitamin A, Vitamin C, zinc, calories, protein, and fluids are used in wound healing and recommendations regarding use of supplements are discussed in this article. PMID:10855131

  8. Healing Invisible Wounds

    ERIC Educational Resources Information Center

    Adams, Erica J.

    2010-01-01

    As many as 9 in 10 justice-involved youth are affected by traumatic childhood experiences. According to "Healing Invisible Wounds: Why Investing in Trauma-Informed Care for Children Makes Sense," between 75 and 93 percent of youth currently incarcerated in the justice system have had at least one traumatic experience, including sexual abuse, war,…

  9. Loss of epithelial hypoxia-inducible factor prolyl hydroxylase 2 accelerates skin wound healing in mice.

    PubMed

    Kalucka, Joanna; Ettinger, Andreas; Franke, Kristin; Mamlouk, Soulafa; Singh, Rashim Pal; Farhat, Katja; Muschter, Antje; Olbrich, Susanne; Breier, Georg; Katschinski, Dörthe M; Huttner, Wieland; Weidemann, Alexander; Wielockx, Ben

    2013-09-01

    Skin wound healing in mammals is a complex, multicellular process that depends on the precise supply of oxygen. Hypoxia-inducible factor (HIF) prolyl hydroxylase 2 (PHD2) serves as a crucial oxygen sensor and may therefore play an important role during reepithelialization. Hence, this study was aimed at understanding the role of PHD2 in cutaneous wound healing using different lines of conditionally deficient mice specifically lacking PHD2 in inflammatory, vascular, or epidermal cells. Interestingly, PHD2 deficiency only in keratinocytes and not in myeloid or endothelial cells was found to lead to faster wound closure, which involved enhanced migration of the hyperproliferating epithelium. We demonstrate that this effect relies on the unique expression of β3-integrin in the keratinocytes around the tip of the migrating tongue in an HIF1α-dependent manner. Furthermore, we show enhanced proliferation of these cells in the stratum basale, which is directly related to their attenuated transforming growth factor β signaling. Thus, loss of the central oxygen sensor PHD2 in keratinocytes stimulates wound closure by prompting skin epithelial cells to migrate and proliferate. Inhibition of PHD2 could therefore offer novel therapeutic opportunities for the local treatment of cutaneous wounds. PMID:23798557

  10. Loss of Epithelial Hypoxia-Inducible Factor Prolyl Hydroxylase 2 Accelerates Skin Wound Healing in Mice

    PubMed Central

    Kalucka, Joanna; Ettinger, Andreas; Franke, Kristin; Mamlouk, Soulafa; Singh, Rashim Pal; Farhat, Katja; Muschter, Antje; Olbrich, Susanne; Breier, Georg; Katschinski, Dörthe M.; Huttner, Wieland; Weidemann, Alexander

    2013-01-01

    Skin wound healing in mammals is a complex, multicellular process that depends on the precise supply of oxygen. Hypoxia-inducible factor (HIF) prolyl hydroxylase 2 (PHD2) serves as a crucial oxygen sensor and may therefore play an important role during reepithelialization. Hence, this study was aimed at understanding the role of PHD2 in cutaneous wound healing using different lines of conditionally deficient mice specifically lacking PHD2 in inflammatory, vascular, or epidermal cells. Interestingly, PHD2 deficiency only in keratinocytes and not in myeloid or endothelial cells was found to lead to faster wound closure, which involved enhanced migration of the hyperproliferating epithelium. We demonstrate that this effect relies on the unique expression of β3-integrin in the keratinocytes around the tip of the migrating tongue in an HIF1α-dependent manner. Furthermore, we show enhanced proliferation of these cells in the stratum basale, which is directly related to their attenuated transforming growth factor β signaling. Thus, loss of the central oxygen sensor PHD2 in keratinocytes stimulates wound closure by prompting skin epithelial cells to migrate and proliferate. Inhibition of PHD2 could therefore offer novel therapeutic opportunities for the local treatment of cutaneous wounds. PMID:23798557

  11. Wound healing for the clinician.

    PubMed

    Zitelli, J

    1987-01-01

    Wound healing is a complex sequence of events, beginning with tissue injury, mediated by inflammation, and ending long after reepithelialization is complete. Research and controlled clinical experience have provided a better understanding so that clinicians can influence the events of healing to decrease pain, control bleeding, infection, and cosmetic result as well as speed the time for complete healing. The following is a summary of guidelines for the management of wound healing: (1) wound creation; wounds should be created with minimal necrosis of tissue in order to prevent delays in healing. Electrosurgical, cryosurgical, and laser surgical wounds heal more slowly than wounds created by scalpel excision or curettage. Electro-coagulation should be used sparingly in sutured wounds. Large lesions are best treated in a single stage rather than in divided treatments since the rate of wound healing is not proportional to the area but instead to the logarithm of the area. Thus, the total healing time is much shorter if done in a single treatment session. (2) use of drugs; corticosteroids given before or within three days of wounding in dose of prednisone 40 mg or greater will inhibit wound healing. Vitamin A topically or systemically may reverse this inhibition. Aspirin and other nonsteroidal anti-inflammatory agents are more important for their effects on platelet function and bleeding than on wound healing. (3) wound dressings; the use of occlusive dressings to promote moist wound healing is the most significant advance in wound management. Occlusive dressings shorten the time for healing, decrease pain, reduce wound contamination, and improve the cosmetic result. (4) control of wound contraction and scar formation; at the time of wound formation, guiding sutures may be helpful in wound healing by secondary intention in order to control the direction of wound contraction and prevent distortion. Intralesional steroids may be useful for hypertrophic scars and keloids

  12. Bioprinted Amniotic Fluid-Derived Stem Cells Accelerate Healing of Large Skin Wounds

    PubMed Central

    Skardal, Aleksander; Mack, David; Kapetanovic, Edi; Atala, Anthony; Jackson, John D.; Yoo, James

    2012-01-01

    Stem cells obtained from amniotic fluid show high proliferative capacity in culture and multilineage differentiation potential. Because of the lack of significant immunogenicity and the ability of the amniotic fluid-derived stem (AFS) cells to modulate the inflammatory response, we investigated whether they could augment wound healing in a mouse model of skin regeneration. We used bioprinting technology to treat full-thickness skin wounds in nu/nu mice. AFS cells and bone marrow-derived mesenchymal stem cells (MSCs) were resuspended in fibrin-collagen gel and “printed” over the wound site. At days 0, 7, and 14, AFS cell- and MSC-driven wound closure and re-epithelialization were significantly greater than closure and re-epithelialization in wounds treated by fibrin-collagen gel only. Histological examination showed increased microvessel density and capillary diameters in the AFS cell-treated wounds compared with the MSC-treated wounds, whereas the skin treated only with gel showed the lowest amount of microvessels. However, tracking of fluorescently labeled AFS cells and MSCs revealed that the cells remained transiently and did not permanently integrate in the tissue. These observations suggest that the increased wound closure rates and angiogenesis may be due to delivery of secreted trophic factors, rather than direct cell-cell interactions. Accordingly, we performed proteomic analysis, which showed that AFS cells secreted a number of growth factors at concentrations higher than those of MSCs. In parallel, we showed that AFS cell-conditioned media induced endothelial cell migration in vitro. Taken together, our results indicate that bioprinting AFS cells could be an effective treatment for large-scale wounds and burns. PMID:23197691

  13. Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds.

    PubMed

    Seow, Wei Yang; Salgado, Giorgiana; Lane, E Birgitte; Hauser, Charlotte A E

    2016-01-01

    Wound healing is a major burden of healthcare systems worldwide and hydrogel dressings offer a moist environment conducive to healing. We describe cysteine-containing ultrashort peptides that self-assemble spontaneously into hydrogels. After disulfide crosslinking, the optically-transparent hydrogels became significantly stiffer and exhibited high shape fidelity. The peptide sequence (LIVAGKC or LK6C) was then chosen for evaluation on mice with full-thickness excision wounds. Crosslinked LK6C hydrogels are handled easily with forceps during surgical procedures and offer an improvement over our earlier study of a non-crosslinked peptide hydrogel for burn wounds. LK6C showed low allergenic potential and failed to provoke any sensitivity when administered to guinea pigs in the Magnusson-Kligman maximization test. When applied topically as a dressing, the medium-infused LK6C hydrogel accelerated re-epithelialization compared to controls. The peptide hydrogel is thus safe for topical application and promotes a superior rate and quality of wound healing. PMID:27600999

  14. Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds

    PubMed Central

    Seow, Wei Yang; Salgado, Giorgiana; Lane, E. Birgitte; Hauser, Charlotte A. E.

    2016-01-01

    Wound healing is a major burden of healthcare systems worldwide and hydrogel dressings offer a moist environment conducive to healing. We describe cysteine-containing ultrashort peptides that self-assemble spontaneously into hydrogels. After disulfide crosslinking, the optically-transparent hydrogels became significantly stiffer and exhibited high shape fidelity. The peptide sequence (LIVAGKC or LK6C) was then chosen for evaluation on mice with full-thickness excision wounds. Crosslinked LK6C hydrogels are handled easily with forceps during surgical procedures and offer an improvement over our earlier study of a non-crosslinked peptide hydrogel for burn wounds. LK6C showed low allergenic potential and failed to provoke any sensitivity when administered to guinea pigs in the Magnusson-Kligman maximization test. When applied topically as a dressing, the medium-infused LK6C hydrogel accelerated re-epithelialization compared to controls. The peptide hydrogel is thus safe for topical application and promotes a superior rate and quality of wound healing. PMID:27600999

  15. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays

    SciTech Connect

    Walter, M.N.M.; Wright, K.T.; Fuller, H.R.; MacNeil, S.; Johnson, W.E.B.

    2010-04-15

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-{beta}1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.

  16. G-CSF Administration after the Intraosseous Infusion of Hypertonic Hydroxyethyl Starches Accelerating Wound Healing Combined with Hemorrhagic Shock

    PubMed Central

    Huang, Hong; Liu, Jiejie; Hao, Haojie; Tong, Chuan; Ti, Dongdong; Liu, Huiling; Song, Haijing; Jiang, Chaoguang; Fu, Xiaobing; Han, Weidong

    2016-01-01

    Objective. To evaluate the therapeutic effects of G-CSF administration after intraosseous (IO) resuscitation in hemorrhagic shock (HS) combined with cutaneous injury rats. Methods. The rats were randomly divided into four groups: (1) HS with resuscitation (blank), (2) HS with resuscitation + G-CSF (G-CSF, 200 μg/kg body weight, subcutaneous injection), (3) HS with resuscitation + normal saline solution injection (normal saline), and (4) HS + G-CSF injection without resuscitation (Unres/G-CSF). To estimate the treatment effects, the vital signs of alteration were first evaluated, and then wound closure rates and homing of MSCs and EPCs to the wound skins and vasculogenesis were measured. Besides, inflammation and vasculogenesis related mRNA expressions were also examined. Results. IO infusion hypertonic hydroxyethyl starch (HHES) exhibited beneficial volume expansion roles and G-CSF administration accelerated wound healing 3 days ahead of other groups under hemorrhagic shock. Circulating and the homing of MSCs and EPCs at wound skins were significantly elevated at 6 h after G-CSF treatment. Inflammation was declined since 3 d while angiogenesis was more obvious in G-CSF treated group on day 9. Conclusions. These results suggested that the synergistical application of HHES and G-CSF has life-saving effects and is beneficial for improving wound healing in HS combined with cutaneous injury rats. PMID:26989687

  17. Placenta Growth Factor in Diabetic Wound Healing

    PubMed Central

    Cianfarani, Francesca; Zambruno, Giovanna; Brogelli, Laura; Sera, Francesco; Lacal, Pedro Miguel; Pesce, Maurizio; Capogrossi, Maurizio C.; Failla, Cristina Maria; Napolitano, Monica; Odorisio, Teresa

    2006-01-01

    Reduced microcirculation and diminished expression of growth factors contribute to wound healing impairment in diabetes. Placenta growth factor (PlGF), an angiogenic mediator promoting pathophysiological neovascularization, is expressed during cutaneous wound healing and improves wound closure by enhancing angiogenesis. By using streptozotocin-induced diabetic mice, we here demonstrate that PlGF induction is strongly reduced in diabetic wounds. Diabetic transgenic mice overexpressing PlGF in the skin displayed accelerated wound closure compared with diabetic wild-type littermates. Moreover, diabetic wound treatment with an adenovirus vector expressing the human PlGF gene (AdCMV.PlGF) significantly accelerated the healing process compared with wounds treated with a control vector. The analysis of treated wounds showed that PlGF gene transfer improved granulation tissue formation, maturation, and vascularization, as well as monocytes/macrophages local recruitment. Platelet-derived growth factor, fibroblast growth factor-2, and vascular endothelial growth factor mRNA levels were increased in AdCMV.PlGF-treated wounds, possibly enhancing PlGF-mediated effects. Finally, PlGF treatment stimulated cultured dermal fibroblast migration, pointing to a direct role of PlGF in accelerating granulation tissue maturation. In conclusion, our data indicate that reduced PlGF expression contributes to impaired wound healing in diabetes and that PlGF gene transfer to diabetic wounds exerts therapeutic activity by promoting different aspects of the repair process. PMID:17003476

  18. The PHSRN sequence induces extracellular matrix invasion and accelerates wound healing in obese diabetic mice

    PubMed Central

    Livant, Donna L.; Brabec, R. Kaye; Kurachi, Kotoku; Allen, David L.; Wu, Yanling; Haaseth, Ronald; Andrews, Philip; Ethier, Stephen P.; Markwart, Sonja

    2000-01-01

    The PHSRN sequence of the plasma fibronectin (pFn) cell-binding domain induces human keratinocytes and fibroblasts to invade the naturally serum-free extracellular matricies of sea urchin embryos. The potency of acetylated, amidated PHSRN (Ac-PHSRN-NH2) is significantly increased, making it more active on a molar basis than the 120-kDa cell-binding domain of pFn. Arginine is important to this activity because PHSAN and PHSEN are inactive, as is a randomized sequence peptide, Ac-HSPNR-NH2. One treatment with Ac-PHSRN-NH2 stimulates reepithelialization and contraction of dermal wounds in healing-impaired, obese diabetic C57BL6/KsJ db/db mice. Wound closure is equally rapid in treated db/db and db/+ mice and may be more rapid than in untreated nondiabetic db/+ littermates. In contrast, treatment with either Ac-HSPNR-NH2 or normal saline (NS) has no effect. Analysis of sectioned db/db wounds shows that, in contrast to treatment with Ac-HSPNR-NH2 or NS, a single Ac-PHSRN-NH2 treatment stimulates keratinocyte and fibroblast migration into wounds, enhances fibroplasia and vascularization in the provisional matrix, and stimulates the formation of prominent fibers that may be associated with wound contraction. PMID:10841512

  19. Deletion of the α2A/α2C-adrenoceptors accelerates cutaneous wound healing in mice.

    PubMed

    Romana-Souza, Bruna; Nascimento, Adriana P; Brum, Patricia C; Monte-Alto-Costa, Andréa

    2014-10-01

    The α2-adrenoceptors regulate the sympathetic nervous system, controlling presynaptic catecholamine release. However, the role of the α2-adrenoceptors in cutaneous wound healing is poorly understood. Mice lacking both the α2A/α2C-adrenoceptors were used to evaluate the participation of the α2-adrenoceptor during cutaneous wound healing. A full-thickness excisional lesion was performed on the dorsal skin of the α2A/α2C-adrenoceptor knockout and wild-type mice. Seven or fourteen days later, the animals were euthanized and the lesions were formalin-fixed and paraffin-embedded or frozen. Murine skin fibroblasts were also isolated from α2A/α2C-adrenoceptor knockout and wild-type mice, and fibroblast activity was evaluated. The in vivo study demonstrated that α2A/α2C-adrenoceptor depletion accelerated wound contraction and re-epithelialization. A reduction in the number of neutrophils and macrophages was observed in the α2A/α2C-adrenoceptor knockout mice compared with wild-type mice. In addition, α2A/α2C-adrenoceptor depletion enhanced the levels of nitrite and hydroxyproline, and the protein expression of transforming growth factor-β and vascular endothelial growth factor. Furthermore, α2A/α2C-adrenoceptor depletion accelerated blood vessel formation and myofibroblast differentiation. The in vitro study demonstrated that skin fibroblasts isolated from α2A/α2C-adrenoceptor knockout mice exhibited enhanced cell migration, α-smooth muscle actin _protein expression and collagen deposition compared with wild-type skin fibroblasts. In conclusion, α2A/α2C-adrenoceptor deletion accelerates cutaneous wound healing in mice. PMID:25186490

  20. Thyroid Hormone and Wound Healing

    PubMed Central

    Safer, Joshua D.

    2013-01-01

    Although thyroid hormone is one of the most potent stimulators of growth and metabolic rate, the potential to use thyroid hormone to treat cutaneous pathology has never been subject to rigorous investigation. A number of investigators have demonstrated intriguing therapeutic potential for topical thyroid hormone. Topical T3 has accelerated wound healing and hair growth in rodents. Topical T4 has been used to treat xerosis in humans. It is clear that the use of thyroid hormone to treat cutaneous pathology may be of large consequence and merits further study. This is a review of the literature regarding thyroid hormone action on skin along with skin manifestations of thyroid disease. The paper is intended to provide a context for recent findings of direct thyroid hormone action on cutaneous cells in vitro and in vivo which may portend the use of thyroid hormone to promote wound healing. PMID:23577275

  1. Radiotherapy and wound healing.

    PubMed

    Devalia, Haresh L; Mansfield, Lucy

    2008-03-01

    This review article discusses basic radiation physics and effects of radiation on wounds. It examines various postulated hypothesis on the role of circulatory decrease and radiation-induced direct cellular damage. The new concept related to the radiation pathogenesis proposes that there is a cascade of cytokines initiated immediately after the radiation. Sustained activation of myofibroblasts in the wound accounts for its chronicity. Recent advances highlight that transforming growth factor beta1 is the master switch in pathogenesis of radiation fibrosis. This articles overviews its role and summarises the available evidences related to radiation damage. The goal of this article was to provide its modern understanding, as future research will concentrate on antagonising the effects of cytokines to promote wound healing. PMID:18081782

  2. PEDF promotes self-renewal of limbal stem cell and accelerates corneal epithelial wound healing.

    PubMed

    Ho, Tsung-Chuan; Chen, Show-Li; Wu, Ju-Yun; Ho, Mei-Ying; Chen, Lee-Jen; Hsieh, Jui-Wen; Cheng, Huey-Chuan; Tsao, Yeou-Ping

    2013-09-01

    Limbal epithelial stem cell (LSC) transplantation is a prevalent therapeutic method for patients with LSC deficiency. The maintenance of stem cell characteristics in the process of culture expansion is critical for the success of ocular surface reconstruction. Pigment epithelial-derived factor (PEDF) increased the numbers of holoclone in LSC monolayer culture and preserved the stemness of LSC in suspension culture by evidence of ΔNp63α, Bmi-1, and ABCG2 expression. BrdU pulse-labeling assay also demonstrated that PEDF stimulated LSCs proliferation. In air-lift culture of limbal equivalent, PEDF was capable of increasing the numbers of ΔNp63α-positive cells. The mitogenic effect of PEDF was found to be mediated by the phosphorylations of p38 MAPK and STAT3 in LSCs. Synthetic 44-mer PEDF (residues 78-121) was as effective as the full length PEDF in LSC expansion in suspension culture and limbal equivalent formation, as well as the activation of p38 MAPK and STAT3. In mice subjecting to mechanical removal of cornea epithelium, 44-mer PEDF facilitated corneal wound healing. Microscopically, 44-mer PEDF advanced the early proliferative response in limbus, increased the proliferation of ΔNp63α-positive cells both in limbus and in epithelial healing front, and assisted the repopulation of limbus in the late phase of wound healing. In conclusion, the capability of expanding LSC in cell culture and in animal indicates the potential of PEDF and its fragment (e.g., 44-mer PEDF) in ameliorating limbal stem cell deficiency; and their uses as therapeutics for treating corneal wound. PMID:23553951

  3. Inhibition of pathogenic bacterial growth on excision wound by green synthesized copper oxide nanoparticles leads to accelerated wound healing activity in Wistar Albino rats.

    PubMed

    Sankar, Renu; Baskaran, Athmanathan; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2015-07-01

    An impaired wound healing is one of the major health related problem in diabetic and non-diabetic patients around the globe. The pathogenic bacteria play a predominant role in delayed wound healing, owing to interaction in the wound area. In our previous work we developed green chemistry mediated copper oxide nanoparticles using Ficus religiosa leaf extract. In the present study we make an attempt to evaluate the anti-bacterial, and wound healing activity of green synthesized copper oxide nanoparticles in male Wistar Albino rats. The agar well diffusion assay revealed copper oxide nanoparticles have substantial inhibition activity against human pathogenic strains such as Klebsiella pneumoniae, Shigella dysenteriae, Staphylococcus aureus, Salmonella typhimurium and Escherichia coli, which were responsible for delayed wound healing process. Furthermore, the analyses results of wound closure, histopathology and protein profiling confirmed that the F. religiosa leaf extract tailored copper oxide nanoparticles have enhanced wound healing activity in Wistar Albino rats. PMID:26194977

  4. Wound Healing Devices Brief Vignettes

    PubMed Central

    Anderson, Caesar A.; Hare, Marc A.; Perdrizet, George A.

    2016-01-01

    Significance: The demand for wound care therapies is increasing. New wound care products and devices are marketed at a dizzying rate. Practitioners must make informed decisions about the use of medical devices for wound healing therapy. This paper provides updated evidence and recommendations based on a review of recent publications. Recent Advances: The published literature on the use of medical devices for wound healing continues to support the use of hyperbaric oxygen therapy, negative pressure wound therapy, and most recently electrical stimulation. Critical Issue: To inform wound healing practitioners of the evidence for or against the use of medical devices for wound healing. This information will aid the practitioner in deciding which technology should be accepted or rejected for clinical use. Future Directions: To produce high quality, randomized controlled trials or acquire outcome-based registry databases to further test and improve the knowledge base as it relates to the use of medical devices in wound care. PMID:27076996

  5. Wound healing in plants

    PubMed Central

    Tisi, Alessandra; Angelini, Riccardo

    2008-01-01

    Copper amine oxidases (CuAO) and flavin-containing amine oxidases (PAO) are hydrogen peroxide (H2O2)-producing enzymes responsible for the oxidative de-amination of polyamines. Currently, a key role has been ascribed to apoplastic amine oxidases in plants, i.e., to behave as H2O2-delivering systems in the cell wall during cell growth and differentiation as well as in the context of host-pathogen interactions. Indeed, H2O2 is the co-substrate for the peroxidase-driven reactions during cell-wall maturation and a key signalling molecule in defence mechanisms. We recently demonstrated the involvement of an apoplastic PAO in the wound-healing process of the Zea mays mesocotyl. Experimental evidence indicated a similar role for an apoplastic PAO in Nicotiana tabacum. In this addendum we suggest that a CuAO activity is also involved in this healing event. PMID:19704660

  6. Angiopoietin-like 4 Stimulates STAT3-mediated iNOS Expression and Enhances Angiogenesis to Accelerate Wound Healing in Diabetic Mice

    PubMed Central

    Chong, Han Chung; Chan, Jeremy Soon Kiat; Goh, Chi Qin; Gounko, Natalia V; Luo, Baiwen; Wang, Xiaoling; Foo, Selin; Wong, Marcus Thien Chong; Choong, Cleo; Kersten, Sander; Tan, Nguan Soon

    2014-01-01

    Impaired wound healing is a major source of morbidity in diabetic patients. Poor outcome has, in part, been related to increased inflammation, poor angiogenesis, and deficiencies in extracellular matrix components. Despite the enormous impact of these chronic wounds, effective therapies are lacking. Here, we showed that the topical application of recombinant matricellular protein angiopoietin-like 4 (ANGPTL4) accelerated wound reepithelialization in diabetic mice, in part, by improving angiogenesis. ANGPTL4 expression is markedly elevated upon normal wound injury. In contrast, ANGPTL4 expression remains low throughout the healing period in diabetic wounds. Exogenous ANGPTL4 modulated several regulatory networks involved in cell migration, angiogenesis, and inflammation, as evidenced by an altered gene expression signature. ANGPTL4 influenced the expression profile of endothelial-specific CD31 in diabetic wounds, returning its profile to that observed in wild-type wounds. We showed ANGPTL4-induced nitric oxide production through an integrin/JAK/STAT3-mediated upregulation of inducible nitric oxide synthase (iNOS) expression in wound epithelia, thus revealing a hitherto unknown mechanism by which ANGPTL4 regulated angiogenesis via keratinocyte-to-endothelial-cell communication. These data show that the replacement of ANGPTL4 may be an effective adjunctive or new therapeutic avenue for treating poor healing wounds. The present finding also confirms that therapeutic angiogenesis remains an attractive treatment modality for diabetic wound healing. PMID:24903577

  7. Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model

    PubMed Central

    Orihuela-Campos, Rita Cristina; Fukui, Makoto; Ito, Hiro-O

    2016-01-01

    The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses. PMID:26798423

  8. Nutritional support for wound healing.

    PubMed

    MacKay, Douglas; Miller, Alan L

    2003-11-01

    Healing of wounds, whether from accidental injury or surgical intervention, involves the activity of an intricate network of blood cells, tissue types, cytokines, and growth factors. This results in increased cellular activity, which causes an intensified metabolic demand for nutrients. Nutritional deficiencies can impede wound healing, and several nutritional factors required for wound repair may improve healing time and wound outcome. Vitamin A is required for epithelial and bone formation, cellular differentiation, and immune function. Vitamin C is necessary for collagen formation, proper immune function, and as a tissue antioxidant. Vitamin E is the major lipid-soluble antioxidant in the skin; however, the effect of vitamin E on surgical wounds is inconclusive. Bromelain reduces edema, bruising, pain, and healing time following trauma and surgical procedures. Glucosamine appears to be the rate-limiting substrate for hyaluronic acid production in the wound. Adequate dietary protein is absolutely essential for proper wound healing, and tissue levels of the amino acids arginine and glutamine may influence wound repair and immune function. The botanical medicines Centella asiatica and Aloe vera have been used for decades, both topically and internally, to enhance wound repair, and scientific studies are now beginning to validate efficacy and explore mechanisms of action for these botanicals. To promote wound healing in the shortest time possible, with minimal pain, discomfort, and scarring to the patient, it is important to explore nutritional and botanical influences on wound outcome. PMID:14653765

  9. Wound Healing and Care

    MedlinePlus

    ... heal through natural scar formation. continue The Healing Process Before healing begins, the body gears up to ... dry at all times to help the healing process. As the body does its healing work on ...

  10. Practices in Wound Healing Studies of Plants

    PubMed Central

    Thakur, Rupesh; Jain, Nitika; Pathak, Raghvendra; Sandhu, Sardul Singh

    2011-01-01

    Wounds are the result of injuries to the skin that disrupt the other soft tissue. Healing of a wound is a complex and protracted process of tissue repair and remodeling in response to injury. Various plant products have been used in treatment of wounds over the years. Wound healing herbal extracts promote blood clotting, fight infection, and accelerate the healing of wounds. Phytoconstituents derived from plants need to be identified and screened for antimicrobial activity for management of wounds. The in vitro assays are useful, quick, and relatively inexpensive. Small animals provide a multitude of model choices for various human wound conditions. The study must be conducted after obtaining approval of the Ethics Committee and according to the guidelines for care and use of animals. The prepared formulations of herbal extract can be evaluated by various physicopharmaceutical parameters. The wound healing efficacies of various herbal extracts have been evaluated in excision, incision, dead space, and burn wound models. In vitro and in vivo assays are stepping stones to well-controlled clinical trials of herbal extracts. PMID:21716711

  11. Hierarchically micro-patterned nanofibrous scaffolds with a nanosized bio-glass surface for accelerating wound healing

    NASA Astrophysics Data System (ADS)

    Xu, He; Lv, Fang; Zhang, Yali; Yi, Zhengfang; Ke, Qinfei; Wu, Chengtie; Liu, Mingyao; Chang, Jiang

    2015-11-01

    A composite scaffold with a controlled micro-pattern, nano-sized fiber matrix and surface-modified nanobioglass component was successfully prepared for skin wound healing by combining the patterning electrospinning with pulsed laser deposition strategies, and the hierarchical micro/nano structures and nano-sized bioglass in the scaffolds could synergistically improve the efficiency and re-epithelialization of wound healing.A composite scaffold with a controlled micro-pattern, nano-sized fiber matrix and surface-modified nanobioglass component was successfully prepared for skin wound healing by combining the patterning electrospinning with pulsed laser deposition strategies, and the hierarchical micro/nano structures and nano-sized bioglass in the scaffolds could synergistically improve the efficiency and re-epithelialization of wound healing. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04802h

  12. Chemokines and diabetic wound healing.

    PubMed

    Ochoa, Oscar; Torres, Francis M; Shireman, Paula K

    2007-01-01

    Chemokines are critical for white blood cell recruitment to injured tissues and play an important role in normal wound healing processes. In contrast, impaired wound healing in diabetic patients is accompanied by decreased early inflammatory cell infiltration but persistence of neutrophils and macrophages in the chronic, nonhealing wounds. These changes in inflammatory cell recruitment occur in conjunction with alterations in chemokine and growth factor expression. In addition to leukocyte trafficking, many different cell types, including endothelial cells, fibroblasts, and keratinocytes, produce and respond to chemokines, and these interactions are altered in diabetic wounds. Thus, the chemokine system may have both direct and inflammatory-mediated effects on many different aspects of diabetic wound healing. The potential roles of chemokines and inflammatory or immune cells in nonhealing diabetic wounds, including impairments in growth factor expression, angiogenesis, extracellular matrix formation, and reepithelialization, are examined. PMID:18053419

  13. Hierarchically micro-patterned nanofibrous scaffolds with a nanosized bio-glass surface for accelerating wound healing.

    PubMed

    Xu, He; Lv, Fang; Zhang, Yali; Yi, Zhengfang; Ke, Qinfei; Wu, Chengtie; Liu, Mingyao; Chang, Jiang

    2015-11-28

    A composite scaffold with a controlled micro-pattern, nano-sized fiber matrix and surface-modified nanobioglass component was successfully prepared for skin wound healing by combining the patterning electrospinning with pulsed laser deposition strategies, and the hierarchical micro/nano structures and nano-sized bioglass in the scaffolds could synergistically improve the efficiency and re-epithelialization of wound healing. PMID:26503372

  14. Enhanced growth of endothelial precursor cells on PCG-matrix facilitates accelerated, fibrosis-free, wound healing: a diabetic mouse model.

    PubMed

    Kanitkar, Meghana; Jaiswal, Amit; Deshpande, Rucha; Bellare, Jayesh; Kale, Vaijayanti P

    2013-01-01

    Diabetes mellitus (DM)-induced endothelial progenitor cell (EPC) dysfunction causes impaired wound healing, which can be rescued by delivery of large numbers of 'normal' EPCs onto such wounds. The principal challenges herein are (a) the high number of EPCs required and (b) their sustained delivery onto the wounds. Most of the currently available scaffolds either serve as passive devices for cellular delivery or allow adherence and proliferation, but not both. This clearly indicates that matrices possessing both attributes are 'the need of the day' for efficient healing of diabetic wounds. Therefore, we developed a system that not only allows selective enrichment and expansion of EPCs, but also efficiently delivers them onto the wounds. Murine bone marrow-derived mononuclear cells (MNCs) were seeded onto a PolyCaprolactone-Gelatin (PCG) nano-fiber matrix that offers a combined advantage of strength, biocompatibility wettability; and cultured them in EGM2 to allow EPC growth. The efficacy of the PCG matrix in supporting the EPC growth and delivery was assessed by various in vitro parameters. Its efficacy in diabetic wound healing was assessed by a topical application of the PCG-EPCs onto diabetic wounds. The PCG matrix promoted a high-level attachment of EPCs and enhanced their growth, colony formation, and proliferation without compromising their viability as compared to Poly L-lactic acid (PLLA) and Vitronectin (VN), the matrix and non-matrix controls respectively. The PCG-matrix also allowed a sustained chemotactic migration of EPCs in vitro. The matrix-effected sustained delivery of EPCs onto the diabetic wounds resulted in an enhanced fibrosis-free wound healing as compared to the controls. Our data, thus, highlight the novel therapeutic potential of PCG-EPCs as a combined 'growth and delivery system' to achieve an accelerated fibrosis-free healing of dermal lesions, including diabetic wounds. PMID:23922871

  15. Loss of CAR promotes migration and proliferation of HaCaT cells, and accelerates wound healing in rats via Src-p38 MAPK pathway

    PubMed Central

    Su, Linlin; Fu, Lanqing; Li, Xiaodong; Zhang, Yue; Li, Zhenzhen; Wu, Xue; Li, Yan; Bai, Xiaozhi; Hu, Dahai

    2016-01-01

    The coxsackie and adenovirus receptor (CAR) is a cell adhesion molecule mostly localized to cell-cell contacts in epithelial and endothelial cells. CAR is known to regulate tumor progression, however, its physiological role in keratinocyte migration and proliferation, two essential steps in re-epithelialization during wound healing, has less been investigated. Here we showed that CAR was predominantly expressed in the epidermis of human skin, CAR knockdown by RNAi significantly accelerated HaCaT cell migration and proliferation. In addition, knockdown of CAR in vitro increased p-Src, p-p38, and p-JNK protein levels; however, Src inhibitor PP2 prevented the increase of p-Src and p-p38 induced by CAR RNAi, but not p-JNK, and decelerated cell migration and proliferation. More intriguingly, in vivo CAR RNAi on the skin area surrounding the wounds on rat back visually accelerated wound healing and re-epithelialization process, while treatment with PP2 or p38 inhibitor SB203580 obviously inhibited these effects. By contrast, overexpressing CAR in HaCaT cells significantly decelerated cell migration and proliferation. Above results demonstrate that suppression of CAR could accelerate HaCaT cell migration and proliferation, and promote wound healing in rat skin, probably via Src-p38 MAPK pathway. CAR thus might serve as a novel therapeutic target for facilitating wound healing. PMID:26804208

  16. Recombinant growth factor mixtures induce cell cycle progression and the upregulation of type I collagen in human skin fibroblasts, resulting in the acceleration of wound healing processes.

    PubMed

    Lee, Do Hyun; Choi, Kyung-Ha; Cho, Jae-We; Kim, So Young; Kwon, Tae Rin; Choi, Sun Young; Choi, Yoo Mi; Lee, Jay; Yoon, Ho Sang; Kim, Beom Joon

    2014-05-01

    Application of growth factor mixtures has been used for wound healing and anti-wrinkles agents. The aim of this study was to evaluate the effect of recombinant growth factor mixtures (RGFM) on the expression of cell cycle regulatory proteins, type I collagen, and wound healing processes of acute animal wound models. The results showed that RGFM induced increased rates of cell proliferation and cell migration of human skin fibroblasts (HSF). In addition, expression of cyclin D1, cyclin E, cyclin-dependent kinase (Cdk)4, and Cdk2 proteins was markedly increased with a growth factor mixtures treatment in fibroblasts. Expression of type I collagen was also increased in growth factor mixtures-treated HSF. Moreover, growth factor mixtures-induced the upregulation of type I collagen was associated with the activation of Smad2/3. In the animal model, RGFM-treated mice showed accelerated wound closure, with the closure rate increasing as early as on day 7, as well as re-epithelization and reduced inflammatory cell infiltration than phosphate-buffered saline (PBS)-treated mice. In conclusion, the results indicated that RGFM has the potential to accelerate wound healing through the upregulation of type I collagen, which is partly mediated by activation of Smad2/3-dependent signaling pathway as well as cell cycle progression in HSF. The topical application of growth factor mixtures to acute and chronic skin wound may accelerate the epithelization process through these molecular mechanisms. PMID:24626875

  17. Chitosan Dermal Substitute and Chitosan Skin Substitute Contribute to Accelerated Full-Thickness Wound Healing in Irradiated Rats

    PubMed Central

    Mohd Hilmi, Abu Bakar; Halim, Ahmad Sukari; Jaafar, Hasnan; Asiah, Abu Bakar; Hassan, Asma

    2013-01-01

    Wounds with full-thickness skin loss are commonly managed by skin grafting. In the absence of a graft, reepithelialization is imperfect and leads to increased scar formation. Biomaterials can alter wound healing so that it produces more regenerative tissue and fewer scars. This current study use the new chitosan based biomaterial in full-thickness wound with impaired healing on rat model. Wounds were evaluated after being treated with a chitosan dermal substitute, a chitosan skin substitute, or duoderm CGF. Wounds treated with the chitosan skin substitute showed the most re-epithelialization (33.2 ± 2.8%), longest epithelial tongue (1.62 ± 0.13 mm), and shortest migratory tongue distance (7.11 ± 0.25 mm). The scar size of wounds treated with the chitosan dermal substitute (0.13 ± 0.02 cm) and chitosan skin substitute (0.16 ± 0.05 cm) were significantly decreased (P < 0.05) compared with duoderm (0.45 ± 0.11 cm). Human leukocyte antigen (HLA) expression on days 7, 14, and 21 revealed the presence of human hair follicle stem cells and fibroblasts that were incorporated into and surviving in the irradiated wound. We have proven that a chitosan dermal substitute and chitosan skin substitute are suitable for wound healing in full-thickness wounds that are impaired due to radiation. PMID:24324974

  18. Chitosan dermal substitute and chitosan skin substitute contribute to accelerated full-thickness wound healing in irradiated rats.

    PubMed

    Mohd Hilmi, Abu Bakar; Halim, Ahmad Sukari; Jaafar, Hasnan; Asiah, Abu Bakar; Hassan, Asma

    2013-01-01

    Wounds with full-thickness skin loss are commonly managed by skin grafting. In the absence of a graft, reepithelialization is imperfect and leads to increased scar formation. Biomaterials can alter wound healing so that it produces more regenerative tissue and fewer scars. This current study use the new chitosan based biomaterial in full-thickness wound with impaired healing on rat model. Wounds were evaluated after being treated with a chitosan dermal substitute, a chitosan skin substitute, or duoderm CGF. Wounds treated with the chitosan skin substitute showed the most re-epithelialization (33.2 ± 2.8%), longest epithelial tongue (1.62 ± 0.13 mm), and shortest migratory tongue distance (7.11 ± 0.25 mm). The scar size of wounds treated with the chitosan dermal substitute (0.13 ± 0.02 cm) and chitosan skin substitute (0.16 ± 0.05 cm) were significantly decreased (P < 0.05) compared with duoderm (0.45 ± 0.11 cm). Human leukocyte antigen (HLA) expression on days 7, 14, and 21 revealed the presence of human hair follicle stem cells and fibroblasts that were incorporated into and surviving in the irradiated wound. We have proven that a chitosan dermal substitute and chitosan skin substitute are suitable for wound healing in full-thickness wounds that are impaired due to radiation. PMID:24324974

  19. Stem Cells for Cutaneous Wound Healing

    PubMed Central

    Kirby, Giles T. S.; Mills, Stuart J.; Cowin, Allison J.; Smith, Louise E.

    2015-01-01

    Optimum healing of a cutaneous wound involves a well-orchestrated cascade of biological and molecular processes involving cell migration, proliferation, extracellular matrix deposition, and remodelling. When the normal biological process fails for any reason, this healing process can stall resulting in chronic wounds. Wounds are a growing clinical burden on healthcare systems and with an aging population as well as increasing incidences of obesity and diabetes, this problem is set to increase. Cell therapies may be the solution. A range of cell based approaches have begun to cross the rift from bench to bedside and the supporting data suggests that the appropriate administration of stem cells can accelerate wound healing. This review examines the main cell types explored for cutaneous wound healing with a focus on clinical use. The literature overwhelmingly suggests that cell therapies can help to heal cutaneous wounds when used appropriately but we are at risk of clinical use outpacing the evidence. There is a need, now more than ever, for standardised methods of cell characterisation and delivery, as well as randomised clinical trials. PMID:26137471

  20. Wound Healing Activity of Elaeis guineensis Leaf Extract Ointment

    PubMed Central

    Sasidharan, Sreenivasan; Logeswaran, Selvarasoo; Latha, Lachimanan Yoga

    2012-01-01

    Elaeis guineensis of the Arecaceae family is widely used in the traditional medicine of societies in West Africa for treating various ailments. To validate the ethnotherapeutic claims of the plant in skin diseases, wound healing activity was studied. The results showed that E. guineensis leaf extract had potent wound healing capacity as evident from the better wound closure (P < 0.05), improved tissue regeneration at the wound site, and supporting histopathological parameters pertaining to wound healing. Matrix metalloproteinases expression correlated well with the results thus confirming efficacy of E. guineensis in the treatment of the wound. E. guineensis accelerated wound healing in rats, thus supporting its traditional use. The result of this study suggested that, used efficiently, oil palm leaf extract is a renewable resource with wound healing properties. PMID:22312255

  1. [Wound healing in the elderly].

    PubMed

    Eming, S A; Wlaschek, M; Scharffetter-Kochanek, K

    2016-02-01

    Restoration of tissue integrity is essential for host defense and protection of the organism. The efficacy and quality of skin repair varies significantly over a person's lifetime. Whereas prenatal wound healing is characterized by regeneration and scarless healing, scarring, fibrosis, and loss of function are features of postnatal repair. In fact, aging is the prominent risk factor for chronic wounds, skin fragility, infections, comorbidities, and decreased quality of life. Current strategies for restoration of tissue integrity and wound therapy are not sufficient and require further investigation of the underlying pathomechanisms and the development of causal-based concepts. PMID:26728073

  2. Extracellular matrix and wound healing.

    PubMed

    Maquart, F X; Monboisse, J C

    2014-04-01

    Extracellular matrix has been known for a long time as an architectural support for the tissues. Many recent data, however, have shown that extracellular matrix macromolecules (collagens, elastin, glycosaminoglycans, proteoglycans and connective tissue glycoproteins) are able to regulate many important cell functions, such as proliferation, migration, protein synthesis or degradation, apoptosis, etc., making them able to play an important role in the wound repair process. Not only the intact macromolecules but some of their specific domains, that we called "Matrikines", are also able to regulate many cell activities. In this article, we will summarize main findings showing the effects of extracellular matrix macromolecules and matrikines on connective tissue and epithelial cells, particularly in skin, and their potential implication in the wound healing process. These examples show that extracellular matrix macromolecules or some of their specific domains may play a major role in wound healing. Better knowledge of these interactions may suggest new therapeutic targets in wound healing defects. PMID:24650524

  3. Factors That Impair Wound Healing

    PubMed Central

    Anderson, Kristin; Hamm, Rose L.

    2014-01-01

    The body's response to tissue injury in a healthy individual is an intricate, sequential physiologic process that results in timely healing with full re-epithelialization, resolution of drainage, and return of function to the affected tissue. Chronic wounds, however, do not follow this sequence of events and can challenge the most experienced clinician if the underlying factors that are impairing wound healing are not identified. The purpose of this article is to present recent information about factors that impair wound healing with the underlying pathophysiological mechanism that interferes with the response to tissue injury. These factors include co-morbidities (diabetes, obesity, protein energy malnutrition), medications (steroids, non-steroidal anti-inflammatory drugs or NSAIDs, anti-rejection medications), oncology interventions (radiation, chemotherapy), and life style habits (smoking, alcohol abuse). Successful treatment of any chronic wound depends upon identification and management of the factors for each individual. PMID:26199879

  4. Healing in the irradiated wound

    SciTech Connect

    Miller, S.H.; Rudolph, R. )

    1990-07-01

    Poor or nonhealing of irradiated wounds has been attributed to progressive obliterative endarteritis. Permanently damaged fibroblasts may also play an important part in poor healing. Regardless of the cause, the key to management of irradiated skin is careful attention to prevent its breakdown and conservative, but adequate, treatment when wounds are minor. When wounds become larger and are painful, complete excision of the wound or ulcer is called for and coverage should be provided by a well-vascularized nonparasitic distant flap.16 references.

  5. Current concepts in wound management and wound healing products.

    PubMed

    Davidson, Jacqueline R

    2015-05-01

    Current concepts in wound management are summarized. The emphasis is on selection of the contact layer of the bandage to promote a moist wound environment. Selection of an appropriate contact layer is based on the stage of wound healing and the amount of wound exudate. The contact layer can be used to promote autolytic debridement and enhance wound healing. PMID:25744144

  6. Polysaccharides-Rich Extract of Ganoderma lucidum (M.A. Curtis:Fr.) P. Karst Accelerates Wound Healing in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Cheng, Poh-Guat; Sabaratnam, Vikineswary; Kuppusamy, Umah Rani

    2013-01-01

    Ganoderma lucidum (M.A. Curtis:Fr.) P. Karst is a popular medicinal mushroom. Scientific reports had shown that the wound healing effects of G. lucidum were partly attributed to its rich polysaccharides. However, little attention has been paid to its potential effects on wounds associated with diabetes mellitus. In this study, we evaluated the wound healing activity of the hot aqueous extract of G. lucidum in streptozotocin-induced diabetic rats. The extract of G. lucidum was standardised based on chemical contents (w/w) of total polysaccharides (25.1%), ganoderic acid A (0.45%), and adenosine (0.069%). Six groups of six rats were experimentally wounded in the posterior neck region. Intrasite gel was used as a positive control and aqueous cream as the placebo. Topical application with 10% (w/w) of mushroom extract-incorporated aqueous cream was more effective than that with Intrasite gel in terms of wound closure. The antioxidant activity in serum of rats treated with aqueous extract of G. lucidum was significantly higher; whereas the oxidative protein products and lipid damage were lower when compared to those of the controls. These findings strongly support the beneficial effects of standardised aqueous extract of G. lucidum in accelerating wound healing in streptozotocin-induced diabetic rats. PMID:24348715

  7. Polysaccharides-Rich Extract of Ganoderma lucidum (M.A. Curtis:Fr.) P. Karst Accelerates Wound Healing in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Cheng, Poh-Guat; Phan, Chia-Wei; Sabaratnam, Vikineswary; Abdullah, Noorlidah; Abdulla, Mahmood Ameen; Kuppusamy, Umah Rani

    2013-01-01

    Ganoderma lucidum (M.A. Curtis:Fr.) P. Karst is a popular medicinal mushroom. Scientific reports had shown that the wound healing effects of G. lucidum were partly attributed to its rich polysaccharides. However, little attention has been paid to its potential effects on wounds associated with diabetes mellitus. In this study, we evaluated the wound healing activity of the hot aqueous extract of G. lucidum in streptozotocin-induced diabetic rats. The extract of G. lucidum was standardised based on chemical contents (w/w) of total polysaccharides (25.1%), ganoderic acid A (0.45%), and adenosine (0.069%). Six groups of six rats were experimentally wounded in the posterior neck region. Intrasite gel was used as a positive control and aqueous cream as the placebo. Topical application with 10% (w/w) of mushroom extract-incorporated aqueous cream was more effective than that with Intrasite gel in terms of wound closure. The antioxidant activity in serum of rats treated with aqueous extract of G. lucidum was significantly higher; whereas the oxidative protein products and lipid damage were lower when compared to those of the controls. These findings strongly support the beneficial effects of standardised aqueous extract of G. lucidum in accelerating wound healing in streptozotocin-induced diabetic rats. PMID:24348715

  8. Modeling of anisotropic wound healing

    NASA Astrophysics Data System (ADS)

    Valero, C.; Javierre, E.; García-Aznar, J. M.; Gómez-Benito, M. J.; Menzel, A.

    2015-06-01

    Biological soft tissues exhibit non-linear complex properties, the quantification of which presents a challenge. Nevertheless, these properties, such as skin anisotropy, highly influence different processes that occur in soft tissues, for instance wound healing, and thus its correct identification and quantification is crucial to understand them. Experimental and computational works are required in order to find the most precise model to replicate the tissues' properties. In this work, we present a wound healing model focused on the proliferative stage that includes angiogenesis and wound contraction in three dimensions and which relies on the accurate representation of the mechanical behavior of the skin. Thus, an anisotropic hyperelastic model has been considered to analyze the effect of collagen fibers on the healing evolution of an ellipsoidal wound. The implemented model accounts for the contribution of the ground matrix and two mechanically equivalent families of fibers. Simulation results show the evolution of the cellular and chemical species in the wound and the wound volume evolution. Moreover, the local strain directions depend on the relative wound orientation with respect to the fibers.

  9. Mesenchymal stromal cells form vascular tubes when placed in fibrin sealant and accelerate wound healing in vivo.

    PubMed

    Mendez, Julio J; Ghaedi, Mahboobe; Sivarapatna, Amogh; Dimitrievska, Sashka; Shao, Zhen; Osuji, Chinedum O; Steinbacher, Derek M; Leffell, David J; Niklason, Laura E

    2015-02-01

    Non-healing, chronic wounds are a growing public health problem and may stem from insufficient angiogenesis in affected sites. Here, we have developed a fibrin formulation that allows adipose-derived mesenchymal stromal cells (ADSCs) to form tubular structures in vitro. The tubular structures express markers of endothelium, including CD31 and VE-Cadherin, as well as the pericyte marker NG2. The ability for the MSCs to form tubular structures within the fibrin gels was directly dependent on the stoichiometric ratios of thrombin and fibrinogen and the resulting gel concentration, as well as on the presence of bFGF. Fibrin gel formulations that varied in stiffness were tested. ADSCs that are embedded in a stiff fibrin formulation express VE-cadherin and CD31 as shown by PCR, FACS and immunostaining. Confocal imaging analysis demonstrated that tubular structures formed, containing visible lumens, in the stiff fibrin gels in vitro. There was also a difference in the amounts of bFGF secreted by ADSCs grown in the stiffer gels as compared to softer gels. Additionally, hAT-MSCs gave rise to perfusable vessels that were VE-cadherin positive after subcutaneous injection into mice, whereas the softer fibrin formulation containing ADSCs did not. The application of ADSCs delivered in the stiff fibrin gels allowed for the wounds to heal more quickly, as assessed by wound size, amount of granulation tissue and collagen content. Interestingly, following 5 days of healing, the ADSCs remained within the fibrin gel and did not integrate into the granulation tissue of healing wounds in vivo. These data show that ADSCs are able to form tubular structures within fibrin gels, and may also contribute to faster wound healing, as compared with no treatment or to wounds treated with fibrin gels devoid of ADSCs. PMID:25433608

  10. [Phlebology and wound healing].

    PubMed

    Hafner, Jürg; Läuchli, Severin; French, Lars E

    2010-04-01

    Venous diseases are highly prevalent and chronic wounds cause high morbidity and costs. Prevalence of severe forms of chronic venous insufficiency is on the decline. This is due to improved diagnosis and treatment of venous thromboembolism, and to improved surgery of varicose veins and their sequelae. The spectrum of chronic wounds has shifted from venous ulcers towards more complex pathologies. At the same time, new treatment options are available. Modern phlebology effectively treats varicose veins, prevents sequelae of varicosis and deep venous thrombosis, and offers help to the great majority of patients with chronic wounds. PMID:20336620

  11. Ciliary neurotrophic factor promotes the activation of corneal epithelial stem/progenitor cells and accelerates corneal epithelial wound healing.

    PubMed

    Zhou, Qingjun; Chen, Peng; Di, Guohu; Zhang, Yangyang; Wang, Yao; Qi, Xia; Duan, Haoyun; Xie, Lixin

    2015-05-01

    Ciliary neurotrophic factor (CNTF), a well-known neuroprotective cytokine, has been found to play an important role in neurogenesis and functional regulations of neural stem cells. As one of the most innervated tissue, however, the role of CNTF in cornea epithelium remains unclear. This study was to explore the roles and mechanisms of CNTF in the activation of corneal epithelial stem/progenitor cells and wound healing of both normal and diabetic mouse corneal epithelium. In mice subjecting to mechanical removal of corneal epithelium, the corneal epithelial stem/progenitor cell activation and wound healing were promoted by exogenous CNTF application, while delayed by CNTF neutralizing antibody. In cultured corneal epithelial stem/progenitor cells, CNTF enhanced the colony-forming efficiency, stimulated the mitogenic proliferation, and upregulated the expression levels of corneal epithelial stem/progenitor cell-associated transcription factors. Furthermore, the promotion of CNTF on the corneal epithelial stem/progenitor cell activation and wound healing was mediated by the activation of STAT3. Moreover, in diabetic mice, the content of CNTF in corneal epithelium decreased significantly when compared with that of normal mice, and the supplement of CNTF promoted the diabetic corneal epithelial wound healing, accompanied with the advanced activation of corneal epithelial stem/progenitor cells and the regeneration of corneal nerve fibers. Thus, the capability of expanding corneal epithelial stem/progenitor cells and promoting corneal epithelial wound healing and nerve regeneration indicates the potential application of CNTF in ameliorating limbal stem cell deficiency and treating diabetic keratopathy. PMID:25546438

  12. [Fascial healing and wound failure].

    PubMed

    Fackeldey, V; Höer, J; Klinge, U

    2004-05-01

    The difficulties of acute or delayed failure of fascial healing after laparotomies are of great socioeconomic relevance. Despite a plurality of publications in the last decades, the incidence of burst abdomen (1-3%) and incisional hernia (10-15%) remained unchanged. The generally accepted cause is a multifactorial event with a large number of influencing factors. Therefore, only interdisciplinary cooperations are a match for the scientific complexity of this topic. A still underestimated problem is the description of wound healing factors influencing the microclimate in fascial healing. New aspects of pharmacotherapy and better understanding of collagen synthesis and dynamics of closure tension might improve the clinical situation in the future. PMID:15071734

  13. Local release of pioglitazone (a peroxisome proliferator-activated receptor γ agonist) accelerates proliferation and remodeling phases of wound healing.

    PubMed

    Sakai, Shigeki; Sato, Keisuke; Tabata, Yasuhiko; Kishi, Kazuo

    2016-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily known for its anti-inflammatory and macrophage differentiation effects, as well as its ability to promote fat cell differentiation and reduce insulin resistance. Pioglitazone (Pio) is a PPARγ agonist used clinically as an anti-diabetic agent for improving insulin sensitivity in patients with diabetes. The objective of this study was to develop a drug delivery system (DDS) for the local release of Pio to promote wound healing. Pio of low aqueous solubility was water-solubilized by micelles formed from gelatin grafted with L-lactic acid oligomers, and incorporated into a biodegradable gelatin hydrogel. An 8-mm punch biopsy tool was used to prepare two skin wounds on either side of the midline of 8-week-old mice. Wounds were treated by the hydrogels with (Pio-hydrogel group) or without (control group) Pio, and the wound area were observed 1, 4, 7, and 14 days after treatment. In addition, a protein assay and immunohistological stain were performed to determine the effects of the Pio-hydrogel on inflammation and macrophage differentiation. The Pio-hydrogels promote wound healing. Moreover, Western blotting analysis demonstrated that treatment with Pio-hydrogels resulted in decreased levels of the cytokines MIP-2 and TGF-β, and increased levels of glucose-regulating adiponectin. It is concluded that Pio-incorporated hydrogels promote the proliferation and remodeling phases of wound healing, and may prove to be effective as wound dressings. PMID:26710090

  14. Skin substitutes and wound healing.

    PubMed

    Auger, F A; Lacroix, D; Germain, L

    2009-01-01

    Medical science has vastly improved on the means and methods available for the treatment of wounds in the clinic. The production and use of various types of skin substitutes has led to dramatic improvements in the odds of survival for severely burned patients, but they have also shown promise for many other applications, including cases involving chronic wounds that are not life threatening. Nowadays, more than 20 products are commercially available, more are undergoing clinical trials and a large number of new models are being investigated in various research laboratories worldwide. Many of the current products do not contain any living cells and vary in their capacity to harness the innate capacity of the body to heal itself. Others include living cells, of allogeneic or autologous origin, and are often referred to as 'cellular therapy' or 'tissue-engineered' products. Modifications and improvements are currently investigated that aim at improving the healing potential of those products through the use of recombinant growth factors and additional features such as microvascularization. Fundamental research into wound healing and scar-free regeneration raises the hope that we will eventually be able to restore almost completely the appearance and function of skin after the healing of wounds. PMID:19188757

  15. The Presence of Oxygen in Wound Healing.

    PubMed

    Kimmel, Howard M; Grant, Anthony; Ditata, James

    2016-08-01

    Oxygen must be tightly governed in all phases of wound healing to produce viable granulation tissue. This idea of tight regulation has yet to be disputed; however, the role of oxygen at the cellular and molecular levels still is not fully understood as it pertains to its place in healing wounds. In an attempt to better understand the dynamics of oxygen on living tissue and its potential role as a therapy in wound healing, a substantial literature review of the role of oxygen in wound healing was performed and the following key points were extrapolated: 1) During energy metabolism, oxygen is needed for mitochondrial cytochrome oxidase as it produces high-energy phosphates that are needed for many cellular functions, 2) oxygen is also involved in the hydroxylation of proline and lysine into procollagen, which leads to collagen maturation, 3) in angiogenesis, hypoxia is required to start the process of wound healing, but it has been shown that if oxygen is administered it can accelerate and sustain vessel growth, 4) the antimicrobial action of oxygen occurs when nicotinamide adenine dinucleotide phosphate (NADPH)-linked oxygenase acts as a catalyst for the production of reactive oxygen species (ROS), a superoxide ion which kills bacteria, and 5) the level of evidence is moderate for the use of hyperbaric oxygen therapy (HBOT) for diabetic foot ulcers, crush injuries, and soft-tissue infections. The authors hypothesized that HBOT would be beneficial to arterial insufficiency wounds and other ailments, but at this time further study is needed before HBOT would be indicated. PMID:27560469

  16. Dinitrosyl iron complexes with glutathione incorporated into a collagen matrix as a base for the design of drugs accelerating skin wound healing.

    PubMed

    Shekhter, Anatoly B; Rudenko, Tatyana G; Istranov, Leonid P; Guller, Anna E; Borodulin, Rostislav R; Vanin, Anatoly F

    2015-10-12

    Composites of a collagen matrix and dinitrosyl iron complexes with glutathione (DNIC-GS) (in a dose of 4.0 μmoles per item) in the form of spongy sheets (DNIC-Col) were prepared and then topically applied in rat excisional full-thickness skin wound model. The effects of DNIC-Col were studied in comparison with spontaneously healing wounds (SpWH) and wounds treated with collagen sponges (Col) without DNIC-GS. The composites induced statistically and clinically significant acceleration of complete wound closure (21±1 day versus 23±1 day and 26±1 day for DNIC-Col, Col and SpWH, respectively). Histological examination of wound tissues on days 4, 14, 18 and 21 after surgery demonstrated that this improvement was supported by enhanced growth, maturation and fibrous transformation of granulation tissue and earlier epithelization of the injured area in rats treated with DNIC-Col composites benchmarked against Col and SpWH. It is suggested that the positive effect of the new pharmaceutical material on wound healing is based on the release of NO from decomposing DNIC. This effect is believed to be potentiated by the synergy of DNIC and collagen. PMID:26066410

  17. Hyperbaric oxygen and wound healing

    PubMed Central

    Bhutani, Sourabh; Vishwanath, Guruswamy

    2012-01-01

    Hyperbaric oxygen therapy (HBOT) is the use of 100% oxygen at pressures greater than atmospheric pressure. Today several approved applications and indications exist for HBOT. HBOT has been successfully used as adjunctive therapy for wound healing. Non-healing wounds such as diabetic and vascular insufficiency ulcers have been one major area of study for hyperbaric physicians where use of HBOT as an adjunct has been approved for use by way of various studies and trials. HBOT is also indicated for infected wounds like clostridial myonecrosis, necrotising soft tissue infections, Fournier's gangrene, as also for traumatic wounds, crush injury, compartment syndrome, compromised skin grafts and flaps and thermal burns. Another major area of application of HBOT is radiation-induced wounds, specifically osteoradionecrosis of mandible, radiation cystitis and radiation proctitis. With the increase in availability of chambers across the country, and with increasing number of studies proving the benefits of adjunctive use for various kinds of wounds and other indications, HBOT should be considered in these situations as an essential part of the overall management strategy for the treating surgeon. PMID:23162231

  18. Hyperbaric oxygen and wound healing.

    PubMed

    Bhutani, Sourabh; Vishwanath, Guruswamy

    2012-05-01

    Hyperbaric oxygen therapy (HBOT) is the use of 100% oxygen at pressures greater than atmospheric pressure. Today several approved applications and indications exist for HBOT. HBOT has been successfully used as adjunctive therapy for wound healing. Non-healing wounds such as diabetic and vascular insufficiency ulcers have been one major area of study for hyperbaric physicians where use of HBOT as an adjunct has been approved for use by way of various studies and trials. HBOT is also indicated for infected wounds like clostridial myonecrosis, necrotising soft tissue infections, Fournier's gangrene, as also for traumatic wounds, crush injury, compartment syndrome, compromised skin grafts and flaps and thermal burns. Another major area of application of HBOT is radiation-induced wounds, specifically osteoradionecrosis of mandible, radiation cystitis and radiation proctitis. With the increase in availability of chambers across the country, and with increasing number of studies proving the benefits of adjunctive use for various kinds of wounds and other indications, HBOT should be considered in these situations as an essential part of the overall management strategy for the treating surgeon. PMID:23162231

  19. Principles of Wound Management and Wound Healing in Exotic Pets.

    PubMed

    Mickelson, Megan A; Mans, Christoph; Colopy, Sara A

    2016-01-01

    The care of wounds in exotic animal species can be a challenging endeavor. Special considerations must be made in regard to the animal's temperament and behavior, unique anatomy and small size, and tendency toward secondary stress-related health problems. It is important to assess the entire patient with adequate systemic evaluation and consideration of proper nutrition and husbandry, which could ultimately affect wound healing. This article summarizes the general phases of wound healing, factors that affect healing, and principles of wound management. Emphasis is placed on novel methods of treating wounds and species differences in wound management and healing. PMID:26611923

  20. Gene Therapy and Wound Healing

    PubMed Central

    Eming, Sabine A.; Krieg, Thomas; Davidson, Jeffrey M

    2007-01-01

    Wound repair involves the sequential interaction of various cell types, extracellular matrix molecules, and soluble mediators. During the past 10 years, much new information on signals controlling wound cell behavior has emerged. This knowledge has led to a number of novel_therapeutic strategies. In particular, the local delivery of pluripotent growth factor molecules to the injured tissue has been intensively investigated over the past decade. Limited success of clinical trails indicates that a crucial aspect of the growth factor wound-healing strategy is the effective delivery of these polypeptides to the wound site. A molecular approach in which genetically modified cells synthesize and deliver the desired growth factor in regulated fashion has been used to overcome the limitations associated with the (topical) application of recombinant growth factor proteins. We have summarized the molecular and cellular basis of repair mechanisms and their failure, and we give an overview of techniques and studies applied to gene transfer in tissue repair. PMID:17276205

  1. An Immunomodulatory Protein (Ling Zhi-8) from a Ganoderma lucidum Induced Acceleration of Wound Healing in Rat Liver Tissues after Monopolar Electrosurgery

    PubMed Central

    Lin, Hao-Jan; Chang, Yushan-Sophie; Lin, Li-Hsiang; Haung, Chiung-Fang; Wu, Chia-Yu; Ou, Keng-Liang

    2014-01-01

    The purpose of this study was to investigate the effect of an immunomodulatory protein (Ling Zhi-8, LZ-8) on wound healing in rat liver tissues after monopolar electrosurgery. Animals were sacrificed for evaluations at 0, 3, 7, and 28 days postoperatively. It was found that the wound with the LZ-8 treatment significantly increases wound healing. Western blot analysis clearly indicated that the expression of NF-κB was decreased at 3, 7, and 28 days when liver tissues were treated with LZ-8. Moreover, caspase-3 activity of the liver tissue also significantly decreases at 7 and 28 days, respectively. DAPI staining and TUNEL assays revealed that only a minimal dispersion of NF-κB was found on the liver tissue treated with LZ-8 at day 7 as compared with day 3 and tissues without LZ-8 treatment. Similarly, apoptosis was decreased on liver tissues treated with LZ-8 at 7 days when compared to the control (monopolar electrosurgery) tissues. Therefore, the analytical results demonstrated that LZ-8 induced acceleration of wound healing in rat liver tissues after monopolar electrosurgery. PMID:24883073

  2. Wound healing and treating wounds: Chronic wound care and management.

    PubMed

    Powers, Jennifer G; Higham, Catherine; Broussard, Karen; Phillips, Tania J

    2016-04-01

    In the United States, chronic ulcers--including decubitus, vascular, inflammatory, and rheumatologic subtypes--affect >6 million people, with increasing numbers anticipated in our growing elderly and diabetic populations. These wounds cause significant morbidity and mortality and lead to significant medical costs. Preventative and treatment measures include disease-specific approaches and the use of moisture retentive dressings and adjunctive topical therapies to promote healing. In this article, we discuss recent advances in wound care technology and current management guidelines for the treatment of wounds and ulcers. PMID:26979353

  3. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing.

    PubMed

    Wong, Siu Ling; Demers, Melanie; Martinod, Kimberly; Gallant, Maureen; Wang, Yanming; Goldfine, Allison B; Kahn, C Ronald; Wagner, Denisa D

    2015-07-01

    Wound healing is impaired in diabetes, resulting in significant morbidity and mortality. Neutrophils are the main leukocytes involved in the early phase of healing. As part of their anti-microbial defense, neutrophils form extracellular traps (NETs) by releasing decondensed chromatin lined with cytotoxic proteins. NETs, however, can also induce tissue damage. Here we show that neutrophils isolated from type 1 and type 2 diabetic humans and mice were primed to produce NETs (a process termed NETosis). Expression of peptidylarginine deiminase 4 (PAD4, encoded by Padi4 in mice), an enzyme important in chromatin decondensation, was elevated in neutrophils from individuals with diabetes. When subjected to excisional skin wounds, wild-type (WT) mice produced large quantities of NETs in wounds, but this was not observed in Padi4(-/-) mice. In diabetic mice, higher levels of citrullinated histone H3 (H3Cit, a NET marker) were found in their wounds than in normoglycemic mice and healing was delayed. Wound healing was accelerated in Padi4(-/-) mice as compared to WT mice, and it was not compromised by diabetes. DNase 1, which disrupts NETs, accelerated wound healing in diabetic and normoglycemic WT mice. Thus, NETs impair wound healing, particularly in diabetes, in which neutrophils are more susceptible to NETosis. Inhibiting NETosis or cleaving NETs may improve wound healing and reduce NET-driven chronic inflammation in diabetes. PMID:26076037

  4. Silver-based wound dressings reduce bacterial burden and promote wound healing.

    PubMed

    Lin, Yu-Hsin; Hsu, Wei-Shan; Chung, Wan-Yu; Ko, Tse-Hao; Lin, Jui-Hsiang

    2016-08-01

    Various types of wound dressings have been designed for different purposes and functions. Controlling bacterial burden in a wound during the early phase is important for successful wound repair. Once bacterial burden is under control, the active promotion of wound healing is another important factor for efficient wound healing. This study investigated the potential of three silver-containing dressings, namely KoCarbonAg(®) , Aquacel(®) Ag and Acticoat 7, in reducing bacterial survival and promoting wound healing. The ability of these dressings to block the entry of bacteria from external environment and retain intrinsic bacteria was studied in vitro. In addition, the study used a rat model to compare the healing efficiencies of the three dressings and investigate the quantity of collagen synthesis in vivo. In vitro results indicated that the silver-containing dressings prevented bacterial growth in wounds by blocking the entry of external bacteria and by retaining the bacteria in the dressing. In vivo study indicated that reduction in bacterial burden accelerated wound healing. Wounds treated by the silver-containing dressings showed better healing than those treated with gauze. Moreover, KoCarbonAg(®) further accelerated wound healing by promoting collagen synthesis and arrangement. PMID:26043261

  5. Amyloidogenesis in Healing Wound

    PubMed Central

    Hashimoto, Ken; Brownstein, Martin H.

    1972-01-01

    Clinically and histologically typical skin lesions of macular and lichenoid amyloidoses were biopsied. Rebiopsies were performed after 2 to 16 weeks, and the sequence of amyloid reproduction in granulation tissue was followed. Initially, medium electron-dense proteinaceous substance with fine filaments was produced within or in close relation to the rough-surfaced endoplasmic reticulum of fibroblasts and subsequently discharged. Typical amyloid filaments emerged within and in the vicinity of this substance. A significant number of collagen fibrils were admixed in the centers of some amyloid islands. Predominantly amorphous amyloid substance was seen in contact with the basal laminae. No plasma cells were observed in foci of amyloid. Nonepithelialized wounds did not contain amyloid. It was suggested that, in the primary skin amyloidoses, abnormal dermal fibroblasts produce amyloid precursors under the influence of the epidermis. ImagesFig 9Fig 10Fig 4Fig 5Fig 11Fig 6Fig 7Fig 12Fig 1Fig 2Fig 8Fig 3 PMID:5049430

  6. Cryptotanshinone downregulates the profibrotic activities of hypertrophic scar fibroblasts and accelerates wound healing: A potential therapy for the reduction of skin scarring.

    PubMed

    Li, Yan; Shi, Shan; Gao, Jianxin; Han, Shichao; Wu, Xue; Jia, Yanhui; Su, Linlin; Shi, Jihong; Hu, Dahai

    2016-05-01

    Hypertrophic scar (HS) is a skin fibrotic disease that causes major clinically problematic symptoms. Cryptotanshinone (CT) is an important ingredient of Danshen (Salvia miltiorrhiza Bunge extract) that has been used to treat cardio-cerebral vascular diseases. Its clinical efficacy in HS remains unclear. To investigate whether CT can inhibit HS fibrosis, HS-derived fibroblastic cells (HSFs) were established and treated with or without CT. Type-collagen-I (Col1), type-collagen-III (Col3) and α-smooth muscle actin (α-SMA) expression were measured by western blot and real-time quantitative polymerase chain reaction. HSFs migration and contraction were assessed with the scratch assay and the fibroblast-populated collagen lattice (FPCL) contraction assay, respectively. Wound healing in CT-treated Balb/c mice was assessed by immunohistochemical analysis of collagen expression and Masson's trichrome staining analysis of collagen deposition. CT treatment of HSFs down-regulated Col1, Col3 and α-SMA mRNA and protein expression, HSFs migration, and HSFs contraction, and improved FPCL architecture. In mice, CT treatment accelerated wound healing: the scar margins were narrow and there was less collagen deposition in the regenerated tissue. Thus, CT promotes wound healing and decreases excessive deposition of extracellular matrix components. CT may help to prevent and reduce scarring. PMID:27133042

  7. Chitosan as a starting material for wound healing applications.

    PubMed

    Patrulea, V; Ostafe, V; Borchard, G; Jordan, O

    2015-11-01

    Chitosan and its derivatives have attracted great attention due to their properties beneficial for application to wound healing. The main focus of the present review is to summarize studies involving chitosan and its derivatives, especially N,N,N-trimethyl-chitosan (TMC), N,O-carboxymethyl-chitosan (CMC) and O-carboxymethyl-N,N,N-trimethyl-chitosan (CMTMC), used to accelerate wound healing. Moreover, formulation strategies for chitosan and its derivatives, as well as their in vitro, in vivo and clinical applications in wound healing are described. PMID:26614560

  8. Efficacy of Butea monosperma on dermal wound healing in rats.

    PubMed

    Sumitra, Miriyala; Manikandan, Panchatcharam; Suguna, Lochin

    2005-03-01

    Wound healing occurs as a fundamental response to tissue injury. Several natural products have been shown to accelerate the healing process. The present investigation was undertaken to determine the efficacy of topical administration of an alcoholic bark extract of Butea monosperma (B. monosperma) on cutaneous wound healing in rats. Full-thickness excision wounds were made on the back of rat and B. monosperma extract was administered topically. The granulation tissue formed on days 4, 8, 12 and 16 (post-wound) was used to estimate total collagen, hexosamine, protein, DNA and uronic acid. The extract increased cellular proliferation and collagen synthesis at the wound site, as evidenced by increase in DNA, total protein and total collagen content of granulation tissues. The extract treated wounds were found to heal much faster as indicated by improved rates of epithelialization and wound contraction, also confirmed by histopathological examinations. Also, the tensile strength of drug-treated wounds was increased significantly. In addition, we show that B. monosperma possesses antioxidant properties, by its ability to reduce lipid peroxidation. The results clearly substantiate the beneficial effects of the topical application of B. monosperma in the acceleration of wound healing. PMID:15618014

  9. Photobiomodulation in promoting wound healing: a review.

    PubMed

    Kuffler, Damien P

    2016-01-01

    Despite diverse methods being applied to induce wound healing, many wounds remain recalcitrant to all treatments. Photobiomodulation involves inducing wound healing by illuminating wounds with light emitting diodes or lasers. While used on different animal models, in vitro, and clinically, wound healing is induced by many different wavelengths and powers with no optimal set of parameters yet being identified. While data suggest that simultaneous multiple wavelength illumination is more efficacious than single wavelengths, the optimal single and multiple wavelengths must be better defined to induce more reliable and extensive healing of different wound types. This review focuses on studies in which specific wavelengths induce wound healing and on their mechanisms of action. PMID:26681143

  10. Stem cells in cutaneous wound healing.

    PubMed

    Cha, Jisun; Falanga, Vincent

    2007-01-01

    Treatment of chronic wounds remains difficult, in spite of better understanding of pathophysiologic principles and greater adherence to recognized standards of care. Even with recent advances stemming from breakthroughs in recombinant growth factors and bioengineered skin, up to almost 50% of chronic wounds that have been present for more than a year remain resistant to treatment. Because of these realities, there is excitement in the use of stem cells to offset impaired healing. Early data appear encouraging, but much work remains to be done. Although pilot studies suggest that multipotent adult stem cells can accelerate wound repair or even reconstitute the wound bed, the answers will need to come from randomized clinical trials. Thus far, considerable focus has been placed on bone marrow-derived mesenchymal stem cells, and there are now promising approaches for introducing them into the wound. It might turn out, however, that other types of stem cells will be more effective, including those derived from hair follicles or, perhaps, subsets of bone marrow-derived cultured cells. Still, proper wound care and adherence to basic principles cannot be bypassed, even by the most sophisticated approaches. PMID:17276204

  11. Leptin Promotes Wound Healing in the Oral Mucosa

    PubMed Central

    Umeki, Hirochika; Tokuyama, Reiko; Ide, Shinji; Okubo, Mitsuru; Tadokoro, Susumu; Tezuka, Mitsuki; Tatehara, Seiko; Satomura, Kazuhito

    2014-01-01

    Introduction Leptin, a 16 kDa circulating anti-obesity hormone, exhibits many physiological properties. Recently, leptin was isolated from saliva; however, its function in the oral cavity is still unclear. In this study, we investigated the physiological role of leptin in the oral cavity by focusing on its effect on wound healing in the oral mucosa. Methods Immunohistochemical analysis was used to examine the expression of the leptin receptor (Ob-R) in human/rabbit oral mucosa. To investigate the effect of leptin on wound healing in the oral mucosa, chemical wounds were created in rabbit oral mucosa, and leptin was topically administered to the wound. The process of wound repair was histologically observed and quantitatively analyzed by measuring the area of ulceration and the duration required for complete healing. The effect of leptin on the proliferation, differentiation and migration of human oral mucosal epithelial cells (RT7 cells) was investigated using crystal violet staining, reverse transcription polymerase chain reaction (RT-PCR) and a wound healing assay, respectively. Results Ob-R was expressed in spinous/granular cells in the epithelial tissue and vascular endothelial cells in the subepithelial connective tissue of the oral mucosa. Topical administration of leptin significantly promoted wound healing and shortened the duration required for complete healing. Histological analysis of gingival tissue beneath the ulceration showed a denser distribution of blood vessels in the leptin-treated group. Although the proliferation and differentiation of RT7 cells were not affected by leptin, the migration of these cells was accelerated in the presence of leptin. Conclusion Topically administered leptin was shown to promote wound healing in the oral mucosa by accelerating epithelial cell migration and enhancing angiogenesis around the wounded area. These results strongly suggest that topical administration of leptin may be useful as a treatment to promote wound

  12. Engineered Biopolymeric Scaffolds for Chronic Wound Healing

    PubMed Central

    Dickinson, Laura E.; Gerecht, Sharon

    2016-01-01

    Skin regeneration requires the coordinated integration of concomitant biological and molecular events in the extracellular wound environment during overlapping phases of inflammation, proliferation, and matrix remodeling. This process is highly efficient during normal wound healing. However, chronic wounds fail to progress through the ordered and reparative wound healing process and are unable to heal, requiring long-term treatment at high costs. There are many advanced skin substitutes, which mostly comprise bioactive dressings containing mammalian derived matrix components, and/or human cells, in clinical use. However, it is presently hypothesized that no treatment significantly outperforms the others. To address this unmet challenge, recent research has focused on developing innovative acellular biopolymeric scaffolds as more efficacious wound healing therapies. These biomaterial-based skin substitutes are precisely engineered and fine-tuned to recapitulate aspects of the wound healing milieu and target specific events in the wound healing cascade to facilitate complete skin repair with restored function and tissue integrity. This mini-review will provide a brief overview of chronic wound healing and current skin substitute treatment strategies while focusing on recent engineering approaches that regenerate skin using synthetic, biopolymeric scaffolds. We discuss key polymeric scaffold design criteria, including degradation, biocompatibility, and microstructure, and how they translate to inductive microenvironments that stimulate cell infiltration and vascularization to enhance chronic wound healing. As healthcare moves toward precision medicine-based strategies, the potential and therapeutic implications of synthetic, biopolymeric scaffolds as tunable treatment modalities for chronic wounds will be considered. PMID:27547189

  13. Wound healing and cancer progression in Opisthorchis viverrini associated cholangiocarcinoma.

    PubMed

    Botelho, Monica C; Alves, Helena; Richter, Joachim

    2016-07-01

    Infection with the human liver fluke Opisthorchis viverrini induces cancer of the bile ducts, cholangiocarcinoma (CCA). It was shown previously that O. viverrini-secreted proteins accelerate wound resolution in human cholangiocytes. Recombinant Ov-GRN-1 (O. viverrini-derived gene encoding granulin-like growth factor) induced angiogenesis and accelerated mouse wound healing. Given the striking similarities of wound healing and cancer progression, here we discuss the major implications of this finding for an infection-induced cancer of major public health significance in the developing world. PMID:27130317

  14. Bioelectrical impedance assessment of wound healing.

    PubMed

    Lukaski, Henry C; Moore, Micheal

    2012-01-01

    Objective assessment of wound healing is fundamental to evaluate therapeutic and nutritional interventions and to identify complications. Despite availability of many techniques to monitor wounds, there is a need for a safe, practical, accurate, and effective method. A new method is localized bioelectrical impedance analysis (BIA) that noninvasively provides information describing cellular changes that occur during healing and signal complications to wound healing. This article describes the theory and application of localized BIA and provides examples of its use among patients with lower leg wounds. This promising method may afford clinicians a novel technique for routine monitoring of interventions and surveillance of wounds. PMID:22401341

  15. Negative pressure wound therapy promotes vessel destabilization and maturation at various stages of wound healing and thus influences wound prognosis

    PubMed Central

    MA, ZHANJUN; SHOU, KANGQUAN; LI, ZONGHUAN; JIAN, CHAO; QI, BAIWEN; YU, AIXI

    2016-01-01

    Negative pressure wound therapy (NPWT) has been observed to accelerate the wound healing process in humans through promoting angiogenesis. However, the potential biological effect and relevant molecular mechanisms, including microvessel destabilization, regression and endothelial cell proliferation in the early stage (1–3 days), and the neovascular stabilization and maturation in the later stage (7–15 days), have yet to be fully elucidated. The current study aimed to research the potential effect of NPWT on angiogenesis and vessel maturation, and investigate relevant association between mature microvessels and wound prognosis, as well as the regulatory mechanisms in human wound healing. Patients in the present study (n=48) were treated with NPWT or a petrolatum gauze, and relevant growth factors and vessel changes were detected using various experimental methods. NPWT increased the expression levels of angiogenin-2 (Ang-2), and decreased the expression levels of Ang-1 and ratios of Ang-1/Ang-2 in the initial stages of wound healing. However, in the latter stages of wound healing, NPWT increased the expression levels of Ang-1 and ratios of Ang-1/Ang-2, as well as the phosphorylation level of tyrosine kinase receptor-2. Consequently, microvessel pericyte coverage was gradually elevated, and the basement membrane was gradually supplied with new blood at the later stage of wound healing. In conclusion, NPWT may preferentially stimulate microvessel destabilization and regression in the early stage of wound healing, and as a consequence, increase angiogenesis. Subsequently, in the later stage of wound healing, NPWT may preferentially promote microvessel stabilization, thereby promoting microvessel maturation in human wounds through the angiogenin/tyrosine kinase receptor-2 signaling pathway. The results of the present study results demonstrated that NPWT was able to accelerate wound healing speed, and thus influence wound prognosis, as a result of an abundance of

  16. An Assessment of Wound Healing Potential of Argyreia speciosa Leaves

    PubMed Central

    Yadav, Narayan Prasad; Rawat, Bindu; Rai, Vineet Kumar; Shanker, Karuna; Venkateswara Rao, Chandana

    2014-01-01

    In North India, poultice of young unfolded leaves of Argyreia speciosa Linn. (Convolvulaceae) is used for healing wounds. In order to find scientific evidence for the traditional utilization of leaves of A. speciosa in wound healing, this investigation was carried out. A linear incision wound of about 3 cm in length and 2 mm in depth and circular excision wound of 177 mm2 full thickness were made on the dorsal region of separate groups (n = 5) of anesthetized Swiss albino mice. A simple ointment, developed by including ethanol, ethanol-water, and water extracts (10% each, separately) of A. speciosa, was applied topically to mice once daily for 14 days after wounding. To evaluate the effect of each extract, wound contraction, epithelization period, wound breaking strength, and hydroxyproline content were determined. The water extract of A. speciosa showed accelerated wound healing activity as evidenced by fast wound contraction (96.30 ± 0.52%; P < 0.01), rapid epithelization period (11.40 ± 0.60 days; P < 0.001), greater wound breaking strength (376.56 ± 21.16 g; P < 0.001), and higher hydroxyproline content (16.49 ± 1.12 mg/g; P < 0.05) of granulation tissue. The present report supports the traditional use of Argyreia speciosa leaves for wound healing and signify its relevant therapeutic potential. PMID:24688387

  17. Acceleration of diabetic wound healing by a cryopreserved living dermal substitute created by micronized amnion seeded with fibroblasts

    PubMed Central

    Zheng, Yongjun; Ji, Shizhao; Wu, Haibin; Tian, Song; Wang, Xingtong; Luo, Pengfei; Fang, He; Wang, Zhihong; Wang, Junjie; Wang, Zhongshan; Xiao, Shichu; Xia, Zhaofan

    2015-01-01

    Bioengineered dermal substitutes have been used for the treatment of diabetic ulcers in clinics and achieved satisfactory results. However, constructing traditional tissue engineered dermal substitutes with two-step method is high-cost, time-consuming and greatly decreases fibroblast proliferative activity because of repeated trypsinization. Inthisstudy, we created a 3D micronized amniotic membrane (mAM) and used it as a natural microcarrier for ex vivo culture and amplification of human dermal fibroblasts (HDF) combined with the rotary cell culture system (RCCS). This one-step mAM-RCCS method couldamplify HDF quickly and construct a dermal substitute HDF-mAM simultaneously. To facilitate the clinical application of mAM-RCCS, anoptimized storage method was used.Post-thawing HDF-mAM retained high cell viability, intact cell morphology and active peptide secretion. When transplanted to the wounds of db/db mice, cryopreserved HDF-mAM promoted vascularization and diabetic wound healing significantly. These results demonstrate the potential application of cryopreserved HDF-mAM as a living dermal substitutefor treating diabetic ulcers and other chronic wounds in clinics. PMID:26885266

  18. Current wound healing procedures and potential care

    PubMed Central

    Dreifke, Michael B.; Jayasuriya, Amil A.; Jayasuriya, Ambalangodage C.

    2015-01-01

    In this review, we describe current and future potential wound healing treatments for acute and chronic wounds. The current wound healing approaches are based on autografts, allografts, and cultured epithelial autografts, and wound dressings based on biocompatible and biodegradable polymers. The Food and Drug Administration approved wound healing dressings based on several polymers including collagen, silicon, chitosan, and hyaluronic acid. The new potential therapeutic intervention for wound healing includes sustained delivery of growth factors, and siRNA delivery, targeting micro RNA, and stem cell therapy. In addition, environment sensors can also potentially utilize to monitor and manage micro environment at wound site. Sensors use optical, odor, pH, and hydration sensors to detect such characteristics as uric acid level, pH, protease level, and infection – all in the hopes of early detection of complications. PMID:25579968

  19. Hepatocyte Growth Factor Effects on Mesenchymal Stem Cells Derived from Human Arteries: A Novel Strategy to Accelerate Vascular Ulcer Wound Healing

    PubMed Central

    Valente, Sabrina; Pasanisi, Emanuela; Ricci, Francesca; Stella, Andrea

    2016-01-01

    Vascular ulcers are a serious complication of peripheral vascular disease, especially in diabetics. Several approaches to treat the wounds are proposed but they show poor outcomes and require long healing times. Hepatocyte Growth Factor/Scatter Factor (HGF/SF) is a pleiotropic cytokine exerting many biological activities through the c-Met receptor. This study was aimed at verifying whether HGF/SF influences proliferation, migration, and angiogenesis on mesenchymal stem cells isolated from human arteries (hVW-MSCs). hVW-MSCs were exposed to NIBSC HGF/SF (2.5, 5, 10, and 70 ng/mL) from 6 hrs to 7 days. HGF and c-MET mRNA and protein expression, cell proliferation (Alamar Blue and Ki–67 assay), migration (scratch and transwell assays), and angiogenesis (Matrigel) were investigated. hVW-MSCs displayed stemness features and expressed HGF and c-MET. HGF/SF did not increase hVW-MSC proliferation, whereas it enhanced the cell migration, the formation of capillary-like structures, and the expression of angiogenic markers (vWF, CD31, and KDR). The HGF/SF effects on hVW-MSC migration and angiogenic potential are of great interest to accelerate wound healing process. Local delivery of HGF/SF could therefore improve the healing of unresponsive vascular ulcers. PMID:26788066

  20. Wound Healing in PatientsWith Cancer

    PubMed Central

    Payne, Wyatt G.; Naidu, Deepak K.; Wheeler, Chad K.; Barkoe, David; Mentis, Marni; Salas, R. Emerick; Smith, David J.; Robson, Martin C.

    2008-01-01

    Objective: The treatment of patients with cancer has advanced into a complex, multimodal approach incorporating surgery, radiation, and chemotherapy. Managing wounds in this population is complicated by tumor biology, the patient's disease state, and additional comorbidities, some of which may be iatrogenic. Radiation therapy, frequently employed for local-regional control of disease following surgical resection, has quantifiable negative healing effects due to local tissue fibrosis and vascular effects. Chemotherapeutic agents, either administered alone or as combination therapy with surgery and radiation, may have detrimental effects on the rapidly dividing tissues of healing wounds. Overall nutritional status, often diminished in patients with cancer, is an important aspect to the ability of patients to heal after surgical procedures and/or treatment regimens. Methods: An extensive literature search was performed to gather pertinent information on the topic of wound healing in patients with cancer. The effects that surgical procedures, radiation therapy, chemotherapy, and nutritional deficits play in wound healing in these patients were reviewed and collated. Results: The current knowledge and treatment of these aspects of wound healing in cancer patients are discussed, and observations and recommendations for optimal wound healing results are considered. Conclusion: Although wound healing may proceed in a relatively unimpeded manner for many patients with cancer, there is a potential for wound failure due to the nature and effects of the oncologic disease process and its treatments. PMID:18264518

  1. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs.

    PubMed

    Bhatia, Ayesha; O'Brien, Kathryn; Chen, Mei; Wong, Alex; Garner, Warren; Woodley, David T; Li, Wei

    2016-01-01

    Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for burns should show dual abilities to prevent the burn wound progression and thereafter promote burn wound healing. Herein we report that topically applied F-5 fragment of heat shock protein-90α is a dual functional agent to promote burn wound healing in pigs. First, F-5 prevents burn wound progression by protecting the surrounding cells from undergoing heat-induced caspase 3 activation and apoptosis with increased Akt activation. Accordingly, F-5-treated burn and excision wounds show a marked decline in inflammation. Thereafter, F-5 accelerates burn wound healing by stimulating the keratinocyte migration-led reepithelialization, leading to wound closure. This study addresses a topical agent that is capable of preventing burn wound progression and accelerating burn wound healing. PMID:27382602

  2. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs

    PubMed Central

    Bhatia, Ayesha; O’Brien, Kathryn; Chen, Mei; Wong, Alex; Garner, Warren; Woodley, David T.; Li, Wei

    2016-01-01

    Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for burns should show dual abilities to prevent the burn wound progression and thereafter promote burn wound healing. Herein we report that topically applied F-5 fragment of heat shock protein-90α is a dual functional agent to promote burn wound healing in pigs. First, F-5 prevents burn wound progression by protecting the surrounding cells from undergoing heat-induced caspase 3 activation and apoptosis with increased Akt activation. Accordingly, F-5–treated burn and excision wounds show a marked decline in inflammation. Thereafter, F-5 accelerates burn wound healing by stimulating the keratinocyte migration-led reepithelialization, leading to wound closure. This study addresses a topical agent that is capable of preventing burn wound progression and accelerating burn wound healing. PMID:27382602

  3. Ultraviolet light and hyperpigmentation in healing wounds

    SciTech Connect

    Wiemer, D.R.; Spira, M.

    1983-10-01

    The concept of permanent hyperpigmentation in wounds following ultraviolet light exposure during the postoperative period has found a place in plastic surgical literature but has not been documented. This study evaluates the effect of ultraviolet light on healing wounds in paraplegics. It failed to confirm permanent alteration in pigmentation response to ultraviolet exposure and suggests that other factors are of greater importance in the development of hyperpigmentation in the healing wound.

  4. Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors.

    PubMed

    Escuin-Ordinas, Helena; Li, Shuoran; Xie, Michael W; Sun, Lu; Hugo, Willy; Huang, Rong Rong; Jiao, Jing; de-Faria, Felipe Meira; Realegeno, Susan; Krystofinski, Paige; Azhdam, Ariel; Komenan, Sara Marie D; Atefi, Mohammad; Comin-Anduix, Begoña; Pellegrini, Matteo; Cochran, Alistair J; Modlin, Robert L; Herschman, Harvey R; Lo, Roger S; McBride, William H; Segura, Tatiana; Ribas, Antoni

    2016-01-01

    BRAF inhibitors are highly effective therapies for the treatment of BRAF(V600)-mutated melanoma, with the main toxicity being a variety of hyperproliferative skin conditions due to paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway in BRAF wild-type cells. Most of these hyperproliferative skin changes improve when a MEK inhibitor is co-administered, as it blocks paradoxical MAPK activation. Here we show how the BRAF inhibitor vemurafenib accelerates skin wound healing by inducing the proliferation and migration of human keratinocytes through extracellular signal-regulated kinase (ERK) phosphorylation and cell cycle progression. Topical treatment with vemurafenib in two wound-healing mice models accelerates cutaneous wound healing through paradoxical MAPK activation; addition of a mitogen-activated protein kinase kinase (MEK) inhibitor reverses the benefit of vemurafenib-accelerated wound healing. The same dosing regimen of topical BRAF inhibitor does not increase the incidence of cutaneous squamous cell carcinomas in mice. Therefore, topical BRAF inhibitors may have clinical applications in accelerating the healing of skin wounds. PMID:27476449

  5. Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors

    PubMed Central

    Escuin-Ordinas, Helena; Li, Shuoran; Xie, Michael W.; Sun, Lu; Hugo, Willy; Huang, Rong Rong; Jiao, Jing; de-Faria, Felipe Meira; Realegeno, Susan; Krystofinski, Paige; Azhdam, Ariel; Komenan, Sara Marie D.; Atefi, Mohammad; Comin-Anduix, Begoña; Pellegrini, Matteo; Cochran, Alistair J.; Modlin, Robert L.; Herschman, Harvey R.; Lo, Roger S.; McBride, William H.; Segura, Tatiana; Ribas, Antoni

    2016-01-01

    BRAF inhibitors are highly effective therapies for the treatment of BRAFV600-mutated melanoma, with the main toxicity being a variety of hyperproliferative skin conditions due to paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway in BRAF wild-type cells. Most of these hyperproliferative skin changes improve when a MEK inhibitor is co-administered, as it blocks paradoxical MAPK activation. Here we show how the BRAF inhibitor vemurafenib accelerates skin wound healing by inducing the proliferation and migration of human keratinocytes through extracellular signal-regulated kinase (ERK) phosphorylation and cell cycle progression. Topical treatment with vemurafenib in two wound-healing mice models accelerates cutaneous wound healing through paradoxical MAPK activation; addition of a mitogen-activated protein kinase kinase (MEK) inhibitor reverses the benefit of vemurafenib-accelerated wound healing. The same dosing regimen of topical BRAF inhibitor does not increase the incidence of cutaneous squamous cell carcinomas in mice. Therefore, topical BRAF inhibitors may have clinical applications in accelerating the healing of skin wounds. PMID:27476449

  6. Hypoxic Conditioned Medium from Human Amniotic Fluid-Derived Mesenchymal Stem Cells Accelerates Skin Wound Healing through TGF-β/SMAD2 and PI3K/Akt Pathways

    PubMed Central

    Jun, Eun Kyoung; Zhang, Qiankun; Yoon, Byung Sun; Moon, Jai-Hee; Lee, Gilju; Park, Gyuman; Kang, Phil Jun; Lee, Jung Han; Kim, Areee; You, Seungkwon

    2014-01-01

    In a previous study, we isolated human amniotic fluid (AF)-derived mesenchymal stem cells (AF-MSCs) and utilized normoxic conditioned medium (AF-MSC-norCM) which has been shown to accelerate cutaneous wound healing. Because hypoxia enhances the wound healing function of mesenchymal stem cell-conditioned medium (MSC-CM), it is interesting to explore the mechanism responsible for the enhancement of wound healing function. In this work, hypoxia not only increased the proliferation of AF-MSCs but also maintained their constitutive characteristics (surface marker expression and differentiation potentials). Notably, more paracrine factors, VEGF and TGF-β1, were secreted into hypoxic conditioned medium from AF-MSCs (AF-MSC-hypoCM) compared to AF-MSC-norCM. Moreover, AF-MSC-hypoCM enhanced the proliferation and migration of human dermal fibroblasts in vitro, and wound closure in a skin injury model, as compared to AF-MSC-norCM. However, the enhancement of migration of fibroblasts accelerated by AF-MSC-hypoCM was inhibited by SB505124 and LY294002, inhibitors of TGF-β/SMAD2 and PI3K/AKT, suggesting that AF-MSC-hypoCM-enhanced wound healing is mediated by the activation of TGF-β/SMAD2 and PI3K/AKT. Therefore, AF-MSC-hypoCM enhances wound healing through the increase of hypoxia-induced paracrine factors via activation of TGF-β/SMAD2 and PI3K/AKT pathways. PMID:24398984

  7. Rapid identification of slow healing wounds.

    PubMed

    Jung, Kenneth; Covington, Scott; Sen, Chandan K; Januszyk, Michael; Kirsner, Robert S; Gurtner, Geoffrey C; Shah, Nigam H

    2016-01-01

    Chronic nonhealing wounds have a prevalence of 2% in the United States, and cost an estimated $50 billion annually. Accurate stratification of wounds for risk of slow healing may help guide treatment and referral decisions. We have applied modern machine learning methods and feature engineering to develop a predictive model for delayed wound healing that uses information collected during routine care in outpatient wound care centers. Patient and wound data was collected at 68 outpatient wound care centers operated by Healogics Inc. in 26 states between 2009 and 2013. The dataset included basic demographic information on 59,953 patients, as well as both quantitative and categorical information on 180,696 wounds. Wounds were split into training and test sets by randomly assigning patients to training and test sets. Wounds were considered delayed with respect to healing time if they took more than 15 weeks to heal after presentation at a wound care center. Eleven percent of wounds in this dataset met this criterion. Prognostic models were developed on training data available in the first week of care to predict delayed healing wounds. A held out subset of the training set was used for model selection, and the final model was evaluated on the test set to evaluate discriminative power and calibration. The model achieved an area under the curve of 0.842 (95% confidence interval 0.834-0.847) for the delayed healing outcome and a Brier reliability score of 0.00018. Early, accurate prediction of delayed healing wounds can improve patient care by allowing clinicians to increase the aggressiveness of intervention in patients most at risk. PMID:26606167

  8. Functionalized silk biomaterials for wound healing.

    PubMed

    Gil, Eun Seok; Panilaitis, Bruce; Bellas, Evangelia; Kaplan, David L

    2013-01-01

    Silk protein-biomaterial wound dressings with epidermal growth factor (EGF) and silver sulfadiazine were studied with a cutaneous excisional mouse wound model. Three different material designs and two different drug incorporation techniques were studied to compare wound healing responses. Material formats included silk films, lamellar porous silk films and electrospun silk nanofibers, each studied with the silk matrix alone and with drug loading or drug coatings on the silk matrices. Changes in wound size and histological assessments of wound tissues showed that the functionalized silk biomaterial wound dressings increased wound healing rate, including reepithelialization, dermis proliferation, collagen synthesis and reduced scar formation, when compared to air-permeable Tegaderm tape (3M) (- control) and a commercial wound dressing, Tegaderm Hydrocolloid dressing (3M) (+ control). All silk biomaterials were effective for wound healing, while the lamellar porous films and electrospun nanofibers and the incorporation of EGF/silver sulfadiazine, via drug loading or coating, provided the most rapid wound healing responses. This systematic approach to evaluating functionalized silk biomaterial wound dressings demonstrates a useful strategy to select formulations for further study towards new treatment options for chronic wounds. PMID:23184644

  9. Biomarkers for wound healing and their evaluation.

    PubMed

    Patel, S; Maheshwari, A; Chandra, A

    2016-01-01

    A biological marker (biomarker) is a substance used as an indicator of biological state. Advances in genomics, proteomics and molecular pathology have generated many candidate biomarkers with potential clinical value. Research has identified several cellular events and mediators associated with wound healing that can serve as biomarkers. Macrophages, neutrophils, fibroblasts and platelets release cytokines molecules including TNF-α, interleukins (ILs) and growth factors, of which platelet-derived growth factor (PDGF) holds the greatest importance. As a result, various white cells and connective tissue cells release both matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs). Studies have demonstrated that IL-1, IL-6, and MMPs, levels above normal, and an abnormally high MMP/TIMP ratio are often present in non-healing wounds. Clinical examination of wounds for these mediators could predict which wounds will heal and which will not, suggesting use of these chemicals as biomarkers of wound healing. There is also evidence that the application of growth factors like PDGF will alleviate the recuperating process of chronic, non-healing wounds. Finding a specific biomarker for wound healing status would be a breakthrough in this field and helping treat impaired wound healing. PMID:26762498

  10. The Four-Herb Chinese Medicine Formula Tuo-Li-Xiao-Du-San Accelerates Cutaneous Wound Healing in Streptozotocin-Induced Diabetic Rats through Reducing Inflammation and Increasing Angiogenesis

    PubMed Central

    Zhang, Xiao-na; Ma, Ze-jun; Wang, Ying; Li, Yu-zhu; Sun, Bei; Guo, Xin; Pan, Cong-qing; Chen, Li-ming

    2016-01-01

    Impaired wound healing in diabetic patients is a serious complication that often leads to amputation or even death with limited effective treatments. Tuo-Li-Xiao-Du-San (TLXDS), a traditional Chinese medicine formula for refractory wounds, has been prescribed for nearly 400 years in China and shows good efficacy in promoting healing. In this study, we explored the effect of TLXDS on healing of diabetic wounds and investigated underlying mechanisms. Four weeks after intravenous injection of streptozotocin, two full-thickness excisional wounds were created with a 10 mm diameter sterile biopsy punch on the back of rats. The ethanol extract of TLXDS was given once daily by oral gavage. Wound area, histological change, inflammation, angiogenesis, and collagen synthesis were evaluated. TLXDS treatment significantly accelerated healing of diabetic rats and improved the healing quality. These effects were associated with reduced neutrophil infiltration and macrophage accumulation, enhanced angiogenesis, and increased collagen deposition. This study shows that TLXDS improves diabetes-impaired wound healing. PMID:27057551

  11. NeutroPhase® in chronic non-healing wounds

    PubMed Central

    Crew, John; Varilla, Randell; Rocas, Thomas Allandale; Debabov, Dmitri; Wang, Lu; Najafi, Azar; Rani, Suriani Abdul; Najafi, Ramin (Ron); Anderson, Mark

    2012-01-01

    Chronic non-healing wounds, such as venous stasis ulcers, diabetic ulcers, and pressure ulcers are serious unmet medical needs that affect a patient’s morbidity and mortality. Common pathogens observed in chronic non-healing wounds are Staphylococcus including MRSA, Pseudomonas, Enterobacter, Stenotrophomonas, and Serratia spp. Topical and systemically administered antibiotics do not adequately decrease the level of bacteria or the associated biofilm in chronic granulating wounds and the use of sub-lethal concentrations of antibiotics can lead to resistant phenotypes. Furthermore, topical antiseptics may not be fully effective and can actually impede wound healing. We show 5 representative examples from our more than 30 clinical case studies using NeutroPhase® as an irrigation solution with chronic non-healing wounds with and without the technique of negative pressure wound therapy (NPWT). NeutroPhase® is pure 0.01% hypochlorous acid (i.e. >97% relative molar distribution of active chlorine species as HOCl) in a 0.9% saline solution at pH 4-5 and is stored in glass containers. NovaBay has three FDA cleared 510(k)s. Patients showed a profound improvement and marked accelerated rates of wound healing using NeutroPhase® with and without NPWT. NeutroPhase® was non-toxic to living tissues. PMID:23272294

  12. NeutroPhase(®) in chronic non-healing wounds.

    PubMed

    Crew, John; Varilla, Randell; Rocas, Thomas Allandale; Debabov, Dmitri; Wang, Lu; Najafi, Azar; Rani, Suriani Abdul; Najafi, Ramin Ron; Anderson, Mark

    2012-01-01

    Chronic non-healing wounds, such as venous stasis ulcers, diabetic ulcers, and pressure ulcers are serious unmet medical needs that affect a patient's morbidity and mortality. Common pathogens observed in chronic non-healing wounds are Staphylococcus including MRSA, Pseudomonas, Enterobacter, Stenotrophomonas, and Serratia spp. Topical and systemically administered antibiotics do not adequately decrease the level of bacteria or the associated biofilm in chronic granulating wounds and the use of sub-lethal concentrations of antibiotics can lead to resistant phenotypes. Furthermore, topical antiseptics may not be fully effective and can actually impede wound healing. We show 5 representative examples from our more than 30 clinical case studies using NeutroPhase(®) as an irrigation solution with chronic non-healing wounds with and without the technique of negative pressure wound therapy (NPWT). NeutroPhase(®) is pure 0.01% hypochlorous acid (i.e. >97% relative molar distribution of active chlorine species as HOCl) in a 0.9% saline solution at pH 4-5 and is stored in glass containers. NovaBay has three FDA cleared 510(k)s. Patients showed a profound improvement and marked accelerated rates of wound healing using NeutroPhase(®) with and without NPWT. NeutroPhase(®) was non-toxic to living tissues. PMID:23272294

  13. A Chemical Biological Strategy to Facilitate Diabetic Wound Healing

    PubMed Central

    Gooyit, Major; Peng, Zhihong; Wolter, William R.; Ping, Hualiang; Ding, Derong; Hesek, Dusan; Lee, Mijoon; Boggess, Bill; Champion, Matthew M.; Suckow, Mark A.; Mobashery, Shahriar; Chang, Mayland

    2013-01-01

    A complication of diabetes is the inability of wounds to heal in diabetic patients. Diabetic wounds are refractory to healing due to the involvement of activated matrix metalloproteinases (MMPs), which remodel the tissue resulting in apoptosis. There are no readily available methods that identify active unregulated MMPs. With the use of a novel inhibitor-tethered resin that binds exclusively to the active forms of MMPs, coupled with proteomics, we quantified MMP-8 and MMP-9 in a mouse model of diabetic wounds. Topical treatment with a selective MMP-9 inhibitor led to acceleration of wound healing, re-epithelialization, and significantly attenuated apoptosis. In contrast, selective pharmacological inhibition of MMP-8 delayed wound healing, decreased re-epithelialization, and exhibited high apoptosis. The MMP-9 activity makes the wounds refractory to healing, whereas that of MMP-8 is beneficial. The treatment of diabetic wounds with a selective MMP-9 inhibitor holds great promise in providing heretofore-unavailable opportunities for intervention of this disease. PMID:24053680

  14. Regenerative materials that facilitate wound healing.

    PubMed

    Mulder, Gerit; Wallin, Kelly; Tenenhaus, Mayer

    2012-07-01

    Wounds and damaged tissue become problematic when the tissue repair process does not proceed in a normal manner. Standard treatment of wounds entails topical dressings and devices in conjunction with good wound care practices. Good practices adequately support healing in most patients. Difficult, chronic, or recalcitrant wounds may require the use of more advanced technologies. Wounds that are full thickness or present with the absence of a matrix, may particularly benefit from regenerative materials. This article focuses on the use of cellular and acellular materials as well as chemical constructs to support granulation, tissue repair, and wound closure. PMID:22732374

  15. microRNA and Wound Healing.

    PubMed

    Banerjee, Jaideep; Sen, Chandan K

    2015-01-01

    microRNAs (miRNAs) are small noncoding RNA molecules which play pivotal roles in wound healing. The increased expression of certain genes and expression of some others represent a key component of the wound biology and are largely under the regulation of naturally occurring miRNAs. Understanding the dysregulated miRNAs in chronic wound biology will therefore enable the development of newer therapies. This chapter focuses on the miRNAs that can be potentially targeted for improving skin wound healing and the challenges in miRNA therapy, including considerations in miRNA target identification and delivery. PMID:26663189

  16. Systems-based approaches toward wound healing

    PubMed Central

    Buganza-Tepole, Adrian; Kuhl, Ellen

    2013-01-01

    Wound healing in the pediatric patient is of utmost clinical and social importance, since hypertrophic scarring can have aesthetic and psychological sequelae, from early childhood to late adolescence. Wound healing is a well-orchestrated reparative response affecting the damaged tissue at the cellular, tissue, organ, and system scales. While tremendous progress has been made towards understanding wound healing at the individual temporal and spatial scales, its effects across the scales remain severely understudied and poorly understood. Here we discuss the critical need for systems-based computational modeling of wound healing across the scales, from short-term to long-term and from small to large. We illustrate the state of the art in systems modeling by means of three key signaling mechanisms: oxygen tension regulating angiogenesis and revascularization; TGF-β kinetics controlling collagen deposition; and mechanical stretch stimulating cellular mitosis and extracellular matrix remodeling. The complex network of biochemical and biomechanical signaling mechanisms and the multi-scale character of the healing process make systems modeling an integral tool in exploring personalized strategies for wound repair. A better mechanistic understanding of wound healing in the pediatric patient could open new avenues in treating children with skin disorders such as birth defects, skin cancer, wounds, and burn injuries. PMID:23314298

  17. Thrombomodulin Promotes Corneal Epithelial Wound Healing

    PubMed Central

    Huang, Yi-Hsun; I, Ching-Chang; Kuo, Cheng-Hsiang; Hsu, Yun-Yan; Lee, Fang-Tzu; Shi, Guey-Yueh; Tseng, Sung-Huei; Wu, Hua-Lin

    2015-01-01

    Purpose To determine the role of thrombomodulin (TM) in corneal epithelial wound healing, and to investigate whether recombinant TM epidermal growth factor-like domain plus serine/threonine-rich domain (rTMD23) has therapeutic potential in corneal epithelial wound healing. Methods TM localization and expression in the murine cornea were examined by immunofluorescence staining. TM expression after injury was also studied. The effect of rTMD23 on corneal wound healing was evaluated by in vitro and in vivo assays. Results TM was expressed in the cornea in normal adult mice. TM expression increased in the early phase of wound healing and decreased after wound recovery. In the in vitro study, platelet-derived growth factor-BB (PDGF-BB) induced TM expression in murine corneal epithelial cells by mediating E26 transformation-specific sequence-1 (Ets-1) via the mammalian target of rapamycin (mTOR) signaling pathway. The administration of rTMD23 increased the rate of corneal epithelial wound healing. Conclusions TM expression in corneal epithelium was modulated during the corneal wound healing process, and may be regulated by PDGF-BB. In addition, rTMD23 has therapeutic potential in corneal injury. PMID:25816372

  18. Mast Cells Regulate Wound Healing in Diabetes.

    PubMed

    Tellechea, Ana; Leal, Ermelindo C; Kafanas, Antonios; Auster, Michael E; Kuchibhotla, Sarada; Ostrovsky, Yana; Tecilazich, Francesco; Baltzis, Dimitrios; Zheng, Yongjun; Carvalho, Eugénia; Zabolotny, Janice M; Weng, Zuyi; Petra, Anastasia; Patel, Arti; Panagiotidou, Smaro; Pradhan-Nabzdyk, Leena; Theoharides, Theoharis C; Veves, Aristidis

    2016-07-01

    Diabetic foot ulceration is a severe complication of diabetes that lacks effective treatment. Mast cells (MCs) contribute to wound healing, but their role in diabetes skin complications is poorly understood. Here we show that the number of degranulated MCs is increased in unwounded forearm and foot skin of patients with diabetes and in unwounded dorsal skin of diabetic mice (P < 0.05). Conversely, postwounding MC degranulation increases in nondiabetic mice, but not in diabetic mice. Pretreatment with the MC degranulation inhibitor disodium cromoglycate rescues diabetes-associated wound-healing impairment in mice and shifts macrophages to the regenerative M2 phenotype (P < 0.05). Nevertheless, nondiabetic and diabetic mice deficient in MCs have delayed wound healing compared with their wild-type (WT) controls, implying that some MC mediator is needed for proper healing. MCs are a major source of vascular endothelial growth factor (VEGF) in mouse skin, but the level of VEGF is reduced in diabetic mouse skin, and its release from human MCs is reduced in hyperglycemic conditions. Topical treatment with the MC trigger substance P does not affect wound healing in MC-deficient mice, but improves it in WT mice. In conclusion, the presence of nondegranulated MCs in unwounded skin is required for proper wound healing, and therapies inhibiting MC degranulation could improve wound healing in diabetes. PMID:27207516

  19. Cellular events and biomarkers of wound healing

    PubMed Central

    Shah, Jumaat Mohd. Yussof; Omar, Effat; Pai, Dinker R.; Sood, Suneet

    2012-01-01

    Researchers have identified several of the cellular events associated with wound healing. Platelets, neutrophils, macrophages, and fibroblasts primarily contribute to the process. They release cytokines including interleukins (ILs) and TNF-α, and growth factors, of which platelet-derived growth factor (PDGF) is perhaps the most important. The cytokines and growth factors manipulate the inflammatory phase of healing. Cytokines are chemotactic for white cells and fibroblasts, while the growth factors initiate fibroblast and keratinocyte proliferation. Inflammation is followed by the proliferation of fibroblasts, which lay down the extracellular matrix. Simultaneously, various white cells and other connective tissue cells release both the matrix metalloproteinases (MMPs) and the tissue inhibitors of these metalloproteinases (TIMPs). MMPs remove damaged structural proteins such as collagen, while the fibroblasts lay down fresh extracellular matrix proteins. Fluid collected from acute, healing wounds contains growth factors, and stimulates fibroblast proliferation, but fluid collected from chronic, nonhealing wounds does not. Fibroblasts from chronic wounds do not respond to chronic wound fluid, probably because the fibroblasts of these wounds have lost the receptors that respond to cytokines and growth factors. Nonhealing wounds contain high levels of IL1, IL6, and MMPs, and an abnormally high MMP/TIMP ratio. Clinical examination of wounds inconsistently predicts which wounds will heal when procedures like secondary closure are planned. Surgeons therefore hope that these chemicals can be used as biomarkers of wounds which have impaired ability to heal. There is also evidence that the application of growth factors like PDGF will help the healing of chronic, nonhealing wounds. PMID:23162220

  20. Secretome of Peripheral Blood Mononuclear Cells Enhances Wound Healing

    PubMed Central

    Haider, Thomas; Gschwandtner, Maria; Werba, Gregor; Barresi, Caterina; Zimmermann, Matthias; Golabi, Bahar; Tschachler, Erwin; Ankersmit, Hendrik Jan

    2013-01-01

    Non-healing skin ulcers are often resistant to most common therapies. Treatment with growth factors has been demonstrated to improve closure of chronic wounds. Here we investigate whether lyophilized culture supernatant of freshly isolated peripheral blood mononuclear cells (PBMC) is able to enhance wound healing. PBMC from healthy human individuals were prepared and cultured for 24 hours. Supernatants were collected, dialyzed and lyophilized (SECPBMC). Six mm punch biopsy wounds were set on the backs of C57BL/6J-mice and SECPBMC containing emulsion or controls were applied daily for three days. Morphology and neo-angiogenesis were analyzed by H&E-staining and CD31 immuno-staining, respectively. In vitro effects on diverse skin cells were investigated by migration assays, cell cycle analysis, and tube formation assay. Signaling pathways were analyzed by Western blot analysis. Application of SECPBMC on 6 mm punch biopsy wounds significantly enhanced wound closure. H&E staining of the wounds after 6 days revealed that wound healing was more advanced after application of SECPBMC containing emulsion. Furthermore, there was a massive increase in CD31 positive cells, indicating enhanced neo-angiogenesis. In primary human fibroblasts (FB) and keratinocytes (KC) migration but not proliferation was induced. In endothelial cells (EC) SECPBMC induced proliferation and tube-formation in a matrigel-assay. In addition, SECPBMC treatment of skin cells led to the induction of multiple signaling pathways involved in cell migration, proliferation and survival. In summary, we could show that emulsions containing the secretome of PBMC derived from healthy individuals accelerates wound healing in a mouse model and induce wound healing associated mechanisms in human primary skin cells. The formulation and use of such emulsions might therefore represent a possible novel option for the treatment of non-healing skin ulcers. PMID:23533667

  1. Curcumin as a wound healing agent.

    PubMed

    Akbik, Dania; Ghadiri, Maliheh; Chrzanowski, Wojciech; Rohanizadeh, Ramin

    2014-10-22

    Turmeric (Curcuma longa) is a popular Indian spice that has been used for centuries in herbal medicines for the treatment of a variety of ailments such as rheumatism, diabetic ulcers, anorexia, cough and sinusitis. Curcumin (diferuloylmethane) is the main curcuminoid present in turmeric and responsible for its yellow color. Curcumin has been shown to possess significant anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-mutagenic, anti-coagulant and anti-infective effects. Curcumin has also been shown to have significant wound healing properties. It acts on various stages of the natural wound healing process to hasten healing. This review summarizes and discusses recently published papers on the effects of curcumin on skin wound healing. The highlighted studies in the review provide evidence of the ability of curcumin to reduce the body's natural response to cutaneous wounds such as inflammation and oxidation. The recent literature on the wound healing properties of curcumin also provides evidence for its ability to enhance granulation tissue formation, collagen deposition, tissue remodeling and wound contraction. It has become evident that optimizing the topical application of curcumin through altering its formulation is essential to ensure the maximum therapeutical effects of curcumin on skin wounds. PMID:25200875

  2. Wound Healing Essentials: Let There Be Oxygen

    PubMed Central

    Sen, Chandan K.

    2009-01-01

    The state of wound oxygenation is a key determinant of healing outcomes. From a diagnostic standpoint, measurements of wound oxygenation are commonly used to guide treatment planning such as amputation decision. In preventive applications, optimizing wound perfusion and providing supplemental O2 in the peri-operative period reduces the incidence of post-operative infections. Correction of wound pO2 may, by itself, trigger some healing responses. Importantly, approaches to correct wound pO2 favorably influence outcomes of other therapies such as responsiveness to growth factors and acceptance of grafts. Chronic ischemic wounds are essentially hypoxic. Primarily based on the tumor literature, hypoxia is generally viewed as being angiogenic. This is true with the condition that hypoxia be acute and mild to modest in magnitude. Extreme near-anoxic hypoxia, as commonly noted in problem wounds, is not compatible with tissue repair. Adequate wound tissue oxygenation is required but may not be sufficient to favorably influence healing outcomes. Success in wound care may be improved by a personalized health care approach. The key lies in our ability to specifically identify the key limitations of a given wound and in developing a multifaceted strategy to specifically address those limitations. In considering approaches to oxygenate the wound tissue it is important to recognize that both too little as well as too much may impede the healing process. Oxygen dosing based on the specific need of a wound therefore seems prudent. Therapeutic approaches targeting the oxygen sensing and redox signaling pathways are promising. PMID:19152646

  3. A physiologically active polysaccharide hydrogel promotes wound healing.

    PubMed

    Luo, Yi; Diao, Huajia; Xia, Suhua; Dong, Lei; Chen, Jiangning; Zhang, Junfeng

    2010-07-01

    When the skin is injured, the subcutaneous tissues and organs are threatened by pathogens and excessive water loss. Wound dressings are, therefore, needed to protect the wound site from infection and improve the wound closure. Natural polysaccharides have been applied for various biomaterials including wound dressings, which show their advantages in biocompatibility, low toxicity, and pharmaceutical biomedical activity. In this study, a natural polysaccharide Bletilla striata polysaccharide (BSP) hydrogel is prepared by an oxidation and crosslinking methods. This BSP hydrogel represents preferable swelling ability and appropriate water vapor transmission rate. Using a full-thickness trauma mouse model, the hydrogel is applied on the in vivo cutaneous wound healing. Compared with the control groups, the BSP hydrogel achieves the much better healing results. The quantification of the infiltrating inflammatory cells and the level of tumor necrosis factor alpha (TNF-alpha) in the BSP group are attenuated, whereas the secretion of the epidermal growth factor (EGF) is highly elevated. On the 11th day after surgery, the wound area in the BSP hydrogel group is only 1/5-1/3 of those in the control groups. This new BSP hydrogel is proved to control the inflammatory responses and accelerate the wound closure and has potential application in wound healing. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010. PMID:20128009

  4. Wound healing stimulation in mice by low-level light

    NASA Astrophysics Data System (ADS)

    Demidova, Tatiana N.; Herman, Ira M.; Salomatina, Elena V.; Yaroslavsky, Anna N.; Hamblin, Michael R.

    2006-02-01

    It has been known for many years that low levels of laser or non-coherent light (LLLT) accelerate some phases of wound healing. LLLT can stimulate fibroblast and keratinocyte proliferation and migration. It is thought to work via light absorption by mitochondrial chromophores leading to an increase in ATP, reactive oxygen species and consequent gene transcription. However, despite many reports about the positive effects of LLLT on wound healing, its use remains controversial. Our laboratory has developed a model of a full thickness excisional wound in mice that allows quantitative and reproducible light dose healing response curves to be generated. We have found a biphasic dose response curve with a maximum positive effect at 2 J/cm2 of 635-nm light and successively lower beneficial effects from 3-25 J/cm2, the effect is diminished at doses below 2J/cm2 and gradually reaches control healing levels. At light doses above 25 J/cm2 healing is actually worse than controls. The two most effective wavelengths of light were found to be 635 and 820-nm. We found no difference between filtered 635+/-15-nm light from a lamp and 633-nm light from a HeNe laser. The strain and age of the mouse affected the magnitude of the effect. Light treated wounds start to contract after illumination while control wounds initially expand for the first 24 hours. Our hypothesis is that a single brief light exposure soon after wounding affects fibroblast cells in the margins of the wound. Cells may be induced to proliferate, migrate and assume a myofibroblast phenotype. Our future work will be focused on understanding the mechanisms underlying effects of light on wound healing processes.

  5. Potential benefits of pentoxifylline on wound healing.

    PubMed

    Ahmadi, Motahareh; Khalili, Hossein

    2016-01-01

    In this review, potential benefits of pentoxifylline (PTX) on wound healing have been evaluated. All available experimental and clinical studies examined effects of PTX on wound healing have been included. No time limitation was considered and all studies up to writing the manuscript were included. Administration of oral or parenteral PTX showed beneficial effects on the healing of colorectal anastomosis, post burn scar, radiation-induced skin/soft tissue injury, venous ulcers, recurrent aphthous stomatitis and cutaneous/mucocutaneous leishmaniasis. Data regarding effect of PTX on skin flap survival are conflicting. Only few evidences support promising effects of PTX in pressure ulcer, skin developing injury and burn. PMID:26558813

  6. Combination Therapy Accelerates Diabetic Wound Closure

    PubMed Central

    Allen Jr., Robert J.; Soares, Marc A.; Haberman, Ilyse D.; Szpalski, Caroline; Schachar, Jeffrey; Lin, Clarence D.; Nguyen, Phuong D.; Saadeh, Pierre B.; Warren, Stephen M.

    2014-01-01

    Background Non-healing foot ulcers are the most common cause of non-traumatic amputation and hospitalization amongst diabetics in the developed world. Impaired wound neovascularization perpetuates a cycle of dysfunctional tissue repair and regeneration. Evidence implicates defective mobilization of marrow-derived progenitor cells (PCs) as a fundamental cause of impaired diabetic neovascularization. Currently, there are no FDA-approved therapies to address this defect. Here we report an endogenous PC strategy to improve diabetic wound neovascularization and closure through a combination therapy of AMD3100, which mobilizes marrow-derived PCs by competitively binding to the cell surface CXCR4 receptor, and PDGF-BB, which is a protein known to enhance cell growth, progenitor cell migration and angiogenesis. Methods and Results Wounded mice were assigned to 1 of 5 experimental arms (n = 8/arm): saline treated wild-type, saline treated diabetic, AMD3100 treated diabetic, PDGF-BB treated diabetic, and AMD3100/PDGF-BB treated diabetic. Circulating PC number and wound vascularity were analyzed for each group (n = 8/group). Cellular function was assessed in the presence of AMD3100. Using a validated preclinical model of type II diabetic wound healing, we show that AMD3100 therapy (10 mg/kg; i.p. daily) alone can rescue diabetes-specific defects in PC mobilization, but cannot restore normal wound neovascularization. Through further investigation, we demonstrate an acquired trafficking-defect within AMD3100-treated diabetic PCs that can be rescued by PDGF-BB (2 μg; topical) supplementation within the wound environment. Finally, we determine that combination therapy restores diabetic wound neovascularization and accelerates time to wound closure by 40%. Conclusions Combination AMD3100 and PDGF-BB therapy synergistically improves BM PC mobilization and trafficking, resulting in significantly improved diabetic wound closure and neovascularization. The success of this

  7. Mechanoregulation of Wound Healing and Skin Homeostasis

    PubMed Central

    Rosińczuk, Joanna; Taradaj, Jakub; Dymarek, Robert; Sopel, Mirosław

    2016-01-01

    Basic and clinical studies on mechanobiology of cells and tissues point to the importance of mechanical forces in the process of skin regeneration and wound healing. These studies result in the development of new therapies that use mechanical force which supports effective healing. A better understanding of mechanobiology will make it possible to develop biomaterials with appropriate physical and chemical properties used to treat poorly healing wounds. In addition, it will make it possible to design devices precisely controlling wound mechanics and to individualize a therapy depending on the type, size, and anatomical location of the wound in specific patients, which will increase the clinical efficiency of the therapy. Linking mechanobiology with the science of biomaterials and nanotechnology will enable in the near future precise interference in abnormal cell signaling responsible for the proliferation, differentiation, cell death, and restoration of the biological balance. The objective of this study is to point to the importance of mechanobiology in regeneration of skin damage and wound healing. The study describes the influence of rigidity of extracellular matrix and special restrictions on cell physiology. The study also defines how and what mechanical changes influence tissue regeneration and wound healing. The influence of mechanical signals in the process of proliferation, differentiation, and skin regeneration is tagged in the study. PMID:27413744

  8. [Actin in the wound healing process].

    PubMed

    Nowak, Dorota; Popow-Woźniak, Agnieszka; Raźnikiewicz, Linda; Malicka-Błaszkiewicz, Maria

    2009-01-01

    Wound healing is an important biological process of crucial value for organisms survival and retention of its proper functions. The recognition of molecular mechanisms of these phenomenon is still under investigation. The transition of mesenchymal fibroblasts to myofibroblasts is a key point in wound healing. The contraction ability of myofibroblast enables the shrinkage of a wound and closes its edges. Alpha smooth muscle actin (alpha-SMA), one of six actin isoforms, is a marker of compeletely differentiated myofibroblast. The regulation of differentiation process depends on many growth factors (especially TGF beta 1), the level of active thymosin beta 4, extracellular matrix proteins--including fibronectin, and also on specificity of microenvironment. Thymosin beta 4 is responsible for maintenance of pool of monomeric actin and actin filaments depolymerization. It can also act as a transcription factor, migration stimulator and immunomodulator, so this protein deserves for more attention in wound healing research field. PMID:19824469

  9. Scarless wound healing: chasing the holy grail.

    PubMed

    Walmsley, Graham G; Maan, Zeshaan N; Wong, Victor W; Duscher, Dominik; Hu, Michael S; Zielins, Elizabeth R; Wearda, Taylor; Muhonen, Ethan; McArdle, Adrian; Tevlin, Ruth; Atashroo, David A; Senarath-Yapa, Kshemendra; Lorenz, H Peter; Gurtner, Geoffrey C; Longaker, Michael T

    2015-03-01

    Over 100 million patients acquire scars in the industrialized world each year, primarily as a result of elective operations. Although undefined, the global incidence of scarring is even larger, extending to significant numbers of burn and other trauma-related wounds. Scars have the potential to exert a profound psychological and physical impact on the individual. Beyond aesthetic considerations and potential disfigurement, scarring can result in restriction of movement and reduced quality of life. The formation of a scar following skin injury is a consequence of wound healing occurring through reparative rather than regenerative mechanisms. In this article, the authors review the basic stages of wound healing; differences between adult and fetal wound healing; various mechanical, genetic, and pharmacologic strategies to reduce scarring; and the biology of skin stem/progenitor cells that may hold the key to scarless regeneration. PMID:25719706

  10. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis.

    PubMed

    Wu, Yaojiong; Chen, Liwen; Scott, Paul G; Tredget, Edward E

    2007-10-01

    Although chronic wounds are common, treatment for these disabling conditions remains limited and largely ineffective. In this study, we examined the benefit of bone marrow-derived mesenchymal stem cells (BM-MSCs) in wound healing. Using an excisional wound splinting model, we showed that injection around the wound and application to the wound bed of green fluorescence protein (GFP)(+) allogeneic BM-MSCs significantly enhanced wound healing in normal and diabetic mice compared with that of allogeneic neonatal dermal fibroblasts or vehicle control medium. Fluorescence-activated cell sorting analysis of cells derived from the wound for GFP-expressing BM-MSCs indicated engraftments of 27% at 7 days, 7.6% at 14 days, and 2.5% at 28 days of total BM-MSCs administered. BM-MSC-treated wounds exhibited significantly accelerated wound closure, with increased re-epithelialization, cellularity, and angiogenesis. Notably, BM-MSCs, but not CD34(+) bone marrow cells in the wound, expressed the keratinocyte-specific protein keratin and formed glandular structures, suggesting a direct contribution of BM-MSCs to cutaneous regeneration. Moreover, BM-MSC-conditioned medium promoted endothelial cell tube formation. Real-time polymerase chain reaction and Western blot analysis revealed high levels of vascular endothelial growth factor and angiopoietin-1 in BM-MSCs and significantly greater amounts of the proteins in BM-MSC-treated wounds. Thus, our data suggest that BM-MSCs promote wound healing through differentiation and release of proangiogenic factors. Disclosure of potential conflicts of interest is found at the end of this article. PMID:17615264

  11. Complement Activation and Inhibition in Wound Healing

    PubMed Central

    Cazander, Gwendolyn; Jukema, Gerrolt N.; Nibbering, Peter H.

    2012-01-01

    Complement activation is needed to restore tissue injury; however, inappropriate activation of complement, as seen in chronic wounds can cause cell death and enhance inflammation, thus contributing to further injury and impaired wound healing. Therefore, attenuation of complement activation by specific inhibitors is considered as an innovative wound care strategy. Currently, the effects of several complement inhibitors, for example, the C3 inhibitor compstatin and several C1 and C5 inhibitors, are under investigation in patients with complement-mediated diseases. Although (pre)clinical research into the effects of these complement inhibitors on wound healing is limited, available data indicate that reduction of complement activation can improve wound healing. Moreover, medicine may take advantage of safe and effective agents that are produced by various microorganisms, symbionts, for example, medicinal maggots, and plants to attenuate complement activation. To conclude, for the development of new wound care strategies, (pre)clinical studies into the roles of complement and the effects of application of complement inhibitors in wound healing are required. PMID:23346185

  12. Gallic Acid Promotes Wound Healing in Normal and Hyperglucidic Conditions.

    PubMed

    Yang, Dong Joo; Moh, Sang Hyun; Son, Dong Hwee; You, Seunghoon; Kinyua, Ann W; Ko, Chang Mann; Song, Miyoung; Yeo, Jinhee; Choi, Yun-Hee; Kim, Ki Woo

    2016-01-01

    Skin is the outermost layer of the human body that is constantly exposed to environmental stressors, such as UV radiation and toxic chemicals, and is susceptible to mechanical wounding and injury. The ability of the skin to repair injuries is paramount for survival and it is disrupted in a spectrum of disorders leading to skin pathologies. Diabetic patients often suffer from chronic, impaired wound healing, which facilitate bacterial infections and necessitate amputation. Here, we studied the effects of gallic acid (GA, 3,4,5-trihydroxybenzoic acid; a plant-derived polyphenolic compound) on would healing in normal and hyperglucidic conditions, to mimic diabetes, in human keratinocytes and fibroblasts. Our study reveals that GA is a potential antioxidant that directly upregulates the expression of antioxidant genes. In addition, GA accelerated cell migration of keratinocytes and fibroblasts in both normal and hyperglucidic conditions. Further, GA treatment activated factors known to be hallmarks of wound healing, such as focal adhesion kinases (FAK), c-Jun N-terminal kinases (JNK), and extracellular signal-regulated kinases (Erk), underpinning the beneficial role of GA in wound repair. Therefore, our results demonstrate that GA might be a viable wound healing agent and a potential intervention to treat wounds resulting from metabolic complications. PMID:27399667

  13. Wound-healing properties of nut oil from Pouteria lucuma

    PubMed Central

    Rojo, Leonel E; Villano, Caren M; Joseph, Gili; Schmidt, Barbara; Shulaev, Vladimir; Shuman, Joel L; Lila, Mary Ann; Raskin, Ilya

    2014-01-01

    Summary Background Cell migration, angiogenesis, inflammation, and extracellular matrix remodeling are key events in wound healing. Natural products, including fatty acids (FAs), can accelerate wound healing by modulating the aforementioned events. Aims This study aims to evaluate the effect of lucuma (Pouteria lucuma O Kezte) nut oil (LNO) on fibroblasts migration, angiogenesis, inflammation, bacterial and fungal growth, and wound healing. Methods GC–MS analysis of FAs methyl esters (FAMES) was used for chemical characterization of LNO. In vitro studies were carried out with LNO investigating the induction of cell migration, cytoskeleton remodeling of human fibroblasts, inhibition of LPS-induced nitric oxide production in macrophages, and antibacterial and antifungal effects. Two in vivo studies were carried out to study LNO’s effect on angiogenesis and wound healing: (i) tail fin regeneration in transgenic zebrafish larvae expressing enhanced green fluorescent protein (EGFP) in vascular endothelial cells was used to study vessel sprouting and wound healing and (ii) the closure of wounds was evaluated in CD-1 mice after topical applications of LNO-containing formulations. Results Lucuma nut oil is a mixture of FAs, 99.7% of which were characterized. Major components of LNO (w/w) are linoleic acid (38.9%), oleic acid (27.9%), palmitic acid (18.6%), stearic acid (8.9%), and γ linolenic acid (2.9%). In vitro studies showed that LNO significantly promoted migration and vinculin expression in human fibroblasts. LNO decreased LPS-induced nitric oxide production and did not display significant antibacterial or antifungal effects. LNO induced tail fin regeneration in transgenic zebrafish larvae 48 h after tail fin amputation and significantly accelerated cutaneous wound closure in CD-1 mice. Conclusions Natural FAs from P. lucuma nut promote skin regeneration and, thus, may have applications in medicine and skin care. PMID:20883291

  14. Curbing Inflammation in Skin Wound Healing: A Review

    PubMed Central

    Rosique, Rodrigo G.; Rosique, Marina J.; Farina Junior, Jayme A.

    2015-01-01

    Wound healing is a complex regulated process that results in skin scar formation in postnatal mammals. Chronic wounds are major medical problems that can confer devastating consequences. Currently, there are no treatments to prevent scarring. In the early fetus wounds heal without scarring and the healing process is characterized by relatively less inflammation compared to adults; therefore, research aimed at reducing the inflammatory process related to wound healing might speed healing and improve the final scar appearance. PMID:26356299

  15. Nutrient support of the healing wound.

    PubMed

    Meyer, N A; Muller, M J; Herndon, D N

    1994-05-01

    Wound healing is a series of complex physicochemical interactions that require various micronutrients at every step. In the critically ill or severely injured patient, wound healing is impaired by the protein-catabolic, hypermetabolic response to stress. The hypothalamus responds to cytokine stimulation by increasing the thermoregulatory set-point and by augmenting elaboration of stress hormones (catecholamines, cortisol, and glucagon). In turn, the stress hormones induce thermogenic futile substrate cycling, lipolysis, and proteolysis. Increased glucose production results at the expense of skeletal muscle degradation, producing amino acid substrate for hepatic gluconeogenesis. Nutritional support of the hypermetabolic state is an essential part of ensuring efficient wound healing in these patients. Protein catabolism cannot be reversed by increased amino acid availability alone, due partly to a defect in amino acid transport. This defect can be reversed by anabolic agents, such as growth hormone and insulin-like growth factor-1. Growth hormone treatment dramatically improves wound healing in severely burned children. Supplementation with protein and vitamins, specifically arginine and vitamins A, B, and C, provides optimum nutrient support of the healing wound. PMID:7922445

  16. Wound Healing and the Dressing*

    PubMed Central

    Scales, John T.

    1963-01-01

    The evolution of surgical dressings is traced from 1600 b.c. to a.d. 1944. The availability of an increasing variety of man-made fibres and films from 1944 onwards has stimulated work on wound dressings, and some of the more important contributions, both clinical and experimental, are discussed. The functions of a wound dressing and the properties which the ideal wound dressing should possess are given. The necessity for both histological and clinical evaluation of wound dressings in animals and in man is stressed. Wound dressings are the most commonly used therapeutic agents, but there is no means whereby their performance can be assessed. An attempt should be made either nationally or internationally to establish a standard method of assessing the performance of wound dressings. For this it is necessary to have an internationally agreed standard dressing which could be used as a reference or control dressing in all animal and human work. The only animal with skin morphologically similar to that of man is the domestic pig. Three types of wounds could be used: (1) partial-thickness wounds; (2) full-thickness excisions; and (3) third-degree burns. The development of standard techniques for the assessment of the efficiency of wound dressings would be of considerable benefit to the research worker, the medical profession, the patient, and the surgical dressings industry. PMID:13976490

  17. Augmentation of cutaneous wound healing by pharmacologic mobilization of endogenous bone marrow stem cells.

    PubMed

    Tolar, Jakub; McGrath, John A

    2014-09-01

    Novel therapeutic tools to accelerate wound healing would have a major impact on the overall burden of skin disease. Lin et al. demonstrate in mice that endogenous bone marrow stem cell mobilization, produced by a pharmacologic combination of AMD3100 and tacrolimus, leads to faster and better-quality wound healing, findings that have exciting potential for clinical translation. PMID:25120149

  18. Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species.

    PubMed

    Panchatcharam, Manikandan; Miriyala, Sumitra; Gayathri, Vinaya Subramani; Suguna, Lonchin

    2006-10-01

    Wound healing consists of an orderly progression of events that re-establish the integrity of the damaged tissue. Several natural products have been shown to accelerate the healing process. The present investigation was undertaken to determine the role of curcumin on changes in collagen characteristics and antioxidant property during cutaneous wound healing in rats. Full-thickness excision wounds were made on the back of rat and curcumin was administered topically. The wound tissues removed on 4th, 8th and 12th day (post-wound) were used to analyse biochemical and pathological changes. Curcumin increased cellular proliferation and collagen synthesis at the wound site, as evidenced by increase in DNA, total protein and type III collagen content of wound tissues. Curcumin treated wounds were found to heal much faster as indicated by improved rates of epithelialisation, wound contraction and increased tensile strength which were also confirmed by histopathological examinations. Curcumin treatment was shown to decrease the levels of lipid peroxides (LPs), while the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), activities were significantly increased exhibiting the antioxidant properties of curcumin in accelerating wound healing. Better maturation and cross linking of collagen were observed in the curcumin treated rats, by increased stability of acid-soluble collagen, aldehyde content, shrinkage temperature and tensile strength. The results clearly substantiate the beneficial effects of the topical application of curcumin in the acceleration of wound healing and its antioxidant effect. PMID:16770527

  19. Wound healing: a new perspective on glucosylated tetrahydrocurcumin

    PubMed Central

    Bhaskar Rao, Adari; Prasad, Ernala; Deepthi, Seelam Siva; Haritha, Vennapusa; Ramakrishna, Sistla; Madhusudan, Kuncha; Surekha, Mullapudi Venkata; Venkata Rao, Yerramilli Sri Rama

    2015-01-01

    Wound healing represents a dynamic set of coordinated physiological processes observed in response to tissue injury. Several natural products are known to accelerate the process of wound healing. Tetrahydrocurcumin (THC), an in vivo biotransformed product/metabolite of curcumin, is known to exhibit a wide spectrum of biological activities similar to those of native curcuminoids. The poor bioavailability of these curcuminoids limits their clinical applications. The present study highlights the percutaneous absorption and wound healing activity of glucosyl-conjugated THC (glucosyl-THC) in male Wistar rats. A high plasma concentration of glucosyl-THC (4.35 μg/mL) was found in rats 3 hours after application. A significant enhanced wound healing activity and reduced epithelialization time were observed in rats that received glucosyl-THC. This may have been due to the improved bioavailability of the glucosyl compound. The nonstaining and lack of skin-sensitive side effects render the bioconjugated glucosyl-THC a promising therapeutic compound in the management of excision wounds and in cosmetic applications, in the near future. PMID:26203224

  20. Hemostatic and Wound Healing Properties of Chromolaena odorata Leaf Extract

    PubMed Central

    Pandith, Hataichanok; Liggett, Jason; Min, Kyung-Won; Gritsanapan, Wandee; Baek, Seung Joon

    2013-01-01

    Chromolaena odorata (L.) King and Robinson (Siam weed) extract has been used to stop bleeding and in wound healing in many tropical countries. However, its detailed mechanisms have not been elucidated. In this study, we examined the molecular mechanisms by which Siam weed extract (SWE) affected hemostatic and wound healing activities. SWE promoted Balb/c 3T3 fibroblast cell migration and proliferation. Subsequently, we found that heme oxygenase-1 (HO-1), the accelerating wound healing enzyme, was increased at the transcriptional and translational levels by SWE treatments. The HO-1 promoter analyzed with luciferase assay was also increased by treatment of SWE in a dose-dependent manner. This induction may be mediated by several kinase pathways including MEK, p38MAPK, AKT, and JNK. Quantitative real-time PCR using undifferentiated promonocytic cell lines revealed that thromboxane synthase (TXS), a potent vasoconstrictor and platelet aggregator, was increased and MMP-9, an anti platelet aggregator, was decreased in the presence of SWE. Our studies presented that SWE accelerated hemostatic and wound healing activities by altering the expression of genes, including HO-1, TXS, and MMP-9. PMID:23984087

  1. Hemostatic and Wound Healing Properties of Chromolaena odorata Leaf Extract.

    PubMed

    Pandith, Hataichanok; Zhang, Xiaobo; Liggett, Jason; Min, Kyung-Won; Gritsanapan, Wandee; Baek, Seung Joon

    2013-01-01

    Chromolaena odorata (L.) King and Robinson (Siam weed) extract has been used to stop bleeding and in wound healing in many tropical countries. However, its detailed mechanisms have not been elucidated. In this study, we examined the molecular mechanisms by which Siam weed extract (SWE) affected hemostatic and wound healing activities. SWE promoted Balb/c 3T3 fibroblast cell migration and proliferation. Subsequently, we found that heme oxygenase-1 (HO-1), the accelerating wound healing enzyme, was increased at the transcriptional and translational levels by SWE treatments. The HO-1 promoter analyzed with luciferase assay was also increased by treatment of SWE in a dose-dependent manner. This induction may be mediated by several kinase pathways including MEK, p38MAPK, AKT, and JNK. Quantitative real-time PCR using undifferentiated promonocytic cell lines revealed that thromboxane synthase (TXS), a potent vasoconstrictor and platelet aggregator, was increased and MMP-9, an anti platelet aggregator, was decreased in the presence of SWE. Our studies presented that SWE accelerated hemostatic and wound healing activities by altering the expression of genes, including HO-1, TXS, and MMP-9. PMID:23984087

  2. Forces driving epithelial wound healing

    NASA Astrophysics Data System (ADS)

    Brugués, Agustí; Anon, Ester; Conte, Vito; Veldhuis, Jim H.; Gupta, Mukund; Colombelli, Julien; Muñoz, José J.; Brodland, G. Wayne; Ladoux, Benoit; Trepat, Xavier

    2014-09-01

    A fundamental feature of multicellular organisms is their ability to self-repair wounds through the movement of epithelial cells into the damaged area. This collective cellular movement is commonly attributed to a combination of cell crawling and `purse-string’ contraction of a supracellular actomyosin ring. Here we show by direct experimental measurement that these two mechanisms are insufficient to explain force patterns observed during wound closure. At early stages of the process, leading actin protrusions generate traction forces that point away from the wound, showing that wound closure is initially driven by cell crawling. At later stages, we observed unanticipated patterns of traction forces pointing towards the wound. Such patterns have strong force components that are both radial and tangential to the wound. We show that these force components arise from tensions transmitted by a heterogeneous actomyosin ring to the underlying substrate through focal adhesions. The structural and mechanical organization reported here provides cells with a mechanism to close the wound by cooperatively compressing the underlying substrate.

  3. Forces driving epithelial wound healing

    PubMed Central

    Veldhuis, Jim H.; Gupta, Mukund; Colombelli, Julien; Muñoz, José J.; Brodland, G. Wayne; Ladoux, Benoit; Trepat, Xavier

    2015-01-01

    A fundamental feature of multicellular organisms is their ability to self-repair wounds through the movement of epithelial cells into the damaged area. This collective cellular movement is commonly attributed to a combination of cell crawling and “purse-string” contraction of a supracellular actomyosin ring. Here we show by direct experimental measurement that these two mechanisms are insufficient to explain force patterns observed during wound closure. At early stages of the process, leading actin protrusions generate traction forces that point away from the wound, showing that wound closure is initially driven by cell crawling. At later stages, we observed unanticipated patterns of traction forces pointing towards the wound. Such patterns have strong force components that are both radial and tangential to the wound. We show that these force components arise from tensions transmitted by a heterogeneous actomyosin ring to the underlying substrate through focal adhesions. The structural and mechanical organization reported here provides cells with a mechanism to close the wound by cooperatively compressing the underlying substrate. PMID:27340423

  4. Endogenous N-acyl taurines regulate skin wound healing.

    PubMed

    Sasso, Oscar; Pontis, Silvia; Armirotti, Andrea; Cardinali, Giorgia; Kovacs, Daniela; Migliore, Marco; Summa, Maria; Moreno-Sanz, Guillermo; Picardo, Mauro; Piomelli, Daniele

    2016-07-26

    The intracellular serine amidase, fatty acid amide hydrolase (FAAH), degrades a heterogeneous family of lipid-derived bioactive molecules that include amides of long-chain fatty acids with taurine [N-acyl-taurines (NATs)]. The physiological functions of the NATs are unknown. Here we show that genetic or pharmacological disruption of FAAH activity accelerates skin wound healing in mice and stimulates motogenesis of human keratinocytes and differentiation of human fibroblasts in primary cultures. Using untargeted and targeted lipidomics strategies, we identify two long-chain saturated NATs-N-tetracosanoyl-taurine [NAT(24:0)] and N-eicosanoyl-taurine [NAT(20:0)]-as primary substrates for FAAH in mouse skin, and show that the levels of these substances sharply decrease at the margins of a freshly inflicted wound to increase again as healing begins. Additionally, we demonstrate that local administration of synthetic NATs accelerates wound closure in mice and stimulates repair-associated responses in primary cultures of human keratinocytes and fibroblasts, through a mechanism that involves tyrosine phosphorylation of the epidermal growth factor receptor and an increase in intracellular calcium levels, under the permissive control of transient receptor potential vanilloid-1 receptors. The results point to FAAH-regulated NAT signaling as an unprecedented lipid-based mechanism of wound-healing control in mammalian skin, which might be targeted for chronic wound therapy. PMID:27412859

  5. Boundary crossing in epithelial wound healing

    PubMed Central

    Fong, Eileen; Tzlil, Shelly; Tirrell, David A.

    2010-01-01

    The processes of wound healing and collective cell migration have been studied for decades. Intensive research has been devoted to understanding the mechanisms involved in wound healing, but the role of cell-substrate interactions is still not thoroughly understood. Here we probe the role of cell-substrate interactions by examining in vitro the healing of monolayers of human corneal epithelial (HCE) cells cultured on artificial extracellular matrix (aECM) proteins. We find that the rate of wound healing is dependent on the concentration of fibronectin-derived (RGD) cell-adhesion ligands in the aECM substrate. The wound closure rate varies nearly sixfold on the substrates examined, despite the fact that the rates of migration and proliferation of individual cells show little sensitivity to the RGD concentration (which varies 40-fold). To explain this apparent contradiction, we study collective migration by means of a dynamic Monte Carlo simulation. The cells in the simulation spread, retract, and proliferate with probabilities obtained from a simple phenomenological model. The results indicate that the overall wound closure rate is determined primarily by the rate at which cells cross the boundary between the aECM protein and the matrix deposited under the cell sheet. PMID:20974917

  6. Thiolated Carboxymethyl-Hyaluronic-Acid-Based Biomaterials Enhance Wound Healing in Rats, Dogs, and Horses

    PubMed Central

    Yang, Guanghui; Prestwich, Glenn D.; Mann, Brenda K.

    2011-01-01

    The progression of wound healing is a complicated but well-known process involving many factors, yet there are few products on the market that enhance and accelerate wound healing. This is particularly problematic in veterinary medicine where multiple species must be treated and large animals heal slower, oftentimes with complicating factors such as the development of exuberant granulation tissue. In this study a crosslinked-hyaluronic-acid (HA-) based biomaterial was used to treat wounds on multiple species: rats, dogs, and horses. The base molecule, thiolated carboxymethyl HA, was first found to increase keratinocyte proliferation in vitro. Crosslinked gels and films were then both found to enhance the rate of wound healing in rats and resulted in thicker epidermis than untreated controls. Crosslinked films were used to treat wounds on forelimbs of dogs and horses. Although wounds healed slower compared to rats, the films again enhanced wound healing compared to untreated controls, both in terms of wound closure and quality of tissue. This study indicates that these crosslinked HA-based biomaterials enhance wound healing across multiple species and therefore may prove particularly useful in veterinary medicine. Reduced wound closure times and better quality of healed tissue would decrease risk of infection and pain associated with open wounds. PMID:23738117

  7. [Enhance the connotation of establishment of wound healing department].

    PubMed

    Lu, Shu-liang

    2012-02-01

    Following the development of social economy, the acceleration of aging problem, and the changes in disease spectrum, the incidence of various chronic wound diseases increased significantly, and it has become one of the most frequently encountered diseases that affect the people's health. The contradiction between the increase of medical need of wound diseases and the insufficiency of the medical service in our country is becoming increasingly conspicuous. Wound healing department, as a new cross subject that has emerged as the times require, needs to be perfected in its diagnostic and treatment strategies and methods. At present time, how to explore the new theory and pathologic mechanism of various chronic wounds, in order to establish the clinical guidelines in diagnosis and treatment that conform to national conditions of our country, and to establish efficient clinical pathway and medical-seeking model have become serious challenges to the establishment of wound healing department in our country. Thus, it is imperative for us to enhance the connotation of establishment of wound healing department. For this purpose, this article mainly elaborates on three aspects, including "enriching traditional diagnostic system with new theory and new technology", "improving treatment effect by ameliorating traditional methods and absorbing new technology from relating subspecialty", "establishing a new medical-seeking model by applying digital technology and vertically integrating medical resources". PMID:22490530

  8. Epithelialization in Wound Healing: A Comprehensive Review

    PubMed Central

    Pastar, Irena; Stojadinovic, Olivera; Yin, Natalie C.; Ramirez, Horacio; Nusbaum, Aron G.; Sawaya, Andrew; Patel, Shailee B.; Khalid, Laiqua; Isseroff, Rivkah R.; Tomic-Canic, Marjana

    2014-01-01

    Significance: Keratinocytes, a major cellular component of the epidermis, are responsible for restoring the epidermis after injury through a process termed epithelialization. This review will focus on the pivotal role of keratinocytes in epithelialization, including cellular processes and mechanisms of their regulation during re-epithelialization, and their cross talk with other cell types participating in wound healing. Recent Advances: Discoveries in epidermal stem cells, keratinocyte immune function, and the role of the epidermis as an independent neuroendocrine organ will be reviewed. Novel mechanisms of gene expression regulation important for re-epithelialization, including microRNAs and histone modifications, will also be discussed. Critical Issues: Epithelialization is an essential component of wound healing used as a defining parameter of a successful wound closure. A wound cannot be considered healed in the absence of re-epithelialization. The epithelialization process is impaired in all types of chronic wounds. Future Directions: A comprehensive understanding of the epithelialization process will ultimately lead to the development of novel therapeutic approaches to promote wound closure. PMID:25032064

  9. Cutaneous wound healing: Current concepts and advances in wound care

    PubMed Central

    Klein, Kenneth C; Guha, Somes Chandra

    2014-01-01

    A non-healing wound is defined as showing no measurable signs of healing for at least 30 consecutive treatments with standard wound care.[1] It is a snapshot of a patient's total health as well as the ongoing battle between noxious factors and the restoration of optimal macro and micro circulation, oxygenation and nutrition. In practice, standard therapies for non-healing cutaneous wounds include application of appropriate dressings, periodic debridement and eliminating causative factors.[2] The vast majority of wounds would heal by such approach with variable degrees of residual morbidity, disability and even mortality. Globally, beyond the above therapies, newer tools of healing are selectively accessible to caregivers, for various logistical or financial reasons. Our review will focus on the use of hyperbaric oxygen therapy (HBOT), as used at our institution (CAMC), and some other modalities that are relatively accessible to patients. HBOT is a relatively safe and technologically simpler way to deliver care worldwide. However, the expense for including HBOT as standard of care for recognized indications per UHMS(Undersea and Hyperbaric Medical Society) may vary widely from country to country and payment system.[3] In the USA, CMS (Centers for Medicare and Medicaid Services) approved indications for HBOT vary from that of the UHMS for logistical reasons.[1] We shall also briefly look into other newer therapies per current clinical usage and general acceptance by the medical community. Admittedly, there would be other novel tools with variable success in wound healing worldwide, but it would be difficult to include all in this treatise. PMID:25593414

  10. Cold Temperature Delays Wound Healing in Postharvest Sugarbeet Roots.

    PubMed

    Fugate, Karen K; Ribeiro, Wellington S; Lulai, Edward C; Deckard, Edward L; Finger, Fernando L

    2016-01-01

    Storage temperature affects the rate and extent of wound-healing in a number of root and tuber crops. The effect of storage temperature on wound-healing in sugarbeet (Beta vulgaris L.) roots, however, is largely unknown. Wound-healing of sugarbeet roots was investigated using surface-abraded roots stored at 6 and 12°C for 28 days. Surface abrasions are common injuries of stored roots, and the storage temperatures used are typical of freshly harvested or rapidly cooled roots. Transpiration rate from the wounded surface and root weight loss were used to quantify wound healing. At 12°C, transpiration rate from the wounded surface declined within 14 days and wounded roots lost weight at a rate similar to unwounded controls. At 6°C, transpiration rate from the wounded surface did not decline in the 28 days after injury, and wounded roots lost 44% more weight than controls after 28 days storage. Melanin formation, lignification, and suberization occurred more rapidly at 12°C than at 6°C, and a continuous layer of lignified and suberized cells developed at 12°C, but not at 6°C. Examination of enzyme activities involved in melanin, lignin, and suberin formation indicated that differences in melanin formation at 6 and 12°C were related to differences in polyphenol oxidase activity, although no relationships between suberin or lignin formation and phenylalanine ammonia lyase or peroxidase activity were evident. Wound-induced respiration was initially greater at 12°C than at 6°C. However, with continued storage, respiration rate of wounded roots declined more rapidly at 12°C, and over 28 days, the increase in respiration due to injury was 52% greater in roots stored at 6°C than in roots stored at 12°C. The data indicate that storage at 6°C severely slowed and impaired wound-healing of surface-abraded sugarbeet roots relative to roots stored at 12°C and suggest that postharvest losses may be accelerated if freshly harvested roots are cooled too quickly. PMID

  11. Cold Temperature Delays Wound Healing in Postharvest Sugarbeet Roots

    PubMed Central

    Fugate, Karen K.; Ribeiro, Wellington S.; Lulai, Edward C.; Deckard, Edward L.; Finger, Fernando L.

    2016-01-01

    Storage temperature affects the rate and extent of wound-healing in a number of root and tuber crops. The effect of storage temperature on wound-healing in sugarbeet (Beta vulgaris L.) roots, however, is largely unknown. Wound-healing of sugarbeet roots was investigated using surface-abraded roots stored at 6 and 12°C for 28 days. Surface abrasions are common injuries of stored roots, and the storage temperatures used are typical of freshly harvested or rapidly cooled roots. Transpiration rate from the wounded surface and root weight loss were used to quantify wound healing. At 12°C, transpiration rate from the wounded surface declined within 14 days and wounded roots lost weight at a rate similar to unwounded controls. At 6°C, transpiration rate from the wounded surface did not decline in the 28 days after injury, and wounded roots lost 44% more weight than controls after 28 days storage. Melanin formation, lignification, and suberization occurred more rapidly at 12°C than at 6°C, and a continuous layer of lignified and suberized cells developed at 12°C, but not at 6°C. Examination of enzyme activities involved in melanin, lignin, and suberin formation indicated that differences in melanin formation at 6 and 12°C were related to differences in polyphenol oxidase activity, although no relationships between suberin or lignin formation and phenylalanine ammonia lyase or peroxidase activity were evident. Wound-induced respiration was initially greater at 12°C than at 6°C. However, with continued storage, respiration rate of wounded roots declined more rapidly at 12°C, and over 28 days, the increase in respiration due to injury was 52% greater in roots stored at 6°C than in roots stored at 12°C. The data indicate that storage at 6°C severely slowed and impaired wound-healing of surface-abraded sugarbeet roots relative to roots stored at 12°C and suggest that postharvest losses may be accelerated if freshly harvested roots are cooled too quickly. PMID

  12. Wound Healing in Potato Tuber Tissue

    PubMed Central

    Borchert, R.; McChesney, J. D.; Watson, D.

    1974-01-01

    Several aspects of wound healing in tuber tissue of potato (Solanum tuberosum var. Kennebec), known to require protein synthesis, are inhibited by 2,4-dichlorobenzyltributylphosphonium chloride (Phosphon D). Cell division was completely blocked by 60 μm Phosphon and markedly reduced by concentrations as low as 3 μm. When applied at the time of wounding, 0.25mm Phosphon completely prevented the wound-induced respiratory increase. Application at 15 hours after wounding arrested respiration at the rate present at that time. The same concentrations of Phosphon inhibited auxin-induced cell expansion of the tissue, protein synthesis as measured by the incorporation of leucine-14C into the trichloroacetic acid-insoluble fraction of tissue disks, and the appearance of wound-induced peroxidase isozymes. None of these inhibitory effects of Phosphon could be prevented or reversed by the application of gibberellic acid. All wound-induced processes inhibited by Phosphon are also inhibited by cycloheximide. It is suggested that inhibitory effects of Phosphon on wound healing in potato and on other developmental processes in excised plant tissues which cannot be reversed by gibberellin are due to interference with protein synthesis. PMID:16658674

  13. Cold temperature delays wound healing in postharvest sugarbeet roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storage temperature affects the rate and extent of wound-healing in a number of root and tuber crops. The effect of storage temperature on wound-healing in sugarbeet (Beta vulgaris L.) roots, however, is largely unknown. Wound-healing of sugarbeet roots was investigated using surface-abraded roots s...

  14. Signals Involved in Tuber Wound-Healing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The induction and regulation of wound-healing (WH) processes in potato tubers and other vegetables are of great nutritional and economic importance. The rapid accumulation of waxes to restrict water vapor loss and formation of suberin barriers to block infection are crucial components of WH. Recen...

  15. Biomechanics and Wound Healing in the Cornea

    PubMed Central

    Dupps, William J.; Wilson, Steven E.

    2009-01-01

    The biomechanical and wound healing properties of the cornea undermine the predictability and stability of refractive surgery and contribute to discrepancies between attempted and achieved visual outcomes after LASIK, surface ablation and other keratorefractive procedures. Furthermore, patients predisposed to biomechanical failure or abnormal wound healing can experience serious complications such as keratectasia or clinically significant corneal haze, and more effective means for the identification of such patients prior to surgery are needed. In this review, we describe the cornea as a complex structural composite material with pronounced anisotropy and heterogeneity, summarize current understanding of major biomechanical and reparative pathways that contribute to the corneal response to laser vision correction, and review the role of these processes in ectasia, intraocular pressure measurement artifact, diffuse lamellar keratitis (DLK) and corneal haze. The current understanding of differences in the corneal response after photorefractive keratectomy (PRK), LASIK and femtosecond-assisted LASIK are reviewed. Surgical and disease models that integrate corneal geometric data, substructural anatomy, elastic and viscoelastic material properties and wound healing behavior have the potential to improve clinical outcomes and minimize complications but depend on the identification of preoperative predictors of biomechanical and wound healing responses in individual patients. PMID:16720023

  16. Mucopolysaccharides from psyllium involved in wound healing.

    PubMed

    Westerhof, W; Das, P K; Middelkoop, E; Verschoor, J; Storey, L; Regnier, C

    2001-01-01

    Mucopolysaccharides derived from the husk of psyllium (Plantago ovata) have properties beneficial for wound cleansing and wound healing. Recent studies indicate that these mucopolysaccharides also limit scar formation. Our in vitro and in vivo studies aimed to investigate the mechanisms involved, e.g., fluid absorption, bacterial adherence and in vitro stimulatory effects on macrophages, which are pivotal in wound healing. The mucopolysaccharides contained in a sachet (Askina Cavity) or in a hydrocolloid mixture (Askina Hydro) were found to have a gradual and sustained absorbency over a period of 7 days, amounting to 4-6 times their weight in water. The swelling index was 9 mm after 312 h. Adherence of wound bacteria to the mucopolysaccharides started after 2 h and was more pronounced after 3 h. Semiquantitative measurements of bacterial adherence used centrifugation and subsequent optical density determinations of supernatant. These confirmed the strong adherence potential of psyllium particles. Lactic acid dehydrogenase staining of pretreated cultured human skin explants did not reveal toxicity of the mucopolysaccharides derived from psyllium husk. Langerhans' cell migration from the epidermis was negligible and interleukin-1 beta expression in the explants was not significant, supporting the very low allergenic potential of psyllium. The characteristics of mucopolysaccharide granulate derived from psyllium husk in Askina Cavity and Askina Hydro related to fluid absorption, bacterial adherence, biocompatibility, stimulation of macrophages, irritancy response and allergenicity showed an optimal profile, supporting the good clinical performance of wound healing products containing psyllium husk. PMID:11951574

  17. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    NASA Astrophysics Data System (ADS)

    Vasile Nastuta, Andrei; Topala, Ionut; Grigoras, Constantin; Pohoata, Valentin; Popa, Gheorghe

    2011-03-01

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  18. Skin wound healing and phytomedicine: a review.

    PubMed

    Pazyar, Nader; Yaghoobi, Reza; Rafiee, Esmail; Mehrabian, Abolfath; Feily, Amir

    2014-01-01

    Skin integrity is restored by a physiological process aimed at repairing the damaged tissues. The healing process proceeds in four phases: hemostasis, inflammation, proliferation and remodeling. Phytomedicine presents remedies, which possess significant pharmacological effects. It is popular amongst the general population in regions all over the world. Phytotherapeutic agents have been largely used for cutaneous wound healing. These include Aloe vera, mimosa, grape vine, Echinacea, chamomile, ginseng, green tea, jojoba, tea tree oil, rosemary, lemon, soybean, comfrey, papaya, oat, garlic, ginkgo, olive oil and ocimum. Phytotherapy may open new avenues for therapeutic intervention on cutaneous wounds. This article provides a review of the common beneficial medicinal plants in the management of skin wounds with an attempt to explain their mechanisms. PMID:24993834

  19. Effects of Angiotensin II Receptor Signaling during Skin Wound Healing

    PubMed Central

    Takeda, Hikaru; Katagata, Yohtaro; Hozumi, Yutaka; Kondo, Shigeo

    2004-01-01

    The tissue angiotensin (Ang) system, which acts independently of the circulating renin Ang system, is supposed to play an important role in tissue repair in the heart and kidney. In the skin, the role of the system for wound healing has remained to be ascertained. Our study demonstrated that oral administration of selective AngII type-1 receptor (AT1) blocker suppressed keratinocyte re-epithelization and angiogenesis during skin wound healing in rats. Immunoprecipitation and Western blot analysis indicated the existence of AT1 and AngII type-2 receptor (AT2) in cultured keratinocytes and myofibroblasts. In a bromodeoxyuridine incorporation study, induction of AT1 signaling enhanced the incorporation into keratinocytes and myofibroblasts. Wound healing migration assays revealed that induction of AT1 signaling accelerated keratinocyte re-epithelization and myofibroblasts recovering. In these experiments, induction of AT2 signaling acted vice versa. Taken together, our study suggests that skin wound healing is regulated by balance of opposing signals between AT1 and AT2. PMID:15509535

  20. Autologous Bone Marrow Aspirate Therapy in Wound Healing

    PubMed Central

    Chittoria, Ravi Kumar; Nandhagopal, Vijayaraghavan; Mohapatra, Devi Prasad; Thiruvoth, Friji Meethale; Sivakumar, Dinesh Kumar; Asokan, Arjun

    2016-01-01

    Objective: To study the role of autologous bone marrow aspirate therapy (ABMAT) in wound healing. Approach: This is a retrospective analysis of 9 patients (11 chronic nonhealing wounds) in whom ABMAT was used. Patients (wounds) were grouped into two groups. Group 1 included 4 patients (5 wounds) refusing/unfit for reconstruction and managed only with ABMAT. Group 2 included 5 patients (6 wounds) who agreed/fit for reconstruction after wound bed preparation with ABMAT. End point of the study was complete wound healing. Results: ABMAT helped in complete healing of chronic nonhealing wounds by secondary intention in group 1 patients and enhanced process of wound bed preparation for reconstruction in group 2 patients. Innovation: This study highlights the importance of ABMAT in the management of chronic nonhealing wounds. Conclusion: ABMAT helps in wound bed preparation to allow the wound to heal completely or cover by skin graft/flap. PMID:26989576

  1. The Role of Neuromediators and Innervation in Cutaneous Wound Healing.

    PubMed

    Ashrafi, Mohammed; Baguneid, Mohamed; Bayat, Ardeshir

    2016-06-15

    The skin is densely innervated with an intricate network of cutaneous nerves, neuromediators and specific receptors which influence a variety of physiological and disease processes. There is emerging evidence that cutaneous innervation may play an important role in mediating wound healing. This review aims to comprehensively examine the evidence that signifies the role of innervation during the overlapping stages of cutaneous wound healing. Numerous neuropeptides that are secreted by the sensory and autonomic nerve fibres play an essential part during the distinct phases of wound healing. Delayed wound healing in diabetes and fetal cutaneous regeneration following wounding further highlights the pivotal role skin innervation and its associated neuromediators play in wound healing. Understanding the mechanisms via which cutaneous innervation modulates wound healing in both the adult and fetus will provide opportunities to develop therapeutic devices which could manipulate skin innervation to aid wound healing. PMID:26676806

  2. In vivo analysis of wound healing by optical methods

    PubMed Central

    Alborova, Alena; Lademann, Jürgen; Kramer, Axel; Richter, Heike; Patzelt, Alexa; Sterry, Wolfram; Koch, Stefan

    2008-01-01

    The analysis of wound healing is important for the therapy control and for the development of drugs stimulating the healing process. Wounds cause damage to the skin barrier. A damaged stratum corneum leads to an increased water loss through the skin barrier. The standard measuring procedure for characterization of wound healing is the measurement of transepidermal water loss (TEWL). The disadvantage of this method is that it can be easily disturbed by the perspiration of the volunteers and by topically applied substances, for instance wound healing creams. In the study presented, in vivo laser scanning microscopy and optical coherent tomography were compared concerning the application for their analysis of wound healing processes. The laser scanning microscopy allows the analysis of the healing process on a cellular level. The course of wound healing determined by laser scanning microscopy was correlated with numerical values, allowing the numerical characterization of the wound healing process. PMID:20204112

  3. Bioglass promotes wound healing by affecting gap junction connexin 43 mediated endothelial cell behavior.

    PubMed

    Li, Haiyan; He, Jin; Yu, Hongfei; Green, Colin R; Chang, Jiang

    2016-04-01

    It is well known that gap junctions play an important role in wound healing, and bioactive glass (BG) has been shown to help healing when applied as a wound dressing. However, the effects of BG on gap junctional communication between cells involved in wound healing is not well understood. We hypothesized that BG may be able to affect gap junction mediated cell behavior to enhance wound healing. Therefore, we set out to investigate the effects of BG on gap junction related behavior of endothelial cells in order to elucidate the mechanisms through which BG is operating. In in vitro studies, BG ion extracts prevented death of human umbilical vein endothelial cells (HUVEC) following hypoxia in a dose dependent manner, possibly through connexin hemichannel modulation. In addition, BG showed stimulatory effects on gap junction communication between HUVECs and upregulated connexin43 (Cx43) expression. Furthermore, BG prompted expression of vascular endothelial growth factor and basic fibroblast growth factor as well as their receptors, and vascular endothelial cadherin in HUVECs, all of which are beneficial for vascularization. In vivo wound healing results showed that the wound closure of full-thickness excisional wounds of rats was accelerated by BG with reduced inflammation during initial stages of healing and stimulated angiogenesis during the proliferation stage. Therefore, BG can stimulate wound healing through affecting gap junctions and gap junction related endothelial cell behaviors, including prevention of endothelial cell death following hypoxia, stimulation of gap junction communication and upregulation of critical vascular growth factors, which contributes to the enhancement of angiogenesis in the wound bed and finally to accelerate wound healing. Although many studies have reported that BG stimulates angiogenesis and wound healing, this work reveals the relationship between BG and gap junction connexin 43 mediated endothelial cell behavior and elucidates

  4. Grand challenge in Biomaterials-wound healing

    PubMed Central

    Salamone, Joseph C.; Salamone, Ann Beal; Swindle-Reilly, Katelyn; Leung, Kelly Xiaoyu-Chen; McMahon, Rebecca E.

    2016-01-01

    Providing improved health care for wound, burn and surgical patients is a major goal for enhancing patient well-being, in addition to reducing the high cost of current health care treatment. The introduction of new and novel biomaterials and biomedical devices is anticipated to have a profound effect on the future improvement of many deleterious health issues. This publication will discuss the development of novel non-stinging liquid adhesive bandages in healthcare applications developed by Rochal Industries. The scientists/engineers at Rochal have participated in commercializing products in the field of ophthalmology, including rigid gas permeable contact lenses, soft hydrogel contact lenses, silicone hydrogel contact lenses, contact lens care solutions and cleaners, intraocular lens materials, intraocular controlled drug delivery, topical/intraocular anesthesia, and in the field of wound care, as non-stinging, spray-on liquid bandages to protect skin from moisture and body fluids and medical adhesive-related skin injuries. Current areas of entrepreneurial activity at Rochal Industries pertain to the development of new classes of biomaterials for wound healing, primarily in regard to microbial infection, chronic wound care, burn injuries and surgical procedures, with emphasis on innovation in product creation, which include cell-compatible substrates/scaffolds for wound healing, antimicrobial materials for opportunistic pathogens and biofilm reduction, necrotic wound debridement, scar remediation, treatment of diabetic ulcers, amelioration of pressure ulcers, amelioration of neuropathic pain and adjuvants for skin tissue substitutes. PMID:27047680

  5. Grand challenge in Biomaterials-wound healing.

    PubMed

    Salamone, Joseph C; Salamone, Ann Beal; Swindle-Reilly, Katelyn; Leung, Kelly Xiaoyu-Chen; McMahon, Rebecca E

    2016-06-01

    Providing improved health care for wound, burn and surgical patients is a major goal for enhancing patient well-being, in addition to reducing the high cost of current health care treatment. The introduction of new and novel biomaterials and biomedical devices is anticipated to have a profound effect on the future improvement of many deleterious health issues. This publication will discuss the development of novel non-stinging liquid adhesive bandages in healthcare applications developed by Rochal Industries. The scientists/engineers at Rochal have participated in commercializing products in the field of ophthalmology, including rigid gas permeable contact lenses, soft hydrogel contact lenses, silicone hydrogel contact lenses, contact lens care solutions and cleaners, intraocular lens materials, intraocular controlled drug delivery, topical/intraocular anesthesia, and in the field of wound care, as non-stinging, spray-on liquid bandages to protect skin from moisture and body fluids and medical adhesive-related skin injuries. Current areas of entrepreneurial activity at Rochal Industries pertain to the development of new classes of biomaterials for wound healing, primarily in regard to microbial infection, chronic wound care, burn injuries and surgical procedures, with emphasis on innovation in product creation, which include cell-compatible substrates/scaffolds for wound healing, antimicrobial materials for opportunistic pathogens and biofilm reduction, necrotic wound debridement, scar remediation, treatment of diabetic ulcers, amelioration of pressure ulcers, amelioration of neuropathic pain and adjuvants for skin tissue substitutes. PMID:27047680

  6. Effect of medicinal plants on wound healing.

    PubMed

    Budovsky, Arie; Yarmolinsky, Ludmila; Ben-Shabat, Shimon

    2015-01-01

    In the United States alone, chronic wounds affect 6.5 million patients. It is expected that the number of chronic wounds will increase worldwide due to the increase in age-related conditions and pathologies such as diabetes, obesity, and cardiovascular diseases. An estimated excess of US$25 billion is spent annually on treatment of chronic wounds, and the burden is rapidly growing due to increasing healthcare costs, an aging population, and a sharp rise in the incidence of diabetes and obesity worldwide. While current therapeutic agents have generally inadequate efficacy and number of serious adverse effects, the medicinal plants have been used in medicine since ancient times and are well known for their abilities to promote wound healing and prevent infection without grave side effects. Thus, herbal therapy may be an alternative strategy for treatment of wounds. The purpose of this review is to provide the verified data on the medicinal plants of the world flora with wound healing activity including the biologically active substances belonging to these herbal preparations and describe in detail the various cellular and molecular mechanisms of their actions. PMID:25703533

  7. A comprehensive review of advanced biopolymeric wound healing systems.

    PubMed

    Mayet, Naeema; Choonara, Yahya E; Kumar, Pradeep; Tomar, Lomas K; Tyagi, Charu; Du Toit, Lisa C; Pillay, Viness

    2014-08-01

    Wound healing is a complex and dynamic process that involves the mediation of many initiators effective during the healing process such as cytokines, macrophages and fibroblasts. In addition, the defence mechanism of the body undergoes a step-by-step but continuous process known as the wound healing cascade to ensure optimal healing. Thus, when designing a wound healing system or dressing, it is pivotal that key factors such as optimal gaseous exchange, a moist wound environment, prevention of microbial activity and absorption of exudates are considered. A variety of wound dressings are available, however, not all meet the specific requirements of an ideal wound healing system to consider every aspect within the wound healing cascade. Recent research has focussed on the development of smart polymeric materials. Combining biopolymers that are crucial for wound healing may provide opportunities to synthesise matrices that are inductive to cells and that stimulate and trigger target cell responses crucial to the wound healing process. This review therefore outlines the processes involved in skin regeneration, optimal management and care required for wound treatment. It also assimilates, explores and discusses wound healing drug-delivery systems and nanotechnologies utilised for enhanced wound healing applications. PMID:24985412

  8. In vitro and in vivo wound healing-promoting activities of beta-lapachone.

    PubMed

    Kung, Hsiu-Ni; Yang, Mei-Jun; Chang, Chi-Fen; Chau, Yat-Pang; Lu, Kuo-Shyan

    2008-10-01

    Impaired wound healing is a serious problem for diabetic patients. Wound healing is a complex process that requires the cooperation of many cell types, including keratinocytes, fibroblasts, endothelial cells, and macrophages. beta-Lapachone, a natural compound extracted from the bark of the lapacho tree (Tabebuia avellanedae), is well known for its antitumor, antiinflammatory, and antineoplastic effects at different concentrations and conditions, but its effects on wound healing have not been studied. The purpose of the present study was to investigate the effects of beta-lapachone on wound healing and its underlying mechanism. In the present study, we demonstrated that a low dose of beta-lapachone enhanced the proliferation in several cells, facilitated the migration of mouse 3T3 fibroblasts and human endothelial EAhy926 cells through different MAPK signaling pathways, and accelerated scrape-wound healing in vitro. Application of ointment with or without beta-lapachone to a punched wound in normal and diabetic (db/db) mice showed that the healing process was faster in beta-lapachone-treated animals than in those treated with vehicle only. In addition, beta-lapachone induced macrophages to release VEGF and EGF, which are beneficial for growth of many cells. Our results showed that beta-lapachone can increase cell proliferation, including keratinocytes, fibroblasts, and endothelial cells, and migration of fibroblasts and endothelial cells and thus accelerate wound healing. Therefore, we suggest that beta-lapachone may have potential for therapeutic use for wound healing. PMID:18650264

  9. Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway

    PubMed Central

    WU, XUE; YANG, LONGLONG; ZHENG, ZHAO; LI, ZHENZHEN; SHI, JIHONG; LI, YAN; HAN, SHICHAO; GAO, JIANXIN; TANG, CHAOWU; SU, LINLIN; HU, DAHAI

    2016-01-01

    Wound healing is a highly orchestrated, multistep process, and delayed wound healing is a significant symptomatic clinical problem. Keratinocyte migration and re-epithelialization play the most important roles in wound healing, as they determine the rate of wound healing. In our previous study, we found that Src, one of the oldest proto-oncogenes encoding a membrane-associated, non-receptor protein tyrosine kinase, promotes keratinocyte migration. We therefore hypothesized that Src promotes wound healing through enhanced keratinocyte migration. In order to test this hypothesis, vectors for overexpressing Src and small interfering RNAs (siRNAs) for silencing of Src were used in the present study. We found that the overexpression of Src accelerated keratinocyte migration in vitro and promoted wound healing in vivo without exerting a marked effect on cell proliferation. The extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways play important roles in Src-accelerated keratinocyte migration. Further experiments demonstrated that Src induced the protein expression of matrix metallopro-teinase-2 (MMP-2) and decreased the protein expression of E-cadherin. We suggest that ERK signaling is involved in the Src-mediated regulation of MMP-2 expression. The present study provided evidence that Src promotes keratinocyte migration and cutaneous wound healing, in which the regulation of MMP-2 through the ERK pathway plays an important role, and thus we also demonstrated a potential therapeutic role for Src in cutaneous wound healing. PMID:26821191

  10. [Polymer coatings with immobilized thrombin and peptides: preparation and use for wound healing].

    PubMed

    Markvicheva, E A; Kuptsova, S V; Rumsh, L D; Dugina, T N; Lange, M A; Chistov, I V; Strukova, S M; Zubov, V P

    2002-01-01

    Polymer dressings with encapsulated thrombin or synthetic peptides which can mimic thrombin action are employed for wound healing. Paper describes the method for preparation of these hydrogel composites of PVCL-CaAlg [poly(N-vinyl caprolactam-calcium alginate). The effect of encapsulated thrombin/peptides on tissue repair process have beet investigatat in vivo experiments using a mouse model of wound healing. The developed dressings accelerated wound healing: thascan be used as a basis for creation of novel formulations with controlled drug release for wound therapy. PMID:12698556

  11. The Electrical Response to Injury: Molecular Mechanisms and Wound Healing

    PubMed Central

    Reid, Brian; Zhao, Min

    2014-01-01

    Significance: Natural, endogenous electric fields (EFs) and currents arise spontaneously after wounding of many tissues, especially epithelia, and are necessary for normal healing. This wound electrical activity is a long-lasting and regulated response. Enhancing or inhibiting this electrical activity increases or decreases wound healing, respectively. Cells that are responsible for wound closure such as corneal epithelial cells or skin keratinocytes migrate directionally in EFs of physiological magnitude. However, the mechanisms of how the wound electrical response is initiated and regulated remain unclear. Recent Advances: Wound EFs and currents appear to arise by ion channel up-regulation and redistribution, which are perhaps triggered by an intracellular calcium wave or cell depolarization. We discuss the possibility of stimulation of wound healing via pharmacological enhancement of the wound electric signal by stimulation of ion pumping. Critical Issues: Chronic wounds are a major problem in the elderly and diabetic patient. Any strategy to stimulate wound healing in these patients is desirable. Applying electrical stimulation directly is problematic, but pharmacological enhancement of the wound signal may be a promising strategy. Future Directions: Understanding the molecular regulation of wound electric signals may reveal some fundamental mechanisms in wound healing. Manipulating fluxes of ions and electric currents at wounds might offer new approaches to achieve better wound healing and to heal chronic wounds. PMID:24761358

  12. Celosia argentea Linn. leaf extract improves wound healing in a rat burn wound model.

    PubMed

    Priya, Kulasekaran S; Arumugam, Gnanamani; Rathinam, Bhuvaneswari; Wells, Alan; Babu, Mary

    2004-01-01

    Celosia argentea (CA) is used in traditional medicine for sores, ulcers, and skin eruptions. The present study was aimed at investigating the healing efficacy of CA extract in an ointment formulated (10 % w/w) as an alcohol extract of CA using a rat burn wound model. Wound closure occurred earlier in the treated rats (15 days vs. 30 in the untreated group; p < 0.05). Granulation tissue collected on every fifth day of healing showed an increase in collagen and hexosamine content at a faster rate in the treated wounds. This correlated with the accelerated wound closure observed in the treated groups. To probe the cellular basis of this effect, we investigated the effect of this extract on two major cellular responses; cell proliferation and cell motility, in two key cell lineages, fibroblasts and keratinocytes. CA was not toxic at concentrations of < 3 microg/ml in fibroblasts and < 30 microg/ml in keratinocytes. The alcohol extract promoted cell motility and proliferation of primary dermal fibroblasts at 0.1-1.0 microg/ml but did not alter these responses in primary keratinocytes. In an initial examination of molecular mechanisms, we found that the CA extract did not alter fibroblast and keratinocyte responses to the wound repair-associated epidermal growth factor receptor ligands. In short, we demonstrate a salutary action of the CA extract on wound healing, and suggest that this may be due to mitogenic and motogenic promotion of dermal fibroblasts. PMID:15555053

  13. Scar tissue orientation in unsutured and sutured corneal wound healing.

    PubMed Central

    Melles, G R; Binder, P S; Beekhuis, W H; Wijdh, R H; Moore, M N; Anderson, J A; SundarRaj, N

    1995-01-01

    AIMS--This study aimed to evaluate stromal wound healing morphology in short term unsutured compared with sutured corneal wounds, to define regional variation in healing within radial keratotomy wounds. METHODS--Stromal scar tissue orientation (fibroblast and collagen fibre orientation) was analysed in unsutured and adjacent sutured keratotomy wounds in monkeys, 2 to 9 weeks after surgery, using light and transmission electron microscopy. RESULTS--At 2 to 4 weeks, scar tissue orientation was transverse to the wound edge in unsutured wounds, but sagittal in sutured wounds. At 5 to 9 weeks, a reorientation of scar tissue sagittal to the wound was seen in the unsutured wounds, proceeding from the posterior to anterior wound regions. In sutured wounds, a scar tissue reorientation transverse to the wound was seen, proceeding from the anterior wound region in a posterior direction. CONCLUSIONS--Within the same cornea, sutured and unsutured wounds showed opposite patterns of healing. Sutured wounds initially healed more slowly, but obtained pseudolamellar continuity over time. In contrast, healing of unsutured wounds was characterised by an early approximation towards lamellar repair that was followed by an ineffective reorganisation of the scar. This latter pattern of healing, that may be associated with a variable weakening of the wound, may relate to the clinical findings of unpredictability and/or progression of refractive effect following radial keratotomy. Images PMID:7547789

  14. Quantifying cell behaviors during embryonic wound healing

    NASA Astrophysics Data System (ADS)

    Mashburn, David; Ma, Xiaoyan; Crews, Sarah; Lynch, Holley; McCleery, W. Tyler; Hutson, M. Shane

    2011-03-01

    During embryogenesis, internal forces induce motions in cells leading to widespread motion in tissues. We previously developed laser hole-drilling as a consistent, repeatable way to probe such epithelial mechanics. The initial recoil (less than 30s) gives information about physical properties (elasticity, force) of cells surrounding the wound, but the long-term healing process (tens of minutes) shows how cells adjust their behavior in response to stimuli. To study this biofeedback in many cells through time, we developed tools to quantify statistics of individual cells. By combining watershed segmentation with a powerful and efficient user interaction system, we overcome problems that arise in any automatic segmentation from poor image quality. We analyzed cell area, perimeter, aspect ratio, and orientation relative to wound for a wide variety of laser cuts in dorsal closure. We quantified statistics for different regions as well, i.e. cells near to and distant from the wound. Regional differences give a distribution of wound-induced changes, whose spatial localization provides clues into the physical/chemical signals that modulate the wound healing response. Supported by the Human Frontier Science Program (RGP0021/2007 C).

  15. Mechanoregulation of Angiogenesis in Wound Healing

    PubMed Central

    Lancerotto, Luca; Orgill, Dennis P.

    2014-01-01

    Significance: Mechanical forces are important regulators of cell and tissue function. Endothelial cells proliferate in response to tissue stretch and the mechanical properties of the environment direct capillary sprouting and growth. As the vascular network is a key factor in physiology and disease, control of the vascularity by means of mechanical forces could lead to the development of innovative therapeutic strategies. Recent Advances: Increased understanding of mechanobiology has stimulated translational research and allowed the development and optimization of clinical devices that exploit mechanical forces for the treatment of diseases, in particular in the field of wound healing. Stretching in distraction osteogenesis and tissue expansion induces neogenesis of well-vascularized tissues. In micro-deformational wound therapy, micro-mechanical distortions of the wound bed stimulate cell proliferation and angiogenesis by stretching resident cells to improve healing of difficult wounds. Relief from tension antagonizes proliferation and angiogenesis in primarily closed wounds allowing for better scar quality. Critical Issues: The integration of mechanobiology into traditional cell biology and pathophysiology in general is not yet complete and further research is needed to fill existing gaps, in particular in the complexity of in vivo conditions. Future Directions: Still largely unexplored approaches based on mechanical perturbation of the micro-/macro-environment can be devised to overcome the limits of current strategies in a broad spectrum of clinical conditions. PMID:25302137

  16. Chitin, Chitosan, and Its Derivatives for Wound Healing: Old and New Materials

    PubMed Central

    Azuma, Kazuo; Izumi, Ryotaro; Osaki, Tomohiro; Ifuku, Shinsuke; Morimoto, Minoru; Saimoto, Hiroyuki; Minami, Saburo; Okamoto, Yoshiharu

    2015-01-01

    Chitin (β-(1-4)-poly-N-acetyl-d-glucosamine) is widely distributed in nature and is the second most abundant polysaccharide after cellulose. It is often converted to its more deacetylated derivative, chitosan. Previously, many reports have indicated the accelerating effects of chitin, chitosan, and its derivatives on wound healing. More recently, chemically modified or nano-fibrous chitin and chitosan have been developed, and their effects on wound healing have been evaluated. In this review, the studies on the wound-healing effects of chitin, chitosan, and its derivatives are summarized. Moreover, the development of adhesive-based chitin and chitosan are also described. The evidence indicates that chitin, chitosan, and its derivatives are beneficial for the wound healing process. More recently, it is also indicate that some nano-based materials from chitin and chitosan are beneficial than chitin and chitosan for wound healing. Clinical applications of nano-based chitin and chitosan are also expected. PMID:25780874

  17. [Wound healing and wound irrigation in cesarean section of cattle].

    PubMed

    de Kruif, A; van den Brand, L P; van Kuyk, M M; Raymakers, R J; Sietsma, C; Westerbeek, A J

    1987-09-01

    Calves were delivered by Caesarean section in 128 cases during the early months of 1984. All animals were allocated alternately to a trial group and a group of controls. When the peritoneum and transverse muscle had been sutured, the wounds of the animals in the trial group were irrigated and washed with 300 ml. of Betadine (10 per cent of PVP-iodine in water). This was followed by closure of the wound. The animals of the group of controls were not treated. The procedure was performed in ninety-four primiparae (73 per cent) and thirty-four multiparae (27 per cent). The indication for Caesarean section consisted in fetal oversize in 119 cases (93 per cent). Eight calves (6 per cent) were stillborn or died immediately post partum. The proportion of animals in which the placentae were retained, was 9 per cent. Two animals died from peritonitis and intra-abdominal haemorrhage respectively. Irrigation of the wound did not have any effect on the number of wound infections (Table 3). Wound infection occurred in nineteen animals (15 per cent). The operations were performed by six veterinary surgeons (Table 4). The trial group and group of controls treated by each veterinarian did not differ essentially as regards wound healing. PMID:3672464

  18. Using Light to Treat Mucositis and Help Wounds Heal

    NASA Technical Reports Server (NTRS)

    Ignatius, Robert W.; Martin, Todd S.; Kirk, Charles

    2008-01-01

    A continuing program of research and development is focusing on the use of controlled illumination by light-emitting diodes (LEDs) to treat mucositis and to accelerate healing of wounds. The basic idea is to illuminate the affected area of a patient with light of an intensity, duration, and wavelength (or combination of wavelengths) chosen to produce a therapeutic effect while generating only a minimal amount of heat. This method of treatment was originally intended for treating the mucositis that is a common complication of chemotherapy and radiation therapy for cancer. It is now also under consideration as a means to accelerate the healing of wounds and possibly also to treat exposure to chemical and radioactive warfare agents. Radiation therapy and many chemotherapeutic drugs often damage the mucosal linings of the mouth and gastrointestinal tract, leading to mouth ulcers (oral mucositis), nausea, and diarrhea. Hyperbaric-oxygen therapy is currently the standard of care for ischemic, hypoxic, infected, and otherwise slowlyhealing problem wounds, including those of oral mucositis. Hyperbaric-oxygen therapy increases such cellular activities as collagen production and angiogenesis, leading to an increased rate of healing. Biostimulation by use of laser light has also been found to be effective in treating mucositis. For hyperbaricoxygen treatment, a patient must remain inside a hyperbaric chamber for an extended time. Laser treatment is limited by laser-wavelength capabilities and by narrowness of laser beams, and usually entails the generation of significant amounts of heat.

  19. [Thrombin--a regulator of reparative processes in wound healing].

    PubMed

    Strukova, S M; Dugina, T N; Chistov, I V; Markvicheva, E A; Kuptsova, S V; Kolokol'chikova, E G; Rumsh, L D; Zubov, V P; Gluza, E

    1998-04-01

    Thrombin, binding to receptors of the protease activated receptor (PAR) family, is involved in wound healing by inducing the reparation processes and regulating the activity of mast cells, which secrete mediators of inflammation. Using thrombin receptor agonist peptide (TRAP-6) for the activation of rat mast cells, effect of several receptors, including PAR-1, on mast cells was demonstrated. It was shown that TRAP increases the concentration of Ca2+ in the cytoplasm of mast cells and regulates cell degranulation, while releasing nitrogen oxide. Thrombin encapsulated in poly(N-vinyl caprolactam)-calcium alginate (PVCL-Ca-Alg) hydrogel films promotes wound healing in rats as demonstrated by the acceleration of fibroblast proliferation and neovascularization. PMID:9612571

  20. Kcnh2 and Kcnj8 interactively regulate skin wound healing and regeneration.

    PubMed

    Zhang, Wengeng; Bei, Marianna

    2015-01-01

    Previous studies indicate that ion channels are mediators of bioelectricity promoting wound closure/regeneration in nonmammalian, lower vertebrate systems. The role of ion channels however in regeneration of wounds in mammalian systems that do not regenerate as adults is not yet defined. Using a mammalian model system that allows us to determine differentially expressed genes when skin regenerates and when skin does not regenerate after wound induction, we identified two potassium channels, kcnh2 and kcnj8, to be (1) differentially expressed between the two states and (2) highly expressed after wound induction at the nonregenerative state. We also found that kcnh2 small molecule inhibitor enhanced wound healing while kcnj8 small molecule inhibitor did not. In contrast, kcnj8 activator accelerated wound healing and even augmented the effect of kcnh2 inhibition. These results provide evidence for the first time that potassium channels may mediate skin wound healing and regeneration interactively. PMID:26220146

  1. Wound healing activity of honey: A pilot study

    PubMed Central

    Vijaya, Kumari K.; Nishteswar, K.

    2012-01-01

    Vrana (wound) and its sequels play a major concern in the field of surgery as Vrana Ropana (wound healing) requires uneventful healing. The aim of the study was to evaluate the changes in physical and morphological properties due to topical application of Madhu (honey) on fresh traumatic wounds or cutaneous wounds. Ten patients of wounds of either sex were randomly selected. Site of the wound, shape, size, floor, and margin were recorded on day 0 and observed on day 7, 15, 20, and till the end of the healing for the progression of granulation, scar type, shape, size, and clinical symptoms. There was significant improvement in the healing process as Madhu possesses antibacterial, wound cleansing, wound healing properties and showed beneficiary effects. PMID:23723644

  2. Crosstalk between platelets and PBMC: New evidence in wound healing.

    PubMed

    Nami, Niccolò; Feci, Luca; Napoliello, Luca; Giordano, Antonio; Lorenzini, Sauro; Galeazzi, Mauro; Rubegni, Pietro; Fimiani, Michele

    2016-01-01

    Platelet-derived products have proven useful in accelerating healing processes and tissue regeneration. However, despite their widespread use in clinical practice, the cellular and molecular mechanisms involved have not yet been completely clarified. Recent studies show that interaction between platelet gel (PG) and peripheral blood mononuclear cells (PBMC) can result in activation of PBMC and production of several cytokines involved in wound healing and tissue repair. The aim of our study was to analyze whether crosstalk between platelets and PBMC can influence wound healing by modulating release of VEGF, bFGF and IL-10 by PBMC. Cultures of PBMC alone and co-cultures with autologous PG of 24 healthy volunteers were incubated under normoxia for 24 h. VEGF, bFGF and IL-10 concentration and expression were then analyzed in supernatants by ELISA and by real-time RT-PCR. We observed a down-regulation of VEGF and bFGF release and an up-regulation of IL-10 release in co-cultures of PBMC and PG. Platelets are not only important in the early stages of the healing process (clot formation, direct release of growth factors), but also can influence the whole process of tissue regeneration by modulating synthesis and release of VEGF, bFGF and IL-10 by PBMC. These effects could give platelets a new key role in the control of healing processes and provide insights into the clinical success of platelet-derived products in many medical fields. PMID:26030799

  3. Skin-set and wound-healing/suberization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The physiology and biochemistry of resistance and susceptibility to tuber skinning/excoriation wounds and wound-healing are of global importance because of the magnitude of the resulting food and financial losses. This work is intended to concisely describe skin-set and wound-healing including their...

  4. Regulatory involvement of ABA in potato tuber wound-healing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid wound-healing is crucial in protecting potato tubers from infection and dehydration. Wound-induced suberization and the accumulation of hydrophobic barriers to reduce water vapor conductance/loss are principle protective wound-healing processes. However, little is known about the biological ...

  5. Understanding the role of nutrition and wound healing.

    PubMed

    Stechmiller, Joyce K

    2010-02-01

    Optimal wound healing requires adequate nutrition. Nutrition deficiencies impede the normal processes that allow progression through stages of wound healing. Malnutrition has also been related to decreased wound tensile strength and increased infection rates. Malnourished patients can develop pressure ulcers, infections, and delayed wound healing that result in chronic nonhealing wounds. Chronic wounds are a significant cause of morbidity and mortality for many patients and therefore constitute a serious clinical concern. Because most patients with chronic skin ulcers suffer micronutrient status alterations and malnutrition to some degree, current nutrition therapies are aimed at correcting nutrition deficiencies responsible for delayed wound healing. This review provides current information on nutrition management for simple acute wounds and complex nonhealing wounds and offers some insights into innovative future treatments. PMID:20130158

  6. Effects of genistein on early-stage cutaneous wound healing

    SciTech Connect

    Park, Eunkyo; Lee, Seung Min; Jung, In-Kyung; Lim, Yunsook; Kim, Jung-Hyun

    2011-07-08

    Highlights: {yields} We examine the effect of genistein on cutaneous wound healing. {yields} Genistein enhanced wound closure during the early stage of wound healing. {yields} These genistein effects on wound closure were induced by reduction of oxidative stress through increasing antioxidant capacity and modulation of pro-inflammatory cytokine expression. -- Abstract: Wound healing occurs in three sequential phases: hemostasis and inflammation, proliferation, and remodeling. Inflammation, the earliest phase, is considered a critical period for wound healing because immune cells remove damaged tissues, foreign debris, and remaining dead tissue. Wound healing would be delayed without inflammation, and this phase is affected by antioxidation capacity. Therefore, we hypothesized that genistein, which has an antioxidant effect, might modulate the wound healing process by altering the inflammatory response. After three days of acclimation, mice were divided into three groups: control, 0.025% genistein, and 0.1% genistein. After two weeks of an experimental diet, skin wounds were induced. Wounded skin areas were imaged, and the healing rate calculated. To measure lipid peroxidation, antioxidant enzyme expression and activity, and pro-inflammatory cytokine expression, skin and liver tissues were harvested at 12, 24, 48, and 72 h. Genistein did not affect body weight. The rate of wound closure in mice fed genistein was significantly faster than in the control group during the early stage of wound healing, especially in first three days. Cu, Zn-SOD and Mn-SOD expression in wound skin tissue in the 0.1% genistein group was lower than in the control group. However, CAT expression did not differ among groups. We also found that genistein modulated NF-{kappa}B and TNF-{alpha} expression during the early stage of wound healing. The genistein group had significantly lower hepatic lipid peroxidation and higher SOD, CAT, and GPx activities than the control group. These results

  7. Farnesyl pyrophosphate inhibits epithelialization and wound healing through the glucocorticoid receptor.

    PubMed

    Vukelic, Sasa; Stojadinovic, Olivera; Pastar, Irena; Vouthounis, Constantinos; Krzyzanowska, Agata; Das, Sharmistha; Samuels, Herbert H; Tomic-Canic, Marjana

    2010-01-15

    Farnesyl pyrophosphate (FPP), a key intermediate in the mevalonate pathway and protein farnesylation, can act as an agonist for several nuclear hormone receptors. Here we show a novel mechanism by which FPP inhibits wound healing acting as an agonist for glucocorticoid receptor (GR). Elevation of endogenous FPP by the squalene synthetase inhibitor zaragozic acid A (ZGA) or addition of FPP to the cell culture medium results in activation and nuclear translocation of the GR, a known wound healing inhibitor. We used functional studies to evaluate the effects of FPP on wound healing. Both FPP and ZGA inhibited keratinocyte migration and epithelialization in vitro and ex vivo. These effects were independent of farnesylation and indicate that modulation of FPP levels in skin may be beneficial for wound healing. FPP inhibition of keratinocyte migration and wound healing proceeds, in part, by repression of the keratin 6 gene. Furthermore, we show that the 3-hydroxy-3-methylglutaryl-CoA-reductase inhibitor mevastatin, which blocks FPP formation, not only promotes epithelialization in acute wounds but also reverses the effect of ZGA on activation of the GR and inhibition of epithelialization. We conclude that FPP inhibits wound healing by acting as a GR agonist. Of special interest is that FPP is naturally present in cells prior to glucocorticoid synthesis and that FPP levels can be further altered by the statins. Therefore, our findings may provide a better understanding of the pleiotropic effects of statins as well as molecular mechanisms by which they may accelerate wound healing. PMID:19903814

  8. Farnesyl Pyrophosphate Inhibits Epithelialization and Wound Healing through the Glucocorticoid Receptor*

    PubMed Central

    Vukelic, Sasa; Stojadinovic, Olivera; Pastar, Irena; Vouthounis, Constantinos; Krzyzanowska, Agata; Das, Sharmistha; Samuels, Herbert H.; Tomic-Canic, Marjana

    2010-01-01

    Farnesyl pyrophosphate (FPP), a key intermediate in the mevalonate pathway and protein farnesylation, can act as an agonist for several nuclear hormone receptors. Here we show a novel mechanism by which FPP inhibits wound healing acting as an agonist for glucocorticoid receptor (GR). Elevation of endogenous FPP by the squalene synthetase inhibitor zaragozic acid A (ZGA) or addition of FPP to the cell culture medium results in activation and nuclear translocation of the GR, a known wound healing inhibitor. We used functional studies to evaluate the effects of FPP on wound healing. Both FPP and ZGA inhibited keratinocyte migration and epithelialization in vitro and ex vivo. These effects were independent of farnesylation and indicate that modulation of FPP levels in skin may be beneficial for wound healing. FPP inhibition of keratinocyte migration and wound healing proceeds, in part, by repression of the keratin 6 gene. Furthermore, we show that the 3-hydroxy-3-methylglutaryl-CoA-reductase inhibitor mevastatin, which blocks FPP formation, not only promotes epithelialization in acute wounds but also reverses the effect of ZGA on activation of the GR and inhibition of epithelialization. We conclude that FPP inhibits wound healing by acting as a GR agonist. Of special interest is that FPP is naturally present in cells prior to glucocorticoid synthesis and that FPP levels can be further altered by the statins. Therefore, our findings may provide a better understanding of the pleiotropic effects of statins as well as molecular mechanisms by which they may accelerate wound healing. PMID:19903814

  9. New insights into microRNAs in skin wound healing.

    PubMed

    Fahs, Fatima; Bi, Xinling; Yu, Fu-Shin; Zhou, Li; Mi, Qing-Sheng

    2015-12-01

    Chronic wounds are a major burden to overall healthcare cost and patient morbidity. Chronic wounds affect a large portion of the US, and billions of healthcare dollars are spent in their treatment and management. microRNAs (miRNAs) are small, noncoding double-stranded RNAs that post-transcriptionally downregulate the expression of protein-coding genes. Studies have identified miRNAs involved in all three phases of wound healing including inflammation, proliferation, and remodeling. Some miRNAs have been demonstrated in vitro with primary keratinocyte wound healing model and in vivo with mouse wound healing model through regulation of miRNA expression to affect the wound healing process. This review updates the current miRNAs involved in wound healing and discusses the future therapeutic implications and research directions. PMID:26596866

  10. Chronic wound caring ... a long journey toward healing.

    PubMed

    Orsted, H L; Campbell, K E; Keast, D H; Coutts, P; Sterling, W

    2001-10-01

    Healthcare professionals use words like "frustrating," "expensive," and "time-consuming" to describe chronic wound care. Healing a wound that has been present for an extended period of time is difficult. Often the problem is not just the wound but also the "woundedness" of the individual with the wound. The patient's needs in chronic wound care often continue over months, years, or even a lifetime. This article addresses more than the wound--it offers healthcare professionals' accounts of patient stories and their active involvement in the long journey toward chronic wound healing. PMID:11890076

  11. The phytoestrogen genistein promotes wound healing by multiple independent mechanisms.

    PubMed

    Emmerson, Elaine; Campbell, Laura; Ashcroft, Gillian S; Hardman, Matthew J

    2010-06-10

    Genistein has been implicated in the beneficial effects of soy on human health, particularly in the context of ageing. In post-menopausal women reduced systemic estrogen leads to a range of age-associated pathologies, including delayed cutaneous wound healing. We have previously shown that this can be reversed by estrogen replacement. However, the effect of genistein on the skin is poorly understood and crucially the influence of genistein on wound healing has not been assessed. 10-week-old ovariectomised mice were systemically treated with 17beta-estradiol or genistein. Genistein substantially accelerated wound repair, associated with a dampened inflammatory response. Unexpectedly, co-treatment with the ER antagonist ICI had little impact on the anti-inflammatory, healing promoting effects of genistein. Thus genistein's actions are only partially mediated via classical estrogen receptor-dependent signalling pathways. Indeed, we report that alternative (cell-type specific) signalling mechanisms are activated in the skin in response to genistein treatment. PMID:20193736

  12. SKIN-SET, WOUND-HEALING AND RELATED DEFECTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The physiology and biochemistry of resistance and susceptibility to tuber skinning/excoriation wounds, wound-healing and wound-related defects are of global importance because of the magnitude of the resulting food and financial losses. Wound related losses are difficult to determine because of the...

  13. Case 5: non-healing traumatic wound colonised with MRSA.

    PubMed

    Simon, Deborah

    2016-03-01

    A traumatic wound colonised with MRSA failed to respond to topical antimicrobial dressings. Following the combined use of octenilin Wound Gel and octenilin Wound Irrigation Solution, the MRSA was removed in 4 weeks, the necrotic tissue was debrided and the wound started healing. PMID:26949849

  14. Chemokine Involvement in Fetal and Adult Wound Healing

    PubMed Central

    Balaji, Swathi; Watson, Carey L.; Ranjan, Rajeev; King, Alice; Bollyky, Paul L.; Keswani, Sundeep G.

    2015-01-01

    Significance: Fetal wounds heal with a regenerative phenotype that is indistinguishable from surrounding skin with restored skin integrity. Compared to this benchmark, all postnatal wound healing is impaired and characterized by scar formation. The biologic basis of the fetal regenerative phenotype can serve as a roadmap to recapitulating regenerative repair in adult wounds. Reduced leukocyte infiltration, likely mediated, in part, through changes in the chemokine milieu, is a fundamental feature of fetal wound healing. Recent Advances: The contributions of chemokines to wound healing are a topic of active investigation. Recent discoveries have opened the possibility of targeting chemokines therapeutically to treat disease processes and improve healing capability, including the possibility of achieving a scarless phenotype in postnatal wounds. Critical Issues: Successful wound healing is a complex process, in which there is a significant interplay between multiple cell types, signaling molecules, growth factors, and extracellular matrix. Chemokines play a crucial role in this interplay and have been shown to have different effects in various stages of the healing process. Understanding how these chemokines are locally produced and regulated during wound healing and how the chemokine milieu differs in fetal versus postnatal wounds may help us identify ways in which we can target chemokine pathways. Future Directions: Further studies on the role of chemokines and their role in the healing process will greatly advance the potential for using these molecules as therapeutic targets. PMID:26543680

  15. Inflammation and Neuropeptides: The Connection in Diabetic Wound Healing

    PubMed Central

    Pradhan, Leena; Nabzdyk, Christoph; Andersen, Nicholas D; LoGerfo, Frank W; Veves, Aristidis

    2013-01-01

    This article provides a broad overview of the interaction between neuropeptides and inflammatory mediators as it pertains to diabetic wound healing. Abnormal wound healing is a major complication of both type I and type II diabetes and is the most frequent cause of non-traumatic lower limb amputation. Wound healing requires the orchestrated integration of complex biological and molecular events. Inflammation, proliferation and migration of cells followed by angiogenesis and re-epithelization are essential phases of wound healing. The link between wound healing and the nervous system is clinically apparent as peripheral neuropathy is reported in 30–50% of diabetic patients and is the most common and sensitive predictor of foot ulceration. The bidirectional connection between the nervous and the immune systems and the role it plays in wound healing has emerged as one of the focal features of the wound healing dogma. The mediators of this connection include neuropeptides and the cytokines released from different cells including immune and cutaneous cells. Therefore, to develop successful wound healing therapies, it is vital to understand in depth the signaling pathways in the neuro-immune axis and their implication in diabetic wound healing. PMID:19138453

  16. Cellular and molecular facets of keratinocyte reepithelization during wound healing

    SciTech Connect

    Santoro, Massimo M. . E-mail: msantoro@unipmn.it; Gaudino, Giovanni

    2005-03-10

    Cutaneous wound healing is a highly coordinated physiological process that rapidly and efficiently restores skin integrity. Reepithelization is a crucial step during wound healing, which involves migration and proliferation of keratinocytes to cover the denuded dermal surface. Recent advances in wound biology clarified the molecular pathways governing keratinocyte reepithelization at wound sites. These new findings point towards novel therapeutic targets and provide suitable methods to promote faster tissue regeneration in vivo.

  17. Collagen-Based Biomaterials for Wound Healing

    PubMed Central

    Chattopadhyay, Sayani; Raines, Ronald T.

    2014-01-01

    With its wide distribution in soft and hard connective tissues, collagen is the most abundant of animal proteins. In vitro, natural collagen can be formed into highly organized, three-dimensional scaffolds that are intrinsically biocompatible, biodegradable, non-toxic upon exogenous application, and endowed with high tensile strength. These attributes make collagen the material of choice for wound healing and tissue engineering applications. In this article, we review the structure and molecular interactions of collagen in vivo; the recent use of natural collagen in sponges, injectables, films and membranes, dressings, and skin grafts; and the on-going development of synthetic collagen mimetic peptides as pylons to anchor cytoactive agents in wound beds. PMID:24633807

  18. The anti-inflammatory agent Propolis improves wound healing in a rodent model of experimental diabetes.

    PubMed

    McLennan, Susan V; Bonner, James; Milne, Sgtephen; Lo, Lisa; Charlton, Ana; Kurup, Savita; Jia, Junhong; Yue, Dennis K; Twigg, Stephen M

    2008-01-01

    Foot ulcers and poor wound healing are problematic for patients with diabetes. The beehive protectant Propolis can improve wound healing but whether it can improve healing in diabetic wounds has not been investigated. In this study, the effect of a single application of Propolis on epithelial closure, wound morphology, cellular infiltrate, and blood vessel density were investigated. Diabetes was induced in rats using streptozocin. After 6 weeks, diabetic and control animals were wounded and the wounds were treated with Propolis or saline as control. At days 6 and 12 animals were sacrificed and wounds were excised. Compared with controls, diabetes decreased epithelial closure and reepithelialization but had no effect on wound contraction. These delays were prevented by Propolis. At day 12, the impaired macrophage infiltration (C:1.49+/-0.09 vs. D:0.25+/-0.14), persistent neutrophil infiltration (C:0.22+/-0.19 vs. D:1.33+/-0.81), and increased myeloperoxidase activity (fourfold) in diabetic wounds were prevented by Propolis. Diabetes had no effect on wound volume, vessel number, or branch points. These novel data indicate that Propolis can accelerate wound healing in diabetes. As neutrophil infiltration is normalized, its mechanism of action may be through anti-inflammatory pathways. This result and the established safety profile of Propolis provide a rationale for studying topical application of this agent in a clinical setting. PMID:19128266

  19. Platelet gel for healing cutaneous chronic wounds.

    PubMed

    Crovetti, Giovanni; Martinelli, Giovanna; Issi, Marwan; Barone, Marilde; Guizzardi, Marco; Campanati, Barbara; Moroni, Marco; Carabelli, Angelo

    2004-04-01

    Wound healing is a specific host immune response for restoration of tissue integrity. Experimental studies demonstrated an alteration of growth factors activity due to their reduced synthesis, increased degradation and inactivation. In wound healing platelets play an essential role since they are rich of alpha-granules growth factors (platelet derived growth factor--PDGF; transforming growth factor-beta--TGF-beta; vascular endothelial growth factor--VEGF). Topical use of platelet gel (PG), hemocomponent obtained from mix of activated platelets and cryoprecipitate, gives the exogenous and in situ adding of growth factors (GF). The hemocomponents are of autologous or homologous origin. We performed a technique based on: multicomponent apheretic procedure to obtain plasma rich platelet and cryoprecipitate; manual processing in an open system, in sterile environment, for gel activation. Every step of the gel synthesis was checked by a quality control programme. The therapeutic protocol consists of the once-weekly application of PG. Progressive reduction of the wound size, granulation tissue forming, wound bed detersion, regression and absence of infective processes were considered for evaluating clinical response to hemotherapy. 24 patients were enrolled. They had single or multiple cutaneous ulcers with different ethiopathogenesis. Only 3 patients could perform autologous withdrawal; in the others homologous hemocomponent were used, always considering suitability and traceability criteria for transfusional use of blood. Complete response was observed in 9 patients, 2 were subjected to cutaneous graft, 4 stopped treatment, 9 had partial response and are still receiving the treatment. In each case granulation tissue forming increased following to the first PG applications, while complete re-epithelization was obtained later. Pain was reduced in every treated patient. Topical haemotherapy with PG may be considered as an adjuvant treatment of a multidisciplinary process

  20. Epithelial mechanobiology, skin wound healing, and the stem cell niche.

    PubMed

    Evans, Nicholas D; Oreffo, Richard O C; Healy, Eugene; Thurner, Philipp J; Man, Yu Hin

    2013-12-01

    Skin wound healing is a vital process that is important for re-establishing the epithelial barrier following disease or injury. Aberrant or delayed skin wound healing increases the risk of infection, causes patient morbidity, and may lead to the formation of scar tissue. One of the most important events in wound healing is coverage of the wound with a new epithelial layer. This occurs when keratinocytes at the wound periphery divide and migrate to re-populate the wound bed. Many approaches are under investigation to promote and expedite this process, including the topical application of growth factors and the addition of autologous and allogeneic tissue or cell grafts. The mechanical environment of the wound site is also of fundamental importance for the rate and quality of wound healing. It is known that mechanical stress can influence wound healing by affecting the behaviour of cells within the dermis, but it remains unclear how mechanical forces affect the healing epidermis. Tensile forces are known to affect the behaviour of cells within epithelia, however, and the material properties of extracellular matrices, such as substrate stiffness, have been shown to affect the morphology, proliferation, differentiation and migration of many different cell types. In this review we will introduce the structure of the skin and the process of wound healing. We will then discuss the evidence for the effect of tissue mechanics in re-epithelialisation and, in particular, on stem cell behaviour in the wound microenvironment and in intact skin. We will discuss how the elasticity, mechanical heterogeneity and topography of the wound extracellular matrix impact the rate and quality of wound healing, and how we may exploit this knowledge to expedite wound healing and mitigate scarring. PMID:23746929

  1. Enhanced susceptibility to infections in a diabetic wound healing model

    PubMed Central

    Hirsch, Tobias; Spielmann, Malte; Zuhaili, Baraa; Koehler, Till; Fossum, Magdalena; Steinau, Hans-Ulrich; Yao, Feng; Steinstraesser, Lars; Onderdonk, Andrew B; Eriksson, Elof

    2008-01-01

    Background Wound infection is a common complication in diabetic patients. The progressive spread of infections and development of drug-resistant strains underline the need for further insights into bacterial behavior in the host in order to develop new therapeutic strategies. The aim of our study was to develop a large animal model suitable for monitoring the development and effect of bacterial infections in diabetic wounds. Methods Fourteen excisional wounds were created on the dorsum of diabetic and non-diabetic Yorkshire pigs and sealed with polyurethane chambers. Wounds were either inoculated with 2 × 108 Colony-Forming Units (CFU) of Staphylococcus aureus or injected with 0.9% sterile saline. Blood glucose was monitored daily, and wound fluid was collected for bacterial quantification and measurement of glucose concentration. Tissue biopsies for microbiological and histological analysis were performed at days 4, 8, and 12. Wounds were assessed for reepithelialization and wound contraction. Results Diabetic wounds showed a sustained significant infection (>105 CFU/g tissue) compared to non-diabetic wounds (p < 0.05) over the whole time course of the experiment. S. aureus-inoculated diabetic wounds showed tissue infection with up to 8 × 107 CFU/g wound tissue. Non-diabetic wounds showed high bacterial counts at day 4 followed by a decrease and no apparent infection at day 12. Epidermal healing in S. aureus-inoculated diabetic wounds showed a significant delay compared with non-inoculated diabetic wounds (59% versus 84%; p < 0.05) and were highly significant compared with healing in non-diabetic wounds (97%; p < 0.001). Conclusion Diabetic wounds developed significantly more sustained infection than non-diabetic wounds. S. aureus inoculation leads to invasive infection and significant wound healing delay and promotes invasive co-infection with endogenous bacteria. This novel wound healing model provides the opportunity to closely assess infections during

  2. Ghrelin accelerates wound healing through GHS-R1a-mediated MAPK-NF-κB/GR signaling pathways in combined radiation and burn injury in rats.

    PubMed

    Liu, Cong; Huang, Jiawei; Li, Hong; Yang, Zhangyou; Zeng, Yiping; Liu, Jing; Hao, Yuhui; Li, Rong

    2016-01-01

    The therapeutic effect of ghrelin on wound healing was assessed using a rat model of combined radiation and burn injury (CRBI). Rat ghrelin, anti-rat tumor necrosis factor (TNF) α polyclonal antibody (PcAb), or selective antagonists of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and growth hormone secretagogue receptor (GHS-R) 1a (SB203580, SP600125, and [D-Lys3]-GHRP-6, respectively), were administered for seven consecutive days. Levels of various signaling molecules were assessed in isolated rat peritoneal macrophages. The results showed that serum ghrelin levels and levels of macrophage glucocorticoid receptor (GR) decreased, while phosphorylation of p38MAPK, JNK, and p65 nuclear factor (NF) κB increased. Ghrelin inhibited the serum induction of proinflammatory mediators, especially TNF-α, and promoted wound healing in a dose-dependent manner. Ghrelin treatment decreased phosphorylation of p38MAPK, JNK, and p65NF-κB, and increased GR levels in the presence of GHS-R1a. SB203580 or co-administration of SB203580 and SP600125 decreased TNF-α level, which may have contributed to the inactivation of p65NF-κB and increase in GR expression, as confirmed by western blotting. In conclusion, ghrelin enhances wound recovery in CRBI rats, possibly by decreasing the induction of TNF-α or other proinflammatory mediators that are involved in the regulation of GHS-R1a-mediated MAPK-NF-κB/GR signaling pathways. PMID:27271793

  3. Ghrelin accelerates wound healing through GHS-R1a-mediated MAPK-NF-κB/GR signaling pathways in combined radiation and burn injury in rats

    PubMed Central

    Liu, Cong; Huang, Jiawei; Li, Hong; Yang, Zhangyou; Zeng, Yiping; Liu, Jing; Hao, Yuhui; Li, Rong

    2016-01-01

    The therapeutic effect of ghrelin on wound healing was assessed using a rat model of combined radiation and burn injury (CRBI). Rat ghrelin, anti-rat tumor necrosis factor (TNF) α polyclonal antibody (PcAb), or selective antagonists of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and growth hormone secretagogue receptor (GHS-R) 1a (SB203580, SP600125, and [D-Lys3]-GHRP-6, respectively), were administered for seven consecutive days. Levels of various signaling molecules were assessed in isolated rat peritoneal macrophages. The results showed that serum ghrelin levels and levels of macrophage glucocorticoid receptor (GR) decreased, while phosphorylation of p38MAPK, JNK, and p65 nuclear factor (NF) κB increased. Ghrelin inhibited the serum induction of proinflammatory mediators, especially TNF-α, and promoted wound healing in a dose-dependent manner. Ghrelin treatment decreased phosphorylation of p38MAPK, JNK, and p65NF-κB, and increased GR levels in the presence of GHS-R1a. SB203580 or co-administration of SB203580 and SP600125 decreased TNF-α level, which may have contributed to the inactivation of p65NF-κB and increase in GR expression, as confirmed by western blotting. In conclusion, ghrelin enhances wound recovery in CRBI rats, possibly by decreasing the induction of TNF-α or other proinflammatory mediators that are involved in the regulation of GHS-R1a-mediated MAPK-NF-κB/GR signaling pathways. PMID:27271793

  4. Inhibition of SDF-1α further impairs diabetic wound healing

    PubMed Central

    Bermudez, Dustin M.; Xu, Junwang; Herdrich, Benjamin J.; Radu, Antoneta; Mitchell, Marc E.; Liechty, Kenneth W.

    2010-01-01

    Objective Impaired diabetic wound healing is associated with abnormal SDF-1α production, decreased angiogenesis, and chronic inflammation. Lentiviral-mediated overexpression of SDF-1α can correct the impairments in angiogenesis and healing in diabetic wounds. We hypothesized that SDF-1α is a critical component of the normal wound healing response and that inhibition of SDF-1α would further delay the wound-healing process. Design of study Db/Db diabetic mice and Db/+ non-diabetic mice were wounded with an 8mm punch biopsy and the wounds treated with a lentiviral vector containing either the GFP or SDF-1α inhibitor transgene. The inhibitor transgene is a mutant form of SDF-1α that binds, but does not activate, the CXCR4 receptor. Computerized planimetry was used to measure wound size daily. Wounds were analyzed at 3 and 7 days by histology and for production of inflammatory markers using real-time PCR. The effect of the SDF-1α inhibitor on cellular migration was also assessed. Results Inhibition of SDF-1α resulted in a significant decrease in the rate of diabetic wound healing, (3.8 cm2/day versus 6.5 cm2/day in GFP-treated wounds p=0.04), and also impaired the early phase of non-diabetic wound healing. SDF-1α inhibition also resulted in fewer small-caliber vessels, less granulation tissue formation, and increased proinflammatory gene expression (IL-6 and MIP-2) in the diabetic wounds. Conclusions The relative level of SDF-1α in the wound plays a key role in the wound healing response. Alterations in the wound level of SDF-1α, as seen in diabetes or by SDF-1α inhibition, impair healing by decreasing cellular migration and angiogenesis, leading to increased production of inflammatory cytokines and inflammation. PMID:21211927

  5. Conditioned Media From Adipose-Derived Stromal Cells Accelerates Healing in 3-Dimensional Skin Cultures.

    PubMed

    Collawn, Sherry S; Mobley, James A; Banerjee, N Sanjib; Chow, Louise T

    2016-04-01

    Wound healing involves a number of factors that results in the production of a "closed" wound. Studies have shown, in animal models, acceleration of wound healing with the addition of adipose-derived stromal cells (ADSC). The cause for the positive effect which these cells have on wound healing has not been elucidated. We have previously shown that addition of ADSC to the dermal equivalent in 3-dimensional skin cultures accelerates reepithelialization. We now demonstrate that conditioned media (CM) from cultured ADSC produced a similar rate of healing. This result suggests that a feedback from the 3-dimensional epithelial cultures to ADSC was not necessary to effect the accelerated reepithelialization. Mass spectrometry of CM from ADSC and primary human fibroblasts revealed differences in secretomes, some of which might have roles in the accelerating wound healing. Thus, the use of CM has provided some preliminary information on a possible mode of action. PMID:26954733

  6. The wound healing, chronic fibrosis, and cancer progression triad

    PubMed Central

    Rybinski, Brad; Franco-Barraza, Janusz

    2014-01-01

    For decades tumors have been recognized as “wounds that do not heal.” Besides the commonalities that tumors and wounded tissues share, the process of wound healing also portrays similar characteristics with chronic fibrosis. In this review, we suggest a tight interrelationship, which is governed as a concurrence of cellular and microenvironmental reactivity among wound healing, chronic fibrosis, and cancer development/progression (i.e., the WHFC triad). It is clear that the same cell types, as well as soluble and matrix elements that drive wound healing (including regeneration) via distinct signaling pathways, also fuel chronic fibrosis and tumor progression. Hence, here we review the relationship between fibrosis and cancer through the lens of wound healing. PMID:24520152

  7. Traditional Therapies for Skin Wound Healing

    PubMed Central

    Pereira, Rúben F.; Bártolo, Paulo J.

    2016-01-01

    Significance: The regeneration of healthy and functional skin remains a huge challenge due to its multilayer structure and the presence of different cell types within the extracellular matrix in an organized way. Despite recent advances in wound care products, traditional therapies based on natural origin compounds, such as plant extracts, honey, and larvae, are interesting alternatives. These therapies offer new possibilities for the treatment of skin diseases, enhancing the access to the healthcare, and allowing overcoming some limitations associated to the modern products and therapies, such as the high costs, the long manufacturing times, and the increase in the bacterial resistance. This article gives a general overview about the recent advances in traditional therapies for skin wound healing, focusing on the therapeutic activity, action mechanisms, and clinical trials of the most commonly used natural compounds. New insights in the combination of traditional products with modern treatments and future challenges in the field are also highlighted. Recent Advances: Natural compounds have been used in skin wound care for many years due to their therapeutic activities, including anti-inflammatory, antimicrobial, and cell-stimulating properties. The clinical efficacy of these compounds has been investigated through in vitro and in vivo trials using both animal models and humans. Besides the important progress regarding the development of novel extraction methods, purification procedures, quality control assessment, and treatment protocols, the exact mechanisms of action, side effects, and safety of these compounds need further research. Critical Issues: The repair of skin lesions is one of the most complex biological processes in humans, occurring throughout an orchestrated cascade of overlapping biochemical and cellular events. To stimulate the regeneration process and prevent the wound to fail the healing, traditional therapies and natural products have been used

  8. Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-alpha expression.

    PubMed

    Lai, Jiann-Jyh; Lai, Kuo-Pao; Chuang, Kuang-Hsiang; Chang, Philip; Yu, I-Chen; Lin, Wen-Jye; Chang, Chawnshang

    2009-12-01

    Cutaneous wounds heal more slowly in elderly males than in elderly females, suggesting a role for sex hormones in the healing process. Indeed, androgen/androgen receptor (AR) signaling has been shown to inhibit cutaneous wound healing. AR is expressed in several cell types in healing skin, including keratinocytes, dermal fibroblasts, and infiltrating macrophages, but the exact role of androgen/AR signaling in these different cell types remains unclear. To address this question, we generated and studied cutaneous wound healing in cell-specific AR knockout (ARKO) mice. General and myeloid-specific ARKO mice exhibited accelerated wound healing compared with WT mice, whereas keratinocyte- and fibroblast-specific ARKO mice did not. Importantly, the rate of wound healing in the general ARKO mice was dependent on AR and not serum androgen levels. Interestingly, although dispensable for wound closure, keratinocyte AR promoted re-epithelialization, while fibroblast AR suppressed it. Further analysis indicated that AR suppressed wound healing by enhancing the inflammatory response through a localized increase in TNF-alpha expression. Furthermore, AR enhanced local TNF-alpha expression via multiple mechanisms, including increasing the inflammatory monocyte population, enhancing monocyte chemotaxis by upregulating CCR2 expression, and enhancing TNF-alpha expression in macrophages. Finally, targeting AR by topical application of a compound (ASC-J9) that degrades AR protein resulted in accelerated healing, suggesting a potential new therapeutic approach that may lead to better treatment of wound healing. PMID:19907077

  9. Contribution of Invariant Natural Killer T Cells to Skin Wound Healing.

    PubMed

    Tanno, Hiromasa; Kawakami, Kazuyoshi; Ritsu, Masae; Kanno, Emi; Suzuki, Aiko; Kamimatsuno, Rina; Takagi, Naoyuki; Miyasaka, Tomomitsu; Ishii, Keiko; Imai, Yoshimichi; Maruyama, Ryoko; Tachi, Masahiro

    2015-12-01

    In the present study, we determined the contribution of invariant natural killer T (iNKT) cells to the skin wound healing process. In iNKT cell-deficient (Jα18KO) mice lacking iNKT cells, wound closure was significantly delayed compared with wild-type mice. Collagen deposition, expression of α-smooth muscle actin and CD31, and wound breaking strength were significantly attenuated in Jα18KO mice. The adoptive transfer of liver mononuclear cells from wild-type but not from Jα18KO or interferon (IFN)-γ gene-disrupted (IFN-γKO) mice resulted in the reversal of this impaired wound healing in Jα18KO mice. IFN-γ expression was induced in the wounded tissues, which was significantly decreased at 6, 12, and 24 hours, but increased on day 3 after wounding in Jα18KO mice. The main source of the late-phase IFN-γ production in Jα18KO mice were neutrophils rather than NK cells and T cells. Administration of α-galactosylceramide, an activator of iNKT cells, resulted in the acceleration of wound healing on day 3 in wild-type mice. This effect was not observed in IFN-γKO mice. These results indicate that iNKT cells play important roles in wound healing. The iNKT cell-induced IFN-γ production may regulate the wound healing process in the early phase. PMID:26468976

  10. Phoenix dactylifera L. sap enhances wound healing in Wistar rats: Phytochemical and histological assessment.

    PubMed

    Abdennabi, Raed; Bardaa, Sana; Mehdi, Meriem; Rateb, Mostafa E; Raab, Andrea; Alenezi, Faizah N; Sahnoun, Zouheir; Gharsallah, Neji; Belbahri, Lassaad

    2016-07-01

    The sap of the date palm "Lagmi" is a clear liquid, rich in sugars and minerals, with a pleasant flavour. Folk remedies based on the use of "Lagmi" for wound healing are still practiced. However, no studies investigated the relevance of "Lagmi" for wound healing. Therefore, the aim of this study was to identify the in vivo healing properties of "lagmi" on mechanically wounded wistar rats. Injured rats were divided into three groups: a first group treated by "lagmi", a second reference group processed by CICAFLORA(®) and a third untreated control group. On the 12th day of the experiment, total healing in the first group was reached, while healing was incomplete in the other groups. The sap seems to accelerate cell proliferation and contribute to faster healing with a gain of more than 30% as compared to CICAFLORA(®). Chemical Analysis of "Lagmi" showed important radical scavenging activity and high total antioxidant capacity. Features reported to help healing process and/or provides a favourable environment for tissue healing in wound sites. Extensive characterization of "Lagmi" phenolic and flavonoid compounds by High Resolution LC-MS (LC-HRESIMS) analysis indicates "Lagmi" is an important source of known anti-inflammatory compounds as well as promising wound healing candidates. PMID:27064088

  11. Advanced Therapeutic Dressings for Effective Wound Healing--A Review.

    PubMed

    Boateng, Joshua; Catanzano, Ovidio

    2015-11-01

    Advanced therapeutic dressings that take active part in wound healing to achieve rapid and complete healing of chronic wounds is of current research interest. There is a desire for novel strategies to achieve expeditious wound healing because of the enormous financial burden worldwide. This paper reviews the current state of wound healing and wound management products, with emphasis on the demand for more advanced forms of wound therapy and some of the current challenges and driving forces behind this demand. The paper reviews information mainly from peer-reviewed literature and other publicly available sources such as the US FDA. A major focus is the treatment of chronic wounds including amputations, diabetic and leg ulcers, pressure sores, and surgical and traumatic wounds (e.g., accidents and burns) where patient immunity is low and the risk of infections and complications are high. The main dressings include medicated moist dressings, tissue-engineered substitutes, biomaterials-based biological dressings, biological and naturally derived dressings, medicated sutures, and various combinations of the above classes. Finally, the review briefly discusses possible prospects of advanced wound healing including some of the emerging physical approaches such as hyperbaric oxygen, negative pressure wound therapy and laser wound healing, in routine clinical care. PMID:26308473

  12. The Epigenetic Regulation of Wound Healing.

    PubMed

    Lewis, Christopher J; Mardaryev, Andrei N; Sharov, Andrey A; Fessing, Michael Y; Botchkarev, Vladimir A

    2014-07-01

    Significance: Epigenetic regulatory mechanisms are essential for epidermal homeostasis and contribute to the pathogenesis of many skin diseases, including skin cancer and psoriasis. However, while the epigenetic regulation of epidermal homeostasis is now becoming active area of research, the epigenetic mechanisms controlling the wound healing response remain relatively untouched. Recent Advances: Substantial progress achieved within the last two decades in understanding epigenetic mechanisms controlling gene expression allowed defining several levels, including covalent DNA and histone modifications, ATP-dependent and higher-order chromatin chromatin remodeling, as well as noncoding RNA- and microRNA-dependent regulation. Research pertained over the last few years suggests that epigenetic regulatory mechanisms play a pivotal role in the regulation of skin regeneration and control an execution of reparative gene expression programs in both skin epithelium and mesenchyme. Critical Issues: Epigenetic regulators appear to be inherently involved in the processes of skin repair, and are able to dynamically regulate keratinocyte proliferation, differentiation, and migration, together with influencing dermal regeneration and neoangiogenesis. This is achieved through a series of complex regulatory mechanisms that are able to both stimulate and repress gene activation to transiently alter cellular phenotype and behavior, and interact with growth factor activity. Future Directions: Understanding the molecular basis of epigenetic regulation is a priority as it represents potential therapeutic targets for the treatment of both acute and chronic skin conditions. Future research is, therefore, imperative to help distinguish epigenetic modulating drugs that can be used to improve wound healing. PMID:25032066

  13. Potato tuber wounding induces responses associated with various healing processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wounding induces an avalanche of biological responses involved in the healing and protection of internal tuber tissues exposed by mechanical damage and seed cutting. Collectively, our studies have framed a portrait of the mechanisms and regulation of potato tuber wound-healing, but much more is req...

  14. Hyperbaric Oxygen, Vasculogenic Stem Cells, and Wound Healing

    PubMed Central

    Fosen, Katina M.

    2014-01-01

    Abstract Significance: Oxidative stress is recognized as playing a role in stem cell mobilization from peripheral sites and also cell function. Recent Advances: This review focuses on the impact of hyperoxia on vasculogenic stem cells and elements of wound healing. Critical Issues: Components of the wound-healing process in which oxidative stress has a positive impact on the various cells involved in wound healing are highlighted. A slightly different view of wound-healing physiology is adopted by departing from the often used notion of sequential stages: hemostatic, inflammatory, proliferative, and remodeling and instead organizes the cascade of wound healing as overlapping events or waves pertaining to reactive oxygen species, lactate, and nitric oxide. This was done because hyperoxia has effects of a number of cell signaling events that converge to influence cell recruitment/chemotaxis and gene regulation/protein synthesis responses which mediate wound healing. Future Directions: Our alternative perspective of the stages of wound healing eases recognition of the multiple sites where oxidative stress has an impact on wound healing. This aids the focus on mechanistic events and the interplay among various cell types and biochemical processes. It also highlights the areas where additional research is needed. Antioxid. Redox Signal. 21, 1634–1647. PMID:24730726

  15. Wound Healing of Cutaneous Sulfur Mustard Injuries

    PubMed Central

    Graham, John S.; Chilcott, Robert P.; Rice, Paul; Milner, Stephen M.; Hurst, Charles G.; Maliner, Beverly I.

    2005-01-01

    Sulfur mustard is an alkylating chemical warfare agent that primarily affects the eyes, skin, and airways. Sulfur mustard injuries can take several months to heal, necessitate lengthy hospitalizations, and result in significant cosmetic and/or functional deficits. Historically, blister aspiration and/or deroofing (epidermal removal), physical debridement, irrigation, topical antibiotics, and sterile dressings have been the main courses of action in the medical management of cutaneous sulfur mustard injuries. Current treatment strategy consists of symptomatic management and is designed to relieve symptoms, prevent infections, and promote healing. There are currently no standardized or optimized methods of casualty management that prevent or minimize deficits and provide for speedy wound healing. Several laboratories are actively searching for improved therapies for cutaneous vesicant injury, with the aim of returning damaged skin to optimal appearance and normal function in the shortest time. Improved treatment will result in a better cosmetic and functional outcome for the patient, and will enable the casualty to return to normal activities sooner. This editorial gives brief overviews of sulfur mustard use, its toxicity, concepts for medical countermeasures, current treatments, and strategies for the development of improved therapies. PMID:16921406

  16. Effect of Propolis on Experimental Cutaneous Wound Healing in Dogs

    PubMed Central

    2015-01-01

    This study evaluates clinically the effect of propolis paste on healing of cutaneous wound in dogs. Under general anesthesia and complete aseptic conditions, two full thickness skin wounds (3 cm diameter) were created in each side of the chest in five dogs, one dorsal and one ventral, with 10 cm between them. These wounds were randomly allocated into two groups, control group (10 wounds) and propolis group (10 wounds). Both groups were represented in each dog. The wounds were cleaned with normal saline solution and dressed with macrogol ointment in control group and propolis paste in propolis group, twice daily till complete wound healing. Measurement of the wound area (cm2) was monitored planimetrically at 0, 7, 14, 21, 28, and 35 days after injury. The data were analyzed statistically. The results revealed a significant reduction in the wound surface area in the propolis group after 14 and 21 days compared to control group. The wound reepithelization, contraction, and total wound healing were faster in propolis group than in control group during five weeks of study. In conclusion, propolis paste has a positive impact on cutaneous wound healing and it may be suggested for treating various types of wounds in animals. PMID:26783495

  17. The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing

    PubMed Central

    Lee, Soung-Hoon; Kim, Mi-Yeon; Kim, Hyun-Yi; Lee, Young-Mi; Kim, Heesu; Nam, Kyoung Ae; Roh, Mi Ryung; Min, Do Sik; Chung, Kee Yang

    2015-01-01

    Wnt/β-catenin signaling plays important roles in cutaneous wound healing and dermal fibrosis. However, its regulatory mechanism has not been fully elucidated, and a commercially available wound-healing agent targeting this pathway is desirable but currently unavailable. We found that CXXC-type zinc finger protein 5 (CXXC5) serves as a negative feedback regulator of the Wnt/β-catenin pathway by interacting with the Dishevelled (Dvl) protein. In humans, CXXC5 protein levels were reduced in epidermal keratinocytes and dermal fibroblasts of acute wounds. A differential regulation of β-catenin, α-smooth muscle actin (α-SMA), and collagen I by overexpression and silencing of CXXC5 in vitro indicated a critical role for this factor in myofibroblast differentiation and collagen production. In addition, CXXC5−/− mice exhibited accelerated cutaneous wound healing, as well as enhanced keratin 14 and collagen synthesis. Protein transduction domain (PTD)–Dvl-binding motif (DBM), a competitor peptide blocking CXXC5-Dvl interactions, disrupted this negative feedback loop and activated β-catenin and collagen production in vitro. Co-treatment of skin wounds with PTD-DBM and valproic acid (VPA), a glycogen synthase kinase 3β (GSK3β) inhibitor which activates the Wnt/β-catenin pathway, synergistically accelerated cutaneous wound healing in mice. Together, these data suggest that CXXC5 would represent a potential target for future therapies aimed at improving wound healing. PMID:26056233

  18. The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing.

    PubMed

    Lee, Soung-Hoon; Kim, Mi-Yeon; Kim, Hyun-Yi; Lee, Young-Mi; Kim, Heesu; Nam, Kyoung Ae; Roh, Mi Ryung; Min, Do Sik; Chung, Kee Yang; Choi, Kang-Yell

    2015-06-29

    Wnt/β-catenin signaling plays important roles in cutaneous wound healing and dermal fibrosis. However, its regulatory mechanism has not been fully elucidated, and a commercially available wound-healing agent targeting this pathway is desirable but currently unavailable. We found that CXXC-type zinc finger protein 5 (CXXC5) serves as a negative feedback regulator of the Wnt/β-catenin pathway by interacting with the Dishevelled (Dvl) protein. In humans, CXXC5 protein levels were reduced in epidermal keratinocytes and dermal fibroblasts of acute wounds. A differential regulation of β-catenin, α-smooth muscle actin (α-SMA), and collagen I by overexpression and silencing of CXXC5 in vitro indicated a critical role for this factor in myofibroblast differentiation and collagen production. In addition, CXXC5(-/-) mice exhibited accelerated cutaneous wound healing, as well as enhanced keratin 14 and collagen synthesis. Protein transduction domain (PTD)-Dvl-binding motif (DBM), a competitor peptide blocking CXXC5-Dvl interactions, disrupted this negative feedback loop and activated β-catenin and collagen production in vitro. Co-treatment of skin wounds with PTD-DBM and valproic acid (VPA), a glycogen synthase kinase 3β (GSK3β) inhibitor which activates the Wnt/β-catenin pathway, synergistically accelerated cutaneous wound healing in mice. Together, these data suggest that CXXC5 would represent a potential target for future therapies aimed at improving wound healing. PMID:26056233

  19. Burn-wound healing effect of gelatin/polyurethane nanofiber scaffold containing silver-sulfadiazine.

    PubMed

    Heo, Dong Nyoung; Yang, Dae Hyeok; Lee, Jung Bok; Bae, Min Soo; Kim, Jung Ho; Moon, Seong Hwan; Chun, Heoung Jae; Kim, Chun Ho; Lim, Ho-Nam; Kwon, Il Keun

    2013-03-01

    Despite the fact that advances of burn treatment have led to reduction in the morbidity caused by burns, burn infection is still a serious problem. In this study, we designed blended synthetic and natural polymers nanofiber scaffolds using polyurethane (PU) and gelatin, which were prepared by an electrospinning method. Silver-sulfadiazine (SSD) was co-mixed to the blended polymer solution for being incorporated into the nanofibers after the electrospinning, followed by examination of burn-wound healing effect. The nanofiber scaffolds containing SSD should not only serve as a substrate for skin regeneration, but may also deliver suitable drugs, within a controlled manner during healing. The SSD release was able to prevent the growth of a wide array of bacteria and accelerate the wound healing by preventing infection. Therefore it could accelerate the burn-wound closure rate. We confirmed that PU/gelatin nanofiber scaffolds containing SSD lead to enhanced regeneration of burn-wounds. PMID:23621008

  20. Knockout of Angiotensin AT2 receptors accelerates healing but impairs quality

    PubMed Central

    Faghih, Mahya; Hosseini, Sayed M.; Smith, Barbara; Ansari, Amir Mehdi.; Lay, Frank; Ahmed, Ali Karim; Inagami, Tedashi; Marti, Guy P.; Harmon, John W.; Walston, Jeremy D.; Abadir, Peter M.

    2015-01-01

    Wounds are among the most common, painful, debilitating and costly conditions in older adults. Disruption of the angiotensin type 1 receptors (AT1R), has been associated with impaired wound healing, suggesting a critical role for AT1R in this repair process. Biological functions of angiotensin type 2 receptors (AT2R) are less studied. We investigated effects of genetically disrupting AT2R on rate and quality of wound healing. Our results suggest that AT2R effects on rate of wound closure depends on the phase of wound healing. We observed delayed healing during early phase of wound healing (inflammation). An accelerated healing rate was seen during later stages (proliferation and remodeling). By day 12, fifty percent of AT2R−/− mice had complete wound closure as compared to none in either C57/BL6 or AT1R−/− mice. There was a significant increase in AT1R, TGFβ1 and TGFβ2 expression during the proliferative and remodeling phases in AT2R−/− mice. Despite the accelerated closure rate, AT2R−/− mice had more fragile healed skin. Our results suggest that in the absence of AT2R, wound healing rate is accelerated, but yielded worse skin quality. Elucidating the contribution of both of the angiotensin receptors may help fine tune future intervention aimed at wound repair in older individuals. PMID:26727887

  1. Amniotic epithelial cells promote wound healing in mice through high epithelialization and engraftment.

    PubMed

    Jin, Enze; Kim, Tae-Hee; Han, Seongho; Kim, Sung-Whan

    2016-07-01

    Although human amniotic epithelial cells (AMEs) are an attractive source of stem cells, their therapeutic potential in wound healing has not been fully investigated. We evaluated the therapeutic potential of AMEs for wound healing. Real-time PCR showed that the epithelialization growth factors epidermal growth factor (EGF), platelet-derived growth factor (PDGF)-B and chemotactic factors interleukin-8 (IL-8 or CXCL8) and neutrophil-activating protein-2 (NAP-2 or CXCL7) were upregulated in AMEs compared with adipose-derived mesenchymal stem cells (ADMs). In vitro scratch wound assays revealed that AME-derived conditioned medium substantially accelerated wound closure. Wounds in NOD/SCID mice were created by skin excision, followed by AME transplantation. AMEs implantation significantly accelerated wound healing and increased cellularity and re-epithelialization. Transplanted AMEs exhibited high engraftment rates and expressed keratinocyte-specific proteins and cytokeratin in the wound area, suggesting direct benefits for cutaneous closure. Taken together, these data indicate that AMEs possess therapeutic capability for wound healing through the secretion of epithelialization growth factors and enhanced engraftment properties. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26174407

  2. Predicting complex acute wound healing in patients from a wound expertise centre registry: a prognostic study.

    PubMed

    Ubbink, Dirk T; Lindeboom, Robert; Eskes, Anne M; Brull, Huub; Legemate, Dink A; Vermeulen, Hester

    2015-10-01

    It is important for caregivers and patients to know which wounds are at risk of prolonged wound healing to enable timely communication and treatment. Available prognostic models predict wound healing in chronic ulcers, but not in acute wounds, that is, originating after trauma or surgery. We developed a model to detect which factors can predict (prolonged) healing of complex acute wounds in patients treated in a large wound expertise centre (WEC). Using Cox and linear regression analyses, we determined which patient- and wound-related characteristics best predict time to complete wound healing and derived a prediction formula to estimate how long this may take. We selected 563 patients with acute wounds, documented in the WEC registry between 2007 and 2012. Wounds had existed for a median of 19 days (range 6-46 days). The majority of these were located on the leg (52%). Five significant independent predictors of prolonged wound healing were identified: wound location on the trunk [hazard ratio (HR) 0·565, 95% confidence interval (CI) 0·405-0·788; P = 0·001], wound infection (HR 0·728, 95% CI 0·534-0·991; P = 0·044), wound size (HR 0·993, 95% CI 0·988-0·997; P = 0·001), wound duration (HR 0·998, 95% CI 0·996-0·999; P = 0·005) and patient's age (HR 1·009, 95% CI 1·001-1·018; P = 0·020), but not diabetes. Awareness of the five factors predicting the healing of complex acute wounds, particularly wound infection and location on the trunk, may help caregivers to predict wound healing time and to detect, refer and focus on patients who need additional attention. PMID:24007311

  3. Healing times and prediction of wound healing in neuropathic diabetic foot ulcers: a prospective study.

    PubMed

    Zimny, S; Pfohl, M

    2005-02-01

    Time line of wound healing and prediction of healing times in diabetic foot ulcers is an important issue. Usually, the percentage of wounds healed within a defined period is used for characterization of wound healing. R=sqrtA/pi (R, radius; A, planimetric wound area; pi, constant 3.14), and the wound radius reduction was 0.39 mm/week which was previously established. The initial average wound area was 96.9+/-13.1 mm2 (mean+/-SEM), and 3.61+/-1.6 mm 2 after ten weeks with an average healing time of 75.9 (95 %-CI 71-81) days. Using the equation mentioned above and the calculated weekly wound radius reduction, the predicted healing time in the test group was 86.9 (95 %-CI 73-101) days. The predicted and the observed healing times were significantly correlated with each other (r=0.55, p=0.0002). Providing standard care, the time needed for wound healing can reliably be predicted in neuropathic diabetic foot ulcers. This may be a useful tool in daily clinical practice to predict wound healing and recognize ulcers who do not respond adequately to the treatment. PMID:15772900

  4. Enhancement of wound healing by curcumin in animals.

    PubMed

    Sidhu, G S; Singh, A K; Thaloor, D; Banaudha, K K; Patnaik, G K; Srimal, R C; Maheshwari, R K

    1998-01-01

    Tissue repair and wound healing are complex processes that involve inflammation, granulation, and remodeling of the tissue. In this study, we evaluated the in vivo effects of curcumin (difeurloylmethane), a natural product obtained from the rhizomes of Curcuma longa on wound healing in rats and guinea pigs. We observed faster wound closure of punch wounds in curcumin-treated animals in comparison with untreated controls. Biopsies of the wound showed reepithelialization of the epidermis and increased migration of various cells including myofibroblasts, fibroblasts, and macrophages in the wound bed. Multiple areas within the dermis showed extensive neovascularization, and Masson's Trichrome staining showed greater collagen deposition in curcumin-treated wounds. Immunohistochemical localization of transforming growth factor-beta1 showed an increase in curcumin-treated wounds as compared with untreated wounds. In situ hybridization and polymerase chain reaction analysis also showed an increase in the mRNA transcripts of transforming growth factor-beta1 and fibronectin in curcumin-treated wounds. Because transforming growth factor-beta1 is known to enhance wound healing, it may be possible that transforming growth factor-beta1 plays an important role in the enhancement of wound healing by curcumin. PMID:9776860

  5. Electrical Stimulation and Cutaneous Wound Healing: A Review of Clinical Evidence

    PubMed Central

    Ud-Din, Sara; Bayat, Ardeshir

    2014-01-01

    Electrical stimulation (ES) has been shown to have beneficial effects in wound healing. It is important to assess the effects of ES on cutaneous wound healing in order to ensure optimization for clinical practice. Several different applications as well as modalities of ES have been described, including direct current (DC), alternating current (AC), high-voltage pulsed current (HVPC), low-intensity direct current (LIDC) and electrobiofeedback ES. However, no one method has been advocated as the most optimal for the treatment of cutaneous wound healing. Therefore, this review aims to examine the level of evidence (LOE) for the application of different types of ES to enhance cutaneous wound healing in the skin. An extensive search was conducted to identify relevant clinical studies utilising ES for cutaneous wound healing since 1980 using PubMed, Medline and EMBASE. A total of 48 studies were evaluated and assigned LOE. All types of ES demonstrated positive effects on cutaneous wound healing in the majority of studies. However, the reported studies demonstrate contrasting differences in the parameters and types of ES application, leading to an inability to generate sufficient evidence to support any one standard therapeutic approach. Despite variations in the type of current, duration, and dosing of ES, the majority of studies showed a significant improvement in wound area reduction or accelerated wound healing compared to the standard of care or sham therapy as well as improved local perfusion. The limited number of LOE-1 trials for investigating the effects of ES in wound healing make critical evaluation and assessment somewhat difficult. Further, better-designed clinical trials are needed to improve our understanding of the optimal dosing, timing and type of ES to be used.

  6. A new mouse model of impaired wound healing after irradiation.

    PubMed

    Tsumano, Tomoko; Kawai, Kenichiro; Ishise, Hisako; Nishimoto, Soh; Fukuda, Kenji; Fujiwara, Toshihiro; Kakibuchi, Masao

    2013-04-01

    Radiation has many benefits and is an important treatment for cancer therapy. However, it also has unfavourable side-effects. Among these side-effects, the impairment of wound healing in the skin is a major problem in clinics. Although many attempts have been made to overcome this shortcoming, there are few effective treatments for impaired wound healing after irradiation. One reason for this is that it is hard to obtain good animal models for researching this topic. In this study, two different models were created and investigated. In one model, rectangular flaps were created on the backs of mice and irradiated while the other parts of their bodies were covered with a lead board. In another model, the lower limbs were exposed to radiation. In each model, several doses of irradiation were tested. Skin ulcers were created in the irradiated area, and the wound healing process was observed. In order to verify the usefulness of the model, adipose derived stromal cells were injected into the wound and the healing rate was calculated. In the flap model, the flaps contracted and formed linear scars. On the other hand, in the thigh model, 15 Gy irradiation resulted in slow wound healing but no strong inflammation or necrosis. The transplantation of adipose tissue derived stromal cells into the irradiated thigh wound improved the wound healing. This study suggested that irradiation of the lower limb at ∼ 15 Gy might be an appropriate model for basic research into wound healing in irradiated skin. PMID:23406401

  7. Temporal effects of topical morphine application on cutaneous wound healing

    PubMed Central

    Rook, Jerri M.; Hasan, Wohaib; McCarson, Kenneth E.

    2008-01-01

    Background Studies have shown that topical administration of exogenous opioid drugs impairs wound healing by inhibiting the peripheral release of neuropeptides, thereby inhibiting neurogenic inflammation. This delay is immediate and peaks during the first days of wound closure. This study examined the effects of topical morphine treatment in a cutaneous wound healing model in the rat. Methods Full-thickness 4mm diameter wounds were placed on the periscapular region of rats that subsequently received twice-daily topical applications of IntraSite Gel (Smith+Nephew, Hull, United Kingdom) alone or gel infused with 5 mM morphine sulfate on days 0–3 or 4–10 post-wounding or throughout the time course. Wound tissue was taken on days 1, 3, 5, 8, and 18 post-wounding and immunostained for myofibroblast and macrophage markers or stained with hematoxylin and eosin. Results Delays in wound closure observed during morphine application on days 0–3 post-wounding mimicked those seen in wounds treated with morphine throughout the entire healing process. However, no significant delays in closure were seen in wounds treated with morphine beginning on day 4 post-wounding. Treatment of wounds with morphine significantly reduced the number of myofibroblasts and macrophages in the closing wound. Additionally, morphine application resulted in decreases in skin thickness and an increase in residual scar tissue in healed skin. Conclusions These findings demonstrate the time-dependent and persistent nature of the detrimental effects of topical morphine on cutaneous wound healing. The data identify specific limitations that could be ameliorated to optimize topical opioid administration as an analgesic therapeutic strategy in the treatment of painful cutaneous wounds. PMID:18580183

  8. Topically Applied Connective Tissue Growth Factor/CCN2 Improves Diabetic Preclinical Cutaneous Wound Healing: Potential Role for CTGF in Human Diabetic Foot Ulcer Healing

    PubMed Central

    Henshaw, F. R.; Boughton, P.; Lo, L.; McLennan, S. V.; Twigg, S. M.

    2015-01-01

    Aims/Hypothesis. Topical application of CTGF/CCN2 to rodent diabetic and control wounds was examined. In parallel research, correlation of CTGF wound fluid levels with healing rate in human diabetic foot ulcers was undertaken. Methods. Full thickness cutaneous wounds in diabetic and nondiabetic control rats were treated topically with 1 μg rhCTGF or vehicle alone, on 2 consecutive days. Wound healing rate was observed on day 14 and wound sites were examined for breaking strength and granulation tissue. In the human study across 32 subjects, serial CTGF regulation was analyzed longitudinally in postdebridement diabetic wound fluid. Results. CTGF treated diabetic wounds had an accelerated closure rate compared with vehicle treated diabetic wounds. Healed skin withstood more strain before breaking in CTGF treated rat wounds. Granulation tissue from CTGF treatment in diabetic wounds showed collagen IV accumulation compared with nondiabetic animals. Wound α-smooth muscle actin was increased in CTGF treated diabetic wounds compared with untreated diabetic wounds, as was macrophage infiltration. Endogenous wound fluid CTGF protein rate of increase in human diabetic foot ulcers correlated positively with foot ulcer healing rate (r = 0.406; P < 0.001). Conclusions/Interpretation. These data collectively increasingly substantiate a functional role for CTGF in human diabetic foot ulcers. PMID:25789327

  9. Evaluation of a bilayered, micropatterned hydrogel dressing for full-thickness wound healing.

    PubMed

    Magin, Chelsea M; Neale, Dylan B; Drinker, Michael C; Willenberg, Bradley J; Reddy, Shravanthi T; La Perle, Krista Md; Schultz, Gregory S; Brennan, Anthony B

    2016-05-01

    Nearly 12 million wounds are treated in emergency departments throughout the United States every year. The limitations of current treatments for complex, full-thickness wounds are the driving force for the development of new wound treatment devices that result in faster healing of both dermal and epidermal tissue. Here, a bilayered, biodegradable hydrogel dressing that uses microarchitecture to guide two key steps in the proliferative phase of wound healing, re-epithelialization, and revascularization, was evaluated in vitro in a cell migration assay and in vivo in a bipedicle ischemic rat wound model. Results indicate that the Sharklet™-micropatterned apical layer of the dressing increased artificial wound coverage by up to 64%, P = 0.024 in vitro. In vivo evaluation demonstrated that the bilayered dressing construction enhanced overall healing outcomes significantly compared to untreated wounds and that these outcomes were not significantly different from a leading clinically available wound dressing. Collectively, these results demonstrate high potential for this new dressing to effectively accelerate wound healing. PMID:27037279

  10. Wound healing and antibacterial properties of methanolic extract of Pupalia lappacea Juss in rats

    PubMed Central

    2014-01-01

    Background Wound healing is a natural process that enables tissue repair after an injury. To shorten its duration and minimize associated complications, wounds are treated with medications. Currently there is a growing interest in the use of alternative wound dressing agents such as plant extracts. One plant used traditionally in wound treatment is Pupalia lappacea. In view of its use in wound care, we investigated the wound healing activities of 80% methanolic leave extract of Pupalia lappacea using excision, incision and dead space wound models. Also its effects on three common wound contaminants were investigated. Methods Excision wounds were created, contaminated with microbes and treated with ointments (10% and 20% w/w) prepared from Pupalia lappacea. Incision and dead space wounds were also created in rats which were subsequently dosed orally with the extract. The wound healing activities of Pupalia lappacea ointment on excision wound was assessed by rates of wound contraction and epithelialization as well as its antibacterial effects. The effects of Pupalia lappacea on incision and dead-space wounds were determined by the wound breaking strengths and weights of the granuloma tissues formed, respectively. Results Pupalia. lappacea ointments significantly (p < 0.05) accelerated wound healing with 20% ointment having the highest percentage wound contraction and rate of epithelialization. At 4, 7 and 14 days post treatment, mean total viable bacterial count of excision wounds of the extract treated groups were significantly (p < 0.05) lower compared against the control. Wound breaking strengths and weights of granuloma tissues formed in the extract treated groups were significantly (p < 0.05) higher than those of the control group. The minimum inhibitory concentration values obtained for the Pupalia lappacea extract against Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis were 9 mg/ml, 4 mg/ml and 3 mg/ml, respectively, while

  11. Electrospun nitric oxide releasing bandage with enhanced wound healing.

    PubMed

    Lowe, A; Bills, J; Verma, R; Lavery, L; Davis, K; Balkus, K J

    2015-02-01

    Research has shown that nitric oxide (NO) enhances wound healing. The incorporation of NO into polymers for medical materials and surgical devices has potential benefits for many wound healing applications. In this work, acrylonitrile (AN)-based terpolymers were electrospun to form non-woven sheets of bandage or wound dressing type materials. NO is bound to the polymer backbone via the formation of a diazeniumdiolate group. In a 14 day NO release study, the dressings released 79 μmol NO g(-1) polymer. The NO-loaded dressings were tested for NO release in vivo, which demonstrate upregulation of NO-inducible genes with dressing application compared to empty dressings. Studies were also conducted to evaluate healing progression in wounds with dressing application performed weekly and daily. In two separate studies, excisional wounds were created on the dorsa of 10 mice. Dressings with NO loaded on the fibers or empty controls were applied to the wounds and measurements of the wound area were taken at each dressing change. The data show significantly enhanced healing progression in the wounds with weekly NO application, which is more dramatic with daily application. Further, the application of daily NO bandages results in improved wound vascularity. These data demonstrate the potential for this novel NO-releasing dressing as a valid wound healing therapy. PMID:25463501

  12. Revisiting the essential role of oxygen in wound healing.

    PubMed

    Gordillo, Gayle M; Sen, Chandan K

    2003-09-01

    Hypoxemia, caused by disrupted vasculature, is a key factor that limits wound healing. Correcting hypoxemia through the administration of supplemental oxygen (O(2)) can have significant beneficial impact on wound healing in the perioperative and outpatient settings. Beyond its role as a nutrient and antibiotic, O(2) may support vital processes such as angiogenesis, cell motility, and extracellular matrix formation. Recent discoveries highlight a novel aspect, addressing the role of O(2) in wound healing via the production of reactive oxygen species (ROS). Almost all wound-related cells possess specialized enzymes that generate ROS (including free radicals and H(2)O(2)) from O(2). Defect in these enzymes is associated with impaired healing. Low wound pO(2) is expected to compromise the function of these enzymes. At low concentrations, ROS serve as cellular messengers to support wound healing. The use of systemic hyperbaric O(2) therapy presents potential advantages, as well as risks. There is evidence to suspect that the use of pressure and systemic pure O(2) may not be essential in wound care. Elimination of these factors by using sub-pure systemic O(2) under normobaric conditions may significantly minimize the risk of O(2) toxicity. Furthermore, opportunities to treat dermal wounds using topical O(2) therapy warrant further investigation. Given that many growth factors require ROS for their function, it is reasonable to assume that approaches to correct wound pO(2) will serve as an effective adjunct in treating chronic wounds. PMID:12946829

  13. Wound healing modeling: investigating ambient gas plasma treatment efficacy

    NASA Astrophysics Data System (ADS)

    Orazov, Marat; Sakiyama, Yukinori; Graves, David B.

    2012-11-01

    Chronic wounds are thought to be caused, in part, by the presence and persistence of aerobic microbes that deplete the local oxygen concentration and prevent or slow the rate of oxygen-dependent healing. Atmospheric-pressure gas plasmas have been shown to be strong bactericidal agents and there is evidence that plasma treatment can safely kill bacteria in wounds and speed wound healing. In this study, we adapted a six-species reaction-diffusion model of epithelial wound healing and used it to predict the efficacy of various plasma treatment protocols. We assume that the only effect of plasma application to the wound is to reduce the bacterial load and that this in turn reduces the bacterial oxygen consumption in the wound. The model follows the spatial and temporal concentration or density profiles within the wound of oxygen, chemoattractants, capillary sprouts, blood vessels, fibroblasts and extracellular matrix material. We highlight the importance of the effects of plasma application on the rate of bacterial regrowth in the wound. Even a relatively large initial reduction in the bacterial wound population may not be sufficient for improved healing if bacterial regrowth is not limited. Although it is clear that current efforts to model wound healing in general and the effects of plasma in particular are in their early stage, the present results suggest several important directions for coupling plasma models with models of tissue biochemical responses.

  14. Transforming growth factor-beta improves healing of radiation-impaired wounds

    SciTech Connect

    Bernstein, E.F.; Harisiadis, L.; Salomon, G.; Norton, J.; Sollberg, S.; Uitto, J.; Glatstein, E.; Glass, J.; Talbot, T.; Russo, A. )

    1991-09-01

    Exogenously applied TGF-{beta} 1 has been shown to increase wound strength in incisional wounds early in the healing process. An impaired wound healing model was first established in guinea pigs by isolating flaps of skin and irradiating the flaps to 15 Gray in one fraction using a 4-MeV linear accelerator. Incisions made 2 d after irradiation were excised 7 d later, and showed decreased linear wound bursting strength (WBS) as compared to non-irradiated control wounds on the contralateral side of each animal (p = 0.001). The effect of TGF-{beta}on healing of radiation-impaired wounds was studied using this model. Skin on both left and right sides of guinea pigs was irradiated as above. A linear incision was made in each side. Collagen with either 1, 5, or 20 micrograms of TGF-{beta} was applied to one side prior to closure with staples, whereas the contralateral side received saline in collagen. Wounds given either 1 or 5 micrograms of TGF-{beta} were found to be stronger than controls at 7 d (p less than 0.05), whereas those receiving the higher 20-micrograms dose were weaker than controls (p less than 0.05). Thus, TGF-{beta} in lower doses improved healing at 7 d but very large amounts of the growth factor actually impaired healing. In situ hybridization done on wound samples showed increased type I collagen gene expression by fibroblasts in wounds treated with 1 micrograms TGF-{beta} over control wounds. These results indicate that TGF-{beta} improved wound healing as demonstrated by increased WBS. This improvement is accompanied by an up-regulation of collagen gene expression by resident fibroblasts.

  15. Desmoglein 3-Dependent Signaling Regulates Keratinocyte Migration and Wound Healing.

    PubMed

    Rötzer, Vera; Hartlieb, Eva; Winkler, Julia; Walter, Elias; Schlipp, Angela; Sardy, Miklós; Spindler, Volker; Waschke, Jens

    2016-01-01

    The desmosomal transmembrane adhesion molecules desmoglein 3 (Dsg3) and desmocollin 3 (Dsc3) are required for strong keratinocyte cohesion. Recently, we have shown that Dsg3 associates with p38 mitogen-activated protein kinase (p38MAPK) and suppresses its activity. Here, we further investigated the role of Dsg3-dependent control of p38MAPK function. Dsg3-deficient mice display recurrent spontaneously healing skin erosions. In lesional and perilesional biopsies, p38MAPK activation was detectable compared with control animals. This led us to speculate that Dsg3 regulates wound repair in a p38MAPK-dependent manner. Indeed, scratch-wounded keratinocyte monolayers exhibited p38MAPK activation and loss of Dsg3 in cells lining the wound edge. Human keratinocytes after silencing of Dsg3 as well as primary cells isolated from Dsg3 knockout animals exhibited accelerated migration, which was further corroborated in an ex vivo skin outgrowth assay. Importantly, migration was efficiently blocked by inhibition of p38MAPK, indicating that p38MAPK mediates the effects observed upon loss of Dsg3. In line with this, we show that levels of active p38MAPK associated with Dsc3 are increased in Dsg3-deficient cells. These data indicate that Dsg3 controls a switch from an adhesive to a migratory keratinocyte phenotype via p38MAPK inhibition. Thus, loss of Dsg3 adhesion may foster wound closure by allowing p38MAPK-dependent migration. PMID:26763450

  16. Xanthine Oxidoreductase Function Contributes to Normal Wound Healing

    PubMed Central

    Madigan, Michael C; McEnaney, Ryan M; Shukla, Ankur J; Hong, Guiying; Kelley, Eric E; Tarpey, Margaret M; Gladwin, Mark; Zuckerbraun, Brian S; Tzeng, Edith

    2015-01-01

    Chronic, nonhealing wounds result in patient morbidity and disability. Reactive oxygen species (ROS) and nitric oxide (NO) are both required for normal wound repair, and derangements of these result in impaired healing. Xanthine oxidoreductase (XOR) has the unique capacity to produce both ROS and NO. We hypothesize that XOR contributes to normal wound healing. Cutaneous wounds were created in C57Bl6 mice. XOR was inhibited with dietary tungsten or allopurinol. Topical hydrogen peroxide (H2O2, 0.15%) or allopurinol (30 μg) was applied to wounds every other day. Wounds were monitored until closure or collected at d 5 to assess XOR expression and activity, cell proliferation and histology. The effects of XOR, nitrite, H2O2 and allopurinol on keratinocyte cell (KC) and endothelial cell (EC) behavior were assessed. We identified XOR expression and activity in the skin and wound edges as well as granulation tissue. Cultured human KCs also expressed XOR. Tungsten significantly inhibited XOR activity and impaired healing with reduced ROS production with reduced angiogenesis and KC proliferation. The expression and activity of other tungsten-sensitive enzymes were minimal in the wound tissues. Oral allopurinol did not reduce XOR activity or alter wound healing but topical allopurinol significantly reduced XOR activity and delayed healing. Topical H2O2 restored wound healing in tungsten-fed mice. In vitro, nitrite and H2O2 both stimulated KC and EC proliferation and EC migration. These studies demonstrate for the first time that XOR is abundant in wounds and participates in normal wound healing through effects on ROS production. PMID:25879627

  17. Cutaneous Wound Healing After Treatment with Plant-Derived Human Recombinant Collagen Flowable Gel

    PubMed Central

    Roth, Sigal; Amzel, Tal; Harel-Adar, Tamar; Tamir, Eran; Grynspan, Frida; Shoseyov, Oded

    2013-01-01

    Chronic wounds, particularly diabetic ulcers, represent a main public health concern with significant costs. Ulcers often harbor an additional obstacle in the form of tunneled or undermined wounds, requiring treatments that can reach the entire wound tunnel, because bioengineered grafts are typically available only in a sheet form. While collagen is considered a suitable biodegradable scaffold material, it is usually extracted from animal and human cadaveric sources, and accompanied by potential allergic and infectious risks. The purpose of this study was to test the performance of a flowable gel made of human recombinant type I collagen (rhCollagen) produced in transgenic tobacco plants, indicated for the treatment of acute, chronic, and tunneled wounds. The performance of the rhCollagen flowable gel was tested in an acute full-thickness cutaneous wound-healing rat model and compared to saline treatment and two commercial flowable gel control products made of bovine collagen and cadaver human skin collagen. When compared to the three control groups, the rhCollagen-based gel accelerated wound closure and triggered a significant jumpstart to the healing process, accompanied by enhanced re-epithelialization. In a cutaneous full-thickness wound pig model, the rhCollagen-based flowable gel induced accelerated wound healing compared to a commercial product made of bovine tendon collagen. By day 21 post-treatment, 95% wound closure was observed with the rhCollagen product compared to 68% closure in wounds treated with the reference product. Moreover, rhCollagen treatment induced an early angiogenic response and induced a significantly lower inflammatory response than in the control group. In summary, rhCollagen flowable gel proved to be efficacious in animal wound models and is expected to be capable of reducing the healing time of human wounds. PMID:23259631

  18. Cutaneous wound healing after treatment with plant-derived human recombinant collagen flowable gel.

    PubMed

    Shilo, Shani; Roth, Sigal; Amzel, Tal; Harel-Adar, Tamar; Tamir, Eran; Grynspan, Frida; Shoseyov, Oded

    2013-07-01

    Chronic wounds, particularly diabetic ulcers, represent a main public health concern with significant costs. Ulcers often harbor an additional obstacle in the form of tunneled or undermined wounds, requiring treatments that can reach the entire wound tunnel, because bioengineered grafts are typically available only in a sheet form. While collagen is considered a suitable biodegradable scaffold material, it is usually extracted from animal and human cadaveric sources, and accompanied by potential allergic and infectious risks. The purpose of this study was to test the performance of a flowable gel made of human recombinant type I collagen (rhCollagen) produced in transgenic tobacco plants, indicated for the treatment of acute, chronic, and tunneled wounds. The performance of the rhCollagen flowable gel was tested in an acute full-thickness cutaneous wound-healing rat model and compared to saline treatment and two commercial flowable gel control products made of bovine collagen and cadaver human skin collagen. When compared to the three control groups, the rhCollagen-based gel accelerated wound closure and triggered a significant jumpstart to the healing process, accompanied by enhanced re-epithelialization. In a cutaneous full-thickness wound pig model, the rhCollagen-based flowable gel induced accelerated wound healing compared to a commercial product made of bovine tendon collagen. By day 21 post-treatment, 95% wound closure was observed with the rhCollagen product compared to 68% closure in wounds treated with the reference product. Moreover, rhCollagen treatment induced an early angiogenic response and induced a significantly lower inflammatory response than in the control group. In summary, rhCollagen flowable gel proved to be efficacious in animal wound models and is expected to be capable of reducing the healing time of human wounds. PMID:23259631

  19. The stimulation of postdermabrasion wound healing with stabilized aloe vera gel-polyethylene oxide dressing.

    PubMed

    Fulton, J E

    1990-05-01

    Full-face dermabrasion provided an ideal opportunity to document the effects of dressings on wound healing management. Following the procedure, the abraded face was divided in half. One side was treated with the standard polyethylene oxide gel wound dressings. The other side was treated with a polyethylene oxide gel dressing saturated with stabilized aloe vera. The polyethylene oxide dressing provided an excellent matrix for the release of aloe vera gel during the initial 5 days of wound healing. By 24-48 hours there was dramatic vasoconstriction and accompanying reduction in edema on the aloe-treated side. By the third to fourth day there was less exudate and crusting at the aloe site, and by the fifth to sixth day the reepithelialization at the aloe site was complete. Overall, wound healing was approximately 72 hours faster at the aloe site. This acceleration in wound healing is important to reduce bacterial contamination, subsequent keloid formation, and/or pigmentary changes. The exact mechanism of acceleration of wound healing by aloe vera is unknown. PMID:2341661

  20. Additive enhancement of wound healing in diabetic mice by low level light and topical CoQ10

    PubMed Central

    Mao, Zhigang; Wu, Jeffrey H.; Dong, Tingting; Wu, Mei X.

    2016-01-01

    Diabetes, a highly prevalent disease that affects 9.3% of Americans, often leads to severe complications and slow wound healing. Preclinical studies have suggested that low level light therapy (LLLT) can accelerate wound healing in diabetic subjects, but significant improvements must be made to overcome the absence of persuasive evidence for its clinical use. We demonstrate here that LLLT can be combined with topical Coenzyme Q10 (CoQ10) to heal wounds in diabetic mice significantly faster than LLLT alone, CoQ10 alone, or controls. LLLT followed by topical CoQ10 enhanced wound healing by 68~103% in diabetic mice in the first week and more than 24% in the second week compared with untreated controls. All wounds were fully healed in two weeks following the dual treatment, in contrast to only 50% wounds or a fewer being fully healed for single or sham treatment. The accelerated healing was corroborated by at least 50% higher hydroxyproline levels, and tripling cell proliferation rates in LLLT and CoQ10 treated wounds over controls. The beneficial effects on wound healing were probably attributed to additive enhancement of ATP production by LLLT and CoQ10 treatment. The combination of LLLT and topical CoQ10 is safe and convenient, and merits further clinical study. PMID:26830658

  1. Wound healing potential of pterospermum acerifolium wild. With induction of tumor necrosis factor - α

    PubMed Central

    Senapati, Aswini Kumar; Giri, Ranjan Kumar; Panda, Dibya Sundar; Satyanarayan, Sremantula

    2011-01-01

    Pterospermum acerifolium, a well-known plant in Indian medicine possesses various therapeutic properties including healing properties and cytokine induction. Wound healing activity of ethanolic extract of P. acerifolium flower along with its effect on tumor necrosis factor-α (TNF-α) was assessed using excision model of wound repair in Wistar albino rats. After application of the P. acerifolium extract, rate of epithelization with an increase in wound contraction was observed. Animals tropically treated with 10% P. acerifolium extract in petroleum jelly, the wound healing process was observed faster as compared to control group which were treated with petroleum jelly alone. A significant accelerated healing was noticed in animals which were additionally prefed with 250mg/kg body weight of ethanolic P. acerifolium extract daily for 20 consecutive days along with the topical application 10% P. acerifolium extract. During wound healing phase TNF-α level was found to be up regulated by P. acerifolium treatment. Early wound healing may be pronounced due to P. acerifolium extract elevating TNF−α production PMID:24826024

  2. Macrophage PPARγ and impaired wound healing in type 2 diabetes.

    PubMed

    Mirza, Rita E; Fang, Milie M; Novak, Margaret L; Urao, Norifumi; Sui, Audrey; Ennis, William J; Koh, Timothy J

    2015-08-01

    Macrophages undergo a transition from pro-inflammatory to healing-associated phenotypes that is critical for efficient wound healing. However, the regulation of this transition during normal and impaired healing remains to be elucidated. In our studies, the switch in macrophage phenotypes during skin wound healing was associated with up-regulation of the peroxisome proliferator-activated receptor (PPAR)γ and its downstream targets, along with increased mitochondrial content. In the setting of diabetes, up-regulation of PPARγ activity was impaired by sustained expression of IL-1β in both mouse and human wounds. In addition, experiments with myeloid-specific PPARγ knockout mice indicated that loss of PPARγ in macrophages is sufficient to prolong wound inflammation and delay healing. Furthermore, PPARγ agonists promoted a healing-associated macrophage phenotype both in vitro and in vivo, even in the diabetic wound environment. Importantly, topical administration of PPARγ agonists improved healing in diabetic mice, suggesting an appealing strategy for down-regulating inflammation and improving the healing of chronic wounds. PMID:25875529

  3. VAC therapy to promote wound healing after surgical revascularisation for critical lower limb ischaemia.

    PubMed

    De Caridi, Giovanni; Massara, Mafalda; Greco, Michele; Pipitò, Narayana; Spinelli, Francesco; Grande, Raffaele; Butrico, Lucia; de Franciscis, Stefano; Serra, Raffaele

    2016-06-01

    Vacuum-assisted closure (VAC) therapy is a new emerging non-invasive system in wound care, which speeds up wound healing by causing vacuum, improving tissue perfusion and suctioning the exudates, and facilitating the removal of bacteria from the wound. The application of sub-atmospheric pressure on the lesions seems to alter the cytoskeleton of the cells on the wound bed, triggering a cascade of intracellular signals that increase the rate of cell division and subsequent formation of granulation tissue. The aim of this study is to analyse the results of VAC therapy used as an adjuvant therapy for the treatment of foot wounds in patients affected by critical limb ischaemia (CLI) (Rutherford 6 class) after distal surgical revascularisation, to promote and accelerate the healing of ulcers. Twenty-nine patients (20 males, 9 females; mean age 68·4) affected by CLI of Rutherford 6 class, after surgical revascularisation of the lower limb, underwent VAC therapy in order to speed up wound healing. Complete wound healing was achieved in 19 patients (65·51%), in an average period of 45·4 ± 25·6 days. VAC therapy is a valid aid, after surgical revascularisation, to achieve rapid healing of foot lesions in patients with CLI. PMID:24872149

  4. Effects of topical oxygen therapy on ischemic wound healing

    PubMed Central

    Rao, Congqiang; Xiao, Liling; Liu, Hongwei; Li, Shenghong; Lu, Jinqiang; Li, Jiangxuan; Gu, Shixing

    2016-01-01

    [Purpose] This study evaluated the effects of topical oxygen therapy on the hind limb wounds of rats under ischemic conditions. [Subjects and Methods] Twelve injured rats were treated with topical oxygen on skin wounds located on the hind limb and compared with twelve injured control rats. Indexes including gross morphology of the wound, wound healing time, wound healing rate, and histological and immunohistochemical staining of sections of wound tissue were examined at different time points after intervention. [Results] The wound healing time was shorter in the topical oxygen therapy group than the control group. The wound healing rate and granulation tissue formation in the topical oxygen therapy group showed significant improvement on days 3, 7, and 14. Through van Gieson staining, the accumulation of collagen fiber in the topical oxygen therapy group was found to have improved when compared with the control group on day 7. Through semiquantitative immunohistochemical staining, many more new vessels were found in the topical oxygen therapy group compared with the model control group on day 7. [Conclusion] The results of the experiment showed that topical oxygen therapy improved ischemic wound healing. PMID:26957741

  5. Pollution dilemma in Asian population: CNG and wound healing.

    PubMed

    Ejaz, Sohail; Chekarova, Irina; Ahmad, Mukhtar; Nasir, Amir; Ashraf, Muhammad; Lim, Chae Woong

    2009-11-01

    Automobile exhaust constituents contribute significantly to air pollution in urban areas and compressed natural gas (CNG) is considered one of the most promising fuel alternatives for the future. CNG-powered four-stroke engine auto-rickshaws are ubiquitous in South Asian cities as taxi and for commercial transportation. Automotive exhaust contains several toxins, which are overwhelmingly toxic to the processes of wound healing. By utilizing the in vivo mouse model of wound healing, this report analyzes the effects of CNG-powered four-stroke auto-rickshaws smoke solution (4SARSS) on different events of wound healing; dermal matrix regeneration, re-epithelialization and neovascularization. A total of 72 adult mice, divided in eight groups were exposed to 4SARSS for 12 days. A highly significant reduction (P<0.001) in wound closure was observed among all 4SARSS treated groups, at each time point of the experiment. An immature development in both the neoepidermis and the neodermis was observed among all 4SARSS treated wounds with defective re-epithelialization, dermal matrix regeneration and maturation of collagen bundles. Abbott curve, angular spectrum, 3D surface topographies, and histological investigations of wounds explicated highly significant activation (P<0.001) of delayed-neovascularization among 4SARSS treated wounds. All these annotations advocate excessive toxicity of emission from CNG-powered auto-rickshaws to the process of wound healing and people occupationally exposed to this toxic emissions may suffer varying degree of delayed wound healing. PMID:21784023

  6. Wounding the Cornea to Learn How it Heals

    PubMed Central

    Stepp, Mary Ann; Zieske, James D.; Trinkaus-Randall, Vickery; Kyne, Briana; Pal-Ghosh, Sonali; Tadvalkar, Gauri; Pajoohesh-Ganji, Ahdeah

    2014-01-01

    Corneal wound healing studies have a long history and rich literature that describes the data obtained over the past 70 years using many different species of animals and methods of injury. These studies have lead to reduced suffering and provided clues to treatments that are now helping patients live more productive lives. In spite of the progress made, further research is required since blindness and reduced quality of life due to corneal scarring still happens. The purpose of this review is to summarize what is known about different types of wound and animal models used to study corneal wound healing. The subject of corneal wound healing is broad and includes chemical and mechanical wound models. This review focuses on mechanical injury models involving debridement and keratectomy wounds to reflect the authors’ expertise. PMID:24607489

  7. Correction of MFG-E8 Resolves Inflammation and Promotes Cutaneous Wound Healing in Diabetes.

    PubMed

    Das, Amitava; Ghatak, Subhadip; Sinha, Mithun; Chaffee, Scott; Ahmed, Noha S; Parinandi, Narasimham L; Wohleb, Eric S; Sheridan, John F; Sen, Chandan K; Roy, Sashwati

    2016-06-15

    Milk fat globule epidermal growth factor-factor 8 (MFG-E8) is a peripheral glycoprotein that acts as a bridging molecule between the macrophage and apoptotic cells, thus executing a pivotal role in the scavenging of apoptotic cells from affected tissue. We have previously reported that apoptotic cell clearance activity or efferocytosis is compromised in diabetic wound macrophages. In this work, we test the hypothesis that MFG-E8 helps resolve inflammation, supports angiogenesis, and accelerates wound closure. MFG-E8(-/-) mice displayed impaired efferocytosis associated with exaggerated inflammatory response, poor angiogenesis, and wound closure. Wound macrophage-derived MFG-E8 was recognized as a critical driver of wound angiogenesis. Transplantation of MFG-E8(-/-) bone marrow to MFG-E8(+/+) mice resulted in impaired wound closure and compromised wound vascularization. In contrast, MFG-E8(-/-) mice that received wild-type bone marrow showed improved wound closure and improved wound vascularization. Hyperglycemia and exposure to advanced glycated end products inactivated MFG-E8, recognizing a key mechanism that complicates diabetic wound healing. Diabetic db/db mice suffered from impaired efferocytosis accompanied with persistent inflammation and slow wound closure. Topical recombinant MFG-E8 induced resolution of wound inflammation, improvements in angiogenesis, and acceleration of closure, upholding the potential of MFG-E8-directed therapeutics in diabetic wound care. PMID:27194784

  8. Evaluation of Tectona grandis leaves for wound healing activity.

    PubMed

    Majumdar, Mrityunjoy; Nayeem, Naira; Kamath, Jagadish V; Asad, Mohammed

    2007-04-01

    The frontal leaves of Tectona grandis (Verabinaceae) are widely used in the folklore for the treatment of various kinds of wounds, especially burn wound. The present study was carried out to evaluate the effect of hydrochloric extract of Tectona grandis on experimentally induced wounds in rats and compare the effects observed with a known wound healing agent, Aloe vera. The models selected were excision wound, incision wound, burn wound and dead space wound. A suitable gel formulation was selected for the application using cellophane membrane penetration. In the excision wound and burn wound models, animals treated with Tectona grandis leaf extract showed significant reduction in period of epithelisation and wound contraction 50%. In the incision wound model, a significant increase in the breaking strength was observed. Tectona grandis leaf extract treatment orally produced a significant increase in the breaking strength, dry weight and hydroxyproline content of the granulation tissue in dead space wound. It was concluded that Tectona grandis leaf extract applied topically (5% and 10% gel formulation) or administered orally (250 mg and 500 mg/kg body weight) possesses wound healing activity. PMID:17416566

  9. Application of Antrodia camphorata Promotes Rat's Wound Healing In Vivo and Facilitates Fibroblast Cell Proliferation In Vitro

    PubMed Central

    Amin, Zahra A.; Ali, Hapipah M.; Alshawsh, Mohammed A.; Darvish, Pouya H.; Abdulla, Mahmood A.

    2015-01-01

    Antrodia camphorata is a parasitic fungus from Taiwan, it has been documented to possess a variety of pharmacological and biological activities. The present study was undertaken to evaluate the potential of Antrodia camphorata ethanol extract to accelerate the rate of wound healing closure and histology of wound area in experimental rats. The safety of Antrodia camphorata was determined in vivo by the acute toxicity test and in vitro by fibroblast cell proliferation assay. The scratch assay was used to evaluate the in vitro wound healing in fibroblast cells and the excision model of wound healing was tested in vivo using four groups of adult Sprague Dawley rats. Our results showed that wound treated with Antrodia camphorata extract and intrasite gel significantly accelerates the rate of wound healing closure than those treated with the vehicle. Wounds dressed with Antrodia camphorata extract showed remarkably less scar width at wound closure and granulation tissue contained less inflammatory cell and more fibroblast compared to wounds treated with the vehicle. Masson's trichrom stain showed granulation tissue containing more collagen and less inflammatory cell in Antrodia camphorata treated wounds. In conclusion, Antrodia camphorata extract significantly enhanced the rate of the wound enclosure in rats and promotes the in vitro healing through fibroblast cell proliferation. PMID:26557855

  10. Healing of Chronic Wounds through Systemic Effects of Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Cañedo, L.; Trigos, I.; García-Cantú, R.; Godina-Nava, J. J.; Serrano, G.

    2002-08-01

    Extremely low frequency electromagnetic fields (ELF) were configured to interact with peripheral blood mononuclear cells (PBMC). These ELF were applied in the arm to five patients with chronic wounds resistant to medical and surgical treatment. Wound healing began in all patients during the first two weeks after ELF exposure permiting their previously unresponsive chronic wounds to function as internal controls. All lesions were cured or healed >70% in less than four months. Systemic effects were explained by ELF activation of PBMC and their transportation through the blood to the affected site. This therapy is effective in selected patients with chronic wounds.

  11. Alterations in proteoglycan synthesis common to healing wounds and tumors.

    PubMed Central

    Yeo, T. K.; Brown, L.; Dvorak, H. F.

    1991-01-01

    Wound healing and tumor stroma generation share several important properties, including hyperpermeable blood vessels, extravasation of fibrinogen, and extravascular clotting. In both, the deposits of fibrin gel serve initially as provisional stroma and later are replaced by granulation tissue. Proteoglycans (PG) are also important constituents of the extracellular matrix, but their composition and role in healing wounds and tumor stroma generation are poorly understood. The authors used immunohistochemical and biochemical methods to investigate the dermatan sulfate proteoglycan (DSPG) and chondroitin sulfate proteoglycan (CSPG) composition of healing skin wounds and solid tumors. By immunohistochemistry, the great majority of normal guinea pig and human dermis stained weakly for CSPG and strongly for decorin. In contrast, the granulation tissue of healing skin wounds and scars stained intensely for CSPG and weakly or not at all for decorin; however decorin staining was restored to normal intensity after digestion with chondroitin ABC lyase, suggesting that decorin antigenic sites had been masked by glycosaminoglycan (GAG) chains. Like wounds, the stroma of several carcinomas (line 1 guinea pig, human breast, colon, basal cell, and squamous) stained strongly for CSPG and weakly or not at all for decorin, but decorin staining developed after chondroitin ABC lyase digestion. Thus healing wounds and tumor stroma express a common pattern of altered PG staining, adding another to the properties these pathologic entities share. Proteoglycans extracted from healing wounds after in situ labelling with [35S] Na sulfate contained more CSPG than normal dermis with significantly longer GAG chains. Granulation tissue also synthesized more DSPG than normal skin, with greater heterogeneity and longer GAG chains. These alterations in PG synthesis correlate with the cell proliferation, migration, and collagen synthesis that accompany wound healing and may provide clues to the

  12. Fibroblast-specific upregulation of Flightless I impairs wound healing.

    PubMed

    Turner, Christopher T; Waters, James M; Jackson, Jessica E; Arkell, Ruth M; Cowin, Allison J

    2015-09-01

    The cytoskeletal protein Flightless (Flii) is a negative regulator of wound healing. Upregulation of Flii is associated with impaired migration, proliferation and adhesion of both fibroblasts and keratinocytes. Importantly, Flii translocates from the cytoplasm to the nucleus in response to wounding in fibroblasts but not keratinocytes. This cell-specific nuclear translocation of Flii suggests that Flii may directly regulate gene expression in fibroblasts, providing one potential mechanism of action for Flii in the wound healing response. To determine whether the tissue-specific upregulation of Flii in fibroblasts was important for the observed inhibitory effects of Flii on wound healing, an inducible fibroblast-specific Flii overexpressing mouse model was generated. The inducible ROSA26 system allowed the overexpression of Flii in a temporal and tissue-specific manner in response to tamoxifen treatment. Wound healing in the inducible mice was impaired, with wounds at day 7 postwounding significantly larger than those from non-inducible controls. There was also reduced collagen maturation, increased myofibroblast infiltration and elevated inflammation. The impaired healing response was similar in magnitude to that observed in mice with non-tissue-specific upregulation of Flii suggesting that fibroblast-derived Flii may have an important role in the wound healing response. PMID:25959103

  13. Review: Corneal epithelial stem cells, their niche and wound healing

    PubMed Central

    2013-01-01

    Stem cells emerged as a concept during the second half of 19th century, first as a theoretical entity, but then became one of the most promising research fields in cell biology. This work describes the most important characteristics of adult stem cells, including the experimental criteria used to identify them, and discusses current knowledge that led to the proposal that stem cells existed in different parts of the eye, such as the retina, lens, conjunctiva, corneal stroma, Descemet’s membrane, and the subject of this review: the corneal epithelium. Evidence includes results that support the presence of corneal epithelial stem cells at the limbus, as well as the major obstacles to isolating them as pure cell populations. Part of this review describes the variation in the basement membrane composition between the limbus and the central cornea, to show the importance of the corneal stem cell niche, its structure, and the participation of extracellular matrix (ECM) components in regulating corneal stem cell compartment. Results obtained by various laboratories suggest that the extracellular matrix plays a central role in regulating stem cell commitment, corneal differentiation, and participation in corneal wound healing, in addition to other environmental signals such as cytokines and growth factors. The niche could define cell division patterns in corneal stem cell populations, establishing whether stem cells divide asymmetrically or symmetrically. Characterization and understanding of the factors that regulate corneal epithelial stem cells should open up new paths for developing new therapies and strategies for accelerating and improving corneal wound healing. PMID:23901244

  14. Plasminogen is a critical regulator of cutaneous wound healing.

    PubMed

    Sulniute, Rima; Shen, Yue; Guo, Yong-Zhi; Fallah, Mahsa; Ahlskog, Nina; Ny, Lina; Rakhimova, Olena; Broden, Jessica; Boija, Hege; Moghaddam, Aliyeh; Li, Jinan; Wilczynska, Malgorzata; Ny, Tor

    2016-05-01

    Wound healing is a complicated biological process that consist of partially overlapping inflammatory, proliferation and tissue remodelling phases. A successful wound healing depends on a proper activation and subsequent termination of the inflammatory phase. The failure to terminate the inflammation halts the completion of wound healing and is a known reason for formation of chronic wounds. Previous studies have shown that wound closure is delayed in plasminogen-deficient mice, and a role for plasminogen in dissection of extracellular matrix was suggested. However, our finding that plasminogen is transported to the wound by inflammatory cells early during the healing process, where it potentiates inflammation, indicates that plasminogen may also have other roles in the wound healing process. Here we report that plasminogen-deficient mice have extensive fibrin and neutrophil depositions in the wounded area long after re-epithelialisation, indicating inefficient debridement and chronic inflammation. Delayed formation of granulation tissue suggests that fibroblast function is impaired in the absence of plasminogen. Therefore, in addition to its role in the activation of inflammation, plasminogen is also crucial for subsequent steps, including resolution of inflammation and activation of the proliferation phase. Importantly, supplementation of plasminogen-deficient mice with human plasminogen leads to a restored healing process that is comparable to that in wild-type mice. Besides of being an activator of the inflammatory phase during wound healing, plasminogen is also required for the subsequent termination of inflammation. Based on these results, we propose that plasminogen may be an important future therapeutic agent for wound treatment. PMID:26791370

  15. New Guar Biopolymer Silver Nanocomposites for Wound Healing Applications

    PubMed Central

    Abdullah, Md Farooque; Das, Suvadra; Roy, Partha; Datta, Sriparna; Mukherjee, Arup

    2013-01-01

    Wound healing is an innate physiological response that helps restore cellular and anatomic continuity of a tissue. Selective biodegradable and biocompatible polymer materials have provided useful scaffolds for wound healing and assisted cellular messaging. In the present study, guar gum, a polymeric galactomannan, was intrinsically modified to a new cationic biopolymer guar gum alkylamine (GGAA) for wound healing applications. Biologically synthesized silver nanoparticles (Agnp) were further impregnated in GGAA for extended evaluations in punch wound models in rodents. SEM studies showed silver nanoparticles well dispersed in the new guar matrix with a particle size of ~18 nm. In wound healing experiments, faster healing and improved cosmetic appearance were observed in the new nanobiomaterial treated group compared to commercially available silver alginate cream. The total protein, DNA, and hydroxyproline contents of the wound tissues were also significantly higher in the treated group as compared with the silver alginate cream (P < 0.05). Silver nanoparticles exerted positive effects because of their antimicrobial properties. The nanobiomaterial was observed to promote wound closure by inducing proliferation and migration of the keratinocytes at the wound site. The derivatized guar gum matrix additionally provided a hydrated surface necessary for cell proliferation. PMID:24175306

  16. Muscle wound healing in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Schmidt, J G; Andersen, E W; Ersbøll, B K; Nielsen, M E

    2016-01-01

    We followed the progression of healing of deep excisional biopsy punch wounds over the course of 365 days in rainbow trout (Oncorhynchus mykiss) by monitoring visual wound healing and gene expression in the healing muscle at regular intervals (1, 3, 7, 14, 38 and 100 days post-wounding). In addition, we performed muscle texture analysis one year after wound infliction. The selected genes have all previously been investigated in relation to vertebrate wound healing, but only few specifically in fish. The selected genes were interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β1 and -β3, matrix metalloproteinase (MMP) -9 and -13, inducible nitric oxide synthase (iNOS), fibronectin (FN), tenascin-C (TN-C), prolyl 4-hydroxylase α1-chain (P4Hα1), lysyl oxidase (LOX), collagen type I α1-chain (ColIα1), CD41 and CD163. Wound healing progressed slowly in the presented study, which is at least partially due to the low temperature of about 8.5 °C during the first 100 days. The inflammation phase lasted more than 14 days, and the genes relating to production and remodeling of new extracellular matrix (ECM) exhibited a delayed but prolonged upregulation starting 1-2 weeks post-wounding and lasting until at least 100 days post-wounding. The gene expression patterns and histology reveal limited capacity for muscle regeneration in rainbow trout, and muscle texture analyses one year after wound infliction confirm that wounds heal with fibrosis. At 100 dpw epidermis had fully regenerated, and dermis partially regenerated. Scales had not regenerated even after one year. CD163 is a marker of "wound healing"-type M2c macrophages in mammals. M2 macrophage markers are as yet poorly described in fish. The pattern of CD163 expression in the present study is consistent with the expected timing of presence of M2c macrophages in the wound. CD163 may thus potentially prove a valuable marker of M2 macrophages - or a subset hereof - in fish. We subjected a group of fish to

  17. Chemical Composition and Anti-Candidiasis Mediated Wound Healing Property of Cymbopogon nardus Essential Oil on Chronic Diabetic Wounds

    PubMed Central

    Kandimalla, Raghuram; Kalita, Sanjeeb; Choudhury, Bhaswati; Dash, Suvakanta; Kalita, Kasturi; Kotoky, Jibon

    2016-01-01

    Poor wound healing is one of the major complication of diabetic patients which arises due to different factors like hyperglycemia, oxidative stress, vascular insufficiency and microbial infections. Candidiasis of diabetic wounds is a difficult to treat condition and potentially can lead to organ amputation. There are a few number of medications available in market to treat this chronic condition; which demands for alternative treatment options. In traditional system of medicine like Ayurveda, essential oil extracted from leaves of Cymbopogon nardus L. (Poaceae) has been using for the treatment of microbial infections, inflammation and pain. In this regard, we have evaluated anti-Candida and anti-inflammatory activity mediated wound healing property of C. nardus essential oil (EO-CN) on candidiasis of diabetic wounds. EO-CN was obtained through hydro-distillation and subjected to Gas chromatography–mass spectroscopy (GC–MS) analysis for chemical profiling. Anti-Candida activity of EO-CN was tested against Candida albicans, C. glabrata and C. tropicalis by in vitro zone of inhibition and minimum inhibitory concentration (MIC) assays. Anti-candidiasis ability of EO-CN was evaluated on C. albicans infected diabetic wounds of mice through measuring candida load on the 7th, 14th, and 21st day of treatment. Further progression in wound healing was confirmed by measuring the inflammatory marker levels and histopathology of wounded tissues on last day of EO-CN treatment. A total of 95 compounds were identified through GC–MS analysis, with major compounds like citral, 2,6-octadienal-, 3,7-dimethyl-, geranyl acetate, citronellal, geraniol, and citronellol. In vitro test results demonstrated strong anti-Candida activity of EO-CN with a MIC value of 25 μg/ml against C. albicans, 50 μg/ml against C. glabrata and C. tropicalis. EO-CN treatment resulted in significant reduction of candida load on diabetic wounds. Acceleration in wound healing was indicated by declined

  18. Chemical Composition and Anti-Candidiasis Mediated Wound Healing Property of Cymbopogon nardus Essential Oil on Chronic Diabetic Wounds.

    PubMed

    Kandimalla, Raghuram; Kalita, Sanjeeb; Choudhury, Bhaswati; Dash, Suvakanta; Kalita, Kasturi; Kotoky, Jibon

    2016-01-01

    Poor wound healing is one of the major complication of diabetic patients which arises due to different factors like hyperglycemia, oxidative stress, vascular insufficiency and microbial infections. Candidiasis of diabetic wounds is a difficult to treat condition and potentially can lead to organ amputation. There are a few number of medications available in market to treat this chronic condition; which demands for alternative treatment options. In traditional system of medicine like Ayurveda, essential oil extracted from leaves of Cymbopogon nardus L. (Poaceae) has been using for the treatment of microbial infections, inflammation and pain. In this regard, we have evaluated anti-Candida and anti-inflammatory activity mediated wound healing property of C. nardus essential oil (EO-CN) on candidiasis of diabetic wounds. EO-CN was obtained through hydro-distillation and subjected to Gas chromatography-mass spectroscopy (GC-MS) analysis for chemical profiling. Anti-Candida activity of EO-CN was tested against Candida albicans, C. glabrata and C. tropicalis by in vitro zone of inhibition and minimum inhibitory concentration (MIC) assays. Anti-candidiasis ability of EO-CN was evaluated on C. albicans infected diabetic wounds of mice through measuring candida load on the 7th, 14th, and 21st day of treatment. Further progression in wound healing was confirmed by measuring the inflammatory marker levels and histopathology of wounded tissues on last day of EO-CN treatment. A total of 95 compounds were identified through GC-MS analysis, with major compounds like citral, 2,6-octadienal-, 3,7-dimethyl-, geranyl acetate, citronellal, geraniol, and citronellol. In vitro test results demonstrated strong anti-Candida activity of EO-CN with a MIC value of 25 μg/ml against C. albicans, 50 μg/ml against C. glabrata and C. tropicalis. EO-CN treatment resulted in significant reduction of candida load on diabetic wounds. Acceleration in wound healing was indicated by declined levels of

  19. Case report: rapidly healing epidermolysis bullosa wound after ablative fractional resurfacing.

    PubMed

    Krakowski, Andrew C; Ghasri, Pedram

    2015-01-01

    Recessive dystrophic epidermolysis bullosa (RDEB) is a devastating genodermatosis characterized by generalized skin fragility, severe blistering, and wounding that heals with mutilating scarring. Patients are in constant need of effective wound therapies as they often succumb to aggressive metastatic squamous cell carcinomas or to sepsis that may develop from their chronic wounds. Herein, we demonstrate accelerated wound healing with use of a fractionated CO2 laser protocol in a 22-year-old man with RDEB. His 9-month-old, non-healing wound decreased from 7 cm in diameter to 2 cm in diameter (a 92% reduction in wound surface area) within 4 weeks of a single laser treatment, and he had near-complete re-epithelialization within 4 weeks of his second laser treatment without blistering or other adverse effects. This novel intervention of using fractionated CO2 for photo-microdebridement could help revolutionize wound care for patients who have RDEB and whose chronic wounds serve as one of their greatest sources of morbidity and mortality. Dissemination to a pediatric audience is critical so that laser protocols might be more thoroughly investigated and incorporated into wound management strategies for this uniquely vulnerable population. PMID:25535263

  20. Orientation and shape dependence of embryonic wound healing

    NASA Astrophysics Data System (ADS)

    Lynch, Holley; Ma, Xiaoyan; Hutson, M. Shane

    2007-11-01

    Wounds in embryonic epithelia heal without scarring. They do so via the combined action of two cytoskeletal structures: an actin-rich supracellular purse-string at the wound margin; and actin-based projections like filopodia. Neither structure is absolutely required for wound closure and their relative importance depends strongly on wound shape. To further investigate this dependence, we have followed the healing process in fruit fly embryos using confocal microscopy after precise laser incisions. The wound shape and rate of healing depend on the orientation of the incision. Cuts along the long axis of the embryo initially expand to greater areas and round up. Cuts along the short axis expand less and remain elliptical. These short-axis wounds heal more quickly and in a different manner. For such cuts, cellular projections tend to bridge across the ends of the wound. After such bridges are formed, the smaller holes (towards the ends of the wound) close quickly. On the other hand, for cuts along the long axis, the cellular projections tend to bridge across the middle of the wound -- often leaving two to three holes of similar size that then close independently at similar rates.

  1. Therapeutic potential of bone marrow-derived mesenchymal stem cells for cutaneous wound healing.

    PubMed

    Chen, Jerry S; Wong, Victor W; Gurtner, Geoffrey C

    2012-01-01

    Despite advances in wound care, many wounds never heal and become chronic problems that result in significant morbidity and mortality to the patient. Cellular therapy for cutaneous wounds has recently come under investigation as a potential treatment modality for impaired wound healing. Bone marrow-derived mesenchymal stem cells (MSCs) are a promising source of adult progenitor cells for cytotherapy as they are easy to isolate and expand and have been shown to differentiate into various cell lineages. Early studies have demonstrated that MSCs may enhance epithelialization, granulation tissue formation, and neovascularization resulting in accelerated wound closure. It is currently unclear if these effects are mediated through cellular differentiation or by secretion of cytokines and growth factors. This review discusses the proposed biological contributions of MSCs to cutaneous repair and their clinical potential in cell-based therapies. PMID:22787462

  2. Investigating Wound Healing in Plant Cells: This Spud's for You!

    ERIC Educational Resources Information Center

    Thomson, Norm

    2000-01-01

    Presents classroom inquiry-based investigations to investigate wound healing in plant tissues and cells. Students create their own research problems and the investigations can be related to the National Science Standards. (SAH)

  3. Wound-healing error model for radon carcinogenesis

    SciTech Connect

    Kondo, Sohei

    1995-12-31

    Epidemiological studies of lung cancer in uranium miners exposed to radon suggest that radon is a tumor promoter. I will refine this notion by applying the wound-healing error model proposed for radiation carcinogenesis in general.

  4. Use of a topical emulsion for wound healing.

    PubMed

    Cohen, Joel L; Jorizzo, Joseph L; Kircik, Leon H

    2007-01-01

    Treatment of skin trauma following removal of actinic keratoses and skin cancer lesions and following radiation therapy for breast cancer is an often under-treated problem compared to the primary condition. However, skin trauma can cause patients significant discomfort, pain, and loss of quality of life. Palliative treatments such as lotions and ointments may help soothe the skin trauma, but helping the healing process is the best way to treat the wound and relieve patients of their discomfort. In clinical trials, the use of Biafine, a topical emulsion, promoted wound healing following these clinical situations by increasing the number of macrophages recruited to a wound and thus enhancing healing. This topical emulsion has also been proven to be soothing for the patient. This review will discuss the molecular mechanisms of wound healing and the uses of Biafine in the treatment of skin damage caused by procedures for various conditions such as actinic keratosis, skin cancer lesions, and radiation dermatitis. PMID:18338743

  5. Tissue Engineering and Regenerative Repair in Wound Healing

    PubMed Central

    Hu, Michael S.; Maan, Zeshaan N.; Wu, Jen-Chieh; Rennert, Robert C.; Hong, Wan Xing; Lai, Tiffany S.; Cheung, Alexander T. M.; Walmsley, Graham G.; Chung, Michael T.; McArdle, Adrian; Longaker, Michael T.; Lorenz, H. Peter

    2014-01-01

    Wound healing is a highly evolved defense mechanism against infection and further injury. It is a complex process involving multiple cell types and biological pathways. Mammalian adult cutaneous wound healing is mediated by a fibroproliferative response leading to scar formation. In contrast, early to mid-gestational fetal cutaneous wound healing is more akin to regeneration and occurs without scar formation. This early observation has led to extensive research seeking to unlock the mechanism underlying fetal scarless regenerative repair. Building upon recent advances in biomaterials and stem cell applications, tissue engineering approaches are working towards a recapitulation of this phenomenon. In this review, we describe the elements that distinguish fetal scarless and adult scarring wound healing, and discuss current trends in tissue engineering aimed at achieving scarless tissue regeneration. PMID:24788648

  6. Synergistic Effect of Honey and Propolis on Cutaneous Wound Healing in Rats.

    PubMed

    Takzaree, Nasrin; Hadjiakhondi, Abbas; Hassanzadeh, Gholamreza; Rouini, Mohammad Reza; Manayi, Azadeh

    2016-04-01

    Accelerating wound healing is now considered as a principle clinical treatment and increasing the quality and speed of healing which has always been emphasized by the scientists. Propolis and honey are natural bee products with wide range of biological and medicinal properties. This study was aimed to determine the synergistic effect of honey and propolis in wound healing of rat skin. A total of 75 Wistar rats weighing 200-250 gr were placed under general anesthesia and sterile conditions. Then a square shape wound with 1.5*1.5 mm dimension was made on the back of the neck. Animals were randomly divided into control, honey, propolis, combined honey propolis and phenytoin 1% groups, respectively. Rats were randomly divided into the following groups: 4th, 7th and, 14th days of treatment in each period of study. Wound area in the experimental group was covered once daily with a fixed amount of thyme honey, propolis, propolis and honey and phenytoin cream (1%), the control group did not receive any treatment. For histological studies, during the fourth, seventh and fourteenth day's rats were sacrificed and samples were taken from the wound and adjacent skin. After histological staining fibroblast, neutrophils, macrophages and vascular sections were counted in the wound bed. The macroscopic and microscopic evaluations showed that the percentage of wound healing on different days in the experimental and control groups were significant (P<0.05). The macroscopic and microscopic evaluation showed that the percentage of wound healing on different days in combined propolis and honey experimental group was significantly different from the control group (Multivariate ANOVA test) (P<0.05). Combined application of propolis and honey on the open wound healing in rats has a synergistic effect. PMID:27309263

  7. Enhanced healing of full-thickness burn wounds using di-rhamnolipid

    PubMed Central

    Stipcevic, Tamara; Piljac, Ante; Piljac, Goran

    2006-01-01

    The aim of this study was to investigate the properties of di-rhamnolipid [α-L-rhamnopyranosyl-(1–2)-α-L-rhamnopyranosyl-3-hydroxydecanoyl-3-hydroxydecanoic acid, also referred to as di-rhamnolipid BAC-3] relating to the process of cutaneous wound healing. Di-rhamnolipid was prepared in a eucerin ointment and applied topically on full-thickness burn wounds in normal Sprague–Dawley rats covering 5% of the total body surface area. The rate of wound closure was measured over the period of 45 days. The collagen content was evaluated microscopically, by performing densitometric analysis on Verhoeff’s stained histopathological slides of wound biopsies taken at the end of 45th day of di-rhamnolipid treatment. Di-rhamnolipid toxicity was assessed with the subcutaneous multi-dose study in Swiss–Webster mice. The treatment of full-thickness-burn wounds with topical 0.1% di-rhamnolipid accelerated the closure of wounds on day 21 of the treatment by 32% compared to the control ( p < 0.05). On day 35, the wounds closed in all animals-treated with 0.1% di-rhamnolipid ointment while some rats in the control group had open wounds on days 35 and even 45. Histologic comparisons have shown that di-rhamnolipid significantly decreased collagen content in burn wounds (47.5%, p < 0.05) as compared to the vehicle-treated (control) wounds. Di-rhamnolipid was well-tolerated. The results of this study raise the possibility of potential efficacy of di-rhamnolipid in accelerating normal wound healing and perhaps in overcoming defects associated with healing failure in chronic wounds. PMID:16380213

  8. Vitamin E and wound healing: an evidence-based review.

    PubMed

    Hobson, Rachel

    2016-06-01

    Vitamin E has been demonstrated to modulate cellular signalling, gene expression and affect wounds infected with methicillin-resistant Staphylococcus aureus (MRSA), thus influencing wound healing. This evidence-based review aimed to identify and evaluate current research assessing the properties of vitamin E in relation to wound healing, through its role as an antioxidant and its influence on connective tissue growth factor (CTGF), MRSA and gene transcription. Literature dated from 1996 to 2012, published in English, involving either animals or adult humans with an acute or chronic wound were included. The databases that contained relevant articles were narrowed down to four, and a total of 33 identified studies were included. The literature review revealed that there is a significant dearth of robust studies establishing the effects of vitamin E on wound healing, and further research is clearly warranted. PMID:25124164

  9. Human umbilical mesenchymal stem cells conditioned medium promote primary wound healing regeneration

    PubMed Central

    Kusindarta, Dwi Liliek; Wihadmadyatami, Hevi; Fibrianto, Yuda Heru; Nugroho, Widagdo Sri; Susetya, Heru; Musana, Dewi Kania; Wijayanto, Hery; Prihatna, Surya Agus; Wahyuni, A. E. T. H.

    2016-01-01

    Aim: This research was conducted to clarify the capability of human umbilical mesenchymal stem cells conditioned medium (HU-MSCM) to promote regenerations of primary wound healing on the incision skin injury. Materials and Methods: In this study, two approaches in vitro and in vivo already done. On in vitro analysis, tube formation was performed using HU vein endothelial cells in the presence of HU-MSCM, in some experiments cells line was incubated prior the presence of lipopolysaccharide and HU-MSCM then apoptosis assay was performed. Furthermore, in vivo experiments 12 female rats (Rattus norvegicus) were used after rats anesthetized, 7 mm wound was made by incision on the left side of the body. The wound was treated with HU-MSCM containing cream, povidone iodine was run as a control. Wound healing regenerations on the skin samples were visualized by hematoxylin-eosin staining. Results: In vitro models elucidate HU-MSCM may decreasing inflammation at the beginning of wound healing, promote cell migration and angiogenesis. In addition in vivo models show that the incision length on the skin is decreasing and more smaller, HE staining describe decreasing of inflammation phase, increasing of angiogenesis, accelerate fibroplasia, and maturation phase. Conclusions: Taken together our observation indicates that HU-MSCM could promote the acceleration of skin tissue regenerations in primary wound healing process. PMID:27397984

  10. Acellular hydrogel for regenerative burn wound healing: translation from a porcine model

    PubMed Central

    Papa, Arianne; Burke, Jacqueline; Volk, Susan W; Gerecht, Sharon

    2015-01-01

    Currently available skin grafts and skin substitute for healing following third-degree burn injuries is fraught with complications, often resulting in long-term physical and psychological sequelae. Synthetic treatment that can promote wound healing in a regenerative fashion would provide an off-the-shelf, non-immunogenic strategy to improve clinical care of severe burn wounds. Here, we demonstrate vulnerary efficacy and accelerated healing mechanism of dextran-based hydrogel in third-degree porcine burn model. The model was optimized to allow examination of the hydrogel treatment for clinical translation and its regenerative response mechanisms. Hydrogel treatment accelerated third-degree burn wound healing by rapid wound closure, improved reepithelialization, enhanced extracellular matrix remodeling, and greater nerve reinnervation, compared to the dressing treated group. These effects appear to be mediated through the ability of the hydrogel to facilitate a rapid but brief initial inflammatory response that coherently stimulates neovascularization within the granulation tissue during the first week of treatment, followed by an efficient vascular regression to promote a regenerative healing process. Our results suggest that the dextran-based hydrogels may substantially improve healing quality and reduce skin grafting incidents and thus pave the way for clinical studies to improve the care of severe burn injury patients. PMID:26358387

  11. Potential implications of interleukin-7 in chronic wound healing

    PubMed Central

    BARTLETT, ANNIE; SANDERS, ANDREW J.; RUGE, FIONA; HARDING, KEITH G.; JIANG, WEN G.

    2016-01-01

    Methods of identifying chronic wounds that will heal in a timely, coordinated fashion and those that will not, together with novel therapeutic strategies, are vital for progression in the field of wound healing. Interleukin (IL)-7 has been associated with various biological and pathological processes. The present study explored the potential role of IL-7 in wound healing. IL-7 expression levels were examined in a clinical cohort of chronic wounds using reverse transcription-quantitative polymerase chain reaction and immunohistochemical staining analysis. The impact of recombinant human IL-7 (rhIL-7) on the growth and migrational rates of HaCaT keratinocyte cells was subsequently examined using in vitro growth and electric cell-substrate impedance sensing functional assays. The mRNA expression levels of IL-7 were increased in the healed chronic wound tissue samples, compared with non-healed chronic wound tissue samples, although the difference was not statistically significant. Similarly, immunohistochemical analysis revealed a greater staining intensity of IL-7 in the healed chronic wound tissue sections compared with the non-healed tissue sections. Treatment with rhIL-7 did not affect HaCaT cell growth rates, but was shown to enhance cell migration, an effect that could be further enhanced through the addition of inhibitors of neuronal Wiskott-Aldrich syndrome protein and protein kinase B. The data of the present study suggest that the expression levels of IL-7 may be increased in healing chronic wounds, and thus IL-7 may have a role in this process, potentially through its effects on the cellular migration of keratinocytes. PMID:27347014

  12. Aloe vera and Vitis vinifera improve wound healing in an in vivo rat burn wound model.

    PubMed

    Lin, Li-Xin; Wang, Peng; Wang, Yu-Ting; Huang, Yong; Jiang, Lei; Wang, Xue-Ming

    2016-02-01

    Aloe vera and Vitis vinifera have been traditionally used as wound healing agents. The present study aimed to investigate the effects of aloe emodin and resveratrol in the burn wound healing procedure. Burn wounds are common in developed and developing countries, however, in developing countries, the incidence of severe complications is higher and financial resources are limited. The results of the present study demonstrated that neither aloe emodin or resveratrol were cytotoxic to THP-1 macrophages at concentrations of 1, 100 and 500 ng/ml. A significant increase in wound-healing activity was observed in mice treated with the aloe emodin and resveratrol, compared with those which received control treatments. The levels of IL-1β in the exudates of the burn wound area of the treated mice increased in a time-dependent manner over 7 days following burn wound injury. At 10 days post-injury, steady and progressive wound healing was observed in the control animals. The present study confirmed that increased wound healing occurs following treatment with aloe emodin,, compared with resveratrol, providing support for the use of Aloe vera plants to improve burn wound healing. PMID:26677006

  13. Active Silver Nanoparticles for Wound Healing

    PubMed Central

    Rigo, Chiara; Ferroni, Letizia; Tocco, Ilaria; Roman, Marco; Munivrana, Ivan; Gardin, Chiara; Cairns, Warren R. L.; Vindigni, Vincenzo; Azzena, Bruno; Barbante, Carlo; Zavan, Barbara

    2013-01-01

    In this preliminary study, the silver nanoparticle (Ag NP)-based dressing, Acticoat™ Flex 3, has been applied to a 3D fibroblast cell culture in vitro and to a real partial thickness burn patient. The in vitro results show that Ag NPs greatly reduce mitochondrial activity, while cellular staining techniques show that nuclear integrity is maintained, with no signs of cell death. For the first time, transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS) analyses were carried out on skin biopsies taken from a single patient during treatment. The results show that Ag NPs are released as aggregates and are localized in the cytoplasm of fibroblasts. No signs of cell death were observed, and the nanoparticles had different distributions within the cells of the upper and lower dermis. Depth profiles of the Ag concentrations were determined along the skin biopsies. In the healed sample, most of the silver remained in the surface layers, whereas in the unhealed sample, the silver penetrated more deeply. The Ag concentrations in the cell cultures were also determined. Clinical observations and experimental data collected here are consistent with previously published articles and support the safety of Ag NP-based dressing in wound treatment. PMID:23455461

  14. Active silver nanoparticles for wound healing.

    PubMed

    Rigo, Chiara; Ferroni, Letizia; Tocco, Ilaria; Roman, Marco; Munivrana, Ivan; Gardin, Chiara; Cairns, Warren R L; Vindigni, Vincenzo; Azzena, Bruno; Barbante, Carlo; Zavan, Barbara

    2013-01-01

    In this preliminary study, the silver nanoparticle (Ag NP)-based dressing, Acticoat™ Flex 3, has been applied to a 3D fibroblast cell culture in vitro and to a real partial thickness burn patient. The in vitro results show that Ag NPs greatly reduce mitochondrial activity, while cellular staining techniques show that nuclear integrity is maintained, with no signs of cell death. For the first time, transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS) analyses were carried out on skin biopsies taken from a single patient during treatment. The results show that Ag NPs are released as aggregates and are localized in the cytoplasm of fibroblasts. No signs of cell death were observed, and the nanoparticles had different distributions within the cells of the upper and lower dermis. Depth profiles of the Ag concentrations were determined along the skin biopsies. In the healed sample, most of the silver remained in the surface layers, whereas in the unhealed sample, the silver penetrated more deeply. The Ag concentrations in the cell cultures were also determined. Clinical observations and experimental data collected here are consistent with previously published articles and support the safety of Ag NP-based dressing in wound treatment. PMID:23455461

  15. Wound-healing potential of the fruit extract of Phaleria macrocarpa

    PubMed Central

    Abood, Walaa Najm; Al-Henhena, Nawal Ahmed; Abood, Ammar Najim; Al-Obaidi, Mazen M. Jamil; Ismail, Salmah; Abdulla, Mahmood Ameen; Batran, Rami Al

    2015-01-01

    The wound-healing potential of Phaleria macrocarpa was evaluated by monitoring the levels of inflammatory mediators, collagen, and antioxidant enzymes. Experimentally, two-centimeter-wide full-thickness-deep skin excision wounds were created on the posterior neck area of the rats. The wounds were topically treated with gum acacia as a vehicle in the control group, intrasite gel in the reference group, and 100 and 200 mg/mL P. macrocarpa fruit extract in the treatment group. Granulation tissues were excised on the 15th day and were further processed for histological and biochemical analyzes. Wound healing was evaluated by measuring the contractions and protein contents of the wounds. Cellular redistribution and collagen deposition were assessed morphologically using Masson’s trichrome stain. Superoxide dismutase (SOD) and catalase (CAT) activities, along with malondialdehyde (MDA) level were determined in skin tissue homogenates of the dermal wounds. Serum levels of transforming growth factor beta 1 (TGF-β1) and tumor necrosis factor alpha (TNF-α) were evaluated in all the animals. A significant decrease in wound area was caused by a significant increase in TGF-β1 level in the treated groups. Decrease in TNF-α level and increase in the collagen formation were also observed in the treated groups. Topical treatment with P. macrocarpa fruit extract increased the SOD and CAT activities in the healing wounds, thereby significantly decreasing MDA level. The topical treatment with P. macrocarpa fruit extract showed significant healing effect on excision wounds and demonstrated an important role in the inflammation process by increasing antioxidant enzyme activities, thereby accelerating the wound healing process and reducing tissue injury. PMID:26042509

  16. Determination of effective miRNAs in wound healing in an experimental Rat Model.

    PubMed

    Coskunpinar, E; Arkan, H; Dedeoglu, B G; Aksoz, I; Polat, E; Araz, T; Aydos, A; Oztemur, Y; Akbas, F; Onaran, I

    2015-01-01

    The larvae of Lucilia sericata have been used for centuries as medicinal maggots in the healing of wounds. The present study aimed to screen potential microRNAs related to ES-induced wound healing in rat skin wounds and to investigate the potential mechanisms contributing to accelerated wound healing. Healthy, male, 12 weeks old Wistar albino rats weighing 250-300 g were supplied by the Animal Experimental Center. All animal studies were performed in accordance with the NIH Guide for the Care and Use of Laboratory Animals. Wistar albino rats were treated by ES after post wounding and the differentially expressed miRNAs in wound biopsies were screened by microarray analysis at the end of treatments for 4,7 and 10 days. In addition, bioinformatics approaches were used to identify the potential target genes of differentially expressed miRNAs and the functions of their target genes. We found a significant up-regulation of rno-miR-99a* and rno-mir-877 in response to ES treatment. Further investigation of rno-miR-99a* and rno-mir-877 and their target genes (TGFa, TNF, TAGLN, MAPK1, MMP-9) implicated in present study could provide new insight for an understanding lead to the development of new treatment strategies. The identified miRNAs can be new biomarkers for ES- induced wound healing. PMID:26718435

  17. Biological properties and therapeutic activities of honey in wound healing: A narrative review and meta-analysis.

    PubMed

    Oryan, Ahmad; Alemzadeh, Esmat; Moshiri, Ali

    2016-05-01

    For thousands of years, honey has been used for medicinal applications. The beneficial effects of honey, particularly its anti-microbial activity represent it as a useful option for management of various wounds. Honey contains major amounts of carbohydrates, lipids, amino acids, proteins, vitamin and minerals that have important roles in wound healing with minimum trauma during redressing. Because bees have different nutritional behavior and collect the nourishments from different and various plants, the produced honeys have different compositions. Thus different types of honey have different medicinal value leading to different effects on wound healing. This review clarifies the mechanisms and therapeutic properties of honey on wound healing. The mechanisms of action of honey in wound healing are majorly due to its hydrogen peroxide, high osmolality, acidity, non-peroxide factors, nitric oxide and phenols. Laboratory studies and clinical trials have shown that honey promotes autolytic debridement, stimulates growth of wound tissues and stimulates anti-inflammatory activities thus accelerates the wound healing processes. Compared with topical agents such as hydrofiber silver or silver sulfadiazine, honey is more effective in elimination of microbial contamination, reduction of wound area, promotion of re-epithelialization. In addition, honey improves the outcome of the wound healing by reducing the incidence and excessive scar formation. Therefore, application of honey can be an effective and economical approach in managing large and complicated wounds. PMID:26852154

  18. Quantitative Stain-Free and Continuous Multimodal Monitoring of Wound Healing In Vitro with Digital Holographic Microscopy

    PubMed Central

    Krausewitz, Philipp; Brückner, Markus; Ketelhut, Steffi; Domagk, Dirk; Kemper, Björn

    2014-01-01

    Impaired epithelial wound healing has significant pathophysiological implications in several conditions including gastrointestinal ulcers, anastomotic leakage and venous or diabetic skin ulcers. Promising drug candidates for accelerating wound closure are commonly evaluated in in vitro wound assays. However, staining procedures and discontinuous monitoring are major drawbacks hampering accurate assessment of wound assays. We therefore investigated digital holographic microscopy (DHM) to appropriately monitor wound healing in vitro and secondly, to provide multimodal quantitative information on morphological and functional cell alterations as well as on motility changes upon cytokine stimulation. Wound closure as reflected by proliferation and migration of Caco-2 cells in wound healing assays was studied and assessed in time-lapse series for 40 h in the presence of stimulating epidermal growth factor (EGF) and inhibiting mitomycin c. Therefore, digital holograms were recorded continuously every thirty minutes. Morphological changes including cell thickness, dry mass and tissue density were analyzed by data from quantitative digital holographic phase microscopy. Stimulation of Caco-2 cells with EGF or mitomycin c resulted in significant morphological changes during wound healing compared to control cells. In conclusion, DHM allows accurate, stain-free and continuous multimodal quantitative monitoring of wound healing in vitro and could be a promising new technique for assessment of wound healing. PMID:25251440

  19. Quantitative stain-free and continuous multimodal monitoring of wound healing in vitro with digital holographic microscopy.

    PubMed

    Bettenworth, Dominik; Lenz, Philipp; Krausewitz, Philipp; Brückner, Markus; Ketelhut, Steffi; Domagk, Dirk; Kemper, Björn

    2014-01-01

    Impaired epithelial wound healing has significant pathophysiological implications in several conditions including gastrointestinal ulcers, anastomotic leakage and venous or diabetic skin ulcers. Promising drug candidates for accelerating wound closure are commonly evaluated in in vitro wound assays. However, staining procedures and discontinuous monitoring are major drawbacks hampering accurate assessment of wound assays. We therefore investigated digital holographic microscopy (DHM) to appropriately monitor wound healing in vitro and secondly, to provide multimodal quantitative information on morphological and functional cell alterations as well as on motility changes upon cytokine stimulation. Wound closure as reflected by proliferation and migration of Caco-2 cells in wound healing assays was studied and assessed in time-lapse series for 40 h in the presence of stimulating epidermal growth factor (EGF) and inhibiting mitomycin c. Therefore, digital holograms were recorded continuously every thirty minutes. Morphological changes including cell thickness, dry mass and tissue density were analyzed by data from quantitative digital holographic phase microscopy. Stimulation of Caco-2 cells with EGF or mitomycin c resulted in significant morphological changes during wound healing compared to control cells. In conclusion, DHM allows accurate, stain-free and continuous multimodal quantitative monitoring of wound healing in vitro and could be a promising new technique for assessment of wound healing. PMID:25251440

  20. Phototherapy promotes healing of cutaneous wounds in undernourished rats*

    PubMed Central

    Leite, Saulo Nani; de Andrade, Thiago Antônio Moretti; Masson-Meyers, Daniela dos Santos; Leite, Marcel Nani; Enwemeka, Chukuka S.; Frade, Marco Andrey Cipriani

    2014-01-01

    BACKGROUND Various studies have shown that phototherapy promotes the healing of cutaneous wounds. OBJECTIVE To investigate the effect of phototherapy on healing of cutaneous wounds in nourished and undernourished rats. METHODS Forty rats, 20 nourished plus 20 others rendered marasmus with undernourishment, were assigned to four equal groups: nourished sham, nourished Light Emitting Diode treated, undernourished sham and undernourished Light Emitting Diode treated. In the two treated groups, two 8-mm punch wounds made on the dorsum of each rat were irradiated three times per week with 3 J/cm2 sq cm of combined 660 and 890nm light; wounds in the other groups were not irradiated. Wounds were evaluated with digital photography and image analysis, either on day 7 or day 14, with biopsies obtained on day 14 for histological studies. RESULTS Undernourishment retarded the mean healing rate of the undernourished sham wounds (p < 0.01), but not the undernourished Light emission diode treated wounds, which healed significantly faster (p < 0.001) and as fast as the two nourished groups. Histological analysis showed a smaller percentage of collagen in the undernourished sham group compared with the three other groups, thus confirming our photographic image analysis data. CONCLUSION Phototherapy reverses the adverse healing effects of undernourishment. Similar beneficial effects may be achieved in patients with poor nutritional status. PMID:25387494

  1. Wound healing and hyper-hydration: a counterintuitive model.

    PubMed

    Rippon, M G; Ousey, K; Cutting, K F

    2016-02-01

    Winter's seminal work in the 1960s relating to providing an optimal level of moisture to aid wound healing (granulation and re-epithelialisation) has been the single most effective advance in wound care over many decades. As such the development of advanced wound dressings that manage the fluidic wound environment have provided significant benefits in terms of healing to both patient and clinician. Although moist wound healing provides the guiding management principle, confusion may arise between what is deemed to be an adequate level of tissue hydration and the risk of developing maceration. In addition, the counter-intuitive model 'hyper-hydration' of tissue appears to frustrate the moist wound healing approach and advocate a course of intervention whereby tissue is hydrated beyond what is a normally acceptable therapeutic level. This paper discusses tissue hydration, the cause and effect of maceration and distinguishes these from hyper-hydration of tissue. The rationale is to provide the clinician with a knowledge base that allows optimisation of treatment and outcomes and explains the reasoning behind wound healing using hyper-hydration. Declaration of interest: K. Cutting is a Clinical Research Consultant to the medical device and biotechnology industry. M. Rippon is Visiting Clinical Research Fellow, University of Huddersfield and K. Ousey provides consultancy for a range of companies through the University of Huddersfield including consultancy services for Paul Hartmann Ltd on HydroTherapy products. PMID:26878298

  2. Mathematical models of wound healing and closure: a comprehensive review.

    PubMed

    Jorgensen, Stephanie N; Sanders, Jonathan R

    2016-09-01

    Wound healing is a complex process comprised of overlapping phases and events that work to construct a new, functioning tissue. Mathematical models describe these events and yield understanding about the overall process of wound healing. Generally, these models are focused on only one phase (or a few phases) to explain healing for a specific system. A review of the literature reveals insights as reported on herein regarding the variety of overlapping inputs and outputs for any given type of model. Specifically, these models have been characterized with respect to the phases of healing and their mathematical/physical basis in an effort to shed light on new opportunities for model development. Though all phases of wound healing have been modeled, previous work has focused mostly on the proliferation and related contraction phases of healing with fewer results presented regarding other phases. As an example, a gap in the literature has been identified regarding models to describe facilitated wound closure techniques (e.g., suturing and its effect on resultant scarring). Thus, an opportunity exists to create models that tie the transient processes of wound healing, such as cell migration, to resultant scarring when considering tension applied to skin with given suturing techniques. PMID:26718553

  3. Study on wound healing activity of Punica granatum peel.

    PubMed

    Murthy, K N Chidambara; Reddy, Vittal K; Veigas, Jyothi M; Murthy, Uma D

    2004-01-01

    The methanolic extract of dried pomegranate (Punica granatum) peels showed the presence of a high content of phenolic compounds (44.0%) along with other constituents. This extract was formulated as a 10% (wt/wt) water-soluble gel and was studied for its wound healing property against an excision wound on the skin of Wistar rats. The activity was compared with that of a commercial topical antibacterial applicant. The wound healing activity was assessed by measuring the percent contraction in skin and estimation of collagen content in terms of hydroxyproline content. Healed skin was also subjected to histopathological studies to examine the microscopic changes. The animals treated with 2.5% gel showed moderate healing (55.8% and 40.8% healing compared with negative and positive controls, respectively), whereas the group treated with 5.0% gel showed good healing (59.5% and 44.5% healing compared with negative and positive controls, respectively). The amount of hydroxyproline increased by twofold in the group treated with 5.0% gel. Histopathological studies also supported the wound healing on application of the gels. The group of rats that received 5.0% gel showed complete healing after 10 days, whereas in rats treated with 2.5% gel, healing was observed on day 12, in contrast to the positive control animals receiving the blank gel, which took 16-18 days for complete healing. The results of this study may be extended to different types of wounds so that the formulation could be exploited to develop it as a topical dermatological formulation. High-performance liquid chromatography analysis of the extract showed the presence of gallic acid and catechin as major components. PMID:15298776

  4. Effect of novel blend nanofibrous scaffolds on diabetic wounds healing.

    PubMed

    Gholipour-Kanani, Adeleh; Bahrami, S Hajir; Rabbani, Shahram

    2016-02-01

    Chitosan-poly (vinyl alcohol) (Cs: PVA) (2:3) and poly (caprolactone)-chitosan-poly (vinyl alcohol) (PCL: Cs: PVA) (2:1:1.5) nanofibrous blend scaffolds were fabricated using the electrospinning technique in the authors' previous studies. The results of the previous studies confirmed the high biological properties of the scaffolds and their ability in healing of burn and excision wounds on rat model. In the present study, the biological scaffolds were applied on diabetic dorsum skin wounds and diabetic foot wound on rat models (n = 16). Macroscopic and microscopic investigations were carried out using digital images and haematoxylin and eosin (H&E) staining respectively, to measure the wound areas and to track wound healing rate. It was found that at all time points the areas of wounds treated with nanofibrous scaffolds were smaller compared with the controls. Pathological results showed much better healing efficacy for the test samples compared with the control ones. Pathological investigations proved the presence of more pronounced granulation tissues in the scaffold-treated wounds compared with the control ones. At 20 days post excision, the scaffold-treated groups achieved complete repair. The results indicated that Cs: PVA and PCL: Cs: PVA nanofibrous webs could be considered to be promising materials for burn, excision and diabetic wounds healing. PMID:26766866

  5. Gene Expression Associated with Tuber Wound-Healing/Suberization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wounding of potatoes during harvest and handling operations results in tuber shrinkage, market quality defects and infection. Suberization and other wound-healing processes that mitigate these losses are of great agricultural importance. Previously, we determined that suberin poly(phenolics) and s...

  6. Involvement of ABA in potato tuber wound-healing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid suberization of tubers wounded during harvest, handling and seed cutting is crucial in protecting against infections, dehydration and defect development. Research at this laboratory is directed at determining the biological factors that regulate wound-healing and which may facilitate the deve...

  7. Diminished Type III Collagen Promotes Myofibroblast Differentiation and Increases Scar Deposition in Cutaneous Wound Healing

    PubMed Central

    Volk, Susan W.; Wang, Yanjian; Mauldin, Elizabeth A.; Liechty, Kenneth W.; Adams, Sherrill L.

    2011-01-01

    The repair of cutaneous wounds in the postnatal animal is associated with the development of scar tissue. Directing cell activities to efficiently heal wounds while minimizing the development of scar tissue is a major goal of wound management and the focus of intensive research efforts. Type III collagen (Col3), expressed in early granulation tissue, has been proposed to play a prominent role in cutaneous wound repair, although little is known about its role in this process. To establish the role of Col3 in cutaneous wound repair, we examined the healing of excisional wounds in a previously described murine model of Col3 deficiency. Col3 deficiency (Col3+/–) in aged mice resulted in accelerated wound closure with increased wound contraction. In addition, Col3-deficient mice had increased myofibroblast density in the wound granulation tissue as evidenced by an increased expression of the myofibroblast marker, α-smooth muscle actin. In vitro, dermal fibroblasts obtained from Col3-deficient embryos (Col3+/– and –/–) were more efficient at collagen gel contraction and also displayed increased myofibroblast differentiation compared to those harvested from wild-type (Col3+/+) embryos. Finally, wounds from Col3-deficient mice also had significantly more scar tissue area on day 21 postwounding compared to wild-type mice. The effect of Col3 expression on myofibroblast differentiation and scar formation in this model suggests a previously undefined role for this ECM protein in tissue regeneration and repair. PMID:21252470

  8. Dermal wound healing properties of redox-active grape seed proanthocyanidins.

    PubMed

    Khanna, Savita; Venojarvi, Mika; Roy, Sashwati; Sharma, Nidhi; Trikha, Prashant; Bagchi, Debasis; Bagchi, Manashi; Sen, Chandan K

    2002-10-15

    Angiogenesis plays a central role in wound healing. Among many known growth factors, vascular endothelial growth factor (VEGF) is believed to be the most prevalent, efficacious, and long-term signal that is known to stimulate angiogenesis in wounds. The wound site is rich in oxidants, such as hydrogen peroxide, mostly contributed by neutrophils and macrophages. We proposed that oxidants in the wound microenvironment support the repair process. Proanthocyanidins or condensed tannins are a group of biologically active polyphenolic bioflavonoids that are synthesized by many plants. Previously we have reported that a grape seed proanthycyanidin extract containing 5000 ppm resveratrol (GSPE) potently upregulates oxidant and tumor necrosis factor-alpha inducible VEGF expression in human keratinocytes (Free Radic. Biol. Med. 31:38-42, 2001). Our current objective was to follow up on that finding and test whether GSPE influences dermal wound healing in vivo. First, using a VEGF promoter-driven luciferase reporter construct we observed that the potentiating effect of GSPE on inducible VEGF expression is at the transcriptional level. The reporter assay showed that GSPE alone is able to drive VEGF transcription. Next, two dermal excisional wounds were inflicted on the back of mice and the wounds were left to heal by secondary intention. Topical application of GSPE accelerated wound contraction and closure. GSPE treatment was associated with a more well-defined hyperproliferative epithelial region, higher cell density, enhanced deposition of connective tissue, and improved histological architecture. GSPE treatment also increased VEGF and tenascin expression in the wound edge tissue. Tissue glutathione oxidation and 4-hydroxynonenal immunostaining results supported that GSPE application enhanced the oxidizing environment at the wound site. Oxidants are known to promote both VEGF as well as tenascin expression. In summary, our current study provides firm evidence to support that

  9. Bixin action in the healing process of rats mouth wounds.

    PubMed

    Piva, Renata Machado; Johann, Aline Cristina Batista Rodrigues; Costa, Camila Kocler; Miguel, Obdulio Gomez; Rosa, Edvaldo Ribeiro; de Azevedo-Alanis, Luciana Reis; Trevilatto, Paula Cristina; Ignacio, Sergio Aparecido; Bettega, Patrícia Vida Cassi; Gregio, Ana Maria Trindade

    2013-01-01

    Oral lesions that manifest as ulcer lesions are quite common and can cause discomfort to the patient. Searching for drugs to accelerate the healing of these lesions is nonstop process. Bixin is a molecule found in annatto (urucum) seeds and is considered a viable therapeutic option to treat such lesions due to its anti-inflammatory, anti-oxidant, and healing properties. Therefore, the present study aimed to evaluate the effect of the bixin solution in the ulcer healing process in the oral mucosa of rats. Ulcers were induced with punches of 0.5 cm in the middle of the dorsum of the tongue of 64 Wistar rats. The animals were randomly divided into 8 groups, in which 4 groups were treated with saline solution, while the other 4 were treated with the bixin solution. The animals were sacrificed in the periods 2, 7, 14, and 21 days after the beginning of the treatment. The species were histologically processed and stained with hematoxylin/eosin and picrosirius. Fibroblasts, reepithelialization, and wound contraction could be observed, as could the quantification of neutrophils, macrophages, plasma cells, lymphocytes, and mature and immature collagen. On the seventh day, the experimental group, when compared to the control group, presented a higher proliferation of fibroblasts, more advanced reepithelialization, and a higher contraction in the wounds. A reduction in the average number of neutrophils in the experimental group, when compared to the control group, could be observed in all periods (p=0.000). Up to two days, the total collagen area was higher (p=0.044) in the experimental group (4139.60±3047.51t han in the control group (1564.81±918.47). The deposition of mature collagen, on the 14(th) day, was higher (p=0.048) in the experimental group (5802.40±3578.18) than in the control group (1737.26±1439.97). The results found in the present study indicate that the bixin solution inhibits the acute inflammatory response with a minor average number of neutrophils and

  10. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound

    PubMed Central

    Tracy, Lauren E.; Minasian, Raquel A.; Caterson, E.J.

    2016-01-01

    Significance: Fibroblasts play a critical role in normal wound healing. Various extracellular matrix (ECM) components, including collagens, fibrin, fibronectin, proteoglycans, glycosaminoglycans, and matricellular proteins, can be considered potent protagonists of fibroblast survival, migration, and metabolism. Recent Advances: Advances in tissue culture, tissue engineering, and ex vivo models have made the examination and precise measurements of ECM components in wound healing possible. Likewise, the development of specific transgenic animal models has created the opportunity to characterize the role of various ECM molecules in healing wounds. In addition, the recent characterization of new ECM molecules, including matricellular proteins, dermatopontin, and FACIT collagens (Fibril-Associated Collagens with Interrupted Triple helices), further demonstrates our cursory knowledge of the ECM in coordinated wound healing. Critical Issues: The manipulation and augmentation of ECM components in the healing wound is emerging in patient care, as demonstrated by the use of acellular dermal matrices, tissue scaffolds, and wound dressings or topical products bearing ECM proteins such as collagen, hyaluronan (HA), or elastin. Once thought of as neutral structural proteins, these molecules are now known to directly influence many aspects of cellular wound healing. Future Directions: The role that ECM molecules, such as CCN2, osteopontin, and secreted protein, acidic and rich in cysteine, play in signaling homing of fibroblast progenitor cells to sites of injury invites future research as we continue investigating the heterotopic origin of certain populations of fibroblasts in a healing wound. Likewise, research into differently sized fragments of the same polymeric ECM molecule is warranted as we learn that fragments of molecules such as HA and tenascin-C can have opposing effects on dermal fibroblasts. PMID:26989578

  11. Effects of systemic erythropoietin on ischemic wound healing in rats.

    PubMed

    Arslantaş, Mustafa Kemal; Arslantaş, Reyhan; Tozan, Emine Nur

    2015-03-01

    Results of in vivo studies have shown erythropoietin (EPO) is associated with anti-inflammatory, anti-apoptotic, and cell protective effects on wound healing. These effects are dose-dependent. The aim of this study was to evaluate whether the duration of EPO treatment affects the healing process in the ischemic wound. Forty-two (42) Sprague-Dawley rats were anesthetized, wounded with H-shaped flaps, and randomized to 2 groups; Group 1 received 400 u/kg/day EPO and Group 2 received a saline solution, both via intraperitoneal injection following the wounding. All substances were administered once daily at the same time for up to 10 days after surgery. At days 3, 5, and 10, 7 rats from each group were sacrificed. Skin samples were stained with hematoxylin/eosin, viewed under an optical microscope at 10X and 40X magnification, and analyzed by blinded investigators for re-epithelialization, neovascularization amount and maturation of granulation tissue, inflammatory cells, and ulcer healing using an evaluation scale where 0 = none; 1 = partial; 2 = complete, but immature/thin: and 4 = complete and mature. Blood hemoglobin and hematocrit levels also were measured. Data were analyzed using ANOVA one-way test (P <0.05). Hemoglobin and hematocrit levels rose while subsequent doses of EPO were administered over time, accompanied by a transient surge in healing on day 5, when differences in healing scores were significant. Flap necrosis, ulceration, and abscess were noted on post-wounding day 10 near the pedicle. The study showed EPO therapy can improve wound healing early in the post-wounding period but can reduce wound healing after post-injury treatment day 5. Further research is necessary, particularly to establish how EPO influences the microcirculation and rheology. PMID:25751848

  12. Wound healing and treatments for people with diabetic foot ulcers.

    PubMed

    Jeffcoate, William J; Price, Patricia; Harding, Keith G

    2004-01-01

    The factors that delay wound healing are multiple and relate both to diabetes and to the effect of its complications. Diabetic foot ulcers readily become chronic, and chronic ulcers have biological properties that differ substantially from acute ones. Much of the available information on the biology of wound healing relates to acute and experimental wounds and may not be directly relevant. It follows that there is limited evidence currently available to underpin protocols for the management of diabetic foot ulcers, or to guide choice of applications and dressings 1. Nevertheless, it is possible to define certain principles.GLYCAEMIC CONTROL: The first relates to glycaemic control. While chronic complications of diabetes such as peripheral vascular disease and neuropathy may be largely irreversible, aspects of structure and function of connective tissue and cells may be impaired by hyperglycaemia, and their function should be improved if normoglycaemia is achieved. PROMOTION OF HEALING: The second principle concerns attempts at active promotion of wound healing by (1) surgical revascularization, and (2) specific attempts to correct defined biological abnormalities thought to be hindering the healing process. These include the use of a variety of applications, dressings and technologies, which may stimulate healing by applying, or stimulating the release of, growth factors and cytokines. While this approach holds the greatest promise for the future, it will be dependent on defining defects which need correction in specific individuals, and having technologies available to address them. This field is in its infancy. WOUND CARE: The third broad principle concerns the management of the wound and its surrounding tissue in order to promote healing. This includes regular inspection, cleansing and removal of surface debris, elimination of pathogenic bacteria and creation of an appropriate environment to facilitate endogenous tissue regeneration. There are many applications

  13. Pro-healing effects of bilirubin in open excision wound model in rats.

    PubMed

    Ahanger, Azad A; Leo, Marie D; Gopal, Anu; Kant, Vinay; Tandan, Surendra K; Kumar, Dinesh

    2016-06-01

    Bilirubin, a by-product of heme degradation, has an important role in cellular protection. Therefore, we speculated that bilirubin could be of potential therapeutic value in wound healing. To validate the hypothesis, we used a full-thickness cutaneous wound model in rats. Bilirubin (30 mg/kg) was administered intraperitoneally every day for 9 days. The surface area of the wound was measured on days 0, 2, 4, 7 and 10 after the creation of the wound. The granulation tissue was collected on day 10 post-wounding for analysing various parameters of wound healing. Bilirubin treatment accelerated wound contraction and increased hydroxyproline and glucosamine contents. mRNA expression of pro-inflammatory factors such as intercellular cell adhesion molecule-1 (ICAM-1) and tumour necrosis factor-α (TNF-α) were down-regulated and that of anti-inflammatory cytokine interleukin-10 (IL-10) was up-regulated. The findings suggest that bilirubin could be a new agent for enhancing cutaneous wound healing. PMID:24947136

  14. Evaluation of Antimicrobial and Healing Activities of Frog Skin on Guinea Pigs Wounds

    PubMed Central

    Rezazade Bazaz, Mahere; Mashreghi, Mohammad; Mahdavi Shahri, Nasser; Mashreghi, Mansour; Asoodeh, Ahmad; Behnam Rassouli, Morteza

    2015-01-01

    Background: Frog skin secretions have potentials against a wide spectrum of bacteria. Also, frog skin compositions have healing properties. Objectives: The aim of this study was to investigate the antibacterial potentials along with healing properties of frog skin Rana ridibunda, a species which thoroughly lives in Iran marshes, as a biological dressing on wounds. Materials and Methods: In this study, excisional wounds, dressed with frog skin, were compared between experimental and control groups of guinea pigs. In the experimental groups, wounds were dressed with the dermal (FS) and epidermal (RFS) sides of fresh frog R. ridibunda skin, while only usual cotton gauze covered the wounds of the control group. Furthermore, microbial samples were taken on different days (0, 3, 5, and 7 days post injury) to count the number of the colony-forming units. Additionally, the microbial penetration test was performed on frog skin and then the progression of wound closure was evaluated. Results: In the microbial studies, the bacterial load considerably declined in the wounds treated with FS and RFS compared with the control wounds. On day 7 post injury, the numbers of the colony-forming units for the FS, RFS, and control groups were 6.75, 105, and 375, respectively. In the penetration test, fresh frog skin showed to be a bacterial resistant dressing. The results revealed that the rate of wound closure in the experimental groups significantly was accelerated in comparison with that in the control group. Conclusions: Our results demonstrated the antimicrobial properties of frog skin as a wound dressing, which has antimicrobial effects per se. This biological dressing shows promise as an effective biological wound dressing insofar as not only is it capable of resisting microbes and accelerating wound healing but also it is cost-effective and easy to use. PMID:26468364

  15. Effects of tretinoin on wound healing in aged skin.

    PubMed

    de Campos Peseto, Danielle; Carmona, Erica Vilaça; Silva, Kellyn Cristina da; Guedes, Flavia Roberta Valente; Hummel Filho, Fernando; Martinez, Natalia Peres; Pereira, José Aires; Rocha, Thalita; Priolli, Denise Gonçalves

    2016-03-01

    Aged and adult populations have differences in the structural, biological, and healing properties of skin. Comparative studies of healing under the influence of retinoids in both these populations are very important and, to the best of our knowledge, have not been performed to date. The purpose of this study was to compare the activities of topical tretinoin in aged and adult animal models of wound healing by secondary intention. Male aged rats (24 months old, n = 7) and adult rats (6 months old, n = 8) were used. The rats were assigned to the following groups according to the dates on which wound samples were excised (day 14 or 21 after model creation): treated group, control group, and naive group. Topical application of tretinoin cream was used only on the proximal wound and was applied daily for 7 days. Wound healing areas were measured using metal calipers, and morphological analysis was performed. Slides were stained with Hematoxylin and Eosin, Masson's trichrome, and periodic acid-Schiff stains. Statistical analysis adopted a 5% coefficient for rejection of the null hypothesis. Although aged animals showed skin repair, complete reepithelialization was found on day 21 in some animals of both groups (treated and control). In aged rats, the wound area was significantly smaller in treated wounds than in untreated wounds, resulting in a larger scar area compared with the adult group. When treated wounds were compared, no differences were found between the wound areas in adult and aged rats. As expected, the collagen concentration was higher in normal skin from adult rats than in normal skin from aged animals, but there was no difference when aged skin was treated with tretinoin. These results indicate that tretinoin increases collagen synthesis in aged skin and returns the healing process to a normal state of skin healing. PMID:26834030

  16. Galectin expression in healing wounded skin treated with low-temperature plasma: Comparison with treatment by electronical coagulation.

    PubMed

    Akimoto, Yoshihiro; Ikehara, Sanae; Yamaguchi, Takashi; Kim, Jaeho; Kawakami, Hayato; Shimizu, Nobuyuki; Hori, Masaru; Sakakita, Hajime; Ikehara, Yuzuru

    2016-09-01

    Low-temperature plasma is useful for the care of wounded skin. It accelerates wound healing. However, the mechanism of this effect has not been fully elucidated yet. Galectin-1 is reported to accelerate wound healing via the Smad signaling pathway. In the present study to clarify whether or not galectins were expressed during the process of wound healing in the plasma-treated skin, we examined the effect of low-temperature plasma on galectin expression in the healing skin. We compared the effects of low-temperature plasma on the expression of galectin-1, -2, and -3 in the healing skin with those of electrocoagulation conducted with a high-frequency electrical coagulator. Immediately after the start of low-temperature plasma treatment following the incision made in the skin, a membrane-like structure was formed on the surface of the wound. Immunoelectron microscopy showed that these galectins were localized in the membrane-like structure of the plasma-treated skin. The expressions of these galectins were increased by the low-temperature plasma treatment, whereas they were inhibited by the electrocoagulation. These results suggest that galectins were involved in the wound healing of low-temperature plasma-treated skin. Galectins will thus be good markers for further examination of the effects of low-temperature plasma on the healing of wounded skin. PMID:26827730

  17. Topical tacrolimus does not negatively impact acute skin wound healing.

    PubMed

    Namkoong, Sun; Chung, Jimin; Yoo, Jiyeon; Jung, Minyoung; Gye, Jiwon; Kim, Ji Seok; Kim, Jee Young; Ahn, Sung Ku; Park, Byung Cheol; Kim, Myung Hwa; Hong, Seung Phil

    2013-05-01

    Despite the increasing use of topical tacrolimus, there is little information about its effect on skin wound healing. To determine effects on acute cutaneous wound healing, two full-thickness skin wounds were imparted on the backs of 45 hairless mice, which were then divided into vehicle-, topical tacrolimus- and topical steroid-treated group. Each drug was topically applied once daily. The wound area was assessed by using dermoscopic images every two days after wounding. At 3, 7 and 11 days after wounding, 10 wounds in each group were collected for semi-quantitative analysis of histological features including re-epithelialization, polymorphonuclear leucocytes, fibroblasts and collagen. We also checked the mRNA expression levels of EGF, TGF-β, TNF-α and IL-1α. While topical application of clobetasol propionate was found to delay re-epithelialization and infiltration of polymorphonuclear leucocyte, topical treatment with tacrolimus showed patterns similar to that of the vehicle. In the tacrolimus-treated group, mRNA expression levels of IL-1α and TGF-β were slightly decreased, while the others were similar with the vehicle-treated group. Unlike steroid, topical tacrolimus, therefore, did not disturb the wound healing process in a murine skin wound model. PMID:23614749

  18. Silver Nanoparticles as Real Topical Bullets for Wound Healing

    PubMed Central

    Gunasekaran, Thirumurugan; Nigusse, Tadele; Dhanaraju, Magharla Dasaratha

    2012-01-01

    Nanotechnology is on the threshold of providing a host of new materials and approaches, revolutionizing the medical and pharmaceutical fields. Several areas of medical care are already profiting from the advantage that nanotechnology offers. Recently, silver nanoparticles are attracting interest for a clinical application because of its potential biological properties such as antibacterial activity, anti-inflammatory effects, and wound healing efficacy, which could be exploited in developing better dressings for wounds and ulcers. This article reviews the role of silver nanoparticles in wound healing. PMID:24527370

  19. Antimicrobial peptides and wound healing: biological and therapeutic considerations.

    PubMed

    Mangoni, Maria Luisa; McDermott, Alison M; Zasloff, Michael

    2016-03-01

    Repair of tissue wounds is a fundamental process to re-establish tissue integrity and regular function. Importantly, infection is a major factor that hinders wound healing. Multicellular organisms have evolved an arsenal of host-defense molecules, including antimicrobial peptides (AMPs), aimed at controlling microbial proliferation and at modulating the host's immune response to a variety of biological or physical insults. In this brief review, we provide the evidence for a role of AMPs as endogenous mediators of wound healing and their promising therapeutic potential for the treatment of non-life-threatening skin and other epithelial injuries. PMID:26738772

  20. Bee Venom Accelerates Wound Healing in Diabetic Mice by Suppressing Activating Transcription Factor-3 (ATF-3) and Inducible Nitric Oxide Synthase (iNOS)-Mediated Oxidative Stress and Recruiting Bone Marrow-Derived Endothelial Progenitor Cells.

    PubMed

    Badr, Gamal; Hozzein, Wael N; Badr, Badr M; Al Ghamdi, Ahmad; Saad Eldien, Heba M; Garraud, Olivier

    2016-10-01

    Multiple mechanisms contribute to impaired diabetic wound healing including impaired neovascularization and deficient endothelial progenitor cell (EPC) recruitment. Bee venom (BV) has been used as an anti-inflammatory agent for the treatment of several diseases. Nevertheless, the effect of BV on the healing of diabetic wounds has not been studied. Therefore, in this study, we investigated the impact of BV on diabetic wound closure in a type I diabetic mouse model. Three experimental groups were used: group 1, non-diabetic control mice; group 2, diabetic mice; and group 3, diabetic mice treated with BV. We found that the diabetic mice exhibited delayed wound closure characterized by a significant decrease in collagen production and prolonged elevation of inflammatory cytokines levels in wounded tissue compared to control non-diabetic mice. Additionally, wounded tissue in diabetic mice revealed aberrantly up-regulated expression of ATF-3 and iNOS followed by a marked elevation in free radical levels. Impaired diabetic wound healing was also characterized by a significant elevation in caspase-3, -8, and -9 activity and a marked reduction in the expression of TGF-β and VEGF, which led to decreased neovascularization and angiogenesis of the injured tissue by impairing EPC mobilization. Interestingly, BV treatment significantly enhanced wound closure in diabetic mice by increasing collagen production and restoring the levels of inflammatory cytokines, free radical, TGF-β, and VEGF. Most importantly, BV-treated diabetic mice exhibited mobilized long-lived EPCs by inhibiting caspase activity in the wounded tissue. Our findings reveal the molecular mechanisms underlying improved diabetic wound healing and closure following BV treatment. J. Cell. Physiol. 231: 2159-2171, 2016. © 2016 Wiley Periodicals, Inc. PMID:26825453

  1. Electrical stimulation for pressure sore prevention and wound healing.

    PubMed

    Bogie, K M; Reger, S I; Levine, S P; Sahgal, V

    2000-01-01

    This paper reviews applications of therapeutic electrical stimulation (ES) specific to wound healing and pressure sore prevention. The application of ES for wound healing has been found to increase the rate of healing by more than 50%. Furthermore, the total number of wounds healed is also increased. However, optimal delivery techniques for ES therapy have not been established to date. A study of stimulation current effects on wound healing in a pig model has shown that direct current (DC) stimulation is most effective in wound area reduction and alternating current (AC) stimulation for wound volume reduction at current densities of 127 microA/cm2 and 1,125 microA/cm2, respectively. Preliminary studies have been carried out at two research centers to assess the role of ES in pressure sore prevention. Surface stimulation studies have shown that ES can produce positive short-term changes in tissue health variables such as regional blood flow and pressure distribution. The use of an implanted stimulation system consisting of intramuscular electrodes with percutaneous leads has been found to produce additional long-term changes. Specifically, gluteal muscle thickness increased by 50% with regular long-term ES application concurrent with a 20% decrease in regional interface pressures and increased tissue oxygen levels. These findings indicate that an implantable ES system may have great potential for pressure sore prevention, particularly for individuals who lack sensation or who are physically unable to perform regular independent pressure relief. PMID:11067577

  2. Wound healing potential of Pterocarpus santalinus linn: a pharmacological evaluation.

    PubMed

    Biswas, Tuhin Kanti; Maity, Lakshmi Narayan; Mukherjee, Biswapati

    2004-09-01

    The need for new therapeutics for wound healing has encouraged the drive to examine the nature and value of plant products. Ayurveda, the Indian traditional system of medicine, mentions the values of medicinal plants for wound healing. One of these is Pterocarpus santalinus. This article describes a pharmacological study to evaluate its toxicity as well as wound-healing potential in animal studies. Powder made from the wood of the P. santalinus tree was used to make up an ointment in a petroleum jelly base. No toxic effects were observed in 72 hours. Studies were done on punch and burn wound models on normal and diabetic rats using the test ointment, untreated and vehicle controls, and standard therapy. Physical and biochemical measurements were made. The test ointment-treated wounds healed significantly faster. On healing, collagenesis and biochemical measurements yielded supportive data. These studies permit the conclusion that the P. santalinus ointment is safe and effective in treating acute wounds in animal models. PMID:15866805

  3. The neglected role of copper ions in wound healing.

    PubMed

    Kornblatt, Allison Paige; Nicoletti, Vincenzo Giuseppe; Travaglia, Alessio

    2016-08-01

    Wound healing is a complex biological process that aims to repair damaged tissue. Even though many biological and biochemical mechanisms associated with the steps of physiological wound healing are known, there is still significant morbidity and mortality due to dysregulation of physiological mechanisms. It might be useful to revise the activity of old players and their links with new, often neglected, molecular entities. This review revises new findings supporting the hypothesis that copper ions regulate the activity and/or the expression of proteins crucially involved in the wound repair process. A better understanding of these interactions might suggest potential new targets for therapeutic intervention on scars or non-healing wounds. PMID:26920228

  4. The effects of cancer and cancer therapies on wound healing

    SciTech Connect

    McCaw, D.L.

    1989-11-01

    Based on experimental evidence in rodents, most of the antineoplastic agents will affect wound healing. With most of the agents, this impairment is not sufficient to produce increased morbidity based on the clinical reports in humans. Radiation therapy appears to inhibit healing in both experimental animals and during clinical trials. In spite of this, it is reported that wounds in animals will heal when they are receiving radiation therapy after surgery. Based on the information presented here and experience at the University of Missouri, the decision to use adjuvant therapy should depend on the surgery performed. With a single incision that had no increased tension, there should be no hesitation to use adjuvant therapy. If removal of the tumor required reconstructive surgery, no radiation or chemotherapy should be used until the wound has healed. 30 references.

  5. Nod-Like Receptor Protein-3 Inflammasome Plays an Important Role during Early Stages of Wound Healing

    PubMed Central

    Weinheimer-Haus, Eileen M.; Mirza, Rita E.; Koh, Timothy J.

    2015-01-01

    The Nod-like receptor protein (NLRP)-3 inflammasome/IL-1β pathway is involved in the pathogenesis of various inflammatory skin diseases, but its biological role in wound healing remains to be elucidated. Since inflammation is typically thought to impede healing, we hypothesized that loss of NLRP-3 activity would result in a downregulated inflammatory response and accelerated wound healing. NLRP-3 null mice, caspase-1 null mice and C57Bl/6 wild type control mice (WT) received four 8 mm excisional cutaneous wounds; inflammation and healing were assessed during the early stage of wound healing. Consistent with our hypothesis, wounds from NLRP-3 null and caspase-1 null mice contained lower levels of the pro-inflammatory cytokines IL-1β and TNF-α compared to WT mice and had reduced neutrophil and macrophage accumulation. Contrary to our hypothesis, re-epithelialization, granulation tissue formation, and angiogenesis were delayed in NLRP-3 null mice and caspase-1 null mice compared to WT mice, indicating that NLRP-3 signaling is important for early events in wound healing. Topical treatment of excisional wounds with recombinant IL-1β partially restored granulation tissue formation in wounds of NLRP-3 null mice, confirming the importance of NLRP-3-dependent IL-1β production during early wound healing. Despite the improvement in healing, angiogenesis and levels of the pro-angiogenic growth factor VEGF were further reduced in IL-1β treated wounds, suggesting that IL-1β has a negative effect on angiogenesis and that NLRP-3 promotes angiogenesis in an IL-1β-independent manner. These findings indicate that the NLRP-3 inflammasome contributes to the early inflammatory phase following skin wounding and is important for efficient healing. PMID:25793779

  6. Silver nanoparticles/chitosan oligosaccharide/poly(vinyl alcohol) nanofiber promotes wound healing by activating TGFβ1/Smad signaling pathway

    PubMed Central

    Li, Chen-wen; Wang, Qing; Li, Jing; Hu, Min; Shi, San-jun; Li, Zi-wei; Wu, Guo-lin; Cui, Huan-huan; Li, Yuan-yuan; Zhang, Qian; Yu, Xiu-heng; Lu, Lai-chun

    2016-01-01

    Wound healing occupies a remarkable place in everyday pathology and remains a challenging clinical problem. In our previous study, we prepared a silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) (PVA/COS-AgNPs) nanofiber via electrospinning and revealed that it could promote wound healing; however, the healing mechanism remained unknown. Therefore, we aimed to clarify the mechanism underlying the accelerated healing effect of the PVA/COS-AgNPs nanofiber. The TGFβ1/Smad signaling pathway is actively involved in wound healing. Considering the key role of this signaling pathway in wound healing, our preliminary study showed that the TGFβ1 level was significantly increased during the early stage of wound healing. Thus, in this study, hematoxylin–eosin, Masson’s trichrome, immunofluorescent staining, hydroxyproline content, quantitative real-time polymerase chain reaction, and Western blot analyses were used to analyze the wound healing in a rat model treated with gauze, the PVA/COS-AgNPs nanofiber, and the nanofiber plus SB431542 (an inhibitor of TGFβ1 receptor kinase). The results showed that the PVA/COS-AgNPs nanofiber promoted wound healing and upregulated the expression levels of cytokines associated with the TGFβ1/Smad signaling pathway such as TGFβ1, TGFβRI, TGFβRII, collagen I, collagen III, pSmad2, and pSmad3. Inhibiting this pathway with SB431542 resulted in prevention of the PVA/COS-AgNPs nanofiber-associated salutary effects on the early stage of wound healing and relative cytokines expression. In conclusion, the wound healing effect of the PVA/COS-AgNPs nanofiber involves activation of the TGFβ1/Smad signaling pathway. PMID:26855575

  7. Silver nanoparticles/chitosan oligosaccharide/poly(vinyl alcohol) nanofiber promotes wound healing by activating TGFβ1/Smad signaling pathway.

    PubMed

    Li, Chen-wen; Wang, Qing; Li, Jing; Hu, Min; Shi, San-jun; Li, Zi-wei; Wu, Guo-lin; Cui, Huan-huan; Li, Yuan-yuan; Zhang, Qian; Yu, Xiu-heng; Lu, Lai-chun

    2016-01-01

    Wound healing occupies a remarkable place in everyday pathology and remains a challenging clinical problem. In our previous study, we prepared a silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) (PVA/COS-AgNPs) nanofiber via electrospinning and revealed that it could promote wound healing; however, the healing mechanism remained unknown. Therefore, we aimed to clarify the mechanism underlying the accelerated healing effect of the PVA/COS-AgNPs nanofiber. The TGFβ1/Smad signaling pathway is actively involved in wound healing. Considering the key role of this signaling pathway in wound healing, our preliminary study showed that the TGFβ1 level was significantly increased during the early stage of wound healing. Thus, in this study, hematoxylin-eosin, Masson's trichrome, immunofluorescent staining, hydroxyproline content, quantitative real-time polymerase chain reaction, and Western blot analyses were used to analyze the wound healing in a rat model treated with gauze, the PVA/COS-AgNPs nanofiber, and the nanofiber plus SB431542 (an inhibitor of TGFβ1 receptor kinase). The results showed that the PVA/COS-AgNPs nanofiber promoted wound healing and upregulated the expression levels of cytokines associated with the TGFβ1/Smad signaling pathway such as TGFβ1, TGFβRI, TGFβRII, collagen I, collagen III, pSmad2, and pSmad3. Inhibiting this pathway with SB431542 resulted in prevention of the PVA/COS-AgNPs nanofiber-associated salutary effects on the early stage of wound healing and relative cytokines expression. In conclusion, the wound healing effect of the PVA/COS-AgNPs nanofiber involves activation of the TGFβ1/Smad signaling pathway. PMID:26855575

  8. Quantification of MSCs involved in wound healing: use of SIS to transfer MSCs to wound site and quantification of MSCs involved in skin wound healing.

    PubMed

    Yeum, Chung Eun; Park, Eun Young; Lee, Seong-Beom; Chun, Heung-Jae; Chae, Gue-Tae

    2013-04-01

    Mesenchymal stem cells (MSCs) are known to be effective in wound healing, but not much has been reported on quantitative correlations between MSCs injected into the wound site and MSCs that actually participate in wound healing. This study traced MSCs participating in wound healing by using small intestinal submucosa (SIS) as a cell carrier, identified their moving path and calculated the number of MSCs involved in wound healing. First, MSCs were isolated from the nude mouse and 1 × 10(6) cells were seeded onto the centre of the SIS. MSC-seeded SIS complexes were injected onto full-thickness skin wounds made on the dorsum of nude mice. Tracing of MSC-seeded SIS complex transplanted to the wound site revealed that 27.6% of the MSCs were migrated to the wound site at the first attempt. Second, repeated injection of additional MSCs did not increase the number of MSCs participating in wound healing beyond a certain constant maximum amount. The number of MSCs present in the wound site remains constant in the range 2-3 × 10(5) from day 1 to day 10. The expression of skin regeneration-related growth factors was confirmed by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). MSCs participating in wound healing were found not only to suppress inflammation of the wound but also to increase the skin regeneration-related growth factors that enable the recovery of the skin. An optimal number of about 3 × 10(5) MSCs injected into the site was found to adapt themselves to the skin wound-healing process effectively. PMID:22278819

  9. Fabrication and Characterization of Hybrid Sponge for Healing of Infectious Burn Wound.

    PubMed

    Varalakshmi, Venkat; Suganiya, Selvaraj A; Mala, Rajendran

    2015-01-01

    Burn is the fourth most common type of trauma worldwide. It often creates a third degree to fourth degree burn wound in the victims of accident. Hence a study was undertaken to fabricate hybrid sponge with biopolymers, silver nano particle and phytochemical constituents to accelerate wound healing. Antimicrobial susceptibility of wound isolates was evaluated by disc diffusion method. The silver nano particle was synthesized using the extracts of clove bud. The size of silver nano material ranged from 59-98 nm. The sponge was fabricated by freeze drying and its swelling property was evaluated. In the present study, 82.3% of the swelling of the sponge was observed within 20 minutes. The efficiency of sponge in healing infectious burn wound was assessed in rats. On the 20(th) day, 96.92% of wound was healed in sponge dressing and 58.2% in silverex treated rats. Thus, the study proved that the sponge accelerated the healing rate. Recent patents on the formulation of antimicrobial dressings and sponge have also been discussed in this paper. PMID:27009136

  10. Fast calcium wave inhibits excessive apoptosis during epithelial wound healing.

    PubMed

    Justet, Cristian; Hernández, Julio A; Torriglia, Alicia; Chifflet, Silvia

    2016-08-01

    Successful wound closure is mainly the result of two cellular processes: migration and proliferation. Apoptosis has also been suggested to play a role in the mechanisms of wound healing. The fast calcium wave (FCW), triggered immediately after a wound is produced, has been proposed to be involved in determining healing responses in epithelia. We have explored the effects of the reversible inhibition of FCW on the apoptotic and proliferative responses of healing bovine corneal endothelial (BCE) cells in culture. The most important findings of this study are that caspase-dependent apoptosis occurs during the healing process, that the amount of apoptosis has a linear dependence on the migrated distance, and that FCW inhibition greatly increases the apoptotic index. We have further been able to establish that FCW plays a role in the control of cell proliferation during BCE wound healing. These results indicate that one of the main roles of the wave is to inhibit an excessive apoptotic response of the healing migrating cells. This property might represent a basic mechanism to allow sufficient migration and proliferation of the healing cells to assure proper restitution of the injured tissue. PMID:26987821

  11. Scab-inspired cytophilic membrane of anisotropic nanofibers for rapid wound healing.

    PubMed

    Xi, Yanli; Dong, Hua; Sun, Kang; Liu, Hongliang; Liu, Ruiming; Qin, Yuansen; Hu, Zuojun; Zhao, Yong; Nie, Fuqiang; Wang, Shutao

    2013-06-12

    This work investigates the influence of cytophilic and anisotropic nanomaterials on accelerated cell attachment and directional migration toward rapid wound healing. Inspired by the anisotropic protein nanofibers in scab, a polyurethane (PU) nanofibrous membrane with an aligned structure was fabricated. The membrane showed good affinity for wound-healing-related cells and could guide cell migration in the direction of PU nanofibers. Also, the morphology and distribution of F-actin and paxillin of attached cells were influenced by the underlying nanofibers. The randomly distributed PU nanofibers and planar PU membrane did not show a distinct impact on cell migration. This scab-inspired cytophilic membrane is promising in applications as functional interfacial biomaterials for rapid wound healing, bone repair, and construction of neural networks. PMID:23629385

  12. Intracellular processing of epidermal growth factor by early wound healing cells

    SciTech Connect

    Seyfer, A.E.; Nassaux, P.; Emory, R.; Wray, H.L.; Schaudies, R.P. )

    1990-01-01

    Epidermal growth factor (EGF) is a potent 53-amino-acid residue polypeptide that has been implicated in normal wound healing. Although past studies have shown that locally applied EGF accelerates wound healing, these studies have not examined intracellular events related to the processing of the growth factor. The objective of this study was to characterize both initial and later postbinding intracellular processing of EGF by a responsive cell line (osteoblasts) that is important in the healing of wounds. Cloned mouse calvarial osteoblasts (MC-3TC-E1) were incubated with radiolabeled EGF, with and without preincubation with nonlabeled EGF, for specific time intervals. Cell-associated radioactivity was characterized by nondenaturing polyacrylamide gel electrophoresis. Results showed that EGF is processed as three distinct species and that the relative proportions of these species are altered at later time periods when compared with initial processing. The patterns, similar to those reported for human fibroblasts, indicate a possible common pathway for the mitogenic signal in cells associated with the early events of wound healing. In addition, these data represent the first direct evidence that preexposure of cells to nonlabeled EGF alters the processing of radiolabeled EGF. This is significant, because cells must be exposed to EGF for 5 to 8 hours to elicit a growth response. Such data may help to explain the lag phase of wound healing.

  13. Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats

    PubMed Central

    Zhang, Jianying; Yuan, Ting; Wang, James H-C.

    2016-01-01

    The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients. PMID:26885754

  14. The effect of ambient temperature and type of wound on healing of cutaneous wounds in the common garter snake (Thamnophis sirtalis).

    PubMed Central

    Smith, D A; Barker, I K; Allen, O B

    1988-01-01

    The effects of ambient temperature (13.5 degrees C, 21 degrees C, 30 degrees C) and type of wound on healing of skin wounds were evaluated in common garter snakes (Thamnophis sirtalis). Linear unsutured incisions and circular excisional wounds were evaluated grossly and microscopically in three snakes held at each temperature at each of two, five and ten days after surgery. Linear sutured and unsutured incisions and circular and square excisional wounds were similarly evaluated three and six weeks after wound production in groups of six snakes held at each temperature. The rates of stabilization of wound margins, scab formation, migration and maturation of the regenerating epithelium, resolution of dermal inflammation, and fibroplasia varied directly with temperature. The inflammatory reaction to wounding was similar in character and intensity in snakes held at all three temperatures two days after surgery. Unsutured linear incisions, compared to sutured incisions, tended to have more rapid epithelial maturation and a less intense inflammatory response. Healing of square and circular excisional wounds was similar; contraction of round wounds was slightly more irregular and, at a few observations, dermal maturation was slower and inflammation more widespread. It was concluded that healing of skin wounds can be accelerated by holding reptiles at the upper end of their voluntary temperature range. Wounds, if possible, should be created along the axis of lines of skin tension. Suturing small incisional wounds may not be advantageous. PMID:3349390

  15. Evaluation of wound healing property of Terminalia catappa on excision wound models in Wistar rats.

    PubMed

    Khan, A A; Kumar, V; Singh, B K; Singh, R

    2014-05-01

    Wound is defined as the loss of breaking cellular and functional continuity of the living tissues. Management of wounds is frequently encountered with different problems. Drug resistance and toxicity hindered the development of synthetic antimicrobial agents with wound healing activity. Many plants with potent pharmacological activities may offer better treatment options viz. Terminalia chebula, Terminalia bellirica and Phyllanthus emblica formulations have shown healing activities on wounds.The present study was planned to investigate the wound healing activity of Terminalia catappa on excision wound model in rats. Ointment was prepared by using bark extract of Terminalia catappa in soft paraffin and preservative. Wistar albino rats (200-250 gm) of either sex were used in the present study. A circular wound of 2 cm in diameter was made on the depilated dorsal thoracic region of the rats under ether anesthesia in aseptic conditions. The ointment was applied for 18 days and percent wound closure observed along with the parameters viz. Epithelization, granuloma weight and scar formation. Animals were observed on 3rd, 6th, 9th, 12th, 15th and 18th post-wounding day.Wound healing activity was compared with that of control and Betadine ointment as standard drug. Animals treated with Terminalia catappa ointment exhibited 97% reduction in wound area as compared to the control animals (81%). Ointment treated wounds were found to induce epithelization faster compared to the control. In conclusion, Terminalia catappa ointment promotes significant wound healing in rats and further evaluation of this activity in humans is suggested. PMID:24132703

  16. Wound healing. New modalities for a new millennium.

    PubMed

    Williams, R L; Armstrong, D G

    1998-01-01

    Common to all studies of wound healing modalities is the need to convert the chronic wound into an acute wound and to maintain the wound in an acute state while subsequently using adjunctive therapy. Hence, precise control and documentation of wound care is extremely important in order to avoid contamination of the effects of a specific modality with the effects of good wound care. Falanga has noted that neuropathy of diabetes has been given wide support as the primary pathogenic component of diabetic ulcers, whereas less recognition has been made of the wound-healing failure component. The therapies discussed in this article considered the wound-healing failure component. Oxygen is a drug. The use of oxygen under normobaric conditions at higher than normal inspired partial pressures is standard operating procedure when clinicians are faced with patients with respiratory embarrassment or heart failure. The use of oxygen under hyperbaric conditions, however, remains estranged from the mainstream thoughts of most clinicians. Abnormally hypoxic wounds may benefit from specific oxygen therapy in hyperbaric dosage ranges. However, correction of abnormal wound oxygen tension alone does not guarantee healing. Hyperbaric studies have been criticized for the lack of well-defined wound care protocols, the absence of precise wound healing measures, and poorly defined wound healing endpoints. Studies with growth factors and human skin equivalents exclude patients typically referred for hyperbaric therapy. Patients referred for hyperbaric therapy often have larger wounds with greater severity of peripheral vascular disease with ABIs < 0.7 and TcPO2 < 30 to 40 mm Hg, are often on medications known to inhibit wound healing (e.g., steroids), or have concomitant medical disorders (collagen vascular disease, renal failure) associated with poor healing. No hyperbaric study has controlled stringently for all of these factors. Nevertheless, HBO2 is more specific and successful for the

  17. Autologous keratinocyte suspension in platelet concentrate accelerates and enhances wound healing – a prospective randomized clinical trial on skin graft donor sites: platelet concentrate and keratinocytes on donor sites

    PubMed Central

    2013-01-01

    Background Wound healing involves complex mechanisms, which, if properly chaperoned, can enhance patient recovery. The abilities of platelets and keratinocytes may be harnessed in order to stimulate wound healing through the formation of platelet clots, the release of several growth factors and cytokines, and cell proliferation. The aim of the study was to test whether autologous keratinocyte suspensions in platelet concentrate would improve wound healing. The study was conducted at the Lausanne University Hospital, Switzerland in 45 patients, randomized to three different topical treatment groups: standard treatment serving as control, autologous platelet concentrate (PC) and keratinocytes suspended in autologous platelet concentrate (PC + K). Split thickness skin graft donor sites were chosen on the anterolateral thighs of patients undergoing plastic surgery for a variety of defects. Wound healing was assessed by the duration and quality of the healing process. Pain intensity was evaluated at day five. Results Healing time was reduced from 13.9 ± 0.5 days (mean ± SEM) in the control group to 7.2 ± 0.2 days in the PC group (P < 0.01). An addition of keratinocytes in suspension further reduced the healing time to 5.7 ± 0.2 days. Pain was reduced in both the PC and PC + K groups. Data showed a statistically detectable advantage of using PC + K over PC alone (P < 0.01). Conclusion The results demonstrate the positive contribution of autologous platelets combined with keratinocytes in stimulating wound healing and reducing pain. This strikingly simple approach could have a significant impact on patient care, especially critically burned victims for whom time is of the essence. Clinical trial registry information Protocol Record Identification Number: 132/03 Registry URL: http://www.clinicaltrials.gov PMID:23570605

  18. Taking the trauma out of wound care: the importance of undisturbed healing.

    PubMed

    Rippon, M; Davies, P; White, R

    2012-08-01

    Significant advances in wound dressing technology have resulted in a myriad of dressing choices for wound-care clinicians, providing more than just an inert wound cover. The establishment of a moist wound environment under modern wound dressings and the optimisation of the healing response are now the goals expected of these dressings. However, the use of wound dressings, particularly traditional dressings such as gauze, frequently results in wound and peri-wound tissue damage that impairs the wound healing response, counteracting any of the dressings' healing benefits. Therefore, in order to maximise the healing benefits wounds covered by today's wound dressings must minimise tissue disturbance (physical as well as chemical). This review aims to consider the ways traditional, as well as modern, wound dressings may disturb wounds, summarising the potential areas of wound disturbance, and suggesting how best to address this aspect of the use of wound dressings to treat acute as well as chronic wounds. PMID:22885308

  19. Biosurgery in wound healing--the renaissance of maggot therapy.

    PubMed

    Wollina, U; Karte, K; Herold, C; Looks, A

    2000-07-01

    Chronic wounds are a challenge for modern health care. A basic principle of treatment is the removal of sloughy, necrotic, devitalized tissue to prevent wound infection and delayed healing. Biosurgery (syn. maggot or larval therapy) is a promising adjunct to the whole spectrum of topical treatment methods, in particular for debridement. The term 'biosurgery' describes the use of living maggots on wounds to remove devitalized tissue, decrease the risk of infection and improve wound healing. The present paper gives a brief review of history, entomology, biochemistry and medical indications of biosurgery and the practical handling of maggots. We also provide some clinical data from the literature and our own experience in a wound care unit. Biosurgery is an effective and safe treatment option for debridement and disinfection. PMID:11204517

  20. Burn wound healing property of Cocos nucifera: An appraisal

    PubMed Central

    Srivastava, Pallavi; Durgaprasad, S.

    2008-01-01

    Objectives: The study was undertaken to evaluate the burn wound healing property of oil of Cocos nucifera and to compare the effect of the combination of oil of Cocos nucifera and silver sulphadiazine with silver sulphadiazine alone. Materials and Methods: Partial thickness burn wounds were inflicted upon four groups of six rats each. Group I was assigned as control, Group II received the standard silver sulphadiazine. Group III was given pure oil of Cocos nucifera , and Group IV received the combination of the oil and the standard. The parameters observed were epithelialization period and percentage of wound contraction. Results: It was noted that there was significant improvement in burn wound contraction in the group treated with the combination of Cocos nucifera and silver sulphadiazine. The period of epithelialization also decreased significantly in groups III and IV. Conclusion: It is concluded that oil of Cocos nucifera is an effective burn wound healing agent. PMID:20040946

  1. Epidermal Wound Healing in the Nematode Caenorhabditis elegans

    PubMed Central

    Chisholm, Andrew D.

    2015-01-01

    Significance: Healing of epidermal wounds is a fundamentally conserved process found in essentially all multicellular organisms. Studies of anatomically simple and genetically tractable model invertebrates can illuminate the roles of key genes and mechanisms in wound healing. Recent Advances: The nematode skin is composed of a simple epithelium, the epidermis (also known as hypodermis), and an associated extracellular cuticle. Nematodes likely have a robust capacity for epidermal repair; yet until recently, relatively few studies have directly analyzed wound healing. Here we review epidermal wound responses and repair in the model nematode Caenorhabditis elegans. Critical Issues: Wounding the epidermis triggers a cutaneous innate immune response and wound closure. The innate immune response involves upregulation of a suite of antimicrobial peptides. Wound closure involves a Ca2+-triggered rearrangement of the actin cytoskeleton. These processes appear to be initiated independently, yet, their coordinated activity allows the animal to survive otherwise fatal skin wounds. Future Directions: Unanswered questions include the nature of the damage-associated molecular patterns sensed by the epidermis, the signaling pathways relaying Ca2+ to the cytoskeleton, and the mechanisms of permeability barrier repair. PMID:25945288

  2. Delayed healing and induction of secretory leukocyte protease inhibitor in polycystic ovary syndrome rat skin wounds.

    PubMed

    Jeong, Soon-Jeong; Kim, Sung-Shin; Bae, Chun-Sik; Park, Jin-Ju; Choi, Baik-Dong; Wang, Guanlin; Jung, Myung-Ju; Jang, Hyun-Sun; Kim, Byung-Ock; Lim, Do-Seon; Cho, Young-Sik; Jeong, Moon-Jin

    2012-02-01

    Secretory leukocyte protease inhibitor (SLPI) and estrogen promote wound healing through a decrease in the excessive inflammatory response, accelerating re-epithelialization and increasing the amount of collagen deposition. The excessive administration of estradiol valerate (EV) using hormonal therapy decreases the concentration of estrogen abruptly and induces the polycystic ovary syndrome (PCOS). In this study, the PCOS rat skin wound area was wider than that of the normal groups and the rate of keratinocyte migration in PCOS was lower than the normal group. The numbers of inflammatory cells and macrophages recruited in the PCOS group were larger than that of the normal group. More collagen was deposited in the healing area of the normal group than in the PCOS group. The level of SLPI expression was higher in the PCOS group than the normal group after wounding, with the exception of the epithelium. On the other hand, mRNA and protein expression levels of transforming growth factor-β1 (TGF-β1) were lower in the PCOS group than in the normal group. Matrix metalloproteinase-2 (MMP-2) and MMP-9 levels in the PCOS group were significantly lower than that of the normal group. Therefore, increased SLPI in PCOS skin wounds may help prevent an excessive inflammatory response and aberrant collagen deposition but not are sufficient to accelerate PCOS skin wound healing, suggesting that SLPI may act as a local rather than a systemic modulating molecule in PCOS rat skin wounds. PMID:22020578

  3. Epidermal growth factor loaded heparin-based hydrogel sheet for skin wound healing.

    PubMed

    Goh, MeeiChyn; Hwang, Youngmin; Tae, Giyoong

    2016-08-20

    A heparin-based hydrogel sheet composed of thiolated heparin and diacrylated poly (ethylene glycol) was prepared via photo polymerization and human epidermal growth factor (hEGF) were loaded into it for the purpose of wound healing. It showed a sustained release profile of hEGF in vitro. In order to evaluate its function on wound healing in vivo, full thickness wounds were created on the dorsal surface of mice. Application of hEGF loaded heparin-based hydrogel sheet accelerated the wound closure compared to the non-treated control group, hEGF solution, and hEGF loaded PEG hydrogel sheet. Histological and immunohistological examinations also demonstrated an advanced granulation tissue formation, capillary formation, and epithelialization in wounds treated by hEGF loaded heparin-based hydrogel compared to other groups, and no biocompatibility issue was observed. In conclusion, the delivery of hEGF using the heparin-based hydrogel could accelerate the skin wound healing process. PMID:27178931

  4. Collagen nanofiber containing silver nanoparticles for improved wound-healing applications.

    PubMed

    Rath, Goutam; Hussain, Taqadus; Chauhan, Gaurav; Garg, Tarun; Goyal, Amit Kumar

    2016-07-01

    Electrospun nanofibers showing great promise for fabricating nanostructured materials might help to improve the quality of wound care. The present study aimed to investigate the wound-healing potential of collagen nanofiber mats containing silver nanoparticles. Silver nanoparticles (AgNPs) synthesized by the chemical reduction method were incorporated in collagen nanofibers during the electrospinning process. Characterization of electrospun nanofiber mats revealed a mean fiber diameters in the range of 300-700 nm with a sustained release of silver ions shown to follow pseudo-order kinetics. MIC of AgNPs against Staphylococcus aureus and Pseudomonas aeruginosa were evaluated using micro-dilution assay and further antimicrobial activity of fabricated nanofibers was performed. Finally, in vivo studies were performed to demonstrate the wound-healing efficacy of composite nanofibers. In vitro results confirmed the potential antimicrobial efficacy provided by AgNPs and AgNPs composite nanofibers, essential to provide an aseptic environment at the wound site. In vivo study revealed that the rate of wound healing of the composite nanofiber mats was found to be accelerated compared with plain collagen nanofibers. Histology analysis revealed an accelerated re-epithelization, collagen production, and better wound contraction with AgNPs composite collagen nanofibers. PMID:26487102

  5. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction

    PubMed Central

    Scioli, Maria Giovanna; Lo Giudice, Pietro; Bielli, Alessandra; Tarallo, Valeria; De Rosa, Alfonso; De Falco, Sandro; Orlandi, Augusto

    2015-01-01

    Background Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO) production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC) is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery. Methods and Results We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS) reduction, inducible nitric oxide synthase (iNOS) and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF), placental growth factor (PlGF) and reduction of NADPH-oxidase 4 (Nox4) expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM) expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction. Conclusion PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction

  6. Mesenchymal Stem Cells and Cutaneous Wound Healing: Current Evidence and Future Potential

    PubMed Central

    Isakson, M.; de Blacam, C.; Whelan, D.; McArdle, A.; Clover, A. J. P.

    2015-01-01

    Human skin is a remarkable organ that sustains insult and injury throughout life. The ability of skin to expeditiously repair wounds is paramount to survival. With an aging global population, coupled with a rise in the prevalence of conditions such as diabetes, chronic wounds represent a significant biomedical burden. Mesenchymal stem cells (MSC), a progenitor cell population of the mesoderm lineage, have been shown to be significant mediators in inflammatory environments. Preclinical studies of MSC in various animal wound healing models point towards a putative therapy. This review examines the body of evidence suggesting that MSC accelerate wound healing in both clinical and preclinical studies and also the possible mechanisms controlling its efficacy. The delivery of a cellular therapy to the masses presents many challenges from a safety, ethical, and regulatory point of view. Some of the issues surrounding the introduction of MSC as a medicinal product are also delineated in this review. PMID:26106431

  7. Effects of the Four-Herb Compound ANBP on Wound Healing Promotion in Diabetic Mice.

    PubMed

    Hou, Qian; He, Wen-Jun; Chen, Li; Hao, Hao-Jie; Liu, Jie-Jie; Dong, Liang; Tong, Chuan; Li, Mei-Rong; Zhou, Zhong-Zhi; Han, Wei-Dong; Fu, Xiao-Bing

    2015-12-01

    Wound healing is a troublesome problem in diabetic patients. Besides, there is also an increased risk of postsurgical wound complications for diabetic patient. It has been revealed that traditional Chinese medicine may promote healing and inhibit scar formation, while the changes of morphology and physiology of wounds on such medicine treatment still remain elusive. In this study, we first used the ultralow temperature preparation method to produce mixed superfine powder from Agrimonia pilosa (A), Nelumbo nucifera (N), Boswellia carteri (B), and Pollen typhae (P), named as ANBP. Applying ANBP on 40 streptozotocin (STZ)-induced diabetic C57BL/6 mice (4-6 weeks, 20 ± 2 g), we observed that the wound healing process was accelerated and the wound healing time was shortened (14 days, P < .05). Pathological observation using hematoxylin-eosin staining indicated that inflammatory cells were reduced (P < .05) while the thickness of granulation tissue and length of epithelial tongue were increased (P < .05). The vascular density was increased on 7 and 14 days after ANBP treatment. Masson and Sirius red staining showed that, at the early stage of trauma, the expressions of Col I and Col III, especially Col III, were increased in the ANBP group (P < .05). Studies in vitro demonstrated that tubular formation was significantly increased after ANBP treatment on human vascular endothelial cells in a dose-dependent way. Taken together, our studies revealed that ANBP treatment could accelerate wound healing, promote vascularization, and inhibit inflammation, suggesting the potential clinic application of ANBP for diabetes mellitus and refractory wounds. PMID:25795279

  8. Compromised Wound Healing in Ischemic Type 2 Diabetic Rats

    PubMed Central

    Yu, Tianyi; Chang, Qingxuan; Wang, Di; Gao, Min; Zhang, Xiong; Liu, Yan

    2016-01-01

    Ischemia is one of the main epidemic factors and characteristics of diabetic chronic wounds, and exerts a profound effect on wound healing. To explore the mechanism of and the cure for diabetic impaired wound healing, we established a type 2 diabetic rat model. We used an 8weeks high fat diet (HFD) feeding regimen followed by multiple injections of streptozotocin (STZ) at a dose of 10mg/kg to induce Wister rat to develop type 2 diabetes. Metabolic characteristics were assessed at the 5th week after the STZ injections to confirm the establishment of diabetes mellitus on the rodent model. A bipedicle flap, with length to width ratio 1.5, was performed on the back of the rat to make the flap area ischemic. Closure of excisional wounds on this bipedicle flap and related physiological and pathological changes were studied using histological, immunohistochemical, real time PCR and protein immunoblot approaches. Our results demonstrated that a combination of HFD feeding and a low dose of STZ is capable of inducing the rats to develop type 2 diabetes with noticeable insulin resistance, persistent hyperglycemia, moderate degree of insulinemia, as well as high serum cholesterol and high triglyceride levels. The excision wounds on the ischemic double pedicle flap showed deteriorative healing features comparing with non-ischemic diabetic wounds, including: delayed healing, exorbitant wound inflammatory response, excessive and prolonged ROS production and excessive production of MMPs. Our study suggested that HFD feeding combined with STZ injection could induce type 2 diabetes in rat. Our ischemic diabetic wound model is suitable for the investigation of human diabetic related wound repair; especically for diabetic chronic wounds. PMID:27028201

  9. Wound healing complications in brain tumor patients on Bevacizumab.

    PubMed

    Ladha, Harshad; Pawar, Tushar; Gilbert, Mark R; Mandel, Jacob; O-Brien, Barbara; Conrad, Charles; Fields, Margaret; Hanna, Teresa; Loch, Carolyn; Armstrong, Terri S

    2015-09-01

    Bevacizumab (BEV) is commonly used for treating recurrent glioblastoma (GBM), and wound healing is a well-established adverse event. Retrospective analysis of GBM patients with and without wound healing complications while on BEV treatment is reported. 287 patients identified, majority were males (60 %) with median age of 52.5 years. 14 cases identified with wound healing problems, related to either craniotomy (n = 8) or other soft tissue wounds (n = 6). Median duration of BEV treatment to complication was 62 days (range 6-559). Majority received 10 mg/kg (n = 11) and nine (64.3 %) were on corticosteroids, with median daily dose of 6 mg (range 1-16 mg) for median of 473 days before starting BEV. For dehisced craniotomy wounds, median time for starting BEV from last surgery was 29 days (range 27-345). Median time from starting BEV to developing wound complication was 47 days (range 16-173). Seven (87.5 %) had infected wounds requiring antibiotics, hospitalization. Four (50 %) required plastic surgery. BEV stopped and safely resumed in 6 (75 %) patients; median delay was 70 days (range 34-346). Soft tissue wounds included decubitus ulcer, dehisced striae, herpes simplex, trauma to hand and back, and abscess. Median time from starting BEV to wound issues was 72 days (range 6-559). Five (83.3 %) were infected, requiring antibiotics. While three (50 %) required hospitalization, none required plastic surgery. Treatment stopped in five (83.3 %) and restarted in two (median delay 48 days, range 26-69). Wound healing complications are uncommon but associated with significant morbidity. Identifying those at risk and contributing factors warrants further investigation. PMID:26298437

  10. Irradiation at 660 nm modulates different genes central to wound healing in wounded and diabetic wounded cell models

    NASA Astrophysics Data System (ADS)

    Houreld, Nicolette N.

    2014-02-01

    Wound healing is a highly orchestrated process and involves a wide variety of cellular components, chemokines and growth factors. Laser irradiation has influenced gene expression and release of various growth factors, cytokines and extracellular matrix proteins involved in wound healing. This study aimed to determine the expression profile of genes involved in wound healing in wounded and diabetic wounded fibroblast cells in response to irradiation at a wavelength of 660 nm. Human skin fibroblast cells (WS1) were irradiated with a diode laser (wavelength 660 nm; fluence 5 J/cm2; power output 100 mW; power density 11 mW/cm2; spot size 9.1 cm2; exposure duration 7 min 35 s). Total RNA was isolated and 1 μg reverse transcribed into cDNA which was used as a template in real-time qualitative polymerase chain reaction (qPCR). Eighty four genes involved in wound healing (extracellular matrix and cell adhesion; inflammatory cytokines and chemokines; growth factors; and signal transduction) were evaluated in wounded and diabetic wounded cell models. Forty eight hours post-irradiation, 6 genes were significantly upregulated and 8 genes were down-regulated in irradiated wounded cells, whereas 1 gene was up-regulated and 33 genes down-regulated in irradiated diabetic wounded cells. Irradiation of stressed fibroblast cells to a wavelength of 660 nm and a fluence of 5 J/cm2 modulated the expression of different genes involved in wound healing in different cell models. Modulation of these genes leads to the effects of laser irradiation seen both in vivo and in vitro, and facilitates the wound healing process.

  11. Antimicrobials and Non-healing Wounds Evidence, controversies and suggestions.

    PubMed

    Gottrup, F; Apelqvist, J; Bjansholt, T; Cooper, R; Moore, Z; Peters, E J G; Probst, S

    2013-05-01

    Non-healing wounds are a significant problem for health-care systems worldwide. In the industrialised world, almost 1-1.5% of the population will have a problem wound at any one time. Furthermore, wound management is expensive; in Europe, the average cost per episode is 6650 euros for leg ulcers and 10 000 euros for foot ulcers, and wound management accounts for 2-4% of health-care budgets. These figures are expected to rise along with an increased elderly and diabetic population.1-4. PMID:23921580

  12. Macroscopic effect of blue light cure on wound healing in NMRI mice NMRI

    PubMed Central

    Jaffary, Fariba; Changizi, Vahid; Mardani, Homeira; Kakanezhadian, Parisa; Javadi, Faezeh Moshref; Nilforoushzadeh, Mohammad Ali; Haftbaradaran, Elaheh

    2014-01-01

    Background: Wound healing is a complex process and has been an ongoing challenge all over the world. Some studies have suggested light cure as a modality to accelerate wound repair. It can induce fibroblast proliferation, increase collagen synthesis and activate cellular processes involved in expression of procollagen type I and III mRNA. This study was designed to assess the macroscopic effect of halogen dental curing blue light on full-thickness open wound healing in NMRI mice. Materials and Methods: Forty male NMRI mice were divided into control and treatment groups. A full-thickness wound of 6 mm in diameter was induced on the lower back of all mice under general anesthesia and sterile conditions. The mice of the treatment group received a 5-min exposure of halogen light Coltolux II (QHL), 420-500 nm, daily for 7 days. The diameter of the wound was measured in both the treatment and the control groups every second day up to Day 14. Data were analyzed by SPSS version 12 software using Student's t-test. A significance level of P ≤ 0.05 was considered for each comparison. Results: There was a significant difference in wound diameter between the control and the treatment groups at all measurements after Day 3 (P ≤ 0/05). Conclusion: The results of this study suggest improvement of full-thickness wound healing by daily irradiation of halogen dental curing blue light of 420-500 nm for 7 days. PMID:24804180

  13. The Healing Effect of Scrophularia Striata on Experimental Burn Wounds Infected to Pseudomonas Aeruginosa in Rat

    PubMed Central

    Tanideh, Nader; Haddadi, Mohammad Hossein; Rokni-Hosseini, Mohammad Hossein; Hossienzadeh, Masood; Mehrabani, Davood; Sayehmiri, Kourosh; Koohi-Hossienabadi, Omid

    2015-01-01

    BACKGROUND The cause of death in burn patients after 48 hours of hospitalization has been reported to be bacterial infections. Recently, due to the compounds accelerating the healing process and the intense reduction of treatment side effects, medicinal plants are used to cure burn wound infections. This study aims to investigate the medicinal effect of the ethanolic extract of Scrophularia striata on burn wound infection in in-vivo and in-vitro in comparison with silver sulfadiazine (SSD). METHODS One hundred and fifty male Sprague Dawley rats were divided into 3 equal groups. A hot plate of 1×1cm was used to create second degree burn wounds. The ethanolic extract of S. striata was provided through percolation method. Group 1 was treated with SSD, group 2 with S. striata, and group 3 was considered as control group. All animals were infected to Pseudomonas aeruginosa. On days 3, 7, 10, 14, and 21 after burn wound injury, the animals were euthanized and were evaluated histologically. The MIC and MBC were determined using the micro dilution method. RESULTS The rate of wound healing was significantly greater in S. striata group in comparison to SSD and control groups. CONCLUSION S. striata contains was shown to have anti-bacterial and wound healing effects while this effect was significantly more than SSD denoting to its use when needed for burn wounds infected to P. aeruginosa. PMID:25606472

  14. Mesenchymal stem cells and cutaneous wound healing: novel methods to increase cell delivery and therapeutic efficacy.

    PubMed

    Lee, Dylan E; Ayoub, Nagi; Agrawal, Devendra K

    2016-01-01

    Mesenchymal stem cells (MSCs) (also known as multipotent mesenchymal stromal cells) possess the capacity for self-renewal and multi-lineage differentiation, and their ability to enhance cutaneous wound healing has been well characterized. Acting via paracrine interactions, MSCs accelerate wound closure, increase angiogenesis, promote resolution of wound inflammation, favorably regulate extracellular matrix remodeling, and encourage regeneration of skin with normal architecture and function. A number of studies have employed novel methods to amplify the delivery and efficacy of MSCs. Non-traditional sources of MSCs, including Wharton's jelly and medical waste material, have shown efficacy comparable to that of traditional sources, such as bone marrow and adipose tissue. The potential of alternative methods to both introduce MSCs into wounds and increase migration of MSCs into wound areas has also been demonstrated. Taking advantage of the associations between MSCs with M2 macrophages and microRNA, methods to enhance the immunomodulatory capacity of MSCs have shown success. New measures to enhance angiogenic capabilities have also exhibited effectiveness, often demonstrated by increased levels of proangiogenic vascular endothelial growth factor. Finally, hypoxia has been shown to have strong wound-healing potential in terms of increasing MSC efficacy. We have critically reviewed the results of the novel studies that show promise for the continued development of MSC-based wound-healing therapies and provide direction for continued research in this field. PMID:26960535

  15. Regulation of impaired angiogenesis in diabetic dermal wound healing by microRNA-26a.

    PubMed

    Icli, Basak; Nabzdyk, Christoph S; Lujan-Hernandez, Jorge; Cahill, Meghan; Auster, Michael E; Wara, A K M; Sun, Xinghui; Ozdemir, Denizhan; Giatsidis, Giorgio; Orgill, Dennis P; Feinberg, Mark W

    2016-02-01

    Wound healing is a physiological reparative response to injury and a well-orchestrated process that involves hemostasis, cellular migration, proliferation, angiogenesis, extracellular matrix deposition, and wound contraction and re-epithelialization. However, patients with type 2 diabetes mellitus (T2D) are frequently afflicted with impaired wound healing that progresses into chronic wounds or diabetic ulcers, and may lead to complications including limb amputation. Herein, we investigate the potential role of microRNA-26a (miR-26a) in a diabetic model of wound healing. Expression of miR-26a is rapidly induced in response to high glucose in endothelial cells (ECs). Punch skin biopsy wounding of db/db mice revealed increased expression of miR-26a (~3.5-fold) four days post-wounding compared to that of WT mice. Local administration of a miR-26a inhibitor, LNA-anti-miR-26a, induced angiogenesis (up to ~80%), increased granulation tissue thickness (by 2.5-fold) and accelerated wound closure (53% after nine days) compared to scrambled anti-miR controls in db/db mice. These effects were independent of altered M1/M2 macrophage ratios. Mechanistically, inhibition of miR-26a increased its target gene SMAD1 in ECs nine days post-wounding of diabetic mice. In addition, high glucose reduced activity of the SMAD1-3'-UTR. Diabetic dermal wounds treated with LNA-anti-miR-26a had increased expression of ID1, a downstream modulator or SMAD1, and decreased expression of the cell cycle inhibitor p27. These findings establish miR-26a as an important regulator on the progression of skin wounds of diabetic mice by specifically regulating the angiogenic response after injury, and demonstrate that neutralization of miR-26a may serve as a novel approach for therapy. PMID:26776318

  16. Stem Cells in Skin Wound Healing: Are We There Yet?

    PubMed Central

    Cerqueira, Mariana Teixeira; Pirraco, Rogério Pedro; Marques, Alexandra Pinto

    2016-01-01

    Significance: Cutaneous wound healing is a serious problem worldwide that affects patients with various wound types, resulting from burns, traumatic injuries, and diabetes. Despite the wide range of clinically available skin substitutes and the different therapeutic alternatives, delayed healing and scarring are often observed. Recent Advances: Stem cells have arisen as powerful tools to improve skin wound healing, due to features such as effective secretome, self-renewal, low immunogenicity, and differentiation capacity. They represent potentially readily available biological material that can particularly target distinct wound-healing phases. In this context, mesenchymal stem cells have been shown to promote cell migration, angiogenesis, and a possible regenerative rather than fibrotic microenvironment at the wound site, mainly through paracrine signaling with the surrounding cells/tissues. Critical Issues: Despite the current insights, there are still major hurdles to be overcome to achieve effective therapeutic effects. Limited engraftment and survival at the wound site are still major concerns, and alternative approaches to maximize stem cell potential are a major demand. Future Directions: This review emphasizes two main strategies that have been explored in this context. These comprise the exploration of hypoxic conditions to modulate stem cell secretome, and the use of adipose tissue stromal vascular fraction as a source of multiple cells, including stem cells and factors requiring minimal manipulation. Nonetheless, the attainment of these approaches to target successfully skin regeneration will be only evident after a significant number of in vivo works in relevant pre-clinical models. PMID:27076994

  17. Stem Cell-Based Therapeutics to Improve Wound Healing

    PubMed Central

    Hu, Michael S.; Leavitt, Tripp; Malhotra, Samir; Duscher, Dominik; Pollhammer, Michael S.; Walmsley, Graham G.; Maan, Zeshaan N.; Cheung, Alexander T. M.; Schmidt, Manfred; Huemer, Georg M.; Longaker, Michael T.; Lorenz, H. Peter

    2015-01-01

    Issues surrounding wound healing have garnered deep scientific interest as well as booming financial markets invested in novel wound therapies. Much progress has been made in the field, but it is unsurprising to find that recent successes reveal new challenges to be addressed. With regard to wound healing, large tissue deficits, recalcitrant wounds, and pathological scar formation remain but a few of our most pressing challenges. Stem cell-based therapies have been heralded as a promising means by which to surpass current limitations in wound management. The wide differentiation potential of stem cells allows for the possibility of restoring lost or damaged tissue, while their ability to immunomodulate the wound bed from afar suggests that their clinical applications need not be restricted to direct tissue formation. The clinical utility of stem cells has been demonstrated across dozens of clinical trials in chronic wound therapy, but there is hope that other aspects of wound care will inherit similar benefit. Scientific inquiry into stem cell-based wound therapy abounds in research labs around the world. While their clinical applications remain in their infancy, the heavy investment in their potential makes it a worthwhile subject to review for plastic surgeons, in terms of both their current and future applications. PMID:26649195

  18. Raman spectroscopy and the spectral correlation index for predicting wound healing outcome: towards in vivo application

    NASA Astrophysics Data System (ADS)

    Berger, Adam G.; Crane, Nicole J.; Elster, Eric A.

    2016-03-01

    Combat wounds are sometimes confounded by healing complications that are not as prevalent in civilian wounds due to their high energy etiology. One complication of wound healing is dehiscence, where a surgically closed wound reopens after closure. This complication can have serious consequences for the patient, but knowledge about the molecular composition of the wound bed beyond what is readily visible may help clinicians mitigate these complications. It is necessary to develop techniques that can be used in vivo to assess and predict wound healing pointof- care so that care-takers can decide the best way to make informed clinical decisions regarding their patient's healing. Raman spectroscopy is a perfect candidate for predicting wound healing due to its ability to provide a detailed molecular fingerprint of the wound bed noninvasively. Here, we study the spectral correlation index, a measure of orthogonality, with ten reference tissue components to stratify wounds based on how they heal. We analyze these indexes over time to show the modulation of these tissue components over the wound healing process. Results show that qualitative observation of the spectra cannot reveal major differences between the dehisced and normal healing wounds, but the spectral correlation index can. Analysis of the spectral correlations across the wound healing process demonstrates the changes throughout the wound healing process, showing that early differences in tissue components may portend wound healing. Furthermore, Raman spectroscopy coupled with the spectral correlation index presents as a possible point-of-care tool for enabling discrimination of wounds with impaired healing.

  19. Effects of mouse genotype on bone wound healing and irradiation-induced delay of healing.

    PubMed

    Glowacki, Julie; Mizuno, Shuichi; Kung, Jason; Goff, Julie; Epperly, Michael; Dixon, Tracy; Wang, Hong; Greenberger, Joel S

    2014-01-01

    We tested the effects of mouse genotype (C57BL/6NHsd, NOD/SCID, SAMR1, and SAMP6) and ionizing irradiation on bone wound healing. Unicortical wounds were made in the proximal tibiae, and the time course of spontaneous healing and effects of irradiation were monitored radiographically and histologically. There was reproducible healing beginning with intramedullary osteogenesis, subsequent bone resorption by osteoclasts, gradual bridging of the cortical wound, and re-population of medullary hematopoietic cells. The most rapid wound closure was noted in SAMR1 mice, followed by SAMP6, C57BL/6NHsd, and NOD/SCID. Ionizing irradiation (20 Gy) to the leg significantly delayed bone wound healing in mice of all four genotypes. Mice with genetically-determined predisposition to early osteopenia (SAMP6) or with immune deficiency (NOD/SCID) had impairments in bone wound healing. These mouse models should be valuable for determining the effects of irradiation on bone healing and also for the design and testing of novel bone growth-enhancing drugs and mitigators of ionizing irradiation. PMID:24632972

  20. Vitamin C promotes wound healing through novel pleiotropic mechanisms.

    PubMed

    Mohammed, Bassem M; Fisher, Bernard J; Kraskauskas, Donatas; Ward, Susan; Wayne, Jennifer S; Brophy, Donald F; Fowler, Alpha A; Yager, Dorne R; Natarajan, Ramesh

    2016-08-01

    Vitamin C (VitC) or ascorbic acid (AscA), a cofactor for collagen synthesis and a primary antioxidant, is rapidly consumed post-wounding. Parenteral VitC administration suppresses pro-inflammatory responses while promoting anti-inflammatory and pro-resolution effects in human/murine sepsis. We hypothesised that VitC could promote wound healing by altering the inflammatory, proliferative and remodelling phases of wound healing. Mice unable to synthesise VitC (Gulo(-/-) ) were used in this study. VitC was provided in the water (sufficient), withheld from another group (deficient) and supplemented by daily intra-peritoneal infusion (200 mg/kg, deficient + AscA) in a third group. Full thickness excisional wounds (6 mm) were created and tissue collected on days 7 and 14 for histology, quantitative polymerase chain reaction (qPCR) and Western blotting. Human neonatal dermal fibroblasts (HnDFs) were used to assess effects of In conclusion, VitC favorably on proliferation. Histological analysis showed improved wound matrix deposition and organisation in sufficient and deficient +AscA mice. Wounds from VitC sufficient and deficient + AscA mice had reduced expression of pro-inflammatory mediators and higher expression of wound healing mediators. Supplementation of HnDF with AscA induced the expression of self-renewal genes and promoted fibroblast proliferation. VitC favourably impacts the spatiotemporal expression of transcripts associated with early resolution of inflammation and tissue remodelling. PMID:26290474

  1. The quantitative and qualitative impairment of wound healing by adriamycin.

    PubMed

    Devereux, D F; Thibault, L; Boretos, J; Brennan, M F

    1979-03-01

    Clinical impression suggests that Adriamycin (ADR) interferes with wound healing. To examine the effects of ADR on wound healing, male Fischer rats were subjected to a dorsal, midline, full-thickness longitudinal incision (day 0). Wound clips were removed on day +7. Twenty animals per group were given intravenous ADR on day -7, day 0, day +3 and day +7. Twenty animals served as non-treated, wounded controls (C). Five animals/group were sacrificed on days +7, +14 and +21, at which time two 9.5 mm wide strips were taken from each animal perpendicular to the wound axis and submitted for wound breaking strength (WBS) measurements and load-extension curve analysis. WBS differed most markedly at Day 21 between C(1671 +/- 59g) and ADR day -7(1360 + 71 g) p less than 0.01; C and ADR day 0 (1051 +/- 108 g) p less than 0.001; C and ADR day + 3(1134 +/- 176 g) p less than 0.02. No difference existed between C and day +7 (1790 +/- 153 g). A point of inflection always occurred between 55-60% elongation in ADR treated animals only. This portion of the curve has been previously shown to represent collagen content. It is concluded that perioperative ADR administration (day -7 through day +3) significantly and substantially impairs skin wound healing in the rat. A form of collagen yielding underlies and may contribute to this defect. PMID:427732

  2. Effects of Topically Applied Vitamin D during Corneal Wound Healing

    PubMed Central

    Reins, Rose Y.; Hanlon, Samuel D.; Magadi, Sri; McDermott, Alison M.

    2016-01-01

    Vitamin D is an important regulator of immune function and largely acts to dampen chronic inflammatory events in a variety of tissues. There is also accumulating evidence that vitamin D acts to enhance initial inflammation, beneficial during both infection and wound healing, and then promotes resolution and prevention of chronic, damaging inflammation. The current study examines the effect of topical vitamin D in a mouse of model of corneal epithelial wound healing, where acute inflammation is necessary for efficient wound closure. At 12 and 18 hours post-wounding, vitamin D treatment significantly delayed wound closure by ~17% and increased infiltration of neutrophils into the central cornea. Basal epithelial cell division, corneal nerve density, and levels of VEGF, TGFβ, IL-1β, and TNFα were unchanged. However, vitamin D increased the production of the anti-microbial peptide CRAMP 12 hours after wounding. These data suggest a possible role for vitamin D in modulating corneal wound healing and have important implications for therapeutic use of vitamin D at the ocular surface. PMID:27035345

  3. The effect of suramin on healing adult rodent dermal wounds.

    PubMed Central

    Chamberlain, J; Shah, M; Ferguson, M W

    1995-01-01

    Scarring, leading to impaired function, growth and appearance, is a major problem following many forms of surgery. Fetal wounds, unlike those in the adult, are characterised by a reduced growth factor profile and the absence of scar tissue (Whitby & Ferguson, 1991 a, b). The antiparasitic drug, suramin (a heparin analogue) inhibits binding of various growth factors (e.g. PDGF, bFGF, TGF-beta, EGF, IGF-I, IGF-II) to their receptors in vitro. These growth factors play key roles in wound healing. We attempted to manipulate experimentally their effectiveness in healing adult rat dermal incisional wounds by injecting suramin into the wound margins and comparing the resultant healing with an unmanipulated control wound in the same animal. Immunohistochemical staining demonstrated that, on d 7 and 14 postwounding, the numbers of monocytes/macrophages and blood vessels are markedly increased in suramin treated wounds compared with controls. Extracellular matrix deposition is lower, although very compact in organisation, lacking the usual honeycombed appearance of normal skin. These effects are widespread, being present not only in the wound area, but also in the surrounding tissue. No difference was detected at 70 d postwounding between the scars of suramin-treated and unmanipulated control wounds in the same animals. All such effects are increased slightly through the concentration range of 0.04-40 mg/kg suramin, with no significant change as concentrations greater than 40 mg/kg are applied. This suggests that suramin has marked effects on the early stages of wound healing, which plateau at 40 mg/kg concentration, but has no effect on scar formation. Images Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:7649820

  4. Profiling wound healing with wound effluent: Raman spectroscopic indicators of infection

    NASA Astrophysics Data System (ADS)

    Crane, Nicole J.; Elster, Eric A.

    2012-01-01

    The care of modern traumatic war wounds remains a significant challenge for clinicians. Many of the extremity wounds inflicted during Operation Enduring Freedom and Operation Iraqi Freedom are colonized or infected with multi-drug resistant organisms, particularly Acinetobacter baumannii. Biofilm formation and resistance to current treatments can significantly confound the wound healing process. Accurate strain identification and targeted drug administration for the treatment of wound bioburden has become a priority for combat casualty care. In this study, we use vibrational spectroscopy to examine wound exudates for bacterial load. Inherent chemical differences in different bacterial species and strains make possible the high specificity of vibrational spectroscopy.

  5. [New directions of research related to chronic wound healing].

    PubMed

    Rusak, Agnieszka; Rybak, Zbigniew

    2013-01-01

    Optimal nutrition, immunological state and psychological condition play an important role in the process of chronic wound healing. Infections caused by pathogens resistant to commonly used antibiotics additionally complicate and disturb regeneration of wounds. As part of the treatment, modern wound dressings are used, for example designed on the basis of alginates, dextranomers, hydrogels, hydrofiber, polyurethanes foams, hydrocolloids and liquids for wound debridement such us 0.9% NaCl, the PWE liquid, Ringer's liquid, octenidine. Owing to their features, treatment in accordance with TIME concept could be realized, because they provide moisture wound bed, protection against contamination, gas exchange, protection of wound edges and infection control. Repairing process in chronic wounds is dependent on blood flow in tissues, which may be insufficient. The result is a permanent hypoxia. Natural occurring antioxidants are becoming more crucial in chronic wound treatment. They decrease oxygen radical concentration, increase angiogenesis, reduce inflammatory response, stimulate fibroblasts and keratinocytes proliferation, possess antibacterial properties against chemotherapeutic resistant strains. There are a lot of antioxidants in honey, papaya fruit (Carrica papaia L.), transgenic flax (Linum usitatissimum), and in orange oil (Citrus sinensis), stem of acanthus (Acanthus ebracteatus), leafs of tea (Camellia sinensis). Application of biologically active, natural derived compounds is nowadays a direction of intense in vitro and in vivo research focused on the chronic wound treatment. Results suggest beneficial influence of antioxidant on wound repairing process. Clinical research are needed to state effective influence of natural compound in the chronic wound treatment. PMID:24377187

  6. [Wound-healing effect of carbopol hydrogels in rats with alloxan diabetes model].

    PubMed

    Zinov'ev, E V; Ivakhniuk, G K; Dadaian, K A; Lagvilava, T O

    2014-01-01

    The effects of 0.5% hydrogels of acrylic polymers (carbopol), antibiotic ointment based on polyethylene oxides (levomekol), silver-containing creams (dermazin and argosulfan), silver sulfadiazine ointment with epidermal growth factor (ebermin), and wound-covering fabric of antibacterial cellulose with poviargol and zero-valent silver (aquacell-Ag) on skin repair processes have been evaluated in comparative experiments on rats. The wound-healing effects were characterized by the time of cleansing and epithelization, rate of suppuration, index of healing, and skin impedance under conditions of necrotic skin lesions on the background of diabetes. It is established that local application of carbopol hydrogels modified by electric (frequency-modulated) signal with antiseptics (poviargol) and nanostructural components (natural fullerene complex) shortens the period of wound cleansing from detritus on the background of decompensated diabetes by 3.6 days (p > 0.05), accelerates healing by 8.4 days (p < 0.05), reduces the frequency of suppuration by 23.3% (p < 0.05), exhibits strong bactericidal effect against wound infections by pathogens, and restores tissue impedance. Thus, hydrogels based on low-crosslinked acrylic polymers are a promising basis of wound-healing formulations for the treatment of necrotic lesions on the background of diabetic foot syndrome. PMID:24649598

  7. The Matricellular Protein CCN1 Mediates Neutrophil Efferocytosis in Cutaneous Wound Healing

    PubMed Central

    Jun, Joon-Il; Kim, Ki-Hyun; Lau, Lester F.

    2015-01-01

    Neutrophil infiltration constitutes the first step in wound healing, although their timely clearance by macrophage engulfment, or efferocytosis, is critical for efficient tissue repair. However, the specific mechanism for neutrophil clearance in wound healing remains undefined. Here we uncover a key role for CCN1 in neutrophil efferocytosis by acting as a bridging molecule that binds phosphatidylserine, the “eat-me” signal on apoptotic cells, and integrins αvβ3/αvβ5 in macrophages to trigger efferocytosis. Both knockin mice expressing a mutant CCN1 that is unable to bind αvβ3/αvβ5 and mice with Ccn1 knockdown are defective in neutrophil efferocytosis, resulting in exuberant neutrophil accumulation and delayed healing. Treatment of wounds with CCN1 accelerates neutrophil clearance in both Ccn1 knockin mice and diabetic Leprdb/db mice, which suffer from neutrophil persistence and impaired healing. These findings establish CCN1 as a critical opsonin in skin injury and suggest a therapeutic potential for CCN1 in certain types of non-healing wounds. PMID:26077348

  8. The efficacy of absorbable polysaccharide haemostats in wound healing.

    PubMed

    Sonmez, Ertan; Turkdogan, Kenan A; Civelek, Cemil; Dur, Ali; Gulen, Bedia; Karayel, Eda; Gucin, Zuhal; Sogut, Ozgur

    2015-01-01

    Wound healing represents an ancient problem for humans, and various materials and methods have been tried for wound dressing. A dressing should protect against infection and shorten healing; moreover, it should not cause tissue damage and should be nonallergenic, cost effective and easy to apply. These are characteristics that may be found in herbal extracts. An absorbable polysaccharide haemostat (APH) is a plant-based haemostatic agent. We aimed to evaluate the effect of APH on wound healing. A total of 24 Wistar rats were divided into three groups, each consisting of eight rats. We generated triangular tissue defects on the dorsal regions of the rats. The wound size of each rat was drawn on acetate paper on the 3rd, 7th and 14th days and dressed with APH, saline and wheat meal. Wound healing rates were calculated using planimetric software. Scar tissue excision was performed on the 14th day and histopathological examination was carried out. The mean wound contraction rate was statistically higher in the APH group than in the wheat meal and saline groups on the 14th day (P < 0.05). There was no significant difference in polymorphonuclear leukocytes intensity between the saline and APH groups when stained with haematoxylin and eosin (P > 0.05). However, the intensities of fibroblasts (P < 0.01), vascular proliferation (P = 0.01) and inflammatory score (P = 0.02) were significantly different in the saline and APH groups. APH has favourable effect on wound healing. In addition to its blood-stopping effect, APH may be useful for tissue defects, which arise after trauma or surgical procedures. PMID:25158986

  9. Hyperoxia, Endothelial Progenitor Cell Mobilization, and Diabetic Wound Healing

    PubMed Central

    Liu, Zhao-Jun

    2008-01-01

    Abstract Diabetic foot disease is a major health problem, which affects 15% of the 200 million patients with diabetes worldwide. Diminished peripheral blood flow and decreased local neovascularization are critical factors that contribute to the delayed or nonhealing wounds in these patients. The correction of impaired local angiogenesis may be a key component in developing therapeutic protocols for treating chronic wounds of the lower extremity and diabetic foot ulcers. Endothelial progenitor cells (EPCs) are the key cellular effectors of postnatal neovascularization and play a central role in wound healing, but their circulating and wound-level numbers are decreased in diabetes, implicating an abnormality in EPC mobilization and homing mechanisms. The deficiency in EPC mobilization is presumably due to impairment of eNOS-NO cascade in bone marrow (BM). Hyperoxia, induced by a clinically relevant hyperbaric oxygen therapy (HBO) protocol, can significantly enhance the mobilization of EPCs from the BM into peripheral blood. However, increased circulating EPCs failed to reach to wound tissues. This is partly a result of downregulated production of SDF-1α in local wound lesions with diabetes. Administration of exogenous SDF-1α into wounds reversed the EPC homing impairment and, with hyperoxia, synergistically enhanced EPC mobilization, homing, neovascularization, and wound healing. Antioxid. Redox Signal. 10, 1869–1882. PMID:18627349

  10. Burn wound healing properties of asiaticoside and madecassoside

    PubMed Central

    Hou, Qiang; Li, Ming; Lu, Yan-Hua; Liu, Dong-Hong; Li, Cheng-Cun

    2016-01-01

    The healing of burn wounds has been widely characterized to be highly intricate, involving processes such as neo-vascularization, granulation, re-epithelialization, inflammation and wound contraction. Various therapies are available for the management of burn wounds; however, a truly effective therapeutic strategy has yet to be identified due to safety issues. The aim of the present study was to assess and confirm the burn wound healing properties of the compounds asiaticoside (AE) and madecassoside (MA), which are found in the herb Centella asiatica. The cytotoxic nature of the AE and MA were inspected and were confirmed to be non-toxic up to 500 ppm. The compounds AE and MA increased monocyte chemoattractant protein-1 production, but caused no significant effect on vascular endothelial growth factor production. In addition, an in vivo animal burn model was employed to represent the features of burn wound healing. Hence, the present results warrant the further investigation of C. asiatica extracts for use in burn healing. PMID:27588048

  11. An Essential Role of NRF2 in Diabetic Wound Healing.

    PubMed

    Long, Min; Rojo de la Vega, Montserrat; Wen, Qing; Bharara, Manish; Jiang, Tao; Zhang, Rui; Zhou, Shiwen; Wong, Pak K; Wondrak, Georg T; Zheng, Hongting; Zhang, Donna D

    2016-03-01

    The high mortality and disability of diabetic nonhealing skin ulcers create an urgent need for the development of more efficacious strategies targeting diabetic wound healing. In the current study, using human clinical specimens, we show that perilesional skin tissues from patients with diabetes are under more severe oxidative stress and display higher activation of the nuclear factor-E2-related factor 2 (NRF2)-mediated antioxidant response than perilesional skin tissues from normoglycemic patients. In a streptozotocin-induced diabetes mouse model, Nrf2(-/-) mice have delayed wound closure rates compared with Nrf2(+/+) mice, which is, at least partially, due to greater oxidative DNA damage, low transforming growth factor-β1 (TGF-β1) and high matrix metalloproteinase 9 (MMP9) expression, and increased apoptosis. More importantly, pharmacological activation of the NRF2 pathway significantly improves diabetic wound healing. In vitro experiments in human immortalized keratinocyte cells confirm that NRF2 contributes to wound healing by alleviating oxidative stress, increasing proliferation and migration, decreasing apoptosis, and increasing the expression of TGF-β1 and lowering MMP9 under high-glucose conditions. This study indicates an essential role for NRF2 in diabetic wound healing and the therapeutic benefits of activating NRF2 in this disease, laying the foundation for future clinical trials using NRF2 activators in treating diabetic skin ulcers. PMID:26718502

  12. The Role of Chemokines in Fibrotic Wound Healing

    PubMed Central

    Ding, Jie; Tredget, Edward E.

    2015-01-01

    Significance: Main dermal forms of fibroproliferative disorders are hypertrophic scars (HTS) and keloids. They often occur after cutaneous wound healing after skin injury, or keloids even form spontaneously in the absence of any known injury. HTS and keloids are different in clinical performance, morphology, and histology, but they all lead to physical and psychological problems for survivors. Recent Advances: Although the mechanism of wound healing at cellular and tissue levels has been well described, the molecular pathways involved in wound healing, especially fibrotic healing, is incompletely understood. Critical Issues: Abnormal scars not only lead to increased health-care costs but also cause significant psychological problems for survivors. A plethora of therapeutic strategies have been used to prevent or attenuate excessive scar formation; however, most therapeutic approaches remain clinically unsatisfactory. Future Directions: Effective care depends on an improved understanding of the mechanisms that cause abnormal scars in patients. A thorough understanding of the roles of chemokines in cutaneous wound healing and abnormal scar formation will help provide more effective preventive and therapeutic strategies for dermal fibrosis as well as for other proliferative disorders. PMID:26543681

  13. Portable microwave air plasma device for wound healing

    NASA Astrophysics Data System (ADS)

    Kang, S. K.; Kim, H. Y.; Yun, G. S.; Lee, J. K.

    2015-06-01

    A portable microwave air plasma has been developed for safe and effective wound healing. The device is operated by a fixed microwave power and two different air gas flows (main and cooling air flow). It was found that the speeds of the two air flows determine the stability of the plasma jet and gas temperature and thereby regulate the concentrations of the individual reactive species. Two different regimes, i.e. the NO abundant (0.1 slm main air flow) and ozone abundant regimes (4 slm main air flow), were identified as suitable for wound healing without thermal damage and toxicity. These regimes show similar plasma characteristics (e.g. less than 40 °C at the treatment point, less than 4 ppm of NO2) except for different NO and ozone amounts. Both regimes show more than twice as fast wound healing speed compared with the untreated case without any histological damages. Faster healing speed with intrinsic ozone safety make the NO abundant regime the best operation regime for wound healing. Finally, the stability of the developed device was demonstrated by a one-hour continuous operation test with a 24 V battery.

  14. FOXO1 differentially regulates both normal and diabetic wound healing

    PubMed Central

    Zhang, Chenying; Ponugoti, Bhaskar; Tian, Chen; Xu, Fanxing; Tarapore, Rohinton; Batres, Angelika; Alsadun, Sarah; Lim, Jason; Dong, Guangyu

    2015-01-01

    Healing is delayed in diabetic wounds. We previously demonstrated that lineage-specific Foxo1 deletion in keratinocytes interfered with normal wound healing and keratinocyte migration. Surprisingly, the same deletion of Foxo1 in diabetic wounds had the opposite effect, significantly improving the healing response. In normal glucose media, forkhead box O1 (FOXO1) enhanced keratinocyte migration through up-regulating TGFβ1. In high glucose, FOXO1 nuclear localization was induced but FOXO1 did not bind to the TGFβ1 promoter or stimulate TGFβ1 transcription. Instead, in high glucose, FOXO1 enhanced expression of serpin peptidase inhibitor, clade B (ovalbumin), member 2 (SERPINB2), and chemokine (C-C motif) ligand 20 (CCL20). The impact of high glucose on keratinocyte migration was rescued by silencing FOXO1, by reducing SERPINB2 or CCL20, or by insulin treatment. In addition, an advanced glycation end product and tumor necrosis factor had a similar regulatory effect on FOXO1 and its downstream targets and inhibited keratinocyte migration in a FOXO1-dependent manner. Thus, FOXO1 expression can positively or negatively modulate keratinocyte migration and wound healing by its differential effect on downstream targets modulated by factors present in diabetic healing. PMID:25918228

  15. Neurolaena lobata L. promotes wound healing in Sprague Dawley rats

    PubMed Central

    Nayak, Bijoor Shivananda; Ramlogan, Surrin; Chalapathi Rao, AV; Maharaj, Sandeep

    2014-01-01

    Background: The leaves of the Neurolaena lobata (Asteraceae) plant are used to control diabetes and heal wounds and infections. Aim: The ethanolic extract of N. lobata leaf was evaluated for its ability to heal inflicted wounds in rats using the excision wound model. Materials and Methods: Animals were divided into three groups of six each. Test group animals were treated topically with an ethanolic extract of N. lobata (1:1 with petroleum jelly, 100 mg/kg/day). Standard and control group animals were treated with mupirocin and petroleum jelly, respectively. Treatment was given for 13 days and the wound area was measured on alternate days. Parameters of healing assessed were the rate of wound contraction, period of epithelialization and hydroxyproline content. Antimicrobial activity of the extract was observed against Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. Results: Phytochemical analysis of the extract showed the presence of saponins, tannins, alkaloids and flavanoids. Extract-treated animals exhibited 87% reduction in the wound area over 13 days when compared with the control (78%) and standard (83%) groups (P < 0.05). A significant decrease in the epithelialization period was noticed with the extract-treated test group animals compared with the controls and the standard group animals (P < 0.008). The hydroxyproline content of the extract-treated animals was higher (230.5 ± 42.1) when evaluated against the control and (79.0 ± 32.2) and the standard (115.0 ± 44.5) groups (P < 0.05). Conclusion: Increase in the rate of wound contraction and hydroxyproline content with decrease in epithelialization time in extract-treated animals support further evaluation of N. lobata as a pharmacotherapy for wound healing. PMID:25143886

  16. Influence of different energy densities of laser phototherapy on oral wound healing

    PubMed Central

    Wagner, Vivian Petersen; Meurer, Luise; Martins, Marco Antonio Trevizani; Danilevicz, Chris Krebs; Magnusson, Alessandra Selinger; Marques, Márcia Martins; Filho, Manoel Sant’Ana; Squarize, Cristiane Helena

    2013-01-01

    Abstract. The aim of the present prospective study was to evaluate the impact of laser phototherapy (LPT) on the healing of oral ulcers. Different power densities were used on oral wounds in Wistar rats (n=72) randomly divided into three groups: control (0  J/cm2), 4  J/cm2 laser, and 20  J/cm2 laser. Ulcers (3 mm in diameter) were made on the dorsum of the tongue with a punch. Irradiation with an indium-gallium-aluminum-phosphide laser (660 nm; output power: 40 mW; spot size: 0.04  cm2) was performed once a day in close contact with the ulcer for 14 consecutive days. A statistically significant acceleration in healing time was found with wounds treated with 4  J/cm2 LPT. Moreover, striking differences were found in the ulcer area, healing percentage, degree of reepithelialization, and collagen deposition. The most significant changes occurred after 5 days of irradiation. Based on the conditions employed in the present study, LPT is capable of accelerating the oral mucosa wound-healing process. Moreover, faster and more organized reepithelialization and tissue healing of the oral mucosa were achieved with an energy density of 4  J/cm2 in comparison to 20  J/cm2. PMID:24337496

  17. Influence of different energy densities of laser phototherapy on oral wound healing

    NASA Astrophysics Data System (ADS)

    Wagner, Vivian Petersen; Meurer, Luise; Martins, Marco Antonio Trevizani; Danilevicz, Chris Krebs; Magnusson, Alessandra Selinger; Marques, Márcia Martins; Filho, Manoel Sant'Ana; Squarize, Cristiane Helena; Martins, Manoela Domingues

    2013-12-01

    The aim of the present prospective study was to evaluate the impact of laser phototherapy (LPT) on the healing of oral ulcers. Different power densities were used on oral wounds in Wistar rats (n=72) randomly divided into three groups: control (0 J/cm2), 4 J/cm2 laser, and 20 J/cm2 laser. Ulcers (3 mm in diameter) were made on the dorsum of the tongue with a punch. Irradiation with an indium-gallium-aluminum-phosphide laser (660 nm output power: 40 mW spot size: 0.04 cm) was performed once a day in close contact with the ulcer for 14 consecutive days. A statistically significant acceleration in healing time was found with wounds treated with 4 J/cm2 LPT. Moreover, striking differences were found in the ulcer area, healing percentage, degree of reepithelialization, and collagen deposition. The most significant changes occurred after 5 days of irradiation. Based on the conditions employed in the present study, LPT is capable of accelerating the oral mucosa wound-healing process. Moreover, faster and more organized reepithelialization and tissue healing of the oral mucosa were achieved with an energy density of 4 J/cm2 in comparison to 20 J/cm2.

  18. Thymosin beta 4 promotes corneal wound healing and decreases inflammation in vivo following alkali injury.

    PubMed

    Sosne, Gabriel; Szliter, Elizabeth A; Barrett, Ronald; Kernacki, Karen A; Kleinman, Hynda; Hazlett, Linda D

    2002-02-01

    Previously, thymosin beta 4 (Tbeta(4)) was found to promote wound healing in full thickness skin wounds and heptanol debrided corneas. Here, the effect of Tbeta(4) was examined treatment on corneal wound healing and inflammation in vivo after alkali injury, a more severe wound of the eye. Corneas from 129 Sv mice were chemically burned with a 2 mm disc soaked in 1 N NaOH for 30 sec. Eyes were irrigated copiously with phosphate buffered saline (PBS) and then treated topically with either Tbeta(4) (5 microg/5 microl PBS) or 5 microl PBS twice daily. Animals were killed, the eyes were enucleated, fixed and embedded in plastic resin or prepared for mRNA analysis. Mouse corneas topically treated with 5 microg of Tbeta(4) twice daily after alkali injury demonstrated accelerated re-epithelialization at all time points and decreased polymorphonuclear leukocyte (PMN) infiltration at 7 days post injury (p.i.) when compared to PBS-treated controls. mRNA transcript levels were decreased several fold for interleukin (IL)-lbeta, and the chemokines macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, MIP-2 and monocyte chemoattractant protein (MCP)-1 from 1 to 7 days after injury in the Tbeta(4)- vs. PBS-treated corneas. Thus, Tbeta(4) may provide a new clinical treatment for severe traumatic corneal wound disorders by promoting rapid corneal wound healing and decreasing both PMN infiltration and inflammatory cytokine and chemokine mRNA levels. PMID:11950239

  19. Wound healing potential of Spirulina platensis extracts on human dermal fibroblast cells

    PubMed Central

    Syarina, Pauzi Nur Aimi; Karthivashan, Govindarajan; Abas, Faridah; Arulselvan, Palanisamy; Fakurazi, Sharida

    2015-01-01

    Blue-green alga (Spirulina platensis) is a well renowned nutri-supplement due to its high nutritional and medicinal properties. The aim of this study was to examine the wound healing efficiency of Spirulina platensis at various solvent extracts using in vitro scratch assay on human dermal fibroblast cells (HDF). Various gradient solvent extracts (50 μg/ml of methanolic, ethanolic and aqueous extracts) from Spirulina platensis were treated on HDF cells to acquire its wound healing properties through scratch assay and in this investigation we have used allantoin, as a positive control to compare efficacy among the phytoextracts. Interestingly, aqueous extract were found to stimulate proliferation and migration of HDF cells at given concentrations and enhanced closure rate of wound area within 24 hours after treatment. Methanolic and ethanolic extracts have shown proliferative effect, however these extracts did not aid in the migration and closure of wound area when compared to aqueous extract. Based on phytochemical profile of the plant extracts analyzed by LC-MS/MS, it was shown that compounds supposedly involved in accelerating wound healing are cinnamic acid, narigenin, kaempferol, temsirolimus, phosphatidylserine isomeric derivatives and sulphoquinovosyl diacylglycerol. Our findings concluded that blue-green algae may pose potential biomedical application to treat various chronic wounds especially in diabetes mellitus patients. PMID:27004048

  20. Wound healing potential of Spirulina platensis extracts on human dermal fibroblast cells.

    PubMed

    Syarina, Pauzi Nur Aimi; Karthivashan, Govindarajan; Abas, Faridah; Arulselvan, Palanisamy; Fakurazi, Sharida

    2015-01-01

    Blue-green alga (Spirulina platensis) is a well renowned nutri-supplement due to its high nutritional and medicinal properties. The aim of this study was to examine the wound healing efficiency of Spirulina platensis at various solvent extracts using in vitro scratch assay on human dermal fibroblast cells (HDF). Various gradient solvent extracts (50 μg/ml of methanolic, ethanolic and aqueous extracts) from Spirulina platensis were treated on HDF cells to acquire its wound healing properties through scratch assay and in this investigation we have used allantoin, as a positive control to compare efficacy among the phytoextracts. Interestingly, aqueous extract were found to stimulate proliferation and migration of HDF cells at given concentrations and enhanced closure rate of wound area within 24 hours after treatment. Methanolic and ethanolic extracts have shown proliferative effect, however these extracts did not aid in the migration and closure of wound area when compared to aqueous extract. Based on phytochemical profile of the plant extracts analyzed by LC-MS/MS, it was shown that compounds supposedly involved in accelerating wound healing are cinnamic acid, narigenin, kaempferol, temsirolimus, phosphatidylserine isomeric derivatives and sulphoquinovosyl diacylglycerol. Our findings concluded that blue-green algae may pose potential biomedical application to treat various chronic wounds especially in diabetes mellitus patients. PMID:27004048

  1. Proper care of early wounds to optimize healing and prevent complications.

    PubMed

    Pitzer, Geoffrey B; Patel, Krishna G

    2011-08-01

    Proper wound care has broad applications for all clinicians. Much of the future direction for enhancing wound repair focuses on key cells and growth factors, which is why possessing a strong understanding of the basic physiology of wound healing is imperative. This article first provides a thorough review of the phases of wound healing followed by a discussion on the latest wound management strategies. Wound conditions and surgical techniques are important components for optimizing wound healing and preventing complications. Special consideration has been given to the unique settings of contaminated wounds, open wounds, or avulsed tissue. PMID:21856537

  2. Regulation of wound healing by growth factors and cytokines.

    PubMed

    Werner, Sabine; Grose, Richard

    2003-07-01

    Cutaneous wound healing is a complex process involving blood clotting, inflammation, new tissue formation, and finally tissue remodeling. It is well described at the histological level, but the genes that regulate skin repair have only partially been identified. Many experimental and clinical studies have demonstrated varied, but in most cases beneficial, effects of exogenous growth factors on the healing process. However, the roles played by endogenous growth factors have remained largely unclear. Initial approaches at addressing this question focused on the expression analysis of various growth factors, cytokines, and their receptors in different wound models, with first functional data being obtained by applying neutralizing antibodies to wounds. During the past few years, the availability of genetically modified mice has allowed elucidation of the function of various genes in the healing process, and these studies have shed light onto the role of growth factors, cytokines, and their downstream effectors in wound repair. This review summarizes the results of expression studies that have been performed in rodents, pigs, and humans to localize growth factors and their receptors in skin wounds. Most importantly, we also report on genetic studies addressing the functions of endogenous growth factors in the wound repair process. PMID:12843410

  3. Effect of pirfenidone delivered using layer-by-layer thin film on excisional wound healing.

    PubMed

    Mandapalli, Praveen Kumar; Labala, Suman; Bojja, Jagadeesh; Venuganti, Venkata Vamsi Krishna

    2016-02-15

    The aim of this study was to evaluate the effect of a new anti-fibrotic agent, pirfenidone (PFD), delivered using polyelectrolyte multilayer films on excisional wound healing. Polyelectrolyte multilayer films were prepared by layer-by-layer (LbL) sequential adsorption of chitosan and sodium alginate. The UV-spectrophotometer, FTIR and differential scanning calorimeter were used to characterize the LbL thin films. The PFD was entrapped within the LbL thin films and its effect on excisional wound healing was studied in C57BL/6. The total protein, collagen content and TGF-β expression within the wound tissue were determined after application of PFD using LbL thin films, chitosan hydrogel and polyethylene glycol hydrogel. UV-spectrophotometer and FTIR studies showed a sequential adsorption of chitosan and alginate polymer layers to form LbL thin films. The thickness of LbL thin films with 15 bilayers was found to be 15 ± 2 μm. HPLC analysis showed a PFD loading efficiency of 1.0 ± 0.1mg in 1cm(2) area of LbL thin film. In vivo wound healing studies in C57BL/6 mice showed an accelerated (<9 days) wound contraction after treatment with the PFD compared with blank LbL thin film and commercial povidone-iodine gel (12 days). The collagen content within the wound tissue was significantly (p<0.05) less after treatment with PFD compared with blank film application. Western blot analysis showed gradual decrease in TGF-β expression within the wound tissue after treatment with PFD. This study for the first time demonstrated that new anti-fibrotic agent PFD loaded in LbL thin films can be utilized for excisional wound healing. PMID:26723907

  4. Wound healing activity of Sida cordifolia Linn. in rats

    PubMed Central

    Pawar, Rajesh S.; Chaurasiya, Pradeep K.; Rajak, Harish; Singour, Pradeep K.; Toppo, Fedelic Ashish; Jain, Ankit

    2013-01-01

    Introduction: The present study provides a scientific evaluation for the wound healing potential of ethanolic (EtOH) extract of Sida cordifolia Linn. (SCL) plant. Materials and Methods: Excision, incision and burn wounds were inflicted upon three groups of six rats each. Group I was assigned as control (ointment base). Group II was treated with 10% EtOH extract ointment. Group III was treated with standard silver sulfadiazine (0.01%) cream. The parameters observed were percentage of wound contraction, epithelialization period, hydroxyproline content, tensile strength including histopathological studies. Result: It was noted that the effect produced by the ethanolic extract of SCL ointment showed significant (P < 0.01) healing in all wound models when compared with the control group. All parameters such as wound contraction, epithelialization period, hydroxyproline content, tensile strength and histopathological studies showed significant (P < 0.01) changes when compared with the control. Conclusion: The ethanolic extract ointment of SCL effectively stimulates wound contraction; increases tensile strength of excision, incision and burn wounds. PMID:24130382

  5. Wnt signaling induces epithelial differentiation during cutaneous wound healing

    PubMed Central

    Houschyar, Khosrow S; Momeni, Arash; Pyles, Malcolm N; Maan, Zeshaan N; Whittam, Alexander J; Siemers, Frank

    2015-01-01

    ABSTRACT Cutaneous wound repair in adult mammals typically does not regenerate original dermal architecture. Skin that has undergone repair following injury is not identical to intact uninjured skin. This disparity may be caused by differences in the mechanisms that regulate postnatal cutaneous wound repair compared to embryonic skin development and thus we seek a deeper understanding of the role that Wnt signaling plays in the mechanisms of skin repair in both fetal and adult wounds. The influence of secreted Wnt signaling proteins in tissue homeostasis has galvanized efforts to identify small molecules that target Wnt-mediated cellular responses. Wnt signaling is activated by wounding and participates in every subsequent stage of the healing process from the control of inflammation and programmed cell death, to the mobilization of stem cell reservoirs within the wound site. Endogenous Wnt signaling augmentation represents an attractive option to aid in the restoration of cutaneous wounds, as the complex mechanisms of the Wnt pathway have been increasingly investigated over the years. In this review, we summarize recent data elucidating the roles that Wnt signaling plays in cutaneous wound healing process. PMID:26309090

  6. Early controlled release of peroxisome proliferator-activated receptor β/δ agonist GW501516 improves diabetic wound healing through redox modulation of wound microenvironment.

    PubMed

    Wang, Xiaoling; Sng, Ming Keat; Foo, Selin; Chong, Han Chung; Lee, Wei Li; Tang, Mark Boon Yang; Ng, Kee Woei; Luo, Baiwen; Choong, Cleo; Wong, Marcus Thien Chong; Tong, Benny Meng Kiat; Chiba, Shunsuke; Loo, Say Chye Joachim; Zhu, Pengcheng; Tan, Nguan Soon

    2015-01-10

    Diabetic wounds are imbued with an early excessive and protracted reactive oxygen species production. Despite the studies supporting PPARβ/δ as a valuable pharmacologic wound-healing target, the therapeutic potential of PPARβ/δ agonist GW501516 (GW) as a wound healing drug was never investigated. Using topical application of polymer-encapsulated GW, we revealed that different drug release profiles can significantly influence the therapeutic efficacy of GW and consequently diabetic wound closure. We showed that double-layer encapsulated GW microparticles (PLLA:PLGA:GW) provided an earlier and sustained dose of GW to the wound and reduced the oxidative wound microenvironment to accelerate healing, in contrast to single-layered PLLA:GW microparticles. The underlying mechanism involved an early GW-mediated activation of PPARβ/δ that stimulated GPx1 and catalase expression in fibroblasts. GPx1 and catalase scavenged excessive H2O2 accumulation in diabetic wound beds, prevented H2O2-induced ECM modification and facilitated keratinocyte migration. The microparticles with early and sustained rate of GW release had better therapeutic wound healing activity. The present study underscores the importance of drug release kinetics on the therapeutic efficacy of the drug and warrants investigations to better appreciate the full potential of controlled drug release. PMID:25449811

  7. Survey of Wound-Healing Centers and Wound Care Units in China.

    PubMed

    Jiang, Yufeng; Xia, Lei; Jia, Lijing; Fu, Xiaobing

    2016-09-01

    The purpose of this study is to report the Chinese experience of establishing hospital-based wound care centers over 15 years. A total of 69 wound-healing centers (WHCs) and wound care units (WCUs) were involved. Questionnaires were diverged to the principal directors of these sites; data extracted for this study included origin, year of establishment, medical staff, degree of hospitals, wound etiology, wound-healing rate, hospital stay, and outcomes data. The period of data extraction was defined as before and after 1 year of the establishment of WHCs and WCUs. The earliest WHC was established in 1999, and from 2010 the speeds of establishing WHCs and WCUs rapidly increased. The majority of WHCs were divisions of burn departments, and all WHCs came from departments of outpatient dressing rooms. Full-time multidisciplinary employees of WHCs differed greatly to WCUs. Types of wound and outcomes vary with those of centers reported from Western countries and the United States. Improvement in wound healing caused by the establishment of WHCs and WCUs in China occurred without doubt. Some advices include the following: rearrange and reorganize the distribution of WHCs and WCUs; enact and generalize Chinese guidelines for chronic wounds; utilize medical resources reasonably; improve multidisciplinary medical staff team; draw up and change some medical and public policies and regulations. PMID:25724595

  8. Low energy laser irradiation treatment for second intention wound healing in horses

    PubMed Central

    Fretz, Peter B.; Li, Zhong

    1992-01-01

    Low energy helium-neon laser irradiation was administered to full thickness skin wounds (3 cm × 3 cm) on the dorsal surface of the metacarpophalangeal/metatarsophalangeal joints and cranial surface of the tarsocrural joints of eight horses. The effects on wound healing were analyzed statistically. There were no differences (p > 0.55) observed in the rate of wound healing between the low energy laser irradiated wounds and the control wounds. There was a significant difference (p < 0.006) observed in the rate of healing between the anatomical sites. Tarsal wounds healed more rapidly than fetlock wounds. PMID:17424089

  9. [Comparative Evaluation of Healing Wounds at a Local and Combined Radiation Injury in an Experiment].

    PubMed

    Legeza, V I; Grebenyuk, A N; Kondakov, A Y; Zargarova, N I

    2015-01-01

    Wound healing activity of 20 different means of conservative treatment of radiation burns was studies in the experiments on the rats subjected to local β-radiation (at a dose of 60 Gy) and combined radiation damage (β-radiation at a dose of 60 Gy and the whole-body γ-irradiation at a dose of 4 Gy). It was found that reparative processes in the irradiated,skin in the case of the local radiation injuries are most effectively accelerated by ointments Biopin, Panthenol-Ratiopharm, IL-1β and Iruksol; Dimexidum solution; aerosols Olazol, Gipozol and Polkortolon; wound coverings Procell-super and Selenopol. Ointments containing IL-1β, Dimexidum solution, aerosols and wound coverings have a healing effect in the case of combined radiation injury. PMID:26964343

  10. Silk sericin ameliorates wound healing and its clinical efficacy in burn wounds.

    PubMed

    Aramwit, Pornanong; Palapinyo, Sirinoot; Srichana, Teerapol; Chottanapund, Suthat; Muangman, Pornprom

    2013-09-01

    The aim of this study was to evaluate the effect of silk sericin, a protein from silkworm cocoon, on scratch wound healing in vitro. For applicable result in clinical use, we also study the efficacy of sericin added to a standard antimicrobial cream, silver zinc sulfadiazine, for open wound care in the treatment of second-degree burn wounds. In vitro scratch assays show that sericin at concentration 100 μg/mL can promote the migration of fibroblast L929 cells similar to epidermal growth factor (positive control) at 100 μg/mL. After 1 day of treatment, the length of scratch in wounds treated with sericin was significantly shorter than the length of negative control wounds (culture medium without sericin). For clinical study, a total of 29 patients with 65 burn wounds which covered no less than 15 % of total body surface area were randomly assigned to either control (wounds treated with silver zinc sulfadiazine cream) or treatment (wounds treated with silver zinc sulfadiazine with added sericin cream) group in this randomized, double-blind, standard-controlled study. The results showed that the average time to reach 70 % re-epithelialization of the burned surface and complete healing in the treatment group was significantly shorter, approximately 5-7 days, than in the control group. Regarding time for complete healing, control wounds took approximately 29.28 ± 9.27 days, while wounds treated with silver zinc sulfadiazine with added sericin cream took approximately 22.42 ± 6.33 days, (p = 0.001). No infection or severe reaction was found in any wounds. This is the first clinical study to show that silk sericin is safe and beneficial for burn wound treatment when it is added to silver sulfadiazine cream. PMID:23748948

  11. Astragaloside IV enhances diabetic wound healing involving upregulation of alternatively activated macrophages.

    PubMed

    Luo, Xiaochun; Huang, Ping; Yuan, Baohong; Liu, Tao; Lan, Fang; Lu, Xiaoyan; Dai, Liangcheng; Liu, Yunjun; Yin, Hui

    2016-06-01

    Astragaloside IV (AS-IV), one of the major active compounds extracted from Astragali Radix, has been used experimentally for its potent antiinflammatory and immunoregulatory activities. In this study, we further investigate the potential efficacy of AS-IV on impaired wound healing in streptozotocin-induced diabetic mice. A full-thickness skin wound was produced on the back of diabetic mice and treated with AS-IV or vehicle topically. Our results showed that AS-IV application promoted diabetic wound repair with wounds gaping narrower and exhibiting augmented reepithelialization. AS-IV enhanced the collagen deposition and the expression of extracellular matrix (ECM)-related genes such as fibronectin and collagen IIIa, which implies a direct effect of AS-IV on matrix synthesis. AS-IV also improved the new blood vessel formation in wound tissue with increased numbers of endothelial cells and enhanced expression of VEGF and vWF. Moreover, the beneficial effect of AS-IV was related to the development of polarized alternatively activated macrophages, which involved in resolution of inflammation and facilitation of wound repair. All together, these findings suggest that AS-IV may play a potential effect on maintenance of cutaneous homeostasis and acceleration of diabetic wound healing. PMID:27016716

  12. Wound healing activity of Malva sylvestris and Punica granatum in alloxan-induced diabetic rats.

    PubMed

    Pirbalouti, Abdollah Ghasemi; Azizi, Shahrzad; Koohpayeh, Abed; Hamedi, Behzad

    2010-01-01

    The flowers of Malva sylvestris Linn. (Malvaceae) and Punica granatum Linn. (Punicaceae) are important medicinal plants in Iranian traditional medicine (Unani) whose have been used as remedy against edema, bum, wound and for their carminative, antimicrobial and anti-inflammatory activities. The diethyl ether extract of M. sylvestris and P. granatum flowers were used to evaluate the wound healing activity at 200 mg/kg/day dose in alloxan-induced diabetic rats. Wounds were induced in Wister rats divided into six groups as following; Group I, normal rats were treated with simple ointment base. Group II, diabetic rats were treated with simple ointment base (control). Groups III and IV, diabetic rats were treated with simple ointment base containing of extracts (diabetic animals), Groups V, diabetic rats were treated with simple ointment base containing of mixed extracts (1:1), Group VI, diabetic rats received the standard drug (nitrofurazone). The efficacy of treatment was evaluated based on wound area relative and histopathological characteristics. The extract-treated diabetic animals showed significant reduction in the wound area when compared with control. Also, histological studies of the tissue obtained on days 9th and 18th from the extract-treated by extract of M. sylvestris showed increased well organized bands of collagen, more fibroblasts and few inflammatory cells. These findings demonstrate that extract of M. sylvestis effectively stimulates wound contraction as compared to control group and other groups. M. sylvestris accelerated wound healing in rats and thus supports its traditional use. PMID:20873419

  13. Therapeutic effects of topical application of ozone on acute cutaneous wound healing.

    PubMed

    Kim, Hee Su; Noh, Sun Up; Han, Ye Won; Kim, Kyoung Moon; Kang, Hoon; Kim, Hyung Ok; Park, Young Min

    2009-06-01

    This study was undertaken to evaluate the therapeutic effects of topical ozonated olive oil on acute cutaneous wound healing in a guinea pig model and also to elucidate its therapeutic mechanism. After creating full-thickness skin wounds on the backs of guinea pigs by using a 6 mm punch biopsy, we examined the wound healing effect of topically applied ozonated olive oil (ozone group), as compared to the pure olive oil (oil group) and non-treatment (control group). The ozone group of guinea pig had a significantly smaller wound size and a residual wound area than the oil group, on days 5 (P<0.05) and 7 (P<0.01 and P<0.05) after wound surgery, respectively. Both hematoxylin-eosin staining and Masson-trichrome staining revealed an increased intensity of collagen fibers and a greater number of fibroblasts in the ozone group than that in the oil group on day 7. Immunohistochemical staining demonstrated upregulation of platelet derived growth factor (PDGF), transforming growth factor-beta (TGF-beta) and vascular endothelial growth factor (VEGF) expressions, but not fibroblast growth factor expression in the ozone group on day 7, as compared with the oil group. In conclusion, these results demonstrate that topical application of ozonated olive oil can accelerate acute cutaneous wound repair in a guinea pig in association with the increased expression of PDGF, TGF-beta, and VEGF. PMID:19543419

  14. Therapeutic Effects of Topical Application of Ozone on Acute Cutaneous Wound Healing

    PubMed Central

    Kim, Hee Su; Noh, Sun Up; Han, Ye Won; Kim, Kyoung Moon; Kang, Hoon; Kim, Hyung Ok

    2009-01-01

    This study was undertaken to evaluate the therapeutic effects of topical ozonated olive oil on acute cutaneous wound healing in a guinea pig model and also to elucidate its therapeutic mechanism. After creating full-thickness skin wounds on the backs of guinea pigs by using a 6 mm punch biopsy, we examined the wound healing effect of topically applied ozonated olive oil (ozone group), as compared to the pure olive oil (oil group) and non-treatment (control group). The ozone group of guinea pig had a significantly smaller wound size and a residual wound area than the oil group, on days 5 (P<0.05) and 7 (P<0.01 and P<0.05) after wound surgery, respectively. Both hematoxylin-eosin staining and Masson-trichrome staining revealed an increased intensity of collagen fibers and a greater number of fibroblasts in the ozone group than that in the oil group on day 7. Immunohistochemical staining demonstrated upregulation of platelet derived growth factor (PDGF), transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF) expressions, but not fibroblast growth factor expression in the ozone group on day 7, as compared with the oil group. In conclusion, these results demonstrate that topical application of ozonated olive oil can accelerate acute cutaneous wound repair in a guinea pig in association with the increased expression of PDGF, TGF-β, and VEGF. PMID:19543419

  15. Negative pressure wound therapy accelerates rats diabetic wound by promoting agenesis

    PubMed Central

    Li, Xiaoqiang; Liu, Jiaqi; Liu, Yang; Hu, Xiaolong; Dong, Maolong; Wang, Hongtao; Hu, Dahai

    2015-01-01

    Negative Pressure Wound Therapy (NPWT) has become widely adopted to several wound treatment over the last 15 years, including diabetic foot ulcer (DFU). Much of the existing evidence supports that NPWT increase in blood flow, reduce in edema, decrease bacterial proliferation and accelerate granulation-tissue formation. However, the accurate mechanism is not clear till now. The aim of the present study was to further elucidate the effects of NPWT on angiogenesis of diabetic wound model. As result, our data showed: 1) NPWT promoted the wound healing and blood perfusion on both diabetic and normal wound compared with control, 2) The NPWT increased wound vessel density, and the wound treated with NPWT showed well developed and more functional vessels at day 7 post operation compared with control 3) NPWT up regulated the expression of VEGF at day 3 and Ang1 at day 7 on RNA and protein level. 4) Ang2 was up regulated in diabetic rats but NPWT attenuated this affection. Our data indicated that NPWT increased vessel density and promoted the maturation of neovascular over the potential mechanism of up regulated VEGF and Ang1 and down regulated of Ang2. PMID:26064242

  16. Bathysa cuspidata extract modulates the morphological reorganization of the scar tissue and accelerates skin wound healing in rats: a time-dependent study.

    PubMed

    Gonçalves, Reggiani V; Novaes, Rômulo D; Cupertino, Marli C; Araújo, Bruna M; Vilela, Emerson F; Machado, Aline T; Leite, João P V; Matta, Sérgio L P

    2014-01-01

    The technological development of pharmaceutical products based on plant extracts is currently responsible for a large number of recent innovations in healthcare. The objective of this study was to develop and investigate the effect and potential applicability of an ointment-based Bathysa cuspidata extract (BCE) for the management of skin wounds in rats. Three skin wounds of 12 mm in diameter were made on the backs of the animals, which were randomized into 4 groups according to the application received, i.e. the SAL group: 0.9% saline solution, the LAN group: lanolin, the BCE 2.5% group: 2.5% BCE emulsified in lanolin and the BCE 5% group: 5% BCE emulsified in lanolin. The applications were made daily over 21 days, and every 7 days tissue from different wounds was removed. On days 7, 14 and 21, the BCE 2.5% and BCE 5% groups showed the best results in relation to wound closure, and a higher proportion (in length, density and volume) of blood vessels and fibroblasts compared to the other groups. On days 7 and 14, there was a significant increase in the number of mast cells in these 2 groups when compared to the SAL and LAN groups. On day 21, they also had a higher proportion of collagen I than collagen III. B. cuspidata in an ointment base was effective in stimulating tissue cellularity, mast cell recruitment, neoangiogenesis, synthesis and maturation of collagen, epidermal thickness and surface area in scar tissue. These events were potentially related to the best quality and speed for skin regeneration in the rats treated with the BCE ointment. PMID:25300223

  17. Proliferation of Keratinocytes Induced by Adipose-Derived Stem Cells on a Chitosan Scaffold and Its Role in Wound Healing, a Review

    PubMed Central

    Gomathysankar, Sankaralakshmi; Yaacob, Nik Soriani

    2014-01-01

    In the field of tissue engineering and reconstruction, the development of efficient biomaterial is in high demand to achieve uncomplicated wound healing. Chronic wounds and excessive scarring are the major complications of tissue repair and, as this inadequate healing continues to increase, novel therapies and treatments for dysfunctional skin repair and reconstruction are important. This paper reviews the various aspects of the complications related to wound healing and focuses on chitosan because of its unique function in accelerating wound healing. The proliferation of keratinocytes is essential for wound closure, and adipose-derived stem cells play a significant role in wound healing. Thus, chitosan in combination with keratinocytes and adipose-derived stem cells may act as a vehicle for delivering cells, which would increase the proliferation of keratinocytes and help complete recovery from injuries. PMID:25276634

  18. Obesity and Surgical Wound Healing: A Current Review

    PubMed Central

    Pierpont, Yvonne N.; Dinh, Trish Phuong; Salas, R. Emerick; Johnson, Erika L.; Wright, Terry G.; Robson, Martin C.; Payne, Wyatt G.

    2014-01-01

    Objective. The correlation between obesity and deficient wound healing has long been established. This review examines the current literature on the mechanisms involved in obesity-related perioperative morbidity. Methods. A literature search was performed using Medline, PubMed, Cochrane Library, and Internet searches. Keywords used include obesity, wound healing, adipose healing, and bariatric and surgical complications. Results. Substantial evidence exists demonstrating that obesity is associated with a number of postoperative complications. Specifically in relation to wound healing, explanations include inherent anatomic features of adipose tissue, vascular insufficiencies, cellular and composition modifications, oxidative stress, alterations in immune mediators, and nutritional deficiencies. Most recently, advances made in the field of gene array have allowed researchers to determine a few plausible alterations and deficiencies in obese individuals that contribute to their increased risk of morbidity and mortality, especially wound complications. Conclusion. While the literature discusses how obesity may negatively affect health on various of medical fronts, there is yet to be a comprehensive study detailing all the mechanisms involved in obesity-related morbidities in their entirety. Improved knowledge and understanding of obesity-induced physiological, cellular, molecular, and chemical changes will facilitate better assessments of surgical risks and outcomes and create efficient treatment protocols for improved patient care of the obese patient population. PMID:24701367

  19. Putting on the brakes: Bacterial impediment of wound healing

    PubMed Central

    Brothers, Kimberly M.; Stella, Nicholas A.; Hunt, Kristin M.; Romanowski, Eric G.; Liu, Xinyu; Klarlund, Jes K.; Shanks, Robert M. Q.

    2015-01-01

    The epithelium provides a crucial barrier to infection, and its integrity requires efficient wound healing. Bacterial cells and secretomes from a subset of tested species of bacteria inhibited human and porcine corneal epithelial cell migration in vitro and ex vivo. Secretomes from 95% of Serratia marcescens, 71% of Pseudomonas aeruginosa, 29% of Staphylococcus aureus strains, and other bacterial species inhibited epithelial cell migration. Migration of human foreskin fibroblasts was also inhibited by S. marcescens secretomes indicating that the effect is not cornea specific. Transposon mutagenesis implicated lipopolysaccharide (LPS) core biosynthetic genes as being required to inhibit corneal epithelial cell migration. LPS depletion of S. marcescens secretomes with polymyxin B agarose rendered secretomes unable to inhibit epithelial cell migration. Purified LPS from S. marcescens, but not from Escherichia coli or S. marcescens strains with mutations in the waaG and waaC genes, inhibited epithelial cell migration in vitro and wound healing ex vivo. Together these data suggest that S. marcescens LPS is sufficient for inhibition of epithelial wound healing. This study presents a novel host-pathogen interaction with implications for infections where bacteria impact wound healing and provides evidence that secreted LPS is a key factor in the inhibitory mechanism. PMID:26365869

  20. Regenerative Medicine: Charting a New Course in Wound Healing

    PubMed Central

    Gurtner, Geoffrey C.; Chapman, Mary Ann

    2016-01-01

    Significance: Chronic wounds are a prevalent and costly problem in the United States. Improved treatments are needed to heal these wounds and prevent serious complications such as infection and amputation. Recent Advances: In wound healing, as in other areas of medicine, technologies that have the potential to regenerate as opposed to repair tissue are gaining ground. These include customizable nanofiber matrices incorporating novel materials; a variety of autologous and allogeneic cell types at various stages of differentiation (e.g., pluripotent, terminally differentiated); peptides; proteins; small molecules; RNA inhibitors; and gene therapies. Critical Issues: Wound healing is a logical target for regenerative medicine due to the accessibility and structure of skin, the regenerative nature of healing, the lack of good limb salvage treatments, and the current use of cell therapies. However, more extensive knowledge of pathophysiologic targets is needed to inform regenerative strategies, and new technologies must demonstrate value in terms of outcomes and related health economic measures to achieve successful market access and penetration. Future Directions: Due to similarities in cell pathways and developmental mechanisms, regenerative technologies developed in one therapeutic area may be applicable to others. Approaches that proceed from human genomic or other big data sources to models are becoming increasingly common and will likely suggest novel therapeutic avenues. To fully capitalize on the advances in regenerative medicine, studies must demonstrate the value of new therapies in identified patient populations, and sponsors must work with regulatory agencies to develop appropriate dossiers supporting timely approval. PMID:27366592

  1. Tumors: Wounds that do not heal--Redux

    PubMed Central

    Dvorak, Harold F.

    2014-01-01

    Similarities between tumors and the inflammatory response associated with wound healing have been recognized for more than 150 years and continue to intrigue. Some years ago, based on our then recent discovery of vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF), I suggested that tumors behaved as wounds that do not heal. More particularly, I proposed that tumors co-opted the wound healing response in order to induce the stroma they required for maintenance and growth. Work over the past few decades has supported this hypothesis and has put it on a firmer molecular basis. In outline, VPF/VEGF initiates a sequence of events in both tumors and wounds that includes the following: increased vascular permeability; extravasation of plasma, fibrinogen and other plasma proteins; activation of the clotting system outside the vascular system; deposition of an extravascular fibrin gel which serves as a provisional stroma and a favorable matrix for cell migration; induction of angiogenesis and arterio-venogenesis; subsequent degradation of fibrin and its replacement by “granulation tissue” (highly vascular connective tissue); and, finally, vascular resorption and collagen synthesis, resulting in the formation of dense fibrous connective tissue (called “scar tissue” in wounds and “desmoplasia” in cancer). A similar sequence of events also takes place in a variety of important inflammatory diseases that involve cellular immunity. PMID:25568067

  2. The Influence of Anger Expression on Wound Healing

    PubMed Central

    Gouin, Jean-Philippe; Kiecolt-Glaser, Janice K.; Malarkey, William B.; Glaser, Ronald

    2008-01-01

    Certain patterns of anger expression have been associated with maladaptive alterations in cortisol secretion, immune functioning, and surgical recovery. We hypothesized that outward and inward anger expression and lack of anger control would be associated with delayed wound healing. A sample of 98 community-dwelling participants received standardized blister wounds on their non-dominant forearm. After blistering, the wounds were monitored daily for eight days to assess speed of repair. Logistic regression was used to distinguish fast and slow healers based on their anger expression pattern. Individuals exhibiting lower levels of anger control were more likely to be categorized as slow healers. The anger control variable predicted wound repair over and above differences in hostility, negative affectivity, social support, and health behaviors. Furthermore, participants with lower levels of anger control exhibited higher cortisol reactivity during the blistering procedure. This enhanced cortisol secretion was in turn related to longer time to heal. These findings suggest that the ability to regulate the expression of one’s anger has a clinically relevant impact on wound healing. PMID:18078737

  3. Epidermal Differentiation in Barrier Maintenance and Wound Healing.

    PubMed

    Wikramanayake, Tongyu Cao; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2014-03-01

    Significance: The epidermal barrier prevents water loss and serves as the body's first line of defense against toxins, chemicals, and infectious microbes. Disruption of the barrier, either through congenital disorders of barrier formation or through wounds, puts the individual at risk for dehydration, hypersensitivity, infection, and prolonged inflammation. Epidermal barrier disorders affect millions of patients in the United States, causing loss of productivity and diminished quality of life for patients and their families, and represent a burden to the health-care system and society. Recent Advances: The genetic basis of many congenital barrier disorders has been identified in recent years, and great advances have been made in the molecular mechanisms of the formation and homeostasis of epidermal barrier, as well as acute and chronic wound healing. Progress in stem cell (SC) biology, particularly in induced pluripotent stem cells (iPSCs) and allogeneic mesenchymal stem cells (MSCs), has opened new doors for cell-based therapy of chronic wounds. Critical Issues: Understanding of the molecular mechanisms of barrier homeostasis in health and disease, as well as contributions of iPSCs and allogeneic MSCs to wound healing, will lead to the identification of novel targets for developing therapeutics for congenital barrier and wound healing disorders. Future Directions: Future studies should focus on better understanding of molecular mechanisms leading to disrupted homeostasis of epidermal barrier to identify potential therapeutic targets to combat its associated diseases. PMID:24669361

  4. [Wound healing by homeopathic silica dilutions in mice].

    PubMed

    Oberbaum, M; Markovits, R; Weisman, Z; Kalinkevits, A; Bentwich, Z

    1992-08-01

    Highly diluted solutions of silica are widely used in homeopathic medicine to treat lesions such as chronic wounds, ulcers, and abscesses. We tested the therapeutic effects of homeopathic dilutions of silica on induced chronic wounds. Holes were made in the ears of mice by dental wire, which then remained hanging from the ear to cause persistent mechanical irritation. In each experiment 3 or 4 groups of 10 mice each were treated by adding homeopathic dilutions of silica (10(-10), 10(-60), 10(-400)) and of saline (10(-10), respectively, to the drinking water of the mice for 4-20 days. The size of the wound holes was measured every second day (grades 0-4) and/or by an objective image analysis system. The results showed that in 7/11 experiments the ear holes of the silica-treated animals were significantly smaller (p less than 0.05-0.001) and healed faster than in those treated with saline. Also the therapeutic effect increased progressively with increase in dilution of the silica (10(-10) less than 10(-60) less than 10(-400)). These results show that homeopathic dilutions of silica (even well beyond Avogadro's number) clearly have a therapeutic effect on wound healing and that our experimental model for studying wound healing is a very useful tool for such studies. PMID:1325402

  5. Antitumor and Wound Healing Properties of Rubus ellipticus Smith.

    PubMed

    George, Blassan Plackal; Parimelazhagan, Thangaraj; Kumar, Yamini T; Sajeesh, Thankarajan

    2015-06-01

    The present investigation has been undertaken to study the antioxidant, antitumor, and wound healing properties of Rubus ellipticus. The R. ellipticus leaves were extracted using organic solvents in Soxhlet and were subjected to in vitro antioxidant assays. R. ellipticus leaf methanol (RELM) extract, which showed higher in vitro antioxidant activity, was taken for the evaluation of in vivo antioxidant, antitumor, and wound healing properties. Acute oral and dermal toxicity studies showed the safety of RELM up to a dose of 2 g/kg. A significant wound healing property was observed in incision, excision, and Staphylococcus aureus-induced infected wound models in the treatment groups compared to the control group. A complete epithelialization period was noticed during the 13(th) day and the 19(th) day. A 250-mg/kg treatment was found to prolong the life span of mice with Ehrlich ascite carcinoma (EAC; 46.76%) and to reduce the volume of Dalton's lymphoma ascite (DLA) solid tumors (2.56 cm(3)). The present study suggests that R. ellipticus is a valuable natural antioxidant and that it is immensely effective for treating skin diseases, wounds, and tumors. PMID:26100067

  6. Enhanced Cutaneous Wound Healing In Vivo by Standardized Crude Extract of Poincianella pluviosa

    PubMed Central

    Moreira, Eduarda Antunes; de Morais, Gutierrez Rodrigues; Pacheco, Isabela Almeida

    2016-01-01

    Wound healing is a complex process that involves several biological events, and a delay in this process may cause economic and social problems for the patient. The search continues for new alternative treatments to aid healing, including the use of herbal medicines. Members of the genus Caesalpinia are used in traditional medicine to treat wounds. The related species Poincianella pluviosa (DC.) L.P. Queiroz increases the cell viability of keratinocytes and fibroblasts and stimulates the proliferation of keratinocytes in vitro. The crude extract (CE) from bark of P. pluviosa was evaluated in the wound-healing process in vivo, to validate the traditional use and the in vitro activity. Standardized CE was incorporated into a gel and applied on cutaneous wounds (TCEG) and compared with the formulation without CE (Control) for 4, 7, 10, or 14 days of treatment. The effects of the CE on wound re-epithelialization; cell proliferation; permeation, using photoacoustic spectroscopy (PAS); and proteins, including vascular endothelial growth factor (VEGF), superoxide dismutase 2 (SOD-2) and cyclooxygenase 2 (COX-2) were evaluated. The TCEG stimulated the migration of keratinocytes at day 4 and proliferation on the following days, with a high concentration of cells in metaphase at 7 days. Type I collagen formed more rapidly in the TCEG. PAS showed that the CE had permeated through the skin. TCEG stimulated VEGF at day 4 and SOD-2 and COX-2 at day 7. The results suggest that the CE promoted the regulation of proteins and helped to accelerate the processes involved in healing, promoting early angiogenesis. This led to an increase in the re-epithelialized surface, with significant mitotic activity. Maturation of collagen fibers was also enhanced, which may affect the resistance of the extracellular matrix. PAS indicated a correlation between the rate of diffusion and biological events during the healing process. The CE from P. pluviosa appears promising as an aid in healing. PMID

  7. Enhanced Cutaneous Wound Healing In Vivo by Standardized Crude Extract of Poincianella pluviosa.

    PubMed

    Bueno, Fernanda Giacomini; Moreira, Eduarda Antunes; Morais, Gutierrez Rodrigues de; Pacheco, Isabela Almeida; Baesso, Mauro Luciano; Leite-Mello, Eneri Vieira de Souza; Mello, João Carlos Palazzo de

    2016-01-01

    Wound healing is a complex process that involves several biological events, and a delay in this process may cause economic and social problems for the patient. The search continues for new alternative treatments to aid healing, including the use of herbal medicines. Members of the genus Caesalpinia are used in traditional medicine to treat wounds. The related species Poincianella pluviosa (DC.) L.P. Queiroz increases the cell viability of keratinocytes and fibroblasts and stimulates the proliferation of keratinocytes in vitro. The crude extract (CE) from bark of P. pluviosa was evaluated in the wound-healing process in vivo, to validate the traditional use and the in vitro activity. Standardized CE was incorporated into a gel and applied on cutaneous wounds (TCEG) and compared with the formulation without CE (Control) for 4, 7, 10, or 14 days of treatment. The effects of the CE on wound re-epithelialization; cell proliferation; permeation, using photoacoustic spectroscopy (PAS); and proteins, including vascular endothelial growth factor (VEGF), superoxide dismutase 2 (SOD-2) and cyclooxygenase 2 (COX-2) were evaluated. The TCEG stimulated the migration of keratinocytes at day 4 and proliferation on the following days, with a high concentration of cells in metaphase at 7 days. Type I collagen formed more rapidly in the TCEG. PAS showed that the CE had permeated through the skin. TCEG stimulated VEGF at day 4 and SOD-2 and COX-2 at day 7. The results suggest that the CE promoted the regulation of proteins and helped to accelerate the processes involved in healing, promoting early angiogenesis. This led to an increase in the re-epithelialized surface, with significant mitotic activity. Maturation of collagen fibers was also enhanced, which may affect the resistance of the extracellular matrix. PAS indicated a correlation between the rate of diffusion and biological events during the healing process. The CE from P. pluviosa appears promising as an aid in healing. PMID

  8. Therapeutic utility of antibacterial peptides in wound healing.

    PubMed

    Otvos, Laszlo; Ostorhazi, Eszter

    2015-07-01

    Cationic antimicrobial peptides were first thought to fight infection in animal models by disintegrating bacterial peptides and later by inhibiting bacteria-specific intracellular processes. However, ever increasing evidences indicate that cationic peptides accumulate around and modulate the immune system both systemically and in cutaneous and mucosal surfaces where injuries and infections occur. Native and designer antibacterial peptides as well as cationic peptides, never considered as antibiotics, promote wound healing at every step of cutaneous tissue regeneration. This article provides an introductory list of examples of how cationic peptides are involved in immunostimulation and epithelial tissue repair, eliminating wound infections and promoting wound healing in potential therapeutic utility in sight. Although a few antimicrobial peptides reached the Phase II clinical trial stage, toxicity concerns limit the potential administration routes. Resistance induction to both microbiology actions and the integrity of the innate immune system has to be carefully monitored. PMID:25835521

  9. Increased collagen synthesis rate during wound healing in muscle.

    PubMed

    Zhou, Shaobo; Salisbury, Jonathan; Preedy, Victor R; Emery, Peter W

    2013-01-01

    Wound healing in muscle involves the deposition of collagen, but it is not known whether this is achieved by changes in the synthesis or the degradation of collagen. We have used a reliable flooding dose method to measure collagen synthesis rate in vivo in rat abdominal muscle following a surgical incision. Collagen synthesis rate was increased by 480% and 860% on days 2 and 7 respectively after surgery in the wounded muscle compared with an undamaged area of the same muscle. Collagen content was increased by approximately 100% at both day 2 and day 7. These results demonstrate that collagen deposition during wound healing in muscle is achieved entirely by an increase in the rate of collagen synthesis. PMID:23526975

  10. Serum amyloid P inhibits dermal wound healing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The repair of open wounds depends on granulation tissue formation and contraction, which is primarily mediated by myofibroblasts. A subset of myofibroblasts originates from bone-marrow-derived monocytes which differentiate into fibroblast-like cells called fibrocytes. Serum amyloid P (SAP) inhibits ...

  11. Interleukin-22 Promotes Wound Repair in Diabetes by Improving Keratinocyte Pro-Healing Functions.

    PubMed

    Avitabile, Simona; Odorisio, Teresa; Madonna, Stefania; Eyerich, Stefanie; Guerra, Liliana; Eyerich, Kilian; Zambruno, Giovanna; Cavani, Andrea; Cianfarani, Francesca

    2015-11-01

    Impaired re-epithelialization, imbalanced expression of cytokines and growth factors, and vascular disease contribute to healing impairment in diabetes. IL-22, a pro-inflammatory cytokine mediating a cross-talk between immune system and epithelial cells, has been shown to have a role in repair processes. In this study we aimed to investigate IL-22 regenerative potential in the poor healing context of diabetic wounds. By using streptozotocin-induced diabetic mice, we demonstrated that IL-22 wound treatment significantly accelerated the healing process, by promoting re-epithelialization, granulation tissue formation, and vascularization. Improved re-epithelialization was associated with increased keratinocyte proliferation and signal transducer and activator of transcription 3 (STAT3) activation. We showed that endogenous IL-22 content was reduced at both mRNA and protein level during the inflammatory phase of diabetic wounds, with fewer IL-22-positive cells infiltrating the granulation tissue. We demonstrated that IL-22 treatment promoted proliferation and injury repair of hyperglycemic keratinocytes and induced activation of STAT3 and extracellular signal-regulated kinase transduction pathways in keratinocytes grown in hyperglycemic condition or isolated from diabetic patients. Finally, we demonstrated that IL-22 treatment was able to inhibit diabetic keratinocyte differentiation while promoting vascular endothelial growth factor release. Our data indicate a pro-healing role of IL-22 in diabetic wounds, suggesting a therapeutic potential for this cytokine in diabetic ulcer management. PMID:26168231

  12. Simultaneous irrigation and negative pressure wound therapy enhances wound healing and reduces wound bioburden in a porcine model.

    PubMed

    Davis, Kathryn; Bills, Jessica; Barker, Jenny; Kim, Paul; Lavery, Lawrence

    2013-01-01

    Infected foot wounds are one of the most common reasons for hospitalization and amputation among persons with diabetes. The objective of the study was to investigate a new wound therapy system that employs negative pressure wound therapy (NPWT) with simultaneous irrigation therapy. For this study, we used a porcine model with full-thickness excisional wounds, inoculated with Pseudomonas aeruginosa. Wounds were treated for 21 days of therapy with either NPWT, NPWT with simultaneous irrigation therapy using normal saline or polyhexanide biguanide (PHMB) at low or high flow rates, or control. Data show that NPWT with either irrigation condition improved wound healing rates over control-treated wounds, yet did not differ from NPWT alone. NPWT improved bioburden over control-treated wounds. NPWT with simultaneous irrigation further reduced bioburden over control and NPWT-treated wounds; however, flow rate did not affect these outcomes. Together, these data show that NPWT with simultaneous irrigation therapy with either normal saline or PHMB has a positive effect on bioburden in a porcine model, which may translate clinically to improved wound healing outcomes. PMID:24134060

  13. Effects of Silk Sericin on Incision Wound Healing in a Dorsal Skin Flap Wound Healing Rat Model

    PubMed Central

    Ersel, Murat; Uyanikgil, Yigit; Akarca, Funda Karbek; Ozcete, Enver; Altunci, Yusuf Ali; Karabey, Fatih; Cavusoglu, Turker; Meral, Ayfer; Yigitturk, Gurkan; Cetin, Emel Oyku

    2016-01-01

    Background The wound healing process is complex and still poorly understood. Sericin is a silk protein synthesized by silk worms (Bombyx mori). The objective of this study was to evaluate in vivo wound healing effects of a sericin-containing gel formulation in an incision wound model in rats. Material/Methods Twenty-eight Wistar-Albino rats were divided into 4 groups (n=7). No intervention or treatment was applied to the Intact control group. For other groups, a dorsal skin flap (9×3 cm) was drawn and pulled up with sharp dissection. The Sham operated group received no treatment. The Placebo group received placebo gel without sericin applied to the incision area once a day from day 0 to day 9. The Sericin Group 3 received 1% sericin gel applied to the incision area once a day from day 0 to day 9. Hematoxylin and eosin stain was applied for histological analysis and Mallory-Azan staining was applied for histoimmunochemical analysis of antibodies and iNOS (inducible nitric oxide synthase), and desmin was applied to paraffin sections of skin wound specimens. Parameters of oxidative stress were measured in the wound area. Results Epidermal thickness and vascularization were increased, and hair root degeneration, edema, cellular infiltration, collagen discoloration, and necrosis were decreased in Sericin group in comparison to the Placebo group and the Sham operated group. Malonyldialdehyde (MDA) levels were decreased, but superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were increased in the sericin group. Conclusions We found that sericin had significant positive effects on wound healing and antioxidant activity. Sericin-based formulations can improve healing of incision wounds. PMID:27032876

  14. Effects of Silk Sericin on Incision Wound Healing in a Dorsal Skin Flap Wound Healing Rat Model.

    PubMed

    Ersel, Murat; Uyanikgil, Yigit; Karbek Akarca, Funda; Ozcete, Enver; Altunci, Yusuf Ali; Karabey, Fatih; Cavucoglu, Turker; Meral, Ayfer; Yigitturk, Gurkan; Oyku Cetin, Emel

    2016-01-01

    BACKGROUND The wound healing process is complex and still poorly understood. Sericin is a silk protein synthesized by silk worms (Bombyx mori). The objective of this study was to evaluate in vivo wound healing effects of a sericin-containing gel formulation in an incision wound model in rats. MATERIAL AND METHODS Twenty-eight Wistar-Albino rats were divided into 4 groups (n=7). No intervention or treatment was applied to the Intact control group. For other groups, a dorsal skin flap (9×3 cm) was drawn and pulled up with sharp dissection. The Sham operated group received no treatment. The Placebo group received placebo gel without sericin applied to the incision area once a day from day 0 to day 9. The Sericin Group 3 received 1% sericin gel applied to the incision area once a day from day 0 to day 9. Hematoxylin and eosin stain was applied for histological analysis and Mallory-Azan staining was applied for histoimmunochemical analysis of antibodies and iNOS (inducible nitric oxide synthase), and desmin was applied to paraffin sections of skin wound specimens. Parameters of oxidative stress were measured in the wound area. RESULTS Epidermal thickness and vascularization were increased, and hair root degeneration, edema, cellular infiltration, collagen discoloration, and necrosis were decreased in Sericin group in comparison to the Placebo group and the Sham operated group. Malonyldialdehyde (MDA) levels were decreased, but superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were increased in the sericin group. CONCLUSIONS We found that sericin had significant positive effects on wound healing and antioxidant activity. Sericin-based formulations can improve healing of incision wounds. PMID:27032876

  15. Healing the Hidden Wounds of Racial Trauma

    ERIC Educational Resources Information Center

    Hardy, Kenneth V.

    2013-01-01

    This article examines racial trauma and highlights strategies for healing and transformation to support the disproportionate number of children and youth of color who fail in school and become trapped in the pipelines of treatment, social service, and justice systems. The difficulty in meeting the needs of these children and youth is failing to…

  16. Wound healing properties of a 3-D scaffold comprising soluble silkworm gland hydrolysate and human collagen.

    PubMed

    Kim, Kyu-Oh; Lee, Youngjun; Hwang, Jung-Wook; Kim, Hojin; Kim, Sun Mi; Chang, Sung Woon; Lee, Heui Sam; Choi, Yong-Soo

    2014-04-01

    Biomaterials that serve as scaffolds for cell proliferation and differentiation are increasingly being used in wound repair. In this study, the potential regenerative properties of a 3-D scaffold containing soluble silkworm gland hydrolysate (SSGH) and human collagen were evaluated. The scaffold was generated by solid-liquid phase separation and a freeze-drying method using a homogeneous aqueous solution. The porosity, swelling behavior, protein release, cytotoxicity, and antioxidative properties of scaffolds containing various ratios of SSGH and collagen were evaluated. SSGH/collagen scaffolds had a high porosity of 61-81% and swelling behavior studies demonstrated a 50-75% increase in swelling, along with complete protein release in the presence of phosphate-buffered saline. Cytocompatibility of the SSGH/collagen scaffold was demonstrated using mesenchymal stem cells from human umbilical cord. Furthermore, SSGH/collagen efficiently attenuated oxidative stress-induced cell damage. In an in vivo mouse model of wound healing, the SSGH/collagen scaffold accelerated wound re-epithelialization over a 15-day period. Overall, the microporous SSGH/collagen 3-D scaffold maintained optimal hydration of the exposed tissues and decreased wound healing time. These results contribute to the generation of advanced wound healing materials and may have future therapeutic implications. PMID:24503353

  17. Substance P combined with epidermal stem cells promotes wound healing and nerve regeneration in diabetes mellitus.

    PubMed

    Zhu, Fei-Bin; Fang, Xiang-Jing; Liu, De-Wu; Shao, Ying; Zhang, Hong-Yan; Peng, Yan; Zhong, Qing-Ling; Li, Yong-Tie; Liu, De-Ming

    2016-03-01

    Exogenous substance P accelerates wound healing in diabetes, but the mechanism remains poorly understood. Here, we established a rat model by intraperitoneally injecting streptozotocin. Four wounds (1.8 cm diameter) were drilled using a self-made punch onto the back, bilateral to the vertebral column, and then treated using amniotic membrane with epidermal stem cells and/or substance P around and in the middle of the wounds. With the combined treatment the wound-healing rate was 100% at 14 days. With prolonged time, type I collagen content gradually increased, yet type III collagen content gradually diminished. Abundant protein gene product 9.5- and substance P-immunoreactive nerve fibers regenerated. Partial nerve fiber endings extended to the epidermis. The therapeutic effects of combined substance P and epidermal stem cells were better than with amniotic membrane and either factor alone. Our results suggest that the combination of substance P and epidermal stem cells effectively contributes to nerve regeneration and wound healing in diabetic rats. PMID:27127492

  18. Substance P combined with epidermal stem cells promotes wound healing and nerve regeneration in diabetes mellitus

    PubMed Central

    Zhu, Fei-bin; Fang, Xiang-jing; Liu, De-wu; Shao, Ying; Zhang, Hong-yan; Peng, Yan; Zhong, Qing-ling; Li, Yong-tie; Liu, De-ming

    2016-01-01

    Exogenous substance P accelerates wound healing in diabetes, but the mechanism remains poorly understood. Here, we established a rat model by intraperitoneally injecting streptozotocin. Four wounds (1.8 cm diameter) were drilled using a self-made punch onto the back, bilateral to the vertebral column, and then treated using amniotic membrane with epidermal stem cells and/or substance P around and in the middle of the wounds. With the combined treatment the wound-healing rate was 100% at 14 days. With prolonged time, type I collagen content gradually increased, yet type III collagen content gradually diminished. Abundant protein gene product 9.5- and substance P-immunoreactive nerve fibers regenerated. Partial nerve fiber endings extended to the epidermis. The therapeutic effects of combined substance P and epidermal stem cells were better than with amniotic membrane and either factor alone. Our results suggest that the combination of substance P and epidermal stem cells effectively contributes to nerve regeneration and wound healing in diabetic rats. PMID:27127492

  19. The Wound Healing and Antibacterial Activity of Five Ethnomedical Calophyllum inophyllum Oils: An Alternative Therapeutic Strategy to Treat Infected Wounds

    PubMed Central

    Léguillier, Teddy; Lecsö-Bornet, Marylin; Lémus, Christelle; Rousseau-Ralliard, Delphine; Lebouvier, Nicolas; Hnawia, Edouard; Nour, Mohammed; Aalbersberg, William; Ghazi, Kamelia; Raharivelomanana, Phila; Rat, Patrice

    2015-01-01

    Background Calophyllum inophyllum L. (Calophyllaceae) is an evergreen tree ethno-medically used along the seashores and islands of the Indian and Pacific Oceans, especially in Polynesia. Oil extracted from the seeds is traditionally used topically to treat a wide range of skin injuries from burn, scar and infected wounds to skin diseases such as dermatosis, urticaria and eczema. However, very few scientific studies reported and quantified the therapeutic properties of Calophyllum inophyllum oil (CIO). In this work, five CIO from Indonesia (CIO1), Tahiti (CIO2, 3), Fiji islands (CIO4) and New Caledonia (CIO5) were studied and their cytotoxic, wound healing, and antibacterial properties were presented in order to provide a scientific support to their traditional use and verify their safety. Methods The safety of the five CIO was ascertained using the Alamar blue assay on human keratinocyte cells. CIO wound healing properties were determined using the scratch test assay on human keratinocyte cells. CIO-stimulated antibacterial innate immune response was evaluated using ELISA by measuring β defensin-2 release in human derivative macrophage cells. CIO antibacterial activity was tested using oilogramme against twenty aerobic Gram- bacteria species, twenty aerobic Gram+ bacteria species, including a multi-drug resistant Staphylococcus aureus strain and two anaerobic Gram+ bacteria species e.g. Propionibacterium acnes and Propionibacterium granulosum. To detect polarity profile of the components responsible of the antibacterial activity, we performed bioautography against a Staphylococcus aureus strain. Results Based on Alamar Blue assay, we showed that CIO can be safely used on keratinocyte cells between 2.7% and 11.2% depending on CIO origin. Concerning the healing activity, all the CIO tested accelerated in vitro wound closure, the healing factor being 1.3 to 2.1 higher compared to control when keratinocytes were incubated after scratch with CIO at 0.1%. Furthermore

  20. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects

    PubMed Central

    Dai, Tianhong; Tanaka, Masamitsu; Huang, Ying-Ying; Hamblin, Michael R

    2011-01-01

    Since its discovery approximately 200 years ago, chitosan, as a cationic natural polymer, has been widely used as a topical dressing in wound management owing to its hemostatic, stimulation of healing, antimicrobial, nontoxic, biocompatible and biodegradable properties. This article covers the antimicrobial and wound-healing effects of chitosan, as well as its derivatives and complexes, and its use as a vehicle to deliver biopharmaceuticals, antimicrobials and growth factors into tissue. Studies covering applications of chitosan in wounds and burns can be classified into in vitro, animal and clinical studies. Chitosan preparations are classified into native chitosan, chitosan formulations, complexes and derivatives with other substances. Chitosan can be used to prevent or treat wound and burn infections not only because of its intrinsic antimicrobial properties, but also by virtue of its ability to deliver extrinsic antimicrobial agents to wounds and burns. It can also be used as a slow-release drug-delivery vehicle for growth factors to improve wound healing. The large number of publications in this area suggests that chitosan will continue to be an important agent in the management of wounds and burns. PMID:21810057