Science.gov

Sample records for acceleration deceleration effect

  1. Ion Accelerator With Negatively Biased Decelerator Grid

    NASA Technical Reports Server (NTRS)

    Brophy, John R.

    1994-01-01

    Three-grid ion accelerator in which accelerator grid is biased at negative potential and decelerator grid downstream of accelerator grid biased at smaller negative potential. This grid and bias arrangement reduces frequency of impacts, upon accelerator grid, of charge-exchange ions produced downstream in collisions between accelerated ions and atoms and molecules of background gas. Sputter erosion of accelerator grid reduced.

  2. 30 CFR 56.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Maximum acceleration and deceleration. 56.19062... Hoisting Hoisting Procedures § 56.19062 Maximum acceleration and deceleration. Maximum normal operating acceleration and deceleration shall not exceed 6 feet per second per second. During emergency braking,...

  3. 30 CFR 57.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Maximum acceleration and deceleration. 57.19062... Hoisting Hoisting Procedures § 57.19062 Maximum acceleration and deceleration. Maximum normal operating acceleration and deceleration shall not exceed 6 feet per second per second. During emergency braking,...

  4. 30 CFR 57.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Maximum acceleration and deceleration. 57.19062... Hoisting Hoisting Procedures § 57.19062 Maximum acceleration and deceleration. Maximum normal operating acceleration and deceleration shall not exceed 6 feet per second per second. During emergency braking,...

  5. 30 CFR 56.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Maximum acceleration and deceleration. 56.19062... Hoisting Hoisting Procedures § 56.19062 Maximum acceleration and deceleration. Maximum normal operating acceleration and deceleration shall not exceed 6 feet per second per second. During emergency braking,...

  6. 30 CFR 57.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Maximum acceleration and deceleration. 57.19062... Hoisting Hoisting Procedures § 57.19062 Maximum acceleration and deceleration. Maximum normal operating acceleration and deceleration shall not exceed 6 feet per second per second. During emergency braking,...

  7. 30 CFR 56.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum acceleration and deceleration. 56.19062... Hoisting Hoisting Procedures § 56.19062 Maximum acceleration and deceleration. Maximum normal operating acceleration and deceleration shall not exceed 6 feet per second per second. During emergency braking,...

  8. 30 CFR 57.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum acceleration and deceleration. 57.19062... Hoisting Hoisting Procedures § 57.19062 Maximum acceleration and deceleration. Maximum normal operating acceleration and deceleration shall not exceed 6 feet per second per second. During emergency braking,...

  9. 30 CFR 56.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Maximum acceleration and deceleration. 56.19062... Hoisting Hoisting Procedures § 56.19062 Maximum acceleration and deceleration. Maximum normal operating acceleration and deceleration shall not exceed 6 feet per second per second. During emergency braking,...

  10. 30 CFR 56.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Maximum acceleration and deceleration. 56.19062... Hoisting Hoisting Procedures § 56.19062 Maximum acceleration and deceleration. Maximum normal operating acceleration and deceleration shall not exceed 6 feet per second per second. During emergency braking,...

  11. 30 CFR 57.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Maximum acceleration and deceleration. 57.19062... Hoisting Hoisting Procedures § 57.19062 Maximum acceleration and deceleration. Maximum normal operating acceleration and deceleration shall not exceed 6 feet per second per second. During emergency braking,...

  12. 40 CFR 1066.265 - Acceleration and deceleration verification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Acceleration and deceleration...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.265 Acceleration... ability to achieve targeted acceleration and deceleration rates. Paragraph (c) of this section...

  13. 40 CFR 1066.265 - Acceleration and deceleration verification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Acceleration and deceleration...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.265 Acceleration... ability to achieve targeted acceleration and deceleration rates. Paragraph (c) of this section...

  14. 40 CFR 1066.265 - Acceleration and deceleration verification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Acceleration and deceleration...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.265 Acceleration... ability to achieve targeted acceleration and deceleration rates. Paragraph (c) of this section...

  15. Player acceleration and deceleration profiles in professional Australian football.

    PubMed

    Johnston, R J; Watsford, M L; Austin, D; Pine, M J; Spurrs, R W

    2015-09-01

    This study aimed to determine the validity and reliability of global positioning system (GPS) units for measuring a standardized set of acceleration and deceleration zones and whether these standardized zones were capable of identifying differences between playing positions in professional Australian football. Eight well trained male participants were recruited to wear two 5 Hz or 10 Hz GPS units whilst completing a team sport simulation circuit to measure acceleration and deceleration movements. For the second part of this article 30 professional players were monitored between 1-29 times using 5 Hz and 10 Hz GPS units for the collection of acceleration and deceleration movements during the 2011 and 2012 Australian Football League seasons. Players were separated into four distinct positional groups - nomadic players, fixed defenders, fixed forwards and ruckman. The GPS units analysed had good to poor levels of error for measuring the distance covered (<19.7%), time spent (<17.2%) and number of efforts performed (<48.0%) at low, moderate and high acceleration and deceleration zones. The results demonstrated that nomadic players and fixed defenders perform more acceleration and deceleration efforts during a match than fixed forwards and ruckman. These studies established that these GPS units can be used for analysing the distance covered and time spent at the acceleration and deceleration zones used. Further, these standardized zones were proven to be capable of distinguishing between player positions, with nomadic players and fixed defenders required to complete more high acceleration and deceleration efforts during a match.

  16. Stereoscopic camera and viewing systems with undistorted depth presentation and reduced or eliminated erroneous acceleration and deceleration perceptions, or with perceptions produced or enhanced for special effects

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B. (Inventor)

    1991-01-01

    Methods for providing stereoscopic image presentation and stereoscopic configurations using stereoscopic viewing systems having converged or parallel cameras may be set up to reduce or eliminate erroneously perceived accelerations and decelerations by proper selection of parameters, such as an image magnification factor, q, and intercamera distance, 2w. For converged cameras, q is selected to be equal to Ve - qwl = 0, where V is the camera distance, e is half the interocular distance of an observer, w is half the intercamera distance, and l is the actual distance from the first nodal point of each camera to the convergence point, and for parallel cameras, q is selected to be equal to e/w. While converged cameras cannot be set up to provide fully undistorted three-dimensional views, they can be set up to provide a linear relationship between real and apparent depth and thus minimize erroneously perceived accelerations and decelerations for three sagittal planes, x = -w, x = 0, and x = +w which are indicated to the observer. Parallel cameras can be set up to provide fully undistorted three-dimensional views by controlling the location of the observer and by magnification and shifting of left and right images. In addition, the teachings of this disclosure can be used to provide methods of stereoscopic image presentation and stereoscopic camera configurations to produce a nonlinear relation between perceived and real depth, and erroneously produce or enhance perceived accelerations and decelerations in order to provide special effects for entertainment, training, or educational purposes.

  17. Effects of drop acceleration and deceleration on particle capture in a cross-flow gravity tower at intermediate drop Reynolds numbers.

    PubMed

    Kumar, Anoop; Gupta, S K; Kale, S R

    2007-04-01

    Cross-flow gravity towers are particle scrubbing devices in which water is sprayed from the top into particle-laden flow moving horizontally. Models for predicting particle capture assume drops traveling at terminal velocity and potential flow (ReD > 1000) around it, however, Reynolds numbers in the intermediate range of 1 to 1000 are common in gravity towers. Drops are usually injected at velocities greater than their terminal velocities (as in nozzles) or from near rest (perforated tray) and they accelerate/decelerate to their terminal velocity in the tower. Also, the effects of intermediate drop Reynolds number on capture efficiency have been simulated for (a) drops at their terminal velocity and (b) drops accelerating/decelerating to their terminal velocity. Tower efficiency based on potential flow about the drop is 40%-50% greater than for 200 mm drops traveling at their terminal velocity. The corresponding values for 500 mm drops are about 10%-20%. The drop injection velocity is important operating parameter. Increase in tower efficiency by about 40% for particles smaller than 5 mm is observed for increase in injection velocity from 0 to 20 m/s for 200 and 500mm drops.

  18. Free electron laser using Rf coupled accelerating and decelerating structures

    DOEpatents

    Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.

    1984-01-01

    A free electron laser and free electron laser amplifier using beam transport devices for guiding an electron beam to a wiggler of a free electron laser and returning the electron beam to decelerating cavities disposed adjacent to the accelerating cavities of the free electron laser. Rf energy is generated from the energy depleted electron beam after it emerges from the wiggler by means of the decelerating cavities which are closely coupled to the accelerating cavities, or by means of a second bore within a single set of cavities. Rf energy generated from the decelerated electron beam is used to supplement energy provided by an external source, such as a klystron, to thereby enhance overall efficiency of the system.

  19. Is the brain's inertia for motor movements different for acceleration and deceleration?

    PubMed

    Adhikari, Bhim M; Quinn, Kristen M; Dhamala, Mukesh

    2013-01-01

    The brain's ability to synchronize movements with external cues is used daily, yet neuroscience is far from a full understanding of the brain mechanisms that facilitate and set behavioral limits on these sequential performances. This functional magnetic resonance imaging (fMRI) study was designed to help understand the neural basis of behavioral performance differences on a synchronizing movement task during increasing (acceleration) and decreasing (deceleration) metronome rates. In the MRI scanner, subjects were instructed to tap their right index finger on a response box in synchrony to visual cues presented on a display screen. The tapping rate varied either continuously or in discrete steps ranging from 0.5 Hz to 3 Hz. Subjects were able to synchronize better during continuously accelerating rhythms than in continuously or discretely decelerating rhythms. The fMRI data revealed that the precuneus was activated more during continuous deceleration than during acceleration with the hysteresis effect significant at rhythm rates above 1 Hz. From the behavioral data, two performance measures, tapping rate and synchrony index, were derived to further analyze the relative brain activity during acceleration and deceleration of rhythms. Tapping rate was associated with a greater brain activity during deceleration in the cerebellum, superior temporal gyrus and parahippocampal gyrus. Synchrony index was associated with a greater activity during the continuous acceleration phase than during the continuous deceleration or discrete acceleration phases in a distributed network of regions including the prefrontal cortex and precuneus. These results indicate that the brain's inertia for movement is different for acceleration and deceleration, which may have implications in understanding the origin of our perceptual and behavioral limits.

  20. Undulant Universe: Expansion with alternating eras of acceleration and deceleration

    SciTech Connect

    Barenboim, Gabriela; Requejo, Olga Mena; Quigg, Chris

    2005-03-15

    If the equation of state for 'dark energy' varies periodically, the expansion of the Universe may have undergone alternating eras of acceleration and deceleration. We examine a specific form that survives existing observational tests, does not single out the present state of the Universe as exceptional, and suggests a future much like the matter-dominated past: a smooth expansion without a final inflationary epoch.

  1. Measurement of the Decelerating Wake in a Plasma Wakefield Accelerator

    SciTech Connect

    Blumenfeld, I.; Decker, F. J.; Hogan, M. J.; Ischebeck, R.; Iverson, R. H.; Kirby, N.; Siemann, R. H.; Walz, D. R.; Clayton, C. E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W. B.; Zhou, M.; Katsouleas, T.; Muggli, P.; Oz, E.

    2009-01-22

    Recent experiments at SLAC have shown that high gradient acceleration of electrons is achievable in meter scale plasmas. Results from these experiments show that the wakefield is sensitive to parameters in the electron beam which drives it. In the experiment the bunch lengths were varied systematically at constant charge. The effort to extract a measurement of the decelerating wake from the maximum energy loss of the electron beam is discussed.

  2. Stabilization of an axially moving accelerated/decelerated system via an adaptive boundary control.

    PubMed

    Liu, Yu; Zhao, Zhijia; He, Wei

    2016-09-01

    In this study, an adaptive boundary control is developed for vibration suppression of an axially moving accelerated/decelerated belt system. The dynamic model of the belt system is represented by partial-ordinary differential equations with consideration of the high acceleration/deceleration and unknown distributed disturbance. By utilizing adaptive technique and Lyapunov-based back stepping method, an adaptive boundary control is proposed for vibration suppression of the belt system, a disturbance observer is introduced to attenuate the effects of unknown boundary disturbance, the adaptive law is developed to handle parametric uncertainties and the S-curve acceleration/deceleration method is adopted to plan the belt׳s speed. With the proposed control scheme, the well-posedness and stability of the closed-loop system are mathematically demonstrated. Simulations are displayed to illustrate the effectiveness of the proposed control.

  3. Changes in Acceleration and Deceleration Capacity Throughout Professional Soccer Match-Play.

    PubMed

    Russell, Mark; Sparkes, William; Northeast, Jonny; Cook, Christian J; Love, Tom D; Bracken, Richard M; Kilduff, Liam P

    2016-10-01

    Russell, M, Sparkes, W, Northeast, J, Cook, CJ, Love, TD, Bracken, RM, and Kilduff, LP. Changes in acceleration and deceleration capacity throughout professional soccer match-play. J Strength Cond Res 30(10): 2839-2844, 2016-As the acceleration and deceleration demands of soccer are currently not well understood, this study aimed to profile markers of acceleration and deceleration capacity during professional soccer match-play. This within-player observational study required reserve team players from a Premier League club to wear 10-Hz Global Positioning System units throughout competitive matches played in the 2013-14 competitive season. Data are presented for players who completed 4 or more games during the season (n = 11), and variables are presented according to six 15-minute intervals (I1-6: 00:00-14:59 minutes, 15:00-29:59 minutes, 30:00-44:59 minutes, 45:00-59:59 minutes, 60:00-74:59 minutes, and 75:00-89:59 minutes, respectively). During I6, the distance covered (total, per minute, and at high intensity), number of sprints, accelerations (total and high intensity), decelerations (total and high intensity), and impacts were reduced compared with I1 (all p ≤ 0.05). The number of high-intensity impacts remained unchanged throughout match-play (p > 0.05). These findings indicate that high-intensity actions and markers of acceleration and deceleration capacity are reduced in the last 15 minutes of the normal duration of match-play. Such information can be used to increase the specificity of training programs designed for soccer players while also giving further insight in to the effects of 90 minutes of soccer-specific exercise. Interventions that seek to maintain the acceleration and deceleration capacity of players throughout the full duration of a soccer match warrant investigation.

  4. Periodic components of hand acceleration/deceleration impulses during telemanipulation

    SciTech Connect

    Draper, J.V.; Handel, S.

    1994-01-01

    Responsiveness is the ability of a telemanipulator to recreate user trajectories and impedance in time and space. For trajectory production, a key determinant of responsiveness is the ability of the system to accept user inputs, which are forces on the master handle generated by user hand acceleration/deceleration (a/d) impulses, and translate them into slave arm acceleration/deceleration. This paper presents observations of master controller a/d impulses during completion of a simple target acquisition task. Power spectral density functions (PSDF`s) calculated from hand controller a/d impulses were used to assess impulse waveform. The relative contributions of frequency intervals ranging up to 25 Hz for three spatially different versions of the task were used to determine which frequencies were most important. The highest relative power was observed in frequencies between 1 Hz and 6 Hz. The key frequencies related to task difficulty were in the range from 2 Hz to 8 Hz. the results provide clues to the source of the performance inhibition.

  5. Leg joint function during walking acceleration and deceleration.

    PubMed

    Qiao, Mu; Jindrich, Devin L

    2016-01-04

    Although constant-average-velocity walking has been extensively studied, less is known about walking maneuvers that change speed. We investigated the function of individual leg joints when humans walked at a constant speed, accelerated or decelerated. We hypothesized that leg joints make different functional contributions to maneuvers. Specifically, we hypothesized that the hip generates positive mechanical work (acting like a "motor"), the knee generates little mechanical work (acting like a "strut"), and the ankle absorbs energy during the first half of stance and generates energy during the second half (consistent with "spring"-like function). We recorded full body kinematics and kinetics, used inverse dynamics to estimate net joint moments, and decomposed joint function into strut-, motor-, damper-, and spring-like components using indices based on net joint work. Although overall leg mechanics were primarily strut-like, individual joints did not act as struts during stance. The hip functioned as a power generating "motor," and ankle function was consistent with spring-like behavior. Even though net knee work was small, the knee did not behave solely as a strut but also showed motor-, and damper-like function. Acceleration involved increased motor-like function of the hip and ankle. Deceleration involved decreased hip motor-like function and ankle spring-like function and increased damping at the knee and ankle. Changes to joint mechanical work were primarily due to changes in joint angular displacements and not net moments. Overall, joints maintain different functional roles during unsteady locomotion.

  6. Dynamic response of a poroelastic half-space to accelerating or decelerating trains

    NASA Astrophysics Data System (ADS)

    Cao, Zhigang; Boström, Anders

    2013-05-01

    The dynamic response of a fully saturated poroelastic half-space due to accelerating or decelerating trains is investigated by a semi-analytical method. The ground is modeled as a saturated poroelastic half-space and Biot's theory is applied to characterize the soil medium, taking the coupling effects between the soil skeleton and the pore fluid into account. A detailed track system is considered incorporating rails, sleepers and embankment, which are modeled as Euler-Bernoulli beams, an anisotropic Kirchhoff plate, and an elastic layer, respectively. The acceleration or deceleration of the train is simulated by properly choosing the time history of the train speed using Fourier transforms combined with Fresnel integrals in the transformed domain. The time domain results are obtained by the fast Fourier transform (FFT). It is found that the deceleration of moving trains can cause a significant increase to the ground vibrations as well as the excess pore water pressure responses at the train speed 200 km/h. Furthermore, the single-phase elastic soil model would underestimate the vertical displacement responses caused by both the accelerating and decelerating trains at the speed 200 km/h.

  7. Biases in the perception of self-motion during whole-body acceleration and deceleration

    PubMed Central

    Tremblay, Luc; Kennedy, Andrew; Paleressompoulle, Dany; Borel, Liliane; Mouchnino, Laurence; Blouin, Jean

    2013-01-01

    Several studies have investigated whether vestibular signals can be processed to determine the magnitude of passive body motions. Many of them required subjects to report their perceived displacements offline, i.e., after being submitted to passive displacements. Here, we used a protocol that allowed us to complement these results by asking subjects to report their introspective estimation of their displacement continuously, i.e., during the ongoing body rotation. To this end, participants rotated the handle of a manipulandum around a vertical axis to indicate their perceived change of angular position in space at the same time as they were passively rotated in the dark. The rotation acceleration (Acc) and deceleration (Dec) lasted either 1.5 s (peak of 60°/s2, referred to as being “High”) or 3 s (peak of 33°/s2, referred to as being “Low”). The participants were rotated either counter-clockwise or clockwise, and all combinations of acceleration and deceleration were tested (i.e., AccLow-DecLow; AccLow-DecHigh; AccHigh-DecLow; AccHigh-DecHigh). The participants’ perception of body rotation was assessed by computing the gain, i.e., ratio between the amplitude of the perceived rotations (as measured by the rotating manipulandum’s handle) and the amplitude of the actual chair rotations. The gain was measured at the end of the rotations, and was also computed separately for the acceleration and deceleration phases. Three salient findings resulted from this experiment: (i) the gain was much greater during body acceleration than during body deceleration, (ii) the gain was greater during High compared to Low accelerations and (iii) the gain measured during the deceleration was influenced by the preceding acceleration (i.e., Low or High). These different effects of the angular stimuli on the perception of body motion can be interpreted in relation to the consequences of body acceleration and deceleration on the vestibular system and on higher-order cognitive

  8. Deceleration and acceleration capacities of heart rate associated with heart failure with high discriminating performance.

    PubMed

    Hu, Wei; Jin, Xian; Zhang, Peng; Yu, Qiang; Yin, Guizhi; Lu, Yi; Xiao, Hongbing; Chen, Yueguang; Zhang, Dadong

    2016-03-23

    Accurate measurements of autonomic nerve regulation in heart failure (HF) were unresolved. The discriminating performance of deceleration and acceleration capacities of heart rate in HF was evaluated in 130 HF patients and 212 controls. Acceleration capacity and deceleration capacity were independent risk factors for HF in males, evaluated by multiple logistic regression analysis, with odds ratios (ORs) of 5.94 and 0.13, respectively. Acceleration capacity was also an independent risk factor for HF in females, with an OR of 8.58. Deceleration capacity was the best cardiac electrophysiological index to classify HF in males, with an area under the receiver operating characteristic curve (AUC) of 0.88. Deceleration capacity was the best classification factor of HF in females with an AUC of 0.97, significantly higher than even left ventricular ejection fraction (LVEF). Acceleration capacity also showed high performance in classifying HF in males (0.84) and females (0.92). The cut-off values of deceleration capacity for HF classification in males and females were 4.55 ms and 4.85 ms, respectively. The cut-off values of acceleration capacity for HF classification in males and females were -6.15 ms and -5.75 ms, respectively. Our study illustrates the role of acceleration and deceleration capacity measurements in the neuro-pathophysiology of HF.

  9. Deceleration and acceleration capacities of heart rate associated with heart failure with high discriminating performance

    PubMed Central

    Hu, Wei; Jin, Xian; Zhang, Peng; Yu, Qiang; Yin, Guizhi; Lu, Yi; Xiao, Hongbing; Chen, Yueguang; Zhang, Dadong

    2016-01-01

    Accurate measurements of autonomic nerve regulation in heart failure (HF) were unresolved. The discriminating performance of deceleration and acceleration capacities of heart rate in HF was evaluated in 130 HF patients and 212 controls. Acceleration capacity and deceleration capacity were independent risk factors for HF in males, evaluated by multiple logistic regression analysis, with odds ratios (ORs) of 5.94 and 0.13, respectively. Acceleration capacity was also an independent risk factor for HF in females, with an OR of 8.58. Deceleration capacity was the best cardiac electrophysiological index to classify HF in males, with an area under the receiver operating characteristic curve (AUC) of 0.88. Deceleration capacity was the best classification factor of HF in females with an AUC of 0.97, significantly higher than even left ventricular ejection fraction (LVEF). Acceleration capacity also showed high performance in classifying HF in males (0.84) and females (0.92). The cut-off values of deceleration capacity for HF classification in males and females were 4.55 ms and 4.85 ms, respectively. The cut-off values of acceleration capacity for HF classification in males and females were −6.15 ms and −5.75 ms, respectively. Our study illustrates the role of acceleration and deceleration capacity measurements in the neuro-pathophysiology of HF. PMID:27005970

  10. Stopping power: Effect of the projectile deceleration

    SciTech Connect

    Kompaneets, Roman Ivlev, Alexei V.; Morfill, Gregor E.

    2014-11-15

    The stopping force is the force exerted on the projectile by its wake. Since the wake does not instantly adjust to the projectile velocity, the stopping force should be affected by the projectile deceleration caused by the stopping force itself. We address this effect by deriving the corresponding correction to the stopping force in the cold plasma approximation. By using the derived expression, we estimate that if the projectile is an ion passing through an electron-proton plasma, the correction is small when the stopping force is due to the plasma electrons, but can be significant when the stopping force is due to the protons.

  11. Experimental Study on the Control of the Supersonic Axisymmetric Intake under the Acceleration/Deceleration Conditions

    NASA Astrophysics Data System (ADS)

    Kojima, Takayuki; Sato, Tetsuya; Tanatsugu, Nobuhiro; Enomoto, Yoshinari

    A control system of variable geometry mixed compression axisymmetric intake is experimentally studied at ONERA S3 supersonic wind tunnel. The acceleration/deceleration of the space plane is simulated by changing the free stream velocity. The intake is successfully controlled with 90% of the maximum total pressure recovery and mass capture ratio. In this experiment, two subjects about control of axisymmetric intake are also cleared. First, the effect of the trapping of the terminal shock by bleed holes causes the disturbances in the terminal shock control system. Second, a special compression form change operation is necessary when the intake compression form change from all external compression to mixed compression.

  12. Comparison of hamstring-to-quadriceps ratio between accelerating and decelerating sections during squat exercise.

    PubMed

    Yoo, Won-Gyu

    2016-09-01

    [Purpose] The aim of this study was to compare hamstring-to-quadriceps ratio between the accelerating and decelerating sections for anterior cruciate ligament protection during squat exercise. [Subjects and Methods] Nine asymptomatic males were enrolled in this study. The hamstring (medial part) and quadriceps (rectus femoris) muscle activities during squat exercise were measured, and the squat exercises were classified into two sections (accelerating and decelerating) by using an accelerometer. [Results] The hamstring-to-quadriceps ratio was significantly higher in the decelerating section than in the accelerating section during the squat exercise. [Conclusion] Application of an increasing decelerating section strategy during the squat exercise can prevent damage in patients with a weakened anterior cruciate ligament due to sports activities.

  13. Is the brain's inertia for motor movement different for acceleration and deceleration?

    NASA Astrophysics Data System (ADS)

    Adhikari, Bhim; Quinn, Kristen; Dhamala, Mukeshwar

    2009-11-01

    The brain's ability to synchronize movement with external cues is used daily, yet neuroscience is far from a full understanding of the processes that allow these simple sequential performances. This experimental design was implemented to determine differences in brain activity when finger tapping at increasing and decreasing rhythms. Eight subjects tapped their right index finger on a response box following visual cues projected on a screen during an fMRI session. Isolating continuous and discrete finger tapping (sinusoidal variation of rate and step-like variation) decelerations versus accelerations revealed much greater activity in the left and right primary motor cortices when completing the sinusoidal rhythm task. Decelerating rates recruited distributed regions of the brain in contrast to brain stimulation during accelerating rates. These results suggest that the brain's inertia for movement is different for acceleration and deceleration.

  14. Unsteady forces on a spherical particle accelerating or decelerating in an initially stagnant fluid

    NASA Astrophysics Data System (ADS)

    Keshav, Yashas Mudlapur Phaneesh

    Flows with particles play an important role in a number of engineering applications. These include trajectories of droplets in sprays in fuel-injected-reciprocating-piston and gas-turbine engines, erosion of materials due to particle impact on a surface, and deposition of materials on surfaces by impinging droplets or particles that could solidify or bond on impact. For these applications, it is important to understand the forces that act on the particles so that their trajectories could be predicted. Considerable work has been done on understanding the forces acting on spherical particles, where the Reynolds numbers (Rep) based on the particle diameter and the relative speed between the particle and the fluid is less than unity. When Rep is larger than unity and when the particle is accelerating or decelerating, the added-mass effect and the Basset forces are not well understood. In this study, time-accurate numerical simulations were performed to study laminar incompressible flow induced by a single non-rotating rigid spherical particle that is accelerated or decelerated at a constant rate in an initially stagnant fluid, where the unsteady flow about the spherical particle is resolved. The Rep studied range from 0.01 to 100, and the acceleration number (Ac), where A c is the square of the relative velocity between the particle and the fluid divided by the acceleration times the particle diameter studied was in the range 2.13x-7 < |Ac |< 21337. Results obtained show the added mass effect for Rep up to 100 has the same functional form as those based on potential theory where the Rep is infinite and creeping flow where Rep is less than unity. The Basset force, however, differs considerably from those under creeping flow conditions and depends on Rep and the acceleration number (Ac). A model was developed to provide the magnitude of the added-mass effect and the Basset force in the range of Rep and Ac studied. Results obtained also show the effect of unsteadiness to

  15. The blast wave mitigation effects of a magnetogasdynamic decelerator

    SciTech Connect

    Baty, Roy S; Lundgren, Ronald G; Tucker, Don H

    2009-01-01

    This work computes shock wave jump functions for viscous blast waves propagating in a magnetogasdynamic decelerator. The decelerator is assumed to be a one-dimensional channel with sides that are perfect conductors. An electric field applied on the walls of the channel produces a magnetogasdynamic pump, which decelerates the flow field induced by a blast wave. The blast wave jump functions computed here are compared to magnetogasdynamic results for steady supersonic channel flow to quantify potential blast mitigation effects. Theoretical shock wave jump functions are also presented for inviscid blast waves propagating in a one-dimensional channel with an electromagnetic field.

  16. Deceleration versus acceleration universe in different frames of F(R) gravity

    NASA Astrophysics Data System (ADS)

    Bahamonde, Sebastian; Odintsov, Sergei D.; Oikonomou, V. K.; Tretyakov, Petr V.

    2017-03-01

    In this paper we study the occurrence of accelerating universe versus decelerating universe between the F (R) gravity frame (Jordan frame) and non-minimally coupled scalar field theory frame, and the minimally coupled scalar field theory frame (Einstein frame) for various models. As we show, if acceleration is imposed in one frame, it will not necessarily correspond to an accelerating metric when transformed in another frame. As we will demonstrate, this issue is model and frame-dependent but it seems there is no general scheme which permits to classify such cases.

  17. Braking and propulsive impulses increase with speed during accelerated and decelerated walking.

    PubMed

    Peterson, Carrie L; Kautz, Steven A; Neptune, Richard R

    2011-04-01

    The ability to accelerate and decelerate is important for daily activities and likely more demanding than maintaining a steady-state walking speed. Walking speed is modulated by anterior-posterior (AP) ground reaction force (GRF) impulses. The purpose of this study was to investigate AP impulses across a wide range of speeds during accelerated and decelerated walking. Kinematic and GRF data were collected from 10 healthy subjects walking on an instrumented treadmill. Subjects completed trials at steady-state speeds and at four rates of acceleration and deceleration across a speed range of 0-1.8 m/s. Mixed regression models were generated to predict AP impulses, step length and frequency from speed, and joint moment impulses from AP impulses during non-steady-state walking. Braking and propulsive impulses were positively related to speed. The braking impulse had a greater relationship with speed than the propulsive impulse, suggesting that subjects modulate the braking impulse more than the propulsive impulse to change speed. Hip and knee extensor, and ankle plantarflexor moment impulses were positively related to the braking impulse, and knee flexor and ankle plantarflexor moment impulses were positively related to the propulsive impulse. Step length and frequency increased with speed and were near the subjects' preferred combination at steady-state speeds, at which metabolic cost is minimized in nondisabled walking. Thus, these variables may be modulated to minimize metabolic cost while accelerating and decelerating. The outcomes of this work provide the foundation to investigate motor coordination in pathological subjects in response to the increased task demands of non-steady-state walking.

  18. Investigation of turbulent Prandtl number subject to local acceleration and deceleration

    NASA Astrophysics Data System (ADS)

    Jung, Eunbeom; Lee, Wook; Kang, Seongwon; Iaccarino, Gianluca

    2016-11-01

    The main objective of the present study is to analyze the turbulent Prandtl number (Prt) varying over space in a wall-bounded turbulent flow under local acceleration and deceleration. The Prt shows the opposite trends for the conditions of acceleration and deceleration. In order to explain these phenomena, the convection velocity from the space-time correlation is investigated. It is shown that small-scale motions experience larger acceleration and deceleration compared to large-scale ones. Also, a discrepancy between the momentum and heat transfer at small scales results in the spatially varying Prt. The budgets of the turbulent kinetic energy and temperature variance show a hint for the variation of Prt. The results from DNS and RANS with a constant Prt are compared and show that RANS prediction can be improved by using a modeled Prt. From the turbulent statistics, a few flow variables showing higher correlations with Prt are identified. Based on this, simple phenomenological models are devised and the corresponding simulations show a more accurate prediction of the heat transfer rate. Corresponding author.

  19. An analysis of spatially varying turbulent Prandtl number in a flow with local acceleration and deceleration

    NASA Astrophysics Data System (ADS)

    Jung, Eunbum; Lee, Wook; Kang, Seongwon; Iaccarino, Gianluca

    2015-11-01

    The turbulent Prandtl number (Prt) is an important parameter in turbulent flows used in many engineering models for heat transfer. In the present study, spatial variation of Prt in a wall-bounded turbulent flow is investigated using DNS. We derived a form of Prt applicable to a general flow configuration, using the least-square method in a manner consistent with the turbulent viscosity model in LES. For a flow subject to local acceleration and deceleration induced by the wall geometry, we performed a parametric study for the Reynolds number, Prandtl number and a geometric factor using DNS. A comparison of the data from DNS and RANS with a constant Prt indicates the potential of improved RANS predictions using the present variable Prt subject to the local flow field. Also, it is observed that the local pressure gradient has an important effect on the Prt field. From the flow statistics, a few flow variables showing higher correlations with Prt are identified. An elementary model for Prt is devised, and used for RANS prediction producing a more accurate prediction of the heat transfer rate. Corresponding author

  20. From cosmic deceleration to acceleration: new constraints from SN Ia and BAO/CMB

    SciTech Connect

    Giostri, R.; Santos, M. Vargas dos; Waga, I.; Reis, R.R.R.; Calvão, M.O.; Lago, B. L. E-mail: vargas@if.ufrj.br E-mail: ribamar@if.ufrj.br E-mail: brunolz@if.ufrj.br

    2012-03-01

    We use type Ia supernovae (SN Ia) data in combination with recent baryonic acoustic oscillations (BAO) and cosmic microwave background (CMB) observations to constrain a kink-like parametrization of the deceleration parameter (q). This q-parametrization can be written in terms of the initial (q{sub i}) and present (q{sub 0}) values of the deceleration parameter, the redshift of the cosmic transition from deceleration to acceleration (z{sub t}) and the redshift width of such transition (τ). By assuming a flat space geometry, q{sub i} = 1/2 and adopting a likelihood approach to deal with the SN Ia data we obtain, at the 68% confidence level (C.L.), that: z{sub t} = 0.56{sup +0.13}{sub −0.10}, τ = 0.47{sup +0.16}{sub −0.20} and q{sub 0} = −0.31{sup +0.11}{sub −0.11} when we combine BAO/CMB observations with SN Ia data processed with the MLCS2k2 light-curve fitter. When in this combination we use the SALT2 fitter we get instead, at the same C.L.: z{sub t} = 0.64{sup +0.13}{sub −0.07}, τ = 0.36{sup +0.11}{sub −0.17} and q{sub 0} = −0.53{sup +0.17}{sub −0.13}. Our results indicate, with a quite general and model independent approach, that MLCS2k2 favors Dvali-Gabadadze-Porrati-like cosmological models, while SALT2 favors ΛCDM-like ones. Progress in determining the transition redshift and/or the present value of the deceleration parameter depends crucially on solving the issue of the difference obtained when using these two light-curve fitters.

  1. The farthest known supernova: Support for an accelerating universeand a glimpse of the epoch of deceleration

    SciTech Connect

    Riess, Adam G.; Nugent, Peter E.; Schmidt, Brian P.; Tonry, John; Dickinson, Mark; Gilliland, Ronald L.; Thompson, Rodger I.; Budavari,Tamas; Casertano, Stefano; Evans, Aaron S.; Filippenko, Alexei V.; Livio,Mario; Sanders, David B.; Shapley, Alice E.; Spinrad, Hyron; Steidel,Charles C.; Stern, Daniel; Surace, Jason; Veilleux, Sylvain

    2001-04-01

    We present photometric observations of an apparent Type Iasupernova (SN Ia) at a redshift of approximately 1.7, the farthest SNobserved to date. The supernova, SN 1997, was discovered in a repeatobservation by the Hubble Space Telescope (HST) of the Hubble DeepField{North (HDF-N), and serendipitously monitored with NICMOS on HSTthroughout the Thompson et al. GTO campaign. The SN type can bedetermined from the host galaxy type: an evolved, red elliptical lackingenough recent star formation to provide a significant population ofcore-collapse supernovae. The classification is further supported bydiagnostics available from the observed colors and temporal behavior ofthe SN, both of which match a typical SN Ia. The photometric record ofthe SN includes a dozen flux measurements in the I, J, and H bandsspanning 35 days in the observed frame. The redshift derived from the SNphotometry, z = 1:7 plus or minus 0:1, is in excellent agreement with theredshift estimate of z = 1:65 plus or minus 0:15 derived from the U_300B_450 V_-606 I_814 J_110 J_125 H_160 H_165 K_s photometry of the galaxy.Optical and near-infrared spectra of the host provide a very tentativespectroscopic redshift of 1.755. Fits to observations of the SN provideconstraints for the redshift-distance relation of SNe Ia and a powerfultest of the current accelerating Universe hypothesis. The apparent SNbrightness is consistent with that expected in the decelerating phase ofthe preferred cosmological model, Omega_M approximately equal to 1/3;Omega_Lambda approximately equal to 2/3. It is inconsistent with greydust or simple luminosity evolution, candidate astrophysical effectswhich could mimic previous evidence for an accelerating Universe from SNeIa at z approximately equal to 0:5. We consider several sources ofpotential systematic error including gravitational lensing, supernovamisclassification, sample selection bias, and luminosity calibrationerrors. Currently, none of these effects alone appears likely

  2. Player Load, Acceleration, and Deceleration During Forty-Five Competitive Matches of Elite Soccer.

    PubMed

    Dalen, Terje; Ingebrigtsen, Jørgen; Ettema, Gertjan; Hjelde, Geir Havard; Wisløff, Ulrik

    2016-02-01

    The use of time-motion analysis has advanced our understanding of position-specific work rate profiles and the physical requirements of soccer players. Still, many of the typical soccer activities can be neglected, as these systems only examine activities measured by distance and speed variables. This study used triaxial accelerometer and time-motion analysis to obtain new knowledge about elite soccer players' match load. Furthermore, we determined acceleration/deceleration profiles of elite soccer players and their contribution to the players' match load. The data set includes every domestic home game (n = 45) covering 3 full seasons (2009, 2010, and 2011) for the participating team (Rosenborg FC), and includes 8 central defenders (n = 68), 9 fullbacks (n = 83), 9 central midfielders (n = 70), 7 wide midfielders (n = 39), and 5 attackers (A, n = 50). A novel finding was that accelerations contributed to 7-10% of the total player load for all player positions, whereas decelerations contributed to 5-7%. Furthermore, the results indicate that other activities besides the high-intensity movements contribute significantly to the players' total match workload. Therefore, motion analysis alone may underestimate player load because many high-intensity actions are without a change in location at the pitch or they are classified as low-speed activity according to current standards. This new knowledge may help coaches to better understand the different ways players achieve match load and could be used in developing individualized programs that better meet the "positional physical demands" in elite soccer.

  3. Canine fetal heart rate: do accelerations or decelerations predict the parturition day in bitches?

    PubMed

    Gil, E M U; Garcia, D A A; Giannico, A T; Froes, T R

    2014-10-15

    Ultrasonography is a safe and efficient technique for monitoring fetal development and viability. One of the most important and widely used parameters to verify fetal viability is the fetal heart rate (HR). In human medicine, the fetal HR normally oscillates during labor in transient accelerations and decelerations associated with uterine contractions. The present study investigated whether these variations also occur in canine fetuses and its relationship to parturition. A cohort study was conducted in 15 pregnant bitches undergoing two-dimensional high-resolution ultrasonographic examination during the 8th and 9th week of gestation. Fetal HR was assessed in M-mode for 5 minutes in each fetus in all bitches. In addition, the bitches were monitored for clinical signs of imminent parturition. Associations between the HR, antepartum time, and delivery characteristics were evaluated with a Poisson regression model. Fetal HR acceleration and deceleration occurred in canine fetuses and predicted the optimal time of parturition. These findings can help veterinarians and sonographers better understand this phenomenon in canine fetuses.

  4. Acceleration and Deceleration Capacity of Fetal Heart Rate in an In-Vivo Sheep Model

    PubMed Central

    Rivolta, Massimo W.; Stampalija, Tamara; Casati, Daniela; Richardson, Bryan S.; Ross, Michael G.; Frasch, Martin G.; Bauer, Axel; Ferrazzi, Enrico; Sassi, Roberto

    2014-01-01

    Background Fetal heart rate (FHR) variability is an indirect index of fetal autonomic nervous system (ANS) integrity. FHR variability analysis in labor fails to detect early hypoxia and acidemia. Phase-rectified signal averaging (PRSA) is a new method of complex biological signals analysis that is more resistant to non-stationarities, signal loss and artifacts. It quantifies the average cardiac acceleration and deceleration (AC/DC) capacity. Objective The aims of the study were: (1) to investigate AC/DC in ovine fetuses exposed to acute hypoxic-acidemic insult; (2) to explore the relation between AC/DC and acid-base balance; and (3) to evaluate the influence of FHR decelerations and specific PRSA parameters on AC/DC computation. Methods Repetitive umbilical cord occlusions (UCOs) were applied in 9 pregnant near-term sheep to obtain three phases of MILD, MODERATE, and SEVERE hypoxic-acidemic insult. Acid-base balance was sampled and fetal ECGs continuously recorded. AC/DC were calculated: (1) for a spectrum of T values (T = 1÷50 beats; the parameter limits the range of oscillations detected by PRSA); (2) on entire series of fetal RR intervals or on “stable” series that excluded FHR decelerations caused by UCOs. Results AC and DC progressively increased with UCOs phases (MILD vs. MODERATE and MODERATE vs. SEVERE, p<0.05 for DC  = 2–5, and AC  = 1–3). The time evolution of AC/DC correlated to acid-base balance (0.4<<0.9, p<0.05) with the highest for . PRSA was not independent from FHR decelerations caused by UCOs. Conclusions This is the first in-vivo evaluation of PRSA on FHR analysis. In the presence of acute hypoxic-acidemia we found increasing values of AC/DC suggesting an activation of ANS. This correlation was strongest on time scale dominated by parasympathetic modulations. We identified the best performing parameters (), and found that AC/DC computation is not independent from FHR decelerations. These findings establish the basis for

  5. HUBBLE PARAMETER MEASUREMENT CONSTRAINTS ON THE COSMOLOGICAL DECELERATION-ACCELERATION TRANSITION REDSHIFT

    SciTech Connect

    Farooq, Omer; Ratra, Bharat E-mail: ratra@phys.ksu.edu

    2013-03-20

    We compile a list of 28 independent measurements of the Hubble parameter between redshifts 0.07 {<=} z {<=} 2.3 and use this to place constraints on model parameters of constant and time-evolving dark energy cosmologies. These H(z) measurements by themselves require a currently accelerating cosmological expansion at about, or better than, 3{sigma} confidence. The mean and standard deviation of the six best-fit model deceleration-acceleration transition redshifts (for the three cosmological models and two Hubble constant priors we consider) are z{sub da} = 0.74 {+-} 0.05, in good agreement with the recent Busca et al. determination of z{sub da} = 0.82 {+-} 0.08 based on 11 H(z) measurements between redshifts 0.2 {<=} z {<=} 2.3, almost entirely from baryon-acoustic-oscillation-like data.

  6. Long-term Metal PM2.5 Exposures Decrease Cardiac Acceleration and Deceleration Capacities in Welders

    PubMed Central

    Umukoro, Peter E.; Fan, Tianteng; Zhang, Jinming; Cavallari, Jennifer M.; Fang, Shona C.; Lu, Chensheng; Lin, Xihong; Mittleman, Murray A.; Schmidt, Georg; Christiani, David C.

    2015-01-01

    Objective To clarify if long-term metal particulates affect cardiac acceleration capacity (AC), deceleration capacity (DC) or both. Methods We calculated Chronic Exposure Index (CEI) for PM2.5 over the work life of 50 boilermakers and obtained their resting AC and DC. Linear regression was used to assess the associations between CEI PM2.5 exposure and each of AC and DC, controlling for age, acute effects of welding exposure, and diurnal variation. Results Mean (SD) CEI for PM2.5 exposure was 1.6 (2.4)mg/m3-workyears and ranged from 0.001 – 14.6mg/m3-workyears. In our fully adjusted models, a 1 mg/m3-workyear increase in CEI for PM2.5 was associated with a decrease of 1.03 (95% CI: 0.10, 1.96)msec resting AC, and a decrease of 0.67 (95% CI: −0.14, 1.49)msec resting DC. Conclusion Long-term metal particulate exposures decrease cardiac accelerations and decelerations. PMID:26949871

  7. Acceleration and deceleration of neutrons: From the phase modulation of a neutron wave to a neutron turbine with refracting prisms

    SciTech Connect

    Frank, A. I.

    2013-05-15

    The possibility of the acceleration and deceleration of neutrons undergoing diffraction at a moving grating is discussed. It is shown that, in contrast to phase {pi} gratings used at the present time, which form a discrete spectrum featuring a large number of lines, a grating that has a special profile may shift, under certain conditions, the entire spectrum of diffracted neutrons. A blazing grating of this type may be used in efficiently accelerating and decelerating neutrons. As the scale of the structure becomes larger, a description based on the idea of neutron-wave refraction at its elements becomes valid, a system of moving prims forming a 'neutron turbine,' which is also able to accelerate or decelerate neutrons, being a classical limit of this enlargement.

  8. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators

    PubMed Central

    O'Shea, B. D.; Andonian, G.; Barber, S. K.; Fitzmorris, K. L.; Hakimi, S.; Harrison, J.; Hoang, P. D.; Hogan, M. J.; Naranjo, B.; Williams, O. B.; Yakimenko, V.; Rosenzweig, J. B.

    2016-01-01

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m−1) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m−1 using a dielectric wakefield accelerator of 15 cm length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m−1. Both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons. PMID:27624348

  9. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators.

    PubMed

    O'Shea, B D; Andonian, G; Barber, S K; Fitzmorris, K L; Hakimi, S; Harrison, J; Hoang, P D; Hogan, M J; Naranjo, B; Williams, O B; Yakimenko, V; Rosenzweig, J B

    2016-09-14

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m(-1)) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m(-1) using a dielectric wakefield accelerator of 15 cm length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m(-1). Both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons.

  10. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators

    DOE PAGES

    O’Shea, B. D.; Andonian, G.; Barber, S. K.; ...

    2016-09-14

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m–1) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m–1 using a dielectric wakefield accelerator of 15 cm length, withmore » sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m–1. As a result, both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons.« less

  11. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators

    SciTech Connect

    O’Shea, B. D.; Andonian, G.; Barber, S. K.; Fitzmorris, K. L.; Hakimi, S.; Harrison, J.; Hoang, P. D.; Hogan, M. J.; Naranjo, B.; Williams, O. B.; Yakimenko, V.; Rosenzweig, J. B.

    2016-09-14

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m–1) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m–1 using a dielectric wakefield accelerator of 15 cm length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m–1. As a result, both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons.

  12. Effects of deceleration on the humoral antibody response in rats

    NASA Technical Reports Server (NTRS)

    Barone, R. P.; Caren, L. D.; Oyama, J.

    1985-01-01

    Effects of hypergravity, simulated by chronic centrifugation, followed by a return to normal G (deceleration) on the immune system of rats were investigated. Two groups of male rats (28 days at 2.1 G, and 3.1 G) were compared to the control group (1.0 G). The animals were immunized by i.p. injections of sheep red blood cells on days 29, 42, and 57, and bled on days 36, 47, and 62. While the centrifuged rats ate and gainedsignificantly less than the control rats, the antibody titers and the organ/body mass ratios for the adrenal glands, kidneys, lungs, heart, and thymus were unaffected by gravity exposures, as were the values of the hematocrit and the white blood cell counts. It is concluded that deceleration does not adversely affect these particular aspects of the immune system.

  13. Are the Associations of Cardiac Acceleration and Deceleration Capacities with Fine Metal Particulate in Welders Mediated by Inflammation?

    PubMed Central

    Umukoro, Peter E.; Jason, Wong Y.Y.; Cavallari, Jennifer M.; Fang, Shona C.; Lu, Chensheng; Lin, Xihong; Mittleman, Murray A.; Schmidt, Georg; Christiani, David C.

    2015-01-01

    Objective To investigate whether associations of Acceleration Capacity (AC) and Deceleration Capacity (DC) with metal-PM2.5 are mediated by inflammation. Methods We obtained PM2.5, CRP, IL-6, 8 and 10; and electrocardiograms to compute AC and DC, from 45 male welders. Mediation analyses were performed using linear mixed models to assess associations between PM2.5 exposure, inflammatory mediator, and AC or DC; controlling for covariates. Results The proportion of total effect of PM2.5 on AC or DC (indirect effect) mediated through IL-6 on AC was 4% at most. Controlling for IL-6 (direct effect), a 1 mg/m3 increase of PM2.5 was associated with a decrease of 2.16 (95% CI: −0.36, 4.69) msec in AC and a decrease of 2.51 (95% CI: −0.90, 5.93) msec in DC. Conclusion IL-6 may be mediating the effect of metal particulates on AC. PMID:26949872

  14. An investigation of accelerating mode and decelerating mode constant-momentum mass spectrometry and their application to a residual gas analyzer

    NASA Technical Reports Server (NTRS)

    Ng, Y. S.

    1977-01-01

    A theoretical analysis of constant momentum mass spectrometry was made. A maximum resolving power for the decelerating mode constant momentum mass spectrometer was shown theoretically to exist for a beam of ions of known energy. A vacuum system and an electron beam ionization source was constructed. Supporting electronics for a residual gas analyzer were built. Experimental investigations of various types of accelerating and decelerating impulsive modes of a constant momentum mass spectrometer as applied to a residual gas analyzer were made. The data indicate that the resolving power for the decelerating mode is comparable to that of the accelerating mode.

  15. The effects of enforced, rapid deceleration on performance in a multiple sprint test.

    PubMed

    Lakomy, Julie; Haydon, Daniel T

    2004-08-01

    The nature of multiple sprint sports such as soccer, hockey, and rugby is such that deceleration plays an important part in the movement patterns of players during a game and training. The purpose of this study was to investigate the effect of deceleration on fatigue during repeated sprint efforts. A group of 18 elite field hockey players (all men) performed a running repeated sprint ability test (6 x 40 m using maximal effort and departing every 30 seconds). In one condition, there was no deceleration zone, and in the second condition, the test had a deceleration component (rapid deceleration to a stop within 6 m of the end of each sprint). Sprint times under each condition were compared using a repeated-measures analysis of variance. No significant difference was seen between the 2 conditions for mean sprint times (p > 0.05) or for the mean fatigue index (p > 0.05). However, results showed a divergent trend, and further analysis extrapolating the data for an increased number of sprints showed that a significant difference (p < 0.05) would have been seen at the 11th sprint. Although this study found that the deceleration zone had little effect on the 6-sprint protocol, it was clear that the deceleration component would have shown an effect, giving rise to greater fatigue and slower sprint times, if the number of sprints had been increased. The implications are that deceleration training should be introduced into general fitness training programs for those competing in multiple sprint sports.

  16. The cost of transport of human running is not affected, as in walking, by wide acceleration/deceleration cycles.

    PubMed

    Minetti, Alberto E; Gaudino, Paolo; Seminati, Elena; Cazzola, Dario

    2013-02-15

    Although most of the literature on locomotion energetics and biomechanics is about constant-speed experiments, humans and animals tend to move at variable speeds in their daily life. This study addresses the following questions: 1) how much extra metabolic energy is associated with traveling a unit distance by adopting acceleration/deceleration cycles in walking and running, with respect to constant speed, and 2) how can biomechanics explain those metabolic findings. Ten males and ten females walked and ran at fluctuating speeds (5 ± 0, ± 1, ± 1.5, ± 2, ± 2.5 km/h for treadmill walking, 11 ± 0, ± 1, ± 2, ± 3, ± 4 km/h for treadmill and field running) in cycles lasting 6 s. Field experiments, consisting of subjects following a laser spot projected from a computer-controlled astronomic telescope, were necessary to check the noninertial bias of the oscillating-speed treadmill. Metabolic cost of transport was found to be almost constant at all speed oscillations for running and up to ±2 km/h for walking, with no remarkable differences between laboratory and field results. The substantial constancy of the metabolic cost is not explained by the predicted cost of pure acceleration/deceleration. As for walking, results from speed-oscillation running suggest that the inherent within-stride, elastic energy-free accelerations/decelerations when moving at constant speed work as a mechanical buffer for among-stride speed fluctuations, with no extra metabolic cost. Also, a recent theory about the analogy between sprint (level) running and constant-speed running on gradients, together with the mechanical determinants of gradient locomotion, helps to interpret the present findings.

  17. Short-term metal particulate exposures decrease cardiac acceleration and deceleration capacities in welders: a repeated-measures panel study

    PubMed Central

    Cavallari, Jennifer M; Fang, Shona C; Lu, Chensheng; Lin, Xihong; Mittleman, Murray A; Christiani, David C

    2016-01-01

    Objective Acceleration (AC) and deceleration (DC) capacities measure heart rate variability during speeding up and slowing down of the heart, respectively. We investigated associations between AC and DC with occupational short-term metal PM2.5 exposures. Methods A panel of 48 male welders had particulate matter less than 2.5 microns in diameter (PM2.5) exposure measurements over 4–6 h repeated over 5 sampling periods between January 2010 and June 2012. We simultaneously obtained continuous recordings of digital ECG using a Holter monitor. We analysed ECG data in the time domain to obtain hourly AC and DC. Linear mixed models were used to assess the associations between hourly PM2.5 exposure and each of hourly AC and DC, controlling for age, smoking status, active smoking, exposure to secondhand smoke, season/time of day when ECG reading was obtained and baseline AC or DC. We also ran lagged exposure response models for each successive hour up to 3 h after onset of exposure. Results Mean (SD) shift PM2.5 exposure during welding was 0.47 (0.43) mg/m3. Significant exposure–response associations were found for AC and DC with increased PM2.5 exposure. In our adjusted models without any lag between exposure and response, a 1 mg/m3 increase of PM2.5 was associated with a decrease of 1.46 (95% CI 1.00 to 1.92) ms in AC and a decrease of 1.00 (95% CI 0.53 to 1.46) ms in DC. The effect of PM2.5 on AC and DC was maximal immediately postexposure and lasted 1 h following exposure. Conclusions There are short-term effects of metal particulates on AC and DC. PMID:26644456

  18. Evaluation of the Acceleration and Deceleration Phase-Rectified Slope to Detect and Improve IUGR Clinical Management

    PubMed Central

    Tagliaferri, Salvatore; Fanelli, Andrea; Esposito, Giuseppina; Esposito, Francesca Giovanna; Magenes, Giovanni; Signorini, Maria Gabriella; Campanile, Marta; Martinelli, Pasquale

    2015-01-01

    Objective. This study used a new method called Acceleration (or Deceleration) Phase-Rectified Slope, APRS (or DPRS) to analyze computerized Cardiotocographic (cCTG) traces in intrauterine growth restriction (IUGR), in order to calculate acceleration- and deceleration-related fluctuations of the fetal heart rate, and to enhance the prediction of neonatal outcome. Method. Cardiotocograms from a population of 59 healthy and 61 IUGR fetuses from the 30th gestation week matched for gestational age were included. APRS and DPRS analysis was compared to the standard linear and nonlinear cCTG parameters. Statistical analysis was performed through the t-test, ANOVA test, Pearson correlation test and receiver operator characteristic (ROC) curves (p < 0, 05). Results. APRS and DPRS showed high performance to discriminate between Healthy and IUGR fetuses, according to gestational week. A linear correlation with the fetal pH at birth was found in IUGR. The area under the ROC curve was 0.865 for APRS and 0.900 for DPRS before the 34th gestation week. Conclusions. APRS and DPRS could be useful in the identification and management of IUGR fetuses and in the prediction of the neonatal outcome, especially before the 34th week of gestation. PMID:26779279

  19. Transverse stability in a Stark decelerator

    SciTech Connect

    Meerakker, Sebastiaan Y. T. van de; Bethlem, Hendrick L.; Vanhaecke, Nicolas; Meijer, Gerard

    2006-02-15

    The concept of phase stability in a Stark decelerator ensures that polar molecules can be accelerated, guided, or decelerated without loss; molecules within a certain position and velocity interval are kept together throughout the deceleration process. In this paper the influence of the transverse motion on phase stability in a Stark decelerator is investigated. For typical deceleration experiments--i.e., for high values of the phase angle {phi}{sub 0}--the transverse motion considerably enhances the region in phase space for which phase stable deceleration occurs. For low values of {phi}{sub 0}, however, the transverse motion reduces the acceptance of a Stark decelerator and unstable regions in phase space appear. These effects are quantitatively explained in terms of a coupling between the longitudinal and transverse motion. The predicted longitudinal acceptance of a Stark decelerator is verified by measurements on a beam of OH (X {sup 2}{pi}{sub 3/2},J=3/2) radicals passing through a Stark decelerator.

  20. A review of trend models applied to sea level data with reference to the "acceleration-deceleration debate"

    NASA Astrophysics Data System (ADS)

    Visser, Hans; Dangendorf, Sönke; Petersen, Arthur C.

    2015-06-01

    Global sea levels have been rising through the past century and are projected to rise at an accelerated rate throughout the 21st century. This has motivated a number of authors to search for already existing accelerations in observations, which would be, if present, vital for coastal protection planning purposes. No scientific consensus has been reached yet as to how a possible acceleration could be separated from intrinsic climate variability in sea level records. This has led to an intensive debate on its existence and, if absent, also on the general validity of current future projections. Here we shed light on the controversial discussion from a methodological point of view. To do so, we provide a comprehensive review of trend methods used in the community so far. This resulted in an overview of 30 methods, each having its individual mathematical formulation, flexibilities, and characteristics. We illustrate that varying trend approaches may lead to contradictory acceleration-deceleration inferences. As for statistics-oriented trend methods, we argue that checks on model assumptions and model selection techniques yield a way out. However, since these selection methods all have implicit assumptions, we show that good modeling practices are of importance too. We conclude at this point that (i) several differently characterized methods should be applied and discussed simultaneously, (ii) uncertainties should be taken into account to prevent biased or wrong conclusions, and (iii) removing internally generated climate variability by incorporating atmospheric or oceanographic information helps to uncover externally forced climate change signals.

  1. Ubiquinol-10 Supplementation Activates Mitochondria Functions to Decelerate Senescence in Senescence-Accelerated Mice

    PubMed Central

    Tian, Geng; Sawashita, Jinko; Kubo, Hiroshi; Nishio, Shin-ya; Hashimoto, Shigenari; Suzuki, Nobuyoshi; Yoshimura, Hidekane; Tsuruoka, Mineko; Wang, Yaoyong; Liu, Yingye; Luo, Hongming; Xu, Zhe; Mori, Masayuki; Kitano, Mitsuaki; Hosoe, Kazunori; Takeda, Toshio; Usami, Shin-ichi

    2014-01-01

    Abstract Aim: The present study was conducted to define the relationship between the anti-aging effect of ubiquinol-10 supplementation and mitochondrial activation in senescence-accelerated mouse prone 1 (SAMP1) mice. Results: Here, we report that dietary supplementation with ubiquinol-10 prevents age-related decreases in the expression of sirtuin gene family members, which results in the activation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a major factor that controls mitochondrial biogenesis and respiration, as well as superoxide dismutase 2 (SOD2) and isocitrate dehydrogenase 2 (IDH2), which are major mitochondrial antioxidant enzymes. Ubiquinol-10 supplementation can also increase mitochondrial complex I activity and decrease levels of oxidative stress markers, including protein carbonyls, apurinic/apyrimidinic sites, malondialdehydes, and increase the reduced glutathione/oxidized glutathione ratio. Furthermore, ubiquinol-10 may activate Sirt1 and PGC-1α by increasing cyclic adenosine monophosphate (cAMP) levels that, in turn, activate cAMP response element-binding protein (CREB) and AMP-activated protein kinase (AMPK). Innovation and Conclusion: These results show that ubiquinol-10 may enhance mitochondrial activity by increasing levels of SIRT1, PGC-1α, and SIRT3 that slow the rate of age-related hearing loss and protect against the progression of aging and symptoms of age-related diseases. Antioxid. Redox Signal. 20, 2606–2620 PMID:24124769

  2. Constraining the cosmic deceleration-acceleration transition with type Ia supernova, BAO/CMB and H(z) data

    NASA Astrophysics Data System (ADS)

    Vargas dos Santos, M.; Reis, R. R. R.; Waga, I.

    2016-02-01

    We revisit the kink-like parametrization of the deceleration parameter q(z) [1], which considers a transition, at redshift zt, from cosmic deceleration to acceleration. In this parametrization the initial, at z gg zt, value of the q-parameter is qi, its final, z=-1, value is qf and the duration of the transition is parametrized by τ. By assuming a flat space geometry we obtain constraints on the free parameters of the model using recent data from type Ia supernovae (SN Ia), baryon acoustic oscillations (BAO), cosmic microwave background (CMB) and the Hubble parameter H(z). The use of H(z) data introduces an explicit dependence of the combined likelihood on the present value of the Hubble parameter H0, allowing us to explore the influence of different priors when marginalizing over this parameter. We also study the importance of the CMB information in the results by considering data from WMAP7, WMAP9 (Wilkinson Microwave Anisotropy Probe—7 and 9 years) and Planck 2015. We show that the contours and best fit do not depend much on the different CMB data used and that the considered new BAO data is responsible for most of the improvement in the results. Assuming a flat space geometry, qi=1/2 and expressing the present value of the deceleration parameter q0 as a function of the other three free parameters, we obtain zt=0.67+0.10-0.08, τ=0.26+0.14-0.10 and q0=-0.48+0.11-0.13, at 68% of confidence level, with an uniform prior over H0. If in addition we fix qf=-1, as in flat ΛCDM, DGP and Chaplygin quartessence that are special models described by our parametrization, we get zt=0.66+0.03-0.04, τ=0.33+0.04-0.04 and q0=-0.54+0.05-0.07, in excellent agreement with flat ΛCDM for which τ=1/3. We also obtain for flat wCDM, another dark energy model described by our parametrization, the constraint on the equation of state parameter -1.22 < w < -0.78 at more than 99% confidence level.

  3. Frequency shifting at fiber-optical event horizons: The effect of Raman deceleration

    SciTech Connect

    Robertson, S.; Leonhardt, U.

    2010-06-15

    Pulses in fibers establish analogs of the event horizon [Philbin et al., Science 319, 1367 (2008)]. At a group-velocity horizon, the frequency of a probe wave is shifted. We present a theoretical model of this frequency shifting, taking into account the deceleration of the pulse caused by the Raman effect. The theory shows that the probe-wave spectrum is sensitive to details of the probe-pulse interaction. Our results indicate an additional loss mechanism in the experiment [Philbin et al., Science 319, 1367 (2008)] that has not been accounted for. Our analysis is also valid for more general cases of the interaction of dispersive waves with decelerated solitons.

  4. From catastrophic acceleration to deceleration of liquid plugs in prewetted capillary tubes

    NASA Astrophysics Data System (ADS)

    Magniez, Juan; Baudoin, Michael; Zoueshtiagh, Farzam; Lemac/Lics Team

    2016-11-01

    Liquid/gas flows in capillaries are involved in a multitude of systems including flow in porous media, petroleum extraction, imbibition of paper or flows in pulmonary airways in pathological conditions. Liquid plugs, witch compose the biphasic flows, can have a dramatic impact on patients with pulmonary obstructive diseases, since they considerably alter the circulation of air in the airways and thus can lead to severe breathing difficulties. Here, the dynamics of liquid plugs in prewetted capillary tube is investigated experimentally and theoretically, with a particular emphasis on the role of the prewetting films and of the driving condition (constant flow rate, constant pressure). For both driving conditions, the plugs can either experience a continuous increase or decrease of their size. While this phenomenon is regular in the case of imposed flow rate, a constant pressure head can lead to a catastrophic acceleration of the plug and eventually its rupture or a dramatic increase of the plug size. A theoretical model is proposed to explain the transition between theses two regimes. These results give a new insight on the critical pressure required for airways obstruction and reopening. IEMN, International Laboratory LEMAC/LICS, UMR CNRS 8520, University of Lille.

  5. Constraining the cosmic deceleration-acceleration transition with type Ia supernova, BAO/CMB and H(z) data

    SciTech Connect

    Santos, M. Vargas dos; Reis, R.R.R.; Waga, I. E-mail: ribamar@if.ufrj.br

    2016-02-01

    We revisit the kink-like parametrization of the deceleration parameter q(z) [1], which considers a transition, at redshift z{sub t}, from cosmic deceleration to acceleration. In this parametrization the initial, at z >> z{sub t}, value of the q-parameter is q{sub i}, its final, z=−1, value is q{sub f} and the duration of the transition is parametrized by τ. By assuming a flat space geometry we obtain constraints on the free parameters of the model using recent data from type Ia supernovae (SN Ia), baryon acoustic oscillations (BAO), cosmic microwave background (CMB) and the Hubble parameter H(z). The use of H(z) data introduces an explicit dependence of the combined likelihood on the present value of the Hubble parameter H{sub 0}, allowing us to explore the influence of different priors when marginalizing over this parameter. We also study the importance of the CMB information in the results by considering data from WMAP7, WMAP9 (Wilkinson Microwave Anisotropy Probe—7 and 9 years) and Planck 2015. We show that the contours and best fit do not depend much on the different CMB data used and that the considered new BAO data is responsible for most of the improvement in the results. Assuming a flat space geometry, q{sub i}=1/2 and expressing the present value of the deceleration parameter q{sub 0} as a function of the other three free parameters, we obtain z{sub t}=0.67{sup +0.10}{sub −0.08}, τ=0.26{sup +0.14}{sub −0.10} and q{sub 0}=−0.48{sup +0.11}{sub −0.13}, at 68% of confidence level, with an uniform prior over H{sub 0}. If in addition we fix q{sub f}=−1, as in flat ΛCDM, DGP and Chaplygin quartessence that are special models described by our parametrization, we get z{sub t}=0.66{sup +0.03}{sub −0.04}, τ=0.33{sup +0.04}{sub −0.04} and q{sub 0}=−0.54{sup +0.05}{sub −0.07}, in excellent agreement with flat ΛCDM for which τ=1/3. We also obtain for flat wCDM, another dark energy model described by our parametrization, the constraint on

  6. Aerocapture Inflatable Decelerator (AID)

    NASA Technical Reports Server (NTRS)

    Reza, Sajjad

    2007-01-01

    Forward Attached Inflatable Decelerators, more commonly known as inflatable aeroshells, provide an effective, cost efficient means of decelerating spacecrafts by using atmospheric drag for aerocapture or planetary entry instead of conventional liquid propulsion deceleration systems. Entry into planetary atmospheres results in significant heating and aerodynamic pressures which stress aeroshell systems to their useful limits. Incorporation of lightweight inflatable decelerator surfaces with increased surface-area footprints provides the opportunity to reduce heat flux and induced temperatures, while increasing the payload mass fraction. Furthermore, inflatable aeroshell decelerators provide the needed deceleration at considerably higher altitudes and Mach numbers when compared with conventional rigid aeroshell entry systems. Inflatable aeroshells also provide for stowage in a compact space, with subsequent deployment of a large-area, lightweight heatshield to survive entry heating. Use of a deployable heatshield decelerator not only enables an increase in the spacecraft payload mass fraction and but may also eliminate the need for a spacecraft backshell and cruise stage. This document is the viewgraph slides for the paper's presentation.

  7. Higher-order resonances in a Stark decelerator

    SciTech Connect

    Meerakker, Sebastiaan Y.T. van de; Bethlem, Hendrick L.; Vanhaecke, Nicolas; Meijer, Gerard

    2005-05-15

    The motion of polar molecules can be controlled by time-varying inhomogeneous electric fields. In a Stark decelerator, this is exploited to select a fraction of a molecular beam that is accelerated, transported, or decelerated. Phase stability ensures that the selected bunch of molecules is kept together throughout the deceleration process. In this paper an extended description of phase stability in a Stark decelerator is given, including higher-order effects. This analysis predicts a wide variety of resonances that originate from the spatial and temporal periodicity of the electric fields. These resonances are experimentally observed using a beam of OH ({sup 2}{pi}{sub 3/2},v=0,J=3/2) radicals passing through a Stark decelerator.

  8. Cell cycle of primitive hematopoietic progenitors decelerated in senescent mice is reactively accelerated after 2-Gy whole-body irradiation.

    PubMed

    Hirabayashi, Yoko; Tsuboi, Isao; Kuramoto, Kazunao; Kusunoki, Yoichiro; Inoue, Tohru

    2016-03-01

    Aging is considered to be a functional retardation of continuous xenobiotic responses over a lifetime after the developmental period; thus, the effects of ionizing radiation over a lifetime may be somewhat accounted for by a modifier of aging effects. This study was conducted to evaluate the possible/synergic effects of radiation during aging by determining cell-cycle parameters of hematopoietic stem cells/hematopoietic progenitor cells (HSCs/HPCs), such as the percent of cells in cycling, the generation doubling time, and the cumulative cycling-cell fraction, by bromodeoxyuridine-ultraviolet assay, which enables the determination of their cycling capacity in vivo. Colony-forming progenitor cells, such as colony-forming unit (CFU)-granulocyte/macrophage (GM), CFU in the spleen on day 9 (CFU-S9), and CFU-S on day 13 (CFU-S13) for mature, less mature, and immature HPCs, respectively, were evaluated in young and old mice (6 weeks and 21 months of age, respectively) with or without 2-Gy whole-body irradiation and a 4-week recovery period. Then, cell-cycle parameters were evaluated and compared. As a result, the generation doubling time of all types of HPC was prolonged by the irradiation in both young and old mouse groups, except that of CFU-S13 in old mice, which showed acceleration of the cell cycle following the irradiation. In addition, only CFU-S13 in irradiated old mice showed a significant increase in the cumulative cycling-cell-fraction ratio. Significant changes due to the effects of aging and irradiation on HPCs were observed only in the immature HPCs, i.e., the cell cycle of immature HPCs was suppressed by aging without irradiation and was, in contrast, accelerated as the cells recovered from radiation-induced damage. This suggests that the mechanisms of peripheral blood recovery after 2-Gy whole-body irradiation are markedly different between young and old mice, although 21-month-old mice showed almost the same level of recovery as the young mice.

  9. Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change.

    PubMed

    Storsve, Andreas B; Fjell, Anders M; Tamnes, Christian K; Westlye, Lars T; Overbye, Knut; Aasland, Hilde W; Walhovd, Kristine B

    2014-06-18

    Human cortical thickness and surface area are genetically independent, emerge through different neurobiological events during development, and are sensitive to different clinical conditions. However, the relationship between changes in the two over time is unknown. Additionally, longitudinal studies have almost invariably been restricted to older adults, precluding the delineation of adult life span trajectories of change in cortical structure. In this longitudinal study, we investigated changes in cortical thickness, surface area, and volume after an average interval of 3.6 years in 207 well screened healthy adults aged 23-87 years. We hypothesized that the relationships among metrics are dynamic across the life span, that the primary contributor to cortical volume reductions in aging is cortical thinning, and that magnitude of change varies with age and region. Changes over time were seen in cortical area (mean annual percentage change [APC], -0.19), thickness (APC, -0.35), and volume (APC, -0.51) in most regions. Volume changes were primarily explained by changes in thickness rather than area. A negative relationship between change in thickness and surface area was found across several regions, where more thinning was associated with less decrease in area, and vice versa. Accelerating changes with increasing age was seen in temporal and occipital cortices. In contrast, decelerating changes were seen in prefrontal and anterior cingulate cortices. In conclusion, a dynamic relationship between cortical thickness and surface area changes exists throughout the adult life span. The mixture of accelerating and decelerating changes further demonstrates the importance of studying these metrics across the entire adult life span.

  10. Deceleration Orbit Improvements

    SciTech Connect

    Church, M.

    1991-04-26

    During the accelerator studies period of 12/90-1/91 much study time was dedicated to improving the E760 deceleration ramps. 4 general goals were in mind: (1) Reduce the relative orbit deviations from the nominal reference orbit as much as possible. This reduces the potential error in the orbit length calculation - which is the primary source of error in the beam energy calculation. (2) Maximize the transverse apertures. This minimizes beam loss during deceleration and during accidental beam blow-ups. (3) Measure and correct lattice parameters. Knowledge of {gamma}{sub T}, {eta}, Q{sub h}, Q{sub v}, and the dispersion in the straight sections allows for a more accurate energy calculation and reliable SYNCH calculations. (4) Minimize the coupling. This allows one to discern between horizontal and vertical tunes.

  11. Centrifuge Study of Pilot Tolerance to Acceleration and the Effects of Acceleration on Pilot Performance

    NASA Technical Reports Server (NTRS)

    Creer, Brent Y.; Smedal, Harald A.; Wingrove, Rodney C.

    1960-01-01

    A research program the general objective of which was to measure the effects of various sustained accelerations on the control performance of pilots, was carried out on the Aviation Medical Acceleration Laboratory centrifuge, U.S. Naval Air Development Center, Johnsville, PA. The experimental setup consisted of a flight simulator with the centrifuge in the control loop. The pilot performed his control tasks while being subjected to acceleration fields such as might be encountered by a forward-facing pilot flying an atmosphere entry vehicle. The study was divided into three phases. In one phase of the program, the pilots were subjected to a variety of sustained linear acceleration forces while controlling vehicles with several different sets of longitudinal dynamics. Here, a randomly moving target was displayed to the pilot on a cathode-ray tube. For each combination of acceleration field and vehicle dynamics, pilot tracking accuracy was measured and pilot opinion of the stability and control characteristics was recorded. Thus, information was obtained on the combined effects of complexity of control task and magnitude and direction of acceleration forces on pilot performance. These tests showed that the pilot's tracking performance deteriorated markedly at accelerations greater than about 4g when controlling a lightly damped vehicle. The tentative conclusion was also reached that regardless of the airframe dynamics involved, the pilot feels that in order to have the same level of control over the vehicle, an increase in the vehicle dynamic stability was required with increases in the magnitudes of the acceleration impressed upon the pilot. In another phase, boundaries of human tolerance of acceleration were established for acceleration fields such as might be encountered by a pilot flying an orbital vehicle. A special pilot restraint system was developed to increase human tolerance to longitudinal decelerations. The results of the tests showed that human tolerance

  12. Deceleration of neutral molecules in macroscopic traveling traps

    SciTech Connect

    Osterwalder, Andreas; Meek, Samuel A.; Hammer, Georg; Haak, Henrik; Meijer, Gerard

    2010-05-15

    A decelerator is presented where polar neutral molecules are guided and decelerated using the principle of traveling electric potential wells, such that molecules are confined in stable three-dimensional traps throughout. We compare this decelerator with that of Scharfenberg et al. [Phys. Rev. A 79, 023410 (2009)] and we show that the current decelerator provides a substantially larger phase-space acceptance, even at higher acceleration. The mode of operation is described and experimentally demonstrated by guiding and decelerating CO molecules.

  13. Beam Breakup Effects in Dielectric Based Accelerators

    SciTech Connect

    Schoessow, P.; Kanareykin, A.; Jing, C.; Kustov, A.; Altmark, A.; Power, J. G.; Gai, W.

    2009-01-22

    The dynamics of the beam in structure-based wakefield accelerators leads to beam stability issues not ordinarily found in other machines. In particular, the high current drive beam in an efficient wakefield accelerator loses a large fraction of its energy in the decelerator structure, resulting in physical emittance growth, increased energy spread, and the possibility of head-tail instability for an off axis beam, all of which can lead to severe reduction of beam intensity. Beam breakup (BBU) effects resulting from parasitic wakefields provide a potentially serious limitation to the performance of dielectric structure based wakefield accelerators as well. We report on experimental and numerical investigation of BBU and its mitigation. The experimental program focuses on BBU measurements at the AWA facility in a number of high gradient and high transformer ratio wakefield devices. New pickup-based beam diagnostics will provide methods for studying parasitic wakefields that are currently unavailable. The numerical part of this research is based on a particle-Green's function beam breakup code we are developing that allows rapid, efficient simulation of beam breakup effects in advanced linear accelerators. The goal of this work is to be able to compare the results of detailed experimental measurements with the accurate numerical results and to design an external FODO channel for the control of the beam in the presence of strong transverse wakefields.

  14. Analytic wave model of Stark deceleration dynamics

    SciTech Connect

    Gubbels, Koos; Meijer, Gerard; Friedrich, Bretislav

    2006-06-15

    Stark deceleration relies on time-dependent inhomogeneous electric fields which repetitively exert a decelerating force on polar molecules. Fourier analysis reveals that such fields, generated by an array of field stages, consist of a superposition of partial waves with well-defined phase velocities. Molecules whose velocities come close to the phase velocity of a given wave get a ride from that wave. For a square-wave temporal dependence of the Stark field, the phase velocities of the waves are found to be odd-fraction multiples of a fundamental phase velocity {lambda}/{tau}, with {lambda} and {tau} the spatial and temporal periods of the field. Here we study explicitly the dynamics due to any of the waves as well as due to their mutual perturbations. We first solve the equations of motion for the case of single-wave interactions and exploit their isomorphism with those for the biased pendulum. Next we analyze the perturbations of the single-wave dynamics by other waves and find that these have no net effect on the phase stability of the acceleration or deceleration process. Finally, we find that a packet of molecules can also ride a wave which results from an interference of adjacent waves. In this case, small phase stability areas form around phase velocities that are even-fraction multiples of the fundamental velocity. A detailed comparison with classical trajectory simulations and with experiment demonstrates that the analytic 'wave model' encompasses all the longitudinal physics encountered in a Stark decelerator.

  15. Effects of acceleration on gait measures in three horse gaits.

    PubMed

    Nauwelaerts, Sandra; Zarski, Lila; Aerts, Peter; Clayton, Hilary

    2015-05-01

    Animals switch gaits according to locomotor speed. In terrestrial locomotion, gaits have been defined according to footfall patterns or differences in center of mass (COM) motion, which characterizes mechanisms that are more general and more predictive than footfall patterns. This has generated different variables designed primarily to evaluate steady-speed locomotion, which is easier to standardize in laboratory conditions. However, in the ecology of an animal, steady-state conditions are rare and the ability to accelerate, decelerate and turn is essential. Currently, there are no data available that have tested whether COM variables can be used in accelerative or decelerative conditions. This study used a data set of kinematics and kinetics of horses using three gaits (walk, trot, canter) to evaluate the effects of acceleration (both positive and negative) on commonly used gait descriptors. The goal was to identify variables that distinguish between gaits both at steady state and during acceleration/deceleration. These variables will either be unaffected by acceleration or affected by it in a predictable way. Congruity, phase shift and COM velocity angle did not distinguish between gaits when the dataset included trials in unsteady conditions. Work (positive and negative) and energy recovery distinguished between gaits and showed a clear relationship with acceleration. Hodographs are interesting graphical representations to study COM mechanics, but they are descriptive rather than quantitative. Force angle, collision angle and collision fraction showed a U-shaped relationship with acceleration and seem promising tools for future research in unsteady conditions.

  16. Aerocapture Inflatable Decelerator for Planetary Entry

    NASA Technical Reports Server (NTRS)

    Reza, Sajjad; Hund, Richard; Kustas, Frank; Willcockson, William; Songer, Jarvis; Brown, Glen

    2007-01-01

    Forward Attached Inflatable Decelerators, more commonly known as inflatable aeroshells, provide an effective, cost efficient means of decelerating spacecrafts by using atmospheric drag for aerocapture or planetary entry instead of conventional liquid propulsion deceleration systems. Entry into planetary atmospheres results in significant heating and aerodynamic pressures which stress aeroshell systems to their useful limits. Incorporation of lightweight inflatable decelerator surfaces with increased surface-area footprints provides the opportunity to reduce heat flux and induced temperatures, while increasing the payload mass fraction. Furthermore, inflatable aeroshell decelerators provide the needed deceleration at considerably higher altitudes and Mach numbers when compared with conventional rigid aeroshell entry systems. Inflatable aeroshells also provide for stowage in a compact space, with subsequent deployment of a large-area, lightweight heatshield to survive entry heating. Use of a deployable heatshield decelerator enables an increase in the spacecraft payload mass fraction and may eliminate the need for a spacecraft backshell.

  17. Phase stability in a multistage Zeeman decelerator

    SciTech Connect

    Wiederkehr, A. W.; Hogan, S. D.; Merkt, F.

    2010-10-15

    The phase stability of a multistage Zeeman decelerator is analyzed by numerical particle-trajectory simulations and experimental measurements. A one-dimensional model of the phase stability in multistage Stark deceleration [Bethlem et al., Phys. Rev. Lett. 84, 5744 (2000)] has been adapted to multistage Zeeman deceleration and compared with one- and three-dimensional particle-trajectory simulations, including the analysis of the effect of finite switch-on and -off times of the deceleration pulses. The comparison reveals that transverse effects in the decelerator lead to a considerable reduction of the phase-space acceptance at low values of the phase angle and an enhancement at high values. The optimal combinations of phase angles and currents with which a preset amount of kinetic energy can be removed from atoms and molecules in a pulsed supersonic beam using a multistage decelerator are determined by simulation. Quantitative analysis of the phase-space acceptance within a given volume reveals that for our decelerator (8 {mu}s switch-off time) optimal conditions are achieved for values of the phase angle between 45 deg. and 55 deg. This conclusion is examined and confirmed by experimental measurements using deuterium atoms. Alternative approaches to generate optimal deceleration pulse sequences, such as the implementation of evolutionary algorithms or the use of higher-order modes of the decelerator, are discussed.

  18. Earth's Decelerating Tectonic Plates (Invited)

    NASA Astrophysics Data System (ADS)

    Forte, A. M.; Moucha, R.; Rowley, D. B.; Quere, S.; Mitrovica, J. X.; Simmons, N. A.; Grand, S. P.

    2009-12-01

    We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data (Simmons et al., GJI 2009) to explore the impact of time-dependent changes in mantle buoyancy forces on tectonic plate accelerations. This plate-coupled mantle convection model incorporates a viscosity structure that reconciles both glacial isostatic adjustment and global convection-related data sets (Mitrovica & Forte, EPSL 2004) and it successfully reproduces present-day plate velocities, global surface gravity and topography data. This convection model predicts the recent deceleration of several major plates in the Pacific and Indo-Atlantic hemispheres. Independent verification of these predictions is a fundamental test of the plausibility of the buoyancy forces and rheological structure in the convection model. To this end, we consider marine magnetic anomaly and space geodetic constraints on tectonic plate motions to determine a new global map of present-day rates of change of plate velocities. This map shows that several major plates, such as the Pacific, Africa and Nazca plates are presently decelerating and that they contribute to a globally-averaged slowdown in tectonic plate speeds. These joint geologic-geodetic inferences of plate decelerations are consistent with those predicted by our tomography-based convection model.

  19. Model for the overall phase-space acceptance in a Zeeman decelerator

    NASA Astrophysics Data System (ADS)

    Dulitz, Katrin; Vanhaecke, Nicolas; Softley, Timothy P.

    2015-01-01

    We present a formalism to calculate phase-space acceptance in a Zeeman decelerator. Using parameters closely mimicking previous Zeeman deceleration experiments, this approach reveals a velocity dependence of the phase stability which we ascribe to the finite rise and fall times of the current pulses that generate the magnetic fields inside the deceleration coils. It is shown that changing the current switch-off times (characterized by the reduced position of the synchronous particle κ0) as the sequence progresses, so as to maintain a constant mean acceleration per pulse, can lead to a constant phase stability and hence a beam with well-defined characteristics. We also find that the time overlap between fields of adjacent coils has an influence on the phase-space acceptance. Previous theoretical and experimental results [A. W. Wiederkehr et al., Phys. Rev. A 82, 043428 (2010), 10.1103/PhysRevA.82.043428; J. Chem. Phys. 135, 214202 (2011)., 10.1063/1.3662141] suggested unfilled regions in phase space that influence particle transmission through the decelerator. Our model provides a means to directly identify the origin of these effects due to coupling between longitudinal and transverse dynamics. Since optimum phase stability is restricted to a rather small parameter range in terms of the reduced position of the synchronous particle κ0, only a limited range of final velocities can be attained using a given number of coils. We evaluate phase stability for different Zeeman deceleration sequences, and by comparison with numerical three-dimensional particle-trajectory simulations, we demonstrate that our model provides a valuable tool to find optimum parameter sets for improved Zeeman deceleration schemes. An acceleration-deceleration scheme is shown to be a useful approach to generating beams with well-defined properties for variable-energy collision experiments. More generally, the model provides significant physical insights that are applicable to other types of

  20. Acceleration or deceleration of self-motion by the Marangoni effect

    NASA Astrophysics Data System (ADS)

    Matsuda, Yui; Suematsu, Nobuhiko J.; Kitahata, Hiroyuki; Ikura, Yumihiko S.; Nakata, Satoshi

    2016-06-01

    We investigated the water-depth dependence of the self-motion of a camphor disk and camphor boat. With increasing water depth, the speed of motion of the camphor disk increased, but that of the camphor boat decreased in an annular one-dimensional system. We discussed the difference in the water-depth dependence of the speed of the camphor objects in relation to Marangoni flow. We concluded that Marangoni flow, which became stronger with increasing the water depth, positively and negatively affected the speed of the disk and boat, respectively.

  1. Earth's Decelerating Tectonic Plates

    SciTech Connect

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P

    2008-08-22

    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  2. Intercepting accelerated moving targets: effects of practice on movement performance.

    PubMed

    Fialho, João V A P; Tresilian, James R

    2017-02-14

    When performing a rapid manual interception, targets moving under constant motion are often intercepted with greater accuracy when compared to targets moving under accelerated motion. Usually, accelerated targets are timed too late and decelerating ones too early. The present experiment sought to investigate whether these differences in performance when intercepting targets moving under constant and accelerated motions change after a short period of practice. The task involved striking targets that moved along a straight track by moving forward a manipulandum that moved along a slide perpendicular to the target's motion. Participants were allocated to one of the three experimental groups, defined according to the type of motion of the moving targets: constant speed, constant acceleration, and constant deceleration. Results showed that after some practice participants were able to intercept (positive and negative) accelerating moving targets as accurately as constant speed targets. These results suggest that people might be able to learn how to intercept accelerating targets, corroborating the results of some recent studies.

  3. Variable deceleration parameter and dark energy models

    NASA Astrophysics Data System (ADS)

    Bishi, Binaya K.

    2016-03-01

    This paper deals with the Bianchi type-III dark energy model and equation of state parameter in a first class of f(R,T) gravity. Here, R and T represents the Ricci scalar and trace of the energy momentum tensor, respectively. The exact solutions of the modified field equations are obtained by using (i) linear relation between expansion scalar and shear scalar, (ii) linear relation between state parameter and skewness parameter and (iii) variable deceleration parameter. To obtain the physically plausible cosmological models, the variable deceleration parameter with the suitable substitution leads to the scale factor of the form a(t) = [sinh(αt)] 1 n, where α and n > 0 are arbitrary constants. It is observed that our models are accelerating for 0 < n < 1 and for n > 1, transition phase from deceleration to acceleration. Further, we have discussed physical properties of the models.

  4. Electron Cloud Effects in Accelerators

    SciTech Connect

    Furman, M.A.

    2012-11-30

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  5. Low Density Supersonic Decelerator Parachute Decelerator System

    NASA Technical Reports Server (NTRS)

    Gallon, John C.; Clark, Ian G.; Rivellini, Tommaso P.; Adams, Douglas S.; Witkowski, Allen

    2013-01-01

    The Low Density Supersonic Decelerator Project has undertaken the task of developing and testing a large supersonic ringsail parachute. The parachute under development is intended to provide mission planners more options for parachutes larger than the Mars Science Laboratory's 21.5m parachute. During its development, this new parachute will be taken through a series of tests in order to bring the parachute to a TRL-6 readiness level and make the technology available for future Mars missions. This effort is primarily focused on two tests, a subsonic structural verification test done at sea level atmospheric conditions and a supersonic flight behind a blunt body in low-density atmospheric conditions. The preferred method of deploying a parachute behind a decelerating blunt body robotic spacecraft in a supersonic flow-field is via mortar deployment. Due to the configuration constraints in the design of the test vehicle used in the supersonic testing it is not possible to perform a mortar deployment. As a result of this limitation an alternative deployment process using a ballute as a pilot is being developed. The intent in this alternate approach is to preserve the requisite features of a mortar deployment during canopy extraction in a supersonic flow. Doing so will allow future Mars missions to either choose to mortar deploy or pilot deploy the parachute that is being developed.

  6. Deceleration efficiencies of shrub windbreaks in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoxu; Zou, Xueyong; Zhou, Na; Zhang, Chunlai; Shi, Sha

    2015-03-01

    Artemisia and Salix are dominant shrub species for windbreaks in arid areas of China, and they show similar features to shrubs in other arid areas of the world. We compared the mean velocity fields and shelter effects of two shrub windbreaks with different layouts. For a single plant of Artemisia, the higher the free airflow velocity is, the more the wind velocity around two sides of the plant increases. The velocity gradient around a single plant of Salix is smaller than that around an Artemisia plant due to the difference in the plant shapes. Seven new velocity zones in the horizontal direction appear when airflow passes through an Artemisia windbreak, including four deceleration zones and three acceleration zones. The mean velocity field that is affected by a Salix windbreak can be divided into a deceleration zone in the front, an acceleration zone above, a vortex zone behind and a restoration zone downwind of the vortex zone. Shelter effects of the shrub windbreaks vary with the wind velocity and are influenced by the construct of the windbreaks. Shrub windbreaks that have a complex construction have better shelter effects than simple ones. The shelter effects of plant windbreaks are also influenced by the growth features of the plants. Considering the plant characteristics and the shelter effects of Salix and Artemisia windbreaks, it is optimal to plant these two windbreaks together in a sand-control system. This research is intended to be useful for sand movement control in arid areas.

  7. Aerodynamic Decelerators for Planetary Exploration: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Cruz, Juna R.; Lingard, J. Stephen

    2006-01-01

    In this paper, aerodynamic decelerators are defined as textile devices intended to be deployed at Mach numbers below five. Such aerodynamic decelerators include parachutes and inflatable aerodynamic decelerators (often known as ballutes). Aerodynamic decelerators play a key role in the Entry, Descent, and Landing (EDL) of planetary exploration vehicles. Among the functions performed by aerodynamic decelerators for such vehicles are deceleration (often from supersonic to subsonic speeds), minimization of descent rate, providing specific descent rates (so that scientific measurements can be obtained), providing stability (drogue function - either to prevent aeroshell tumbling or to meet instrumentation requirements), effecting further aerodynamic decelerator system deployment (pilot function), providing differences in ballistic coefficients of components to enable separation events, and providing height and timeline to allow for completion of the EDL sequence. Challenging aspects in the development of aerodynamic decelerators for planetary exploration missions include: deployment in the unusual combination of high Mach numbers and low dynamic pressures, deployment in the wake behind a blunt-body entry vehicle, stringent mass and volume constraints, and the requirement for high drag and stability. Furthermore, these aerodynamic decelerators must be qualified for flight without access to the exotic operating environment where they are expected to operate. This paper is an introduction to the development and application of aerodynamic decelerators for robotic planetary exploration missions (including Earth sample return missions) from the earliest work in the 1960s to new ideas and technologies with possible application to future missions. An extensive list of references is provided for additional study.

  8. Effect of initial acceleration on the development of the flow field of an airfoil pitching at constant rate

    NASA Technical Reports Server (NTRS)

    Koochesfahani, M. M.; Smiljanovski, V.; Brown, T. A.

    1992-01-01

    We present results from a series of experiments where an airfoil is pitched at constant rate from 0 to 60 degrees angle of attack. It is well documented that the dynamic stall behavior of such an airfoil strongly depends on the nondimensional pitch rate K = dot-alpha C/(2U(sub infinity)), where C is the chord, dot-alpha the constant pitch rate, and U(sub infinity) the free stream speed. In reality, the actual motion of the airfoil deviates from the ideal ramp due to the finite acceleration and deceleration periods imposed by the damping of drive system and response characteristics of the airfoil. It is possible that the pitch rate alone may not suffice in describing the flow and that the details of the motion trajectory before achieving a desired constant pitch rate may also affect the processes involved in the dynamic stall phenomenon. The effects of acceleration and deceleration periods are investigated by systematically varing the acceleration magnitude and its duration through the initial acceleration phase to constant pitch rate. The magnitude and duration of deceleration needed to bring the airfoil motion to rest is similarly controlled.

  9. Double ionization effect in electron accelerations by high-intensity laser pulse interaction with a neutral gas

    NASA Astrophysics Data System (ADS)

    Nandan Gupta, Devki

    2013-11-01

    We study the effect of laser-induced double-ionization of a helium gas (with inhomogeneous density profile) on vacuum electron acceleration. For enough laser intensity, helium gas can be found doubly ionized and it strengthens the divergence of the pulse. The double ionization of helium gas can defocus the laser pulse significantly, and electrons are accelerated by the front of the laser pulse in vacuum and then decelerated by the defocused trail part of the laser pulse. It is observed that the electrons experience a very low laser-intensity at the trailing part of the laser pulse. Hence, there is not much electron deceleration at the trailing part of the pulse. We found that the inhomogeneity of the neutral gas reduced the rate of tunnel ionization causing less defocusing of the laser pulse and thus the electron energy gain is reduced.

  10. Turbulent pipe flows subjected to temporal decelerations

    NASA Astrophysics Data System (ADS)

    Jeong, Wongwan; Lee, Jae Hwa

    2016-11-01

    Direct numerical simulations of temporally decelerating turbulent pipe flows were performed to examine effects of temporal decelerations on turbulence. The simulations were started with a fully developed turbulent pipe flow at a Reynolds number, ReD =24380, based on the pipe radius (R) and the laminar centerline velocity (Uc 0). Three different temporal decelerations were imposed to the initial flow with f= | d Ub / dt | =0.00127, 0.00625 and 0.025, where Ub is the bulk mean velocity. Comparison of Reynolds stresses and turbulent production terms with those for steady flow at a similar Reynolds number showed that turbulence is highly intensified with increasing f due to delay effects. Furthermore, inspection of the Reynolds shear stress profiles showed that strong second- and fourth-quadrant Reynolds shear stresses are greatly increased, while first- and third-quadrant components are also increased. Decomposition of streamwise Reynolds normal stress with streamwise cutoff wavelength (λx) 1 R revealed that the turbulence delay is dominantly originated from delay of strong large-scale turbulent structures in the outer layer, although small-scale motions throughout the wall layer adjusted more rapidly to the temporal decelerations. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).

  11. Comparison of the damping effect of different shoeing by the measurement of hoof acceleration.

    PubMed

    Benoit, P; Barrey, E; Regnault, J C; Brochet, J L

    1993-01-01

    The purpose of this study was to compare the damping effect of 16 types of shoeing by measuring hoof acceleration parameters on two trotting horses. At impact, maximal deceleration had extreme values such as 188 m/s2 (+/- 55) for the most damping combination (p < 0.01) and 746 m/s2 (+/- 14) for the steel shoe (mean = 551 m/s2 +/- 125). After the shock, the hoof was exposed to a mean vibrating acceleration at 418 Hz (+/- 84) which was progressively damped in 37.3 ms (+/- 10.5). According to these results, the damping ability of different farriery products significantly reduces (p < 0.05) shocks and vibrations at hoof impact in the athletic horse caused by runs on asphalt or similar surfaces. In practice, the use of the most efficient shoeing should help to reduce the incidence of the over-used joint diseases in the athletic horse caused by runs on hard surfaces.

  12. Physics at CERN’s Antiproton Decelerator

    NASA Astrophysics Data System (ADS)

    Hori, M.; Walz, J.

    2013-09-01

    The Antiproton Decelerator (AD) facility of CERN began operation in 1999 to serve experiments for studies of CPT invariance by precision laser and microwave spectroscopy of antihydrogen (Hbar ) and antiprotonic helium (pbar He) atoms. The first 12 years of AD operation saw cold Hbar synthesized by overlapping clouds of positrons (e+) and antiprotons (pbar ) confined in magnetic Penning traps. Cold Hbar was also produced in collisions between Rydberg positronium (Ps) atoms and pbar . Ground-state Hbar was later trapped for up to ˜1000 s in a magnetic bottle trap, and microwave transitions excited between its hyperfine levels. In the pbar He atom, deep ultraviolet transitions were measured to a fractional precision of (2.3-5)×10-9 by sub-Doppler two-photon laser spectroscopy. From this the antiproton-to-electron mass ratio was determined as M/me=1836.1526736(23), which agrees with the p value known to a similar precision. Microwave spectroscopy of pbar He yielded a measurement of the pbar magnetic moment with a precision of 0.3%. More recently, the magnetic moment of a single pbar confined in a Penning trap was measured with a higher precision, as μ=-2.792845(12)μ in nuclear magnetons. Other results reviewed here include the first measurements of the energy loss (-dE/dx) of 1-100 keV pbar traversing conductor and insulator targets; the cross sections of low-energy (<10 keV) pbar ionizing atomic and molecular gas targets; and the cross sections of 5 MeV pbar annihilating on various target foils via nuclear collisions. The biological effectiveness of pbar beams destroying cancer cells was measured as a possible method for radiological therapy. New experiments under preparation attempt to measure the gravitational acceleration of Hbar or synthesize H. Several other future experiments will also be briefly described.

  13. Collective Deceleration: Toward a Compact Beam Dump

    SciTech Connect

    Wu, H.-C.; Tajima, T.; Habs, D.; Chao, A.W.; Meyer-ter-Vehn, J.; /Munich, Max Planck Inst. Quantenopt.

    2011-11-28

    With the increasing development of laser accelerators, the electron energy is already beyond GeV and even higher in near future. Conventional beam dump based on ionization or radiation loss mechanism is cumbersome and costly, also has radiological hazards. We revisit the stopping power of high-energy charged particles in matter and discuss the associated problem of beam dump from the point of view of collective deceleration. The collective stopping length in an ionized gas can be several orders of magnitude shorter than the Bethe-Bloch and multiple electromagnetic cascades stopping length in solid. At the mean time, the tenuous density of the gas makes the radioactivation negligible. Such a compact and non-radioactivating beam dump works well for short and dense bunches, which is typically generated from laser wakefield accelerator.

  14. Automated Fetal Heart Rate Analysis in Labor: Decelerations and Overshoots

    NASA Astrophysics Data System (ADS)

    Georgieva, A. E.; Payne, S. J.; Moulden, M.; Redman, C. W. G.

    2010-10-01

    Electronic fetal heart rate (FHR) recording is a standard way of monitoring fetal health in labor. Decelerations and accelerations usually indicate fetal distress and normality respectively. But one type of acceleration may differ, namely an overshoot that may atypically reflect fetal stress. Here we describe a new method for detecting decelerations, accelerations and overshoots as part of a novel system for computerized FHR analysis (OxSyS). There was poor agreement between clinicians when identifying these FHR features visually, which precluded setting a gold standard of interpretation. We therefore introduced `modified' Sensitivity (SE°) and `modified' Positive Predictive Value (PPV°) as appropriate performance measures with which the algorithm was optimized. The relation between overshoots and fetal compromise in labor was studied in 15 cases and 15 controls. Overshoots showed promise as an indicator of fetal compromise. Unlike ordinary accelerations, overshoots cannot be considered to be reassuring features of fetal health.

  15. Automated Fetal Heart Rate Analysis in Labor: Decelerations and Overshoots

    SciTech Connect

    Georgieva, A. E.; Payne, S. J.; Moulden, M.; Redman, C. W. G.

    2010-10-25

    Electronic fetal heart rate (FHR) recording is a standard way of monitoring fetal health in labor. Decelerations and accelerations usually indicate fetal distress and normality respectively. But one type of acceleration may differ, namely an overshoot that may atypically reflect fetal stress. Here we describe a new method for detecting decelerations, accelerations and overshoots as part of a novel system for computerized FHR analysis (OxSyS). There was poor agreement between clinicians when identifying these FHR features visually, which precluded setting a gold standard of interpretation. We therefore introduced 'modified' Sensitivity (SE deg.) and 'modified' Positive Predictive Value (PPV deg.) as appropriate performance measures with which the algorithm was optimized. The relation between overshoots and fetal compromise in labor was studied in 15 cases and 15 controls. Overshoots showed promise as an indicator of fetal compromise. Unlike ordinary accelerations, overshoots cannot be considered to be reassuring features of fetal health.

  16. Deceleration-Limiting Roadway Barrier

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); Locke, P. James (Inventor)

    2006-01-01

    Roadway barrier system and method are disclosed for decelerating a moving vehicle in a controlled manner and for retaining the decelerated vehicle. A net or mesh of the roadway barrier system receives and captures the moving vehicle. The net or mesh is secured to anchors by energy absorbing straps. The energy absorbing straps deploy under a tensional load to decelerate the moving vehicle, the straps providing a controlled resistance to the tensional load over a predefined displacement or stroke to bring the moving vehicle to rest. Additional features include a sacrificial panel or sheet in front of the net that holds up the net or mesh while deflecting vehicles that collide only tangentially with the roadway barrier system.

  17. Accelerated School Programmes: Assessing Their Effectiveness.

    ERIC Educational Resources Information Center

    Gaziel, Haim

    2001-01-01

    Examines the effectiveness of Accelerated School Programs (ASPs) on the basis of a study of four comprehensive schools in Israel. Assesses the influence of ASPs upon internal school processes, such as school goals, structures, and cultures, as perceived by school staff. Determines the project's impact on staff and parents' attitudes, and examines…

  18. Projectile Combustion Effects on Ram Accelerator Performance

    NASA Astrophysics Data System (ADS)

    Chitale, Saarth Anjali

    University of Washington Abstract Projectile Combustion Effects on Ram Accelerator Performance Saarth Anjali Chitale Chair of the Supervisory Committee: Prof. Carl Knowlen William E. Boeing Department of Aeronautics and Astronautics The ram accelerator facility at the University of Washington is used to propel projectiles at supersonic velocities. This concept is similar to an air-breathing ramjet engine in that sub-caliber projectiles, shaped like the ramjet engine center-body, are shot through smooth-bore steel-walled tubes having an internal diameter of 38 mm. The ram accelerator propulsive cycles operate between Mach 2 to 10 and have the potential to accelerate projectile to velocities greater than 8 km/s. The theoretical thrust versus Mach number characteristics can be obtained using knowledge of gas dynamics and thermodynamics that goes into the design of the ram accelerator. The corresponding velocity versus distance profiles obtained from the test runs at the University of Washington, however, are often not consistent with the theoretical predictions after the projectiles reach in-tube Mach numbers greater than 4. The experimental velocities are typically greater than the expected theoretical predictions; which has led to the proposition that the combustion process may be moving up onto the projectile. An alternative explanation for higher than predicted thrust, which is explored here, is that the performance differences can be attributed to the ablation of the projectile body which results in molten metal being added to the flow of the gaseous combustible mixture around the projectile. This molten metal is assumed to mix uniformly and react with the gaseous propellant; thereby enhancing the propellant energy release and altering the predicted thrust-Mach characteristics. This theory predicts at what Mach number the projectile will first experience enhanced thrust and the corresponding velocity-distance profile. Preliminary results are in good agreement

  19. Acceleration in Linear and Circular Motion

    ERIC Educational Resources Information Center

    Kellington, S. H.; Docherty, W.

    1975-01-01

    Describes the construction of a simple accelerometer and explains its use in demonstrating acceleration, deceleration, constant speed, measurement of acceleration, acceleration and the inclined plane and angular and radial acceleration. (GS)

  20. Drift-induced Deceleration of Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Dalla, S.; Marsh, M. S.; Laitinen, T.

    2015-07-01

    We investigate the deceleration of solar energetic particles (SEPs) during their propagation from the Sun through interplanetary space, in the presence of weak to strong scattering in a Parker spiral configuration, using relativistic full orbit test particle simulations. The calculations retain all three spatial variables describing particles’ trajectories, allowing us to model any transport across the magnetic field. Large energy change is shown to occur for protons, due to the combined effect of standard adiabatic deceleration and a significant contribution from particle drift in the direction opposite to that of the solar wind electric field. The latter drift-induced deceleration is found to have a stronger effect for SEP energies than for galactic cosmic rays. The kinetic energy of protons injected at 1 MeV is found to be reduced by between 35% and 90% after four days, and for protons injected at 100 MeV by between 20% and 55%. The overall degree of deceleration is a weak function of the scattering mean free path, showing that, although adiabatic deceleration plays a role, a large contribution is due to particle drift. Current SEP transport models are found to account for drift-induced deceleration in an approximate way and their accuracy will need to be assessed in future work.

  1. 17 CFR 230.461 - Acceleration of effective date.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 3 2014-04-01 2014-04-01 false Acceleration of effective date... RULES AND REGULATIONS, SECURITIES ACT OF 1933 Filings; Fees; Effective Date § 230.461 Acceleration of effective date. (a) Requests for acceleration of the effective date of a registration statement shall...

  2. 17 CFR 230.461 - Acceleration of effective date.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 2 2012-04-01 2012-04-01 false Acceleration of effective date... RULES AND REGULATIONS, SECURITIES ACT OF 1933 Filings; Fees; Effective Date § 230.461 Acceleration of effective date. (a) Requests for acceleration of the effective date of a registration statement shall...

  3. 17 CFR 230.461 - Acceleration of effective date.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Acceleration of effective date... RULES AND REGULATIONS, SECURITIES ACT OF 1933 Filings; Fees; Effective Date § 230.461 Acceleration of effective date. (a) Requests for acceleration of the effective date of a registration statement shall...

  4. 17 CFR 230.461 - Acceleration of effective date.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false Acceleration of effective date... RULES AND REGULATIONS, SECURITIES ACT OF 1933 Filings; Fees; Effective Date § 230.461 Acceleration of effective date. (a) Requests for acceleration of the effective date of a registration statement shall...

  5. Effect of clenching with a mouthguard on head acceleration during heading of a soccer ball.

    PubMed

    Narimatsu, Keishiro; Takeda, Tomotaka; Nakajima, Kazunori; Konno, Michiyo; Ozawa, Takamitsu; Ishigami, Keiichi

    2015-01-01

    Concussions are acceleration-deceleration injuries that occur when biomechanical forces are transmitted to the cerebral tissues. By limiting acceleration of the head, enhanced cervical muscle activity derived from clenching with a mouthguard (MG) may reduce the incidence or severity of concussions following impact. The purpose of this study was to investigate the effect of voluntary clenching with a proper MG on acceleration of the head during "heading" of a soccer ball. Eleven male high school soccer players (mean age, 16.8 years) participated in the study. Each player was given a customized MG. An automated soccer machine was used to project the ball at the participants at a constant speed. The participants headed the ball under 3 different oral conditions: drill 1, heading freely performed without instruction and without the MG; drill 2, heading performed as the subject was instructed to clench the masseter muscles tightly while not wearing the MG; drill 3, heading performed as the subject was instructed to clench tightly while wearing the MG. Each participant repeated each drill 5 times. Linear acceleration of the head was measured with a 3-axis accelerometer. Activity of the masseter and sternocleidomastoid muscles was measured by wireless electromyography. Weak masseter and sternocleidomastoid muscle activity was observed during drill 1. After the soccer players had been instructed to clench their masseter muscles (drills 2 and 3), statistically significant decreases in head acceleration and increases in masseter and sternocleidomastoid muscle activity were observed (P < 0.05; paired t test). The effect was stronger when the players wore the MG. Dentists should encourage soccer players to habitually clench while wearing a proper mouthguard to strengthen cervical muscle resistance as a way to mitigate the damage caused by heading.

  6. Combining Magnetic and Electric Sails for Interstellar Deceleration

    NASA Astrophysics Data System (ADS)

    Perakis, Nikolaos; Hein, Andreas M.

    2016-07-01

    The main benefit of an interstellar mission is to carry out in-situ measurements within a target star system. To allow for extended in-situ measurements, the spacecraft needs to be decelerated. One of the currently most promising technologies for deceleration is the magnetic sail which uses the deflection of interstellar matter via a magnetic field to decelerate the spacecraft. However, while the magnetic sail is very efficient at high velocities, its performance decreases with lower speeds. This leads to deceleration durations of several decades depending on the spacecraft mass. Within the context of Project Dragonfly, initiated by the Initiative of Interstellar Studies (i4is), this paper proposes a novel concept for decelerating a spacecraft on an interstellar mission by combining a magnetic sail with an electric sail. Combining the sails compensates for each technologys shortcomings: A magnetic sail is more effective at higher velocities than the electric sail and vice versa. It is demonstrated that using both sails sequentially outperforms using only the magnetic or electric sail for various mission scenarios and velocity ranges, at a constant total spacecraft mass. For example, for decelerating from 5% c, to interplanetary velocities, a spacecraft with both sails needs about 29 years, whereas the electric sail alone would take 35 years and the magnetic sail about 40 years with a total spacecraft mass of 8250 kg. Furthermore, it is assessed how the combined deceleration system affects the optimal overall mission architecture for different spacecraft masses and cruising speeds. Future work would investigate how operating both systems in parallel instead of sequentially would affect its performance. Moreover, uncertainties in the density of interstellar matter and sail properties need to be explored.

  7. Design considerations and test facilities for accelerated radiation effects testing

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Miller, C. G.; Parker, R. H.

    1972-01-01

    Test design parameters for accelerated dose rate radiation effects tests for spacecraft parts and subsystems used in long term mission (years) are detailed. A facility for use in long term accelerated and unaccelerated testing is described.

  8. Collective Deceleration of Laser-Driven Electron Bunches

    NASA Astrophysics Data System (ADS)

    Chou, S.; Xu, J.; Khrennikov, K.; Cardenas, D. E.; Wenz, J.; Heigoldt, M.; Hofmann, L.; Veisz, L.; Karsch, S.

    2016-09-01

    Few-fs electron bunches from laser wakefield acceleration (LWFA) can efficiently drive plasma wakefields (PWFs), as shown by their propagation through underdense plasma in two experiments. A strong and density-insensitive deceleration of the bunches has been observed in 2 mm of 1 018 cm-3 density plasma with 5.1 GV /m average gradient, which is attributed to a self-driven PWF. This observation implies that the physics of PWFs, usually relying on large-scale rf accelerators as drivers, can be studied by tabletop LWFA electron sources.

  9. HIAD-2 (Hypersonic Inflatable Aerodynamic Decelerator)

    NASA Video Gallery

    The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) project is a disruptive technology that will accommodate the atmospheric entry of heavy payloads to planetary bodies such as Mars. HIAD over...

  10. Magnetic circuit for hall effect plasma accelerator

    NASA Technical Reports Server (NTRS)

    Manzella, David H. (Inventor); Jacobson, David T. (Inventor); Jankovsky, Robert S. (Inventor); Hofer, Richard (Inventor); Peterson, Peter (Inventor)

    2009-01-01

    A Hall effect plasma accelerator includes inner and outer electromagnets, circumferentially surrounding the inner electromagnet along a thruster centerline axis and separated therefrom, inner and outer magnetic conductors, in physical connection with their respective inner and outer electromagnets, with the inner magnetic conductor having a mostly circular shape and the outer magnetic conductor having a mostly annular shape, a discharge chamber, located between the inner and outer magnetic conductors, a magnetically conducting back plate, in magnetic contact with the inner and outer magnetic conductors, and a combined anode electrode/gaseous propellant distributor, located at a bottom portion of the discharge chamber. The inner and outer electromagnets, the inner and outer magnetic conductors and the magnetically conducting back plate form a magnetic circuit that produces a magnetic field that is largely axial and radially symmetric with respect to the thruster centerline.

  11. Effect Of Bed Rest On Tolerance To Acceleration

    NASA Technical Reports Server (NTRS)

    Goldwater, Danielle J.

    1991-01-01

    Report describes experimental comparative study of tolerance of aerobically fit men and sedentary men to +Gz acceleration. Designed to confirm or deny previous observations that long-term aerobic training reduces tolerance to acceleration. Data accumulated in study showed decrease in tolerance to acceleration caused by deconditioning effect of bed rest more pronounced in fit men than in sedentary men. Suggests physically fit people need additional measures to reduce loss of tolerance to acceleration during microgravity exposure.

  12. Tidal deceleration of the moon's mean motion

    NASA Technical Reports Server (NTRS)

    Cheng, M. K.; Eanes, R. J.; Tapley, B. D.

    1992-01-01

    The secular change in the mean motion of the moon, n, caused by the tidal dissipation in the ocean and solid earth is due primarily to the effect of the diurnal and semidiurnal tides. The long-period ocean tides produce an increase in n, but the effects are only 1 percent of the diurnal and semidiurnal ocean tides. In this investigation, expressions for these effects are obtained by developing the tidal potential in the ecliptic reference system. The computation of the amplitude of equilibrium tide and the phase corrections is also discussed. The averaged tidal deceleration of the moon's mean motion, n, from the most recent satellite ocean tide solutions is -25.25 +/- 0.4 arcseconds/sq century. The value for n inferred from the satellite-determined ocean-tide solution is in good agreement with the value obtained from the analysis of 20 years of lunar laser-ranging observations.

  13. Impact accelerations

    NASA Technical Reports Server (NTRS)

    Vongierke, H. E.; Brinkley, J. W.

    1975-01-01

    The degree to which impact acceleration is an important factor in space flight environments depends primarily upon the technology of capsule landing deceleration and the weight permissible for the associated hardware: parachutes or deceleration rockets, inflatable air bags, or other impact attenuation systems. The problem most specific to space medicine is the potential change of impact tolerance due to reduced bone mass and muscle strength caused by prolonged weightlessness and physical inactivity. Impact hazards, tolerance limits, and human impact tolerance related to space missions are described.

  14. The effect of acceleration on turbulent entrainment

    NASA Astrophysics Data System (ADS)

    Breidenthal, Robert E.

    2008-12-01

    A new class of self-similar turbulent flows is proposed, which exhibits dramatically reduced entrainment rates. Under strong acceleration, the rotation period of the large-scale vortices is forced to decrease linearly in time. In ordinary unforced turbulence, the rotation period always increases linearly with time, at least in the mean. However, by imposing an exponential acceleration on the flow, the vortex rotation period is forced to become the e-folding timescale of the acceleration. If the e-folding timescale itself decreases linearly in time, the forcing is 'super-exponential', characterized by an acceleration parameter α. Based on dimensional and heuristic arguments, a model suggests that the dissipation rate is an exponential function of α and the dimensions of the conserved quantity of the flow. Acceleration decreases the dissipation and entrainment rates in all canonical laboratory flows except for Rayleigh-Taylor. Experiments of exponential jets and super-exponential transverse jets are in accord with the model. As noted by Johari, acceleration is the only known means of affecting the entrainment rate of the far-field jet. Numerical simulations of Rayleigh-Taylor flow by Cook and Greenough are also consistent. In the limit of large acceleration, vortices do not move far before their rotation period changes substantially. In this sense, extreme acceleration corresponds to stationary vortices.

  15. Modeling lateral acceleration effects on pilot performance

    NASA Technical Reports Server (NTRS)

    Korn, J.; Kleinan, D. L.

    1982-01-01

    Attendant to the direct side force maneuver of a Vectored Force Fighter is the transverse acceleration imposed on the pilot. This lateral acceleration (Gy), when combind with a positive Gz stress, is a potential source of pilot tracking performance impairment. A research effort to investigate these performance decrements includes experimental as well as anaytical pilot performance modeling using the Optimal Control Model.

  16. Multistage Zeeman deceleration of metastable neon

    SciTech Connect

    Wiederkehr, Alex W.; Motsch, Michael; Hogan, Stephen D.; Andrist, Markus; Schmutz, Hansjuerg; Lambillotte, Bruno; Agner, Josef A.; Merkt, Frederic

    2011-12-07

    A supersonic beam of metastable neon atoms has been decelerated by exploiting the interaction between the magnetic moment of the atoms and time-dependent inhomogeneous magnetic fields in a multistage Zeeman decelerator. Using 91 deceleration solenoids, the atoms were decelerated from an initial velocity of 580 m/s to final velocities as low as 105 m/s, corresponding to a removal of more than 95% of their initial kinetic energy. The phase-space distribution of the cold, decelerated atoms was characterized by time-of-flight and imaging measurements, from which a temperature of 10 mK was obtained in the moving frame of the decelerated sample. In combination with particle-trajectory simulations, these measurements allowed the phase-space acceptance of the decelerator to be quantified. The degree of isotope separation that can be achieved by multistage Zeeman deceleration was also studied by performing experiments with pulse sequences generated for {sup 20}Ne and {sup 22}Ne.

  17. Mortality Deceleration and Mortality Selection: Three unexpected implications of a simple model

    PubMed Central

    Wrigley-Field, Elizabeth

    2015-01-01

    Unobserved heterogeneity in mortality risk is pervasive and consequential. Mortality deceleration—the slowing of mortality’s rise with age—has been considered an important window into heterogeneity that otherwise might be impossible to explore. This paper argues that deceleration patterns may reveal surprisingly little about the heterogeneity that putatively produces them. I show that even in a very simple model—one composed of just two subpopulations with Gompertz mortality—(1) aggregate mortality can decelerate even while a majority of the cohort is frail; (2) multiple decelerations are possible; and (3) mortality selection can produce acceleration as well as deceleration. Simulations show that these patterns are plausible in model cohorts that in the aggregate resemble cohorts in the Human Mortality Database. I argue that these results: challenge some conventional heuristics for understanding the relationship between selection and deceleration; undermine certain inferences from deceleration timing to patterns of social inequality; and imply that standard parametric models, assumed to plateau at most once, may sometimes badly misestimate deceleration timing—even by decades. PMID:24385199

  18. Effect of knee flexion angle on ground reaction forces, knee moments and muscle co-contraction during an impact-like deceleration landing: implications for the non-contact mechanism of ACL injury.

    PubMed

    Podraza, Jeffery T; White, Scott C

    2010-08-01

    Investigating landing kinetics and neuromuscular control strategies during rapid deceleration movements is a prerequisite to understanding the non-contact mechanism of ACL injury. The purpose of this study was to quantify the effect of knee flexion angle on ground reaction forces, net knee joint moments, muscle co-contraction and lower extremity muscles during an impact-like, deceleration task. Ground reaction forces and knee joint moments were determined from video and force plate records of 10 healthy male subjects performing rapid deceleration single leg landings from a 10.5 cm height with different degrees of knee flexion at landing. Muscle co-contraction was based on muscle moments calculated from an EMG-to-moment processing model. Ground reaction forces and co-contraction indices decreased while knee extensor moments increased significantly with increased degrees of knee flexion at landing (all p<0.005). Higher ground reaction forces when landing in an extended knee position suggests they are a contributing factor in non-contact ACL injuries. Increased knee extensor moments and less co-contraction with flexed knee landings suggest that quadriceps overload may not be the primary cause of non-contact ACL injuries. The results bring into question the counterbalancing role of the hamstrings during dynamic movements. The soleus may be a valuable synergist stabilizing the tibia against anterior translation at landing. Movement strategies that lessen the propagation of reaction forces up the kinetic chain may help prevent non-contact ACL injuries. The relative interaction of all involved thigh and lower leg muscles, not just the quadriceps and hamstrings should be considered when interpreting non-contact ACL injury mechanisms.

  19. Rindler effect for a nonuniformly accelerating observer

    SciTech Connect

    Zhu Jian-yang; Bao Aidong; Zhao Zheng

    1995-10-01

    Both the Klein-Gordon equation and the Dirac equation are dealt with in the generalized Rindler space-time of a nonuniformly accelerating observer. Making use of a new method and introducing a tortoise-type coordinate transformation, it is proved that there exist an event horizon and thermal radiation depending on time in the space-time. The Hawking-Unruh temperature is proportional to the variable acceleration.

  20. Effects of height acceleration on Geosat heights

    NASA Technical Reports Server (NTRS)

    Hancock, David W., III; Brooks, Ronald L.; Lockwood, Dennis W.

    1990-01-01

    A radar altimeter tracking loop, such as that utilized by Geosat, produces height errors in the presence of persistent height acceleration h(a). The correction factor for the height error is a function of both the loop feedback parameters and the height acceleration. The correction, in meters, to the sea-surface height (SSH) derived from Geosat is -0.16 h(a), where h(a) is in m/sec per sec. The errors induced by accelerations are produced primarily by changes in along-track geoid slopes. The nearly circular Geosat orbit and dynamic ocean topography produce small h(a) values. One area studied in detail encompasses the Marianas Trench and the Challenger Deep in the west central Pacific Ocean. Histograms of SSH corrections due to range accelerations have also been determined from 24-hour segments of Geosat global data. The findings are that 20 percent of the Geosat measurements have acceleration-induced errors of 2 cm or more, while 8 percent have errors of 3 cm or more.

  1. Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator.

    PubMed

    Laschinsky, Lydia; Baumann, Michael; Beyreuther, Elke; Enghardt, Wolfgang; Kaluza, Malte; Karsch, Leonhard; Lessmann, Elisabeth; Naumburger, Doreen; Nicolai, Maria; Richter, Christian; Sauerbrey, Roland; Schlenvoigt, Hans-Peter; Pawelke, Jörg

    2012-01-01

    The notable progress in laser particle acceleration technology promises potential medical application in cancer therapy through compact and cost effective laser devices that are suitable for already existing clinics. Previously, consequences on the radiobiological response by laser driven particle beams characterised by an ultra high peak dose rate have to be investigated. Therefore, tumour and non-malignant cells were irradiated with pulsed laser accelerated electrons at the JETI facility for the comparison with continuous electrons of a conventional therapy LINAC. Dose response curves were measured for the biological endpoints clonogenic survival and residual DNA double strand breaks. The overall results show no significant differences in radiobiological response for in vitro cell experiments between laser accelerated pulsed and clinical used electron beams. These first systematic in vitro cell response studies with precise dosimetry to laser driven electron beams represent a first step toward the long term aim of the application of laser accelerated particles in radiotherapy.

  2. Report on Operation of Antiproton Decelerator

    SciTech Connect

    Belochitskii, Pavel

    2006-03-20

    The Antiproton Decelerator (AD) at CERN operates for physics since 1999. The 3.5 GeV/c antiprotons produced in the target by a 26 GeV/c proton beam coming from CERN PS. Since the experiments need a low energy antiprotons, beam is decelerated in the AD down to an extraction momentum of 100 MeV/c. Due to significant emittance blow up during deceleration, as well as tight requirements from experiments on extracted beam sizes, efficient compression of beam phase space is indispensable. Two cooling systems, stochastic and electron are used in AD. The progress in machine performance is reviewed, along with plans for the future. Special emphasis is given to the proposed new extra low energy antiproton ring (ELENA) for deceleration of antiproton beam further down to an energy of 100 keV (momentum 13.7 MeV/c), which would allow much higher antiproton capture rate with significantly higher beam density.

  3. Calorie restriction: decelerating mTOR-driven aging from cells to organisms (including humans).

    PubMed

    Blagosklonny, Mikhail V

    2010-02-15

    Although it has been known since 1917 that calorie restriction (CR) decelerates aging, the topic remains highly controversial. What might be the reason? Here I discuss that the anti-aging effect of CR rules out accumulation of DNA damage and failure of maintenance as a cause of aging. Instead, it suggests that aging is driven in part by the nutrient-sensing TOR (target of rapamycin) network. CR deactivates the TOR pathway, thus slowing aging and delaying diseases of aging. Humans are not an exception and CR must increase both maximal and healthy lifespan in humans to the same degree as it does in other mammals. Unlike mice, however, humans benefit from medical care, which prolongs lifespan despite accelerated aging in non-restricted individuals. Therefore in humans the effect of CR may be somewhat blunted. Still how much does CR extend human lifespan? And could this extension be surpassed by gerosuppressants such as rapamycin?

  4. The effect of stochastic re-acceleration on the energy spectrum of shock-accelerated protons

    SciTech Connect

    Afanasiev, Alexandr; Vainio, Rami; Kocharov, Leon

    2014-07-20

    The energy spectra of particles in gradual solar energetic particle (SEP) events do not always have a power-law form attributed to the diffusive shock acceleration mechanism. In particular, the observed spectra in major SEP events can take the form of a broken (double) power law. In this paper, we study the effect of a process that can modify the power-law spectral form produced by the diffusive shock acceleration: the stochastic re-acceleration of energetic protons by enhanced Alfvénic turbulence in the downstream region of a shock wave. There are arguments suggesting that this process can be important when the shock propagates in the corona. We consider a coronal magnetic loop traversed by a shock and perform Monte Carlo simulations of interactions of shock-accelerated protons with Alfvén waves in the loop. The wave-particle interactions are treated self-consistently, so the finiteness of the available turbulent energy is taken into account. The initial energy spectrum of particles is taken to be a power law. The simulations reveal that the stochastic re-acceleration leads either to the formation of a spectrum that is described in a wide energy range by a power law (although the resulting power-law index is different from the initial one) or to a broken power-law spectrum. The resulting spectral form is determined by the ratio of the energy density of shock-accelerated protons to the wave energy density in the shock's downstream region.

  5. Zeeman-Sisyphus Deceleration of Molecular Beams

    NASA Astrophysics Data System (ADS)

    Fitch, Noah; Tarbutt, Mike

    2016-05-01

    Ultracold molecules are useful for testing fundamental physics and studying strongly-interacting quantum systems. One production method is via direct laser cooling in a magneto-optical trap (MOT). In this endeavor, one major challenge is to produce molecules below the MOT capture velocity. Established molecular beam deceleration techniques are poorly suited because they decelerate only a small fraction of a typical molecular pulse. Direct laser cooling is a natural choice, but is also problematic due to transverse heating and the associated molecule loss. I will present a new technique that we are developing, which we call Zeeman-Sisyphus deceleration and which shows great promise for preparing molecular beams for MOT loading. This technique decelerates molecules using a linear array of permanent magnets, along with lasers that periodically optically pump molecules between weak and strong-field seeking quantum states. Being time-independent, this method is well-suited for temporally extended molecular beams. Simultaneous deceleration and transverse guiding makes this approach attractive as an alternative to direct laser cooling. I will present our development of the Zeeman-Sisyphus decelerator and its application to a molecular MOT of CaF and an ultracold fountain of YbF.

  6. A numerical study of diffusive shock acceleration of cosmic rays in supernova shocks

    NASA Technical Reports Server (NTRS)

    Ko, C. M.; Jokipii, J. R.

    1985-01-01

    The evolution of the energy spectrum of cosmic rays accelerated by the first order Fermi mechanism, by a supernova remnant shock wave, including adiabatic deceleration effects behind the front, is carried out by means of a time-dependent numerical code. The calculations apply to the adiabatic stage (or Sedov stage) of the supernova explosion, and the energetic particle spectrum is calculated in the test particle limit (i.e., the back reaction of the cosmic rays on the flow is not included). The particles are injected mono-energetically at the shock. The radial distribution, The radial distribution, and the spectrum of the accelerated and decelerated particles is shown.

  7. Holographic dark energy and late cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Pavón, Diego

    2007-06-01

    It has been persuasively argued that the number of effective degrees of freedom of a macroscopic system is proportional to its area rather than to its volume. This entails interesting consequences for cosmology. Here we present a model based on this 'holographic principle' that accounts for the present stage of accelerated expansion of the Universe and significantly alleviates the coincidence problem also for non-spatially flat cosmologies. Likewise, we comment on a recently proposed late transition to a fresh decelerated phase.

  8. Effect of gasoline octane quality on vehicle acceleration performance

    SciTech Connect

    Not Available

    1991-07-01

    A study was conducted under the auspices of the Coordinating Research Council, Inc. (CRC) to assess the potential effects of gasoline octane quality on vehicle acceleration performance. Twelve participating laboratories, representing both the oil and the automotive industries, tested a total of 182 vehicles as part of the 1989 CRC Octane Number Requirement Survey. The vehicles consisted of 78 with electronic knock control systems and 104 without. All testing was performed using the 1989/1990 CRC FBRU fuel series. The results showed that acceleration performance of vehicles with knock sensors was significantly affected by gasoline octane quality. Octane effects on acceleration performance were most pronounced at maximum-throttle (detent) conditions and at octane levels below the vehicles' octane requirements; however, some knock-sensor vehicles did show improved acceleration performance with fuels at octane levels above the octane number requirement. Acceleration performance in non-knock sensor vehicles was unaffected by octane quality.

  9. Deimination of the myelin basic protein decelerates its proteasome-mediated metabolism.

    PubMed

    Kuzina, E S; Kudriaeva, A A; Glagoleva, I S; Knorre, V D; Gabibov, A G; Belogurov, A A

    2016-07-01

    Deimination of myelin basic protein (MBP) by peptidylarginine deiminase (PAD) prevents its binding to the proteasome and decelerates its degradation by the proteasome in mammalian cells. Potential anticancer drug tetrazole analogue of chloramidine 2, at concentrations greater than 1 µM inhibits the enzymatic activity of PAD in vitro. The observed acceleration of proteasome hydrolysis of MBP to antigenic peptides in the presence of PAD inhibitor may increase the efficiency of lesion of the central nervous system by cytotoxic lymphocytes in multiple sclerosis. We therefore suggest that clinical trials and the introduction of PAD inhibitors in clinical practice for the treatment of malignant neoplasms should be performed only after a careful analysis of their potential effect on the induction of autoimmune neurodegeneration processes.

  10. Laser-Bessel-Beam-Driven Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Li, Dazhi; Imasaki, Kazuo

    2005-08-01

    A vacuum-laser-driven acceleration scheme using a laser Bessel beam is presented. In contrast to the conventional Gaussian beam, the Bessel beam demonstrates diffraction-free propagation, which implies the possibility of extending the effective interaction distance for a laser-electron system. In this method, the Bessel beam is truncated by annular slits to realize a series of nonsuccessive dim regions along the path of laser propagation, where the amplitude of the laser field is reduced, making the electron slightly decelerate as it travels in the decelerating phase. We analyzed the propagation characteristics of the truncated Bessel beam with scalar diffraction theory, and then introduced this approach with careful investigation of a three-stage acceleration model.

  11. Rocket Sled Propelled Testing of a Supersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Meacham, Michael B.; Kennett, Andrew; Townsend, Derik J.; Marti, Benjamin

    2013-01-01

    Decelerators (IADs) have traditionally been tested in wind tunnels. As the limitations of these test facilities are reached, other avenues must be pursued. The IAD being tested is a Supersonic IAD (SIAD), which attaches just aft of the heatshield around the perimeter of an entry body. This 'attached torus' SIAD is meant to improve the accuracy of landing for robotic class missions to Mars and allow for potentially increased payloads. The SIAD Design Verification (SDV) test aims to qualify the SIAD by applying a targeted aerodynamic load to the vehicle. While many test architectures were researched, a rocket sled track was ultimately chosen to be the most cost effective way to achieve the desired dynamic pressures. The Supersonic Naval Ordnance Research Track (SNORT) at the Naval Air Warfare Center Weapons Division (NAWCWD) China Lake is a four mile test track, traditionally used for warhead and ejection seat testing. Prior to SDV, inflatable drag bodies have been tested on this particular track. Teams at Jet Propulsion Laboratory (JPL) and NAWCWD collaborate together to design and fabricate one of the largest sleds ever built. The SDV sled is comprised of three individual sleds: a Pusher Sled which holds the solid booster rockets, an Item Sled which supports the test vehicle, and a Camera Sled that is pushed in front for in-situ footage and measurements. The JPL-designed Test Vehicle has a full-scale heatshield shape and contains all instrumentation and inflation systems necessary to inflate and test a SIAD. The first campaign that is run at SNORT tested all hardware and instrumentation before the SIAD was ready to be tested. For each of the three tests in this campaign, the number of rockets and top speed was increased and the data analyzed to ensure the hardware is safe at the necessary accelerations and aerodynamic loads.

  12. Fulling-Unruh effect in general stationary accelerated frames

    SciTech Connect

    Korsbakken, Jan Ivar; Leinaas, Jon Magne

    2004-10-15

    We study the generalized Unruh effect for accelerated reference frames that include rotation in addition to acceleration. We focus particularly on the case where the motion is planar, with the presence of a static limit in addition to the event horizon. Possible definitions of an accelerated vacuum state are examined and the interpretation of the Minkowski vacuum state as a thermodynamic state is discussed. Such a thermodynamic state is shown to depend on two parameters, the acceleration temperature and a drift velocity, which are determined by the acceleration and angular velocity of the accelerated frame. We relate the properties of the Minkowski vacuum in the accelerated frame to the excitation spectrum of a detector that is stationary in this frame. The detector can be excited both by absorbing positive energy quanta in the 'hot' vacuum state and by emitting negative energy quanta into the 'ergosphere' between the horizon and the static limit. The effects are related to similar effects in the gravitational field of a rotating black hole.

  13. Pitch then power: limitations to acceleration in quadrupeds.

    PubMed

    Williams, Sarah B; Tan, Huiling; Usherwood, James R; Wilson, Alan M

    2009-10-23

    Rapid acceleration and deceleration are vital for survival in many predator and prey animals and are important attributes of animal and human athletes. Adaptations for acceleration and deceleration are therefore likely to experience strong selective pressures--both natural and artificial. Here, we explore the mechanical and physiological constraints to acceleration. We examined two elite athletes bred and trained for acceleration performance (polo ponies and racing greyhounds), when performing maximal acceleration (and deceleration for ponies) in a competitive setting. We show that maximum acceleration and deceleration ability may be accounted for by two simple limits, one mechanical and one physiological. At low speed, acceleration and deceleration may be limited by the geometric constraints of avoiding net nose-up or tail-up pitching, respectively. At higher speeds, muscle power appears to limit acceleration.

  14. Transient acceleration in f(T) gravity

    NASA Astrophysics Data System (ADS)

    Qi, Jing-Zhao; Yang, Rong-Jia; Zhang, Ming-Jian; Liu, Wen-Biao

    2016-02-01

    Recently an f(T) gravity based on the modification of teleparallel gravity was proposed to explain the accelerated expansion of the universe. We use observational data from type Ia supernovae, baryon acoustic oscillations, and cosmic microwave background to constrain this f(T) theory and reconstruct the effective equation of state and the deceleration parameter. We obtain the best-fit values of parameters and find an interesting result that the constrained f(T) theory allows for the accelerated Hubble expansion to be a transient effect.

  15. Effects of Horizontal Acceleration on Human Visual Acuity and Stereopsis

    PubMed Central

    Horng, Chi-Ting; Hsieh, Yih-Shou; Tsai, Ming-Ling; Chang, Wei-Kang; Yang, Tzu-Hung; Yauan, Chien-Han; Wang, Chih-Hung; Kuo, Wu-Hsien; Wu, Yi-Chang

    2015-01-01

    The effect of horizontal acceleration on human visual acuity and stereopsis is demonstrated in this study. Twenty participants (mean age 22.6 years) were enrolled in the experiment. Acceleration from two different directions was performed at the Taiwan High-Speed Rail Laboratory. Gx and Gy (< and >0.1 g) were produced on an accelerating platform where the subjects stood. The visual acuity and stereopsis of the right eye were measured before and during the acceleration. Acceleration <0.1 g in the X- or Y-axis did not affect dynamic vision and stereopsis. Vision decreased (mean from 0.02 logMAR to 0.25 logMAR) and stereopsis declined significantly (mean from 40 s to 60.2 s of arc) when Gx > 0.1 g. Visual acuity worsened (mean from 0.02 logMAR to 0.19 logMAR) and poor stereopsis was noted (mean from 40 s to 50.2 s of arc) when Gy > 0.1 g. The effect of acceleration from the X-axis on the visual system was higher than that from the Y-axis. During acceleration, most subjects complained of ocular strain when reading. To our knowledge, this study is the first to report the exact levels of visual function loss during Gx and Gy. PMID:25607601

  16. Effects of horizontal acceleration on human visual acuity and stereopsis.

    PubMed

    Horng, Chi-Ting; Hsieh, Yih-Shou; Tsai, Ming-Ling; Chang, Wei-Kang; Yang, Tzu-Hung; Yauan, Chien-Han; Wang, Chih-Hung; Kuo, Wu-Hsien; Wu, Yi-Chang

    2015-01-19

    The effect of horizontal acceleration on human visual acuity and stereopsis is demonstrated in this study. Twenty participants (mean age 22.6 years) were enrolled in the experiment. Acceleration from two different directions was performed at the Taiwan High-Speed Rail Laboratory. Gx and Gy (< and >0.1 g) were produced on an accelerating platform where the subjects stood. The visual acuity and stereopsis of the right eye were measured before and during the acceleration. Acceleration <0.1 g in the X- or Y-axis did not affect dynamic vision and stereopsis. Vision decreased (mean from 0.02 logMAR to 0.25 logMAR) and stereopsis declined significantly (mean from 40 s to 60.2 s of arc) when Gx > 0.1 g. Visual acuity worsened (mean from 0.02 logMAR to 0.19 logMAR) and poor stereopsis was noted (mean from 40 s to 50.2 s of arc) when Gy > 0.1 g. The effect of acceleration from the X-axis on the visual system was higher than that from the Y-axis. During acceleration, most subjects complained of ocular strain when reading. To our knowledge, this study is the first to report the exact levels of visual function loss during Gx and Gy.

  17. C IV Broad Absorption Line Acceleration in Sloan Digital Sky Survey Quasars

    NASA Astrophysics Data System (ADS)

    Grier, C. J.; Brandt, W. N.; Hall, P. B.; Trump, J. R.; Filiz Ak, N.; Anderson, S. F.; Green, Paul J.; Schneider, D. P.; Sun, M.; Vivek, M.; Beatty, T. G.; Brownstein, Joel R.; Roman-Lopes, Alexandre

    2016-06-01

    We present results from the largest systematic investigation of broad absorption line (BAL) acceleration to date. We use spectra of 140 quasars from three Sloan Digital Sky Survey programs to search for global velocity offsets in BALs over timescales of ≈2.5-5.5 years in the quasar rest frame. We carefully select acceleration candidates by requiring monolithic velocity shifts over the entire BAL trough, avoiding BALs with velocity shifts that might be caused by profile variability. The C iv BALs of two quasars show velocity shifts consistent with the expected signatures of BAL acceleration, and the BAL of one quasar shows a velocity-shift signature of deceleration. In our two acceleration candidates, we see evidence that the magnitude of the acceleration is not constant over time; the magnitudes of the change in acceleration for both acceleration candidates are difficult to produce with a standard disk-wind model or via geometric projection effects. We measure upper limits to acceleration and deceleration for 76 additional BAL troughs and find that the majority of BALs are stable to within about 3% of their mean velocities. The lack of widespread acceleration/deceleration could indicate that the gas producing most BALs is located at large radii from the central black hole and/or is not currently strongly interacting with ambient material within the host galaxy along our line of sight.

  18. Cerebrolysin Accelerates Metamorphosis and Attenuates Aging-Accelerating Effect of High Temperature in Drosophila Melanogaster

    PubMed Central

    Navrotskaya, V.; Vorobyova, L.; Sharma, H.; Muresanu, D.; Summergrad, P.

    2015-01-01

    Cerebrolysin® (CBL) is a neuroprotective drug used for the treatment of neurodegenerative diseases. CBL’s mechanisms of action remain unclear. Involvement of tryptophan (TRP)–kynurenine (KYN) pathway in neuroprotective effect of CBL might be suggested considering that modulation of KYN pathway of TRP metabolism by CBL, and protection against eclosion defect and prolongation of life span of Drosophila melanogaster with pharmacologically or genetically-induced down-regulation of TRP conversion into KYN. To investigate possible involvement of TRP–KYN pathway in mechanisms of neuroprotective effect of CBL, we evaluated CBL effects on metamorphosis and life span of Drosophila melanogaster maintained at 23 °C and 28 °C ambient temperature. CBL accelerated metamorphosis, exerted strong tendency (p = 0.04) to prolong life span in female but not in male flies, and attenuated aging-accelerating effect of high (28 °C) ambient temperature in both female and male flies. Further research of CBL effects on metamorphosis and resistance to aging-accelerating effect of high temperature might offer new insights in mechanisms of its neuroprotective action and expand its clinical applications. PMID:25798213

  19. Dissolution deceleration of calcium phosphate crystals at constant undersaturation

    NASA Astrophysics Data System (ADS)

    Zhang, Jingwu; Nancollas, G. H.

    1992-09-01

    The dissolution of dicalcium phosphate dihydrate (CaHPO 4·2H 2O) and octacalcium phosphate (Ca 8H 2(PO 4) 6·5H 2O) has been followed as a function of time at constant undersaturations. The rate, after correction for changes in crystal surface area, decreases with time in spite of the sustained driving force, suggesting a decrease in the density of active sites on the crystal surface. This deceleration becomes more pronounced as the undersaturation decreases, leading to an increase in the effective dissolution order. The results of experiments in both Ultrapure and Reagent grade electrolyte solutions suggest that gradual contamination of the crystal surface is unlikely to account for the rate deceleration which may be interpreted by a decrease in the dislocation density during dissolution.

  20. Deceleration in advance in the Nagel-Schreckenberg traffic flow model

    NASA Astrophysics Data System (ADS)

    Li, Xin-Gang; Gao, Zi-You; Jia, Bin; Jiang, Rui

    2009-05-01

    Based on the Nagel-Schreckenberg model, we study the impact of deceleration in advance on the dynamics of traffic flow. In the process of deceleration in advance, the effect of reaction delay and the effect of expectation are considered respectively. The traffic flow properties are studied by analyzing the fundamental diagram, spatio-temporal patterns, distance headway distribution and car accidents. The simulation results show that reaction delay brings complex traffic flow patterns and expectation makes the serious car accidents rarely happen.

  1. Failure Mode Effects Analysis for an Accelerator Control System

    SciTech Connect

    Hartman, Steven M

    2009-01-01

    Failure mode effects analysis (FMEA) has been used in industry for design, manufacturing and assembly process quality control. It describes a formal approach for categorizing how a process may fail and for prioritizing failures based on their severity, frequency and likelihood of detection. Experience conducting a partial FMEA of an accelerator subsystem and its related control system will be reviewed. The applicability of the FMEA process to an operational accelerator control system will be discussed.

  2. Rotary Wing Deceleration Use on Titan

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Steiner, Ted J.

    2011-01-01

    Rotary wing decelerator (RWD) systems were compared against other methods of atmospheric deceleration and were determined to show significant potential for application to a system requiring controlled descent, low-velocity landing, and atmospheric research capability on Titan. Design space exploration and down-selection results in a system with a single rotor utilizing cyclic pitch control. Models were developed for selection of a RWD descent system for use on Titan and to determine the relationships between the key design parameters of such a system and the time of descent. The possibility of extracting power from the system during descent was also investigated.

  3. Asymmetry in the reconstructed deceleration parameter

    NASA Astrophysics Data System (ADS)

    Bernal, Carla; Cárdenas, Víctor H.; Motta, Veronica

    2017-02-01

    We study the orientation dependence of the reconstructed deceleration parameter as a function of redshift. We use the Union 2 and Loss datasets, and the well known preferred axis discussed in the literature, and find the best fit reconstructed deceleration parameter. Our results show that a low redshift transition of the reconstructed q (z) is clearly absent in one direction and amazingly sharp in the opposite one. We discuss the possibility that such behavior can be associated to large scale structures affecting the data.

  4. Summary of Attached Inflatable Decelerator (AID) Development

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Summary of Attached Inflatable Decelerator (AID) Development. Attached inflatable decelerators (AID) were tested in an environmental chamber, a spin tunnel, and a wind tunnel. Deployment tests were conducted in environmental chamber to examine guided and unguided water alcohol vapor inflation. Subsonic performance tests were conducted in the spin tunnel. The full-scale wind tunnel was used for AID gust and supersonic performance tests. The supersonic tests were conducted at Mach number 3.0 with 12 ounces of fluid and Mach number 2.2 with six ounces of fluid. [Entire movie available on DVD from CASI as Doc ID 20070030992. Contact help@sti.nasa.gov

  5. Estimates of effects of residual acceleration on USML-1 experiments

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.

    1995-01-01

    The purpose of this study effort was to develop analytical models to describe the effects of residual accelerations on the experiments to be carried on the first U.S. Microgravity Lab mission (USML-1) and to test the accuracy of these models by comparing the pre-flight predicted effects with the post-flight measured effects. After surveying the experiments to be performed on USML-1, it became evident that the anticipated residual accelerations during the USML-1 mission were well below the threshold for most of the primary experiments and all of the secondary (Glovebox) experiments and that the only set of experiments that could provide quantifiable effects, and thus provide a definitive test of the analytical models, were the three melt growth experiments using the Bridgman-Stockbarger type Crystal Growth Furnace (CGF). This class of experiments is by far the most sensitive to low level quasi-steady accelerations that are unavoidable on space craft operating in low earth orbit. Because of this, they have been the drivers for the acceleration requirements imposed on the Space Station. Therefore, it is appropriate that the models on which these requirements are based are tested experimentally. Also, since solidification proceeds directionally over a long period of time, the solidified ingot provides a more or less continuous record of the effects from acceleration disturbances.

  6. Safer Roadside Crash Walls Would Limit Deceleration

    NASA Technical Reports Server (NTRS)

    Schneider, William C.; Locke, James P.

    2003-01-01

    The figure depicts the aspects of a proposed deceleration-limiting design for crash walls at the sides of racetracks and highways. The proposal is intended to overcome the disadvantages of both rigid barriers and kinetic-energy-absorbing barriers of prior design. Rigid barriers can keep high-speed crashing motor vehicles from leaving roadways and thereby prevent injury to nearby persons and objects, but they can also subject the occupants of the vehicles to deceleration levels high enough to cause injury or death. Kinetic-energy-absorbing barriers of prior design reduce deceleration levels somewhat, but are not designed to soften impacts optimally; moreover, some of them allow debris to bounce back onto roadways or onto roadside areas, and, in cases of glancingly incident vehicles, some of them can trap the vehicles in such a manner as to cause more injury than would occur if the vehicles were allowed to skid along the rigid barriers. The proposed crash walls would (1) allow tangentially impacting vehicles to continue sliding along the racetrack without catching them, (2) catch directly impacting vehicles to prevent them from injuring nearby persons and objects, and (3) absorb kinetic energy in a more nearly optimum way to limit decelerations to levels that human occupants could survive.

  7. A study of ablation effects for an axisymmetric electromagnetic accelerator

    SciTech Connect

    Ikuta, K. . Inst. of Plasma Physics)

    1989-01-01

    In order to give the additional forward thrust to the projectile other than the electromagnetic force, the axial symmetric launcher called ablation mass driver (AMD) has been proposed using sequential z pinches in a cylindrical electrode array. The additional driving force originates from the reaction of ablating hot gas from the ablator on the rear of the projectile, since the Joule heating by the high electric current for electromagnetic acceleration is not negligiblly small. The ablated gas becomes plasma which propagates along the field-null line of z pinch, giving the forward thrust to the projectile. A proto type AMD has been built at Texas Tech University in order to see the capabilities of AMD as a launcher, although a study on the effect of ablation will remain as a future work. This paper describes a device of accelerating water blob for the study of ablation effect during acceleration together with the experimental results.

  8. Performance Limiting Effects in X-Band Accelerators

    SciTech Connect

    Wang Faya; Adolphsen, Chris; Nantista, Christopher

    2010-11-04

    Acceleration gradient is a critical parameter for the design of future TeV-scale linear colliders. The major obstacle to higher gradient in room-temperature accelerators is rf breakdown, which is still a very mysterious phenomenon that depends on the geometry and material of the accelerator as well as the input power and operating frequency. Pulsed heating has been associated with breakdown for many years however there have been no experiments that clearly separate field and heating effects on the breakdown rate. Recently, such experiments have been performed at SLAC with both standing-wave and travelling-wave structures. These experiments have demonstrated that pulsed heating is limiting the gradient. Also, a dual-moded cavity has been designed to better distinguish the electric field, magnetic field and pulsed heating effects on breakdown.

  9. EARTH’S ROTATIONAL DECELERATION: DETERMINATION OF TIDAL FRICTION INDEPENDENT OF TIMESCALES

    SciTech Connect

    Deines, Steven D.; Williams, Carol A. E-mail: cw@math.usf.edu

    2016-04-15

    This paper determines Earth's rotational deceleration without relying on atomic or ephemeris timescales. Earth's rotation defines the civil time standard called Universal Time (UT). Our previous paper did not examine tidal friction in depth when analyzing the timescale divergence between UT and International Atomic Time (TAI). We examine all available paleontological fossils and deposits for the direct measurements of Earth's past rotation rates, because that record includes all contributing effects. We examine paleontological reports that date Earth's rotation rate using corals, bivalves, brachiopods, rhythmites, and stromatolites. Contributions that vary Earth's moment of inertia, such as continental plate drifts, coastline changes, ice age formations, and viscous glacial rebounds, are superimposed with the secular deceleration. The average deceleration of Earth's rotation rate from all available fossil data is found to be (5.969 ± 1.762) × 10{sup −7} rad yr{sup −2}. Our value is 99.8% of the total rotational deceleration determined by Christodoulidis et al., who used artificial satellite data, and our value is 96.6% of the expected tidal friction value obtained by Stephenson and Morrison. Taking the derivative of conserved angular momentum, the predicted lunar orbital deceleration caused by the average rotational deceleration corresponds closely to lunar models. When evaluating the significant time gaps between UT and TAI, Earth's rotational deceleration is a minor contributing factor. Also, the secular deceleration rate is necessary to correctly date ancient astronomical events. We strongly encourage that more ocean paleontological evidence be found to supplement the record to separate the many periodic variations embedded in these data.

  10. Earth’s Rotational Deceleration: Determination of Tidal Friction Independent of Timescales

    NASA Astrophysics Data System (ADS)

    Deines, Steven D.; Williams, Carol A.

    2016-04-01

    This paper determines Earth's rotational deceleration without relying on atomic or ephemeris timescales. Earth's rotation defines the civil time standard called Universal Time (UT). Our previous paper did not examine tidal friction in depth when analyzing the timescale divergence between UT and International Atomic Time (TAI). We examine all available paleontological fossils and deposits for the direct measurements of Earth's past rotation rates, because that record includes all contributing effects. We examine paleontological reports that date Earth's rotation rate using corals, bivalves, brachiopods, rhythmites, and stromatolites. Contributions that vary Earth's moment of inertia, such as continental plate drifts, coastline changes, ice age formations, and viscous glacial rebounds, are superimposed with the secular deceleration. The average deceleration of Earth's rotation rate from all available fossil data is found to be (5.969 ± 1.762) × 10-7 rad yr-2. Our value is 99.8% of the total rotational deceleration determined by Christodoulidis et al., who used artificial satellite data, and our value is 96.6% of the expected tidal friction value obtained by Stephenson and Morrison. Taking the derivative of conserved angular momentum, the predicted lunar orbital deceleration caused by the average rotational deceleration corresponds closely to lunar models. When evaluating the significant time gaps between UT and TAI, Earth's rotational deceleration is a minor contributing factor. Also, the secular deceleration rate is necessary to correctly date ancient astronomical events. We strongly encourage that more ocean paleontological evidence be found to supplement the record to separate the many periodic variations embedded in these data.

  11. How Can People Be so Good at Intercepting Accelerating Objects if They Are so Poor at Visually Judging Acceleration?

    PubMed Central

    Rodriguez, Inés Abalo; Muñoz, Victor Estal; Schootemeijer, Sabine; Mahieu, Yannick; Veerkamp, Kirsten; Zandbergen, Marit; van der Zee, Tim; Smeets, Jeroen BJ

    2016-01-01

    People are known to be very poor at visually judging acceleration. Yet, they are extremely proficient at intercepting balls that fall under gravitational acceleration. How is this possible? We previously found that people make systematic errors when trying to tap on targets that move with different constant accelerations or decelerations on interleaved trials. Here, we show that providing contextual information that indicates how the target will decelerate on the next trial does not reduce such errors. Such errors do rapidly diminish if the same deceleration is present on successive trials. After observing several targets move with a particular acceleration or deceleration without attempting to tap on them, participants tapped as if they had never experienced the acceleration or deceleration. Thus, people presumably deal with acceleration when catching or hitting a ball by compensating for the errors that they made on preceding attempts. PMID:27482367

  12. Effects of chronic acceleration on body composition

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.

    1982-01-01

    Studies of the centrifugation of adult rats showed an unexpected decrease in the mass of fat-free muscle and bone, in spite of the added load induced by centrifugation. It is suggested that the lower but constant fat-free body mass was probably regulated during centrifugation. Rats placed in weightless conditions for 18.5 days gave indirect but strong evidence that the muscle had increased in mass. Other changes in the rats placed in weightless conditions included a smaller fraction of skeletal mineral, a smaller fraction of water in the total fat-free body, and a net shift of fluid from skin to viscera. Adult rats centrifuged throughout the post-weaning growth period exhibited smaller masses of bone and central nervous system (probably attributable to slower growth of the total body), and a larger mass of skin than controls at 1 G. Efforts at simulating the effects of weightlessness or centrifugation on the body composition of rats by regimens at terrestrial gravity were inconclusive.

  13. SHARP EDGE EFFECTS OF THE MAGNETS OF A FFAG ACCELERATOR.

    SciTech Connect

    RUGGIERO, A.G.

    2004-10-13

    The paper discusses the issues, the consequences and the methods for controlling the edge effects caused by particles entering and leaving magnets with trajectories at non-vanishing angles with the edges in FFAG accelerators made of Non-Scaling Lattices.

  14. Ground motions and its effects in accelerator design

    SciTech Connect

    Fischer, G.E.

    1984-07-01

    This lecture includes a discussion of types of motion, frequencies of interest, measurements at SLAC, some general comments regarding local sources of ground motion at SLAC, and steps that can be taken to minimize the effects of ground motion on accelerators. (GHT)

  15. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  16. Stray-electron accumulation and effects in HIF accelerators

    SciTech Connect

    Cohen, R.H.; Friedman, A.; Furman, M.A.; Lund, S.M.; Molvik, A.W.; Stoltz, P.; Vay, J.-L.

    2003-05-07

    Stray electrons can be introduced in positive-charge accelerators for heavy ion fusion (or other applications) as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. Electron accumulation is impacted by the ion beam potential, accelerating fields, multipole magnetic fields used for beam focus, and the pulse duration. We highlight the distinguishing features of heavy-ion accelerators as they relate to stray-electron issues, and present first results from a sequence of simulations to characterize the electron cloud that follows from realistic ion distributions. Also, we present ion simulations with prescribed random electron distributions, undertaken to begin to quantify the effects of electrons on ion beam quality.

  17. Progress in Modeling Electron Cloud Effects in HIF Accelerators

    NASA Astrophysics Data System (ADS)

    Cohen, R. H.; Friedman, A.; Molvik, A. W.; Azevedo, A.; Vay, J.-L.; Furman, M. A.; Stoltz, P. H.

    2003-10-01

    Stray electrons can arise in positive-charge accelerators for heavy ion fusion (or other applications) from ionization of gas (ambient or released from walls), or via secondary emission. Their accumulation is affected by the beam potential and duration, and the accelerating and confining fields. We present electron orbit simulations which show the resultant e-cloud distribution; ion simulations with prescribed e-clouds which show the effect on ion beam quality; a gyro-averaged model for including electron dynamics in ion simulations, and its implementation status; and progress in merging the capabilities of WARP (3-D PIC code for HIF) (D.P. Grote, A. Friedman, I. Haber, Proc. 1996 Comp. Accel. Physics Conf., AIP Proc. 391), 51 (1996), with those of POSINST (e-clouds in high-energy accelerators) (M.A. Furman, LBNL-41482/CBP Note 247/LHC Project Report 180, May 20, 1998).

  18. Magnetohydrodynamic Effects in Propagating Relativistic Ejecta: Reverse Shock and Magnetic Acceleration

    NASA Technical Reports Server (NTRS)

    Mizuno, Y.; Nishikawa, K.I.; Zhang, B.; Giacomazzo, B.; Hardee, P.E.; Nagataki, S.; Hartmann, D.H.

    2008-01-01

    We solve the Riemann problem for the deceleration of arbitrarily magnetized relativistic ejecta injected into a static unmagnetized medium. We find that for the same initial Lorentz factor, the reverse shock becomes progressively weaker with increasing magnetization s (the Poynting-to-kinetic energy flux ratio), and the shock becomes a rarefaction wave when s exceeds a critical value, sc, defined by the balance between the magnetic pressure in the ejecta and the thermal pressure in the forward shock. In the rarefaction wave regime, we find that the rarefied region is accelerated to a Lorentz factor that is significantly larger than the initial value. This acceleration mechanism is due to the strong magnetic pressure in the ejecta.

  19. Plasma acceleration using a radio frequency self-bias effect

    SciTech Connect

    Rafalskyi, D.; Aanesland, A.

    2015-06-15

    In this work plasma acceleration using a RF self-bias effect is experimentally studied. The experiments are conducted using a novel plasma accelerator system, called Neptune, consisting of an inductively coupled plasma source and a RF-biased set of grids. The plasma accelerator can operate in a steady state mode, producing a plasma flow with separately controlled plasma flux and velocity without any magnetic configuration. The operating pressure at the source output is as low as 0.2 mTorr and can further be decreased. The ion and electron flows are investigated by measuring the ion and electron energy distribution functions both space resolved and with different orientations with respect to the flow direction. It is found that the flow of electrons from the source is highly anisotropic and directed along the ion flow and this global flow of accelerated plasma is well localized in the plasma transport chamber. The maximum flux is about 7.5·10{sup 15} ions s{sup −1} m{sup −2} (at standard conditions) on the axis and decreasing to almost zero at a radial distances of more than 15 cm from the flow axis. Varying the RF acceleration voltage in the range 20–350 V, the plasma flow velocity can be changed between 10 and 35 km/s. The system is prospective for different technology such as space propulsion and surface modification and also interesting for fundamental studies for space-related plasma simulations and investigation of the dynamo effect using accelerated rotating plasmas.

  20. The effect of assisted and resisted sprint training on acceleration and velocity in Division IA female soccer athletes.

    PubMed

    Upton, David E

    2011-10-01

    This investigation evaluated the effects of a 4-week, 12-session training program using resisted sprint training (RST), assisted sprint training (AST), and traditional sprint training (TST) on maximal velocity and acceleration in National Collegiate Athletic Association (NCAA) Division IA female soccer athletes (n = 27). The subjects, using their respective training modality, completed 10 maximal effort sprints of 20 yd (18.3 m) followed by a 20-yd (18.3 m) deceleration to jog. Repeated measures multivariate analyses of variance and analyses of variance demonstrated significant (p < 0.001) 3-way interactions (time × distance × group) and 2-way interactions (time × group), respectively, for both velocity and acceleration. Paired t-tests demonstrated that maximum 40-yd (36.6-m) velocity increased significantly in both the AST (p < 0.001) and RST (p < 0.05) groups, with no change in the TST group. Five-yard (4.6-m), 15-yd (13.7 m), 5- to 15-yd (4.6- to 13.7-m) acceleration increased significantly (p < 0.01) in the AST group and did not change in the RST and TST groups. Fifteen- to 25-yd (13.7- to 22.9-m) acceleration increased significantly (p < 0.01) in the RST group, decreased significantly (p < 0.01) in the AST group, and was unchanged in the TST group. Twenty-five to 40-yd (22.9- to 36.6-m) acceleration increased significantly (p < 0.05) in the RST group and remained unchanged in the AST and TST groups. It is purposed that the increased 5-yd (4.6-m) and 15-yd (13.7-m) accelerations were the result of enhanced neuromuscular facilitation in response to the 12-session supramaximal training protocol. Accordingly, it is suggested that athletes participating in short distance acceleration events (i.e., ≤15 yd; ≤13.7 m) use AST protocols, whereas athletes participating in events that require greater maximum velocity (i.e., >15 yd; > 13.7 m) should use resisted sprint training protocols.

  1. Decelerating and Trapping Large Polar Molecules.

    PubMed

    Patterson, David

    2016-11-18

    Manipulating the motion of large polyatomic molecules, such as benzonitrile (C6 H5 CN), presents significant difficulties compared to the manipulation of diatomic molecules. Although recent impressive results have demonstrated manipulation, trapping, and cooling of molecules as large as CH3 F, no general technique for trapping such molecules has been demonstrated, and cold neutral molecules larger than 5 atoms have not been trapped (M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, G. Rempe, Nature 2012, 491, 570-573). In particular, extending Stark deceleration and electrostatic trapping to such species remains challenging. Here, we propose to combine a novel "asymmetric doublet state" Stark decelerator with recently demonstrated slow, cold, buffer-gas-cooled beams of closed-shell volatile molecules to realize a general system for decelerating and trapping samples of a broad range of volatile neutral polar prolate asymmetric top molecules. The technique is applicable to most stable volatile molecules in the 100-500 AMU range, and would be capable of producing trapped samples in a single rotational state and at a motional temperature of hundreds of mK. Such samples would immediately allow for spectroscopy of unprecedented resolution, and extensions would allow for further cooling and direct observation of slow intramolecular processes such as vibrational relaxation and Hertz-level tunneling dynamics.

  2. Regulating the infrared by mode matching: A massless scalar in expanding spaces with constant deceleration

    SciTech Connect

    Janssen, T. M.; Prokopec, T.

    2011-04-15

    In this paper we consider a massless scalar field, with a possible coupling {xi} to the Ricci scalar in a D dimensional Friedmann-Lemaitre-Robertson-Walker space-time with a constant deceleration parameter q={epsilon}-1, {epsilon}=-H/H{sup 2}. Correlation functions for the Bunch-Davies vacuum of such a theory have long been known to be infrared divergent for a wide range of values of {epsilon}. We resolve these divergences by explicitly matching the space-time under consideration to a space-time without infrared divergencies. Such a procedure ensures that all correlation functions with respect to the vacuum in the space-time of interest are infrared finite. In this newly defined vacuum we construct the coincidence limit of the propagator and as an example calculate the expectation value of the stress-energy tensor. We find that this approach gives both in the ultraviolet and in the infrared satisfactory results. Moreover, we find that, unless the effective mass due to the coupling to the Ricci scalar {xi}R is negative, quantum contributions to the energy density always dilute away faster, or just as fast, as the background energy density. Therefore, quantum backreaction is insignificant at the one-loop order, unless {xi}R is negative. Finally we compare this approach with known results where the infrared is regulated by placing the Universe in a finite box. In an accelerating universe, the results are qualitatively the same, provided one identifies the size of the Universe with the physical Hubble radius at the time of the matching. In a decelerating universe, however, the two schemes give different late time behavior for the quantum stress-energy tensor. This happens because in this case the length scale at which one regulates the infrared becomes sub-Hubble at late times.

  3. Static Trapping of Polar Molecules in a Traveling Wave Decelerator

    NASA Astrophysics Data System (ADS)

    Quintero-Pérez, Marina; Jansen, Paul; Wall, Thomas E.; van den Berg, Joost E.; Hoekstra, Steven; Bethlem, Hendrick L.

    2013-03-01

    We present experiments on decelerating and trapping ammonia molecules using a combination of a Stark decelerator and a traveling wave decelerator. In the traveling wave decelerator, a moving potential is created by a series of ring-shaped electrodes to which oscillating high voltages (HV) are applied. By lowering the frequency of the applied voltages, the molecules confined in the moving trap are decelerated and brought to a standstill. As the molecules are confined in a true 3D well, this kind of deceleration has practically no losses, resulting in a great improvement on the usual Stark deceleration techniques. The necessary voltages are generated by amplifying the output of an arbitrary wave generator using fast HV amplifiers, giving us great control over the trapped molecules. We illustrate this by experiments in which we adiabatically cool trapped NH3 and ND3 molecules and resonantly excite their motion.

  4. Project MX-981: John Paul Stapp and Deceleration Research.

    PubMed

    Chandler, R F

    2001-11-01

    Project MX-981, Effects of Deceleration Forces of High Magnitude on Man, was initiated in 1945 by the U.S. Army Air Force Aero Medical Laboratory at Wright Field, Ohio to confirm the feasibility of a "40 g" crash restraint system for pilots of military aircraft. Captain John Paul Stapp, MD, was selected to carry out this work. This paper provides historical background and perspective for that project, and summarizes Dr. Stapp's work on that Project at Edwards AFB, California, and his subsequent tests at Holloman AFB, New Mexico.

  5. Detachment of secondary dendrite arm in a directionally solidified Sn-Ni peritectic alloy under deceleration growth condition

    PubMed Central

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie; Fu, Hengzhi

    2016-01-01

    In order to better understand the detachment mechanism of secondary dendrite arm during peritectic solidification, the detachment of secondary dendrite arm from the primary dendrite arms in directionally solidified Sn-36at.%Ni peritectic alloys is investigated at different deceleration rates. Extensive detachment of secondary dendrite arms from primary stem is observed below peritectic reaction temperature TP. And an analytical model is established to characterize the detachment process in terms of the secondary dendrite arm spacing λ2, the root radius of detached arms and the specific surface area (SV) of dendrites. It is found that the detachment mechanism is caused by not only curvature difference between the tips and roots of secondary branches, but also that between the thicker secondary branches and the thinner ones. Besides, this detachment process is significantly accelerated by the temperature gradient zone melting (TGZM) effect during peritectic solidification. It is demonstrated that the reaction constant (f) which is used to characterize the kinetics of peritectic reaction is crucial for the determination of the detachment process. The value of f not only changes with growth rate but also with solidification time at a given deceleration rate. In conclusion, these findings help the better understanding of the detachment mechanism. PMID:27270334

  6. Detachment of secondary dendrite arm in a directionally solidified Sn-Ni peritectic alloy under deceleration growth condition

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie; Fu, Hengzhi

    2016-06-01

    In order to better understand the detachment mechanism of secondary dendrite arm during peritectic solidification, the detachment of secondary dendrite arm from the primary dendrite arms in directionally solidified Sn-36at.%Ni peritectic alloys is investigated at different deceleration rates. Extensive detachment of secondary dendrite arms from primary stem is observed below peritectic reaction temperature TP. And an analytical model is established to characterize the detachment process in terms of the secondary dendrite arm spacing λ2, the root radius of detached arms and the specific surface area (SV) of dendrites. It is found that the detachment mechanism is caused by not only curvature difference between the tips and roots of secondary branches, but also that between the thicker secondary branches and the thinner ones. Besides, this detachment process is significantly accelerated by the temperature gradient zone melting (TGZM) effect during peritectic solidification. It is demonstrated that the reaction constant (f) which is used to characterize the kinetics of peritectic reaction is crucial for the determination of the detachment process. The value of f not only changes with growth rate but also with solidification time at a given deceleration rate. In conclusion, these findings help the better understanding of the detachment mechanism.

  7. Laser-assisted Stark deceleration of polar diatomic molecules in the Χ1Σ state

    NASA Astrophysics Data System (ADS)

    Huang, Yunxia; Xu, Shuwu; Yang, Xiaohua

    2016-07-01

    The traditional Stark deceleration method is difficult to apply in chemically stable polar diatomic molecules in their ground (Χ1Σ) state because the Χ1Σ state normally experiences little Stark shift and the rovibronic ground level is mostly high-field-seeking. To solve this problem, we propose a laser-assisted Stark deceleration scheme to decelerate such molecules in the present paper. Our results show that, owing to the transverse bunching effect of the applied red-detuning laser beam, the molecules of the high-field-seeking level |J = 0, M = 0> in the Χ1Σ state can be effectively decelerated. Furthermore, the present scheme is more effective because the interaction between the molecules and the combined fields can produce the pseudo-first-order Stark effect, and thus increase the depth of the effective potential. Compared to those molecules in the low-field-seeking state |J = 1, MΩ = -1> in the usual electrostatic Stark deceleration, a higher molecular density and lower velocity can be achieved under an equivalent initial phase angle.

  8. Universe acceleration and nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2015-12-01

    A new model of nonlinear electrodynamics with a dimensional parameter β coupled to gravity is considered. We show that an accelerated expansion of the universe takes place if the nonlinear electromagnetic field is the source of the gravitational field. A pure magnetic universe is investigated, and the magnetic field drives the universe to accelerate. In this model, after the big bang, the universe undergoes inflation and the accelerated expansion and then decelerates approaching Minkowski spacetime asymptotically. We demonstrate the causality of the model and a classical stability at the deceleration phase.

  9. Effect of Accelerator Impedance on Electron Cloud Instability

    NASA Astrophysics Data System (ADS)

    Allen, Brian; Muggli, Patric; Fischer, Wolfram; Blaskiewicz, Michael; Katsouleas, Thomas

    2009-11-01

    Interaction between a beam and electron clouds (e-cloud) present in circular accelerators is known to limit accelerator performances through instabilities, beam loss, beam-blowup, and the resulting reduced luminosity. The RHIC beam is most susceptible to instabilities as it crosses energy transition (γt=22.9) and it is posited that ring impedance could play a role in the development of instabilities during this transition. We use the quasi-static particle in cell code QuickPIC to describe the interaction between the RHIC Au beam and the electron cloud. In QuickPIC the electron cloud density is uniform around the ring and the beam has a constant beta function given by the accelerator circumference and the beam tune. We incorporate in the current QuickPIC version the ring impedance for a circular accelerator and we take a first look at the effect this impedance has on the beam and e-cloud interaction for typical RHIC parameters.

  10. Detrimental Effects of Discectomy on Intervertebral Disc Biology can be Decelerated by Growth Factor Treatment during Surgery – A large animal organ culture model

    PubMed Central

    Illien-Jünger, S.; Lu, Y.; Purmessur, D.; Mayer, J.E.; Walter, B.A.; Roughley, P.J.; Qureshi, S.A.; Hecht, A.C.; Iatridis, J.C.

    2014-01-01

    BACKGROUND CONTEXT Lumbar discectomies are common surgical interventions that treat radiculopathy by removing herniated and loose intervertebral disc (IVD) tissues. However, remaining IVD tissue can continue to degenerate resulting in long-term clinical problems. Little information is available on the effects of discectomy on IVD biology. Currently no treatments exist that can suspend or reverse the degeneration of the remaining IVD. PURPOSE To improve knowledge how discectomy procedures influence IVD physiology and to assess the potential of growth-factor treatment as an augmentation during surgery STUDY DESIGN To determine effects of discectomy on IVDs with and without TGFβ3 augmentation using bovine IVD organ culture. METHODS This study determined effects of discectomy with and without TGFβ3 injection using 1, 6, and 19 days organ culture experiments. Treated IVDs were injected with 0.2μg TGFβ3 in 20μl PBS+BSA into several locations of the discectomy site. Cell viability, gene expression, nitric-oxide release, IVD height, aggrecan degradation, and proteoglycan content were determined. RESULTS Discectomy significantly increased cell death, aggrecan degradation and nitric-oxide release in healthy IVDs. TGFβ3 injection treatment prevented or mitigated those effects for the 19 days culture period. CONCLUSIONS Discectomy procedures induced cell death, catabolism and nitric-oxide production in healthy IVDs, and we conclude that post-discectomy degeneration is likely to be associated with cell death and matrix degradation. TGFβ3 injection augmented discectomy procedures by acting to protect IVD tissues by maintaining cell viability, limiting matrix degradation and suppressing nitric-oxide. We conclude that discectomy procedures can be improved with injectable therapies at the time of surgery although further in vivo and human studies are required. PMID:24768749

  11. Predictors of older drivers' involvement in rapid deceleration events.

    PubMed

    Chevalier, A; Coxon, K; Chevalier, A J; Clarke, E; Rogers, K; Brown, J; Boufous, S; Ivers, R; Keay, L

    2017-01-01

    Rapid deceleration occurs when substantial force slows the speed of a vehicle. Rapid deceleration events (RDEs) have been proposed as a surrogate safety measure. As there is concern about crash involvement of older drivers and the effect of age-related declining visual and cognitive function on driving performance, we examined the relationship between RDEs and older driver's vision, cognitive function and driving confidence, using naturalistic driving measures. Participants aged 75 to 94 years had their vehicle instrumented for 12 months. To minimise the chance of identifying false positives, accelerometer data was processed to identify RDEs with a substantial deceleration of >750 milli-g (7.35m/s(2)). We examined the incidence of RDEs amongst older drivers, and how this behaviour is affected by differences in age; sex; visual function, cognitive function; driving confidence; and declines over the 12 months. Almost two-thirds (64%) of participants were involved in at least one RDE, and 22% of these participants experienced a meaningful decline in contrast sensitivity during the 12 months. We conducted regression modelling to examine associations between RDEs and predictive measures adjusted for (i) duration of monitoring and (ii) distance driven. We found the rate of RDEs per distance increased with age; although, this did not remain in the multivariate model. In the multivariate model, we found older drivers who experienced a decline in contrast sensitivity over the 12 months and those with lower baseline driving confidence were at increased risk of involvement in RDEs adjusted for distance driven. In other studies, contrast sensitivity has been associated with increased crash involvement for older drivers. These findings lend support for the use of RDEs as a surrogate safety measure, and demonstrate an association between a surrogate safety measure and a decline in contrast sensitivity of older drivers.

  12. Importance, reliability and usefulness of acceleration measures in team sports.

    PubMed

    Delaney, Jace A; Cummins, Cloe J; Thornton, Heidi R; Duthie, Grant M

    2017-02-08

    The ability to accelerate, decelerate and change direction efficiently is imperative to successful team-sports performance. Traditional intensity-based thresholds for acceleration and deceleration may be inappropriate for time-series data, and have been shown to exhibit poor reliability, suggesting other techniques may be preferable. This study assessed movement data from one professional rugby league team throughout two full seasons and one pre-season period. Using both 5 Hz and 10 Hz global positioning systems (GPS) units, a range of acceleration-based variables were evaluated for their inter-unit reliability, ability to discriminate between positions, and associations with perceived muscle soreness. The reliability of 5 Hz GPS for measuring acceleration and deceleration ranged from good to poor (CV = 3.7-27.1%), with the exception of high-intensity deceleration efforts (CV = 11.1-11.8%), the 10 Hz units exhibited moderate to good inter-unit reliability (CV = 1.2-6.9%). Reliability of average metrics (average acceleration/deceleration, average acceleration and average deceleration) ranged from good to moderate (CV = 1.2-6.5%). Substantial differences were detected between positions using time spent accelerating and decelerating for all magnitudes, but these differences were less clear when considering the count or distance above acceleration/deceleration thresholds. All average metrics detected substantial differences between positions. All measures were similarly related to perceived muscle soreness, with the exception of high-intensity acceleration and deceleration counts. This study has proposed that averaging the acceleration/deceleration demands over an activity may be a more appropriate method compared to threshold-based methods, due to a greater reliability between units, whilst not sacrificing sensitivity to within and between-subject changes.

  13. High Altitude Supersonic Decelerator Test Vehicle

    NASA Technical Reports Server (NTRS)

    Cook, Brant T.; Blando, Guillermo; Kennett, Andrew; Von Der Heydt, Max; Wolff, John Luke; Yerdon, Mark

    2013-01-01

    The Low Density Supersonic Decelerator (LDSD) project is tasked by NASA's Office of the Chief Technologist (OCT) to advance the state of the art in Mars entry and descent technology in order to allow for larger payloads to be delivered to Mars at higher altitudes with better accuracy. The project will develop a 33.5 m Do Supersonic Ringsail (SSRS) parachute, 6m attached torus, robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R), and an 8 m attached isotensoid, exploration class Supersonic Inflatable Aerodynamic Decelerator (SIAD-E). The SSRS and SIAD-R should be brought to TRL-6, while the SIAD-E should be brought to TRL-5. As part of the qualification and development program, LDSD must perform a Mach-scaled Supersonic Flight Dynamics Test (SFDT) in order to demonstrate successful free flight dynamic deployments at Mars equivalent altitude, of all three technologies. In order to perform these tests, LDSD must design and build a test vehicle to deliver all technologies to approximately 180,000 ft and Mach 4, deploy a SIAD, free fly to approximately Mach 2, deploy the SSRS, record high-speed and high-resolution imagery of both deployments, as well as record data from an instrumentation suite capable of characterizing the technology induced vehicle dynamics. The vehicle must also be recoverable after splashdown into the ocean under a nominal flight, while guaranteeing forensic data protection in an off nominal catastrophic failure of a test article that could result in a terminal velocity, tumbling water impact.

  14. Effects of changing from non-accelerated to accelerated MRI for follow-up in brain atrophy measurement.

    PubMed

    Leung, Kelvin K; Malone, Ian M; Ourselin, Sebastien; Gunter, Jeffrey L; Bernstein, Matt A; Thompson, Paul M; Jack, Clifford R; Weiner, Michael W; Fox, Nick C

    2015-02-15

    Stable MR acquisition is essential for reliable measurement of brain atrophy in longitudinal studies. One attractive recent advance in MRI is to speed up acquisition using parallel imaging (e.g. reducing volumetric T1-weighted acquisition scan times from around 9 to 5 min). In some studies, a decision to change to an accelerated acquisition may have been deliberately taken, while in others repeat scans may occasionally be accidentally acquired with an accelerated acquisition. In ADNI, non-accelerated and accelerated scans were acquired in the same scanning session on each individual. We investigated the impact on brain atrophy as measured by k-means normalized boundary shift integral (KN-BSI) and deformation-based morphometry when changing from non-accelerated to accelerated MRI acquisitions over a 12-month interval using scans of 422 subjects from ADNI. KN-BSIs were calculated using both a non-accelerated baseline scan and non-accelerated 12-month scans (i.e. consistent acquisition), and a non-accelerated baseline scan and an accelerated 12-month scan (i.e. changed acquisition). Fluid-based non-rigid registration was also performed on those scans to estimate the brain atrophy rate. We found that the effect on KN-BSI and fluid-based non-rigid registration depended on the scanner manufacturer. For KN-BSI, in Philips and Siemens scanners, the change had very little impact on the measured atrophy rate (increase of 0.051% in Philips and -0.035% in Siemens from consistent acquisition to changed acquisition), whereas, in GE, the change caused a mean reduction of 0.65% in the brain atrophy rate. This is likely due to the difference in tissue contrast between gray matter and cerebrospinal fluid in the non-accelerated and accelerated scans in GE, which uses IR-FSPGR instead of MP-RAGE. For fluid-based non-rigid registration, the change caused a mean increase of 0.29% in the brain atrophy rate in the changed acquisition compared with consistent acquisition in Philips

  15. Performance Limiting Effects in X-Band Accelerators

    SciTech Connect

    Wang, Faya; Adolphsen, Chris; Nantista, Christopher; /SLAC

    2012-06-11

    Acceleration gradient is a critical parameter for the design of future TeV-scale linear colliders. The major obstacle to higher gradient in room-temperature accelerators is rf breakdown, which is still a very mysterious phenomenon that depends on the geometry and material of the accelerator as well as the input power and operating frequency. Pulsed heating has been associated with breakdown for many years; however, there have been no experiments that clearly separate field and heating effects on the breakdown rate. Recently, such experiments have been performed at SLAC with both standing-wave and traveling-wave structures. These experiments have demonstrated that pulsed heating is limiting the gradient. Nevertheless the X-band structures breakdown studies show damage to the iris surfaces in locations of high electric field rather than of high magnetic field after thousands of breakdowns. It is not yet clear how the relative roles of electric field, magnetic field, and heating factor into the damage caused by rf breakdown. Thus, a dual-moded cavity has been designed to better study the electric field, magnetic field, and pulsed heating effects on breakdown damage.

  16. Multi-dimensional effects in radiation pressure acceleration of ions

    SciTech Connect

    Tripathi, V. K.

    2015-07-31

    A laser carries momentum. On reflection from an ultra-thin overdense plasma foil, it deposits recoil momentum on the foil, i.e. exerts radiation pressure on the foil electrons and pushes them to the rear. The space charge field thus created takes the ions along, accelerating the electron-ion double layer as a single unit. When the foil has surface ripple, of wavelength comparable to laser wavelength, the radiation pressure acts non-uniformly on the foil and the perturbation grows as Reyleigh-Taylor (RT) instability as the foil moves. The finite spot size of the laser causes foil to bend. These effects limit the quasi-mono energy acceleration of ions. Multi-ion foils, e.g., diamond like carbon foil embedded with protons offer the possibility of suppressing RT instability.

  17. Inflatable Aerocapture Decelerators for Mars Orbiters

    NASA Technical Reports Server (NTRS)

    Brown, Glen J.; Lingard, J. Stephen; Darley, Matthew G.; Underwood, John C.

    2007-01-01

    A multi-disciplinary research program was recently completed, sponsored by NASA Marshall Space Flight Center, on the subject of aerocapture of spacecraft weighing up to 5 metric tons at Mars. Heavier spacecraft will require deployable drag area beyond the dimensional limits of current and planned launch fairings. This research focuses on the approach of lightweight inflatable decelerators constructed with thin films, using fiber reinforcement and having a temperature limitation of 500 C. Trajectory analysis defines trajectories for a range of low ballistic coefficients for which convective heat flux is compatible with the material set. Fluid-Structure Interaction (FSI) tools are expanded to include the rarified flow regime. Several non-symmetrical configurations are evaluated for their capability to develop lift as part of the necessary trajectory control strategy. Manufacturing technology is developed for 3-D stretch forming of polyimide films and for tailored fiber reinforcement of thin films. Finally, the mass of the decelerator is estimated and compared to the mass of a traditional rigid aeroshell.

  18. Bare Conductive Tether for Decelerating a Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Vaughn, Jason; Welzyn, Ken; Ballance, Judy; Carroll, Joe; Lorenzini, Enrico; Estes, bob; Schuler, Pete; Mojazza, hamid; Lennhoff, John

    2007-01-01

    A document describes a prototype of electrically conductive tethers to be used primarily to decelerate spacecraft and/or generate electric power for the spacecraft. Like prior such tethers, this tether is designed so that when it is deployed from a spacecraft in orbit, its motion across the terrestrial magnetic field induces an electric current. The Lorentz force on the current decelerates the spacecraft. Optionally, the current can be exploited to convert some orbital kinetic energy to electric energy for spacecraft systems. Whereas the conductive portions of prior such tethers are covered with electrical insulation except for end electrodes that make contact with the ionosphere, this tether includes a conductive portion that is insulated along part of its length but deliberately left bare along a substantial remaining portion of its length to make contact with the ionosphere. The conductive portions of the tether are made of coated thin aluminum wires wrapped around strong, lightweight aromatic polyamide braids. The main advantages of the present partly-bare-tether design over the prior all-insulated-tether design include greater resistance to degradation by the impact of monatomic oxygen at orbital altitude and speed and greater efficiency in collecting electrons from the ionosphere.

  19. Delivery Ring Lattice Modifications for Transitionless Deceleration

    SciTech Connect

    Johnstone, J. A.; Syphers, M. J.

    2016-10-09

    A portion of the remnant Tevatron program infrastruc- ture at Fermilab is being reconfigured to be used for the generation and delivery of proton and muon beams for new high-precision particle physics experiments. With the 8 GeV Booster as its primary source, the Mu2e exper- iment will receive 8.9 GeV/c bunched beam on target, after being stored and slow spilled from the Delivery Ring (DR) -- a refurbished debuncher ring from Tevatron anti- proton production. For the Muon g-2 experiment, the DR will be tuned for 3.1 GeV/c to capture muons off of a target before sending them to this experiment's Storage Ring. The apertures in the beam transport systems are optimized for the large muon beams of this lower-energy experiment. In order to provide further flexibility in the operation of the DR for future possible low-energy, high- intensity particle physics experiments (REDTOP[1], for example) and detector development, investigations are underway into the feasibility of decelerating beams from its maximum kinetic energy of 8 GeV level to lower en- ergies, down to 1-2 GeV. In this paper we look at possi- ble lattice modifications to the DR to avoid a transition crossing during the deceleration process. Hardware re- quirements and other operational implications of this scheme will also be discussed.

  20. Monitoring accelerations with GPS in football: time to slow down?

    PubMed

    Buchheit, Martin; Al Haddad, Hani; Simpson, Ben M; Palazzi, Dino; Bourdon, Pitre C; Di Salvo, Valter; Mendez-Villanueva, Alberto

    2014-05-01

    The aims of the current study were to examine the magnitude of between-GPS-models differences in commonly reported running-based measures in football, examine between-units variability, and assess the effect of software updates on these measures. Fifty identical-brand GPS units (15 SPI-proX and 35 SPIproX2, 15 Hz, GPSports, Canberra, Australia) were attached to a custom-made plastic sled towed by a player performing simulated match running activities. GPS data collected during training sessions over 4 wk from 4 professional football players (N = 53 files) were also analyzed before and after 2 manufacturer-supplied software updates. There were substantial differences between the different models (eg, standardized difference for the number of acceleration >4 m/s2 = 2.1; 90% confidence limits [1.4, 2.7], with 100% chance of a true difference). Between-units variations ranged from 1% (maximal speed) to 56% (number of deceleration >4 m/s2). Some GPS units measured 2-6 times more acceleration/deceleration occurrences than others. Software updates did not substantially affect the distance covered at different speeds or peak speed reached, but 1 of the updates led to large and small decreases in the occurrence of accelerations (-1.24; -1.32, -1.15) and decelerations (-0.45; -0.48, -0.41), respectively. Practitioners are advised to apply care when comparing data collected with different models or units or when updating their software. The metrics of accelerations and decelerations show the most variability in GPS monitoring and must be interpreted cautiously.

  1. Stability of accelerated plasma: Effects of compressibility and viscosity

    SciTech Connect

    Gonzalez, A.G.; Gratton, J.; Gratton, F.T. )

    1989-12-01

    The linear stability of accelerated plasmas is studied. It is considered an unperturbed state that allows stratification of density and magnetic field in the plasma, as well as a plasma-vacuum interface. We consider the effect of compressibility and show that it enlarges the spectrum of unstable modes, as well as increases the growth rate. Stability criteria and growth rates are given both for internal and surface modes. On the other hand, viscous effects on solenoidal modes are considered. The limiting cases of highly collisional and strongly magnetized plasmas are analyzed, showing different behavior. General properties of the spectrum are derived by means of normal mode and variational analysis.

  2. Suppressing Parasitic Effects in a Long Dielectric Wakefield Accelerator

    SciTech Connect

    Shchegolkov, Dmitry; Simakov, Evgenya Ivanovna; Jing, Chunguang; Li, Chen; Zholents, Alexander A.; Power, John G.

    2014-08-27

    Dielectric wakefield acceleration is a promising concept for increasing the accelerating gradient above the limits of conventional accelerators. Although superior gradients are reported in short dielectric wakefield accelerator tubes, problems arise when it comes to efficiency and multi-meter long interaction lengths. Here we discuss possible issues and provide some solutions backed by simulations.

  3. Polymer enrichment decelerates surfactant membranes near interfaces

    NASA Astrophysics Data System (ADS)

    Lipfert, F.; Frielinghaus, H.; Holderer, O.; Mattauch, S.; Monkenbusch, M.; Arend, N.; Richter, D.

    2014-04-01

    Close to a planar surface, lamellar structures are imposed upon otherwise bulk bicontinuous microemulsions. Thermally induced membrane undulations are modified by the presence of the rigid interface. While it has been shown that a pure membrane's dynamics are accelerated close to the interface, we observed nearly unchanged relaxation rates for membranes spiked with large amphiphilic diblock copolymers. An increase of the polymer concentration by a factor of 2-3 for the first and second surfactant membrane layers was observed. We interpret the reduced relaxation times as the result of an interplay between the bending rigidity and the characteristic distance of the first surfactant membrane to the rigid interface, which causes the hydrodynamic and steric interface effects described in Seifert's theory. The influence of these effects on decorated membranes yields a reduction of the frequencies and an amplification of the amplitudes of long-wavelength undulations, which are in accordance to our experimental findings.

  4. Single event effects in high-energy accelerators

    NASA Astrophysics Data System (ADS)

    García Alía, Rubén; Brugger, Markus; Danzeca, Salvatore; Cerutti, Francesco; de Carvalho Saraiva, Joao Pedro; Denz, Reiner; Ferrari, Alfredo; Foro, Lionel L.; Peronnard, Paul; Røed, Ketil; Secondo, Raffaello; Steckert, Jens; Thurel, Yves; Toccafondo, Iacocpo; Uznanski, Slawosz

    2017-03-01

    The radiation environment encountered at high-energy hadron accelerators strongly differs from the environment relevant for space applications. The mixed-field expected at modern accelerators is composed of charged and neutral hadrons (protons, pions, kaons and neutrons), photons, electrons, positrons and muons, ranging from very low (thermal) energies up to the TeV range. This complex field, which is extensively simulated by Monte Carlo codes (e.g. FLUKA) is due to beam losses in the experimental areas, distributed along the machine (e.g. collimation points) and deriving from the interaction with the residual gas inside the beam pipe. The resulting intensity, energy distribution and proportion of the different particles largely depends on the distance and angle with respect to the interaction point as well as the amount of installed shielding material. Electronics operating in the vicinity of the accelerator will therefore be subject to both cumulative damage from radiation (total ionizing dose, displacement damage) as well as single event effects which can seriously compromise the operation of the machine. This, combined with the extensive use of commercial-off-the-shelf components due to budget, performance and availability reasons, results in the need to carefully characterize the response of the devices and systems to representative radiation conditions.

  5. Hydrodynamic Scaling of the Deceleration-Phase Rayleigh-Taylor Instability for Inertial Confinement Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Bose, A.; Betti, R.; Woo, K.; Nora, R.

    2014-10-01

    Hydrodynamic equivalence and ignition theory allow for the extrapolation of OMEGA experiments to ignition-scale implosions. The yield-over-clean (YOC = measured yield/1-D yield) depicts the effect of hydro-instabilities on inertial confinement fusion implosions. A 2-D study of the deceleration-phase Rayleigh-Taylor instability (RTI) is carried out to assess the YOC scaling with target size at varying nonuniformity levels. The deceleration-phase ablative RTI is mitigated by the hot-spot thermal and radiation transport, which do not scale hydro-equivalently. Scaling of the thermal conduction shows that hot-spot ablation velocity is higher on OMEGA than on the National Ignition Facility (NIF), resulting in higher RTI growth factors on the NIF. Radiation emitted in the hot-spot makes the implosion nearly hydro-equivalent by increasing the density gradient scale length on the NIF. Thermal conduction and radiation both are nonscalable physics in the deceleration phase, with complementary impacts the scaling of deceleration-phase RTI. Analytic and numerical study of the deceleration-phase RTI on OMEGA and NIF-scale targets show that YOCNIF ~ YOCΩ considering identical laser imprinting and normalized ice roughness levels. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Office of Fusion Energy Sciences Number DE-FG02-04ER54786.

  6. A piloted simulator investigation of helicopter precision decelerating approaches to hover to determine single-pilot IFR /SPIFR/ requirements

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.; Peach, L. L., Jr.; Hess, R. A.; Ross, V. L.; Hall, G. W.; Gerdes, R. M.

    1979-01-01

    The results of single-pilot instrument flight rules (SPIFR) experiments conducted on the NASA-Ames V/STOLAND simulator are presented. Several factors having a significant impact on requirements for helicopter SPIFR decelerating, steep approaches to landing are considered: (1) approach weather conditions, (2) flight path geometry, (3) deceleration guidance law, (4) level of stability and command augmentation, (5) cockpit display sophistication, (6) accuracy of navigation aids, and (7) helipad lighting and visual aids. Particular emphasis is placed on the relative effects of deceleration profile, control augmentation, and flight director parameters on pilot performance, workload, and opinion rating. Problems associated with the development of a pilot acceptance analytical methodology are outlined.

  7. Supersonic Decelerator on 'Right Track' for Future Mars Missions

    NASA Video Gallery

    Project Manager, Mark Adler, and Principal Investigator, Ian Clark describe the innovative testing being conducted by the Low Density Supersonic Decelerator (LDSD) project. Combining very large sup...

  8. Aerodynamic Heating and Deceleration During Entry into Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Aerodynamic Heating and Deceleration During Entry into Planetary Atmospheres. Dr. Chapman's lecture examines the physics behind spacecraft entry into planetary atmospheres. He explains how scientists determine if a planet has an atmosphere and how scientists can compute deceleration when the atmospheric conditions are unknown. Symbols and equations used for calculations for aerodynamic heating and deceleration are provided. He also explains heat transfer in bodies approaching an atmosphere, deceleration, and the use of ablation in protecting spacecraft from high temperatures during atmospheric entry. [Entire movie available on DVD from CASI as Doc ID 20070030962. Contact help@sti.nasa.gov

  9. Effect of Exercise Training and +Gz Acceleration Training on Men

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Simonson, Shawn R.; Stocks, Jodie M.; Evans, Joyce; Knapp, Charles F.; Cowell, Stephenie A.; Pemberton, Kendra N.; Wilson, Heather W.; Vener, Jamie M.; Evetts, Simon N.

    2001-01-01

    Countermeasures for reduction in work capacity (maximal oxygen uptake and strength) during spaceflight and enhanced orthostatic intolerance during re-entry, landing and egress from the return vehicle are continuing problems. The purpose for this study was to test the hypothesis that passive-acceleration training; supine, interval, exercise plus acceleration training and exercise combined with acceleration training would improve orthostatic tolerance in ambulatory men; and that addition of the aerobic exercise conditioning would not alter this improved tolerance from that of passive-acceleration training. Seven men (24-38 yr) underwent "Passive" training on the Ames human-powered centrifuge (HPC) for 30 min, "Exercise" training on the cycle ergometer with constant +Gz acceleration; and "Combined" exercise training at 40% to 90% of the HPC +Gz(max) exercise level. Maximal supine exercise loads increased significant (P<0.05) by 8.3% (Passive), 12.6% (Exercise), and by 15.4% (Combined) after training, but their post-training maximal oxygen uptakes and maximal heart rates were unchanged. Maximal time to fatigue (endurance) was unchanged with Passive was increased (P<0.05) with Exercise and Combined training. Thus, the exercise in the Exercise and Combined training Phases resulted in greater maximal loads and endurance without effect on maximal oxygen uptake or heart rate. There was a 4% to 6% increase (P<0.05) in all four quadriceps muscle volumes (right and left) after post-Combined training. Resting pre-tilt heart rate was elevated by 12.9% (P<0.05) only after Passive training suggesting that the exercise training attenuated the HR response. Plasma volume (% Delta) was uniformly decreased by 8% to 14% (P<0.05) at tilt-tolerance pre- vs. post-training indicating essentially no effect of training on the level of hypovolemia. Post-training tilt-tolerance time and heart rate were increased (P<0.05) only with Passive training by 37.8% and by 29.1%, respectively. Thus

  10. Flight-Path Characteristics for Decelerating From Supercircular Speed

    NASA Technical Reports Server (NTRS)

    Luidens, Roger W.

    1961-01-01

    Characteristics of the following six flight paths for decelerating from a supercircular speed are developed in closed form: constant angle of attack, constant net acceleration, constant altitude" constant free-stream Reynolds number, and "modulated roll." The vehicles were required to remain in or near the atmosphere, and to stay within the aerodynamic capabilities of a vehicle with a maximum lift-drag ratio of 1.0 and within a maximum net acceleration G of 10 g's. The local Reynolds number for all the flight paths for a vehicle with a gross weight of 10,000 pounds and a 600 swept wing was found to be about 0.7 x 10(exp 6). With the assumption of a laminar boundary layer, the heating of the vehicle is studied as a function of type of flight path, initial G load, and initial velocity. The following heating parameters were considered: the distribution of the heating rate over the vehicle, the distribution of the heat per square foot over the vehicle, and the total heat input to the vehicle. The constant G load path at limiting G was found to give the lowest total heat input for a given initial velocity. For a vehicle with a maximum lift-drag ratio of 1.0 and a flight path with a maximum G of 10 g's, entry velocities of twice circular appear thermo- dynamically feasible, and entries at velocities of 2.8 times circular are aerodynamically possible. The predominant heating (about 85 percent) occurs at the leading edge of the vehicle. The total ablated weight for a 10,000-pound-gross-weight vehicle decelerating from an initial velocity of twice circular velocity is estimated to be 5 percent of gross weight. Modifying the constant G load flight path by a constant-angle-of-attack segment through a flight- to circular-velocity ratio of 1.0 gives essentially a "point landing" capability but also results in an increased total heat input to the vehicle.

  11. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    SciTech Connect

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  12. An ion beam deceleration lens for ultra-low-energy ion bombardment of naked DNA

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Prakrajang, K.; Thongkumkoon, P.; Suwannakachorn, D.; Yu, L. D.

    2013-07-01

    Study of low-energy ion bombardment effect on biological living materials is of significance. High-energy ion beam irradiation of biological materials such as organs and cells has no doubt biological effects. However, ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range. To investigate effects from very-low-energy ion bombardment on biological materials, an ion beam deceleration lens is necessary for uniform ion energy lower than keV. A deceleration lens was designed and constructed based on study of the beam optics using the SIMION program. The lens consisted of six electrodes, able to focus and decelerate primary ion beam, with the last one being a long tube to obtain a parallel uniform exiting beam. The deceleration lens was installed to our 30-kV bioengineering-specialized ion beam line. The final decelerated-ion energy was measured using a simple electrostatic field to bend the beam to range from 10 eV to 1 keV controlled by the lens parameters and the primary beam condition. In a preliminary test, nitrogen ion beam at 60 eV decelerated from a primary 20-keV beam bombarded naked plasmid DNA. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks. The study demonstrated that the ion bombardment with energy as low as several-tens eV was possible to break DNA strands and thus potential to cause genetic modification of biological cells.

  13. Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.

    2013-01-01

    In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.

  14. Holocene deceleration of the Greenland Ice Sheet.

    PubMed

    MacGregor, Joseph A; Colgan, William T; Fahnestock, Mark A; Morlighem, Mathieu; Catania, Ginny A; Paden, John D; Gogineni, S Prasad

    2016-02-05

    Recent peripheral thinning of the Greenland Ice Sheet is partly offset by interior thickening and is overprinted on its poorly constrained Holocene evolution. On the basis of the ice sheet's radiostratigraphy, ice flow in its interior is slower now than the average speed over the past nine millennia. Generally higher Holocene accumulation rates relative to modern estimates can only partially explain this millennial-scale deceleration. The ice sheet's dynamic response to the decreasing proportion of softer ice from the last glacial period and the deglacial collapse of the ice bridge across Nares Strait also contributed to this pattern. Thus, recent interior thickening of the Greenland Ice Sheet is partly an ongoing dynamic response to the last deglaciation that is large enough to affect interpretation of its mass balance from altimetry.

  15. Holocene deceleration of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    MacGregor, Joseph A.; Colgan, William T.; Fahnestock, Mark A.; Morlighem, Mathieu; Catania, Ginny A.; Paden, John D.; Gogineni, S. Prasad

    2016-02-01

    Recent peripheral thinning of the Greenland Ice Sheet is partly offset by interior thickening and is overprinted on its poorly constrained Holocene evolution. On the basis of the ice sheet’s radiostratigraphy, ice flow in its interior is slower now than the average speed over the past nine millennia. Generally higher Holocene accumulation rates relative to modern estimates can only partially explain this millennial-scale deceleration. The ice sheet’s dynamic response to the decreasing proportion of softer ice from the last glacial period and the deglacial collapse of the ice bridge across Nares Strait also contributed to this pattern. Thus, recent interior thickening of the Greenland Ice Sheet is partly an ongoing dynamic response to the last deglaciation that is large enough to affect interpretation of its mass balance from altimetry.

  16. Case of extreme growth deceleration after burns.

    PubMed

    Bline, Cheryl; Dylewski, Maggie L; Driscoll, Daniel N; Fuzaylov, Gennadiy

    2014-05-01

    Studies have demonstrated deceleration in both weight and height following burns in children. It is expected patients will display catch up growth and return to normal weight within three years but continued height deficiency may remain in cases of severe burns. We describe a case of severe growth retardation of 8 years old orphan child from Ukraine who suffered of burn less than 40% of total body surface area when he was a 3 years of life. His case was complicated by domestic abuse, neglect and limited medical care. He initially presented to the United States for surgical care of his contractures but his treatment quickly focused on his profound growth retardation. Despite aggressive nutritional supplementation and evaluation he did not demonstrate any weight gain.

  17. Two-dimensional descent through a compressible atmosphere: Sequential deceleration of an unpowered load

    NASA Astrophysics Data System (ADS)

    Silverman, M. P.

    2010-02-01

    Equations, based on Rayleigh's drag law valid for high Reynolds number, are derived for two-dimensional motion through a compressible atmosphere in isentropic equilibrium, such as characterizes the Earth's troposphere. Solutions yield horizontal and vertical displacement, velocity, and acceleration as a function of altitude and ground-level temperature. An exact analytical solution to the equations linearized in the aero-thermodynamic parameter is given; in general the equations must be solved numerically. The theory, applied to the unpowered fall of a large aircraft stabilized to flat descent by symmetrical, sequential deployment of horizontal and vertical decelerators, shows that such an aircraft can be brought down with mean peak deployment and impact decelerations below 10g.

  18. Lightweight, variable solidity knitted parachute fabric. [for aerodynamic decelerators

    NASA Technical Reports Server (NTRS)

    Matthews, F. R., Jr.; White, E. C. (Inventor)

    1973-01-01

    A parachute fabric for aerodynamic decelerator applications is described. The fabric will permit deployment of the decelerator at high altitudes and low density conditions. The fabric consists of lightweight, highly open, circular knitted parachute fabric with ribbon-like yarns to assist in air deflection.

  19. Modified hydraulic braking system limits angular deceleration to safe values

    NASA Technical Reports Server (NTRS)

    Briggs, R. S.; Council, M.; Green, P. M.

    1966-01-01

    Conventional spring actuated, hydraulically released, fail-safe disk braking system is modified to control the angular deceleration of a massive antenna. The hydraulic system provides an immediate preset pressure to the spring-loaded brake shoes and holds it at this value to decelerate the antenna at the desired rate.

  20. Mutagenic effect of accelerated heavy ions on bacterial cells

    NASA Astrophysics Data System (ADS)

    Boreyko, A. V.; Krasavin, E. A.

    2011-11-01

    The heavy ion accelerators of the Joint Institute for Nuclear Research were used to study the regularities and mechanisms of formation of different types of mutations in prokaryote cells. The induction of direct (lac-, ton B-, col B) mutations for Esherichia coli cells and reverse his- → His+ mutations of Salmonella typhimurium, Bacillus subtilis cells under the action of radiation in a wide range of linear energy transfer (LET) was studied. The regularities of formation of gene and structural (tonB trp-) mutations for Esherichia coli bacteria under the action of accelerated heavy ions were studied. It was demonstrated that the rate of gene mutations as a function of the dose under the action of Γ rays and accelerated heavy ions is described by linear-quadratic functions. For structural mutations, linear "dose-effect" dependences are typical. The quadratic character of mutagenesis dose curves is determined by the "interaction" of two independent "hitting" events in the course of SOS repair of genetic structures. The conclusion made was that gene mutations under the action of accelerated heavy ions are induced by δ electron regions of charged particle tracks. The methods of SOS chromotest, SOS lux test, and λ prophage induction were used to study the regularities of SOS response of cells under the action of radiations in a wide LET range. The following proposition was substantiated: the molecular basis for formation of gene mutations are cluster single-strand DNA breaks, and that for structural mutations, double-strand DNA breaks. It was found out that the LET dependence of the relative biological efficiency of accelerated ions is described by curves with a local maximum. It was demonstrated that the biological efficiency of ionizing radiations with different physical characteristics on cells with different genotype, estimated by the lethal action, induction of gene and deletion mutations, precision excision of transposons, is determined by the specific

  1. Bunch self-focusing regime of laser wakefield acceleration with reduced emittance growth.

    PubMed

    Reitsma, A J W; Goloviznin, V V; Kamp, L P J; Schep, T J

    2002-01-07

    A new regime of laser wakefield acceleration of an injected electron bunch is described. In this regime, the bunch charge is so high that the bunch wakefields play an important role in the bunch dynamics. In particular, the transverse bunch wakefield induces a strong self-focusing that suppresses the transverse emittance growth arising from misalignment errors. The decelerating longitudinal bunch wakefield, however, is not so strong that it completely cancels the accelerating laser wakefield. In fact, the induced energy spread can be compensated by exploiting phase slippage effects. These features make the new regime interesting for high beam quality laser wakefield acceleration.

  2. Speed Profiles for Deceleration Guidance During Rollout and Turnoff (ROTO)

    NASA Technical Reports Server (NTRS)

    Barker, L. Keith; Hankins, Walter W., III; Hueschen, Richard M.

    1999-01-01

    Two NASA goals are to enhance airport safety and to improve capacity in all weather conditions. This paper contributes to these goals by examining speed guidance profiles to aid a pilot in decelerating along the runway to an exit. A speed profile essentially tells the pilot what the airplane's speed should be as a function of where the airplane is on the runway. While it is important to get off the runway as soon as possible (when striving to minimize runway occupancy time), the deceleration along a speed profile should be constrained by passenger comfort. Several speed profiles are examined with respect to their maximum decelerations and times to reach exit speed. One profile varies speed linearly with distance; another has constant deceleration; and two related nonlinear profiles delay maximum deceleration (braking) to reduce time spent on the runway.

  3. Elongation effects on the Therac 6 linear accelerator.

    PubMed

    Dawson, D J

    1978-01-01

    The effects of field elongation on the central-axis output at dmax and on the depth-dose curves for the 6-MV x rays from the Therac 6 linear accelerator are considered. These parameters are independent of the collimator angle for both square and elongated fields. The exchange of collimator pairs results in significant output differences but has a negligible effect on the depth-dose curves. Both the central-axis output at dmax and the depth-dose curves agree satisfactorily with the predictions of the equivalent-square technique. An alternative method of greater accuracy is also indicated for the prediction of central-axis outputs at dmax for elongated fields.

  4. Background Pressure Effects on Krypton Hall Effect Thruster Internal Acceleration

    DTIC Science & Technology

    2013-08-01

    Technical Paper 3. DATES COVERED (From - To) August 2013- September 2013 4. TITLE AND SUBTITLE Background Pressure Effects on Krypton Hall Effect...Conference 2013, Washington, D.C., 6-10 October 2013. 14. ABSTRACT This study uses krypton propellant in a medium power Hall effect to amplify the...effect of background pressure due to the greater mobility of neutral krypton compared to neutral xenon. The use of krypton amplifies the effect of

  5. Responses to Deceleration during Car Following: Roles of Optic Flow, Warnings, Expectations, and Interruptions

    ERIC Educational Resources Information Center

    DeLucia, Patricia R.; Tharanathan, Anand

    2009-01-01

    More than 25% of accidents are rear-end collisions. It is essential to identify the factors that contribute to such collisions. One such factor is a driver's ability to respond to the deceleration of the car ahead. In Experiment 1, we measured effects of optic flow information and discrete visual and auditory warnings (brake lights, tones) on…

  6. Rotary-Wing Decelerators for Probe Descent Through the Atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Briggs, Geoffrey; Aiken, Edwin; Pisanich, Greg

    2005-01-01

    An innovative concept is proposed for atmospheric entry probe deceleration, wherein one or more deployed rotors (in autorotation or wind-turbine flow states) on the aft end of the probe effect controlled descent. This concept is particularly oriented toward probes intended to land safely on the surface of Venus. Initial work on design trade studies is discussed.

  7. Effects of rotational acceleration on flow and heat transfer in straight and swirl microchannels

    NASA Astrophysics Data System (ADS)

    Xie, Li-Yao; Xie, Yong-Qi; Yu, Jian-Zu; Gao, Hong-Xia; Xi, You-Min

    2012-06-01

    Electronic devices in aviation sustain the acceleration with variations in direction and magnitude. One problem is to reduce the adverse effect of acceleration on the performance of the heat exchanger. The microchannel is an innovational heat sink used for large heat dissipation. We designed two types of microchannel to study their flow and heat transfer characteristics under high-G acceleration. A centrifuge provided up to 15 g acceleration in a microchannel with FC-72 as the working fluid. The results show complicated flow and heat transfer characteristics at different acceleration directions, flow rates ranging from 10 to 15 L/h and a heat flux ranging from 35 to 80 W/cm2. The acceleration effects are reduced in the swirl microchannel compared with the traditional straight microchannels, and an increasing flow rate also resists acceleration. We perform an analysis of resistance against acceleration based on the forces exerted on each fluid particle.

  8. Acceleration of positrons by a relativistic electron beam in the presence of quantum effects

    SciTech Connect

    Niknam, A. R.; Aki, H.; Khorashadizadeh, S. M.

    2013-09-15

    Using the quantum magnetohydrodynamic model and obtaining the dispersion relation of the Cherenkov and cyclotron waves, the acceleration of positrons by a relativistic electron beam is investigated. The Cherenkov and cyclotron acceleration mechanisms of positrons are compared together. It is shown that growth rate and, therefore, the acceleration of positrons can be increased in the presence of quantum effects.

  9. Independent Orbiter Assessment (IOA): Analysis of the landing/deceleration subsystem

    NASA Technical Reports Server (NTRS)

    Compton, J. M.; Beaird, H. G.; Weissinger, W. D.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Landing/Deceleration Subsystem hardware. The Landing/Deceleration Subsystem is utilized to allow the Orbiter to perform a safe landing, allowing for landing-gear deploy activities, steering and braking control throughout the landing rollout to wheel-stop, and to allow for ground-handling capability during the ground-processing phase of the flight cycle. Specifically, the Landing/Deceleration hardware consists of the following components: Nose Landing Gear (NLG); Main Landing Gear (MLG); Brake and Antiskid (B and AS) Electrical Power Distribution and Controls (EPD and C); Nose Wheel Steering (NWS); and Hydraulics Actuators. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Due to the lack of redundancy in the Landing/Deceleration Subsystems there is a high number of critical items.

  10. Hypersonic Inflatable Aerodynamic Decelerator Ground Test Development

    NASA Technical Reports Server (NTRS)

    Del Corso, Jospeh A.; Hughes, Stephen; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony

    2015-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.

  11. Naturalistic rapid deceleration data: Drivers aged 75 years and older.

    PubMed

    Chevalier, Anna; Chevalier, Aran John; Clarke, Elizabeth; Coxon, Kristy; Brown, Julie; Rogers, Kris; Boufous, Soufiane; Ivers, Rebecca; Keay, Lisa

    2016-12-01

    The data presented in this article are related to the research manuscript "Predictors of older drivers' involvement in rapid deceleration events", which investigates potential predictors of older drivers' involvement in rapid deceleration events including measures of vision, cognitive function and driving confidence (A. Chevalier et al., 2016) [1]. In naturalistic driving studies such as this, when sample size is not large enough to allow crashes to be used to investigate driver safety, rapid deceleration events may be used as a surrogate safety measure. Naturalistic driving data were collected for up to 52 weeks from 182 volunteer drivers aged 75-94 years (median 80 years, 52% male) living in the suburban outskirts of Sydney. Driving data were collected using an in-vehicle monitoring device. Accelerometer data were recorded 32 times per second and Global Positioning System (GPS) data each second. To measure rapid deceleration behavior, rapid deceleration events (RDEs) were defined as having at least one data point at or above the deceleration threshold of 750 milli-g (7.35 m/s(2)). All events were constrained to a maximum 5 s duration. The dataset provided with this article contains 473 events, with a row per RDE. This article also contains information about data processing, treatment and quality control. The methods and data presented here may assist with planning and analysis of future studies into rapid deceleration behaviour using in-vehicle monitoring.

  12. Aerodynamic Models for the Low Density Supersonic Decelerator (LDSD) Test Vehicles

    NASA Technical Reports Server (NTRS)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2016-01-01

    An overview of aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign test vehicle is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a helium balloon, then accelerating the TV to Mach 4 and 53 km altitude with a solid rocket motor. Test flights conducted in June of 2014 (SFDT-1) and 2015 (SFDT-2) each successfully delivered a 6 meter diameter decelerator (SIAD-R) to test conditions and several seconds of flight, and were successful in demonstrating the SFDT flight system concept and SIAD-R technology. Aerodynamic models and uncertainties developed for the SFDT campaign are presented, including the methods used to generate them and their implementation within an aerodynamic database (ADB) routine for flight simulations. Pre- and post-flight aerodynamic models are compared against reconstructed flight data and model changes based upon knowledge gained from the flights are discussed. The pre-flight powered phase model is shown to have a significant contribution to off-nominal SFDT trajectory lofting, while coast and SIAD phase models behaved much as predicted.

  13. A divergence-free parametrization of deceleration parameter for scalar field dark energy

    NASA Astrophysics Data System (ADS)

    Al Mamon, Abdulla; Das, Sudipta

    2016-01-01

    In this paper, we have considered a spatially flat FRW universe filled with pressureless matter and dark energy (DE). We have considered a phenomenological parametrization of the deceleration parameter q(z) and from this, we have reconstructed the equation-of-state (EoS) for DE ωϕ(z). This divergence-free parametrization of the deceleration parameter is inspired from one of the most popular parametrization of the DE EoS given by Barboza and Alcaniz [see E. M. Barboza and J. S. Alcaniz, Phys. Lett. B 666 (2008) 415]. Using the combination of datasets (Type Ia Supernova (SN Ia) + Hubble + baryonic acoustic oscillations/cosmic microwave background (BAO/CMB)), we have constrained the transition redshift zt (at which the universe switches from a decelerating to an accelerating phase) and have found the best fit value of zt. We have also compared the reconstructed results of q(z) and ωϕ(z) and have found that the results are compatible with a ΛCDM universe if we consider SN Ia + Hubble data, but inclusion of BAO/CMB data makes q(z) and ωϕ(z) incompatible with ΛCDM model. The potential term for the present toy model is found to be functionally similar to a Higgs potential.

  14. Oblique Shock Wave Effects on Impulsively Accelerated Heavy Gas Column

    NASA Astrophysics Data System (ADS)

    Olmstead, Dell T.

    An experimental study was performed to elucidate the fundamental physics of shock-induced mixing for a simple three-dimensional interface. The interface studied consists of a gravity stabilized SF6-based heavy gas jet that produced a circular column with a diffuse interface into the surrounding air. The effects of density gradient (Atwood number, A), shock strength (Mach number, M), and column inclination angle (theta) were examined. Concentration was measured using Planar Laser Induced Fluorescence (PLIF) of an acetone vapor tracer mixed with the heavy gas jet and illuminated by a pulsed Nd-YAG laser. Shocks with Mach numbers of 1.13, 1.5, 1.7, and 2.0 were used for inclinations of 0° (planar normal shock wave), 20° and 30°. Columns with Atwood numbers of 0.25, 0.4, and 0.60 were tested at Mach 1.7 for inclinations of 0° and 20°. The oblique shock-accelerated cylindrical interface produced a typical Richtmyer-Meshkov instability (RMI) consisting of a primary counter-rotating vortices. The streamwise extent of the vortex pair in the centerline plane (cross-section) images of the column is proportional to √A/√ M, regardless of oblique shock angle for theta < 20. A heretofore unseen manifestation of Kelvin-Helmholtz (K-H) waves on the upstream edge of the column appear for oblique shock acceleration. The upstream edge K-H waves were observed in images from a vertical plane through the center of the column. The wavelength of the upstream edge K-H waves is proportional to theta/M ˙ √A. This upstream edge K-H instability (KHI) caused earlier onset of secondary instabilities in the primary RMI vortices seen in the centerline plane images. The combination of more rapid onset of secondary instabilities in the RMI and upstream edge KHI accelerated transition to turbulence and thus reduced the time to achieve well-mixed flow. Time to reach well-mixed flow was inversely related to Atwood number, and had a weak correlation with Mach number for M>1.13. Transition to

  15. Evaluation of pump characteristic from measurement of fast deceleration

    NASA Astrophysics Data System (ADS)

    Himr, Daniel; Habán, Vladimír

    2015-05-01

    Article describes an experiment where a pump connected to the simple hydraulic circuit is decelerated. Since the deceleration is fast enough the operating point of the machine moves from the initial steady position to the breaking zone, turbine zone and back to the new steady position. A dependence of the specific energy and the torque on the flow rate was evaluated from the measurement of the input and output pressure, torque and rotational speed recorded during the deceleration. Obtained characteristic is much wider than curves obtained from regular measurement of steady state.

  16. Aspect ratio effect on shock-accelerated elliptic gas cylinders

    NASA Astrophysics Data System (ADS)

    Zou, Liyong; Liao, Shenfei; Liu, Cangli; Wang, Yanping; Zhai, Zhigang

    2016-03-01

    The evolution of an elliptic heavy-gas (SF6) cylinder accelerated by a planar weak shock wave is investigated experimentally using particle image velocimetry (PIV) diagnostics, and the emphasis is on the aspect ratio effect on shock-elliptic cylinder interaction. Experiments are conducted at five different aspect ratios (the ratio of length in streamwise and spanwise directions) varied from 0.25 to 4.0. PIV raw images and quantitative flow field data are obtained at t = 0.6 ms after the shock impact. As the aspect ratio increases, the interface morphology develops faster owing to more vorticity produced along the interface and smaller vortex spacing between the two vortex cores. For each case in this study, the maximal fluctuating velocity locates at the middle point of the two counter-vortices. The histograms of fluctuating velocity reveal that a distinct double-peak structure appears in the largest aspect ratio case in comparison with a single-peak structure in the smallest aspect ratio case. The vortex velocities predicted by the theoretical model [G. Rudinger and L. M. Somers, "Behaviour of small regions of different gases carried in accelerated gas flows," J. Fluid Mech. 7, 161-176 (1960)] agree well with the experimental ones. With the increase of aspect ratio, the maximal value of vorticity increases as well as the circulation, and more low-magnitude quantities are generated, which indicates the formation of multi-scale flow structure in the late mixing process. It is found that the experimental circulation of the vortex motion is reasonably estimated by the ideal point vortex-pair model.

  17. Low energy highly charged ion beam facility at Inter University Accelerator Centre: Measurement of the plasma potential and ion energy distributions

    SciTech Connect

    Sairam, T. Bhatt, Pragya; Safvan, C. P.; Kumar, Ajit; Kumar, Herendra

    2015-11-15

    A deceleration lens coupled to one of the beam lines of the electron cyclotron resonance based low energy beam facility at Inter University Accelerator Centre is reported. This system is capable of delivering low energy (2.5 eV/q–1 keV/q) highly charged ion beams. The presence of plasma potential hinders the measurements of low energies (<50 eV), therefore, plasma potential measurements have been undertaken using a retarding plate analyzer in unison with the deceleration assembly. The distributions of the ion energies have been obtained and the effect of different source parameters on these distributions is studied.

  18. Accelerating quantum instanton calculations of the kinetic isotope effects

    SciTech Connect

    Karandashev, Konstantin; Vaníček, Jiří

    2015-11-21

    Path integral implementation of the quantum instanton approximation currently belongs among the most accurate methods for computing quantum rate constants and kinetic isotope effects, but its use has been limited due to the rather high computational cost. Here, we demonstrate that the efficiency of quantum instanton calculations of the kinetic isotope effects can be increased by orders of magnitude by combining two approaches: The convergence to the quantum limit is accelerated by employing high-order path integral factorizations of the Boltzmann operator, while the statistical convergence is improved by implementing virial estimators for relevant quantities. After deriving several new virial estimators for the high-order factorization and evaluating the resulting increase in efficiency, using ⋅H{sub α} + H{sub β}H{sub γ} → H{sub α}H{sub β} + ⋅ H{sub γ} reaction as an example, we apply the proposed method to obtain several kinetic isotope effects on CH{sub 4} + ⋅ H ⇌ ⋅ CH{sub 3} + H{sub 2} forward and backward reactions.

  19. Oscillating dark energy model in plane symmetric space-time with time periodic varying deceleration parameter

    NASA Astrophysics Data System (ADS)

    She, M.; Jiang, L. P.

    2014-12-01

    In this paper, an oscillating dark energy model is presented in an isotropic but inhomogeneous plane symmetric space-time by considering a time periodic varying deceleration parameter. We find three different types of new solutions which describe different scenarios of oscillating universe. The first two solutions show an oscillating universe with singularities. For the third one, the universe is singularity-free during the whole evolution. Moreover, the Hubble parameter oscillates and keeps positive which explores an interesting possibility to unify the early inflation and late time acceleration of the universe.

  20. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-01-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  1. Accelerator Stewardship Test Facility Program - Elliptical Twin Cavity for Accelerator Applications

    SciTech Connect

    Hutton, Andrew; Areti, Hari

    2015-08-01

    Funding is being requested pursuant to the proposals entitled Elliptical Twin Cavity for Accelerator Applications that was submitted and reviewed through the Portfolio Analysis and Management System (PAMS). The PAMS proposal identifier number is 0000219731. The proposed new type of superconducting cavity, the Elliptical Twin Cavity, is capable of accelerating or decelerating beams in two separate beam pipes. This configuration is particularly effective for high-current, low energy electron beams that will be used for bunched beam cooling of high-energy protons or ions. Having the accelerated beam physically separated from the decelerated beam, but interacting with the same RF mode, means that the low energy beam from the gun can be injected into to the superconducting cavity without bends enabling a small beam emittance to be maintained. A staff engineer who has been working with non-standard complicated cavity structures replaces the senior engineer (in the original budget) who is moving on to be a project leader. This is reflected in a slightly increased engineer time and in reduced costs. The Indirect costs for FY16 are lower than the previous projection. As a result, there is no scope reduction.

  2. Preferential acceleration and magnetic field enhancement in plasmas with e+/e- beam injection

    NASA Astrophysics Data System (ADS)

    Huynh, Cong Tuan; Ryu, Chang-Mo

    2016-03-01

    A theoretical model of current filaments predicting preferential acceleration/deceleration and magnetic field enhancement in a plasma with e+/e- beam injection is presented. When the e+/e- beams are injected into a plasma, current filaments are formed. The beam particles are accelerated or decelerated depending on the types of current filaments in which they are trapped. It is found that in the electron/ion ambient plasma, the e+ beam particles are preferentially accelerated, while the e- beam particles are preferentially decelerated. The preferential particle acceleration/deceleration is absent when the ambient plasma is the e+/e- plasma. We also find that the particle momentum decrease can explain the magnetic field increase during the development of Weibel/filamentation instability. Supporting simulation results of particle acceleration/deceleration and magnetic field enhancement are presented. Our findings can be applied to a wide range of astrophysical plasmas with the e+/e- beam injection.

  3. Design, manufacture, and testing of the Armstrong Hall drop tower decelerator

    NASA Astrophysics Data System (ADS)

    Ocampo, Jaime Andres

    A decelerator was needed for the Armstrong Hall Microgravity tower. Three designs were considered as concepts and the one chosen was an airbag. The airbag is 5 feet tall and 4.5 feet in diameter due to floor constraints. The deceleration was controlled by designing the vent system to provide the needed vent area as a function of time. This dynamics vent area controls the rate at which volume is expelled from the airbag. The volume expelled depends on the pressure inside the airbag, thus, a direct relation between the vent area and the deceleration profile was determined. The airbag and associated infrastructure was designed, manufactured, and tested. This system includes an airbag with a cushion on top to prevent wear, cart and rails, a drop package, and a latch and release system. More than forty tests were done with different drop height and drop weight combinations culminating in three drops of 200 lbs from the third floor. The drop weight was varied by adjusting the water level in a plastic barrel in the drop package. Pressure measurements inside the bag and vent were taken using two pressure transducers. The pressure transducers sampled the pressure at one of the exit vents and at the center of the bottom of the airbag. The signals were low-pass filtered for noise and scaled for pressure. The pressure traces were processed to find the mean deceleration. The deceleration was found to be independent of drop weight, only depending on drop height. The traces were also integrated to find a momentum per unit area. This value was then compared to the momentum of the drop package. From these two results an effective impact area can be found. It was found that the cushion not only reduced wear but also increased the effective impact area substantially. This increase in area reduced the value of the mean deceleration by reducing the pressure inside the airbag. The airbag proved to work well for the drops, decelerating the package and preventing a direct hit with the

  4. Bragg resonance behavior of the neutron refractive index and crystal acceleration effect

    NASA Astrophysics Data System (ADS)

    Braginetz, Yu. P.; Berdnikov, Ya. A.; Fedorov, V. V.; Kuznetsov, I. A.; Lasitsa, M. V.; Semenikhin, S. Yu.; Vezhlev, E. O.; Voronin, V. V.

    2016-09-01

    The energy dependence of neutron refraction index in a perfect crystal for neutron energy, close to the Bragg ones, was studied. The resonance shape of this dependence with approximately the Darwin width was found. As a result, the value of deviation from the exact Bragg condition can change during the neutron time of flight through the accelerated crystal and so the refraction index and the velocity of outgoing neutron can change as well. Such new mechanism of neutron acceleration in the accelerating perfect crystal was proposed and found experimentally. This mechanism is march more effective then known one concerning with the neutron acceleration in the accelerating usual media.

  5. Use of induced acceleration to quantify the (de)stabilization effect of external and internal forces on postural responses.

    PubMed

    van Asseldonk, Edwin H F; Carpenter, Mark G; van der Helm, Frans C T; van der Kooij, Herman

    2007-12-01

    Due to the mechanical coupling between the body segments, it is impossible to see with the naked eye the causes of body movements and understand the interaction between movements of different body parts. The goal of this paper is to investigate the use of induced acceleration analysis to reveal the causes of body movements. We derive the analytical equations to calculate induced accelerations and evaluate its potential to study human postural responses to support-surface translations. We measured the kinematic and kinetic responses of a subject to sudden forward and backward translations of a moving platform. The kinematic and kinetics served as input to the induced acceleration analyses. The induced accelerations showed explicitly that the platform acceleration and deceleration contributed to the destabilization and restabilization of standing balance, respectively. Furthermore, the joint torques, coriolis and centrifugal forces caused by swinging of the arms, contributed positively to stabilization of the Center of Mass. It is concluded that induced acceleration analyses is a valuable tool in understanding balance responses to different kinds of perturbations and may help to identify the causes of movement in different pathologies.

  6. 5.0 Aerodynamic and Propulsive Decelerator Systems

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Powell, Richard; Masciarelli, James; Brown, Glenn; Witkowski, Al; Guernsey, Carl

    2005-01-01

    Contents include the following: Introduction. Capability Breakdown Structure. Decelerator Functions. Candidate Solutions. Performance and Technology. Capability State-of-the-Art. Performance Needs. Candidate Configurations. Possible Technology Roadmaps. Capability Roadmaps.

  7. Cardiac Deceleration in Newborns: Habituation, Dishabituation, and Offset Responses

    ERIC Educational Resources Information Center

    Adkinson, Cheryl D.; Berg, W. Keith

    1976-01-01

    A total of 20 neonates were presented with mild intensity blue or blue-green light during presentation of habituation and dishabituation stimuli. Orienting and defensive responses were measured by monitoring heart rate deceleration. (GO)

  8. Some effects of acceleration in man and chimpanzees. [gravitational effects

    NASA Technical Reports Server (NTRS)

    Wood, E. H.; Sass, D. J.; Ritman, E. L.; Greenleaf, J. F.; Coulam, C. M.; Nathan, D.; Nolan, E. C.

    1977-01-01

    Early physiologic experiments using dogs and humans in centrifuges are reviewed. Because of the close similarity between the shape and dimensions of the thoraces of chimpanzees and humans, the former were used to obtain roentgenograms and photokymographic recordings of multiple physiologic variables before and during exposure to +5.8 Gy to study the effects of changes in the gravitational-inertial force environment on the cardiovascular and pulmonary systems during long duration space flight. A computer-controlled sciscanning system was used to obtain a two dimensional map of the amount of radiation emanating from the dorsal and ventricle surfaces after insertion of radioactive microspheres in the right ventricle. By using four different batches of microspheres tagged with isotopes of different energies, the spatial distribution of pulmonary blood flow under four conditions was determined.

  9. Effect of gravitational acceleration, hypokinesia and hypodynamia on the structure of the intestinal vascular bed

    NASA Technical Reports Server (NTRS)

    Nikitin, M. V.

    1980-01-01

    A series of experiments comparing single and combined effects of hypokinesia and gravitational acceleration on morphology of intestinal blood vessels are discussed. Results indicate that hypokinesia has a whole body nonspecific effect reflected even in an organ whose activity shows little or no change due to hypokinesia. In early hypokinetic stages blood redistribution caused anorexia, intestinal atonia, and secretory disruption. Destructive changes from further exposure include aneurisms, varicoses, extravascular movement of blood elements, and vascular wall muscle fiber degeneration. The effect of acceleration is greatest in the ventrodorsal direction. Changes due to acceleration then hypokinesia are like those due to hypokinesia alone; changes due to acceleration before and after hypokinesia are like those due to acceleration. Adaptation raises acceleration tolerance but the effects do not survive four-week hypokinesia.

  10. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The 250 C, 200C and 125C accelerated tests are described. The wear-out distributions from the 250 and 200 C tests were used to estimate the activation energy between the two test temperatures. The duration of the 125 C test was not sufficient to bring the test devices into the wear-out region. It was estimated that, for the most complex of the three devices types, the activation energy between 200 C and 125 C should be at least as high as that between 250 C and 200 C. The practicality of the use of high temperature for the accelerated life tests from the point of view of durability of equipment is assessed. Guidlines for the development of accelerated life-test conditions are proposed. The use of the silicon nitride overcoat to improve the high temperature accelerated life-test characteristics of CMOS microcircuits is described.

  11. Modeling Electron-Cloud Effects in Heavy-Ion Accelerators

    SciTech Connect

    Cohen, R H; Friedman, A; Lund, S M; Molvik, A W; Lee, E P; Azevedo, T; Vay, J; Stoltz, P; Veitzer, S

    2004-09-21

    Stray electrons can arise in positive-ion accelerators for heavy ion fusion or other applications as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary- electron emission. We summarize results from several studies undertaken in conjunction with an effort to develop a self-consistent modeling capability: (1) Calculation of the electron cloud produced by electron desorption from computed beam-ion loss, which illustrates the importance of retaining ion reflection at the walls; (2) Simulation of the effect of specified electron cloud distributions on ion beam dynamics; and (3) analysis of an instability associated with a resonance between the beam-envelope ''breathing'' mode and the electron perturbation. We also report first results from a long-timestep algorithm for electron dynamics, which holds promise for efficient simultaneous solution of electron and ion dynamics. One conclusion from study (2) is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations.

  12. [Cumulative effect of Coriolis acceleration on coronary hemodynamics].

    PubMed

    Lapaev, E V; Bednenko, V S

    1985-01-01

    Time-course variations in coronary circulation and cardiac output were measured in 29 healthy test subjects who performed tests with a continuous cumulation of Coriolis accelerations and in 12 healthy test subjects who were exposed to Coriolis accelerations combined with acute hypoxia. Adaptive changes in coronary circulation were seen. It is recommended to monitor coronary circulation during vestibulometric tests as part of medical expertise of the flying personnel.

  13. Deceleration of Antiprotons in Support of Antiproton Storage/Utilization Research

    SciTech Connect

    Howe, Steven D.; Jackson, Gerald P.; Pearson, J. Boise; Lewis, Raymond A.

    2005-02-06

    Antimatter has the highest energy density known to mankind. Many concepts have been studied that use antimatter for propulsion. All of these concepts require the development of high density storage. H-bar Technologies, under contract with the NASA Marshall Space Flight Center, has undertaken the first step toward development of high density storage. Demonstration of the ability to store antiprotons in a Penning Trap provides the technology to pursue research in alternative storage methods that may lead to eventually to high density concepts. H-bar Technologies has undertaken research activity on the detailed design and operations required to decelerate and redirect the Fermi National Accelerator Laboratory (FNAL) antiproton beam to lay the groundwork for a source of low energy antiprotons. We have performed a detailed assessment of an antiproton deceleration scheme using the FNAL Main Injector, outlining the requirements to significantly and efficiently lower the energy of antiprotons. This task shall require a combination of: theoretical/computation simulations, development of specialized accelerator controls programming, modification of specific Main Injector hardware, and experimental testing of the modified system. Testing shall be performed to characterize the system with a goal of reducing the beam momentum from 8.9 GeV/c to a level of 1 GeV/c or less. We have designed an antiproton degrader system that will integrate with the FNAL decelerated/transferred beam. The degrader shall be designed to maximize the number of low energy antiprotons with a beam spot sized for acceptance by the Mark I test hardware.

  14. On the effect of accelerated winds on the wave growth through detailed laboratory measurements.

    NASA Astrophysics Data System (ADS)

    Ocampo-Torres, Francisco J.; Branger, Hubert; Osuna, Pedro; Hernández, Aldo

    2013-04-01

    The possible influence of accelerated winds on air-water momentum fluxes is being studied through detailed laboratory measurements in a large wind-wave flume. Wind stress over the water surface, waves and surface drift are measured in the 40m long wind-wave tank at IRPHE, Marseille. While momentum fluxes are estimated directly through the eddy correlation method in a station about the middle of the tank, they provide information corresponding to rather short non-dimensional fetch not previously reported. Wave evolution along the tank is determined through a series of wave gauges, and the wind-induced surface drift is obtained at one of the first measuring stations at the beginning of the tank. At each experimental run very low wind was on (about 1m/s) for a certain period and suddenly it was constantly accelerated to reach about 13 m/s (as well as 8 and 5 m/s during different runs) in about 15 sec to as long as 600 sec. The wind was kept constant at that high speed for 2 to 10 min, and then suddenly and constantly decelerate to 0. Data from the constant high winds provided us with reference equilibrium conditions for at least 3 different wind speed. We, nevertheless, focus in the recordings while wind was being constantly accelerated expecting some contribution to the understanding of gustiness, the implied wind wave growth and the onset of surface drift. Wind-wave growth is observed to lag behind the wind stress signal, and furthermore, a two regime wind stress is noticed, apparently well correlated with a) the incipient growth and appearance of the first waves and b) the arrival of waves from the up-wind section of the tank. Results of non-dimensional wave energy as a function of non-dimensional fetch represent an extension of at least 2 decades shorter non-dimensional fetch to the wave growth curves typically found in the literature. The linear tendency of wave growth compares very well only when wind is reaching its maximum, while during the accelerated wind

  15. Acceleration in Elementary School: Using Propensity Score Matching to Estimate the Effects on Academic Achievement

    ERIC Educational Resources Information Center

    Kretschmann, Julia; Vock, Miriam; Lüdtke, Oliver

    2014-01-01

    Using German data, we examined the effects of one specific type of acceleration--grade skipping--on academic performance. Prior research on the effects of acceleration has suffered from methodological restrictions, especially due to a lack of appropriate comparison groups and a priori measurements. For this reason, propensity score matching was…

  16. Trapping cold molecules and atoms: Simultaneous magnetic deceleration and trapping of cold molecular Oxygen with Lithium atoms

    NASA Astrophysics Data System (ADS)

    Akerman, Nitzan; Karpov, Michael; Segev, Yair; Bibelink, Natan; Narevicius, Julia; Narevicius, Edvardas

    2016-05-01

    Cooling molecules to the ultra-cold regime remains a major challenge in the growing field of cold molecules. The molecular internal degrees of freedom complicate the effort of direct application of laser cooling. An alternative and general path towards ultra-cold molecules relies on sympathetic cooling via collisions with laser-cooled atoms. Here, we demonstrate the first step towards application of sympathetic cooling by co-trapping of molecular Oxygen with Lithium atoms in a magnetic trap at a temperature of 300 mK. Our experiment begins with a pulsed supersonic beam which is a general source for cold high-flux atomic and molecular beams. Although the supersonic expansion efficiently cools the beam to temperatures below 1K, it also accelerates the beam to high mean velocities. We decelerate a beam of O2 in a moving magnetic trap decelerator from 375 m/s to a stop. We entrained the molecular beam with Li atoms by laser ablation prior to deceleration. The deceleration ends with loading the molecules and atoms into a static quadrupole trap, which is generated by two permanent magnets. We estimate 109 trapped molecules with background limited lifetime of 0.6 Sec. Our achievement enables application of laser cooling on the Li atoms in order to sympathetically cool the O2.

  17. Effects of Spatial Gradients on Electron Runaway Acceleration

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter; Ljepojevic, N. N.

    1996-01-01

    The runaway process is known to accelerate electrons in many laboratory plasmas and has been suggested as an acceleration mechanism in some astrophysical plasmas, including solar flares. Current calculations of the electron velocity distributions resulting from the runaway process are greatly restricted because they impose spatial homogeneity on the distribution. We have computed runaway distributions which include consistent development of spatial gradients in the energetic tail. Our solution for the electron velocity distribution is presented as a function of distance along a finite length acceleration region, and is compared with the equivalent distribution for the infinitely long homogenous system (i.e., no spatial gradients), as considered in the existing literature. All these results are for the weak field regime. We also discuss the severe restrictiveness of this weak field assumption.

  18. Coriolis effects are principally caused by gyroscopic angular acceleration.

    PubMed

    Isu, N; Yanagihara, M; Mikuni, T; Koo, J

    1994-07-01

    A cause of nausea evoked by cross-coupled rotation (termed Coriolis stimulus) was determined. Subjects were provided with two types of cross-coupled rotations: neck-forward flexion (Neck Flx) and upper body-forward flexion (Body Flx) during horizontal whole body rotation at a constant angular velocity. These Coriolis stimuli were given alternatively in an experimental sequence, and the severity of the nausea they evoked was compared by the subjects. The results indicated that the same quality of nausea was evoked by a slightly higher angular velocity during Body Flx (100.5 degrees/s) than during Neck Flx (90 degrees/s). While Body Flx generated Coriolis linear acceleration several times larger than Neck Flx, both the stimuli generated a similar magnitude of gyroscopic angular acceleration in this condition. Therefore, it was inferred that the nausea evoked by a Coriolis stimulus is principally caused by gyroscopic angular acceleration.

  19. Deceleration of arginine kinase refolding by induced helical structures.

    PubMed

    Li, Hai-Long; Zhou, Sheng-Mei; Park, Daeui; Jeong, Hyoung Oh; Chung, Hae Young; Yang, Jun-Mo; Meng, Fan-Guo; Hu, Wei-Jiang

    2012-04-01

    Arginine kinase (AK) is a key metabolic enzyme for keeping energy balance in invertebrates. Therefore, regulation of the enzymatic activity and the folding studies of AK from the various invertebrates have been the focus of investigation. We studied the effects of helical structures by using hexafluoroisopropanol (HFIP) on AK folding. Folding kinetic studies showed that the folding rates of the urea-denatured AKs were significantly decelerated after being induced in various concentrations of HFIP. AK lost its activity completely at concentrations greater than 60%. The results indicated that the HFIP-induced helical structures in the denatured state play a negative role in protein folding, and the helical structures induced in 5% (v/v) HFIP act as the most effective barrier against AK taking its native structure. The computational docking simulations (binding energies for -2.19 kcal/mol for AutoDock4.2 and -20.47 kcal/mol for Dock6.3) suggested that HFIP interacts with the several important residues that are predicted by both programs. The excessively pre-organized helical structures not only hampered the folding process, but also ultimately brought about changes in the three-dimensional conformation and biological function of AK.

  20. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Accelerated life tests were performed on CMOS microcircuits to predict their long term reliability. The consistency of the CMOS microcircuit activation energy between the range of 125 C to 200 C and the range 200 C to 250 C was determined. Results indicate CMOS complexity and the amount of moisture detected inside the devices after testing influences time to failure of tested CMOS devices.

  1. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This report covers the time period from May 1976 to December 1979 and encompasses the three phases of accelerated testing: Phase 1, the 250 C testing; Phase 2, the 200 C testing; and Phase 3, the 125 C testing. The duration of the test in Phase 1 and Phase 2 was sufficient to take the devices into the wear out region. The wear out distributions were used to estimate the activation energy between the 250 C and the 200 C test temperatures. The duration of the 125 C test, 20,000 hours, was not sufficient to bring the test devices into the wear out region; consequently the third data point at 125 C for determining the consistency of activation energy could not be obtained. It was estimated that, for the most complex of the three device types, the activation energy between 200 C and 125 C should be at least as high as that between 250 C and 200 C. The practicality of the use of high temperature for the accelerated life tests from the point of view of durability of equipment was assessed. Guidelines for the development of accelerated life test conditions were proposed. The use of the silicon nitride overcoat to improve the high temperature accelerated life test characteristics of CMOS microcircuits was explored in Phase 4 of this study and is attached as an appendix to this report.

  2. The effect of initial temperature on flame acceleration and deflagration-to-detonation transition phenomenon

    SciTech Connect

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L.; Tagawa, H.; Malliakos, A.

    1998-05-01

    The High-Temperature Combustion Facility at BNL was used to conduct deflagration-to-detonation transition (DDT) experiments. Periodic orifice plates were installed inside the entire length of the detonation tube in order to promote flame acceleration. The orifice plates are 27.3-cm-outer diameter, which is equivalent to the inner diameter of the tube, and 20.6-cm-inner diameter. The detonation tube length is 21.3-meters long, and the spacing of the orifice plates is one tube diameter. A standard automobile diesel engine glow plug was used to ignite the test mixture at one end of the tube. Hydrogen-air-steam mixtures were tested at a range of temperatures up to 650K and at an initial pressure of 0.1 MPa. In most cases, the limiting hydrogen mole fraction which resulted in DDT corresponded to the mixture whose detonation cell size, {lambda}, was equal to the inner diameter of the orifice plate, d (e.g., d/{lambda}=1). The only exception was in the dry hydrogen-air mixtures at 650K where the DDT limit was observed to be 11 percent hydrogen, corresponding to a value of d/{lambda} equal to 5.5. For a 10.5 percent hydrogen mixture at 650K, the flame accelerated to a maximum velocity of about 120 mIs and then decelerated to below 2 mIs. By maintaining the first 6.1 meters of the vessel at the ignition end at 400K, and the rest of the vessel at 650K, the DDT limit was reduced to 9.5 percent hydrogen (d/{lambda}=4.2). This observation indicates that the d/{lambda}=1 DDT limit criteria provides a necessary condition but not a sufficient one for the onset of DDT in obstacle laden ducts. In this particular case, the mixture initial condition (i.e., temperature) resulted in the inability of the mixture to sustain flame acceleration to the point where DDT could occur. It was also observed that the distance required for the flame to accelerate to the point of detonation initiation, referred to as the run-up distance, was found to be a function of both the hydrogen mole fraction

  3. Modal Test of Six-Meter Hypersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Abraham, Nijo; Buehrle, Ralph; Templeton, Justin; Lindell, Mike; Hancock, Sean M.

    2014-01-01

    A modal test was performed on the six-meter Hypersonic Inflatable Aerodynamic Decelerator (HIAD) test article to gain a firm understanding of the dynamic characteristics of the unloaded structure within the low frequency range. The tests involved various configurations of the HIAD to understand the influence of the tri-torus, the varying pressure within the toroids and the influence of straps. The primary test was conducted utilizing an eletrodynamic shaker and the results were verified using a step relaxation technique. The analysis results show an increase in the structure's stiffness with respect to increasing pressure. The results also show the rise of coupled modes with the tri-torus configurations. During the testing activity, the attached straps exhibited a behavior that is similar to that described as fuzzy structures in the literature. Therefore extensive tests were also performed by utilizing foam to mitigate these effects as well as understand the modal parameters of these fuzzy sub structures. Results are being utilized to update the finite element model of the six-meter HIAD and to gain a better understanding of the modeling of complex inflatable structures.

  4. Variations in Melt-Flow Acceleration Above and Below the Greenland Equilibrium Line

    NASA Astrophysics Data System (ADS)

    Zwally, H.; Saba, J. L.; Steffen, K.

    2013-12-01

    Initial observations of accelerated ice flow at the equilibrium line in West-central Greenland during summer melt periods (1996 to 1999) indicated that surface melt-water rapidly propagated to the base and enhanced the basal sliding. Since then numerous observational and theoretical results have provided additional information on the melt-acceleration effect, while leading to some differing conclusions about the climatological and hydrological processes involved. Additional velocity measurements since 1999 show further characteristics of the melt-acceleration in the ice flowline though Swiss Camp, which terminates on land, and in a nearby flowline, which terminates in an outlet glacier. Accelerations as large as three times the average winter velocity are observed during stronger melt events. At downstream locations, accelerations begin earlier in the melt season, but accelerations at multiple sites along a flow line occur simultaneously later in the season. At the equilibrium line, a short period of surface uplift of about 50 cm occurs when the flow abruptly changes from acceleration to deceleration, apparently caused by ice compression during the transition. At downstream locations, the surface rises at the beginning of the melt season and drops at the end of melting suggesting an uplift forced by sub-ice water and sediment. Equivalence of the net additional displacement at upstream and downstream sites indicates no net longitudinal ice strain after the acceleration-deceleration periods. Approximate equivalence of the ratio of peak summer velocities to average winter velocities along the flowline indicate that local melt-acceleration is occurring at and above the equilibrium as well as from longitudinal coupling of downstream effects. High-frequency velocity observations show that the ice flow continues to accelerate with increasing water production during melt events, follow by an abrupt deceleration after the event, indicating that saturation of the

  5. Foetal heart rate deceleration with combined spinal-epidural analgesia during labour: a maternal haemodynamic cardiac study.

    PubMed

    Valensise, Herbert; Lo Presti, Damiano; Tiralongo, Grazia Maria; Pisani, Ilaria; Gagliardi, Giulia; Vasapollo, Barbara; Frigo, Maria Grazia

    2016-01-01

    To understand the mechanisms those are involved in the appearance of foetal heart rate decelerations (FHR) after the combined epidural analgesia in labour. Observational study done at University Hospital for 86-term singleton pregnant women with spontaneous labour. Serial bedside measurement of the main cardiac maternal parameters with USCOM technique; stroke volume (SV), heart rate (HR), cardiac output (CO) and total vascular resistances (TVR) inputting systolic and diastolic blood pressure before combined epidural analgesia and after 5', 10', 15' and 20 min. FHR was continuously recorded though cardiotocography before and after the procedure. Correlation between the appearance of foetal heart rate decelerations and the modification of maternal haemodynamic parameters. Fourteen out of 86 foetuses showed decelerations after the combined spino epidural procedure. No decelerations occurred in the women with low TVR (<1000 dyne/s/cm(-5)) at the basal evaluation. FHR abnormalities were concentrated in 39 women who presented elevated TVR values at the basal evaluation (>1200 dyne/s/cm(-5)). Soon after the epidural procedure, the absence of increase in SV and CO was observed in these women. No variations in systolic and diastolic blood pressure values were found. The level of TVR before combined epidural analgesia in labour may indicate the risk of FHR abnormalities after the procedure. Low TVR (<1000 dyne/s/cm(-5)) showed a reduced risk of FHR abnormalities. FHR decelerations seem to occur in women without the ability to upregulate SV and CO in response to the initial effects of analgesia.

  6. Mechanism of Isoflavone Aglycone's Effect on Cognitive Performance of Senescence-Accelerated Mice

    ERIC Educational Resources Information Center

    Yang, Hong; Jin, Guifang; Ren, Dongdong; Luo, Sijing; Zhou, Tianhong

    2011-01-01

    This study investigated the effect of isoflavone aglycone (IA) on the learning and memory performance of senescence-accelerated mice, and explored its neural protective mechanism. Results showed that SAM-P/8 senescence-accelerated mice treated with IA performed significantly better in the Y-maze cognitive test than the no treatment control (P less…

  7. Drag Characteristics of Several Towed Decelerator Models at Mach 3

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Drag Characteristics of Several Towed Decelerator Models at Mach 3. An investigation has been made to determine the possibility of using toroid-membrane and wide-angle conical shapes as towed decelerators. Parameter variations were investigated which might render toroid-membrane models and wide-angle- cone models stable without loss of the high drag coefficients obtainable with sting-mounted models. The parameters varied included location of center of gravity, location of the pivot between the towline and the model, and configuration modifications of the aft end as the addition of a corner radius and the addition of a skirt. The toroid membrane can be made into a stable towed decelerator with a suitable configuration modification of the aft end. [Entire movie available on DVD from CASI as Doc ID 20070031013. Contact help@sti.nasa.gov

  8. Effect of accelerator in green synthesis of silver nanoparticles.

    PubMed

    Darroudi, Majid; Ahmad, Mansor Bin; Abdullah, Abdul Halim; Ibrahim, Nor Azowa; Shameli, Kamyar

    2010-10-12

    Silver nanoparticles (Ag-NPs) were successfully synthesized in the natural polymeric matrix. Silver nitrate, gelatin, glucose, and sodium hydroxide have been used as silver precursor, stabilizer, reducing agent, and accelerator reagent, respectively. This study investigated the role of NaOH as the accelerator. The resultant products have been confirmed to be Ag-NPs using powder X-ray diffraction (PXRD), UV-vis spectroscopy, and transmission electron microscopy (TEM). The colloidal sols of Ag-NPs obtained at different volumes of NaOH show strong and different surface plasmon resonance (SPR) peaks, which can be explained from the TEM images of Ag-NPs and their particle size distribution. Compared with other synthetic methods, this work is green, rapid, and simple to use. The newly prepared Ag-NPs may have many potential applications in chemical and biological industries.

  9. Accelerated life testing effects on CMOS microcircuit characteristics, phase 1

    NASA Technical Reports Server (NTRS)

    Maximow, B.

    1976-01-01

    An accelerated life test of sufficient duration to generate a minimum of 50% cumulative failures in lots of CMOS devices was conducted to provide a basis for determining the consistency of activation energy at 250 C. An investigation was made to determine whether any thresholds were exceeded during the high temperature testing, which could trigger failure mechanisms unique to that temperature. The usefulness of the 250 C temperature test as a predictor of long term reliability was evaluated.

  10. Structural Verification and Modeling of a Tension Cone Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Tanner, Christopher L.; Cruz, Juan R.; Braun, Robert D.

    2010-01-01

    Verification analyses were conducted on membrane structures pertaining to a tension cone inflatable aerodynamic decelerator using the analysis code LS-DYNA. The responses of three structures - a cylinder, torus, and tension shell - were compared against linear theory for various loading cases. Stress distribution, buckling behavior, and wrinkling behavior were investigated. In general, agreement between theory and LS-DYNA was very good for all cases investigated. These verification cases exposed the important effects of using a linear elastic liner in membrane structures under compression. Finally, a tension cone wind tunnel test article is modeled in LS-DYNA for which preliminary results are presented. Unlike data from supersonic wind tunnel testing, the segmented tension shell and torus experienced oscillatory behavior when subjected to a steady aerodynamic pressure distribution. This work is presented as a work in progress towards development of a fluid-structures interaction mechanism to investigate aeroelastic behavior of inflatable aerodynamic decelerators.

  11. Physiological Effects of Acceleration Observed During a Centrifuge Study of Pilot Performance

    NASA Technical Reports Server (NTRS)

    Smedal, Harald A.; Creer, Brent Y.; Wingrove, Rodney C.

    1960-01-01

    An investigation was conducted by the National Aeronautics and Space Administration, Ames Research Center, and the Naval Air Development Center, Aviation Medical Acceleration Laboratory, to study the effects of acceleration on pilot performance and to obtain some meaningful data for use in establishing tolerance to acceleration levels. The flight simulator used in the study was the Johnsville centrifuge operated as a closed loop system. The pilot was required to perform a control task in various sustained acceleration fields typical of those that Might be encountered by a pilot flying an entry vehicle in which he is seated in a forward-facing position. A special restraint system was developed and designed to increase the pilot's tolerance to these accelerations. The results of this study demonstrated that a well-trained subject, such as a test pilot, can adequately carry out a control task during moderately high accelerations for prolonged periods of time. The maximum levels of acceleration tolerated were approximately 6 times that of gravity for approximately 6 minutes, and varied slightly with the acceleration direction. The tolerance runs were in each case terminated by the subject. In all but two instances, the cause was extreme fatigue. On two occasions the subject terminated the run when he "grayed out." Although there were subjective and objective findings involving the visual and cardiovascular systems, the respiratory system yielded the more critical limiting factors. It would appear that these limiting factors were less severe during the "eyeballs-out" accelerations when compared with the "eyeballs-in" accelerations. These findings are explained on the basis of the influence that the inertial forces of acceleration have on the mechanics of respiration. A condensed version of this report was presented at the Annual Meeting of the Aerospace Medical Association, Miami Beach, May 5-11, 1960, in a paper entitled "Ability of Pilots to Perform a Control Task in

  12. Holographic dark energy with linearly varying deceleration parameter and escaping big rip singularity of the Bianchi type-V universe

    NASA Astrophysics Data System (ADS)

    Sarkar, Sanjay

    2014-08-01

    The present work deals with the accretion of two minimally interacting fluids: dark matter and a hypothetical isotropic fluid as the holographic dark energy components onto black hole and wormhole in a spatially homogeneous and anisotropic Bianchi type-V universe. To obtain an exact solution of the Einstein's field equations, we use the assumption of linearly varying deceleration parameter. Solution describes effectively the actual acceleration and indicates a big rip type future singularity of the universe. We have studied the evolution of the mass of black hole and the wormhole embedded in this anisotropic universe in order to reproduce a stable universe protected against future-time singularity. It is observed that the accretion of these dark components leads to a gradual decrease and increase of black hole and wormhole mass respectively. Finally, we have found that contrary to our previous case (Sarkar in Astrophys. Space. Sci. 341:651, 2014a), the big rip singularity of the universe with a divergent Hubble parameter of this dark energy model may be avoided by a big trip.

  13. Some experimental observations on circulating currents in a crossed field plasma accelerator

    NASA Technical Reports Server (NTRS)

    Jedlicka, J.; Haacker, J.

    1971-01-01

    Experiments on a thermally ionized argon plasma suggest that applying a Lorentz force by means of orthogonal electric and magnetic fields to an electrically conducting fluid flow imposes necessary but not sufficient conditions for acceleration. There are, in fact, many combinations of current and magnetic field which cause decelerations of the fluid. The deceleration arises from a retarding force which may be larger than the applied Lorentz force. The retarding force causing the deceleration is a consequence of currents circulating completely within the fluid. These currents arise from differences in velocity between the central and wall regions of the duct which interact with the imposed magnetic field to produce differences in induced voltages. The observed physical effects of the circulating currents cause a loss in velocity in the central region of the duct, an increase in thermal energy in the sidewall region, and little change in thermal energy near the electrode wall region. For similar velocity profiles, the adverse effects appear to be related to the product of electrical conductivity and velocity, and performance as an accelerator appears to be controlled by the Hoffman loading parameter (i.e., the ratio of the applied to the induced currents).

  14. Computer simulation of the coupling slots effects for on-axis coupled accelerating structures.

    NASA Astrophysics Data System (ADS)

    Salakhoutdinov, A. F.; Shvedunov, V. I.

    1997-05-01

    The presence of coupling elements in accelerating structures leads to the violation of axial symmetry of accelerating field and it may cause displacement, defocusing and non-linear distortion of phase space. As a result the growth of transverse emittance occures. From the other hand, these effects may be used for designing of RF- focusing accelerating structure for electron accelerators of various types. The numerical simulation of electrodynamical properties of on-axis coupled accelerating structure taking into account the coupling slots have been made. The characteristics of fields excited within the coupling cell have been investigated. The numerical estimations of various multipolarity components of transverse forces acting upon a particle inside the coupling cell have been achieved.

  15. Enhancing trappable antiproton populations through deceleration and frictional cooling

    SciTech Connect

    Zolotorev, M.; Sessler, A.; Penn, G.; Wurtele, J. S.; Charman, A. E.

    2012-03-01

    CERN currently delivers antiprotons for trapping experiments with the Antiproton Decelerator (AD), which slows the antiprotons down to about 5 MeV.This energy is currently too high for direct trapping, and thick foils are used to slow down the beam to energies which can be trapped.To allow further deceleration to $\\sim 100 \\;\\mbox{keV}$, CERN is initiating the construction of ELENA,consisting of a ring which will combine RF deceleration and electron cooling capabilities. We describe a simple frictionalcooling scheme that can serve to provide significantly improved trapping efficiency, either directly from the AD or first usinga standard deceleration mechanism (induction linac or RFQ). This scheme could be implemented in a short time.The device itself is short in length, uses accessible voltages, and at reasonable cost could serve in the interim beforeELENA becomes operational, or possibly in lieu of ELENA for some experiments. Simple theory and simulations provide a preliminary assessment of theconcept and its strengths and limitations, and highlight important areas for experimental studies, in particular to pin down the level of multiplescattering for low-energy antiprotons. We show that the frictional cooling scheme can provide a similar energy spectrum to that of ELENA,but with higher transverse emittances.

  16. Effects of acceleration rate on Rayleigh-Taylor instability in elastic-plastic materials

    NASA Astrophysics Data System (ADS)

    Banerjee, Arindam; Polavarapu, Rinosh

    2016-11-01

    The effect of acceleration rate in the elastic-plastic transition stage of Rayleigh-Taylor instability in an accelerated non-Newtonian material is investigated experimentally using a rotating wheel experiment. A non-Newtonian material (mayonnaise) was accelerated at different rates by varying the angular acceleration of a rotating wheel and growth patterns of single mode perturbations with different combinations of amplitude and wavelength were analyzed. Experiments were run at two different acceleration rates to compare with experiments presented in prior years at APS DFD meetings and the peak amplitude responses are captured using a high-speed camera. Similar to the instability acceleration, the elastic-plastic transition acceleration is found to be increasing with increase in acceleration rate for a given amplitude and wavelength. The experimental results will be compared to various analytical strength models and prior experimental studies using Newtonian fluids. Authors acknowledge funding support from Los Alamos National Lab subcontract(370333) and DOE-SSAA Grant (DE-NA0001975).

  17. Modeling experiments on the deceleration and reactivation of Kangerlussuup Sermusa, West Greenland

    NASA Astrophysics Data System (ADS)

    Rezvanbehbahani, S.; Stearns, L. A.; van der Veen, C. J.; Catania, G. A.

    2015-12-01

    Seasonal variations in outlet glacier velocity due to basal sliding are well-documented and typically involve acceleration early in the melt season due to enhanced sliding as a result of inefficient drainage of surface water reaching the bed. However, velocity observations from Kangerlussuup Sermusa (KS) in West Greenland contradict this pattern. Instead, ice velocity at KS shows no significant change in early spring compared with the previous winter. This sluggish response of the glacier to spring melt is often followed by an extreme, and short-lived, deceleration. For example, in August 2010, the lower 20 km of the trunk decelerated from about 1600 m a-1 to less than 250 m a-1; this event was followed by a rapid reactivation back to the previous velocity in less than 60 days. Available records since 2006 show that the sequence of steady spring velocity, followed by summer deceleration, and rapid fall reactivation occurs annually; however, the magnitudes of deceleration vary. In this regard, the response of KS to regional environmental forcings is unique compared to its neighboring glaciers. In this study, we investigate whether the unique behavior of KS can be explained by the interaction between changes in basal conditions and the local geometry of the glacier. We model the glacier flow by solving full-Stokes equations using the finite element method in the open-source FEniCS framework. Assuming isothermal ice within the lower trunk, we run experiments on the mechanical properties and boundary conditions of the glacier. These experiments include spatio-temporal changes in basal slipperiness, periodic melt-water influx to the bed, and ice viscosity variations due to changes in melt-water supply to the bed. We also conduct sensitivity analyses on the glacier flow with different ice geometries (e.g. thickness and surface slope) to investigate conditions under which we can produce the unique seasonal behavior of KS. Finally, we assess the impact of the combination

  18. Deceleration of arbitrarily magnetized GRB ejecta: the complete evolution

    NASA Astrophysics Data System (ADS)

    Mimica, P.; Giannios, D.; Aloy, M. A.

    2009-02-01

    Context: The role of magnetic fields in gamma-ray burst (GRB) flows remains debated. If of sufficient strength, they can leave their signature on the initial phases of the afterglow by substantially changing the backreaction of the flow as a consequence of its interaction with the external medium. Aims: We attempt to understand quantitatively the dynamical effect and observational signatures of GRB ejecta magnetization on the onset of the afterglow. Methods: We perform ultrahigh-resolution, one-dimensional, relativistic MHD simulations of the interaction between a radially expanding, magnetized ejecta with the interstellar medium. We require ultrahigh numerical resolution because of the extreme jump conditions in the region of interaction between the ejecta and the circumburst medium. We study the complete evolution of an ultrarelativistic shell to the self-similar asymptotic phase. Results: Our simulations demonstrate that the complete evolution can be characterized in terms of two parameters, the ξ parameter introduced by Sari and Piran and the magnetization σ_0. We use this fact in producing numerical models in which the shell Lorentz factor γ0 is between 10 and 20 and rescaling the results to arbitrarily large values of γ_0. We find that the reverse shock is typically weak or absent for ejecta characterized by σ_0⪆ 1. The onset of the forward shock emission is strongly dependent on the magnetization. On the other hand, the magnetic energy of the shell is transferred into the external medium on a short timescale (of several times the duration of the burst). The later forward shock emission contains no information about the initial magnetization of the flow. The asymptotic evolution of strongly magnetized shells, after experiencing significant deceleration, resembles that of hydrodynamic shells, i.e. they enter fully into the Blandford-McKee self-similar regime.

  19. An investigation into the effectiveness of smartphone experiments on students’ conceptual knowledge about acceleration

    NASA Astrophysics Data System (ADS)

    Mazzella, Alessandra; Testa, Italo

    2016-09-01

    This study is a first attempt to investigate effectiveness of smartphone-based activities on students’ conceptual understanding of acceleration. 143 secondary school students (15-16 years old) were involved in two types of activities: smartphone- and non-smartphone activities. The latter consisted in data logging and ‘cookbook’ activities. For the sake of comparison, all activities featured the same phenomena, i.e., the motion on an inclined plane and pendulum oscillations. A pre-post design was adopted, using open questionnaires as probes. Results show only weak statistical differences between the smartphone and non-smartphone groups. Students who followed smartphone activities were more able to design an experiment to measure acceleration and to correctly describe acceleration in a free fall motion. However, students of both groups had many difficulties in drawing acceleration vector along the trajectory of the studied motion. Results suggest that smartphone-based activities may be effective substitutes of traditional experimental settings and represent a valuable aid for teachers who want to implement laboratory activities at secondary school level. However, to achieve a deeper conceptual understanding of acceleration, some issues need to be addressed: what is the reference system of the built-in smartphone sensor; relationships between smartphone acceleration graphs and experimental setup; vector representation of the measured acceleration.

  20. Effect of the plasma piston size on the efficiency of the electrodynamic acceleration of a body

    NASA Astrophysics Data System (ADS)

    Drobyshevskii, E. M.; Rozov, S. I.; Zhukov, B. G.; Kurakin, R. O.; Sokolov, V. M.

    1991-01-01

    The objective of the experiments reported here was to investigate the effect of the size of the plasma piston on velocity saturation during the electrodynamic acceleration of a body in rail-gun accelerators. An analysis of the results suggests that the observed decrease of the efficiency of the accelerating action of an expanded plasma piston is associated with the increased permeability of the piston with respect to the gas enclosed between the piston and the body. This conclusion is consistent with the concept of the plasma piston as a combination of merging and separating arc channels.

  1. Effect of electromagnetic pulse transverse inhomogeneity on ion acceleration by radiation pressure

    SciTech Connect

    Lezhnin, K. V.; Kamenets, F. F.; Beskin, V. S.; Kando, M.; Esirkepov, T. Zh.; Bulanov, S. V.

    2015-03-15

    During ion acceleration by radiation pressure, a transverse inhomogeneity of an electromagnetic pulse leads to an off-axis displacement of the irradiated target, limiting the achievable ion energy. This effect is analytically described within the framework of a thin foil target model and with particle-in-cell simulations showing that the maximum energy of the accelerated ions decreases as the displacement from the axis of the target's initial position increases. The results obtained can be applied to the optimization of ion acceleration by the laser radiation pressure with mass-limited targets.

  2. Perturbations for transient acceleration

    SciTech Connect

    Vargas, Cristofher Zuñiga; Zimdahl, Winfried; Hipólito-Ricaldi, Wiliam S. E-mail: hipolito@ceunes.ufes.br

    2012-04-01

    According to the standard ΛCDM model, the accelerated expansion of the Universe will go on forever. Motivated by recent observational results, we explore the possibility of a finite phase of acceleration which asymptotically approaches another period of decelerated expansion. Extending an earlier study on a corresponding homogeneous and isotropic dynamics, in which interactions between dark matter and dark energy are crucial, the present paper also investigates the dynamics of the matter perturbations both on the Newtonian and General Relativistic (GR) levels and quantifies the potential relevance of perturbations of the dark-energy component. In the background, the model is tested against the Supernova type Ia (SNIa) data of the Constitution set and on the perturbative level against growth rate data, among them those of the WiggleZ survey, and the data of the 2dFGRS project. Our results indicate that a transient phase of accelerated expansion is not excluded by current observations.

  3. Rapid acceleration in dogs: ground forces and body posture dynamics.

    PubMed

    Walter, Rebecca M; Carrier, David R

    2009-06-01

    Because the ability to accelerate rapidly is crucial to the survival and reproductive fitness of most terrestrial animals, it is important to understand how the biomechanics of rapid acceleration differs from that of steady-state locomotion. Here we compare rapid acceleration with high-speed galloping in dogs to investigate the ways in which body and limb posture and ground forces are altered to produce effective acceleration. Seven dogs were videotaped at 250 Hz as they performed ;maximum effort' accelerations, starting in a standing position on a force plate and one and two strides before it. These dogs began accelerations by rapidly flexing their ankles and knees as they dropped into a crouch. The crouched posture was maintained in the first accelerating stride such that the ankle and knee were significantly more flexed than during steady high-speed galloping. The hindlimb was also significantly more retracted over the first stance period than during high-speed galloping. Ground forces differed from steady-state locomotion in that rapidly accelerating dogs supported only 43% of their body weight with the forelimbs, compared with 56-64% in steady-state locomotion. The hindlimbs applied greater peak accelerating forces than the forelimbs, but the forelimbs contributed significantly to the dogs' acceleration by producing 43% of the total propulsive impulse. Kinematically, rapid acceleration differs from steady-state galloping in that the limbs are more flexed and more retracted, while the back undergoes greater pitching movement. Ground reaction forces also differ significantly from steady-state galloping in that almost no decelerating forces are applied while propulsive force impulses are three to six times greater.

  4. Optimizing the Stark-decelerator beamline for the trapping of cold molecules using evolutionary strategies

    SciTech Connect

    Gilijamse, Joop J.; Kuepper, Jochen; Hoekstra, Steven; Vanhaecke, Nicolas; Meerakker, Sebastiaan Y. T. van de; Meijer, Gerard

    2006-06-15

    We demonstrate feedback control optimization for the Stark deceleration and trapping of neutral polar molecules using evolutionary strategies. In a Stark-decelerator beamline, pulsed electric fields are used to decelerate OH radicals and subsequently store them in an electrostatic trap. The efficiency of the deceleration and trapping process is determined by the exact timings of the applied electric field pulses. Automated optimization of these timings yields an increase of 40% of the number of trapped OH radicals.

  5. Comparison of Medium Power Hall Effect Thruster Ion Acceleration for Krypton and Xenon Propellants

    DTIC Science & Technology

    2016-09-14

    electric transfer vehicles that would strain world-wide xenon production. This work compares the internal propellant acceleration of krypton ions...acceleration rate is lower and produces a lower effective electric field. As a result, energy conversion is lower than xenon for this flow matched case. In...lower cost replacement for xenon, may optimize to similar or potentially higher performance, and is enabling for very large solar electric transfer

  6. Effect of polarization and focusing on laser pulse driven auto-resonant particle acceleration

    SciTech Connect

    Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman

    2014-04-15

    The effect of laser polarization and focusing is theoretically studied on the final energy gain of a particle in the Auto-resonant acceleration scheme using a finite duration laser pulse with Gaussian shaped temporal envelope. The exact expressions for dynamical variables viz. position, momentum, and energy are obtained by analytically solving the relativistic equation of motion describing particle dynamics in the combined field of an elliptically polarized finite duration pulse and homogeneous static axial magnetic field. From the solutions, it is shown that for a given set of laser parameters viz. intensity and pulse length along with static magnetic field, the energy gain by a positively charged particle is maximum for a right circularly polarized laser pulse. Further, a new scheme is proposed for particle acceleration by subjecting it to the combined field of a focused finite duration laser pulse and static axial magnetic field. In this scheme, the particle is initially accelerated by the focused laser field, which drives the non-resonant particle to second stage of acceleration by cyclotron Auto-resonance. The new scheme is found to be efficient over two individual schemes, i.e., auto-resonant acceleration and direct acceleration by focused laser field, as significant particle acceleration can be achieved at one order lesser values of static axial magnetic field and laser intensity.

  7. Collisions of Small Drops in a Turbulent Flow. Part II: Effects of Flow Accelerations.

    NASA Astrophysics Data System (ADS)

    Pinsky, M. B.; Khain, A. P.

    2004-08-01

    The effects of Lagrangian acceleration on collision efficiency and collision kernels of small cloud droplets in a turbulent flow are investigated using the results of the recent laboratory experiments by La Porta et al., conducted under high Reλ flow of pronounced intermittency. The effect of Lagrangian accelerations on drop collisions has been found to be significant, namely, for drop pairs, containing a drop collector exceeding 10 μm in radius, collision efficiency, and collision kernels increase by up to 25% and 40%, respectively, at dissipation rates of 200 cm2 s-3 typical of weak cumulus clouds. In well-developed deep cumulus clouds, the increase attains the factor of 2.5 and 5, respectively, at typical dissipation rates of 1000 cm2 s-3. The effect of Lagrangian accelerations is mainly caused by the increase in the collision efficiency that is highly sensitive even to weak variations of interdrop relative velocity. The increase in the swept volume is responsible only for a fraction of the overall increase in the collision kernel.The effect of intermittency of a turbulent flow manifests itself in two aspects: (i) an increase in variance of Lagrangian accelerations with an increase in Reλ, and (ii) the formation of a specific shape of the probability distribution function (PDF) characterized by a sharp maximum and elongated tail. The increase in variance of Lagrangian accelerations leads to an increase in the collision rate between droplets. The effect of the PDF shape on the collision rate is studied by comparing the magnitudes of collision efficiencies (and kernels) obtained in case of the non-Gaussian PDF with those obtained using the Gaussian PDF of the same acceleration variation. The utilization of the Gaussian PDF leads to a slight (about 10% 15%) overestimation of the values of the collision efficiency and collision kernel. Thus, the effect of intermittency on drop collisions related to high values of PDF flatness has been found to be insignificant

  8. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    by Chen et al where the driver, instead of being a laser, is a whistler wave known as the magnetowave plasma accelerator. The application to electron--positron plasmas that are found around pulsars is studied in the paper by Shukla, and to muon acceleration by Peano et al. Electron wakefield experiments are now concentrating on control and optimisation of high-quality beams that can be used as drivers for novel radiation sources. Studies by Thomas et al show that filamentation has a deleterious effect on the production of high quality mono-energetic electron beams and is caused by non-optimal choice of focusing geometry and/or electron density. It is crucial to match the focusing with the right plasma parameters and new types of plasma channels are being developed, such as the magnetically controlled plasma waveguide reported by Froula et al. The magnetic field provides a pressure profile shaping the channel to match the guiding conditions of the incident laser, resulting in predicted electron energies of 3GeV. In the forced laser-wakefield experiment Fang et al show that pump depletion reduces or inhibits the acceleration of electrons. One of the earlier laser acceleration concepts known as the beat wave may be revived due to the work by Kalmykov et al who report on all-optical control of nonlinear focusing of laser beams, allowing for stable propagation over several Rayleigh lengths with pre-injected electrons accelerated beyond 100 MeV. With the increasing number of petawatt lasers, attention is being focused on different acceleration regimes such as stochastic acceleration by counterpropagating laser pulses, the relativistic mirror, or the snow-plough effect leading to single-step acceleration reported by Mendonca. During wakefield acceleration the leading edge of the pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake while the trailing edge of the laser pulse undergoes frequency up-shift. This is commonly known

  9. Voltage stress effects on microcircuit accelerated life test failure rates

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1976-01-01

    The applicability of Arrhenius and Eyring reaction rate models for describing microcircuit aging characteristics as a function of junction temperature and applied voltage was evaluated. The results of a matrix of accelerated life tests with a single metal oxide semiconductor microcircuit operated at six different combinations of temperature and voltage were used to evaluate the models. A total of 450 devices from two different lots were tested at ambient temperatures between 200 C and 250 C and applied voltages between 5 Vdc and 15 Vdc. A statistical analysis of the surface related failure data resulted in bimodal failure distributions comprising two lognormal distributions; a 'freak' distribution observed early in time, and a 'main' distribution observed later in time. The Arrhenius model was shown to provide a good description of device aging as a function of temperature at a fixed voltage. The Eyring model also appeared to provide a reasonable description of main distribution device aging as a function of temperature and voltage. Circuit diagrams are shown.

  10. Effects of treadmill running and fatigue on impact acceleration in distance running.

    PubMed

    García-Pérez, José Antonio; Pérez-Soriano, Pedro; Llana Belloch, Salvador; Lucas-Cuevas, Angel Gabriel; Sánchez-Zuriaga, Daniel

    2014-09-01

    The effects of treadmill running on impact acceleration were examined together with the interaction between running surface and runner's fatigue state. Twenty recreational runners (11 men and 9 women) ran overground and on a treadmill (at 4.0 m/s) before and after a fatigue protocol consisting of a 30-minute run at 85% of individual maximal aerobic speed. Impact accelerations were analysed using two lightweight capacitive uniaxial accelerometers. A two-way repeated-measure analysis of variance showed that, in the pre-fatigue condition, the treadmill running decreased head and tibial peak impact accelerations and impact rates (the rate of change of acceleration), but no significant difference was observed between the two surfaces in shock attenuation. There was no significant difference in acceleration parameters between the two surfaces in the post-fatigue condition. There was a significant interaction between surface (treadmill and overground) and fatigue state (pre-fatigue and post-fatigue). In particular, fatigue when running overground decreased impact acceleration severity, but it had no such effect when running on the treadmill. The effects of treadmill running and the interaction need to be taken into account when interpreting the results of studies that use a treadmill in their experimental protocols, and when prescribing physical exercise.

  11. Untangling the Effect of Head Acceleration on Brain Responses to Blast Waves.

    PubMed

    Mao, Haojie; Unnikrishnan, Ginu; Rakesh, Vineet; Reifman, Jaques

    2015-12-01

    Multiple injury-causing mechanisms, such as wave propagation, skull flexure, cavitation, and head acceleration, have been proposed to explain blast-induced traumatic brain injury (bTBI). An accurate, quantitative description of the individual contribution of each of these mechanisms may be necessary to develop preventive strategies against bTBI. However, to date, despite numerous experimental and computational studies of bTBI, this question remains elusive. In this study, using a two-dimensional (2D) rat head model, we quantified the contribution of head acceleration to the biomechanical response of brain tissues when exposed to blast waves in a shock tube. We compared brain pressure at the coup, middle, and contre-coup regions between a 2D rat head model capable of simulating all mechanisms (i.e., the all-effects model) and an acceleration-only model. From our simulations, we determined that head acceleration contributed 36-45% of the maximum brain pressure at the coup region, had a negligible effect on the pressure at the middle region, and was responsible for the low pressure at the contre-coup region. Our findings also demonstrate that the current practice of measuring rat brain pressures close to the center of the brain would record only two-thirds of the maximum pressure observed at the coup region. Therefore, to accurately capture the effects of acceleration in experiments, we recommend placing a pressure sensor near the coup region, especially when investigating the acceleration mechanism using different experimental setups.

  12. Coupled microvibration analysis of a reaction wheel assembly including gyroscopic effects in its accelerance

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Aglietti, Guglielmo S.; Ren, Weijia

    2013-10-01

    This article discusses the coupled microvibration analysis of a cantilever configured Reaction Wheel Assembly with soft-suspension system. A RWA-seismic mass coupled microvibration measurement system is presented and its model validated against test results. The importance of the RWA driving point accelerances in coupled microvibration analysis is thoroughly discussed. A RWA accelerance measurement system has been designed to measure the driving point accelerances in both static (flywheel not spinning) and dynamic (flywheel spinning) conditions. Analytically, RWA static accelerance is obtained by frequency response analysis of a finite element model. The traditionally ignored gyroscopic effects in the accelerances are included in the model and their effects with respect to traditional models are shown both theoretically and experimentally. Although at high angular speed, when nonlinearities in the microvibrations prevent an accurate simulation, it is shown that the predicted microvibrations match more closely with the test results when considering gyroscopic effects in RWA accelerances than those predicted using the traditional method. The presented coupled microvibration analysis method is also very efficient in practice and is applicable in an industrial environment.

  13. Development and Testing of a New Family of Supersonic Decelerators

    NASA Technical Reports Server (NTRS)

    Clark, Ian G.; Adler, Mark; Rivellini, Tommaso P.

    2013-01-01

    The state of the art in Entry, Descent, and Landing systems for Mars applications is largely based on technologies developed in the late 1960's and early 1970's for the Viking Lander program. Although the 2011 Mars Science Laboratory has made advances in EDL technology, these are predominantly in the areas of entry (new thermal protection systems and guided hypersonic flight) and landing (the sky crane architecture). Increases in entry mass, landed mass, and landed altitude beyond MSL capabilities will require advances predominantly in the field of supersonic decelerators. With this in mind, a multi-year program has been initiated to advance three new types of supersonic decelerators that would enable future large-robotic and human-precursor class missions to Mars.

  14. Optical Stark decelerator for molecules with a traveling potential well

    NASA Astrophysics Data System (ADS)

    Deng, Lianzhong; Hou, Shunyong; Yin, Jianping

    2017-03-01

    We propose a versatile scheme to slow supersonically cooled molecules using a decelerating potential well, obtained by steering a focusing laser beam onto a pair of spinning reflective mirrors under a high-speed brake. The longitudinal motion of molecules in the moving red-detuned light field is analyzed and their corresponding phase-space stability is investigated. Trajectories of C H4 molecules under the influence of the potential well are simulated using the Monte Carlo method. For instance, with a laser beam of power 20 kW focused onto a spot of waist radius 40-100 μm, corresponding to a peak laser intensity on the order of ˜108W /c m2 , a C H4 molecule of ˜250 m /s can be decelerated to ˜10 m /s over a distance of a few centimeters on a time scale of hundreds of microseconds.

  15. A Method of Simulating Fluid Structure Interactions for Deformable Decelerators

    NASA Astrophysics Data System (ADS)

    Gidzak, Vladimyr Mykhalo

    A method is developed for performing simulations that contain fluid-structure interactions between deployable decelerators and a high speed compressible flow. The problem of coupling together multiple physical systems is examined with discussion of the strength of coupling for various methods. A non-monolithic strongly coupled option is presented for fluid-structure systems based on grid deformation. A class of algebraic grid deformation methods is then presented with examples of increasing complexity. The strength of the fluid-structure coupling is validated against two analytic problems, chosen to test the time dependent behavior of structure on fluid interactions, and of fluid on structure interruptions. A one-dimentional material heating model is also validated against experimental data. Results are provided for simulations of a wind tunnel scale disk-gap-band parachute with comparison to experimental data. Finally, a simulation is performed on a flight scale tension cone decelerator, with examination of time-dependent material stress, and heating.

  16. An electrostatic deceleration lens for highly charged ions.

    PubMed

    Rajput, J; Roy, A; Kanjilal, D; Ahuja, R; Safvan, C P

    2010-04-01

    The design and implementation of a purely electrostatic deceleration lens used to obtain beams of highly charged ions at very low energies is presented. The design of the lens is such that it can be used with parallel as well as diverging incoming beams and delivers a well focused low energy beam at the target. In addition, tuning of the final energy of the beam over a wide range (1 eV/q to several hundred eV/q, where q is the beam charge state) is possible without any change in hardware configuration. The deceleration lens was tested with Ar(8+), extracted from an electron cyclotron resonance ion source, having an initial energy of 30 keV/q and final energies as low as 70 eV/q have been achieved.

  17. Effects of Frequency and Acceleration Amplitude on Osteoblast Mechanical Vibration Responses: A Finite Element Study

    PubMed Central

    Hsu, Hung-Yao

    2016-01-01

    Bone cells are deformed according to mechanical stimulation they receive and their mechanical characteristics. However, how osteoblasts are affected by mechanical vibration frequency and acceleration amplitude remains unclear. By developing 3D osteoblast finite element (FE) models, this study investigated the effect of cell shapes on vibration characteristics and effect of acceleration (vibration intensity) on vibrational responses of cultured osteoblasts. Firstly, the developed FE models predicted natural frequencies of osteoblasts within 6.85–48.69 Hz. Then, three different levels of acceleration of base excitation were selected (0.5, 1, and 2 g) to simulate vibrational responses, and acceleration of base excitation was found to have no influence on natural frequencies of osteoblasts. However, vibration response values of displacement, stress, and strain increased with the increase of acceleration. Finally, stress and stress distributions of osteoblast models under 0.5 g acceleration in Z-direction were investigated further. It was revealed that resonance frequencies can be a monotonic function of cell height or bottom area when cell volumes and material properties were assumed as constants. These findings will be useful in understanding how forces are transferred and influence osteoblast mechanical responses during vibrations and in providing guidance for cell culture and external vibration loading in experimental and clinical osteogenesis studies. PMID:28074178

  18. Aero-Structural Assessment of an Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Sheta, Essam F.; Venugopalan, Vinod; Tan, X. G.; Liever, Peter A.; Habchi, Sami D.

    2010-01-01

    NASA is conducting an Entry, Descent and Landing Systems Analysis (EDL-SA) Study to determine the key technology development projects that should be undertaken for enabling the landing of large payloads on Mars for both human and robotic missions. Inflatable Aerodynamic Decelerators (IADs) are one of the candidate technologies. A variety of EDL architectures are under consideration. The current effort is conducted for development and simulations of computational framework for inflatable structures.

  19. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.; Wusk, Mary E.; Hughes, Monica F.

    2013-01-01

    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future.

  20. Slowing Allee effect versus accelerating heavy tails in monostable reaction diffusion equations

    NASA Astrophysics Data System (ADS)

    Alfaro, Matthieu

    2017-02-01

    We focus on the spreading properties of solutions of monostable reaction-diffusion equations. Initial data are assumed to have heavy tails, which tends to accelerate the invasion phenomenon. On the other hand, the nonlinearity involves a weak Allee effect, which tends to slow down the process. We study the balance between the two effects. For algebraic tails, we prove the exact separation between ‘no acceleration’ and ’acceleration’. This implies in particular that, for tails exponentially unbounded but lighter than algebraic, acceleration never occurs in the presence of an Allee effect. This is in sharp contrast with the KPP situation [20]. When algebraic tails lead to acceleration despite the Allee effect, we also give an accurate estimate of the position of the level sets.

  1. Baldwin effect under multipeaked fitness landscapes: Phenotypic fluctuation accelerates evolutionary rate

    NASA Astrophysics Data System (ADS)

    Saito, Nen; Ishihara, Shuji; Kaneko, Kunihiko

    2013-05-01

    Phenotypic fluctuations and plasticity can generally affect the course of evolution, a process known as the Baldwin effect. Several studies have recast this effect and claimed that phenotypic plasticity accelerates evolutionary rate (the Baldwin expediting effect); however, the validity of this claim is still controversial. In this study, we investigate the evolutionary population dynamics of a quantitative genetic model under a multipeaked fitness landscape, in order to evaluate the validity of the effect. We provide analytical expressions for the evolutionary rate and average population fitness. Our results indicate that under a multipeaked fitness landscape, phenotypic fluctuation always accelerates evolutionary rate, but it decreases the average fitness. As an extreme case of the trade-off between the rate of evolution and average fitness, phenotypic fluctuation is shown to accelerate the error catastrophe, in which a population fails to sustain a high-fitness peak. In the context of our findings, we discuss the role of phenotypic plasticity in adaptive evolution.

  2. Tragedy and delight: the ethics of decelerated ageing.

    PubMed

    Gems, David

    2011-01-12

    Biogerontology is sometimes viewed as similar to other forms of biomedical research in that it seeks to understand and treat a pathological process. Yet the prospect of treating ageing is extraordinary in terms of the profound changes to the human condition that would result. Recent advances in biogerontology allow a clearer view of the ethical issues and dilemmas that confront humanity with respect to treating ageing. For example, they imply that organismal senescence is a disease process with a broad spectrum of pathological consequences in late life (causing or exascerbating cardiovascular disease, cancer, neurodegenerative disease and many others). Moreover, in laboratory animals, it is possible to decelerate ageing, extend healthy adulthood and reduce the age-incidence of a broad spectrum of ageing-related diseases. This is accompanied by an overall extension of lifespan, sometimes of a large magnitude. Discussions of the ethics of treating ageing sometimes involve hand-wringing about detrimental consequences (e.g. to society) of marked life extension which, arguably, would be a form of enhancement technology. Yet given the great improvements in health that decelerated ageing could provide, it would seem that the only possible ethical course is to pursue it energetically. Thus, decelerated ageing has an element of tragic inevitability: its benefits to health compel us to pursue it, despite the transformation of human society, and even human nature, that this could entail.

  3. Physiological constraints on deceleration during the aerocapture of manned vehicles

    NASA Technical Reports Server (NTRS)

    Lyne, J. E.

    1992-01-01

    The peak deceleration load allowed for aerobraking of manned vehicles is a critical parameter in planning future excursions to Mars. However, considerable variation exists in the limits used by various investigators. The goal of this study was to determine the most appropriate level for this limit. Methods: Since previous U.S. space flights have been limited to 84 days duration, Soviet flight results were examined. Published details of Soviet entry trajectories were not available. However, personal communication with Soviet cosmonauts suggested that peak entry loads of 5-6 G had been encountered upon return from 8 months in orbit. Soyuz entry capsule's characteristics were established and the capsule's entry trajectory was numerically calculated. The results confirm a peak load of 5 to 6 G. Results: Although the Soviet flights were of shorter duration than expected Mars missions, evidence exists that the deceleration experience is applicable. G tolerance has been shown to stabilize after 1 to 3 months in space if adequate countermeasures are used. The calculated Soyuz deceleration histories are graphically compared with those expected for Mars aerobraking. Conclusions: Previous spaceflight experience supports the use of a 5 G limit for the aerocapture of a manned vehicle at Mars.

  4. Determination of maximum leaf velocity and acceleration of a dynamic multileaf collimator: implications for 4D radiotherapy.

    PubMed

    Wijesooriya, K; Bartee, C; Siebers, J V; Vedam, S S; Keall, P J

    2005-04-01

    The dynamic multileaf collimator (MLC) can be used for four-dimensional (4D), or tumor tracking radiotherapy. However, the leaf velocity and acceleration limitations become a crucial factor as the MLC leaves need to respond in near real time to the incoming respiration signal. The aims of this paper are to measure maximum leaf velocity, acceleration, and deceleration to obtain the mechanical response times for the MLC, and determine whether the MLC is suitable for 4D radiotherapy. MLC leaf sequence files, requiring the leaves to reach maximum acceleration and velocity during motion, were written. The leaf positions were recorded every 50 ms, from which the maximum leaf velocity, acceleration, and deceleration were derived. The dependence on the velocity and acceleration of the following variables were studied: leaf banks, inner and outer leaves, MLC-MLC variations, gravity, friction, and the stability of measurements over time. Measurement results show that the two leaf banks of a MLC behave similarly, while the inner and outer leaves have significantly different maximum leaf velocities. The MLC-MLC variations and the dependence of gravity on maximum leaf velocity are statistically significant. The average maximum leaf velocity at the isocenter plane of the MLC ranged from 3.3 to 3.9 cm/s. The acceleration and deceleration at the isocenter plane of the MLC ranged from 50 to 69 cm/s2 and 46 to 52 cm/s2, respectively. Interleaf friction had a negligible effect on the results, and the MLC parameters remained stable with time. Equations of motion were derived to determine the ability of the MLC response to fluoroscopymeasured diaphragm motion. Given the present MLC mechanical characteristics, 4D radiotherapy is feasible for up to 97% of respiratory motion. For the largest respiratory motion velocities observed, beam delivery should be temporarily stopped (beam hold).

  5. Determination of maximum leaf velocity and acceleration of a dynamic multileaf collimator: Implications for 4D radiotherapy

    SciTech Connect

    Wijesooriya, K.; Bartee, C.; Siebers, J.V.; Vedam, S.S.; Keall, P.J.

    2005-04-01

    The dynamic multileaf collimator (MLC) can be used for four-dimensional (4D), or tumor tracking radiotherapy. However, the leaf velocity and acceleration limitations become a crucial factor as the MLC leaves need to respond in near real time to the incoming respiration signal. The aims of this paper are to measure maximum leaf velocity, acceleration, and deceleration to obtain the mechanical response times for the MLC, and determine whether the MLC is suitable for 4D radiotherapy. MLC leaf sequence files, requiring the leaves to reach maximum acceleration and velocity during motion, were written. The leaf positions were recorded every 50 ms, from which the maximum leaf velocity, acceleration, and deceleration were derived. The dependence on the velocity and acceleration of the following variables were studied: leaf banks, inner and outer leaves, MLC-MLC variations, gravity, friction, and the stability of measurements over time. Measurement results show that the two leaf banks of a MLC behave similarly, while the inner and outer leaves have significantly different maximum leaf velocities. The MLC-MLC variations and the dependence of gravity on maximum leaf velocity are statistically significant. The average maximum leaf velocity at the isocenter plane of the MLC ranged from 3.3 to 3.9 cm/s. The acceleration and deceleration at the isocenter plane of the MLC ranged from 50 to 69 cm/s{sup 2} and 46 to 52 cm/s{sup 2}, respectively. Interleaf friction had a negligible effect on the results, and the MLC parameters remained stable with time. Equations of motion were derived to determine the ability of the MLC response to fluoroscopy-measured diaphragm motion. Given the present MLC mechanical characteristics, 4D radiotherapy is feasible for up to 97% of respiratory motion. For the largest respiratory motion velocities observed, beam delivery should be temporarily stopped (beam hold)

  6. Case–Cohort Analysis with Accelerated Failure Time Model

    PubMed Central

    Kong, Lan; Cai, Jianwen

    2010-01-01

    Summary In a case–cohort design, covariates are assembled only for a subcohort that is randomly selected from the entire cohort and any additional cases outside the subcohort. This design is appealing for large cohort studies of rare disease, especially when the exposures of interest are expensive to ascertain for all the subjects. We propose statistical methods for analyzing the case–cohort data with a semiparametric accelerated failure time model that interprets the covariates effects as to accelerate or decelerate the time to failure. Asymptotic properties of the proposed estimators are developed. The finite sample properties of case–cohort estimator and its relative efficiency to full cohort estimator are assessed via simulation studies. A real example from a study of cardiovascular disease is provided to illustrate the estimating procedure. PMID:18537948

  7. Bell-Plesset effects for an accelerating interface with contiguous density gradients

    SciTech Connect

    Amendt, P

    2005-12-20

    A Plesset-type treatment [J. Appl. Phys. 25, 96 (1954)] is used to assess the effects of contiguous density gradients at an accelerating spherical classical interface on Rayleigh-Taylor and Bell-Plesset perturbation growth. Analytic expressions are obtained that describe enhanced Rayleigh-Taylor instability growth from contiguous density gradients aligned with the acceleration and which increase the effective Atwood number of the perturbed interface. A new pathway for geometric amplification of surface perturbations on an accelerating interface with contiguous density gradients is identified. A resonance condition between the density-gradient scalelength and the radius of the interface is also predicted based on a linearized analysis of Bernoulli's equation, potentially leading to enhanced perturbation growth. Comparison of the analytic treatment with detailed two-dimensional single-mode growth-factor simulations shows good agreement for low-mode numbers where the effects of spherical geometry are most manifested.

  8. The Effect of Cooling on Particle Trajectories and Acceleration in Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Kagan, Daniel; Nakar, Ehud; Piran, Tsvi

    2016-12-01

    The maximum synchrotron burnoff limit of 160 MeV represents a fundamental limit to radiation resulting from electromagnetic particle acceleration in one-zone ideal plasmas. In magnetic reconnection, however, particle acceleration and radiation are decoupled because the electric field is larger than the magnetic field in the diffusion region. We carry out two-dimensional particle-in-cell simulations to determine the extent to which magnetic reconnection can produce synchrotron radiation above the burnoff limit. We use the test particle comparison (TPC) method to isolate the effects of cooling by comparing the trajectories and acceleration efficiencies of test particles incident on such a reconnection region with and without cooling them. We find that the cooled and uncooled particle trajectories are typically similar during acceleration in the reconnection region, and derive an effective limit on particle acceleration that is inversely proportional to the average magnetic field experienced by the particle during acceleration. Using the calculated distribution of this average magnetic field as a function of uncooled final particle energy, we find analytically that cooling does not affect power-law particle energy spectra except at energies far above the synchrotron burnoff limit. Finally, we compare fully cooled and uncooled simulations of reconnection, confirming that the synchrotron burnoff limit does not produce a cutoff in the particle energy spectrum. Our results indicate that the TPC method accurately predicts the effects of cooling on particle acceleration in relativistic reconnection, and that, even far above the burnoff limit, the synchrotron energy of radiation produced in reconnection is not limited by cooling.

  9. Numerical simulations of Rayleigh-Taylor (RT) turbulence with complex acceleration history

    NASA Astrophysics Data System (ADS)

    Ramaprabhu, Praveen; Dimonte, Guy; Andrews, Malcolm

    2007-11-01

    Complex acceleration histories of an RT unstable interface are important in validating turbulent mix models. Of particular interest are alternating stages of acceleration and deceleration, since the the associated demixing is a discriminating test of such models. We have performed numerical simulations of a turbulent RT mixing layer subjected to two stages of acceleration separated by a stage of deceleration. The profile was chosen from earlier Linear Electric Motor experiments with which we compare our results. The acceleration phases produce classical RT unstable growth (t^2) with growth rates comparable to earlier results of turbulent RT simulations. The calculations are challenging as dominant bubbles become shredded as they reverse direction in response to the reversal in g, placing increased demands on numerical resolution. The shredding to small scales is accompanied by a peaking of the molecular mixing during the RT stable stage. In general, we find that simulations agree with experiments when initialized with broadband initial perturbations, but not for an annular shell. Other effects such as the presence of surface tension in the LEM experiments (but not in our simulations) further complicate this picture.

  10. Effect of Reprocessing and Accelerated Weathering on Impact-Modified Recycled Blend

    NASA Astrophysics Data System (ADS)

    Ramesh, V.; Mohanty, Smita; Biswal, Manoranjan; Nayak, Sanjay K.

    2015-12-01

    Recovery of recycled polycarbonate, acrylonitrile butadiene styrene, high-impact polystyrene, and its blends from waste electrical and electronic equipment plastics products properties were enhanced by the addition of virgin polycarbonate and impact modifier. The optimized blend formulation was processed through five cycles, at processing temperature, 220-240 °C and accelerated weathering up to 700 h. Moreover, the effect of reprocessing and accelerated weathering in the physical properties of the modified blends was investigated by mechanical, thermal, rheological, and morphological studies. The results show that in each reprocessing cycle, the tensile strength and impact strength decreased significantly and the similar behavior has been observed from accelerated weathering. Subsequently, the viscosity decreases and this decrease becomes the effect of thermal and photo-oxidative degradation. This can be correlated with FTIR analysis.

  11. EMG and acceleration signal analysis for quantifying the effects of medication in Parkinson's disease.

    PubMed

    Rissanen, Saara M; Kankaanpaa, Markku; Tarvainen, Mika P; Nuutinen, Juho; Airaksinen, Olavi; Karjalainen, Pasi A

    2011-01-01

    Parkinson's disease (PD) is characterized by motor disabilities that can be alleviated reasonably with appropriate medication. However, there is a lack of objective methods for quantifying the efficacy of treatment in PD. We applied here an objective method for quantifying the effects of medication in PD using EMG and acceleration measurements and analysis. In the method, four signal features were calculated from the EMG and acceleration recordings of both sides of the body: the kurtosis and recurrence rate of EMG, and the amplitude and sample entropy of acceleration. Principal component approach was used for reducing the number of variables. EMG and acceleration data measured from nine PD patients were used for analysis. The patients were measured in four different medication conditions: with medication off, and two and three and four hours after taking the medication. The results showed that in eight patients the EMG recordings changed into less spiky and the acceleration recordings into more complex after taking the medication. A reverse phenomenon in the signal characteristics was observed in seven patients 3-4 hours after taking the medication. The results indicate that the presented method is potentially useful for quantifying objectively the effects of medication on the neuromuscular function in PD.

  12. Effect of hypovolemia, infusion, and oral rehydration on gradual onset +Gz acceleration tolerance

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Brock, P. J.; Haines, R. F.; Rositano, S. A.; Montgomery, L. D.; Keil, L. C.

    1976-01-01

    The purpose of this study was to determine the effect of blood withdrawal, blood infusion, and oral fluid intake on +Gz tolerance at an acceleration rate of 0.5 G/min. Six healthy men aged 21-27 yr were centrifuged after the withdrawal of 400 ml of blood (hypovolemia) from each man; they were centrifuged again following blood infusion (Phase I). Three weeks later the men were accelerated after similar hypovolemia and again after consuming 800 ml of an isotonic NaCl drink (Phase II). Phase I hypovolemia resulted in a reduction in tolerance in all subjects from a mean control level of 6.42 + or - 0.35 min to 5.45 + or - 0.17 min (-15.1%, p less than 0.05). Both infusion and drinking returned tolerances to control levels. During acceleration there were significant (p less than 0.05) increases in plasma vasopressin levels to 35 pg/ml; these were not influenced appreciably by infusion or drinking. In all acceleration runs there was an obligatory shift (loss) of plasma volume and electrolytes, especially potassium, regardless of the experimental treatments. Oral rehydration is shown to be as effective as blood replacement in restoring +Gz acceleration tolerance decrements due to hypovolemia.

  13. An EMA Analysis of the Effect of Increasing Word Length on Consonant Production in Apraxia of Speech: A Case Study

    ERIC Educational Resources Information Center

    Bartle, Carly J.; Goozee, Justine V.; Murdoch, Bruce E.

    2007-01-01

    The effect of increasing word length on the articulatory dynamics (i.e. duration, distance, maximum acceleration, maximum deceleration, and maximum velocity) of consonant production in acquired apraxia of speech was investigated using electromagnetic articulography (EMA). Tongue-tip and tongue-back movement of one apraxic patient was recorded…

  14. Computer Modeling of Acceleration Effects on Cerebral Oxygen Saturation

    DTIC Science & Technology

    2007-04-01

    a significant physiological threat to etrate the cranium and enter the cerebral cortex. Hongo high-performance aircraft pilots since the development...et al. and Hongo et al. (7,8). blackened out and all that could be seen was the target, The primary focus of this effort was to build a model i.e...O6GInduced.html. 87:402. 12. Tripp LD, Arnold A, Bagian J, et al. Psychophysiological effects 8. Hongo K, Kobayashi S, Okudera H, et al. Noninvasive cerebral of

  15. Impact Accelerations of Barefoot and Shod Running.

    PubMed

    Thompson, M; Seegmiller, J; McGowan, C P

    2016-05-01

    During the ground contact phase of running, the body's mass is rapidly decelerated resulting in forces that propagate through the musculoskeletal system. The repetitive attenuation of these impact forces is thought to contribute to overuse injuries. Modern running shoes are designed to reduce impact forces, with the goal to minimize running related overuse injuries. Additionally, the fore/mid foot strike pattern that is adopted by most individuals when running barefoot may reduce impact force transmission. The aim of the present study was to compare the effects of the barefoot running form (fore/mid foot strike & decreased stride length) and running shoes on running kinetics and impact accelerations. 10 healthy, physically active, heel strike runners ran in 3 conditions: shod, barefoot and barefoot while heel striking, during which 3-dimensional motion analysis, ground reaction force and accelerometer data were collected. Shod running was associated with increased ground reaction force and impact peak magnitudes, but decreased impact accelerations, suggesting that the midsole of running shoes helps to attenuate impact forces. Barefoot running exhibited a similar decrease in impact accelerations, as well as decreased impact peak magnitude, which appears to be due to a decrease in stride length and/or a more plantarflexed position at ground contact.

  16. Effects of rectilinear acceleration, optokinetic and caloric stimuli in space

    NASA Technical Reports Server (NTRS)

    Vonbaumgarten, R.

    1981-01-01

    The set of experiments comprising the Spacelab 1ES201 package designed to investigate the human vestibular system and equilibratory function in weightlessness are described. The specific objectives of the experiments include: (1) the determination of the threshold of perception of linear oscillatory motion; (2) measurement of physiological and subjective responses to supra threshold, linear and angular motion stimuli; (3) study of the postural adjustments, eye movements, and illusions of attitude and motion evoked by optokinetic stimuli, (i.e., moving visual patterns) in order to assess visual/vestibular interactions; (4) examination of the effect of thermal stimulations of the vestibular apparatus to determine if the eye movements elicited by the 'caloric test' are used by a density gradient in the semicircular canal; and (5) investigation of the pathogenesis of space motion sickness by recording signs and symptoms during the course of vestibular stimulation and, specifically, when the test subject is exposed to sustained, linear oscillatory motion.

  17. Untangling the Effect of Head Acceleration on Brain Responses to Blast Waves

    PubMed Central

    Mao, Haojie; Unnikrishnan, Ginu; Rakesh, Vineet; Reifman, Jaques

    2015-01-01

    Multiple injury-causing mechanisms, such as wave propagation, skull flexure, cavitation, and head acceleration, have been proposed to explain blast-induced traumatic brain injury (bTBI). An accurate, quantitative description of the individual contribution of each of these mechanisms may be necessary to develop preventive strategies against bTBI. However, to date, despite numerous experimental and computational studies of bTBI, this question remains elusive. In this study, using a two-dimensional (2D) rat head model, we quantified the contribution of head acceleration to the biomechanical response of brain tissues when exposed to blast waves in a shock tube. We compared brain pressure at the coup, middle, and contre-coup regions between a 2D rat head model capable of simulating all mechanisms (i.e., the all-effects model) and an acceleration-only model. From our simulations, we determined that head acceleration contributed 36–45% of the maximum brain pressure at the coup region, had a negligible effect on the pressure at the middle region, and was responsible for the low pressure at the contre-coup region. Our findings also demonstrate that the current practice of measuring rat brain pressures close to the center of the brain would record only two-thirds of the maximum pressure observed at the coup region. Therefore, to accurately capture the effects of acceleration in experiments, we recommend placing a pressure sensor near the coup region, especially when investigating the acceleration mechanism using different experimental setups. PMID:26458125

  18. Balloon launched decelerator test program: Post-flight test report, BLDT vehicle AV-3, Viking 1975 project

    NASA Technical Reports Server (NTRS)

    Dickinson, D.; Hicks, F.; Schlemmer, J.; Michel, F.; Moog, R. D.

    1973-01-01

    The pertinent events concerned with the launch, float, and flight of balloon launched decelerator test vehicle AV-3 are discussed. The performance of the decelerator system is analyzed. Data on the flight trajectory and decelerator test points at the time of decelerator deployment are provided. A description of the time history of vehicle events and anaomalies encounters during the mission is included.

  19. Balloon launched decelerator test program: Post-flight test report, BLDT vehicle AV-2, Viking 1975 project

    NASA Technical Reports Server (NTRS)

    Dickinson, D.; Hicks, F.; Schlemmer, J.; Michel, F.; Moog, R. D.

    1972-01-01

    The pertinent events concerned with the launch, float, and flight of balloon launched decelerator test vehicle AV-2 are discussed. The performance of the decelerator system is analyzed. Data on the flight trajectory and decelerator test points at the time of decelerator deployment are provided. A description of the time history of vehicle events and anomalies encounters during the mission is included.

  20. Advanced High-Temperature Flexible TPS for Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    DelCorso, Joseph A.; Cheatwood, F. McNeil; Bruce, Walter E., III; Hughes, Stephen J.; Calomino, Anthony M.

    2011-01-01

    Typical entry vehicle aeroshells are limited in size by the launch vehicle shroud. Inflatable aerodynamic decelerators allow larger aeroshell diameters for entry vehicles because they are not constrained to the launch vehicle shroud diameter. During launch, the hypersonic inflatable aerodynamic decelerator (HIAD) is packed in a stowed configuration. Prior to atmospheric entry, the HIAD is deployed to produce a drag device many times larger than the launch shroud diameter. The large surface area of the inflatable aeroshell provides deceleration of high-mass entry vehicles at relatively low ballistic coefficients. Even for these low ballistic coefficients there is still appreciable heating, requiring the HIAD to employ a thermal protection system (TPS). This TPS must be capable of surviving the heat pulse, and the rigors of fabrication handling, high density packing, deployment, and aerodynamic loading. This paper provides a comprehensive overview of flexible TPS tests and results, conducted over the last three years. This paper also includes an overview of each test facility, the general approach for testing flexible TPS, the thermal analysis methodology and results, and a comparison with 8-foot High Temperature Tunnel, Laser-Hardened Materials Evaluation Laboratory, and Panel Test Facility test data. Results are presented for a baseline TPS layup that can withstand a 20 W/cm2 heat flux, silicon carbide (SiC) based TPS layup, and polyimide insulator TPS layup. Recent work has focused on developing material layups expected to survive heat flux loads up to 50 W/cm2 (which is adequate for many potential applications), future work will consider concepts capable of withstanding more than 100 W/cm2 incident radiant heat flux. This paper provides an overview of the experimental setup, material layup configurations, facility conditions, and planned future flexible TPS activities.

  1. Decelerating Flows in the TeV Blazars

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2004-01-01

    TeV emission from a class of BL Lacertae (BL) objects is commonly modeled as radiation from relativistically moving homogeneous plasma blobs. In the context of these models, the blob Lorentz factors needed to reproduce the (corrected for absorption by the IR background) TeV emission are large ($\\delta \\gtrsim 50$) are required to reproduce via Synchrotron-Self Compton (SSC) the observed TeV emission. The main reason for this is that stronger beaming eases the problem of the lack of $\\sim$ IR-UV synchrotron seed photons needed to produce the de-absorbed $\\sim$ few TeV peak of the spectral energy distribution (SED). However, such high Doppler factors are in strong disagreement with the unified scheme, according to which BLs are FR I radio galaxies with their jets closely aligned to the line of sight. Here, motivated by the detection of sub-luminal velocities in the sub-pc scale jets of the best studied TeV blazars, MKN 421 and MKN 501. we examine the possibility that the relativistic flow in the TeV BLs is longitudinally decelerating. In this case, the problem of the missing seed photons is solved due to Upstream Compton (UC) scattering, a process in which the upstream energetic electrons from the fast base of the flow 'see' the synchrotron seed photons produced in the slow part of the flow relativistically beamed. Modest Lorentz factors ($\\Gamma kim 15s). decelerating down to values compatible with the recent radio interferometric observations, reproduce the $\\sim$ few TeV peak energy of these sources. Furthermore, such decelerating flows are shown to be in agreement with the BL - FR I unification.

  2. Salt Effect Accelerates Site-Selective Cysteine Bioconjugation

    PubMed Central

    2016-01-01

    Highly efficient and selective chemical reactions are desired. For small molecule chemistry, the reaction rate can be varied by changing the concentration, temperature, and solvent used. In contrast for large biomolecules, the reaction rate is difficult to modify by adjusting these variables because stringent biocompatible reaction conditions are required. Here we show that adding salts can change the rate constant over 4 orders of magnitude for an arylation bioconjugation reaction between a cysteine residue within a four-residue sequence (π-clamp) and a perfluoroaryl electrophile. Biocompatible ammonium sulfate significantly enhances the reaction rate without influencing the site-specificity of π-clamp mediated arylation, enabling the fast synthesis of two site-specific antibody–drug conjugates that selectively kill HER2-positive breast cancer cells. Computational and structure–reactivity studies indicate that salts may tune the reaction rate through modulating the interactions between the π-clamp hydrophobic side chains and the electrophile. On the basis of this understanding, the salt effect is extended to other bioconjugation chemistry, and a new regioselective alkylation reaction at π-clamp cysteine is developed. PMID:27725962

  3. Effect of accelerated weathering on surface chemistry of modified wood

    NASA Astrophysics Data System (ADS)

    Temiz, Ali; Terziev, Nasko; Eikenes, Morten; Hafren, Jonas

    2007-04-01

    In this study, the effects of UV-light irradiation and water spray on colour and surface chemistry of scots pine sapwood samples were investigated. The specimens were treated with chromated copper arsenate (CCA), a metal-free propiconazol-based formulation, chitosan, furfuryl alcohol and linseed and tall oils. The weathering experiment was performed by cycles of 2 h UV-light irradiation followed by water spray for 18 min. The changes at the surface of the weathered samples were characterised by Fourier transform infrared spectroscopy (FT-IR); colour characterizations were performed by measuring CIELab parameters. The results show that all treatment methods except chitosan treatment provided lower colour changes than the control groups after 800 h exposure in weathering test cycle, but differences between chitosan and control were also small. The lowest colour changes were found on linseed oil (full cell process) and CCA treated wood. FT-IR results show that oil treatment (linseed and tall oil) decreased the intensities of a lignin specific peak (1500-1515 cm -1). Absorption band changes at 1630-1660 cm -1 were reduced by all treatments.

  4. Effect of accelerated global expansion on the bending of light

    NASA Astrophysics Data System (ADS)

    Aghili, Mir Emad; Bolen, Brett; Bombelli, Luca

    2017-01-01

    In 2007 Rindler and Ishak showed that, contrary to previous claims, the value of the cosmological constant does have an effect on light deflection by a gravitating object in an expanding universe. In their work they considered a Schwarzschild-de Sitter (SdS) spacetime, which has a constant asymptotic expansion rate H_0. A model with a time-dependent H( t) was studied by Kantowski et al., who consider in their 2010 paper a "Swiss-cheese" model of a Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime with an embedded SdS bubble. In this paper, we generalize the Rindler and Ishak model to time-varying H( t) in another way, by considering light bending in a McVittie metric representing a gravitating object in a FLRW cosmological background. We carry out numerical simulations of the propagation of null geodesics in different McVittie spacetimes, in which we keep the values of the distances from the observer to the lensing object and to the source fixed, and vary the form of H( t).

  5. Effects of propellant composition variables on acceleration-induced burning-rate augmentation of solid propellants

    NASA Technical Reports Server (NTRS)

    Northam, G. B.

    1972-01-01

    This work was conducted to define further the effects of propellant composition variables on the acceleration-induced burning rate augmentation of solid propellants. The rate augmentation at a given acceleration was found to be a nonlinear inverse function of the reference burning rate and not controlled by binder or catalyst type at a given reference rate. A nonaluminized propellant and a low rate double-base propellant exhibited strong transient rate augmentation due to surface pitting resulting from the retention of hot particles on the propellant surface.

  6. The Effects of Two Different Reading Acceleration Training Programs on Improving Reading Skills of Second Graders

    ERIC Educational Resources Information Center

    Nevo, Einat; Brande, Sigalit; Shaul, Shelley

    2016-01-01

    It has been well established that poor reading skills in the first grades of primary school can lead to poor reading skills in all coming years. A reading acceleration program (RAP) known to improve reading skills in adults and children with and without reading difficulties (RD) was tested for its effect on children in second grade with standard…

  7. Accelerated Reader Can Be an Effective Tool to Encourage and Bolster Student Reading

    ERIC Educational Resources Information Center

    Solley, Kathryn

    2011-01-01

    Accelerated Reader's impact on student reading achievement has been debated in educational circles for some time. The effectiveness of this tool to motivate students and build reading comprehension depends on its usage and the training provided to teachers using it. In its training seminars, Renaissance Learning stresses that AR is to be used as a…

  8. Accelerating Teacher Effectiveness: Lessons Learned from Two Decades of New Teacher Induction

    ERIC Educational Resources Information Center

    Moir, Ellen

    2009-01-01

    This article describes 10 lessons learned from two decades of new teacher induction. These include: (1) A new teacher induction program requires a systemwide commitment to teacher development; (2) Induction programs accelerate new teacher effectiveness; (3) Standards-based formative assessment tools document impact; (4) Induction programs build a…

  9. Procedure of practical exercise with students on the pathogenic effect of accelerations on the organism

    NASA Technical Reports Server (NTRS)

    Tyrtyshnikov, I. M.; Tarasenko, L. M.

    1980-01-01

    The effects of acceleration alone and coupled with administration of either aminazine (chlorpromazine- a sedative) or caffeine (a stimulant) on the development of kinetoses in mice were studied. The problem is presented as a method to teach students and to demonstrate the role of the nervous factor in the development of kinetosis.

  10. Effects of Early Acceleration of Students in Mathematics on Taking Advanced Mathematics Coursework in High School

    ERIC Educational Resources Information Center

    Ma, Xin

    2010-01-01

    Based on data from the Longitudinal Study of American Youth (LSAY), students were classified into high-, middle-, and low-ability students. The effects of early acceleration in mathematics on the most advanced mathematics coursework (precalculus and calculus) in high school were examined in each category. Results showed that although early…

  11. Life in the Fast Lane: Effects of Early Grade Acceleration on High School and College Outcomes

    ERIC Educational Resources Information Center

    McClarty, Katie Larsen

    2015-01-01

    Research has repeatedly demonstrated the positive effects of acceleration for gifted and talented students. This study expands the literature by not only evaluating the impact of early grade skipping on high school and college outcomes but also examining the role of postacceleration opportunities on subsequent performance. Using a representative…

  12. Accelerated Reader and Its Effect on Fifth-Grade Students' Reading Comprehension

    ERIC Educational Resources Information Center

    Nichols, Jan Shelton

    2013-01-01

    Schools in the United States have been using the Accelerated Reader (AR) program since the mid-1980s. A search of the literature related to the effectiveness of the AR program revealed that many of the studies were conducted more than a decade ago, and a large number of those studies failed to utilize a control group to provide comparative data.…

  13. Microbunching Instability Effect Studies and Laser Heater Optimization for the SPARX FEL Accelerator

    SciTech Connect

    Vaccarezza, C.; Chiadroni, E.; Ferrario, M.; Giannessi, L.; Quattromini, M.; Ronsivalle, C.; Venturini, C.; Migliorati, M.; Dattoli, G.

    2010-05-23

    The effects of microbunching instability for the SPARX accelerator have been analyzed by means of numerical simulations. The laser heater counteracting action has been addressed in order to optimize the parameters of the compression system, either hybrid RF plus magnetic chicane or only magnetic, and possibly enhance the FEL performance.

  14. Effects of accelerated aging and p-coumaric on crimson clover (Trifolium incarnatium L.) seed germination.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several phenolic acids, including p-coumaric acid, have been described as allelochemicals that may inhibit seed germination or seedling growth. Whether these effects are exacerbated in forage species by environmental stressors is unknown. Accelerated seed aging (high temperature (41 C) and high hum...

  15. Accelerated Degree Completion Programs: The Effects of Core Professors in Nontraditional Higher Education

    ERIC Educational Resources Information Center

    Gadd, Dale Fredrick

    2012-01-01

    Nontraditional Accelerated Degree Completion Programs (ADCPs) became popular in the 1980s at many private, higher education institutions, and involved cohort groups facilitated by core or major professors. There has been little research addressing the effectiveness of a core-professor or multiple-professor approach within ADCPs, or research on how…

  16. Ares I First Stage Booster Deceleration System: An Overview

    NASA Technical Reports Server (NTRS)

    King, Ron; Hengel, John E.; Wolf, Dean

    2009-01-01

    In 2005, the Congressional NASA Authorization Act enacted a new space exploration program, the "Vision for Space Exploratien". The Constellation Program was formed to oversee the implementation of this new mission. With an intent not simply to support the International Space Station, but to build a permanent outpost on the Moon and then travel on to explore ever more distant terrains, the Constellation Program is supervising the development of a brand new fleet of launch vehicles, the Ares. The Ares lineup will include two new launch vehicles: the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle. A crew exploration vehicle, Orion, will be launched on the Ares I. It will be capable of docking with the Space Station, the lunar lander, Altair, and the Earth Departure Stage of Ares V. The Ares V will be capable of lifting both large-scale hardware and the Altair into space. The Ares First Stage Team is tasked with developing the propulsion system necessary to liftoff from the Earth and loft the entire Ares vehicle stack toward low Earth orbit. The Ares I First Stage booster is a 12-foot diameter, five-segment, reusable solid rocket booster derived from the Space Shuttle's four segment reusable solid rocket booster (SRB). It is separated from the Upper Stage through the use of a Deceleration Subsystem (DSS). Booster Tumble Motors are used to induce the pitch tumble following separation from the Upper Stage. The spent Ares I booster must be recoverable using a parachute deceleration system similar to that of the Shuttle SRB heritage system. Since Ares I is much heavier and reenters the Earth's atmosphere from a higher altitude at a much higher velocity than the SRB, all of the parachutes must be redesigned to reliably meet the operational requisites of the new launch vehicles. This paper presents an overview of this new booster deceleration system. It includes comprehensive detail of the parachute deceleration system, its design and deployment sequences

  17. Decelerating Mortality Rates in Older Ages and its Prospects through Lee-Carter Approach

    PubMed Central

    Yadav, Awdhesh; Yadav, Suryakant; Kesarwani, Ranjana

    2012-01-01

    The present study attempts to study the age pattern mortality and prospects through Lee-Carter approach. The objectives of the study are to examine the trend of mortality decline and life expectancy. Contemporaneously, we have projected life expectancy up to 2025, projecting ASDR using Lee-Carter method. Life table aging rate (LAR) used to estimate the rate of mortality deceleration. Overtime, LAR increased and during recent decade it remained more or less unchanged. By age, LAR significant increased in the oldest of old. The slope is steepest in the oldest of old in the recent decade. The rates of mortality increased in oldest of old as the age group is more vulnerable to chronic disease and vulnerable to identifiable risk factors for virtually every disease, marked by senility. The analysis revealed that the level of mortality is not declining but rate of acceleration is declining and is further expected to decline. By the year 2025, the age specific death rates for the age group 5–9 and 10–14 will go below one per thousand.Life expectancy will attained as high as 73 and 79 years for male and female and is further expected to increase linearly. 71 percent of total female birth and 57 percent of total male birth will survive up to age 70+. Also the findings revealed that mortality rate is declining with constant rate up to age 70 and thereafter, the mortality rate accelerates and this holds true for both sexes. PMID:23236414

  18. Production of clinically useful positron emitter beams during carbon ion deceleration.

    PubMed

    Lazzeroni, M; Brahme, A

    2011-03-21

    In external beam radiation therapy, radioactive beams offer the best clinical solution to simultaneously treat and in vivo monitor the dose delivery and tumor response using PET or PET-CT imaging. However, difficulties mainly linked to the low production efficiency have so far limited their use. This study is devoted to the analysis of the production of high energy (11)C fragments, preferably by projectile fragmentation of a stable monodirectional and monoenergetic primary (12)C beam in different absorbing materials (decelerators) in order to identify the optimal elemental composition. The study was performed using the Monte Carlo code SHIELD-HIT07. The track length and fluence of generated secondary particles were scored in a uniform absorber of 300 cm length and 10 cm radius, divided into slices of 1 cm thickness. The (11)C fluence build-up and mean energy variation with increasing decelerator depth are presented. Furthermore, the fluence of the secondary (11)C beam was studied as a function of its mean energy and the corresponding remaining range in water. It is shown that the maximum (11)C fluence build-up is high in compounds where the fraction by weight of hydrogen is high, being the highest in liquid hydrogen. Furthermore, a cost effective alternative solution to the single medium initially envisaged is presented: a two-media decelerator that comprises a first liquid hydrogen section followed by a second decelerating section made of a hydrogen-rich material, such as polyethylene (C(2)H(4)). The purpose of the first section is to achieve a fast initial (11)C fluence build-up, while the second section is primarily designed to modulate the mean energy of the generated (11)C beam in order to reach the tumor depth. Finally, it was demonstrated that, if the intensity of the primary (12)C beam can be increased by an order of magnitude, a sufficient intensity of the secondary (11)C beam is achieved for therapy and subsequent therapeutic PET imaging sessions. Such an

  19. Production of clinically useful positron emitter beams during carbon ion deceleration

    NASA Astrophysics Data System (ADS)

    Lazzeroni, M.; Brahme, A.

    2011-03-01

    In external beam radiation therapy, radioactive beams offer the best clinical solution to simultaneously treat and in vivo monitor the dose delivery and tumor response using PET or PET-CT imaging. However, difficulties mainly linked to the low production efficiency have so far limited their use. This study is devoted to the analysis of the production of high energy 11C fragments, preferably by projectile fragmentation of a stable monodirectional and monoenergetic primary 12C beam in different absorbing materials (decelerators) in order to identify the optimal elemental composition. The study was performed using the Monte Carlo code SHIELD-HIT07. The track length and fluence of generated secondary particles were scored in a uniform absorber of 300 cm length and 10 cm radius, divided into slices of 1 cm thickness. The 11C fluence build-up and mean energy variation with increasing decelerator depth are presented. Furthermore, the fluence of the secondary 11C beam was studied as a function of its mean energy and the corresponding remaining range in water. It is shown that the maximum 11C fluence build-up is high in compounds where the fraction by weight of hydrogen is high, being the highest in liquid hydrogen. Furthermore, a cost effective alternative solution to the single medium initially envisaged is presented: a two-media decelerator that comprises a first liquid hydrogen section followed by a second decelerating section made of a hydrogen-rich material, such as polyethylene (C2H4). The purpose of the first section is to achieve a fast initial 11C fluence build-up, while the second section is primarily designed to modulate the mean energy of the generated 11C beam in order to reach the tumor depth. Finally, it was demonstrated that, if the intensity of the primary 12C beam can be increased by an order of magnitude, a sufficient intensity of the secondary 11C beam is achieved for therapy and subsequent therapeutic PET imaging sessions. Such an increase in the

  20. Mass Limited Target Effects on Proton Acceleration with Femtosecond Laser Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Zulick, Calvin; Raymond, A.; McKelvey, A.; Willingale, L.; Chvykov, V.; Maksimchuk, A.; Thomas, A. G. R.; Yanovsky, V.; Krushelnick, K.

    2014-10-01

    Experiments at the HERCULES laser facility have been performed to measure the effect of reduced mass targets on proton acceleration through the use of foil, grid, and wire targets in femtosecond laser plasma interactions. The target thickness was held approximately constant at 12 . 5 μm, while the lateral extent of the target was varied. The electron current density was measured with an imaging Cu Kα crystal. Higher current densities were observed as the target mass was reduced which corresponded to an increase in the temperature of the accelerated proton beam. Additionally, a line focusing feature was observed in the spatial distribution of protons accelerated to from the wire target, believed to be a result of azimuthal magnetic fields generated by electron currents in the wire. Particle-in-cell and Vlasov-Fokker-Plank simulations were performed in order to investigate the focusing magnetic field as well as the complex sheath formation dynamics on the mesh target.

  1. Enabling cost-effective high-current burst-mode operation in superconducting accelerators

    DOE PAGES

    Sheffield, Richard L.

    2015-06-01

    Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current,more » 90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.« less

  2. Enabling cost-effective high-current burst-mode operation in superconducting accelerators

    SciTech Connect

    Sheffield, Richard L.

    2015-06-01

    Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current, 90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.

  3. Effects of fore-aft body mass distribution on acceleration in dogs.

    PubMed

    Walter, Rebecca M; Carrier, David R

    2011-05-15

    The ability of a quadruped to apply propulsive ground reaction forces (GRF) during rapid acceleration may be limited by muscle power, foot traction or the ability to counteract the nose-up pitching moment due to acceleration. Because the biomechanics of acceleration change, both throughout the stride cycle and over subsequent strides as velocity increases, the factors limiting propulsive force production may also change. Depending on which factors are limiting during each step, alterations in fore-aft body mass distribution may either increase or decrease the maximum propulsive GRF produced. We analyzed the effects of experimental alterations in the fore-aft body mass distribution of dogs as they performed rapid accelerations. We measured the changes in trunk kinematics and GRF as dogs accelerated while carrying 10% body mass in saddlebags positioned just in front of the shoulder girdle or directly over the pelvic girdle. We found that dogs applied greater propulsive forces in the initial hindlimb push-off and first step by the lead forelimb in both weighted conditions. During these steps dogs appear to have been limited by foot traction. For the trailing forelimb, propulsive forces and impulses were reduced when dogs wore caudally placed weights and increased when dogs wore cranially placed weights. This is consistent with nose-up pitching or avoidance thereof having limited propulsive force production by the trailing forelimb. By the second stride, the hindlimbs appear to have been limited by muscle power in their ability to apply propulsive force. Adding weights decreased the propulsive force they applied most in the beginning of stance, when limb retractor muscles were active in supporting body weight. These results suggest that all three factors: foot traction, pitching of the body, and muscle power play roles in limiting quadrupedal acceleration. Digging in to the substrate with claws or hooves appears to be necessary for maximizing propulsion in the initial

  4. Decelerated invasion and waning-moon patterns in public goods games with delayed distribution

    NASA Astrophysics Data System (ADS)

    Szolnoki, Attila; Perc, Matjaž

    2013-05-01

    We study the evolution of cooperation in the spatial public goods game, focusing on the effects that are brought about by the delayed distribution of goods that accumulate in groups due to the continuous investments of cooperators. We find that intermediate delays enhance network reciprocity because of a decelerated invasion of defectors, who are unable to reap the same high short-term benefits as they do in the absence of delayed distribution. Long delays, however, introduce a risk because the large accumulated wealth might fall into the wrong hands. Indeed, as soon as the curvature of a cooperative cluster turns negative, the engulfed defectors can collect the heritage of many generations of cooperators and by doing so start a waning-moon pattern that nullifies the benefits of decelerated invasion. Accidental meeting points of growing cooperative clusters may also act as triggers for the waning-moon effect, thus linking the success of cooperators with their propensity to fail in a rather bizarre way. Our results highlight that “investing in the future” is a good idea only if that future is sufficiently near and not likely to be burdened by inflation.

  5. Decelerated invasion and waning-moon patterns in public goods games with delayed distribution.

    PubMed

    Szolnoki, Attila; Perc, Matjaž

    2013-05-01

    We study the evolution of cooperation in the spatial public goods game, focusing on the effects that are brought about by the delayed distribution of goods that accumulate in groups due to the continuous investments of cooperators. We find that intermediate delays enhance network reciprocity because of a decelerated invasion of defectors, who are unable to reap the same high short-term benefits as they do in the absence of delayed distribution. Long delays, however, introduce a risk because the large accumulated wealth might fall into the wrong hands. Indeed, as soon as the curvature of a cooperative cluster turns negative, the engulfed defectors can collect the heritage of many generations of cooperators and by doing so start a waning-moon pattern that nullifies the benefits of decelerated invasion. Accidental meeting points of growing cooperative clusters may also act as triggers for the waning-moon effect, thus linking the success of cooperators with their propensity to fail in a rather bizarre way. Our results highlight that "investing in the future" is a good idea only if that future is sufficiently near and not likely to be burdened by inflation.

  6. Hydrodynamic Scaling of the Deceleration-Phase Rayleigh-Taylor Instability

    NASA Astrophysics Data System (ADS)

    Bose, A.; Nora, R.; Woo, K.; Betti, R.

    2013-10-01

    A 2-D study of the deceleration-phase Rayleigh-Taylor (RT) growth is carried out to assess how the yield-over-clean (YOC) varies in hydro-equivalent implosions. Hydro-equivalent implosions exhibit equal implosion velocity, adiabat, and laser intensity. The YOC indicates the effects of hydrodynamic instabilities on inertial fusion capsule implosions. While the classical RT instability follows the laws of hydrodynamic similarity (the same growth factor for hydro-equivalent implosions), the effects of ablation and thermal transport in the hot spot cause a deviation from similarity. We present analytic and numerical calculations of the RT growth factors in hydro-equivalent implosions with target sizes varying from typical OMEGA to NIF-scale targets. Theoretical scaling suggests that the deceleration-phase Atwood number and ablation velocity is different for OMEGA and the NIF, yielding growth factors that are dependent on the target size. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and DE-FC02-04ER54789 (Fusion Science Center).

  7. Control of laser-wakefield acceleration by the plasma-density profile.

    PubMed

    Pukhov, A; Kostyukov, I

    2008-02-01

    We show that both the maximum energy gain and the accelerated beam quality can be efficiently controlled by the plasma-density profile. Choosing a proper density gradient one can uplift the dephasing limitation and keep the phase synchronism between the bunch of relativistic particles and the plasma wave over extended distances. Putting electrons into the n th wake period behind the driving laser pulse, the maximum energy gain is increased by the factor, which is proportional to n, over that in the case of uniform plasma. Layered plasma is suggested to keep the resonant condition for laser-wakefield excitation. The acceleration is limited then by laser depletion rather than by dephasing. Further, we show that the natural energy spread of the particle bunch acquired at the acceleration stage can be effectively removed by a matched deceleration stage, where a larger plasma density is used.

  8. Estimating Mass of Inflatable Aerodynamic Decelerators Using Dimensionless Parameters

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2011-01-01

    This paper describes a technique for estimating mass for inflatable aerodynamic decelerators. The technique uses dimensional analysis to identify a set of dimensionless parameters for inflation pressure, mass of inflation gas, and mass of flexible material. The dimensionless parameters enable scaling of an inflatable concept with geometry parameters (e.g., diameter), environmental conditions (e.g., dynamic pressure), inflation gas properties (e.g., molecular mass), and mass growth allowance. This technique is applicable for attached (e.g., tension cone, hypercone, and stacked toroid) and trailing inflatable aerodynamic decelerators. The technique uses simple engineering approximations that were developed by NASA in the 1960s and 1970s, as well as some recent important developments. The NASA Mars Entry and Descent Landing System Analysis (EDL-SA) project used this technique to estimate the masses of the inflatable concepts that were used in the analysis. The EDL-SA results compared well with two independent sets of high-fidelity finite element analyses.

  9. Overview of the Mars Science Laboratory Parachute Decelerator Subsystem

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Steltzner, Adam; Witkowski, Al; Rowan, Jerry; Cruz, Juan

    2007-01-01

    In 2010 the Mars Science Laboratory (MSL) mission will deliver NASA's largest and most capable rover to the surface of Mars. MSL will explore previously unattainable landing sites due to the implementation of a high precision Entry, Descent, and Landing (EDL) system. The parachute decelerator subsystem (PDS) is an integral prat of the EDL system, providing a mass and volume efficient some of aerodynamic drag to decelerate the entry vehicle from Mach 2 to subsonic speeds prior to final propulsive descent to the sutface. The PDS for MSL is a mortar deployed 19.7m Viking type Disk-Gap-Band (DGB) parachute; chosen to meet the EDL timeline requirements and to utilize the heritage parachute systems from Viking, Mars Pathfinder, Mars Exploration Rover, and Phoenix NASA Mars Lander Programs. The preliminary design of the parachute soft goods including materials selection, stress analysis, fabrication approach, and development testing will be discussed. The preliminary design of mortar deployment system including mortar system sizing and performance predictions, gas generator design, and development mortar testing will also be presented.

  10. Principles and Design of a Zeeman–Sisyphus Decelerator for Molecular Beams

    PubMed Central

    Tarbutt, M. R.

    2016-01-01

    Abstract We explore a technique for decelerating molecules using a static magnetic field and optical pumping. Molecules travel through a spatially varying magnetic field and are repeatedly pumped into a weak‐field seeking state as they move towards each strong field region, and into a strong‐field seeking state as they move towards weak field. The method is time‐independent and so is suitable for decelerating both pulsed and continuous molecular beams. By using guiding magnets at each weak field region, the beam can be simultaneously guided and decelerated. By tapering the magnetic field strength in the strong field regions, and exploiting the Doppler shift, the velocity distribution can be compressed during deceleration. We develop the principles of this deceleration technique, provide a realistic design, use numerical simulations to evaluate its performance for a beam of CaF, and compare this performance to other deceleration methods. PMID:27629547

  11. A Two-Dimensional Hydrocode to Study the Deceleration Phase and Hot-Spot Formation in Inertial Confinement Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Woo, K. M.; Bose, A.; Betti, R.; Delettrez, J. A.; Anderson, K. S.; Epstein, R.

    2014-10-01

    A hydrocode was developed to study the final stage of an implosion starting from the coasting phase, including hot-spot formation and thermonuclear burn. Recently, a flux-limited multigroup diffusion approximation model has been added to study the transport of radiation energy in the deceleration phase of a spherical inertial confinement fusion target. Numerical results from the multigroup model indicate a good agreement with LILAC 1-D simulations. The code is used to study effects of radiation on the hotspot formation and distortion. Results from 2-D runs are presented and the effect of radiation transport on the deceleration-phase Rayleigh-Taylor instability is discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Office of Fusion Energy Sciences Number DE-FG02-04ER54786.

  12. Effectiveness of breakpoint chlorination to reduce accelerated chemical chloramine decay in severely nitrified bulk waters.

    PubMed

    Bal Krishna, K C; Sathasivan, Arumugam; Kastl, George

    2014-12-01

    Rectifying the accelerated chloramine decay after the onset of nitrification is a major challenge for water utilities that employ chloramine as a disinfectant. Recently, the evidence of soluble microbial products (SMPs) accelerating chloramine decay beyond traditionally known means was reported. After the onset of nitrification, with an intention to inactivate nitrifying bacteria and thus maintaining disinfectant residuals, breakpoint chlorination followed by re-chloramination is usually practiced by water utilities. However, what actually breakpoint chlorination does beyond known effects is not known, especially in light of the new finding of SMPs. In this study, experiments were conducted using severely nitrified chloraminated water samples (chloramine residuals <0.5 mg Cl2 L−1, nitrite residuals >0.1 mg N L−1 and an order of magnitude higher chloramine decay rate compared to normal decay) obtained from two laboratory scale systems operated by feeding natural organic matter (NOM) containing and NOM free waters. Results showed that the accelerated decay of chloramine as a result of SMPs can be eliminated by spiking higher free chlorine residuals (about 0.92 ± 0.03 to 1.16 ± 0.12 mg Cl2 L−1) than the stoichiometric requirement for breakpoint chlorination and nitrite oxidation. Further, accelerated initial chlorine decay showed chlorine preferentially reacts with nitrite and ammonia before destroying SMPs. This study, clearly demonstrated there is an additional demand from SMPs that needs to be satisfied to effectively recover disinfection residuals in subsequent re-chloramination.

  13. On the deceleration of relativistic jets in active galactic nuclei- I. Radiation drag

    NASA Astrophysics Data System (ADS)

    Beskin, V. S.; Chernoglazov, A. V.

    2016-12-01

    Deceleration of relativistic jets from active galactic nuclei (AGNs) detected recently by the Monitoring Of Jets in Active galactic nuclei with Very Long Baseline Array Experiments (MOJAVE) team is discussed in connection with the interaction of the jet material with an external photon field. The appropriate energy density of the isotropic photon field necessary to decelerate jets is determined. It is shown that disturbances of the electric potential and magnetic surfaces play an important role in the general dynamics of particle deceleration.

  14. The effect of buccal corticotomy on accelerating orthodontic tooth movement of maxillary canine

    PubMed Central

    Jahanbakhshi, Mohammad Reza; Motamedi, Ali Mohammad Kalantar; Feizbakhsh, Masoud; Mogharehabed, Ahmad

    2016-01-01

    Background: Selective alveolar corticotomy is defined as an intentional injury to cortical bone. This technique is an effective means of accelerating orthodontic tooth movement. The aim of this study is to evaluate the effect of buccal corticotomy in accelerating maxillary canine retraction. Materials and Methods: The sample in this clinical trial study consisted of 15 adult female patients with therapeutic need for extraction of maxillary first premolars and maximum canine retraction. By use of split-mouth design, at the time of premolars extraction, buccal corticotomy was performed around the maxillary first premolar, randomly on one side of maxilla, and the other side was reserved as the control side. Canine retraction was performed by use of friction – less mechanic with simple vertical loop. Every 2 weeks, distance between canines and second premolars was measured until complete space closure. The velocity of space closure was calculated to evaluate the effect of this technique in accelerating orthodontic tooth movement. The obtained data were statistically analyzed using independent t-test, and the significance was set at 0.05. Results: The rate of canine retraction was significantly higher on the corticotomy side than the control side by an average of 1.8 mm/month versus 1.1 mm/month in the corticotomy side and control side, respectively (P < 0.001). Conclusion: Based on result of this study, corticotomy can accelerates the rate of orthodontic tooth movement about two times faster than conventional orthodontics and it is significant in early stages after surgical porsedure. Therefore Buccal corticotomy is a useful adjunct technique for accelerating orthodontic tooth movement. PMID:27605986

  15. Forced unsteady deceleration of a turbulent boundary layer from a temporal perspective

    NASA Technical Reports Server (NTRS)

    Brereton, G. J.

    1992-01-01

    The behavior of a turbulent boundary layer which has been subjected to a local ramp-like deceleration in the external velocity field, which leads to forced separation, has been studied experimentally. The data of this study are re-interpreted in light of more recent findings concerning the temporal nature of boundary layer turbulence in the presence of forced unsteady shear. In particular, the robustness of the near-wall turbulent motions to organized deformation is recognized. Their resilence during unsteady shearing action promotes continued efficient turbulent mixing and rapid redistribution of turbulent kinetic energy during forced transients. In aerodynamic problems, the rapid nature of the adjustment of the turbulence field to a new temporal boundary condition necessitates equally rapid remedial measures to be taken if means of control/prevention of forced unsteady separation are to be deployed to maximum effect. This requirement suggests exploration of the use of simple, real-time statistical forecasting techniques, based upon time-series analysis of easily-measurable features of the flow, to help assure timely deployment of mechanisms of boundary-layer control. This paper focuses upon the nature of turbulence in boundary layers undergoing forced deceleration which would lead to separation. A preliminary form of a forecasting model is presented and evaluated. Using observations of the previous two large eddies passing a detector, it forecasts the behavior of the future large eddy rather well.

  16. Forced unsteady deceleration of a turbulent boundary layer from a temporal perspective

    NASA Astrophysics Data System (ADS)

    Brereton, G. J.

    1992-03-01

    The behavior of a turbulent boundary layer which has been subjected to a local ramp-like deceleration in the external velocity field, which leads to forced separation, has been studied experimentally. The data of this study are re-interpreted in light of more recent findings concerning the temporal nature of boundary layer turbulence in the presence of forced unsteady shear. In particular, the robustness of the near-wall turbulent motions to organized deformation is recognized. Their resilence during unsteady shearing action promotes continued efficient turbulent mixing and rapid redistribution of turbulent kinetic energy during forced transients. In aerodynamic problems, the rapid nature of the adjustment of the turbulence field to a new temporal boundary condition necessitates equally rapid remedial measures to be taken if means of control/prevention of forced unsteady separation are to be deployed to maximum effect. This requirement suggests exploration of the use of simple, real-time statistical forecasting techniques, based upon time-series analysis of easily-measurable features of the flow, to help assure timely deployment of mechanisms of boundary-layer control. This paper focuses upon the nature of turbulence in boundary layers undergoing forced deceleration which would lead to separation. A preliminary form of a forecasting model is presented and evaluated. Using observations of the previous two large eddies passing a detector, it forecasts the behavior of the future large eddy rather well.

  17. Angular distribution of Cherenkov radiation from relativistic heavy ions taking into account deceleration in the radiator

    SciTech Connect

    Bogdanov, O. V. Fiks, E. I.; Pivovarov, Yu. L.

    2012-09-15

    Numerical methods are used to study the dependence of the structure and the width of the angular distribution of Vavilov-Cherenkov radiation with a fixed wavelength in the vicinity of the Cherenkov cone on the radiator parameters (thickness and refractive index), as well as on the parameters of the relativistic heavy ion beam (charge and initial energy). The deceleration of relativistic heavy ions in the radiator, which decreases the velocity of ions, modifies the condition of structural interference of the waves emitted from various segments of the trajectory; as a result, a complex distribution of Vavilov-Cherenkov radiation appears. The main quantity is the stopping power of a thin layer of the radiator (average loss of the ion energy), which is calculated by the Bethe-Bloch formula and using the SRIM code package. A simple formula is obtained to estimate the angular distribution width of Cherenkov radiation (with a fixed wavelength) from relativistic heavy ions taking into account the deceleration in the radiator. The measurement of this width can provide direct information on the charge of the ion that passes through the radiator, which extends the potentialities of Cherenkov detectors. The isotopic effect (dependence of the angular distribution of Vavilov-Cherenkov radiation on the ion mass) is also considered.

  18. Abrupt deceleration of molecular evolution linked to the origin of arborescence in ferns.

    PubMed

    Korall, Petra; Schuettpelz, Eric; Pryer, Kathleen M

    2010-09-01

    Molecular rate heterogeneity, whereby rates of molecular evolution vary among groups of organisms, is a well-documented phenomenon. Nonetheless, its causes are poorly understood. For animals, generation time is frequently cited because longer-lived species tend to have slower rates of molecular evolution than their shorter-lived counterparts. Although a similar pattern has been uncovered in flowering plants, using proxies such as growth form, the underlying process has remained elusive. Here, we find a deceleration of molecular evolutionary rate to be coupled with the origin of arborescence in ferns. Phylogenetic branch lengths within the “tree fern” clade are considerably shorter than those of closely related lineages, and our analyses demonstrate that this is due to a significant difference in molecular evolutionary rate. Reconstructions reveal that an abrupt rate deceleration coincided with the evolution of the long-lived tree-like habit at the base of the tree fern clade. This suggests that a generation time effect may well be ubiquitous across the green tree of life, and that the search for a responsible mechanism must focus on characteristics shared by all vascular plants. Discriminating among the possibilities will require contributions from various biological disciplines,but will be necessary for a full appreciation of molecular evolution.

  19. Three-dimensional hydrodynamics of the deceleration stage in inertial confinement fusion

    SciTech Connect

    Weber, C. R. Clark, D. S.; Cook, A. W.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Marinak, M. M.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.; Thomas, C. A.

    2015-03-15

    The deceleration stage of inertial confinement fusion implosions is modeled in detail using three-dimensional simulations designed to match experiments at the National Ignition Facility. In this final stage of the implosion, shocks rebound from the center of the capsule, forming the high-temperature, low-density hot spot and slowing the incoming fuel. The flow field that results from this process is highly three-dimensional and influences many aspects of the implosion. The interior of the capsule has high-velocity motion, but viscous effects limit the range of scales that develop. The bulk motion of the hot spot shows qualitative agreement with experimental velocity measurements, while the variance of the hot spot velocity would broaden the DT neutron spectrum, increasing the inferred temperature by 400–800 eV. Jets of ablator material are broken apart and redirected as they enter this dynamic hot spot. Deceleration stage simulations using two fundamentally different rad-hydro codes are compared and the flow field is found to be in good agreement.

  20. The Role of the Interface in Thin Film and Droplet Accelerated Reactions Studied by Competitive Substituent Effects.

    PubMed

    Li, Yafeng; Yan, Xin; Cooks, R Graham

    2016-03-01

    Based on a study of competitive substituent effects in a Claisen-Schmidt reaction, interfacial effects have been shown to play an important role in accelerated reactions that occur in thin films and droplets. A role for the interface in an accelerated C-C bond-formation reaction between 6hydroxy-1-indanone and aromatic aldehydes is indicated by cooperative interactions between p-methylbenzaldehyde and p-nitrobenzaldehyde. Additional acceleration over that occurring in bulk reactions is seen for p-methylbenzaldehyde, but only in the presence of p-nitrobenzaldehyde. A decrease in the degree of acceleration is detected when the reaction is forced electrostatically to occur inside the thin film, and the interface is shown to participate in the accelerated reactions. This experimental evidence for interfacial thin film and droplet acceleration supports a recent model and builds on earlier work which locates molecules within evaporating droplets in electrosprays.

  1. The Berkeley accelerator space effects facility (BASE) - A newmission for the 88-inch cyclotron at LBNL

    SciTech Connect

    McMahan, M.A.

    2005-09-06

    In FY04, the 88-Inch Cyclotron began a new operating mode that supports a local research program in nuclear science, R&D in accelerator technology and a test facility for the National Security Space (NSS) community (the U.S. Air Force and NRO). The NSS community (and others on a cost recovery basis) can take advantage of both the light- and heavy-ion capabilities of the Cyclotron to simulate the space radiation environment. A significant portion of this work involves the testing of microcircuits for single event effects. The experimental areas within the building that are used for the radiation effects testing are now called the Berkeley Accelerator and Space Effects (BASE) facility. Improvements to the facility to provide increased reliability, quality assurance and new capabilities are underway and will be discussed. These include a 16 AMeV ''cocktail'' of beams for heavy ion testing, a neutron beam, more robust dosimetry, and other upgrades.

  2. Effects of Different Backpack Loads in Acceleration Transmission during Recreational Distance Walking.

    PubMed

    Lucas-Cuevas, Angel G; Pérez-Soriano, Pedro; Bush, Michael; Crossman, Aaron; Llana, Salvador; Cortell-Tormo, Juan M; Pérez-Turpin, José A

    2013-01-01

    It is well established nowadays the benefits that physical activity can have on the health of individuals. Walking is considered a fundamental method of movement and using a backpack is a common and economical manner of carrying load weight. Nevertheless, the shock wave produced by the impact forces when carrying a backpack can have detrimental effects on health status. Therefore, the aim of this study was to investigate differences in the accelerations placed on males and females whilst carrying different loads when walking. Twenty nine sports science students (16 males and 13 females) participated in the study under 3 different conditions: no weight, 10% and 20% body weight (BW) added in a backpack. Accelerometers were attached to the right shank and the centre of the forehead. Results showed that males have lower accelerations than females both in the head (2.62 ± 0.43G compared to 2.83 + 0.47G) and shank (1.37 ± 0.14G compared to 1.52 ± 0.15G; p<0.01). Accelerations for males and females were consistent throughout each backpack condition (p>0.05). The body acts as a natural shock absorber, reducing the amount of force that transmits through the body between the foot (impact point) and head. Anthropometric and body mass distribution differences between males and females may result in women receiving greater impact acceleration compared to men when the same load is carried.

  3. Effects of Different Backpack Loads in Acceleration Transmission during Recreational Distance Walking

    PubMed Central

    Lucas-Cuevas, Angel G.; Pérez-Soriano, Pedro; Bush, Michael; Crossman, Aaron; Llana, Salvador; Cortell-Tormo, Juan M.; Pérez-Turpin, José A.

    It is well established nowadays the benefits that physical activity can have on the health of individuals. Walking is considered a fundamental method of movement and using a backpack is a common and economical manner of carrying load weight. Nevertheless, the shock wave produced by the impact forces when carrying a backpack can have detrimental effects on health status. Therefore, the aim of this study was to investigate differences in the accelerations placed on males and females whilst carrying different loads when walking. Twenty nine sports science students (16 males and 13 females) participated in the study under 3 different conditions: no weight, 10% and 20% body weight (BW) added in a backpack. Accelerometers were attached to the right shank and the centre of the forehead. Results showed that males have lower accelerations than females both in the head (2.62 ± 0.43G compared to 2.83 + 0.47G) and shank (1.37 ± 0.14G compared to 1.52 ± 0.15G; p<0.01). Accelerations for males and females were consistent throughout each backpack condition (p>0.05). The body acts as a natural shock absorber, reducing the amount of force that transmits through the body between the foot (impact point) and head. Anthropometric and body mass distribution differences between males and females may result in women receiving greater impact acceleration compared to men when the same load is carried. PMID:24146708

  4. Effect of floating toes on knee and trunk acceleration during walking: a preliminary study

    PubMed Central

    Uritani, Daisuke; Sakamoto, Chinatsu; Fukumoto, Takahiko

    2017-01-01

    [Purpose] This study investigated the effect of floating toes on knee and trunk acceleration during walking in experimental setting. [Subjects and Methods] Twelve healthy volunteers walked barefoot at a preferred speed along a linear pathway under 2 conditions: normal gait (control) condition and floating toes (FT) condition. In the latter, weight bearing by the toes was avoided using kinesiology tape applied along the toe extensors. Accelerations of the knee (Kn) and lumbar spine (Lx) were assessed using triaxial accelerometers mounted on the right fibular head and the spinous process of L3. Acceleration vectors were oriented such that the anterior, right, and cranial deviations were positive along the anteroposterior, lateral, and vertical axes, respectively. The root mean squares (RMSs; anteroposterior, RMSap; lateral, RMSl; vertical, RMSv) were calculated, and the mean values of 3 trials in each condition were determined. Differences between the conditions were assessed using the Wilcoxon signed-rank test. [Results] LxRMSap and LxRMSv were larger in the FT condition than in the control condition. KnRMSv tended to be higher in the FT condition than in the control condition. [Conclusion] Floating toes increase acceleration and might create mechanical stress on the lower back and knee during walking. PMID:28265174

  5. Gravitationally neutral dark matter-dark antimatter universe crystal with epochs of decelerated and accelerated expansion

    NASA Astrophysics Data System (ADS)

    Gribov, I. A.; Trigger, S. A.

    2016-11-01

    A large-scale self-similar crystallized phase of finite gravitationally neutral universe (GNU)—huge GNU-ball—with spherical 2D-boundary immersed into an endless empty 3D- space is considered. The main principal assumptions of this universe model are: (1) existence of stable elementary particles-antiparticles with the opposite gravitational “charges” (M+gr and M -gr), which have the same positive inertial mass M in = |M ±gr | ≥ 0 and are equally presented in the universe during all universe evolution epochs; (2) the gravitational interaction between the masses of the opposite charges” is repulsive; (3) the unbroken baryon-antibaryon symmetry; (4) M+gr-M-gr “charges” symmetry, valid for two equally presented matter-antimatter GNU-components: (a) ordinary matter (OM)-ordinary antimatter (OAM), (b) dark matter (DM)-dark antimatter (DAM). The GNU-ball is weightless crystallized dust of equally presented, mutually repulsive (OM+DM) clusters and (OAM+DAM) anticlusters. Newtonian GNU-hydrodynamics gives the observable spatial flatness and ideal Hubble flow. The GNU in the obtained large-scale self-similar crystallized phase preserves absence of the cluster-anticluster collisions and simultaneously explains the observable large-scale universe phenomena: (1) the absence of the matter-antimatter clusters annihilation, (2) the self-similar Hubble flow stability and homogeneity, (3) flatness, (4) bubble and cosmic-net structures as 3D-2D-1D decrystallization phases with decelerative (a ≤ 0) and accelerative (a ≥ 0) expansion epochs, (5) the dark energy (DE) phenomena with Λ VACUUM = 0, (6) the DE and DM fine-tuning nature and predicts (7) evaporation into isolated huge M±gr superclusters without Big Rip.

  6. The effects of accelerated electrons on Escherichia Coli enterobacteria cytotoxic activity

    NASA Astrophysics Data System (ADS)

    Oproiu, C.; Martin, D.; Marghitu, S.; Popescu, A. S.; Butan, C.; Toma, M.; Hategan, A.; Dima, V.

    1999-01-01

    Electron beam effects of the cytotoxic capacity of enterotoxin Escherichia coli on “in vitro” cell colonies have been studied. The VERO cell colonies and tumoral epithelial cells HeLa-2 were treated with different concentrations of irradiated and natural entherotoxin (1-1000 μg/mL). The radiation doses used range from 1 to 35 kGy. The irradiation was carried out with ALIN-10 linear accelerator and the dose was measured with calorimetric devices and cellulose triacetate dosimetric films. The accelerated electrons effects were estimated by means of the effect of different absorbed radiation doses on the enterotoxin and on the protein synthesis in cell colonies treated with irradiated enterotoxin. The following results were obtained: a) there is a definite dependence between the electron beam irradiation and effects on cytotoxic activity of the enterotoxin; b) strong inhibition of protein synthesis is produced in cell colonies treated with large amounts of enterotoxin; c) the cytotoxic activity of treated enterotoxin with 35 kGy accelerated electrons is fully suppressed; d) the VERO cells are more sensitive against natural and irradiated enterotoxin, as compared with tumoral epithelial cells HeLa-2.

  7. Parallel Computation of Integrated Electromagnetic, Thermal and Structural Effects for Accelerator Cavities

    SciTech Connect

    Akcelik, V.; Candel, A.E.; Kabel, A.C.; Ko, K.; Lee, L.; Li, Z.; Ng, C.K.; Xiao, L.; /SLAC

    2011-11-02

    The successful operation of accelerator cavities has to satisfy both rf and mechanical requirements. It is highly desirable that electromagnetic, thermal and structural effects such as cavity wall heating and Lorentz force detuning in superconducting rf cavities can be addressed in an integrated analysis. Based on the SLAC parallel finite-element code infrastructure for electromagnetic modeling, a novel multi-physics analysis tool has been developed to include additional thermal and mechanical effects. The parallel computation enables virtual prototyping of accelerator cavities on computers, which would substantially reduce the cost and time of a design cycle. The multi-physics tool is applied to the LCLS rf gun for electromagnetic, thermal and structural analyses.

  8. Cosmic acceleration and Brans-Dicke theory

    SciTech Connect

    Sharif, M. Waheed, S.

    2012-10-15

    We study the accelerated expansion of the universe by exploring the Brans-Dicke parameter in different eras. For this, we take the FRW universe model with a viscous fluid (without potential) and the Bianchi type-I universe model with a barotropic fluid (with and without a potential). We evaluate the deceleration parameter and the Brans-Dicke parameter to explore cosmic acceleration. It is concluded that accelerated expansion of the universe can also be achieved for higher values of the Brans-Dicke parameter in some cases.

  9. Acceleration Tolerance: Effect of Exercise, Acceleration Training; Bed Rest and Weightlessness Deconditioning. A Compendium of Research (1950-1996)

    NASA Technical Reports Server (NTRS)

    Chou, J. L.; McKenzie, M. A.; Stad, N. J.; Barnes, P. R.; Jackson, C. G. R.; Ghiasvand, F.; Greenleaf, J. E.

    1997-01-01

    This compendium includes abstracts and annotations of clinical observations and of more basic studies involving physiological mechanisms concerning interaction of acceleration, training and deconditioning. If the author's abstract or summary was appropriate, it was included. In other cases a more detailed annotation of the paper was prepared under the subheadings Purpose, Methods, Results, and Conclusions. Author and keyword indices are provided, plus an additional selected bibliography of related work and of those papers received after the volume was prepared for publication. This volume includes material published from 1950-1996.

  10. Early Acceleration of Mathematics Students and its Effect on Growth in Self-esteem: A Longitudinal Study

    NASA Astrophysics Data System (ADS)

    Ma, Xin

    2002-11-01

    The Longitudinal Study of American Youth (LSAY) database was employed to examine the educational practice of early acceleration of students of mathematics on the development of their self-esteem across the entire secondary grade levels. Students were classified into three different academic categories (gifted, honors, and regular). Results indicated that, in terms of the development of their self-esteem, gifted students benefited from early acceleration, honors students neither benefited nor were harmed by early acceleration, and regular students were harmed by early acceleration. Early acceleration in mathematics promoted significant growth in self-esteem among gifted male students and among gifted, honors, and regular minority students. When students were accelerated, schools showed similar average growth in self-esteem among gifted students and regular students and a large effect of general support for mathematics on the average growth in self-esteem among honors students.

  11. Production and all-optical deceleration of molecular beams

    NASA Astrophysics Data System (ADS)

    Chen, Gary; Jayich, Andrew; Long, Xueping; Ransford, Anthony; Campbell, Wesley

    2015-05-01

    Ultracold molecules open up new opportunities in many areas of study, including many-body physics, quantum chemistry, quantum information, and precision measurements. Current methods cannot easily address the spontaneous decay of molecules into dark states without an amalgam of repump lasers. We present an alternative method to produce cold molecules. A cryogenic buffer gas beam (CBGB) is used to create an intense, slow, cold source of molecules. By using a CBGB for the production, we can quench vibrational modes that cannot be addressed with optical methods. This is then followed by an all-optical scheme using a single ultra-fast laser to decelerate the molecules and a continuous wave laser to cool the species. We have started experiments with strontium monohydride (SrH), but the proposed method should be applicable to a wide range of molecular species.

  12. Instrumentation Development for Large Scale Hypersonic Inflatable Aerodynamic Decelerator Characterization

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory T.; Cassell, Alan M.

    2011-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology is currently being considered for multiple atmospheric entry applications as the limitations of traditional entry vehicles have been reached. The Inflatable Re-entry Vehicle Experiment (IRVE) has successfully demonstrated this technology as a viable candidate with a 3.0 m diameter vehicle sub-orbital flight. To further this technology, large scale HIADs (6.0 8.5 m) must be developed and tested. To characterize the performance of large scale HIAD technology new instrumentation concepts must be developed to accommodate the flexible nature inflatable aeroshell. Many of the concepts that are under consideration for the HIAD FY12 subsonic wind tunnel test series are discussed below.

  13. Balloon launched decelerator test program: Post-test test report

    NASA Technical Reports Server (NTRS)

    Dickinson, D.; Schlemmer, J.; Hicks, F.; Michel, F.; Moog, R. D.

    1972-01-01

    Balloon Launched Decelerator Test (BLDT) flights were conducted during the summer of 1972 over the White Sands Missile Range. The purpose of these tests was to qualify the Viking disk-gap band parachute system behind a full-scale simulator of the Viking Entry Vehicle over the maximum range of entry conditions anticipated in the Viking '75 soft landing on Mars. Test concerns centered on the ability of a minimum weight parachute system to operate without structural damage in the turbulent wake of the blunt-body entry vehicle (140 deg, 11.5 diameter cone). This is the first known instance of parachute operation at supersonic speeds in the wake of such a large blunt body. The flight tests utilized the largest successful balloon-payload weight combination known to get to high altitude (120kft) where rocket engines were employed to boost the test vehicle to supersonic speeds and dynamic pressures simulating the range of conditions on Mars.

  14. Technology development for deployable aerodynamic decelerators at Mars

    NASA Astrophysics Data System (ADS)

    Masciarelli, James P.

    2002-01-01

    Parachutes used for Mars landing missions are only certified for deployment at Mars behind blunt bodies flying at low angles of attack, Mach numbers up to 2.2, and dynamic pressures of up to 800 Pa. NASA is currently studying entry vehicle concepts for future robotic missions to Mars that would require parachutes to be deployed at higher Mach numbers and dynamic pressures. This paper demonstrates the need for expanding the parachute deployment envelope, and describes a three-phase technology development activity that has been initiated to address the need. The end result of the technology development program will be a aerodynamic decelerator system that can be deployed at Mach numbers of up to 3.1 and dynamic pressures of up to 1400 Pa. .

  15. Behaviour of the cosmological model with variable deceleration parameter

    NASA Astrophysics Data System (ADS)

    Tiwari, R. K.; Beesham, A.; Shukla, B. K.

    2016-12-01

    We consider the Bianchi type-VI0 massive string universe with decaying cosmological constant Λ. To solve Einstein's field equations, we assume that the shear scalar is proportional to the expansion scalar and that the deceleration parameter q is a linear function of the Hubble parameter H, i.e., q=α +β H, which yields the scale factor a = e^{1/β√{2β t+k1}}. The model expands exponentially with cosmic time t. The value of the cosmological constant Λ is small and positive. Also, we discuss physical parameters as well as the jerk parameter j, which predict that the universe in this model originates as in the Λ CDM model.

  16. The Effects of High Sustained Acceleration on the Acoustic Phonetic Structure of Speech. A Preliminary Investigation.

    DTIC Science & Technology

    1986-05-21

    displacement of the articulators. The effect is most clearly present for the second formant which is traditionally associated with tongue advancement. Diphthong...words produced at 1 G in both spectral and durational characteristics. The formant shifts observed were similar for both speakers. The first formant ...increased for the majority of vowels. The second formant tended to be lower for the front vowels /i, J/ and higher for the back vowel (u). Acceleration

  17. Effects of pulse duration and areal density on ultrathin foil acceleration

    SciTech Connect

    Zhang Xiaomei; Shen Baifei; Ji Liangliang; Wang Fengchao; Wen Meng; Wang Wenpeng; Xu Jiancai; Yu Yahong

    2010-06-15

    The influence of laser pulse duration and areal density of target in the interaction of a circularly polarized pulse with an ultrathin overdense foil is investigated. One-dimensional particle-in-cell simulation shows that with an appropriate laser-pulse rising front, the light pressure acceleration regime is effective even though the thin foil is transparent. As the laser intensity evolves, three stages in the acceleration process can be identified: at first the total reflection of the laser pulse, followed by partial reflection, and then near total reflection again due to the Doppler effect. The influences of the rising front of laser pulse and areal density of the ultrathin foil are investigated. It is found that an optimal laser pulse rising front exists for obtaining high (saturation) ion energy with the same laser energy within a short time. An optimal areal density also exists for obtaining the highest energy. For the same laser pulse, a higher areal density or a higher density with same areal density is more appropriate for obtaining a stationary state for making light pressure acceleration mechanism more effective.

  18. Flame acceleration and DDT in channels with obstacles: Effect of obstacle spacing

    SciTech Connect

    Gamezo, Vadim N.; Oran, Elaine S.; Ogawa, Takanobu

    2008-10-15

    We study flame acceleration and deflagration-to-detonation transition (DDT) in obstructed channels using 2D reactive Navier-Stokes numerical simulations. The energy release rate for the stoichiometric hydrogen-air mixture is modeled by one-step Arrhenius kinetics. Computations performed for channels with symmetrical and staggered obstacle configurations show two main effects of obstacle spacing S. First, more obstacles per unit length create more perturbations that increase the flame surface area more quickly, and therefore the flame speed grows faster. Second, DDT occurs more easily when the obstacle spacing is large enough for Mach stems to form between obstacles. These two effects are responsible for three different regimes of flame acceleration and DDT observed in simulations: (1) Detonation is ignited when a Mach stem formed by the diffracting shock reflecting from the side wall collides with an obstacle, (2) Mach stems do not form, and the detonation is not ignited, and (3) Mach stems do not form, but the leading shock becomes strong enough to ignite a detonation by direct collision with the top of an obstacle. Regime 3 is observed for small S and involves multiple isolated detonations that appear between obstacles and play a key role in final stages of flame and shock acceleration. For Regime 1 and staggered obstacle configurations, we observe resonance phenomena that significantly reduce the DDT time when S/2 is comparable to the channel width. Effects of imposed symmetry and stochasticity on DDT phenomena are also considered. (author)

  19. Effects of prolonged acceleration with or without clinostat rotation on seedlings of Arabidopsis thaliana (L.) Heynh

    NASA Technical Reports Server (NTRS)

    Brown, A. H.; Dahl, A. O.; Loercher, L.

    1974-01-01

    Three 21-day tests of the effects of chronic centrifugation were carried out on populations of Arabidopsis thaliana. In addition to 1 g the resultant g-forces tested were: 2,4,6,8,16, and 20 g. Observed end points included gross morphological characters such as size of plant organs and, at the other extreme, features of sub-cellular structure and ultrastructure. Plants were grown on banks of clinostats. The acceleration vector was directed either parallel with the plants' axes or transverse to the axes. Plant responses to chronic axial acceleration and to transverse acceleration with clinostated plants were determined. From the data obtained it was possible in some cases: (1) to determine the g-functions of specific plant developmental characters; (2) to extrapolate those functions to the hypothetical value at zero g in order to predict (tentatively) the morphology of a plant grown in space, (3) to describe morphological effects of clinostat rotation, (4) to determine which of those effects was influenced by the prevailing g-force, and (5) to put to direct test the assumption that clinostat rotation nullifies or compensates for the influence of gravity.

  20. Accelerating coordination in temporal networks by engineering the link order

    PubMed Central

    Masuda, Naoki

    2016-01-01

    Social dynamics on a network may be accelerated or decelerated depending on which pairs of individuals in the network communicate early and which pairs do later. The order with which the links in a given network are sequentially used, which we call the link order, may be a strong determinant of dynamical behaviour on networks, potentially adding a new dimension to effects of temporal networks relative to static networks. Here we study the effect of the link order on linear coordination (i.e., synchronisation) dynamics. We show that the coordination speed considerably depends on specific orders of links. In addition, applying each single link for a long time to ensure strong pairwise coordination before moving to a next pair of individuals does not often enhance coordination of the entire network. We also implement a simple greedy algorithm to optimise the link order in favour of fast coordination. PMID:26916093

  1. Inhibitory effect of oxytocin on accelerated colonic motility induced by water-avoidance stress in rats.

    PubMed

    Matsunaga, M; Konagaya, T; Nogimori, T; Yoneda, M; Kasugai, K; Ohira, H; Kaneko, H

    2009-08-01

    Recent studies have indicated that brain and gut activities are interrelated and exposure to several stressors, such as water-avoidance stress, stimulates the motor function of the gut through corticotropin-releasing factor (CRF)-signalling pathways in the brain. Central oxytocin is known to attenuate stress responses, including CRF expression in the brain. Here, we examined whether central oxytocin attenuated the acceleration of colonic motility induced by water-avoidance stress. A force transducer was attached to the distal colon of male rat, and the colonic motility and faecal pellet output were recorded while the rats were exposed to water-avoidance stress. Intracerebroventricular (i.c.v.) injections of oxytocin (5, 50 and 500 pmol) and the oxytocin receptor antagonist tocinoic acid (25 microg) were administered before exposure to water-avoidance stress, and the effect of oxytocin on colonic motor function was determined. Centrally administered oxytocin inhibited the accelerated colonic motility induced by water-avoidance stress. The effective dose ranged between 5 and 50 pmol on i.c.v. injection. Oxytocin also decreased the number of CRF-positive cells in the paraventricular nucleus and corticosterone release. The inhibitory effect of oxytocin on accelerated colonic motility was blocked by pretreatment with oxytocin receptor antagonist. Furthermore, centrally administered tocinoic acid enhanced the acceleration of colonic motility. These results suggested that endogenous central oxytocin may contribute to the regulation of colonic function and inhibit the brain CRF-signalling pathways targeting the gut, resulting in the inhibition of stress-induced colonic contractions.

  2. Effects of morphine and naloxone on feline colonic transit

    SciTech Connect

    Krevsky, B.; Libster, B.; Maurer, A.H.; Chase, B.J.; Fisher, R.S.

    1989-01-01

    The effects of endogenous and exogenous opioid substances on feline colonic transit were evaluated using colonic transit scintigraphy. Naloxone accelerated emptying of the cecum and ascending colon, and filling of the transverse colon. Endogenous opioid peptides thus appear to play a significant role in the regulation of colonic transit. At a moderate dose of morphine cecum and ascending colon transit was accelerated, while at a larger dose morphine had no effect. Since naloxone, a relatively nonspecific opioid antagonist, and morphine, a principally mu opioid receptor agonist, both accelerate proximal colonic transit, a decelerating role for at least one of the other opioid receptors is inferred.

  3. Detection of linear ego-acceleration from optic flow.

    PubMed

    Festl, Freya; Recktenwald, Fabian; Yuan, Chunrong; Mallot, Hanspeter A

    2012-07-20

    Human observers are able to estimate various ego-motion parameters from optic flow, including rotation, translational heading, time-to-collision (TTC), time-to-passage (TTP), etc. The perception of linear ego-acceleration or deceleration, i.e., changes of translational velocity, is less well understood. While time-to-passage experiments indicate that ego-acceleration is neglected, subjects are able to keep their (perceived) speed constant under changing conditions, indicating that some sense of ego-acceleration or velocity change must be present. In this paper, we analyze the relation of ego-acceleration estimates and geometrical parameters of the environment using simulated flights through cylindrical and conic (narrowing or widening) corridors. Theoretical analysis shows that a logarithmic ego-acceleration parameter, called the acceleration rate ρ, can be calculated from retinal acceleration measurements. This parameter is independent of the geometrical layout of the scene; if veridical ego-motion is known at some instant in time, acceleration rate allows updating of ego-motion without further depth-velocity calibration. Results indicate, however, that subjects systematically confuse ego-acceleration with corridor narrowing and ego-deceleration with corridor widening, while veridically judging ego-acceleration in straight corridors. We conclude that judgments of ego-acceleration are based on first-order retinal flow and do not make use of acceleration rate or retinal acceleration.

  4. The Differential Effect of Arm Movements during Gait on the Forward Acceleration of the Centre of Mass in Children with Cerebral Palsy and Typically Developing Children

    PubMed Central

    Meyns, Pieter; Molenaers, Guy; Duysens, Jacques; Jonkers, Ilse

    2017-01-01

    Background: We aimed to study the contribution of upper limb movements to propulsion during walking in typically developing (TD) children (n = 5) and children with hemiplegic and diplegic cerebral palsy (CP; n = 5 and n = 4, respectively). Methods: Using integrated three-dimensional motion capture data and a scaled generic musculoskeletal model that included upper limbs, we generated torque driven simulations of gait in OpenSim. Induced acceleration analyses were then used to determine the contributions of the individual actuators located at the relevant degrees of freedoms of the upper and lower limb joints to the forward acceleration of the COM at each time point of the gait simulation. The mean values of the contribution of the actuators of upper limbs, lower limbs, and gravity in different phases of the gait cycle were compared between the three groups. Findings: The results indicated a limited contribution of the upper limb actuators to COM forward acceleration compared to the contribution of lower limbs and gravity, in the three groups. In diplegic CP, the contribution of the upper limbs seemed larger compared to TD during the preswing and swing phases of gait. In hemiplegic CP, the unaffected arm seemed to contribute more to COM deceleration during (pre)swing, while the affected side contributed to COM acceleration. Interpretation: These findings suggest that in the presence of lower limb dysfunction, the contribution of the upper limbs to forward propulsion is altered, although they remain negligible compared to the lower limbs and gravity. PMID:28298890

  5. Diaphragm opening effects on shock wave formation and acceleration in a rectangular cross section channel

    NASA Astrophysics Data System (ADS)

    Pakdaman, S. A.; Garcia, M.; Teh, E.; Lincoln, D.; Trivedi, M.; Alves, M.; Johansen, C.

    2016-11-01

    Shock wave formation and acceleration in a high-aspect ratio cross section shock tube were studied experimentally and numerically. The relative importance of geometric effects and diaphragm opening time on shock formation are assessed. The diaphragm opening time was controlled through the use of slit-type (fast opening time) and petal-type (slow opening time) diaphragms. A novel method of fabricating the petal-type diaphragms, which results in a consistent burst pressure and symmetric opening without fragmentation, is presented. High-speed schlieren photography was used to visualize the unsteady propagation of the lead shock wave and trailing gas dynamic structures. Surface-mounted pressure sensors were used to capture the spatial and temporal development of the pressure field. Unsteady Reynolds-Averaged Navier-Stokes simulation predictions using the shear-stress-transport turbulence model are compared to the experimental data. Simulation results are used to explain the presence of high-frequency pressure oscillations observed experimentally in the driver section as well as the cause of the initial acceleration and subsequent rapid decay of shock velocity measured along the top and bottom channel surfaces. A one-dimensional theoretical model predicting the effect of the finite opening time of the diaphragm on the rate of driver depressurization and shock acceleration is proposed. The model removes the large amount of empiricism that accompanies existing models published in the literature. Model accuracy is assessed through comparisons with experiments and simulations. Limitations of and potential improvements in the model are discussed.

  6. Effects of Background Pressure on Relativistic Laser-Plasma Interaction Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Peterson, Andrew; Orban, C.; Feister, S.; Ngirmang, G.; Smith, J. T.; Klim, A.; Frische, K.; Morrison, J.; Chowdhury, E.; Roquemore, W. M.

    2016-10-01

    Typically, ultra-intense laser-accelerated ion experiments are carried out under high-vacuum conditions and with a repetition rate up to several shots per day. Looking to the future there is a need to perform these experiments with a much larger repetition rate. A continuously flowing liquid target is more suitable than a solid target for this purpose. However liquids vaporize below their vapor pressure, and the experiment cannot be performed under high-vacuum conditions. The effects of this non-negligible high chamber pressure acceleration of charged particles is not yet well understood. We investigate this phenomena using Particle-in-Cell simulations, exploring the effect of the background pressure on the accelerated ion spectrum. Experiments in this regime are being performed at the Air Force Research Laboratory at Wright-Patterson Air Force Base. This research was sponsored by the Quantum and Non-Equilibrium Processes Division of the Air Force Office of Scientific Research, under the management of Dr. Enrique Parra, Program Manager and significant support from the DOD HPCMP Internship Program.

  7. Circular polarization effects in ion acceleration from high intensity, short pulse laser interactions

    NASA Astrophysics Data System (ADS)

    Dollar, F.; Zulick, C.; Bulanov, S. S.; Chvykov, V.; Kalintchenko, G.; Matsuoka, T.; McGuffey, C.; Thomas, A. G. R.; Willingale, L.; Yanovsky, V.; Maksimchuk, A.; Krushelnick, K.; Petrov, G.; Davis, J.

    2011-10-01

    Experiments were performed to investigate ion acceleration effects from circular polarization from thin targets, using a high contrast, ultra-short laser pulse from the HERCULES laser facility at the Univ. of Michigan. Experiments were performed with 50 TW, 35 fs pulses at an intensity of >1021Wcm-2 on Si3N4 and Mylar targets of 30 nm to 1 μm thickness with contrast <10-13 . Protons with maximum energy 18 MeV and Carbon ions with energies of up to 10 MeV per nucleon were measured. Particle-in-cell simulations demonstrating the acceleration mechanism will be presented as well. Supported by NSF Physics Frontier Center FOCUS (Grant PHY-0114336), Defense Threat Reduction Agency, and Naval Research Laboratory. We acknowledge the OSIRIS consortium for the use of OSIRIS.

  8. Focal spot motion of linear accelerators and its effect on portal image analysis.

    PubMed

    Sonke, Jan-Jakob; Brand, Bob; van Herk, Marcel

    2003-06-01

    The focal spot of a linear accelerator is often considered to have a fully stable position. In practice, however, the beam control loop of a linear accelerator needs to stabilize after the beam is turned on. As a result, some motion of the focal spot might occur during the start-up phase of irradiation. When acquiring portal images, this motion will affect the projected position of anatomy and field edges, especially when low exposures are used. In this paper, the motion of the focal spot and the effect of this motion on portal image analysis are quantified. A slightly tilted narrow slit phantom was placed at the isocenter of several linear accelerators and images were acquired (3.5 frames per second) by means of an amorphous silicon flat panel imager positioned approximately 0.7 m below the isocenter. The motion of the focal spot was determined by converting the tilted slit images to subpixel accurate line spread functions. The error in portal image analysis due to focal spot motionwas estimated by a subtraction of the relative displacement of the projected slit from the relative displacement of the field edges. It was found that the motion of the focal spot depends on the control system and design of the accelerator. The shift of the focal spot at the start of irradiation ranges between 0.05-0.7 mm in the gun-target (GT) direction. In the left-right (AB) direction the shift is generally smaller. The resulting error in portal image analysis due to focal spotmotion ranges between 0.05-1.1 mm for a dose corresponding to two monitor units (MUs). For 20 MUs, the effect of the focal spot motion reduces to 0.01-0.3 mm. The error in portal image analysis due to focal spot motion can be reduced by reducing the applied dose rate.

  9. Paraelectric gas flow accelerator

    NASA Technical Reports Server (NTRS)

    Sherman, Daniel M. (Inventor); Wilkinson, Stephen P. (Inventor); Roth, J. Reece (Inventor)

    2001-01-01

    A substrate is configured with first and second sets of electrodes, where the second set of electrodes is positioned asymmetrically between the first set of electrodes. When a RF voltage is applied to the electrodes sufficient to generate a discharge plasma (e.g., a one-atmosphere uniform glow discharge plasma) in the gas adjacent to the substrate, the asymmetry in the electrode configuration results in force being applied to the active species in the plasma and in turn to the neutral background gas. Depending on the relative orientation of the electrodes to the gas, the present invention can be used to accelerate or decelerate the gas. The present invention has many potential applications, including increasing or decreasing aerodynamic drag or turbulence, and controlling the flow of active and/or neutral species for such uses as flow separation, altering heat flow, plasma cleaning, sterilization, deposition, etching, or alteration in wettability, printability, and/or adhesion.

  10. Evaluation of pelletron accelerator facility to study radiation effects on semiconductor devices

    SciTech Connect

    Prakash, A. P. Gnana; Pushpa, N.; Praveen, K. C.; Naik, P. S.; Revannasiddaiah, D.

    2012-06-05

    In this paper we present the comprehensive results on the effects of different radiation on the electrical characteristics of different semiconductor devices like Si BJT, n-channel MOSFETs, 50 GHz and 200 GHz silicon-germanium heterojunction bipolar transistor (SiGe HBTs). The total dose effects of different radiation are compared in the same total dose ranging from 100 krad to 100 Mrad. We show that the irradiation time needed to reach very high total dose can be reduced by using Pelletron accelerator facilities instead of conventional irradiation facilities.

  11. Time variations of fields in superconducting magnets and their effects on accelerators

    SciTech Connect

    Herrup, D.A.; Syphers, M.J.; Johnson, D.E.; Johnson, R.P.; Tollestrup, A.V.; Hanft, R.W.; Brown, B.C.; Lamm, M.J.; Kuchnir, M.; McInturff, A.D.

    1988-08-22

    A report on the time dependence of magnetic fields in the superconducting magnets of the Fermilab Tevatron has been published. A field variation of order 1 gauss at the aperture radius is observed. Studies on both full sized Tevatron, dipoles and prototype magnets have been used to elucidate these effects. Explanations based on eddy currents in the coil matrix or on flux creep in the superconducting filaments are explored with these tests. Measurement results and techniques for controlling the effect based on new laboratory tests and the latest accelerator operation are presented. 9 refs., 4 figs.

  12. Failure modes and effects criticality analysis and accelerated life testing of LEDs for medical applications

    NASA Astrophysics Data System (ADS)

    Sawant, M.; Christou, A.

    2012-12-01

    While use of LEDs in Fiber Optics and lighting applications is common, their use in medical diagnostic applications is not very extensive. Since the precise value of light intensity will be used to interpret patient results, understanding failure modes [1-4] is very important. We used the Failure Modes and Effects Criticality Analysis (FMECA) tool to identify the critical failure modes of the LEDs. FMECA involves identification of various failure modes, their effects on the system (LED optical output in this context), their frequency of occurrence, severity and the criticality of the failure modes. The competing failure modes/mechanisms were degradation of: active layer (where electron-hole recombination occurs to emit light), electrodes (provides electrical contact to the semiconductor chip), Indium Tin Oxide (ITO) surface layer (used to improve current spreading and light extraction), plastic encapsulation (protective polymer layer) and packaging failures (bond wires, heat sink separation). A FMECA table is constructed and the criticality is calculated by estimating the failure effect probability (β), failure mode ratio (α), failure rate (λ) and the operating time. Once the critical failure modes were identified, the next steps were generation of prior time to failure distribution and comparing with our accelerated life test data. To generate the prior distributions, data and results from previous investigations were utilized [5-33] where reliability test results of similar LEDs were reported. From the graphs or tabular data, we extracted the time required for the optical power output to reach 80% of its initial value. This is our failure criterion for the medical diagnostic application. Analysis of published data for different LED materials (AlGaInP, GaN, AlGaAs), the Semiconductor Structures (DH, MQW) and the mode of testing (DC, Pulsed) was carried out. The data was categorized according to the materials system and LED structure such as AlGaInP-DH-DC, Al

  13. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  14. Effects of the precursor electron bunch on quasi-phase matched direct laser acceleration

    NASA Astrophysics Data System (ADS)

    Lin, M.-W.; Hsieh, C.-Y.; Liu, Y.-L.; Chen, S.-H.; Jovanovic, I.

    2016-12-01

    Direct laser acceleration (DLA) of electrons can be achieved by utilizing the axial field of a well-guided, radially polarized laser pulse in a density-modulated plasma waveguide. When a laser pulse of a few terawatt (TW) peak power is applied, however, the laser ponderomotive force perturbs plasma electrons to concentrate in the center, such that the generated electrostatic fields can significantly defocus the externally injected electron witness bunch and considerably deteriorate the acceleration efficiency. To improve the performance of DLA, a leading electron bunch, which acts as a precursor, can be introduced in DLA to effectively confine the witness bunch. Three-dimensional particle-in-cell simulations have been conducted to demonstrate that the transverse properties of the witness bunch can be significantly improved when a precursor bunch is used. Selected bunch transverse sizes, bunch charges, and axial separation from the witness bunch have been assigned to the precursor in a series of DLA simulations. Since a favorable ion-focusing force is provided by the precursor, the transverse properties of witness bunch can be maintained when a relatively high-power (˜2 TW) laser pulse is used in DLA, and an improved overall acceleration efficiency can be achieved.

  15. Effect of accelerated environmental aging on tensile properties of oil palm/jute hybrid composites

    NASA Astrophysics Data System (ADS)

    Jawaid, M.; Saba, N.; Alothman, O.; Paridah, M. T.

    2016-11-01

    Recently natural fibre based hybrid composites are receiving growing consideration due to environmental and biodegradability properties. In order to look behaviour of hybrid composites in outdoor applications, its environmental degradation properties such as UV accelerated weathering properties need to analyze. In this study oil palm empty fruit bunch (EFB) and jute fibres reinforced hybrid composites, pure EFB, pure jute and epoxy composites were fabricated through hand lay-up techniques. Hybrid composites with different layering pattern (EFB/jute/EFB and Jute/EFB/jute) while maintaining 40 wt. % total fibre loading were fabricates to compared with EFB and jute composites. Effect of UV accelerated environmental aging on tensile properties of epoxy, pure EFB, pure jute, and hybrid composites were assessed and evaluate under UV exposure. Tensile samples of all composites were subjected to accelerated weathering for 100h, at temperature (75°C), relative humidity (35%), Light (125 W/m2), and water spray off. Obtained results indicated that there is reduction in tensile strength, modulus and elongation at break values of hybrid and pure composites due to degradation of lignin and fibre-matrix interfacial bonding.

  16. ELECTRON ACCELERATION BY CASCADING RECONNECTION IN THE SOLAR CORONA. I. MAGNETIC GRADIENT AND CURVATURE DRIFT EFFECTS

    SciTech Connect

    Zhou, X.; Büchner, J.; Bárta, M.; Gan, W.; Liu, S.

    2015-12-10

    We investigate the electron acceleration by magnetic gradient and curvature drift effects in cascading magnetic reconnection of a coronal current sheet via a test particle method in the framework of the guiding center approximation. After several Alfvén transit times, most of the electrons injected at the current sheet are still trapped in the magnetic islands. A small fraction of the injected electrons precipitate into the chromosphere. The acceleration of trapped electrons is dominated by the magnetic curvature drifts, which change the parallel momentum of the electron, and appears to be more efficient than the acceleration of precipitating electrons, which is dominated by the perpendicular momentum change caused by the magnetic gradient drifts. With the resulting trapped energetic electron distribution, the corresponding hard X-ray (HXR) radiation spectra are calculated using an optically thin Bremsstrahlung model. Trapped electrons may explain flare loop top HXR emission as well as the observed bright spots along current sheets trailing coronal mass ejections. The asymmetry of precipitating electrons with respect to the polarity inversion line may contribute to the observed asymmetry of footpoint emission.

  17. Relationship between Lower Limb Angular Kinematic Variables and the Effectiveness of Sprinting during the Acceleration Phase

    PubMed Central

    Konieczny, Grzegorz; Winiarski, Sławomir; Rokita, Andrzej

    2016-01-01

    The ability to reach a high running velocity over a short distance is essential to a high playing performance in team games. The aim of this study was to determine the relationship between running time over a 10-meter section of a 30-meter sprint along a straight line and changes in the angle and angular velocity that were observed in the ankle, knee, and hip joints. The possible presence may help to optimize motion efficiency during acceleration sprint phase. Eighteen girls involved in team sports were examined in the study. The Fusion Smart Speed System was employed for running time measurements. The kinematic data were recorded using the Noraxon MyoMotion system. Statistically significant relationships were found between running time over a 10-meter section and the kinematic variables of hip and ankle joints. An excessively large flexion in hip joints might have an unfavorable effect on running time during the acceleration phase. Furthermore, in order to minimize running time during the acceleration phase, stride should be maintained along a line (a straight line) rather than from side to side. It is also necessary to ensure an adequate range of motion in the hip and ankle joints with respect to the sagittal axis. PMID:27516724

  18. Numerical simulations of Hall-effect plasma accelerators on a magnetic-field-aligned mesh.

    PubMed

    Mikellides, Ioannis G; Katz, Ira

    2012-10-01

    The ionized gas in Hall-effect plasma accelerators spans a wide range of spatial and temporal scales, and exhibits diverse physics some of which remain elusive even after decades of research. Inside the acceleration channel a quasiradial applied magnetic field impedes the current of electrons perpendicular to it in favor of a significant component in the E×B direction. Ions are unmagnetized and, arguably, of wide collisional mean free paths. Collisions between the atomic species are rare. This paper reports on a computational approach that solves numerically the 2D axisymmetric vector form of Ohm's law with no assumptions regarding the resistance to classical electron transport in the parallel relative to the perpendicular direction. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations on a computational mesh that is aligned with the applied magnetic field. This approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction and encompasses the cathode boundary where the lines of force can become nonisothermal. It also allows for the self-consistent solution of the plasma conservation laws near the anode boundary, and for simulations in accelerators with complex magnetic field topologies. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for the ion drag in the momentum equation due to ion-neutral (charge-exchange) and ion-ion collisions. The density of the atomic species is determined using an algorithm that eliminates the statistical noise associated with discrete-particle methods. Numerical simulations are presented that illustrate the impact of the above-mentioned features on our understanding of the plasma in these accelerators.

  19. Effects of Frequency and Motion Paradigm on Perception of Tilt and Translation During Periodic Linear Acceleration

    NASA Technical Reports Server (NTRS)

    Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, Scott J.

    2009-01-01

    Previous studies have demonstrated an effect of frequency on the gain of tilt and translation perception. Results from different motion paradigms are often combined to extend the stimulus frequency range. For example, Off-Vertical Axis Rotation (OVAR) and Variable Radius Centrifugation (VRC) are useful to test low frequencies of linear acceleration at amplitudes that would require impractical sled lengths. The purpose of this study was to compare roll-tilt and lateral translation motion perception in 12 healthy subjects across four paradigms: OVAR, VRC, sled translation and rotation about an earth-horizontal axis. Subjects were oscillated in darkness at six frequencies from 0.01875 to 0.6 Hz (peak acceleration equivalent to 10 deg, less for sled motion below 0.15 Hz). Subjects verbally described the amplitude of perceived tilt and translation, and used a joystick to indicate the direction of motion. Consistent with previous reports, tilt perception gain decreased as a function of stimulus frequency in the motion paradigms without concordant canal tilt cues (OVAR, VRC and Sled). Translation perception gain was negligible at low stimulus frequencies and increased at higher frequencies. There were no significant differences between the phase of tilt and translation, nor did the phase significantly vary across stimulus frequency. There were differences in perception gain across the different paradigms. Paradigms that included actual tilt stimuli had the larger tilt gains, and paradigms that included actual translation stimuli had larger translation gains. In addition, the frequency at which there was a crossover of tilt and translation gains appeared to vary across motion paradigm between 0.15 and 0.3 Hz. Since the linear acceleration in the head lateral plane was equivalent across paradigms, differences in gain may be attributable to the presence of linear accelerations in orthogonal directions and/or cognitive aspects based on the expected motion paths.

  20. The effect of a longitudinal density gradient on electron plasma wake field acceleration

    NASA Astrophysics Data System (ADS)

    Tsiklauri, David

    2016-12-01

    Three-dimensional, particle-in-cell, fully electromagnetic simulations of electron plasma wake field acceleration in the blow-out regime are presented. Earlier results are extended by (i) studying the effect of a longitudinal density gradient, (ii) avoiding the use of a co-moving simulation box, (iii) inclusion of ion motion, and (iv) studying fully electromagnetic plasma wake fields. It is established that injecting driving and trailing electron bunches into a positive density gradient of 10-fold increasing density over 10 cm long lithium vapour plasma results in spatially more compact and three times larger, compared with the uniform density case, electric fields (-6.4×1010 V m-1), leading to acceleration of the trailing bunch up to 24.4 GeV (starting from an initial 20.4 GeV), with energy transfer efficiencies from the leading to trailing bunch of 75%. In the uniform density case, a -2.5×1010 V m-1 wake is created leading to acceleration of the trailing bunch up to 22.4 GeV, with energy transfer efficiencies of 65%. It is also established that injecting the electron bunches into a negative density gradient of 10-fold decreasing density over 10 cm long plasma results in spatially more spread and two and a half smaller electric fields (-1.0×1010 V m-1), leading to a weaker acceleration of the trailing bunch up to 21.4 GeV, with energy transfer efficiencies of 45%. Taking ion motions into consideration shows that in the plasma wake ion number density can increase over a few times the background value. It is also shown that transverse electromagnetic fields in a plasma wake are of the same order as the longitudinal (electrostatic) ones.

  1. Interlaboratory study of the ion source memory effect in 36Cl accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pavetich, Stefan; Akhmadaliev, Shavkat; Arnold, Maurice; Aumaître, Georges; Bourlès, Didier; Buchriegler, Josef; Golser, Robin; Keddadouche, Karim; Martschini, Martin; Merchel, Silke; Rugel, Georg; Steier, Peter

    2014-06-01

    Understanding and minimization of contaminations in the ion source due to cross-contamination and long-term memory effect is one of the key issues for accurate accelerator mass spectrometry (AMS) measurements of volatile elements. The focus of this work is on the investigation of the long-term memory effect for the volatile element chlorine, and the minimization of this effect in the ion source of the Dresden accelerator mass spectrometry facility (DREAMS). For this purpose, one of the two original HVE ion sources at the DREAMS facility was modified, allowing the use of larger sample holders having individual target apertures. Additionally, a more open geometry was used to improve the vacuum level. To evaluate this improvement in comparison to other up-to-date ion sources, an interlaboratory comparison had been initiated. The long-term memory effect of the four Cs sputter ion sources at DREAMS (two sources: original and modified), ASTER (Accélérateur pour les Sciences de la Terre, Environnement, Risques) and VERA (Vienna Environmental Research Accelerator) had been investigated by measuring samples of natural 35Cl/37Cl-ratio and samples highly-enriched in 35Cl (35Cl/37Cl ∼ 999). Besides investigating and comparing the individual levels of long-term memory, recovery time constants could be calculated. The tests show that all four sources suffer from long-term memory, but the modified DREAMS ion source showed the lowest level of contamination. The recovery times of the four ion sources were widely spread between 61 and 1390 s, where the modified DREAMS ion source with values between 156 and 262 s showed the fastest recovery in 80% of the measurements.

  2. Inflation and Late Time Acceleration Designed by Stueckelberg Massive Photon

    NASA Astrophysics Data System (ADS)

    Akarsu, Özgür; Arık, Metin; Katırcı, Nihan

    2017-01-01

    We present a mini review of the Stueckelberg mechanism, which was proposed to make the abelian gauge theories massive as an alternative to Higgs mechanism, within the framework of Minkowski as well as curved spacetimes. The higher the scale the tighter the bounds on the photon mass, which might be gained via the Stueckelberg mechanism, may be signalling that even an extremely small mass of the photon which cannot be measured directly could have far reaching effects in cosmology. We present a cosmological model where Stueckelberg fields, which consist of both scalar and vector fields, are non-minimally coupled to gravity and the universe could go through a decelerating expansion phase sandwiched by two different accelerated expansion phases. We discuss also the possible anisotropic extensions of the model.

  3. The effects of resisted sprint training on acceleration performance and kinematics in soccer, rugby union, and Australian football players.

    PubMed

    Spinks, Christopher D; Murphy, Aron J; Spinks, Warwick L; Lockie, Robert G

    2007-02-01

    Acceleration is a significant feature of game-deciding situations in the various codes of football. However little is known about the acceleration characteristics of football players, the effects of acceleration training, or the effectiveness of different training modalities. This study examined the effects of resisted sprint (RS) training (weighted sled towing) on acceleration performance (0-15 m), leg power (countermovement jump [CMJ], 5-bound test [5BT], and 50-cm drop jump [50DJ]), gait (foot contact time, stride length, stride frequency, step length, and flight time), and joint (shoulder, elbow, hip, and knee) kinematics in men (N = 30) currently playing soccer, rugby union, or Australian football. Gait and kinematic measurements were derived from the first and second strides of an acceleration effort. Participants were randomly assigned to 1 of 3 treatment conditions: (a) 8-week sprint training of two 1-h sessions x wk(-1) plus RS training (RS group, n = 10), (b) 8-week nonresisted sprint training program of two 1-h sessions x wk(-1) (NRS group, n = 10), or (c) control (n = 10). The results indicated that an 8-week RS training program (a) significantly improves acceleration and leg power (CMJ and 5BT) performance but is no more effective than an 8-week NRS training program, (b) significantly improves reactive strength (50DJ), and (c) has minimal impact on gait and upper- and lower-body kinematics during acceleration performance compared to an 8-week NRS training program. These findings suggest that RS training will not adversely affect acceleration kinematics and gait. Although apparently no more effective than NRS training, this training modality provides an overload stimulus to acceleration mechanics and recruitment of the hip and knee extensors, resulting in greater application of horizontal power.

  4. Effects of Experiment Location and Orbiter Attitude on the Residual Acceleration On-Board STS-73 (USML-2)

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; McPherson, Kevin M.; Matisak, Brian P.; Wagar, William O.

    1997-01-01

    A knowledge of the quasi-steady acceleration environment on the NASA Space Shuttle Orbiter is of particular importance for materials processing experiments which are limited by slow diffusive processes. The quasi-steady (less than 1 HZ) acceleration environment on STS-73 (USML-2) was measured using the Orbital Acceleration Research Experiment (OARE) accelerometer. One of the facilities flown on USML-2 was the Crystal Growth Furnace (CGF), which was used by several Principal Investigators (PIS) to grow crystals. In this paper the OARE data mapped to the sample melt location within this furnace is presented. The ratio of the axial to radial components of the quasi-steady acceleration at the melt site is presented. Effects of Orbiter attitude on the acceleration data is discussed.

  5. Effects of working memory and reading acceleration training on improving working memory abilities and reading skills among third graders.

    PubMed

    Nevo, Einat; Breznitz, Zvia

    2014-01-01

    Working memory (WM) plays a crucial role in supporting learning, including reading. This study investigated the influence of reading acceleration and WM training programs on improving reading skills and WM abilities. Ninety-seven children in third grade were divided into three study groups and one control group. The three study groups each received a different combination of two training programs: only reading acceleration, WM followed by reading acceleration, and reading acceleration followed by WM. All training programs significantly improved reading skills and WM abilities. Compared with the control group, the group trained with only the reading acceleration program improved word accuracy, whereas the groups trained with a combination of reading and WM programs improved word and pseudo-word fluency. The reading-acceleration-alone group and the WM-program-followed-by-reading-acceleration group improved phonological complex memory. We conclude that a training program that combines a long reading acceleration program and a short WM program is the most effective for improving the abilities most related to scholastic achievement.

  6. Beneficial effects of melatonin on cardiological alterations in a murine model of accelerated aging.

    PubMed

    Forman, Katherine; Vara, Elena; García, Cruz; Kireev, Roman; Cuesta, Sara; Acuña-Castroviejo, Darío; Tresguerres, J A F

    2010-10-01

    This study investigated the effect of aging-related parameters such as inflammation, oxidative stress and cell death in the heart in an animal model of accelerated senescence and analyzed the effects of chronic administration of melatonin on these markers. Thirty male mice of senescence-accelerated prone (SAMP8) and 30 senescence-accelerated-resistant mice (SAMR1) at 2 and 10 months of age were used. Animals were divided into eight experimental groups, four from each strain: two young control groups, two old untreated control groups, and four melatonin-treated groups. Melatonin was provided at two different dosages (1 and 10 mg/kg/day) in the drinking water. After 30 days of treatment, the expression of inflammatory mediators (tumor necrosis factor-alpha, interleukin 1 and 10, NFkBp50 and NFkBp52), apoptosis markers (BAD, BAX and Bcl2) and parameters related to oxidative stress (heme oxygenases 1 and 2, endothelial and inducible nitric oxide synthases) were determined in the heart by real-time reverse transcription polymerase chain reaction (RT-PCR). Inflammation, as well as, oxidative stress and apoptosis markers was increased in old SAMP8 males, when compared to its young controls. SAMR1 mice showed significantly lower basal levels of the measured parameters and smaller increases with age or no increases at all. After treatment with melatonin, these age-altered parameters were partially reversed, especially in SAMP8 mice. The results suggest that oxidative stress and inflammation increase with aging and that chronic treatment with melatonin, a potent antioxidant, reduces these parameters. The effects were more marked in the SAMP8 animals.

  7. Performance Effects of Repetition Specific Gluteal Activation Protocols on Acceleration in Male Rugby Union Players

    PubMed Central

    Barry, Lorna; Kenny, Ian

    2016-01-01

    Abstract Warm-up protocols have the potential to cause an acute enhancement of dynamic sprinting performance. The purpose of this study was to evaluate the effects of three repetition specific gluteal activation warm-up protocols on acceleration performance in male rugby union players. Forty male academy rugby union players were randomly assigned to one of 4 groups (control, 5, 10 or 15 repetition gluteal activation group) and performed 10 m sprints at baseline and 30 s, 2, 4, 6 and 8 min after their specific intervention protocol. Five and ten meter sprint times were the dependent variable and dual-beam timing gates were used to record all sprint times. Repeated measures analysis of variance found no significant improvement in 5 and 10 m sprint times between baseline and post warm-up scores (p ≥ 0.05) for all groups. There were no reported significant differences between groups at any of the rest interval time points (p ≥ 0.05). However, when individual responses to the warm-up protocols were analyzed, the 15 repetition gluteal activation group had faster 10 m times post-intervention and this improvement was significant (p = 0.021). These results would indicate that there is no specific rest interval for any of the gluteal interventions that results in a potentiation effect on acceleration performance. However, the individual response analysis would seem to indicate that a 15 repetition gluteal activation warm-up protocol has a potentiating effect on acceleration performance provided that the rest interval is adequately and individually determined. PMID:28031755

  8. Effects of Prenatal Irradiation with an Accelerated Heavy-Ion Beam on Postnatal Development in Rats

    NASA Astrophysics Data System (ADS)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Fujita, K.; Coffigny, H.; Hayata, I.

    Effects on postnatal neurophysiological development in offspring were studied following exposure of pregnant Wistar rats to accelerated neon-ion beams with a LET value of about 30 keV mu m at a dose range from 0 1 Gy to 2 0Gy on the 15th day of gestation The age at which four physiologic markers appeared and five reflexes were acquired was examined prior to weaning Gain in body weight was monitored until the offspring were 3 months old Male offspring were evaluated as young adults using two behavioral tests The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison Our previous study on carbon-ion beams with a LET value of about 13 keV mu m was also cited to elucidate a possible LET-related effect For most of the endpoints at early age significant alteration was even observed in offspring prenatally received 0 1 Gy of accelerated neon ions while neither X rays nor carbon-ions under the same dose resulted in such a significant alteration compared to that from the sham-irradiated dams All offspring whose mothers received 2 0 Gy died prior to weaning Offspring from dams irradiated with accelerated neon ions generally showed higher incidences of prenatal death and preweaning mortality markedly delayed accomplishment in their physiological markers and reflexes and gain in body weight compared to those exposed to X-rays or carbon ions at doses of 0 1 to 1 5 Gy Significantly reduced ratios of main organ weight to body weight at postnatal ages of 30 60 and 90 days were also observed

  9. The Effects of Ambulatory Accelerations on the Stability of a Magnetically Suspended Impeller for an Implantable Blood Pump.

    PubMed

    Paul, Gordon; Rezaienia, Mohammed Amin; Rahideh, Akbar; Munjiza, Ante; Korakianitis, Theodosios

    2016-09-01

    This article describes the effects of ambulatory accelerations on the stability of a magnetically suspended impeller for use in implantable blood pumps. A magnetic suspension system is developed to control the radial position of a magnetic impeller using coils in the pump casing. The magnitude and periodicity of ambulatory accelerations at the torso are measured. A test rig is then designed to apply appropriate accelerations to the suspension system. Accelerations from 0 to 1 g are applied to the suspended impeller with ambulatory periodicity while the radial position of the impeller and power consumption of the suspension system are monitored. The test is carried out with the impeller suspended in air, water, and a glycerol solution to simulate the viscosity of blood. A model is developed to investigate the effects of the radial magnetic suspension system and fluid damping during ambulatory accelerations. The suspension system reduces the average displacement of the impeller suspended in aqueous solutions within its casing to 100 µm with a power consumption of below 2 W during higher magnitude ambulatory accelerations (RMS magnitude 0.3 g). The damping effect of the fluid is also examined and it is shown that buoyancy, rather than drag, is the primary cause of the damping at the low displacement oscillations that occur during the application of ambulatory accelerations to such a suspension system.

  10. High-Speed Schlieren Movies of Decelerators at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    1960-01-01

    High-Speed Schlieren Movies of Decelerators at Supersonic Speeds. Tests were conducted on several types of porous parachutes, a paraglider, and a simulated retrorocket. Mach numbers ranged from 1.8-3.0, porosity from 20-80 percent, and camera speeds from 1680-3000 feet per second (fps) in trials with porous parachutes. Trials of reefed parachutes were conducted at Mach number 2.0 and reefing of 12-33 percent at camera speeds of 600 fps. A flexible parachute with an inflatable ring in the periphery of the canopy was tested at Reynolds number 750,000 per foot, Mach number 2.85, porosity of 28 percent, and camera speed of 36oo fps. A vortex-ring parachute was tested at Mach number 2.2 and camera speed of 3000 fps. The paraglider, with a sweepback of 45 degrees at an angle of attack of 45 degrees was tested at Mach number 2.65, drag coefficient of 0.200, and lift coefficient of 0.278 at a camera speed of 600 fps. A cold air jet exhausting upstream from the center of a bluff body was used to simulate a retrorocket. The free-stream Mach number was 2.0, free-stream dynamic pressure was 620 lb/sq ft, jet-exit static pressure ratio was 10.9, and camera speed was 600 fps. [Entire movie available on DVD from CASI as Doc ID 20070030973. Contact help@sti.nasa.gov

  11. THE DECELERATION OF NEBULAR SHELLS IN EVOLVED PLANETARY NEBULAE

    SciTech Connect

    Pereyra, Margarita; Richer, Michael G.; Lopez, Jose Alberto E-mail: richer@astrosen.unam.mx

    2013-07-10

    We have selected a group of 100 evolved planetary nebulae (PNe) and study their kinematics based upon spatially-resolved, long-slit, echelle spectroscopy. The data have been drawn from the San Pedro Martir Kinematic Catalogue of PNe. The aim is to characterize in detail the global kinematics of PNe at advanced stages of evolution with the largest sample of homogenous data used to date for this purpose. The results reveal two groups that share kinematics, morphology, and photo-ionization characteristics of the nebular shell and central star luminosities at the different late stages under study. The typical flow velocities we measure are usually larger than seen in earlier evolutionary stages, with the largest velocities occurring in objects with very weak or absent [N II] {lambda}6584 line emission, by all indications the least evolved objects in our sample. The most evolved objects expand more slowly. This apparent deceleration during the final stage of PNe evolution is predicted by hydrodynamical models, but other explanations are also possible. These results provide a template for comparison with the predictions of theoretical models.

  12. Durability of organobentonite-amended liner for decelerating chloroform transport.

    PubMed

    He, Shichong; Zhu, Lizhong

    2016-04-01

    Chloroform is added to landfill for suppressing methane generation, which however may transport through landfill liners and lead to contamination of groundwater. To decelerate chloroform transport, the enhanced sorption ability of clay liners following organobentonite addition was tested. In this study, we used batch sorption to evaluate sorption capacity of chloroform to organobentonite, followed by column tests and model simulations for assessing durability of different liners. Results show that adding 10% CTMAB-bentonite (organobentonite synthesized using cetyltrimethylammonium bromide) increased the duration of a bentonite liner by 88.5%. CTMAB-bentonite consistently showed the highest sorption capacity (Qm) among six typical organobentonites under various environmental conditions. The removal rate of chloroform by CTMAB-bentonite was 3.6-23 times higher than that by natural soils. According to the results derived by model simulation, a 70-cm 10% CTMAB-bentonite liner exhibited much better durability than a 100-cm compact clay liner (CCL) and natural bentonite liner evidenced by the delayed and lower peak of eluent concentration. A minimum thickness of 65.8 cm of the 10% CTMAB-bentonite liner could completely sorb the chloroform in a 100-m-high landfill. The 10% CTMAB-bentonite liner exhibiting much better durability has the promise for reducing environmental risk of chloroform in landfill.

  13. Flexible Thermal Protection System Development for Hypersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    DelCorso, Joseph A.; Bruce, Walter E., III; Hughes, Stephen J.; Dec, John A.; Rezin, Marc D.; Meador, Mary Ann B.; Guo, Haiquan; Fletcher, Douglas G.; Calomino, Anthony M.; Cheatwood, McNeil

    2012-01-01

    The Hypersonic Inflatable Aerodynamic Decelerators (HIAD) project has invested in development of multiple thermal protection system (TPS) candidates to be used in inflatable, high downmass, technology flight projects. Flexible TPS is one element of the HIAD project which is tasked with the research and development of the technology ranging from direct ground tests, modelling and simulation, characterization of TPS systems, manufacturing and handling, and standards and policy definition. The intent of flexible TPS is to enable large deployable aeroshell technologies, which increase the drag performance while significantly reducing the ballistic coefficient of high-mass entry vehicles. A HIAD requires a flexible TPS capable of surviving aerothermal loads, and durable enough to survive the rigors of construction, handling, high density packing, long duration exposure to extrinsic, in-situ environments, and deployment. This paper provides a comprehensive overview of key work being performed within the Flexible TPS element of the HIAD project. Included in this paper is an overview of, and results from, each Flexible TPS research and development activity, which includes ground testing, physics-based thermal modelling, age testing, margins policy, catalysis, materials characterization, and recent developments with new TPS materials.

  14. Fuel Cavity Asymmetry at the Onset of Deceleration in ICF

    NASA Astrophysics Data System (ADS)

    Shah, Rahul C.; Wysocki, F. J.; Glebov, V.; Hakel, P.; Joshi, T.; Kagan, G.; Mancini, R. C.; Murphy, T. J.; Stoeckl, C.; Yaakobi, B.; Benage, J. F.

    2014-10-01

    In ICF, the impact on symmetry of low mode drive non-uniformity is amplified by high convergence. Measurements have shown low mode areal density variation, however, direct impact of low modes on fuel volume has remained undemonstrated. We suggest our images provide first evidence of symmetry loss at the fuel-shell interface. The experiments use direct-drive spherical implosions (Omega). The inner 100 nm layer of the plastic shell is doped with diagnostic Ti to obtain information about interface position, temperature and density. Measurement is made at onset of deceleration at which time nuclear yield rate (NTD) and time resolved (SSCA) spectrum both are in agreement with 1-D prediction. Spectrally resolved images are obtained using the Multiple Monochromatic Imager, which combines a pinhole array with x-ray dispersive mirror and gated detector. Angle averaging of the limb-brightened image data also shows agreement with the 1D calculation. However, the 2D image shows ~20% brightness variations over modes 2-10. These modulations are discussed in context of predicted variations of interface position.

  15. Estimating the Collapse Pressure of an Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Baginski, Frank E.; Brakke, Kenneth A.; Cruz, Juan R.

    2013-01-01

    The collapse pressure of an inflatable membrane is the minimum differential pressure which will sustain a specific desired shape under an applied load. In this paper, we present a method for estimating the collapse pressure of a tension-cone inflatable aerodynamic decelerator (IAD) that is subject to a static aerodynamic load. The IAD surface is modeled as an elastic membrane. For a given aerodynamic load and sufficiently high torus differential pressure, the IAD assumes a stable axisymmetric equilibrium shape. When the torus pressure is reduced sufficiently, the symmetric equilibrium state becomes unstable and we define this instance to be the critical pressure Pcr. In this paper, we will compare our predicted critical torus pressure with the corresponding observed torus collapse pressure (OTCP) for fifteen tests that were conducted by the third author and his collaborators at the NASA Glenn Research Center 10x10 Supersonic Wind Tunnel in April 2008. One of the difficulties with these types of comparisons is establishing the instance of torus collapse and determining the OTCP from quantities measured during the experiment. In many cases, torus collapse is gradual and the OTCP is not well-defined. However, in eight of the fifteen wind tunnel tests where the OTCP is well-defined, we find that the average of the relative differences (Pcr - OTCP/Pcr) was 8.9%. For completeness, we will also discuss the seven tests where the observed torus collapse pressure is not well-defined.

  16. Effect of plasma temperature on electrostatic shock generation and ion acceleration by laser

    SciTech Connect

    Zhang Xiaomei; Shen Baifei; Yu, M. Y.; Li Xuemei; Jin Zhangying; Wang Fengchao; Wen Meng

    2007-11-15

    The effect of plasma temperature on electrostatic shock generated by a circularly polarized laser pulse in overdense plasma is studied by particle-in-cell simulation. Ion reflection and transmission in the collisionless electrostatic shock (CES) are investigated analytically. As the initial ion temperature is varied, a distinct transition from the laser-driven piston scenario with all ions being reflected to the CES scenario with partial ion reflection is found. The results show that at low but finite temperatures the ions are much more accelerated than if they were cold.

  17. Nonsingular and accelerated expanding universe from effective Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    De Lorenci, Vitorio A.

    2010-03-01

    The energy-momentum tensor coming from one-parameter effective Yang-Mills theory is here used to describe the matter-energy content of the homogeneous and isotropic Friedmann cosmology in its early stages. The behavior of all solutions is examined. Particularly, it is shown that only solutions corresponding to an open model allow the universe to evolve into an accelerated expansion. This result appears as a possible mechanism for an inflationary phase produced by a vector field. Further, depending on the value of some parameters characterizing the system, the resulting models are classified as singular or nonsingular.

  18. Transient particle acceleration in strongly magnetized neutron stars. II - Effects due to a dipole field geometry

    NASA Technical Reports Server (NTRS)

    Fatuzzo, Marco; Melia, Fulvio

    1991-01-01

    Sheared Alfven waves generated by nonradial crustal disturbances above the polar cap of a strongly magnetized neutron star induce an electric field component parallel to B. An attempt is made to determine the manner in which the strong radial dependence of B affects the propagation of these sheared Alfven waves, and whether this MHD process is still an effective particle accelerator. It is found that although the general field equation is quite complicated, a simple wavelike solution can still be obtained under the conditions of interest for which the Alfven phase velocity decouples from the wave equation. The results may be applicable to gamma-ray burst sources.

  19. Nonlinear dynamics of autonomous vehicles with limits on acceleration

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    2014-07-01

    The stability of autonomous vehicle platoons with limits on acceleration and deceleration is determined. If the leading-vehicle acceleration remains within the limits, all vehicles in the platoon remain within the limits when the relative-velocity feedback coefficient is equal to the headway time constant [k=1/h]. Furthermore, if the sensitivity α>1/h, no collisions occur. String stability for small perturbations is assumed and the initial condition is taken as the equilibrium state. Other values of k and α that give stability with no collisions are found from simulations. For vehicles with non-negligible mechanical response, simulations indicate that the acceleration-feedback-control gain might have to be dynamically adjusted to obtain optimal performance as the response time changes with engine speed. Stability is demonstrated for some perturbations that cause initial acceleration or deceleration greater than the limits, yet do not cause collisions.

  20. Effect of accelerated carbonation and zero valent iron on metal leaching from bottom ash.

    PubMed

    Nilsson, M; Andreas, L; Lagerkvist, A

    2016-05-01

    . The effects of Fe(0) addition can be related to binding of the studied elements to newly formed iron oxides. The effects of Fe(0) addition were often more distinct at pH values between 7 and 9, which indicates that a single treatment with only Fe addition would be less effective and a combined treatment is recommended. The pHstat results showed that accelerated carbonation in combination with Fe(0)(0) addition widens the pH range for low solubility of about one unit for several of the studied elements. This indicates that pre-treating the bottom ash with a combination of accelerated carbonation and Fe(0) addition makes the leaching properties of the ash less sensitive to pH changes that may occur during reuse. All in all, the addition of Fe(0) in combination with carbonation could be an effective pre-treatment method for decreasing the mobility of potentially harmful components in bottom ash.

  1. Radiation reaction effect on laser driven auto-resonant particle acceleration

    SciTech Connect

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.

    2015-12-15

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities.

  2. Radiation reaction effect on laser driven auto-resonant particle acceleration

    NASA Astrophysics Data System (ADS)

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.

    2015-12-01

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities.

  3. Salidroside accelerates fracture healing through cell-autonomous and non-autonomous effects on osteoblasts.

    PubMed

    Guo, Xiao Qin; Qi, Lin; Yang, Jing; Wang, Yue; Wang, Chuan; Li, Zong Min; Li, Ling; Qu, Ye; Wang, Dan; Han, Ze Min

    2017-02-01

    Salidroside (SAL), a major active component of Rhodiola rosea L., exhibits diverse pharmacological effects. However, the direct roles of SAL in fracture healing remain largely unknown. Here, we demonstrate that SAL significantly promotes proliferation by altering the cell-cycle distribution of osteoblastic cells. SAL also greatly stimulates osteoblast differentiation and mineralization by inducing the expression of Runx2 and Osterix. In addition to its osteoblast-autonomous effects, SAL can activate the HIF-1α pathway coupling of angiogenesis and osteogenesis through cell-non-autonomous effects. Our in vitro results suggest that SAL significantly up-regulates HIF-1α expression at the mRNA and protein levels. Furthermore, the nuclear translocation and transcriptional activity of HIF-1α and the HIF-responsive gene VEGF increase following SAL treatment. Our mechanistic study revealed that the regulation of osteoblastic proliferation and HIF-1α expression partly involves MAPK/ERK and PI3K/Akt signaling. Our in vivo analysis also demonstrated that SAL can promote angiogenesis within the callus and accelerate fracture healing. Thus, SAL promotes skeletal regeneration in cell-autonomous and cell-non-autonomous ways and might be a potential therapy for accelerating fracture healing.

  4. State-of-the-Art Study for High-speed Deceleration and Stabilization Devices

    NASA Technical Reports Server (NTRS)

    Alexander, W. C.; Lau, R. A.

    1966-01-01

    Documented aerodynamic deployable decelerator performance data above Mach 1. 0 is presented. The state of the art of drag and stability characteristics for reentry and recovery applications is defined for a wide range of decelerator configurations. Structural and material data and other design information also are presented. Emphasis is given to presentation of basic aero, thermal, and structural design data, which points out basic problem areas and voids in existing technology. The basic problems and voids include supersonic "buzzing" of towed porous decelerators in the wake of the forebody, the complete lack of dynamic stability data, and the general lack of aerothermal data at speeds above Mach 5.

  5. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  6. Curvature-driven acceleration: a utopia or a reality?

    NASA Astrophysics Data System (ADS)

    Das, Sudipta; Banerjee, Narayan; Dadhich, Naresh

    2006-06-01

    The present work shows that a combination of nonlinear contributions from the Ricci curvature in Einstein field equations can drive a late time acceleration of expansion of the universe. The transit from the decelerated to the accelerated phase of expansion takes place smoothly without having to resort to a study of asymptotic behaviour. This result emphasizes the need for thorough and critical examination of models with nonlinear contribution from the curvature.

  7. Effects of an active accelerator pedal on driver behaviour and traffic safety after long-term use in urban areas.

    PubMed

    Várhelyi, András; Hjälmdahl, Magnus; Hydén, Christer; Draskóczy, Magda

    2004-09-01

    The long-term effects of the active accelerator pedal (AAP) were evaluated in the city of Lund in 2000 and 2001. The system, installed in 284 vehicles, produced a counterforce in the accelerator pedal at the speed limit. It could, however be overridden by pressing the accelerator pedal harder. The results showed that test drivers' compliance with the speed limits improved considerably. Reduction in average speeds and less speed variation by the test vehicles indicate a great traffic-safety potential. Travel times were unaffected, while emission volumes decreased significantly.

  8. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  9. Estradiol accelerates the effects of fluoxetine on serotonin 1A receptor signaling.

    PubMed

    Li, Qian; Sullivan, Nicole R; McAllister, Carrie E; Van de Kar, Louis D; Muma, Nancy A

    2013-07-01

    responses may be related to the desensitization of 5-HT1A receptors. Treatment with estradiol for 2 days also reduced the levels of the G-protein coupled estrogen receptor GPR30, possibly limiting to the ability of estradiol to produce only a partial desensitization response. These data provide evidence that estradiol may be effective as a short-term adjuvant to SSRIs to accelerate the onset of therapeutic effects.

  10. Acute Effect of Different Combined Stretching Methods on Acceleration and Speed in Soccer Players.

    PubMed

    Amiri-Khorasani, Mohammadtaghi; Calleja-Gonzalez, Julio; Mogharabi-Manzari, Mansooreh

    2016-04-01

    The purpose of this study was to investigate the acute effect of different stretching methods, during a warm-up, on the acceleration and speed of soccer players. The acceleration performance of 20 collegiate soccer players (body height: 177.25 ± 5.31 cm; body mass: 65.10 ± 5.62 kg; age: 16.85 ± 0.87 years; BMI: 20.70 ± 5.54; experience: 8.46 ± 1.49 years) was evaluated after different warm-up procedures, using 10 and 20 m tests. Subjects performed five types of a warm-up: static, dynamic, combined static + dynamic, combined dynamic + static, and no-stretching. Subjects were divided into five groups. Each group performed five different warm-up protocols in five non-consecutive days. The warm-up protocol used for each group was randomly assigned. The protocols consisted of 4 min jogging, a 1 min stretching program (except for the no-stretching protocol), and 2 min rest periods, followed by the 10 and 20 m sprint test, on the same day. The current findings showed significant differences in the 10 and 20 m tests after dynamic stretching compared with static, combined, and no-stretching protocols. There were also significant differences between the combined stretching compared with static and no-stretching protocols. We concluded that soccer players performed better with respect to acceleration and speed, after dynamic and combined stretching, as they were able to produce more force for a faster execution.

  11. Acute Effect of Different Combined Stretching Methods on Acceleration and Speed in Soccer Players

    PubMed Central

    Calleja-Gonzalez, Julio; Mogharabi-Manzari, Mansooreh

    2016-01-01

    Abstract The purpose of this study was to investigate the acute effect of different stretching methods, during a warm-up, on the acceleration and speed of soccer players. The acceleration performance of 20 collegiate soccer players (body height: 177.25 ± 5.31 cm; body mass: 65.10 ± 5.62 kg; age: 16.85 ± 0.87 years; BMI: 20.70 ± 5.54; experience: 8.46 ± 1.49 years) was evaluated after different warm-up procedures, using 10 and 20 m tests. Subjects performed five types of a warm-up: static, dynamic, combined static + dynamic, combined dynamic + static, and no-stretching. Subjects were divided into five groups. Each group performed five different warm-up protocols in five non-consecutive days. The warm-up protocol used for each group was randomly assigned. The protocols consisted of 4 min jogging, a 1 min stretching program (except for the no-stretching protocol), and 2 min rest periods, followed by the 10 and 20 m sprint test, on the same day. The current findings showed significant differences in the 10 and 20 m tests after dynamic stretching compared with static, combined, and no-stretching protocols. There were also significant differences between the combined stretching compared with static and no-stretching protocols. We concluded that soccer players performed better with respect to acceleration and speed, after dynamic and combined stretching, as they were able to produce more force for a faster execution. PMID:28149355

  12. MCNP Neutron Simulations: The Effectiveness of the University of Kentucky Accelerator Laboratory Pit

    NASA Astrophysics Data System (ADS)

    Jackson, Daniel; Nguyen, Thien An; Hicks, S. F.; Rice, Ben; Vanhoy, J. R.

    2015-10-01

    The design of the Van de Graaff Particle Accelerator complex at the University of Kentucky is marked by the unique addition of a pit in the main neutron scattering room underneath the neutron source and detection shielding assembly. This pit was constructed as a neutron trap in order to decrease the amount of neutron flux within the laboratory. Such a decrease of background neutron flux effectively reduces as much noise as possible in detection of neutrons scattering off of desired samples to be studied. This project uses the Monte-Carlo N-Particle Transport Code (MCNP) to model the structure of the accelerator complex, gas cell, and the detector's collimator and shielding apparatus to calculate the neutron flux in various sections of the laboratory. Simulations were completed with baseline runs of 107 neutrons of energies 4 MeV and 17 MeV, produced respectively by 3H(p,n)3He and 3H(d,n)4He source reactions. In addition, a comparison model of the complex with simply a floor and no pit was designed, and the respective neutron fluxes of both models were calculated and compared. The results of the simulations seem to affirm the validity of the pit design in significantly reducing the overall neutron flux throughout the accelerator complex, which could be used in future designs to increase the precision and reliability of data. This project was supported in part by the DOE NEUP Grant NU-12-KY-UK-0201-05 and the Donald A. Cowan Physics Institute at the University of Dallas.

  13. Effects of laser polarization on electrostatic shock ion acceleration in near-critical plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kuk; Kang, Teyoun; Hur, Min Sup

    2016-10-01

    Ion acceleration from laser-driven collisionless electrostatic shock (CES) is attracting much attention, as quasi-monoenergetic, tens of MeV ion beams are expected to be available from relatively moderate laser power and near-critical density plasmas. For generation of a high-speed shock by a laser pulse, it is important to compress a high-contrast density layer by hole-boring process, and to heat the electrons in the upstream, where the hole-boring speed should match the Mach number condition 1.5 acceleration by ultrashort LP and CP pulses using PIC simulations. Owing to the better ability of CP pulses in density compression, the CP-driven shock is generated more efficiently even in low density plasmas than the LP-driven shocks. As the hole-boring speed is higher in lower density plasmas, we observed consistently higher speed of the shock and accelerated ion energy when driven by CP pulses. Interesting point is that the CP-shock generation is determined predominantly by the transmittance only, while the LP-shock formation depends on other parameters such as plasma scale length. In 2D simulations, we found that Weibel instability is less effective in CP than LP, which enables more stable shock formation for given conditions of the laser and plasma. This work was supported by the Basic Science Research Program (NRF-2013R1A1A2006353) and the Creative Allied Project (CAP-15-06-ETRI).

  14. Three-grid accelerator system for an ion propulsion engine

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1994-01-01

    An apparatus is presented for an ion engine comprising a three-grid accelerator system with the decelerator grid biased negative of the beam plasma. This arrangement substantially reduces the charge-exchange ion current reaching the accelerator grid at high tank pressures, which minimizes erosion of the accelerator grid due to charge exchange ion sputtering, known to be the major accelerator grid wear mechanism. An improved method for life testing ion engines is also provided using the disclosed apparatus. In addition, the invention can also be applied in materials processing.

  15. Effect of plasma exchange in accelerating natalizumab clearance and restoring leukocyte function

    PubMed Central

    Khatri, B O.; Man, S; Giovannoni, G; Koo, A P.; Lee, J-C; Tucky, B; Lynn, F; Jurgensen, S; Woodworth, J; Goelz, S; Duda, P W.; Panzara, M A.; Ransohoff, R M.; Fox, R J.

    2009-01-01

    Background: Accelerating the clearance of therapeutic monoclonal antibodies (mAbs) from the body may be useful to address uncommon but serious complications from treatment, such as progressive multifocal leukoencephalopathy (PML). Treatment of PML requires immune reconstitution. Plasma exchange (PLEX) may accelerate mAb clearance, restoring the function of inhibited proteins and increasing the number or function of leukocytes entering the CNS. We evaluated the efficacy of PLEX in accelerating natalizumab (a therapy for multiple sclerosis [MS] and Crohn disease) clearance and α4-integrin desaturation. Restoration of leukocyte transmigratory capacity was evaluated using an in vitro blood–brain barrier (ivBBB). Methods: Twelve patients with MS receiving natalizumab underwent three 1.5-volume PLEX sessions over 5 or 8 days. Natalizumab concentrations and α4-integrin saturation were assessed daily throughout PLEX and three times over the subsequent 2 weeks, comparing results with the same patients the previous month. Peripheral blood mononuclear cell (PBMC) migration (induced by the chemokine CCL2) across an ivBBB was assessed in a subset of six patients with and without PLEX. Results: Serum natalizumab concentrations were reduced by a mean of 92% from baseline to 1 week after three PLEX sessions (p < 0.001). Although average α4-integrin saturation was not reduced after PLEX, it was reduced to less than 50% when natalizumab concentrations were below 1 μg/mL. PBMC transmigratory capacity increased 2.2-fold after PLEX (p < 0.006). Conclusions: Plasma exchange (PLEX) accelerated clearance of natalizumab, and at natalizumab concentrations below 1 μg/mL, desaturation of α4-integrin was observed. Also, CCL2-induced leukocyte transmigration across an in vitro blood–brain barrier was increased after PLEX. Therefore, PLEX may be effective in restoring immune effector function in natalizumab-treated patients. GLOSSARY AE = adverse event; BBB = blood–brain barrier; BW

  16. Workshop on Solar Activity, Solar Wind, Terrestrial Effects, and Solar Acceleration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A summary of the proceedings from the workshop are presented. The areas covered were solar activity, solar wind, terrestrial effects, and solar acceleration. Specific topics addressed include: (1) solar cycle manifestations, both large and small scale, as well as long-term and short-term changes, including transients such as flares; (2) sources of solar wind, as identified by interplanetary observations including coronal mass ejections (CME's) or x-ray bright points, and the theory for and evolution of large-scale and small-scale structures; (3) magnetosphere responses, as observed by spacecraft, to variable solar wind and transient energetic particle emissions; and (4) origin and propagation of solar cosmic rays as related to solar activity and terrestrial effects, and solar wind coronal-hole relationships and dynamics.

  17. Effects of UV on power degradation of photovoltaic modules in combined acceleration tests

    NASA Astrophysics Data System (ADS)

    Ngo, Trang; Heta, Yushi; Doi, Takuya; Masuda, Atsushi

    2016-05-01

    UV exposure and other factors such as high/low temperature, humidity and mechanical stress have been reported to degrade photovoltaic (PV) module materials. By focusing on the combined effects of UV stress and moisture on PV modules, two new acceleration tests of light irradiation and damp heat (DH) were designed and conducted. The effects of UV exposure were validated through a change in irradiation time (UV dosage) and a change of the light irradiation side (glass side vs backsheet side) in the UV-preconditioned DH and cyclic sequential tests, respectively. The chemical corrosion of finger electrodes in the presence of acetic acid generated from ethylene vinyl acetate used as an encapsulant was considered to be the main origin of degradation. The module performance characterized by electroluminescence images was confirmed to correlate with the measured acetic acid concentration and Ag finger electrode resistance.

  18. The slingshot effect: A possible new laser-driven high energy acceleration mechanism for electrons

    SciTech Connect

    Fiore, Gaetano; Fedele, Renato; Angelis, Umberto de

    2014-11-15

    We show that under appropriate conditions the impact of a very short and intense laser pulse onto a plasma causes the expulsion of surface electrons with high energy in the direction opposite to the one of the propagations of the pulse. This is due to the combined effects of the ponderomotive force and the huge longitudinal field arising from charge separation (“slingshot effect”). The effect should also be present with other states of matter, provided the pulse is sufficiently intense to locally cause complete ionization. An experimental test seems to be feasible and, if confirmed, would provide a new extraction and acceleration mechanism for electrons, alternative to traditional radio-frequency-based or laser-wake-field ones.

  19. The Effects of Height and Distance on the Force Production and Acceleration in Martial Arts Strikes

    PubMed Central

    Bolander, Richard P.; Neto, Osmar Pinto; Bir, Cynthia A.

    2009-01-01

    Almost all cultures have roots in some sort of self defence system and yet there is relatively little research in this area, outside of a sports related environment. This project investigated different applications of strikes from Kung Fu practitioners that have not been addressed before in the literature. Punch and palm strikes were directly compared from different heights and distances, with the use of a load cell, accelerometers, and high speed video. The data indicated that the arm accelerations of both strikes were similar, although the force and resulting acceleration of the target were significantly greater for the palm strikes. Additionally, the relative height at which the strike was delivered was also investigated. The overall conclusion is that the palm strike is a more effective strike for transferring force to an object. It can also be concluded that an attack to the chest would be ideal for maximizing impact force and moving an opponent off balance. Key Points It has been determined that the palm strike is more effective than the punch for developing force and for transferring momentum, most likely the result of a reduced number of rigid links and joints. A strike at head level is less effective than a strike at chest level for developing force and transferring momentum. Distance plays an effect on the overall force and momentum changes, and most likely is dependent on the velocity of the limb and alignment of the bones prior to impact. The teaching of self defence for novices and law enforcement would benefit from including the palm strike as a high priority technique. PMID:24474886

  20. Accelerating oscillatory fronts in a nonlinear sonic vacuum with strong nonlocal effects.

    PubMed

    Gendelman, O V; Zolotarevskiy, V; Savin, A V; Bergman, L A; Vakakis, A F

    2016-03-01

    We describe and explore accelerating oscillatory fronts in sonic vacua with nonlocal interactions. As an example, a chain of particles oscillating in the plane and coupled by linear springs, with fixed ends, is considered. When one end of this system is harmonically excited in the transverse direction, one observes accelerated propagation of the excitation front, accompanied by an almost monochromatic oscillatory tail. Position of the front obeys the scaling law l(t) ∼ t(4/3). The frequency of the oscillatory tail remains constant, and the wavelength scales as λ ∼ t(1/3). These scaling laws result from the nonlocal effects; we derive them analytically (including the scaling coefficients) from a continuum approximation. Moreover, a certain threshold excitation amplitude is required in order to initiate the front propagation. The initiation threshold is evaluated on the basis of a simplified discrete model, further reduced to a completely integrable nonlinear system. Given their simplicity, nonlinear sonic vacua of the type considered herein should be common in periodic lattices.

  1. Backreaction and the Unruh effect: New insights from exact solutions of uniformly accelerated detectors

    SciTech Connect

    Lin, S.-Y.; Hu, B. L.

    2007-09-15

    Using nonperturbative results obtained recently for a uniformly accelerated Unruh-DeWitt detector, we discover new features in the dynamical evolution of the detector's internal degree of freedom, and identified the Unruh effect derived originally from time-dependent perturbation theory as operative in the ultraweak coupling and ultrahigh acceleration limits. The mutual interaction between the detector and the field engenders entanglement between them, and tracing out the field leads to a mixed state of the detector even for a detector at rest in Minkowski vacuum. Our findings based on this exact solution show clearly the differences from the ordinary result where the quantum field's backreaction is ignored in that the detector no longer behaves like a perfect thermometer. From a calculation of the evolution of the reduced density matrix of the detector, we find that the transition probability from the initial ground state over an infinitely long duration of interaction derived from time-dependent perturbation theory is existent in the exact solution only in transient under special limiting conditions corresponding to the Markovian regime. Furthermore, the detector at late times never sees an exact Boltzmann distribution over the energy eigenstates of the free detector, thus in the non-Markovian regime covering a wider range of parameters the Unruh temperature cannot be identified inside the detector.

  2. Accelerating oscillatory fronts in a nonlinear sonic vacuum with strong nonlocal effects

    NASA Astrophysics Data System (ADS)

    Gendelman, O. V.; Zolotarevskiy, V.; Savin, A. V.; Bergman, L. A.; Vakakis, A. F.

    2016-03-01

    We describe and explore accelerating oscillatory fronts in sonic vacua with nonlocal interactions. As an example, a chain of particles oscillating in the plane and coupled by linear springs, with fixed ends, is considered. When one end of this system is harmonically excited in the transverse direction, one observes accelerated propagation of the excitation front, accompanied by an almost monochromatic oscillatory tail. Position of the front obeys the scaling law l (t ) ˜t4 /3 . The frequency of the oscillatory tail remains constant, and the wavelength scales as λ ˜t1 /3 . These scaling laws result from the nonlocal effects; we derive them analytically (including the scaling coefficients) from a continuum approximation. Moreover, a certain threshold excitation amplitude is required in order to initiate the front propagation. The initiation threshold is evaluated on the basis of a simplified discrete model, further reduced to a completely integrable nonlinear system. Given their simplicity, nonlinear sonic vacua of the type considered herein should be common in periodic lattices.

  3. Effect of prolonged bedrest and plus Gz acceleration on peripheral visual response time

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1973-01-01

    Peripheral visual response time changes during +G sub z acceleration following fourteen days of bedrest are considered as well as what effect prolonged bedrest has upon this response. Eighteen test lights, placed 10 deg are apart along the horizontal meridian of the subject's field of view, were presented in a random sequence. The subject was instructed to press a button as soon as a light appeared. Response time testing occurred periodically during bedrest and continuously during centrifugation testing. The results indicate that: (1) mean response time is significantly longer to stimuli imaged in the far periphery than to stimuli imaged closer to the line of sight; (2) mean response time at each stimulus position tends to be longer at plateau g than during the preacceleration baseline period; (3) mean response time tends to lengthen as the g level is increased; (4) peripheral visual response time during +G sub x acceleration at 2, 3.2, and 3.8 g was not a reliable advanced indicator that blackout was going to occur; and (5) the subject's field of view collapsed rapidly just before blackout. Bedrest data showed that the distribution of response times to stimuli imaged across the subject's horizontal retinal meridian remained remarkably constant from day to day during both the bedrest and recovery periods.

  4. The Interaction of Motor Performance and Psycho-Physiological Effects During Acceleration to Hypergravity

    NASA Astrophysics Data System (ADS)

    Guardiera, Simon; Schneider, Stefan

    2008-06-01

    Several studies reported that human motor performance is impaired during acceleration to hypergravity. While physiological explanations (e.g. vestibular activity) are widely discussed, psycho-physiological reasons (e.g. stress) are less considered. The present study therefore evaluates the interaction between psycho-physiological effects and motor performance in hypergravity. Eleven subjects performed a manual tracking task. Additionally, stress hormone concentration, EEG and subjective mood were evaluated. All measurements were performed in normal (+1Gz), and in (or directly after) three times gravitational acceleration (+3Gz). Motor performance decreased, while all determined stress hormone concentrations increased in +3Gz. EEG analysis revealed an increase of brain cortical activity in right frontal lobe in +3Gz. Subjective mood decreased due to +3Gz. Our data confirm, that motor performance is decreased in hypergravity, whereas an increase in psychophysiological stress markers could be obtained. We conclude that psycho-physiological changes have to be regarded as a possible explanation for deficits in motor performance in hypergravity.

  5. Unphysical kinetic effects in particle-in-cell modeling of laser wakefield accelerators.

    PubMed

    Cormier-Michel, Estelle; Shadwick, B A; Geddes, C G R; Esarey, E; Schroeder, C B; Leemans, W P

    2008-07-01

    Unphysical heating and macroparticle trapping that arise in the numerical modeling of laser wakefield accelerators using particle-in-cell codes are investigated. A dark current free laser wakefield accelerator stage, in which no trapping of background plasma electrons into the plasma wave should occur, and a highly nonlinear cavitated wake with self-trapping, are modeled. Numerical errors can lead to errors in the macroparticle orbits in both phase and momentum. These errors grow as a function of distance behind the drive laser and can be large enough to result in unphysical trapping in the plasma wake. The resulting numerical heating in intense short-pulse laser-plasma interactions grows much faster and to a higher level than the known numerical grid heating of an initially warm plasma in an undriven system. The amount of heating, at least in the region immediately behind the laser pulse, can, in general, be decreased by decreasing the grid size, increasing the number of particles per cell, or using smoother interpolation methods. The effect of numerical heating on macroparticle trapping is less severe in a highly nonlinear cavitated wake, since trapping occurs in the first plasma wave period immediately behind the laser pulse.

  6. A new look at liming as an approach to accelerate recovery from acidic deposition effects

    USGS Publications Warehouse

    Lawrence, Gregory B.; Burns, Douglas A.; Murray, Karen

    2016-01-01

    Acidic deposition caused by fossil fuel combustion has degraded aquatic and terrestrial ecosystems in North America for over four decades. The only management option other than emissions reductions for combating the effects of acidic deposition has been the application of lime to neutralize acidity after it has been deposited on the landscape. For this reason, liming has been a part of acid rain science from the beginning. However, continued declines in acidic deposition have led to partial recovery of surface water chemistry, and the start of soil recovery. Liming is therefore no longer needed to prevent further damage, so the question becomes whether liming would be useful for accelerating recovery of systems where improvement has lagged. As more is learned about recovering ecosystems, it has become clear that recovery rates vary with watershed characteristics and among ecosystem components. Lakes appear to show the strongest recovery, but recovery in streams is sluggish and recovery of soils appears to be in the early stages. The method in which lime is applied is therefore critical in achieving the goal of accelerated recovery. Application of lime to a watershed provides the advantage of increasing Ca availability and reducing or preventing mobilization of toxic Al, an outcome that is beneficial to both terrestrial and aquatic ecosystems. However, the goal should not be complete neutralization of soil acidity, which is naturally produced. Liming of naturally acidic areas such as wetlands should also be avoided to prevent damage to indigenous species that rely on an acidic environment.

  7. Noncommutative minisuperspace, gravity-driven acceleration, and kinetic inflation

    NASA Astrophysics Data System (ADS)

    Rasouli, S. M. M.; Moniz, Paulo Vargas

    2014-10-01

    In this paper, we introduce a noncommutative version of the Brans-Dicke (BD) theory and obtain the Hamiltonian equations of motion for a spatially flat Friedmann-Lemaître-Robertson-Walker universe filled with a perfect fluid. We focus on the case where the scalar potential as well as the ordinary matter sector are absent. Then, we investigate gravity-driven acceleration and kinetic inflation in this noncommutative BD cosmology. In contrast to the commutative case, in which the scale factor and BD scalar field are in a power-law form, in the noncommutative case the power-law scalar factor is multiplied by a dynamical exponential warp factor. This warp factor depends on the noncommutative parameter as well as the momentum conjugate associated to the BD scalar field. We show that the BD scalar field and the scale factor effectively depend on the noncommutative parameter. For very small values of this parameter, we obtain an appropriate inflationary solution, which can overcome problems within BD standard cosmology in a more efficient manner. Furthermore, a graceful exit from an early acceleration epoch towards a decelerating radiation epoch is provided. For late times, due to the presence of the noncommutative parameter, we obtain a zero acceleration epoch, which can be interpreted as the coarse-grained explanation.

  8. Bianchi Type-I Anisotropic Dark Energy Model with Constant Deceleration Parameter

    NASA Astrophysics Data System (ADS)

    Pradhan, Anirudh; Amirhashchi, H.; Saha, Bijan

    2011-09-01

    A new dark energy model in anisotropic Bianchi type-I (B-I) space-time with time dependent equation of state (EoS) parameter and constant deceleration parameter has been investigated in the present paper. The Einstein's field equations have been solved by applying a variation law for generalized Hubble's parameter (Berman in Il Nuovo Cimento B 74:182, 1983) which generates two types of solutions, one is of power-law type and other is of the exponential form. The existing range of the dark energy EoS parameter ω for derived model is found to be in good agreement with the three recent observations (i) SNe Ia data (Knop et al. in Astrophys. J. 598:102, 2003), (ii) SNe Ia data collaborated with CMBR anisotropy and galaxy clustering statistics (Tegmark et al. in Astrophys. J. 606:702, 2004) and (iii) a combination of cosmological datasets coming from CMB anisotropies, luminosity distances of high redshift type Ia supernovae and galaxy clustering (Hinshaw et al. in Astrophys. J. Suppl. Ser. 180:225, 2009 and Komatsu et al. in Astrophys. J. Suppl. Ser. 180:330, 2009). The cosmological constant Λ is found to be a decreasing function of time and it approaches a small positive value at the present epoch which is corroborated by results from recent supernovae Ia observations. It has also been suggested that the dark energy that explains the observed accelerating universe may arise due to the contribution to the vacuum energy of the EoS in a time dependent background. Geometric and kinematic properties of the model and the behaviour of the anisotropy of the dark energy have been carried out.

  9. Deceleration of High-velocity Interstellar Photon Sails into Bound Orbits at α Centauri

    NASA Astrophysics Data System (ADS)

    Heller, René; Hippke, Michael

    2017-02-01

    At a distance of about 4.22 ly, it would take about 100,000 years for humans to visit our closest stellar neighbor Proxima Centauri using modern chemical thrusters. New technologies are now being developed that involve high-power lasers firing at 1 gram solar sails in near-Earth orbits, accelerating them to 20% the speed of light (c) within minutes. Although such an interstellar probe could reach Proxima 20 years after launch, without propellant to slow it down it would traverse the system within hours. Here we demonstrate how the stellar photon pressures of the stellar triple α Cen A, B, and C (Proxima) can be used together with gravity assists to decelerate incoming solar sails from Earth. The maximum injection speed at α Cen A to park a sail with a mass-to-surface ratio (σ) similar to graphene (7.6 × 10‑4 gram m‑2) in orbit around Proxima is about 13,800 km s‑1 (4.6% c), implying travel times from Earth to α Cen A and B of about 95 years and another 46 years (with a residual velocity of 1280 km s‑1) to Proxima. The size of such a low-σ sail required to carry a payload of 10 grams is about 105 m2 = (316 m)2. Such a sail could use solar photons instead of an expensive laser system to gain interstellar velocities at departure. Photogravitational assists allow visits of three stellar systems and an Earth-sized potentially habitable planet in one shot, promising extremely high scientific yields.

  10. Biochar Decelerates Soil Organic Nitrogen Cycling but Stimulates Soil Nitrification in a Temperate Arable Field Trial

    PubMed Central

    Prommer, Judith; Wanek, Wolfgang; Hofhansl, Florian; Trojan, Daniela; Offre, Pierre; Urich, Tim; Schleper, Christa; Sassmann, Stefan; Kitzler, Barbara; Soja, Gerhard; Hood-Nowotny, Rebecca Clare

    2014-01-01

    Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50–80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies. PMID:24497947

  11. Cyclist deceleration rate as surrogate safety measure in Montreal using smartphone GPS data.

    PubMed

    Strauss, Jillian; Zangenehpour, Sohail; Miranda-Moreno, Luis F; Saunier, Nicolas

    2017-02-01

    Urban areas in North American cities with positive trends in bicycle usage also witness a high number of cyclist injuries every year. Previous cyclist safety studies based on the traditional approach, which relies on historical crash data, are known to have some limitations such as the fact that crashes need to happen (a reactive approach). This paper explores the use of GPS deceleration events as a surrogate-proactive measure and investigates the relationship between reported cyclist road injuries and deceleration events. The surrogate safety measure is defined based on deceleration values representing hard breaking situations. This work uses a large sample of GPS cyclist trip data from a smartphone application to extract deceleration rates at intersections and along segments and to explore its relationship with the number of observed injuries and validate deceleration rate (DR) as a surrogate safety measure. Using Spearman's rank correlation coefficient, we compared the ranking of sites based on the expected number of injuries and based on DR. The ranks of expected injuries and dangerous decelerations were found to have a correlation of 0.60 at signalized intersections, 0.53 at non-signalized intersections and 0.57 at segments. Despite the promising results of this study, more granular data and validation work needs to be done to improve the reliability of the measures. The technological limitations and future work are discussed at the end of the paper.

  12. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  13. Big Data and Comparative Effectiveness Research in Radiation Oncology: Synergy and Accelerated Discovery

    PubMed Central

    Trifiletti, Daniel M.; Showalter, Timothy N.

    2015-01-01

    Several advances in large data set collection and processing have the potential to provide a wave of new insights and improvements in the use of radiation therapy for cancer treatment. The era of electronic health records, genomics, and improving information technology resources creates the opportunity to leverage these developments to create a learning healthcare system that can rapidly deliver informative clinical evidence. By merging concepts from comparative effectiveness research with the tools and analytic approaches of “big data,” it is hoped that this union will accelerate discovery, improve evidence for decision making, and increase the availability of highly relevant, personalized information. This combination offers the potential to provide data and analysis that can be leveraged for ultra-personalized medicine and high-quality, cutting-edge radiation therapy. PMID:26697409

  14. Acceleration of the universe: a reconstruction of the effective equation of state

    NASA Astrophysics Data System (ADS)

    Mukherjee, Ankan

    2016-07-01

    This work is based upon a parametric reconstruction of the effective or total equation of state in a model for the Universe with accelerated expansion. The constraints on the model parameters are obtained by maximum-likelihood analysis using the supernova distance modulus data, observational Hubble data, baryon acoustic oscillation data and cosmic microwave background shift parameter data. For statistical comparison, the same analysis has also been carried out for the w cold dark matter (wCDM) dark energy model. Different model selection criteria (Akaike information criterion and Bayesian information criterion) give the clear indication that the reconstructed model is well consistent with the wCDM model. Then both the models [weff(z) model and wCDM model] have also been presented through (q0,j0) parameter space. Tighter constraint on the present values of dark energy equation of state parameter (wDE(z = 0)) and cosmological jerk (j0) have been achieved for the reconstructed model.

  15. Hall Effects on Mhd Flow Past an Accelerated Plate with Heat Transfer

    NASA Astrophysics Data System (ADS)

    Sundarnath, J. K.; Muthucumarswamy, R.

    2015-02-01

    Hall current and rotation on an MHD flow past an accelerated horizontal plate relative to a rotating fluid, in the presence of heat transfer has been analyzed. The effects of the Hall parameter, Hartmann number, rotation parameter (non-dimensional angular velocity), Grashof's number and Prandtl number on axial and transverse velocity profiles are presented graphically. It is found that with the increase in the Hartmann number, the axial and transverse velocity components increase in a direction opposite to that of obtained by increasing the Hall parameter and rotation parameter. Also, when Ω=M2m /(1 + m2 ) , it is observed that the transverse velocity component vanishes and axial velocity attains a maximum value.

  16. Track Structure and the Biological Effectiveness of Accelerated Particles for the Induction of Chromosome Damage

    NASA Technical Reports Server (NTRS)

    George, K.; Hada, M.; Chappell, L.; Cucinotta, F. A.

    2011-01-01

    Track structure models predict that at a fixed value of LET, particles with lower charge number, Z will have a higher biological effectiveness compared to particles with a higher Z. In this report we investigated how track structure effects induction of chromosomal aberration in human cells. Human lymphocytes were irradiated in vitro with various energies of accelerated iron, silicon, neon, or titanium ions and chromosome damage was assessed in using three color FISH chromosome painting in chemically induced PCC samples collected a first cell division post irradiation. The LET values for these ions ranged from 30 to195 keV/micron. Of the particles studied, Neon ions have the highest biological effectiveness for induction of total chromosome damage, which is consistent with track structure model predictions. For complex-type exchanges 64 MeV/ u Neon and 450 MeV/u Iron were equally effective and induced the most complex damage. In addition we present data on chromosomes exchanges induced by six different energies of protons (5 MeV/u to 2.5 GeV/u). The linear dose response term was similar for all energies of protons suggesting that the effect of the higher LET at low proton energies is balanced by the production of nuclear secondaries from the high energy protons.

  17. Effects of resisted sprint training on acceleration in professional rugby union players.

    PubMed

    West, Daniel J; Cunningham, Dan J; Bracken, Richard M; Bevan, Huw R; Crewther, Blair T; Cook, Christian J; Kilduff, Liam P

    2013-04-01

    The use of weighted sled towing as a training tool to improve athlete acceleration has received considerable attention; however, its effectiveness for developing acceleration is equivocal. This study compared the effects of combined weighted sled towing and sprint training against traditional sprint training on 10 and 30 m speed in professional rugby union players (n = 20). After baseline testing of 10 and 30 m speed, participants were assigned to either the combined sled towing and sprint training (SLED) or traditional sprint training (TRAD) groups, matched for 10-m sprint times. Each group completed 2 training sessions per week for 6 weeks, with performance reassessed post-training. Both training programmes improved participants' 10 and 30 m speed (p < 0.001), but the performance changes (from pre to post) in 10 m (SLED -0.04 ± 0.01 vs. TRAD -0.02 ± 0.01 seconds; p < 0.001) and 30 m (SLED -0.10 ± 0.03 vs. TRAD -0.05 ± 0.03 seconds; p = 0.003) sprint times were significantly greater in the SLED training group. Similarly, the percent change within the SLED group for the 10 m (SLED -2.43 ± 0.67 vs. TRAD -1.06 ± 0.80 seconds; p = 0.003) and 30 m (SLED -2.46 ± 0.63 vs. TRAD -1.15 ± 0.72 seconds; p = 0.003) tests were greater than the TRAD group. In conclusion, sprint training alone or combined with weighted sled towing can improve 10 and 30 m sprint times; however, the latter training method promoted greater improvements in a group of professional rugby players.

  18. An accelerator-based neutron microbeam system for studies of radiation effects.

    PubMed

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Bigelow, Alan W; Akselrod, Mark S; Sykora, Jeff G; Brenner, David J

    2011-06-01

    A novel neutron microbeam is being developed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The RARAF microbeam facility has been used for studies of radiation bystander effects in mammalian cells for many years. Now a prototype neutron microbeam is being developed that can be used for bystander effect studies. The neutron microbeam design here is based on the existing charged particle microbeam technology at the RARAF. The principle of the neutron microbeam is to use the proton beam with a micrometre-sized diameter impinging on a very thin lithium fluoride target system. From the kinematics of the ⁷Li(p,n)⁷Be reaction near the threshold of 1.881 MeV, the neutron beam is confined within a narrow, forward solid angle. Calculations show that the neutron spot using a target with a 17-µm thick gold backing foil will be <20 µm in diameter for cells attached to a 3.8-µm thick propylene-bottomed cell dish in contact with the target backing. The neutron flux will roughly be 2000 per second based on the current beam setup at the RARAF singleton accelerator. The dose rate will be about 200 mGy min⁻¹. The principle of this neutron microbeam system has been preliminarily tested at the RARAF using a collimated proton beam. The imaging of the neutron beam was performed using novel fluorescent nuclear track detector technology based on Mg-doped luminescent aluminum oxide single crystals and confocal laser scanning fluorescent microscopy.

  19. An accelerator-based neutron microbeam system for studies of radiation effects

    PubMed Central

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A.; Bigelow, Alan W.; Akselrod, Mark S.; Sykora, Jeff G.; Brenner, David J.

    2011-01-01

    A novel neutron microbeam is being developed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The RARAF microbeam facility has been used for studies of radiation bystander effects in mammalian cells for many years. Now a prototype neutron microbeam is being developed that can be used for bystander effect studies. The neutron microbeam design here is based on the existing charged particle microbeam technology at the RARAF. The principle of the neutron microbeam is to use the proton beam with a micrometre-sized diameter impinging on a very thin lithium fluoride target system. From the kinematics of the 7Li(p,n)7Be reaction near the threshold of 1.881 MeV, the neutron beam is confined within a narrow, forward solid angle. Calculations show that the neutron spot using a target with a 17-µm thick gold backing foil will be <20 µm in diameter for cells attached to a 3.8-µm thick propylene-bottomed cell dish in contact with the target backing. The neutron flux will roughly be 2000 per second based on the current beam setup at the RARAF singleton accelerator. The dose rate will be about 200 mGy min−1. The principle of this neutron microbeam system has been preliminarily tested at the RARAF using a collimated proton beam. The imaging of the neutron beam was performed using novel fluorescent nuclear track detector technology based on Mg-doped luminescent aluminum oxide single crystals and confocal laser scanning fluorescent microscopy. PMID:21131327

  20. Accelerated failure time models provide a useful statistical framework for aging research.

    PubMed

    Swindell, William R

    2009-03-01

    Survivorship experiments play a central role in aging research and are performed to evaluate whether interventions alter the rate of aging and increase lifespan. The accelerated failure time (AFT) model is seldom used to analyze survivorship data, but offers a potentially useful statistical approach that is based upon the survival curve rather than the hazard function. In this study, AFT models were used to analyze data from 16 survivorship experiments that evaluated the effects of one or more genetic manipulations on mouse lifespan. Most genetic manipulations were found to have a multiplicative effect on survivorship that is independent of age and well-characterized by the AFT model "deceleration factor". AFT model deceleration factors also provided a more intuitive measure of treatment effect than the hazard ratio, and were robust to departures from modeling assumptions. Age-dependent treatment effects, when present, were investigated using quantile regression modeling. These results provide an informative and quantitative summary of survivorship data associated with currently known long-lived mouse models. In addition, from the standpoint of aging research, these statistical approaches have appealing properties and provide valuable tools for the analysis of survivorship data.

  1. Passive Thermal Control for the Low Density Supersonic Decelerator (LDSD) Test Vehicle Spin Motors Sub-System

    NASA Technical Reports Server (NTRS)

    Redmond, Matthew; Mastropietro, A. J.; Pauken, Michael; Mobley, Brandon

    2014-01-01

    Future missions to Mars will require improved entry, descent, and landing (EDL) technology over the Viking-heritage systems which recently landed the largest payload to date, the 900 kg Mars Science Laboratory. As a result, NASA's Low Density Supersonic Decelerator (LDSD) project is working to advance the state of the art in Mars EDL systems by developing and testing three key technologies which will enable heavier payloads and higher altitude landing sites on the red planet. These technologies consist of a large 33.5 m diameter Supersonic Disk Sail (SSDS) parachute and two different Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class that inflates to a 6 m diameter torus (SIAD-R), and an exploration class that inflates to an 8 m diameter isotensoid (SIADE). All three technologies will be demonstrated on test vehicles at high earth altitudes in order to simulate the Mars EDL environment. Each vehicle will be carried to altitude by a large helium balloon, released, spun up using spin motors to stabilize the vehicle's trajectory, and accelerated to supersonic speeds using a large solid rocket motor. The vehicle will then be spun down using another set of spin motors, and will deploy either the SIAD-R or SIAD-E, followed by the SSDS parachute until the vehicle lands in the ocean. Component level testing and bounding analysis are used to ensure the survival of system components in extreme thermal environments and predict temperatures throughout the flight. This paper presents a general description of the thermal testing, model correlation, and analysis of the spin motor passive thermal control sub-system to maintain spin motor performance, prescribed vehicle trajectory, and structural integrity of the test vehicle. The spin motor subsystem is predicted to meet its requirements with margin.

  2. ACE3P Computations of Wakefield Coupling in the CLIC Two-Beam Accelerator

    SciTech Connect

    Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; Syratchev, I.; Grudiev, A.; Wuensch, W.; /CERN

    2010-10-27

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedented accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.

  3. Field Operations Program Chevrolet S-10 (Lead-Acid) Accelerated Reliability Testing - Final Report

    SciTech Connect

    J. Francfort; J. Argueta; M. Wehrey; D. Karner; L. Tyree

    1999-07-01

    This report summarizes the Accelerated Reliability testing of five lead-acid battery-equipped Chevrolet S-10 electric vehicles by the US Department of Energy's Field Operations Program and the Program's testing partners, Electric Transportation Applications (ETA) and Southern California Edison (SCE). ETA and SCE operated the S-10s with the goal of placing 25,000 miles on each vehicle within 1 year, providing an accelerated life-cycle analysis. The testing was performed according to established and published test procedures. The S-10s' average ranges were highest during summer months; changes in ambient temperature from night to day and from season-to-season impacted range by as much as 10 miles. Drivers also noted that excessive use of power during acceleration also had a dramatic effect on vehicle range. The spirited performance of the S-10s created a great temptation to inexperienced electric vehicle drivers to ''have a good time'' and to fully utilize the S-10's acceleration capability. The price of injudicious use of power is greatly reduced range and a long-term reduction in battery life. The range using full-power accelerations followed by rapid deceleration in city driving has been 20 miles or less.

  4. Opportunities for TeV Laser Acceleration

    SciTech Connect

    Kando, M.; Kiriyama, H.; Koga, J.K.; Bulanov, S.; Chao, A.W.; Esirkepov, T.; Hajima, R.; Tajima, T.; /JAERI, Kyoto

    2008-06-02

    A set of ballpark parameters for laser, plasma, and accelerator technologies that define for electron energies reaching as high as TeV are identified. These ballpark parameters are carved out from the fundamental scaling laws that govern laser acceleration, theoretically suggested and experimentally explored over a wide range in the recent years. In the density regime on the order of 10{sup 16} cm{sup -3}, the appropriate laser technology, we find, matches well with that of a highly efficient high fluence LD driven Yb ceramic laser. Further, the collective acceleration technique applies to compactify the beam stoppage stage by adopting the beam-plasma wave deceleration, which contributes to significantly enhance the stopping power and energy recovery capability of the beam. Thus we find the confluence of the needed laser acceleration parameters dictated by these scaling laws and the emerging laser technology. This may herald a new technology in the ultrahigh energy frontier.

  5. Radially dependent angular acceleration of twisted light.

    PubMed

    Webster, Jason; Rosales-Guzmán, Carmelo; Forbes, Andrew

    2017-02-15

    While photons travel in a straight line at constant velocity in free space, the intensity profile of structured light may be tailored for acceleration in any degree of freedom. Here we propose a simple approach to control the angular acceleration of light. Using Laguerre-Gaussian modes as our twisted beams carrying orbital angular momentum, we show that superpositions of opposite handedness result in a radially dependent angular acceleration as they pass through a focus (waist plane). Due to conservation of orbital angular momentum, we find that propagation dynamics are complex despite the free-space medium: the outer part of the beam (rings) rotates in an opposite direction to the inner part (petals), and while the outer part accelerates, the inner part decelerates. We outline the concepts theoretically and confirm them experimentally. Such exotic structured light beams are topical due to their many applications, for instance in optical trapping and tweezing, metrology, and fundamental studies in optics.

  6. Role of the Russell-McPherron Effect in the Acceleration of Relativistic Electrons

    NASA Technical Reports Server (NTRS)

    McPherron, R. L.; Baker, D. N.; Crooker, N. U.

    2010-01-01

    While it is well known that high fluxes of relativistic electrons in the Earth's radiation belts are associated with high-speed solar wind and its heightened geoeffectiveness,less known is the fact that the Russell McPherron(R M) effect strongly controls whether or not a given high-speed stream is geoffective. To test whether it then follows that the R M effect also strongly controls fluxes of relativistic electrons, we perform a superposed epoch analysis across corotating interaction regions (CIR) keyed on the interfaces between slow and fast wind. A total of 394 stream interfaces were identified in the years 1994-2006. Equinoctial interfaces were separated into four classes based on the R-M effect,that is, whether the solar wind on either side of the interface was either(geo)effective (E) or ineffective (I) depending on season and the polarity of the interplanetary magnetic field (IMF). Four classes of interface identified as II, IE, EI,and EE are possible. The classes IE and EI correspond to CIRs with polarity changes indicating passage through the heliospheric current sheet. To characterize the behavior of solar wind and magnetospheric variables, we produced maps of dynamic cumulative probability distribution functions (cdfs) as a function of time over 10-day intervals centered on the interfaces. These reveal that effective high-speed streams have geomagnetic activity nearly twice as strong as ineffective streams and electron fluxes a factor of 12 higher. In addition they show that an effective low-speed stream increases the flux of relativistic electrons before the interface so that an effective to ineffective transition results in lower fluxes after the interface.We conclude that the R-M effect plays a major role in organizing and sustaining a sequence of physical processes responsible for the acceleration of relativistic electrons.

  7. Differences in Effective Target Volume Between Various Techniques of Accelerated Partial Breast Irradiation

    SciTech Connect

    Shaitelman, Simona F.; Vicini, Frank A.; Grills, Inga S.; Martinez, Alvaro A.; Yan Di; Kim, Leonard H.

    2012-01-01

    Purpose: Different cavity expansions are used to define the clinical target volume (CTV) for accelerated partial breast irradiation (APBI) delivered via balloon brachytherapy (1 cm) vs. three-dimensional conformal radiotherapy (3D-CRT) (1.5 cm). Previous studies have argued that the CTVs generated by these different margins are effectively equivalent. In this study, we use deformable registration to assess the effective CTV treated by balloon brachytherapy on clinically representative 3D-CRT planning images. Methods and Materials: Ten patients previously treated with the MammoSite were studied. Each patient had two computed tomography (CT) scans, one acquired before and one after balloon implantation. In-house deformable registration software was used to deform the MammoSite CTV onto the balloonless CT set. The deformed CTV was validated using anatomical landmarks common to both CT scans. Results: The effective CTV treated by the MammoSite was on average 7% {+-} 10% larger and 38% {+-} 4% smaller than 3D-CRT CTVs created using uniform expansions of 1 and 1.5 cm, respectively. The average effective CTV margin was 1.0 cm, the same as the actual MammoSite CTV margin. However, the effective CTV margin was nonuniform and could range from 5 to 15 mm in any given direction. Effective margins <1 cm were attributable to poor cavity-balloon conformance. Balloon size relative to the cavity did not significantly correlate with the effective margin. Conclusion: In this study, the 1.0-cm MammoSite CTV margin treated an effective volume that was significantly smaller than the 3D-CRT CTV based on a 1.5-cm margin.

  8. Weak turbulence cascading effects in the acceleration and heating of ions in the solar wind

    SciTech Connect

    Moya, P. S.; Viñas, A. F.; Navarro, R.; Muñoz, V.; Valdivia, J. A.

    2014-02-01

    We study the wave-particle interaction and the evolution of electromagnetic waves propagating through a solar-wind-like plasma composed of cold electrons, isotropic protons, and a small portion of drifting anisotropic He{sup +2} (T {sub α} = 6 T {sub ∥α}) and O{sup +6} (T {sub O} = 11 T {sub ∥O}) ions as suggested in Gomberoff and Valdivia and Gomberoff et al., using two approaches. First, we use quasilinear kinetic theory to study the energy transfer between waves and particles, with the subsequent acceleration and heating of ions. Second, 1.5 D (one spatial dimension and three dimensions in velocity space) hybrid numerical simulations are performed to investigate the fully nonlinear evolution of this wave-particle interaction. Numerical results of both approaches show that the temperatures of all species evolve anisotropically, consistent with the time-dependent wave-spectrum energy. In a cascade effect, we observe the emergence of modes at frequencies higher than those initially considered, peaking at values close to the resonance frequencies of O{sup +6} ions (ω ∼ Ω {sub cO}) and He{sup +2} ions (ω ∼ Ω {sub cα}), being the peak due to O{sup +6} ions about three times bigger than the peak associated with He{sup +2} ions. Both the heating of the plasma and the energy cascade were more efficient in the nonlinear analysis than in the quasilinear one. These results suggest that this energy cascade mechanism may participate in the acceleration and heating of the solar wind plasma close to the Sun during fast streams associated with coronal holes.

  9. The effect of viscosity on steady transonic flow with a nodal solution topology

    NASA Technical Reports Server (NTRS)

    Owocki, Stanley P.; Zank, Gary P.

    1991-01-01

    The effect of viscosity on a steady, transonic flow for which the inviscid limit has a nodal solution topology near the critical point is investigated. For the accelerating case, viscous solutions tend to repel each other, so that a very delicate choice of initial conditions is required to prevent them from diverging. Only the two critical solutions extend to arbitrarily large distances into both the subsonic and supersonic flows. For the decelerating case, the solutions tend to attract, and so an entire two-parameter family of solutions now extends over large distances. The general effect of viscosity on the solution degeneracy of a nodal topology is thus to reduce or limit it for the accelerating case and to enhance it for the decelerating case. The astrophysical implications of these findings are addressed.

  10. Performance Acceleration on Production Machines Using the Overall Equipment Effectiveness (OEE) Approach

    NASA Astrophysics Data System (ADS)

    Mansur, A.; Rayendra, R.; Mastur, MI

    2016-01-01

    Mistakes during working can trigger a decrease in production level that may lead financial loss to the company. The factors that affect the mistakes are called losses, such as breakdown loss, set up/ adjustment loss, idling and minor stoppage loss, reduced speed loss, reduced yield loss, and rework loss. The objective of the research is to accelerate the performance of the JSW 330T machine in PT. YogyaPresisiTehnikatamaIndustri. JSW 330T is a machine that has the highest downtime numbers. The method for measuring the effectiveness is using the Overall Equipment Effectiveness (OEE). The results of the research show that the JWQ 330T has average rate of the effectiveness (OEE) of 52.66%, availability ratioof 73.43%, performance efficiency rate of 83.58% and quality rate of 84.6%. From the six big losses calculation, the factor that affects the most on the low score of OEE is the breakdown loss which is 58.85% with total time loss of 929.65 hours in a year.

  11. Effect of resistivity on the Rayleigh-Taylor instability in an accelerated plasma

    SciTech Connect

    Castillo, J.L. ); Huerta, M.A. )

    1993-11-01

    We study the Rayleigh-Taylor instability in finite-conductivity accelerated plasma arcs of the type found in electromagnetic rail launchers. For a plasma of length [ital l], acceleration [ital a], and thermal speed [ital v][sub [ital T

  12. Effects of TEA·HCl hardening accelerator on the workability of cement-based materials

    NASA Astrophysics Data System (ADS)

    Pan, Wenhao; Ding, Zhaoyang; Chen, Yanwen

    2017-03-01

    The aim of the test is to research the influence rules of TEA·HCl on the workability of cement paste and concrete. Based on the features of the new hardening accelerator, an experimental analysis system were established through different dosages of hardening accelerator, and the feasibility of such accelerator to satisfy the need of practical engineering was verified. The results show that adding of the hardening accelerator can accelerate the cement hydration, and what’s more, when the dosage was 0.04%, the setting time was the shortest while the initial setting time and final setting time were 130 min and 180 min, respectively. The initial fluidity of cement paste of adding accelerator was roughly equivalent compared with that of blank. After 30 min, fluidity loss would decrease with the dosage increasing, but fluidity may increase. The application of the hardening accelerator can make the early workability of concrete enhance, especially the slump loss of 30 min can improve more significantly. The bleeding rate of concrete significantly decreases after adding TEA·HCl. The conclusion is that the new hardening accelerator can meet the need of the workability of cement-based materials in the optimum dosage range.

  13. REANIMATION OF DOGS AFTER CLINICAL DEATH DUE TO THE EFFECT OF RADIAL ACCELERATION,

    DTIC Science & Technology

    The authors conducted a series of experiments and found that dogs can be reanimated following clinical death resulting from radial accelerations of...up to 40 G by a method of artificial circulation. The longest periods of clinical death due to radial accelerations following which full restoration

  14. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.

    2013-01-01

    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future. The effort was divided into three areas: Flexible Systems Development (FSD), Mission Advanced Entry Concepts (AEC), and Flight Validation. FSD consists of a Flexible Thermal Protection Systems (FTPS) element, which is investigating high temperature materials, coatings, and additives for use in the bladder, insulator, and heat shield layers; and an Inflatable Structures (IS) element which includes manufacture and testing (laboratory and wind tunnel) of inflatable structures and their associated structural elements. AEC consists of the Mission Applications element developing concepts (including payload interfaces) for missions at multiple destinations for the purpose of demonstrating the benefits and need for the HIAD technology as well as the Next Generation Subsystems element. Ground test development has been pursued in parallel with the Flight Validation IRVE-3 flight test. A larger scale (6m diameter) HIAD inflatable structure was constructed and aerodynamically tested in the National Full-scale Aerodynamics Complex (NFAC) 40ft by 80ft test section along with a duplicate of the IRVE-3 3m article. Both the 6m and 3m articles were tested with instrumented aerodynamic covers which incorporated an array of pressure taps to capture surface pressure distribution to validate Computational Fluid Dynamics (CFD) model predictions of surface pressure distribution. The 3m article also had a duplicate IRVE-3 Thermal Protection System (TPS) to test in addition to testing with the

  15. The Challenges of Integrating Instrumentation with Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory T.; Cassell, Alan M.

    2013-01-01

    To realize the National Aeronautics and Space Administration s (NASA) goal of landing humans on Mars, development of technologies to facilitate the landing of heavy payloads are being explored. Current entry, decent, and landing technologies are not practical when utilizing these heavy payloads due to mass and volume constraints dictated by limitations imposed by current launch vehicle fairings. Therefore, past and present technologies are now being considered to provide a mass and volume efficient solution, including Inflatable Aerodynamic Decelerators (IADs) [1]. IAD ground and flight tests are currently being conducted to develop and characterize their performance under flight-like conditions. The integrated instrumentation systems, which are key to the performance characterization in each of these tests, have proven to be a challenge compared to the instrumentation of traditional rigid aeroshells. To overcome these challenges, flexible and embedded sensing systems have been developed, along with improved instrumenting techniques. This development opportunity faces many difficult aspects specific to inflatable structures in extreme environments. These include but are not limited to: physical flexibility, packaging, temperature, structural integration and data acquisition [2]. To better define the instrumentation challenges posed by IAD technology development, a survey was conducted to identify valuable measurements for ground and flight testing. From this survey many sensing technologies were explored, resulting in a down-selection to the most viable prospects. These systems were then iterated upon in design to determine the best integration techniques specific to a 3m and 6m stacked torus IAD. Each sensing system was then integrated and employed to support the IAD testing in the National Full-Scale Aerodynamics Complex 40 x 80 wind tunnel at NASA Ames Research Center in the summer of 2012. Another challenge that has been explored is the data acquisition of IAD

  16. Do altered energy metabolism or spontaneous locomotion ‘mediate’ decelerated senescence?

    PubMed Central

    Arum, Oge; Dawson, John Alexander; Smith, Daniel Larry; Kopchick, John J; Allison, David B; Bartke, Andrzej

    2015-01-01

    That one or multiple measures of metabolic rate may be robustly associated with, or possibly even causative of, the progression of aging-resultant phenotypes such as lifespan is a long-standing, well-known mechanistic hypothesis. To broach this hypothesis, we assessed metabolic function and spontaneous locomotion in two genetic and one dietary mouse models for retarded aging, and subjected the data to mediation analyses to determine whether any metabolic or locomotor trait could be identified as a mediator of the effect of any of the interventions on senescence. We do not test the hypothesis of causality (which would require some experiments), but instead test whether the correlation structure of certain variables is consistent with one possible pathway model in which a proposed mediating variable has a causal role. Results for metabolic measures, including oxygen consumption and respiratory quotient, failed to support this hypothesis; similar negative results were obtained for three behavioral motion metrics. Therefore, our mediation analyses did not find support that any of these correlates of decelerated senescence was a substantial mediator of the effect of either of these genetic alterations (with or without caloric restriction) on longevity. Further studies are needed to relate the examined phenotypic characteristics to mechanisms of aging and control of longevity. PMID:25720347

  17. Development of a new large balloon launch technique for the low density supersonic decelerator project

    NASA Astrophysics Data System (ADS)

    Ball, Danny

    D. Ball1 and 2 E. Klein 1,2 Columbia Scientific Balloon Facility Danny.Ball@csbf.nasa.gov/Fax 903-723-8068 Erich.Klein@csbf.nasa.gov/Fax 903-723-8068 Scientific balloon flights have served for decades as a unique and cost effective platform for conducting world class space science and for developing and testing new technologies for exploration. These technologies have ranged from detector development to in situ testing of unique cutting edge space systems. The Earth’s stratosphere is an analog to Mars’s atmosphere and provides as close to an in situ environment to test a reentry system. Previous in situ tests for a Mars reentry system were a series of drop tests that were conducted from stratospheric balloon flights in 2004 to test a NASA Mars subsonic parachute entry design. In 2014 and 2015 a series of balloon flights to test a Mars prototype reentry system are planned. The JPL Mars Science Laboratory’s Low Density Supersonic Decelerator (LDSD) effort is intended to test the system by flying different new drag devices on three tests, at full scale and at supersonic speeds, high in Earth’s stratosphere, simulating entry into the atmosphere of Mars. To start the tests, the system must be first lofted to the stratosphere via a large high altitude balloon. NASA has been launching high altitude balloons to support science for many years, but with LDSD there are unique challenges with performing the test and lofting the test system to the stratosphere. The test involves launching a Star 48 Motor on a balloon to a set float altitude, orienting the payload, and then releasing the system from the balloon to start the test where the rocket motor is ignited to accelerate the test system to supersonic speeds. Safety is a significant driver in the development process for all phases of any balloon launch operation. Because a rocket motor is part of the payload to be launched, the balloon launching operations for the LDSD project have required a completely fresh look to

  18. Loss of CAR promotes migration and proliferation of HaCaT cells, and accelerates wound healing in rats via Src-p38 MAPK pathway.

    PubMed

    Su, Linlin; Fu, Lanqing; Li, Xiaodong; Zhang, Yue; Li, Zhenzhen; Wu, Xue; Li, Yan; Bai, Xiaozhi; Hu, Dahai

    2016-01-25

    The coxsackie and adenovirus receptor (CAR) is a cell adhesion molecule mostly localized to cell-cell contacts in epithelial and endothelial cells. CAR is known to regulate tumor progression, however, its physiological role in keratinocyte migration and proliferation, two essential steps in re-epithelialization during wound healing, has less been investigated. Here we showed that CAR was predominantly expressed in the epidermis of human skin, CAR knockdown by RNAi significantly accelerated HaCaT cell migration and proliferation. In addition, knockdown of CAR in vitro increased p-Src, p-p38, and p-JNK protein levels; however, Src inhibitor PP2 prevented the increase of p-Src and p-p38 induced by CAR RNAi, but not p-JNK, and decelerated cell migration and proliferation. More intriguingly, in vivo CAR RNAi on the skin area surrounding the wounds on rat back visually accelerated wound healing and re-epithelialization process, while treatment with PP2 or p38 inhibitor SB203580 obviously inhibited these effects. By contrast, overexpressing CAR in HaCaT cells significantly decelerated cell migration and proliferation. Above results demonstrate that suppression of CAR could accelerate HaCaT cell migration and proliferation, and promote wound healing in rat skin, probably via Src-p38 MAPK pathway. CAR thus might serve as a novel therapeutic target for facilitating wound healing.

  19. Loss of CAR promotes migration and proliferation of HaCaT cells, and accelerates wound healing in rats via Src-p38 MAPK pathway

    PubMed Central

    Su, Linlin; Fu, Lanqing; Li, Xiaodong; Zhang, Yue; Li, Zhenzhen; Wu, Xue; Li, Yan; Bai, Xiaozhi; Hu, Dahai

    2016-01-01

    The coxsackie and adenovirus receptor (CAR) is a cell adhesion molecule mostly localized to cell-cell contacts in epithelial and endothelial cells. CAR is known to regulate tumor progression, however, its physiological role in keratinocyte migration and proliferation, two essential steps in re-epithelialization during wound healing, has less been investigated. Here we showed that CAR was predominantly expressed in the epidermis of human skin, CAR knockdown by RNAi significantly accelerated HaCaT cell migration and proliferation. In addition, knockdown of CAR in vitro increased p-Src, p-p38, and p-JNK protein levels; however, Src inhibitor PP2 prevented the increase of p-Src and p-p38 induced by CAR RNAi, but not p-JNK, and decelerated cell migration and proliferation. More intriguingly, in vivo CAR RNAi on the skin area surrounding the wounds on rat back visually accelerated wound healing and re-epithelialization process, while treatment with PP2 or p38 inhibitor SB203580 obviously inhibited these effects. By contrast, overexpressing CAR in HaCaT cells significantly decelerated cell migration and proliferation. Above results demonstrate that suppression of CAR could accelerate HaCaT cell migration and proliferation, and promote wound healing in rat skin, probably via Src-p38 MAPK pathway. CAR thus might serve as a novel therapeutic target for facilitating wound healing. PMID:26804208

  20. Influence of accelerated crucible rotation on defect distribution and detector characteristics of melt grown CdZnTe (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Swain, Santosh; McCoy, Jedidiah; Lynn, Kelvin

    2016-09-01

    Non-stoichiometry related extended defects in CdTe/CZT, such as tellurium inclusions and precipitates are known to be detrimental bulk defects in detector grade cadmium zinc telluride. In our attempt to minimize the size of tellurium inclusions we have employed accelerated crucible rotation technique in modified vertical Bridgman growth configuration. Acceleration and deceleration rate as high as 900 rpm2 was successfully applied during superheated melt mixing and growth. By comparing growths with and without ACRT under otherwise identical growth conditions, it was observed that the average inclusion size reduced by more than 50 percent due to ACRT. Additionally, we will discuss the effect of forced melt convection on the axial zinc and dopant segregation profile. Electrical characterization, spectrometric performance and purity analysis of the grown crystals will be presented.

  1. Optimal three-dimensional reentry trajectories subject to deceleration and heating constraints

    NASA Astrophysics Data System (ADS)

    Chern, J.-S.; Yang, C.-Y.; Vinh, N. X.; Hwang, G. R.

    1982-09-01

    The lateral maneuver of a lifting reentry vehicle, exemplified by the Shuttle entry, is severely restricted by deceleration and heating constraints. This paper investigates the decrease in the lateral reachable domain when different constraints are imposed on the optimal trajectories. A characteristic of hypersonic reentry trajectories is that the deceleration and heating rate pass through several maxima. The first peak is always higher than the following maxima so that it suffices to control the first maximum to the required level. Thermal constraint is encountered at higher altitude so that, in general, thermal control usually limits the deceleration to acceptable level. Using the equilibrium glide assumption, the optimal lift and bank control to maximize the lateral range is obtained in explicit form. Numerical results have been obtained for a typical value of maximum lift-to-drag ratio, and for several values of deceleration and thermal constraints imposed on the entry trajectories. It is found that the peak deceleration and the peak heating rate can be lowered significantly with only a slight penalty on the reachable domain.

  2. Subclinical decelerations during developing hypotension in preterm fetal sheep after acute on chronic lipopolysaccharide exposure

    PubMed Central

    Lear, Christopher A.; Davidson, Joanne O.; Galinsky, Robert; Yuill, Caroline A.; Wassink, Guido; Booth, Lindsea C.; Drury, Paul P.; Bennet, Laura; Gunn, Alistair J.

    2015-01-01

    Subclinical (shallow) heart rate decelerations occur during neonatal sepsis, but there is limited information on their relationship with hypotension or whether they occur before birth. We examined whether subclinical decelerations, a fall in fetal heart rate (FHR) that remained above 100 bpm, were associated with hypotension in preterm fetal sheep exposed to lipopolysaccharide (LPS). Chronically-instrumented fetal sheep at 0.7 gestation received continuous low-dose LPS infusions (n = 15, 100 ng/kg over 24 h, followed by 250 ng/kg/24 h for 96 h) or saline (n = 8). Boluses of 1 μg LPS or saline were given at 48 and 72 h. FHR variability (FHRV) was calculated, and sample asymmetry was used to assess the severity and frequency of decelerations. Low-dose LPS infusion did not affect FHR. After the first LPS bolus, 7 fetuses remained normotensive, while 8 developed hypotension (a fall in mean arterial blood pressure of ≥5 mmHg). Developing hypotension was associated with subclinical decelerations, with a corresponding increase in sample asymmetry and FHRV (p < 0.05). The second LPS bolus was associated with similar but attenuated changes in FHR and blood pressure (p < 0.05). In conclusion, subclinical decelerations are not consistently seen during prenatal exposure to LPS, but may be a useful marker of developing inflammation-related hypotension before birth. PMID:26537688

  3. Getting a grip on the transverse motion in a Zeeman decelerator

    SciTech Connect

    Dulitz, Katrin; Softley, Timothy P.; Motsch, Michael; Vanhaecke, Nicolas

    2014-03-14

    Zeeman deceleration is an experimental technique in which inhomogeneous, time-dependent magnetic fields generated inside an array of solenoid coils are used to manipulate the velocity of a supersonic beam. A 12-stage Zeeman decelerator has been built and characterized using hydrogen atoms as a test system. The instrument has several original features including the possibility to replace each deceleration coil individually. In this article, we give a detailed description of the experimental setup, and illustrate its performance. We demonstrate that the overall acceptance in a Zeeman decelerator can be significantly increased with only minor changes to the setup itself. This is achieved by applying a rather low, anti-parallel magnetic field in one of the solenoid coils that forms a temporally varying quadrupole field, and improves particle confinement in the transverse direction. The results are reproduced by three-dimensional numerical particle trajectory simulations thus allowing for a rigorous analysis of the experimental data. The findings suggest the use of a modified coil configuration to improve transverse focusing during the deceleration process.

  4. Effects of dispersion on electromagnetic parameters of tape-helix Blumlein pulse forming line of accelerator

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Liu, J. L.; Feng, J. H.

    2012-02-01

    In this paper, the tape-helix model is firstly introduced in the field of intense electron beam accelerator to analyze the dispersion effects on the electromagnetic parameters of helical Blumlein pulse forming line (PFL). Work band and dispersion relation of the PFL are analyzed, and the normalized coefficients of spatial harmonics are calculated. Dispersion effects on the important electromagnetic parameters of PFL, such as phase velocity, slow-wave coefficient, electric length and pulse duration, are analyzed as the central topic. In the PFL, electromagnetic waves with different frequencies in the work band of PFL have almost the same phase velocity. When de-ionized water, transformer oil and air are used as the PFL filling dielectric, respectively, the pulse duration of the helical Blumlein PFL is calculated as 479.6 ns, 81.1 ns and 53.1 ns in order. Electromagnetic wave simulation and experiments are carried out to demonstrate the theoretical calculations of the electric length and pulse duration which directly describe the phase velocity and dispersion of the PFL. Simulation results prove the theoretical analysis and calculation on pulse duration. Experiment is carried out based on the tape-helix Blumlein PFL and magnetic switch system. Experimental results show that the pulse durations are tested as 460 ns, 79 ns and 49 ns in order when de-ionized water, transformer oil and air are used respectively. Experimental results basically demonstrate the theoretical calculations and the analyses of dispersion.

  5. The effect of accelerated ageing on performance properties of addition type silicone biomaterials.

    PubMed

    Stathi, K; Tarantili, P A; Polyzois, G

    2010-05-01

    The UV-protection provided to addition type silicone elastomers by various colorants, such as conventional dry earth pigments, as well as the so called "functional or reactive" pigments, was investigated. Moreover, the effect of a UV light absorber and a silica filler was also explored. Under the experimental parameters of this work, the exposure of silicone to UV radiation resulted in some changes of the IR absorbance, thermal decomposition after 400 degrees C, T(g) and tensile properties, whereas the storage modulus of samples was not affected. The obtained spectroscopic data, as well as the results of TGA and storage modulus, were interpreted by assuming that chain scission takes place during aging, whereas the improvement of tensile strength allows the hypothesis of a post-curing process, initiated by UV radiation. Therefore, the increase of T(g) could partly be due to the above reason and, furthermore, to the contribution of a rearrangement of chain fragments within the free volume of the elastomeric material. Regarding the evaluation of various coloring agents used in this work, the obtained results show that dry pigments are more sensitive to accelerated ageing conditions in comparison with functional liquid pigments. Moreover, the hydrophobic character of silicone matrix is enhanced, with the addition of this type pigments because of the vinyl functional silanes groups present in their chemical structure. Finally, it should be noted that the incorporation of silica nanofiller did not seem to prevent the silicone elastomer from degradation upon UV irradiation, but showed a significant reinforcing effect.

  6. Effects of thin-film accelerated carbonation on steel slag leaching.

    PubMed

    Baciocchi, R; Costa, G; Polettini, A; Pomi, R

    2015-04-09

    This paper discusses the effects of accelerated carbonation on the leaching behaviour of two types of stainless steel slags (electric arc furnace and argon oxygen decarburisation slag). The release of major elements and toxic metals both at the natural pH and at varying pH conditions was addressed. Geochemical modelling of the eluates was used to theoretically describe leaching and derive information about mineralogical changes induced by carbonation. Among the investigated elements, Ca and Si were most appreciably affected by carbonation. A very clear effect of carbonation on leaching was observed for silicate phases; geochemical modelling indicated that the Ca/Si ratio of Ca-controlling minerals shifted from ∼ 1 for the untreated slag to 0.5-0.67 for the carbonated samples, thus showing that the carbonation process left some residual Ca-depleted silicate phases while the extracted Ca precipitated in the form of carbonate minerals. For toxic metals the changes in leaching induced by carbonation appeared to be mainly related to the resulting pH changes, which were as high as ∼ 2 orders of magnitude upon carbonation. Depending on the specific shape of the respective solubility curves, the extent of leaching of toxic metals from the slag was differently affected by carbonation.

  7. Effect of an Additional, Parallel Capacitor on Pulsed Inductive Plasma Accelerator Performance

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Sivak, Amy D.; Balla, Joseph V.

    2011-01-01

    A model of pulsed inductive plasma thrusters consisting of a set of coupled circuit equations and a one-dimensional momentum equation has been used to study the effects of adding a second, parallel capacitor into the system. The equations were nondimensionalized, permitting the recovery of several already-known scaling parameters and leading to the identification of a parameter that is unique to the particular topology studied. The current rise rate through the inductive acceleration coil was used as a proxy measurement of the effectiveness of inductive propellant ionization since higher rise rates produce stronger, potentially better ionizing electric fields at the coil face. Contour plots representing thruster performance (exhaust velocity and efficiency) and current rise rate in the coil were generated numerically as a function of the scaling parameters. The analysis reveals that when the value of the second capacitor is much less than the first capacitor, the performance of the two-capacitor system approaches that of the single-capacitor system. In addition, as the second capacitor is decreased in value the current rise rate can grow to be twice as great as the rise rate attained in the single capacitor case.

  8. Study of aerosol effect on accelerated snow melting over the Tibetan Plateau during boreal spring

    NASA Astrophysics Data System (ADS)

    Lee, Woo-Seop; Bhawar, Rohini L.; Kim, Maeng-Ki; Sang, Jeong

    2013-08-01

    In the present study, a coupled atmosphere-ocean global climate model (CSIRO-Mk3.6) is used to investigate the role of aerosol forcing agents as drivers of snow melting trends in the Tibetan Plateau (TP) region. Anthropogenic aerosol-induced snow cover changes in a warming climate are calculated from the difference between historical run (HIST) and all forcing except anthropogenic aerosol (NoAA). Absorbing aerosols can influence snow cover by warming the atmosphere, reducing snow reflectance after deposition. The warming the rate of snow melt, exposing darker surfaces below to short-wave radiation sooner, and allowing them to heat up even faster in the Himalayas and TP. The results show a strong spring snow cover decrease over TP when absorbing anthropogenic aerosol forcing is considered, whereas snow cover fraction (SCF) trends in NoAA are weakly negative (but insignificant) during 1951-2005. The enhanced spring snow cover trends in HIST are due to overall effects of different forcing agents: When aerosol forcing (AERO) is considered, a significant reduction of SCF than average can be found over the western TP and Himalayas. The large decreasing trends in SCF over the TP, with the maximum reduction of SCF around 12-15% over the western TP and Himalayas slope. Also accelerated snow melting during spring is due to effects of aerosol on snow albedo, where aerosol deposition cause decreases snow albedo. However, the SCF change in the “NoAA” simulations was observed to be less.

  9. Electron Acceleration by Cascading Reconnection in the Solar Corona. II. Resistive Electric Field Effects

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Büchner, J.; Bárta, M.; Gan, W.; Liu, S.

    2016-08-01

    We investigate electron acceleration by electric fields induced by cascading reconnections in current sheets trailing coronal mass ejections via a test particle approach in the framework of the guiding-center approximation. Although the resistive electric field is much weaker than the inductive electric field, the electron acceleration is still dominated by the former. Anomalous resistivity η is switched on only in regions where the current carrier’s drift velocity is large enough. As a consequence, electron acceleration is very sensitive to the spatial distribution of the resistive electric fields, and electrons accelerated in different segments of the current sheet have different characteristics. Due to the geometry of the 2.5-dimensional electromagnetic fields and strong resistive electric field accelerations, accelerated high-energy electrons can be trapped in the corona, precipitating into the chromosphere or escaping into interplanetary space. The trapped and precipitating electrons can reach a few MeV within 1 s and have a very hard energy distribution. Spatial structure of the acceleration sites may also introduce breaks in the electron energy distribution. Most of the interplanetary electrons reach hundreds of keV with a softer distribution. To compare with observations of solar flares and electrons in solar energetic particle events, we derive hard X-ray spectra produced by the trapped and precipitating electrons, fluxes of the precipitating and interplanetary electrons, and electron spatial distributions.

  10. Effect of low temperature baking on the RF properties of niobium superconducting cavities for particle accelerators

    SciTech Connect

    Gianluigi Ciovati

    2004-03-01

    Radio-frequency superconducting (SRF) cavities are widely used to accelerate a charged particle beam in particle accelerators. The performance of SRF cavities made of bulk niobium has significantly improved over the last ten years and is approaching the theoretical limit for niobium. Nevertheless, RF tests of niobium cavities are still showing some ''anomalous'' losses that require a better understanding in order to reliably obtain better performance. These losses are characterized by a marked dependence of the surface resistance on the surface electromagnetic field and can be detected by measuring the quality factor of the resonator as a function of the peak surface field. A low temperature (100 C-150 C) ''in situ'' bake under ultra-high vacuum has been successfully applied as final preparation of niobium RF cavities by several laboratories over the last few years. The benefits reported consist mainly of an improvement of the cavity quality factor at low field and a recovery from ''anomalous'' losses (so-called ''Q-drop'') without field emission at higher field. A series of experiments with a CEBAF single-cell cavity have been carried out at Jefferson Lab to carefully investigate the effect of baking at progressively higher temperatures for a fixed time on all the relevant material parameters. Measurements of the cavity quality factor in the temperature range 1.37 K-280 K and resonant frequency shift between 6 K-9.3 K provide information about the surface resistance, energy gap, penetration depth and mean free path. The experimental data have been analyzed with the complete BCS theory of superconductivity. The hydrogen content of small niobium samples inserted in the cavity during its surface preparation was analyzed with Nuclear Reaction Analysis (NRA). The single-cell cavity has been tested at three different temperatures before and after baking to gain some insight on thermal conductivity and Kapitza resistance and the data are compared with different models

  11. Improving rate capability and decelerating voltage decay of Li-rich layered oxide cathodes via selenium doping to stabilize oxygen

    NASA Astrophysics Data System (ADS)

    Ma, Quanxin; Li, Ruhong; Zheng, Rujuan; Liu, Yuanlong; Huo, Hua; Dai, Changsong

    2016-11-01

    To improve the rate performance and decelerate the voltage decay of Li-rich layered oxide cathode materials, a series of cathode materials Li1.2[Mn0.7Ni0.2Co0.1]0.8-xSexO2 (x = 0, 0.07, 0.14 and 0.21) was synthesized via co-precipitation. Based on the characterization results, it can be concluded that uniform Se6+ doping can improve the degree of crystallinity of Li2MnO3, resulting in a better ordering of atoms in the transition metal layer of this type of cathode materials. In the electrochemical experiments, compared to un-doped samples, one of the Se doped samples (LLMO-Se0.14) exhibited a longer sloping region and shorter potential plateau in the initial charge curves, a larger first coulombic efficiency (ca. 77%), better rate capability (178 mAhm g-1 at 10 C) and higher mid-point voltage (MPV) retention (ca. 95%) after 100 cycles. These results prove that Se doping can effectively improve the rate capability and decelerate the voltage decay process of these cathode materials during cycling via suppressing the oxidation process of O2- to O2 and curbing a layered-to-spinel phase transformation. The above-mentioned functions of Se doping are probably due to the higher bonding energy of Sesbnd O than that of Mnsbnd O.

  12. Flight Dynamics of an Aeroshell Using an Attached Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Schoenenberger, Mark; Axdahl, Erik; Wilhite, Alan

    2009-01-01

    An aeroelastic analysis of the behavior of an entry vehicle utilizing an attached inflatable aerodynamic decelerator during supersonic flight is presented. The analysis consists of a planar, four degree of freedom simulation. The aeroshell and the IAD are assumed to be separate, rigid bodies connected with a spring-damper at an interface point constraining the relative motion of the two bodies. Aerodynamic forces and moments are modeled using modified Newtonian aerodynamics. The analysis includes the contribution of static aerodynamic forces and moments as well as pitch damping. Two cases are considered in the analysis: constant velocity flight and planar free flight. For the constant velocity and free flight cases with neutral pitch damping, configurations with highly-stiff interfaces exhibit statically stable but dynamically unstable aeroshell angle of attack. Moderately stiff interfaces exhibit static and dynamic stability of aeroshell angle of attack due to damping induced by the pitch angle rate lag between the aeroshell and IAD. For the free-flight case, low values of both the interface stiffness and damping cause divergence of the aeroshell angle of attack due to the offset of the IAD drag force with respect to the aeroshell center of mass. The presence of dynamic aerodynamic moments was found to influence the stability characteristics of the vehicle. The effect of gravity on the aeroshell angle of attack stability characteristics was determined to be negligible for the cases investigated.

  13. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  14. Scaling of induction-cell transverse impedance: effect on accelerator design

    SciTech Connect

    Ekdahl, Carl August

    2016-08-09

    The strength of the dangerous beam breakup (BBU) instability in linear induction accelerators (LIAs) is characterized by the transverse coupling impedance Z. This note addresses the dimensional scaling of Z, which is important when comparing new LIA designs to existing accelerators with known i BBU growth. Moreover, it is shown that the scaling of Z with the accelerating gap size relates BBU growth directly to high-voltage engineering considerations. It is proposed to firmly establish this scaling though a series of AMOS calculations.

  15. Survey and examination of an electromagnetic vacuum accelerating effect and its astrophysical consequences

    NASA Astrophysics Data System (ADS)

    Rueda, A.

    1990-08-01

    A rigorous detailed review of the concepts and calculations behind the acceleration of particles by the electromagnetic zero-point field is presented. The acceleration is enhanced in regions of great size and low particle density. Astrophysical scenarios are suggested and discussed and cosmological possibilities are briefly outlined. It is shown that the acceleration follows both from a semiclassical approach in the manner of Stochastic Electrodynamics and from quantum theory with a zero-point field that most naturally (but not necessarily) may be interpreted as time-symmetric in the manner of the Wheeler-Feynman form of Quantum Electrodynamics. It is shown that both approaches yield essentially identical results.

  16. Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure

    SciTech Connect

    Antipov, S.; Jing, C.; Kanareykin, A.; Butler, J. E.; Yakimenko, V.; Fedurin, M.; Kusche, K.; Gai, W.

    2012-03-26

    We have directly measured THz wakefields induced by a subpicosecond, intense relativistic electron bunch in a diamond loaded accelerating structure via the wakefield acceleration method. We present here the beam test results from the diamond based structure. Diamond has been chosen for its high breakdown threshold and unique thermoconductive properties. Fields produced by a leading (drive) beam were used to accelerate a trailing (witness) electron bunch, which followed the drive bunch at a variable distance. The energy gain of a witness bunch as a function of its separation from the drive bunch describes the time structure of the generated wakefield.

  17. Effectiveness of adjunctive interventions for accelerating orthodontic tooth movement: a systematic review of systematic reviews.

    PubMed

    Yi, Jianru; Xiao, Jiani; Li, Hanshi; Li, Yu; Li, Xiaobing; Zhao, Zhihe

    2017-03-16

    This study was aimed to summarize published systematic reviews that assess the effects of adjunctive interventions on the acceleration of orthodontic tooth movement (OTM). Electronic and manual searches were performed up to Aug 2016. Systematic reviews investigating the impact of adjunctive techniques on the promotion of OTM were included. The methodological quality of the included reviews was evaluated using the AMSTAR scale. The quality of evidence for each intervention was assessed using GRADE. The Jadad decision algorithm was used to select a study to provide body evidence from discordant reviews on the same intervention. A total of 11 systematic reviews were included in this study. AMSTAR scores ranged from 4 to 10 out of 11. The quality of evidence ranged from very low to low. The short-term (1-3 months) effects of low-level laser therapy (LLLT, 5 and 8 J/cm(2) ) and corticotomy were supported by low-quality evidence. The evidence regarding the efficacy of photobiomodulation, pulsed electromagnetic field, interseptal bone reduction, 2 vibrational devices (Tooth Masseuse and Orthoaccel) and electrical current was of very low quality. Relaxin injections and extracorporeal shock waves were reported to have no impact on OTM according to low- and very low-quality evidence, respectively. Based on currently available information, we conclude that low-quality evidence indicates that LLLT (5 and 8 J/cm(2) ) and corticotomy are effective to promote OTM in the short term. Future high-quality trials are required to determine the optimal protocols, as well as the long-term effects of LLLT and corticotomy, before warranting recommendations for orthodontics clinics. This article is protected by copyright. All rights reserved.

  18. Effects of Hyperbolic Rotation in Minkowski Space on the Modeling of Plasma Accelerators in a Lorentz Boosted Frame

    SciTech Connect

    Vay, J.-L.; Geddes, C. G. R.; Cormier-Michel, E.; Grote, D. P.

    2010-09-21

    Laser driven plasma accelerators promise much shorter particle accelerators but their development requires detailed simulations that challenge or exceed current capabilities. We report the first direct simulations of stages up to 1 TeV from simulations using a Lorentz boosted calculation frame resulting in a million times speedup, thanks to a frame boost as high as gamma = 1300. Effects of the hyperbolic rotation in Minkowski space resulting from the frame boost on the laser propagation in the plasma is shown to be key in the mitigation of a numerical instability that was limiting previous attempts.

  19. A Mixed Method Study of the Effectiveness of the Accelerated Reader Program on Middle School Students' Reading Achievement and Motivation

    ERIC Educational Resources Information Center

    Huang, SuHua

    2012-01-01

    The mixed-method explanatory research design was employed to investigate the effectiveness of the Accelerated Reader (AR) program on middle school students' reading achievement and motivation. A total of 211 sixth to eighth-grade students provided quantitative data by completing an AR Survey. Thirty of the 211 students were randomly selected to…

  20. Effects of dimensionality on computer simulations of laser-ion acceleration: When are three-dimensional simulations needed?

    NASA Astrophysics Data System (ADS)

    Yin, L.; Stark, D. J.; Albright, B. J.

    2016-10-01

    Laser-ion acceleration via relativistic induced transparency provides an effective means to accelerate ions to tens of MeV/nucleon over distances of 10s of μm. These ion sources may enable a host of applications, from fast ignition and x-rays sources to medical treatments. Understanding whether two-dimensional (2D) PIC simulations can capture the relevant 3D physics is important to the development of a predictive capability for short-pulse laser-ion acceleration and for economical design studies for applications of these accelerators. In this work, PIC simulations are performed in 3D and in 2D where the direction of the laser polarization is in the simulation plane (2D-P) and out-of-plane (2D-S). Our studies indicate modeling sensitivity to dimensionality and laser polarization. Differences arise in energy partition, electron heating, ion peak energy, and ion spectral shape. 2D-P simulations are found to over-predict electron heating and ion peak energy. The origin of these differences and the extent to which 2D simulations may capture the key acceleration dynamics will be discussed. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Los Alamos National Laboratory Directed Research and Development Program.

  1. Effect of disinfection and accelerated ageing on dimensional stability and detail reproduction of a facial silicone with nanoparticles.

    PubMed

    Pesqueira, A A; Goiato, M C; Dos Santos, D M; Haddad, M F; Moreno, A

    2012-05-01

    The aim of the present study was to evaluate the effect of disinfection and accelerated ageing on the dimensional stability and detail reproduction of a facial silicone with different types of nanoparticle. A total of 60 specimens were fabricated with Silastic MDX 4-4210 silicone and they were divided into three groups: colourless and pigmented with nanoparticles (make-up powder and ceramic powder). Half of the specimens of each group were disinfected with Efferdent tablets and half with neutral soap for 60 days. Afterwards, all specimens were subjected to accelerated ageing. Both dimensional stability and detail reproduction tests were performed after specimen fabrication (initial period), after chemical disinfection, and after accelerated ageing periods (252, 504 and 1008 hours). The dimensional stability test was conducted using AutoCAD software, while detail reproduction was analysed using a stereoscope magnifying glass. Dimensional stability values were statistically evaluated by analysis of variance (ANOVA) followed by Tukey's test (p < 0.01). Detail reproduction results were compared using a score. Chemical disinfection and also accelerated ageing affected the dimensional stability of the facial silicone with statistically significant results. The silicone's detail reproduction was not affected by these two factors regardless of nanoparticle type, disinfection and accelerated ageing.

  2. Future-singularity-free accelerating expansion with modified Poisson brackets

    SciTech Connect

    Kim, Wontae; Son, Edwin J.

    2007-01-15

    We show that the second accelerating expansion of the universe appears smoothly from the decelerating phase, which follows the initial inflation, in the two-dimensional soluble semiclassical dilaton gravity along with the modified Poisson brackets with noncommutativity between the relevant fields. This is in contrast to the fact that the ordinary solution of the equations of motion following from the conventional Poisson algebra describes a permanent accelerating universe without any phase change. In this modified model, it turns out that the noncommutative Poisson algebra is responsible for the remarkable phase transition to the second accelerating expansion.

  3. Effect of Residual Accelerations on the Crystal Growth of II-VI Semiconductors in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Gillies, D. C.; Su, C.-H.; Szofran, F. R.; Scripa, R. N.; Cobb, S. D.; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The paper compares and summarizes the effects of residual acceleration during crystal growth on the compositional variation of two II-VI solid solution binary alloys (Hg(0.8)Cd(0.2)Te and Hg(0.84)Zn(0.16)Te). The crystals were grown by directional solidification on the second United States Microgravity Payload (USMP-2) and the first United States Microgravity Laboratory (USML-1) missions, respectively. For both alloys, changes in the direction and magnitude of the quasisteady acceleration vector (approximately 0.4- 1 mu g) caused large changes in the radial compositional distribution that demonstrates the importance of residual accelerations, even in the submicrogravity range, for large density gradients in the melt and slow solidification rates. The observed compositional variations will be correlated to changes in the radial flow velocities ahead of the solidification interface.

  4. Comparison of Analysis with Test for Static Loading of Two Hypersonic Inflatable Aerodynamic Decelerator Concepts

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.

    2015-01-01

    Acceptance of new spacecraft structural architectures and concepts requires validated design methods to minimize the expense involved with technology demonstration via flight-testing. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) architectures are attractive for spacecraft deceleration because they are lightweight, store compactly, and utilize the atmosphere to decelerate a spacecraft during entry. However, designers are hesitant to include these inflatable approaches for large payloads or spacecraft because of the lack of flight validation. This publication summarizes results comparing analytical results with test data for two concepts subjected to representative entry, static loading. The level of agreement and ability to predict the load distribution is considered sufficient to enable analytical predictions to be used in the design process.

  5. Simultaneous, Unsteady PIV and Photogrammetry Measurements of a Tension-Cone Decelerator in Subsonic Flow

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Heineck, James T.; Walker, Louise Ann; Kushner, Laura Kathryn; Zilliac, Gregory

    2010-01-01

    This paper describes simultaneous, synchronized, high-frequency measurements of both unsteady flow in the wake of a tension-cone decelerator in subsonic flow (by PIV) and the unsteady shape of the decelerator (by photogrammetry). The purpose of these measurements was to develop the test techniques necessary to validate numerical methods for computing fluid-structure interactions of flexible decelerators. A critical need for this effort is to map fabric surfaces that have buckled or wrinkled so that code developers can accurately represent them. This paper describes a new photogrammetric technique that performs this measurement. The work was done in support of the Entry, Descent, and Landing discipline within the Supersonics Project of NASA s Fundamental Aeronautics Program.

  6. Post-Flight Aerodynamic and Aerothermal Model Validation of a Supersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Tang, Chun; Muppidi, Suman; Bose, Deepak; Van Norman, John W.; Tanimoto, Rebekah; Clark, Ian

    2015-01-01

    NASA's Low Density Supersonic Decelerator Program is developing new technologies that will enable the landing of heavier payloads in low density environments, such as Mars. A recent flight experiment conducted high above the Hawaiian Islands has demonstrated the performance of several decelerator technologies. In particular, the deployment of the Robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R) was highly successful, and valuable data were collected during the test flight. This paper outlines the Computational Fluid Dynamics (CFD) analysis used to estimate the aerodynamic and aerothermal characteristics of the SIAD-R. Pre-flight and post-flight predictions are compared with the flight data, and a very good agreement in aerodynamic force and moment coefficients is observed between the CFD solutions and the reconstructed flight data.

  7. Deceleration of the solar wind in the Earth foreshock region: ISEE 2 and IMP 8 observations

    NASA Technical Reports Server (NTRS)

    Bonifazi, C.; Moreno, G.; Lazarus, A. J.; Sullivan, J. D.

    1980-01-01

    The deceleration of the solar wind in the region of the interplanetary space filled by ions backstreaming from the Earth bow shock was studied using a two spacecraft technique. This deceleration, which is correlated with the "diffuse" but not with the "reflected" ion population, depends on the solar wind bulk velocity: at low velocities (below 300 km/sec) the velocity decrease is about 5 km/sec, while at higher velocities (above 400 km/sec) the decrease may be as large as 30 km/sec. Along with this deceleration, the solar wind undergoes a deflection of about 1 deg away from the direction of the Earth bow shock. The energy balance shows that the kinetic energy loss far exceeds the thermal energy which is possibly gained by the solar wind, therefore, at least part of this energy must go into waves and/or into the backstreaming ions.

  8. Preliminary Structural Sensitivity Study of Hypersonic Inflatable Aerodynamic Decelerator Using Probabilistic Methods

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.

    2014-01-01

    Acceptance of new spacecraft structural architectures and concepts requires validated design methods to minimize the expense involved with technology validation via flighttesting. This paper explores the implementation of probabilistic methods in the sensitivity analysis of the structural response of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD). HIAD architectures are attractive for spacecraft deceleration because they are lightweight, store compactly, and utilize the atmosphere to decelerate a spacecraft during re-entry. However, designers are hesitant to include these inflatable approaches for large payloads or spacecraft because of the lack of flight validation. In the example presented here, the structural parameters of an existing HIAD model have been varied to illustrate the design approach utilizing uncertainty-based methods. Surrogate models have been used to reduce computational expense several orders of magnitude. The suitability of the design is based on assessing variation in the resulting cone angle. The acceptable cone angle variation would rely on the aerodynamic requirements.

  9. An assessment of the contamination acquired by IDPs during atmospheric deceleration

    NASA Technical Reports Server (NTRS)

    Flynn, George J.

    1994-01-01

    The E-layer of the terrestrial mesosphere, between 80 and 110 km altitude, is derived from meteoric ablation. Concentrations of Na and Fe, contributed by meteoric vapor, have been monitored in the mesosphere, and both individual meteors and average concentration profiles have been measured. Individual interplanetary dust particles (IDP's) entering the earth's atmosphere must pass through the mesospheric layers rich in meteoric volatile elements. Limits on the extent to which individual IDP's can be contaminated by meteoric volatile elements during deceleration in the upper atmosphere can be established by considering the extreme cases: the direct passage of an IDP through a meteoric vapor trail or the passage of an IDP through the mesospheric layer rich in meteoric volatiles. It appears the interaction of IDP's with meteoric vapor during deceleration in the upper atmosphere does not produce significant contamination of IDP's as they decelerate in the upper atmosphere.

  10. Accelerated Threshold Fatigue Crack Growth Effect-Powder Metallurgy Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Piascik, R. S.; Newman, J. A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low (Delta) K, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = K(sub min)/K(sub max)). The near threshold accelerated FCG rates are exacerbated by increased levels of K(sub max) (K(sub max) = 0.4 K(sub IC)). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and K(sub max) influenced accelerated crack growth is time and temperature dependent.

  11. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    SciTech Connect

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  12. Effective post-acceleration of ion bunches in foils irradiated by ultra-intense laser pulses

    SciTech Connect

    Andreev, A. A.; Nickles, P. V.; Platonov, K. Yu

    2014-08-15

    Two-step laser acceleration of protons with two foils and two laser pulses is modelled and optimized. It is shown that a nearly mono-energetic distribution of proton bunches can be realized by a suitable parameter choice. Two-step acceleration schemes make it possible to obtain both higher efficiency and energy as compared to the acceleration with only one laser pulse of an energy equal to the sum of the energy of the two pulses. With the aid of our analytical model, the optimal distance between the two targets, the delay between the two laser pulses, and the parameters of the laser pulses are determined. Estimates and results of the modelling are proven with 2D PIC simulations of the acceleration of proton bunches moving through the second target.

  13. Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects.

    PubMed

    Usui, Yuki; Aoki, Kaoru; Narita, Nobuyo; Murakami, Narumichi; Nakamura, Isao; Nakamura, Koichi; Ishigaki, Norio; Yamazaki, Hiroshi; Horiuchi, Hiroshi; Kato, Hiroyuki; Taruta, Seiichi; Kim, Yoong Ahm; Endo, Morinobu; Saito, Naoto

    2008-02-01

    Carbon nanotubes (CNTs) have been used in various fields as composites with other substances or alone to develop highly functional materials. CNTs hold great interest with respect to biomaterials, particularly those to be positioned in contact with bone such as prostheses for arthroplasty, plates or screws for fracture fixation, drug delivery systems, and scaffolding for bone regeneration. Accordingly, bone-tissue compatibility of CNTs and CNT influence on bone formation are important issues, but the effects of CNTs on bone have not been delineated. Here, it is found that multi-walled CNTs adjoining bone induce little local inflammatory reaction, show high bone-tissue compatibility, permit bone repair, become integrated into new bone, and accelerate bone formation stimulated by recombinant human bone morphogenetic protein-2 (rhBMP-2). This study provides an initial investigational basis for CNTs in biomaterials that are used adjacent to bone, including uses to promote bone regeneration. These findings should encourage development of clinical treatment modalities involving CNTs.

  14. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice

    PubMed Central

    Reis, Felipe C. G.; Branquinho, Jéssica L. O.; Brandão, Bruna B.; Guerra, Beatriz A.; Silva, Ismael D.; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C. Ronald; Festuccia, William T.; Kowaltowski, Alicia J.; Mori, Marcelo A.

    2016-01-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  15. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change

    PubMed Central

    Silva, Lucas C. R.; Sun, Geng; Zhu-Barker, Xia; Liang, Qianlong; Wu, Ning; Horwath, William R.

    2016-01-01

    Many forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution. Measurements of stable isotopes (carbon, oxygen, and nitrogen) in tree rings indicate that tree growth has been stimulated by the synergistic effect of rising atmospheric CO2 and a warming-induced increase in water and nutrient availability from thawing permafrost. These findings illustrate the importance of considering soil-plant-atmosphere interactions to understand current and anticipate future changes in productivity and distribution of forest ecosystems. PMID:27652334

  16. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change.

    PubMed

    Silva, Lucas C R; Sun, Geng; Zhu-Barker, Xia; Liang, Qianlong; Wu, Ning; Horwath, William R

    2016-08-01

    Many forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution. Measurements of stable isotopes (carbon, oxygen, and nitrogen) in tree rings indicate that tree growth has been stimulated by the synergistic effect of rising atmospheric CO2 and a warming-induced increase in water and nutrient availability from thawing permafrost. These findings illustrate the importance of considering soil-plant-atmosphere interactions to understand current and anticipate future changes in productivity and distribution of forest ecosystems.

  17. Effects of Absorbing Aerosols on Accelerated Melting of Snowpack in the Tibetan-Himalayas Region

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2011-01-01

    The impacts of absorbing aerosol on melting of snowpack in the Hindu-Kush-Tibetan-Himalayas (HKTH) region are studied using NASA satellite and GEOS-5 GCM. Results from GCM experiments shows that a 8-10% in the rate of melting of snowpack over the western Himalayas and Tibetan Plateau can be attributed to the aerosol elevated-heat-pump (EHP) feedback effect (Lau et al. 2008), initiated by the absorption of solar radiation by absorbing aerosols accumulated over the Indo-Gangetic Plain and Himalayas foothills. On the other hand, deposition of black carbon on snow surface was estimated to give rise to a reduction in snow surface albedo of 2 - 5%, and an increased annual runoff of 9-24%. From case studies using satellite observations and re-analysis data, we find consistent signals of possible impacts of dust and black carbon aerosol in blackening snow surface, in accelerating spring melting of snowpack in the HKHT, and consequentially in influencing shifts in long-term Asian summer monsoon rainfall pattern.

  18. Effect of Accelerated Aging on Color Change of Direct and Indirect Fiber-Reinforced Composite Restorations

    PubMed Central

    Tabatabaei, Masoumeh Hasani; Farahat, Farnaz; Ahmadi, Elham; Hassani, Zahra

    2016-01-01

    Objectives: The aim of this study was to assess the effect of artificial accelerated aging (AAA) on color change of direct and indirect fiber-reinforced composite (FRC) restorations. Materials and Methods: Direct (Z250) and indirect (Gradia) composite resins were reinforced with glass (GF) and polyethylene fibers (PF) based on the manufacturers’ instructions. Forty samples were fabricated and divided into eight groups (n=5). Four groups served as experimental groups and the remaining four served as controls. Color change (ΔE) and color parameters (ΔL*, Δa*, Δb*) were read at baseline and after AAA based on the CIELAB system. Three-way ANOVA and Tukey’s test were used for statistical analysis. Results: Significant differences were found in ΔE, ΔL*, Δa* and Δb* among the groups after AAA (P<0.05). Most of the studied samples demonstrated an increase in lightness and a red-yellow shift after AAA. Conclusions: The obtained ΔE values were unacceptable after AAA (ΔE≥ 3.3). All indirect samples showed a green-blue shift with a reduction in lightness except for Gradia/PF+ NuliteF. PMID:28392813

  19. Macroeconomic effects of accelerated implementation of renewable energy technologies in the US

    SciTech Connect

    Marcuse, W; Groncki, P J

    1980-02-01

    The original formulation of the Brookhaven energy system models was directed toward technology assessment for new and competing energy technologies. The Hudson-Jorgenson econometric model was originally formulated to identify the economic impacts of energy futures where energy-use projections departed markedly from historical trends. The two models were married so that the feedback effects of energy and nonenergy demand levels and nonenergy prices generated by the economic model could be reflected in the technology and fuel-mix-selection solutions of the energy model. In turn, the engineering-based energy costs, energy prices, and capital requirements for energy systems characterized in the energy model are used to override the econometric estimates based on historical data in the economic model. Recently, the coupled models have been used to address questions concerning the macroeconomic impacts of accelerating the implementation of renewable energy technologies in the United States. Of particular interest were the scenarios where (1) renewables were included which cost more than conventional alternatives now and in the future, and (2) some renewables that are initially more costly are characterized by a learning curve so that in time their costs come to equal conventional alternatives. A further analysis was done for the first case (renewables always more expensive) under conditions where (1) the incremental costs were paid by the government through deficit financing, and (2) the incremental costs were paid by consumers. This paper presents the formulation of the analysis using the combined energy system - economic model and the results of the study.

  20. Small field detector correction factors: effects of the flattening filter for Elekta and Varian linear accelerators.

    PubMed

    Tyler, Madelaine K; Liu, Paul Z Y; Lee, Christopher; McKenzie, David R; Suchowerska, Natalka

    2016-05-08

    Flattening filter-free (FFF) beams are becoming the preferred beam type for stereotactic radiosurgery (SRS) and stereotactic ablative radiation therapy (SABR), as they enable an increase in dose rate and a decrease in treatment time. This work assesses the effects of the flattening filter on small field output factors for 6 MV beams generated by both Elekta and Varian linear accelerators, and determines differences between detector response in flattened (FF) and FFF beams. Relative output factors were measured with a range of detectors (diodes, ionization cham-bers, radiochromic film, and microDiamond) and referenced to the relative output factors measured with an air core fiber optic dosimeter (FOD), a scintillation dosimeter developed at Chris O'Brien Lifehouse, Sydney. Small field correction factors were generated for both FF and FFF beams. Diode measured detector response was compared with a recently published mathematical relation to predict diode response corrections in small fields. The effect of flattening filter removal on detector response was quantified using a ratio of relative detector responses in FFF and FF fields for the same field size. The removal of the flattening filter was found to have a small but measurable effect on ionization chamber response with maximum deviations of less than ± 0.9% across all field sizes measured. Solid-state detectors showed an increased dependence on the flattening filter of up to ± 1.6%. Measured diode response was within ± 1.1% of the published mathematical relation for all fields up to 30 mm, independent of linac type and presence or absence of a flattening filter. For 6 MV beams, detector correction factors between FFF and FF beams are interchangeable for a linac between FF and FFF modes, providing that an additional uncertainty of up to ± 1.6% is accepted.