Science.gov

Sample records for acceleration exposure limit

  1. Hypothetical Exposure Limits for Oil-Based Metalworking Fluids and Cardiovascular Mortality in a Cohort of Autoworkers: Structural Accelerated Failure Time Models in a Public Health Framework

    PubMed Central

    Picciotto, Sally; Peters, Annette; Eisen, Ellen A.

    2015-01-01

    Occupational exposure to aerosolized particles of oil-based metalworking fluid was recently linked to deaths from ischemic heart disease. The current recommended exposure limits might be insufficient. Studying cardiovascular mortality is challenging because symptoms can induce sicker workers to reduce their exposure, causing healthy-worker survivor bias. G-estimation of accelerated failure time models reduces this bias and permits comparison of multiple exposure interventions. Michigan autoworkers from the United AutoWorkers–General Motors cohort (n = 38,666) were followed from 1941 through 1994. Separate binary variables indicated whether annual exposure exceeded a series of potential limits. Separate g-estimation analyses for each limit yielded the total number of life-years that could have been saved among persons who died from specific cardiovascular causes by enforcing that exposure limit. Banning oil-based fluids would have saved an estimated 4,003 (95% confidence interval: 2,200, 5,807) life-years among those who died of ischemic heart disease. Estimates for cardiovascular disease overall, acute myocardial infarction, and cerebrovascular disease were 3,500 (95% confidence interval: 1,350, 5,651), 2,932 (95% confidence interval: 1,587, 4,277), and 917 (95% confidence interval: −80, 1,913) life-years, respectively. A limit of 0.01 mg/m3 would have had a similar impact on cerebrovascular disease but one only half as great on ischemic heart disease. Analyses suggest that limiting exposure to metalworking fluids could have saved many life-years lost to cardiovascular diseases in this cohort. PMID:25816818

  2. Hypothetical exposure limits for oil-based metalworking fluids and cardiovascular mortality in a cohort of autoworkers: structural accelerated failure time models in a public health framework.

    PubMed

    Picciotto, Sally; Peters, Annette; Eisen, Ellen A

    2015-04-15

    Occupational exposure to aerosolized particles of oil-based metalworking fluid was recently linked to deaths from ischemic heart disease. The current recommended exposure limits might be insufficient. Studying cardiovascular mortality is challenging because symptoms can induce sicker workers to reduce their exposure, causing healthy-worker survivor bias. G-estimation of accelerated failure time models reduces this bias and permits comparison of multiple exposure interventions. Michigan autoworkers from the United AutoWorkers-General Motors cohort (n = 38,666) were followed from 1941 through 1994. Separate binary variables indicated whether annual exposure exceeded a series of potential limits. Separate g-estimation analyses for each limit yielded the total number of life-years that could have been saved among persons who died from specific cardiovascular causes by enforcing that exposure limit. Banning oil-based fluids would have saved an estimated 4,003 (95% confidence interval: 2,200, 5,807) life-years among those who died of ischemic heart disease. Estimates for cardiovascular disease overall, acute myocardial infarction, and cerebrovascular disease were 3,500 (95% confidence interval: 1,350, 5,651), 2,932 (95% confidence interval: 1,587, 4,277), and 917 (95% confidence interval: -80, 1,913) life-years, respectively. A limit of 0.01 mg/m(3) would have had a similar impact on cerebrovascular disease but one only half as great on ischemic heart disease. Analyses suggest that limiting exposure to metalworking fluids could have saved many life-years lost to cardiovascular diseases in this cohort. PMID:25816818

  3. Deriving exposure limits

    NASA Astrophysics Data System (ADS)

    Sliney, David H.

    1990-07-01

    Historically many different agencies and standards organizations have proposed laser occupational exposure limits (EL1s) or maximum permissible exposure (MPE) levels. Although some safety standards have been limited in scope to manufacturer system safety performance standards or to codes of practice most have included occupational EL''s. Initially in the 1960''s attention was drawn to setting EL''s however as greater experience accumulated in the use of lasers and some accident experience had been gained safety procedures were developed. It became clear by 1971 after the first decade of laser use that detailed hazard evaluation of each laser environment was too complex for most users and a scheme of hazard classification evolved. Today most countries follow a scheme of four major hazard classifications as defined in Document WS 825 of the International Electrotechnical Commission (IEC). The classifications and the associated accessible emission limits (AEL''s) were based upon the EL''s. The EL and AEL values today are in surprisingly good agreement worldwide. There exists a greater range of safety requirements for the user for each class of laser. The current MPE''s (i. e. EL''s) and their basis are highlighted in this presentation. 2. 0

  4. Ultra-accelerated natural sunlight exposure testing

    DOEpatents

    Jorgensen, Gary J.; Bingham, Carl; Goggin, Rita; Lewandowski, Allan A.; Netter, Judy C.

    2000-06-13

    Process and apparatus for providing ultra accelerated natural sunlight exposure testing of samples under controlled weathering without introducing unrealistic failure mechanisms in exposed materials and without breaking reciprocity relationships between flux exposure levels and cumulative dose that includes multiple concurrent levels of temperature and relative humidity at high levels of natural sunlight comprising: a) concentrating solar flux uniformly; b) directing the controlled uniform sunlight onto sample materials in a chamber enclosing multiple concurrent levels of temperature and relative humidity to allow the sample materials to be subjected to accelerated irradiance exposure factors for a sufficient period of time in days to provide a corresponding time of about at least a years worth of representative weathering of the sample materials.

  5. Count rate limitations in pulsed accelerator fields

    SciTech Connect

    Justus, Alan L

    2010-12-15

    This paper discusses various concepts involved in the counting losses of pulse-counting health physics instrumentation when used within the pulsed radiation environments of typical accelerator fields, in order to pre-establish appropriate limitations in use. Discussed are the 'narrow' pulse and the 'wide' pulse cases, the special effect of neutron moderating assemblies, and the effect of pulse microstructure on the counting losses of the pulse-counting instrumentation. Examples are provided which highlight the various concepts and limitations.

  6. Microdosimetric basis for exposure limits.

    PubMed

    Brackenbush, L W; Braby, L A

    1988-08-01

    Consideration of the energy deposited by ionizing radiation in microscopic volumes has led to new insights into dosimetric concepts at the levels of interest in radiation protection. Large amounts of energy are deposited by the passage of low linear-energy-transfer (LET)-charged particles through small volumes. If a typical cell nucleus is considered to be about 7 micron, at an exposure rate of 2.5 X 10(-1) C kg-1 h-1 (1 mR hr-1) from a 60Co irradiation, the average cell nucleus receives one energy deposition event every 12.5 d. Biological processes, which modify radiation damage, typically occur in a few minutes to a few hours. Thus, at occupational exposure levels it is probably the irreparable or misrepaired effects of irradiation that determine the biological consequences. One goal of dosimetry is to measure the incident radiation, making it possible to predict biological risk and set meaningful exposure limits. These measurements must relate to the energy depositions that are responsible for radiation effects at low dose rates, yet the dosimetry system must not be excessively complex to allow use by operational health physicists. Furthermore, our description of the irradiation should be directly measurable. The use of quality factors based upon the energy deposition in a 1-micron-diameter volume of tissue as prescribed in International Commission on Radiation Units Report No. 40 (Joint Task Group 1986) satisfies these requirements. Instrumentation based upon measurement of lineal energy has already been successfully used in health-physics applications. Future changes in the quality factor can be accommodated by changing the algorithm in these microprocessor-based instruments. PMID:3410692

  7. Microdosimetric basis for exposure limits.

    PubMed

    Brackenbush, L W; Braby, L A

    1988-08-01

    Consideration of the energy deposited by ionizing radiation in microscopic volumes has led to new insights into dosimetric concepts at the levels of interest in radiation protection. Large amounts of energy are deposited by the passage of low linear-energy-transfer (LET)-charged particles through small volumes. If a typical cell nucleus is considered to be about 7 micron, at an exposure rate of 2.5 X 10(-1) C kg-1 h-1 (1 mR hr-1) from a 60Co irradiation, the average cell nucleus receives one energy deposition event every 12.5 d. Biological processes, which modify radiation damage, typically occur in a few minutes to a few hours. Thus, at occupational exposure levels it is probably the irreparable or misrepaired effects of irradiation that determine the biological consequences. One goal of dosimetry is to measure the incident radiation, making it possible to predict biological risk and set meaningful exposure limits. These measurements must relate to the energy depositions that are responsible for radiation effects at low dose rates, yet the dosimetry system must not be excessively complex to allow use by operational health physicists. Furthermore, our description of the irradiation should be directly measurable. The use of quality factors based upon the energy deposition in a 1-micron-diameter volume of tissue as prescribed in International Commission on Radiation Units Report No. 40 (Joint Task Group 1986) satisfies these requirements. Instrumentation based upon measurement of lineal energy has already been successfully used in health-physics applications. Future changes in the quality factor can be accommodated by changing the algorithm in these microprocessor-based instruments.

  8. Improving tritium exposure reconstructions using accelerator mass spectrometry

    PubMed Central

    Hunt, J. R.; Vogel, J. S.; Knezovich, J. P.

    2010-01-01

    Direct measurement of tritium atoms by accelerator mass spectrometry (AMS) enables rapid low-activity tritium measurements from milligram-sized samples and permits greater ease of sample collection, faster throughput, and increased spatial and/or temporal resolution. Because existing methodologies for quantifying tritium have some significant limitations, the development of tritium AMS has allowed improvements in reconstructing tritium exposure concentrations from environmental measurements and provides an important additional tool in assessing the temporal and spatial distribution of chronic exposure. Tritium exposure reconstructions using AMS were previously demonstrated for a tree growing on known levels of tritiated water and for trees exposed to atmospheric releases of tritiated water vapor. In these analyses, tritium levels were measured from milligram-sized samples with sample preparation times of a few days. Hundreds of samples were analyzed within a few months of sample collection and resulted in the reconstruction of spatial and temporal exposure from tritium releases. Although the current quantification limit of tritium AMS is not adequate to determine natural environmental variations in tritium concentrations, it is expected to be sufficient for studies assessing possible health effects from chronic environmental tritium exposure. PMID:14735274

  9. Improving Tritium Exposure Reconstructions Using Accelerator Mass Spectrometry

    SciTech Connect

    Love, A; Hunt, J; Knezovich, J

    2003-06-01

    Exposure reconstructions for radionuclides are inherently difficult. As a result, most reconstructions are based primarily on mathematical models of environmental fate and transport. These models can have large uncertainties, as important site-specific information is unknown, missing, or crudely estimated. Alternatively, surrogate environmental measurements of exposure can be used for site-specific reconstructions. In cases where environmental transport processes are complex, well-chosen environmental surrogates can have smaller exposure uncertainty than mathematical models. Because existing methodologies have significant limitations, the development or improvement of methodologies for reconstructing exposure from environmental measurements would provide important additional tools in assessing the health effects of chronic exposure. As an example, the direct measurement of tritium atoms by accelerator mass spectrometry (AMS) enables rapid low-activity tritium measurements from milligram-sized samples, which permit greater ease of sample collection, faster throughput, and increased spatial and/or temporal resolution. Tritium AMS was previously demonstrated for a tree growing on known levels of tritiated water and for trees exposed to atmospheric releases of tritiated water vapor. In these analyses, tritium levels were measured from milligram-sized samples with sample preparation times of a few days. Hundreds of samples were analyzed within a few months of sample collection and resulted in the reconstruction of spatial and temporal exposure from tritium releases.

  10. [Nanosilver--Occupational exposure limits].

    PubMed

    Świdwińska-Gajewska, Anna Maria; Czerczak, Sławomir

    2015-01-01

    Historically, nanosilver has been known as colloidal silver composed of particles with a size below 100 nm. Silver nanoparticles are used in many technologies, creating a wide range of products. Due to antibacterial properties nanosilver is used, among others, in medical devices (wound dressings), textiles (sport clothes, socks), plastics and building materials (paints). Colloidal silver is considered by many as an ideal agent in the fight against pathogenic microorganisms, unlike antibiotics, without side effects. However, in light of toxicological research, nanosilver is not inert to the body. The inhalation of silver nanoparticles have an adverse effect mainly on the liver and lung of rats. The oxidative stress caused by reactive oxygen species is responsible for the toxicity of nanoparticles, contributing to cytotoxic and genotoxic effects. The activity of the readily oxidized nanosilver surface underlies the molecular mechanism of toxicity. This leads to the release of silver ions, a known harmful agent. Occupational exposure to silver nanoparticles may occur in the process of its manufacture, formulation and also usage during spraying, in particular. In Poland, as well as in other countries of the world, there is no separate hygiene standards applicable to nanomaterials. The present study attempts to estimate the value of MAC-TWA (maximum admissible concentration--the time-weighted average) for silver--a nano-objects fraction, which amounted to 0.01 mg/m3. The authors are of the opinion that the current value of the MAC-TWA for silver metallic--inhalable fraction (0.05 mg/m3) does not provide sufficient protection against the harmful effects of silver in the form of nano-objects.

  11. [Nanosilver--Occupational exposure limits].

    PubMed

    Świdwińska-Gajewska, Anna Maria; Czerczak, Sławomir

    2015-01-01

    Historically, nanosilver has been known as colloidal silver composed of particles with a size below 100 nm. Silver nanoparticles are used in many technologies, creating a wide range of products. Due to antibacterial properties nanosilver is used, among others, in medical devices (wound dressings), textiles (sport clothes, socks), plastics and building materials (paints). Colloidal silver is considered by many as an ideal agent in the fight against pathogenic microorganisms, unlike antibiotics, without side effects. However, in light of toxicological research, nanosilver is not inert to the body. The inhalation of silver nanoparticles have an adverse effect mainly on the liver and lung of rats. The oxidative stress caused by reactive oxygen species is responsible for the toxicity of nanoparticles, contributing to cytotoxic and genotoxic effects. The activity of the readily oxidized nanosilver surface underlies the molecular mechanism of toxicity. This leads to the release of silver ions, a known harmful agent. Occupational exposure to silver nanoparticles may occur in the process of its manufacture, formulation and also usage during spraying, in particular. In Poland, as well as in other countries of the world, there is no separate hygiene standards applicable to nanomaterials. The present study attempts to estimate the value of MAC-TWA (maximum admissible concentration--the time-weighted average) for silver--a nano-objects fraction, which amounted to 0.01 mg/m3. The authors are of the opinion that the current value of the MAC-TWA for silver metallic--inhalable fraction (0.05 mg/m3) does not provide sufficient protection against the harmful effects of silver in the form of nano-objects. PMID:26325054

  12. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerone C.; Kolody, Mark R.

    2011-01-01

    Evaluation of metal-based structures has long relied on atmospheric exposure test sites to determine corrosion resistance in marine environments. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions of the corrosive environment. Their success for correlation to atmospheric exposure is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated laboratory testing, which often focuses on the electrochemical reactions that occur during corrosion conditions, has yet to be universally accepted as a useful tool in predicting the long term service life of a metal despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard and their use is imperative, a method that correlates timescales from atmospheric exposure to accelerated testing would be very valuable. This work uses surface chemistry to interpret the chemical changes occurring on low carbon steel during atmospheric and accelerated corrosion conditions with the objective of finding a correlation between its accelerated and long-term corrosion performance. The current results of correlating data from marine atmospheric exposure conditions at the Kennedy Space Center beachside corrosion test site, alternating seawater spray, and immersion in typical electrochemical laboratory conditions, will be presented. Key words: atmospheric exposure, accelerated corrosion testing, alternating seawater spray, marine, correlation, seawater, carbon steel, long-term corrosion performance prediction, X-ray photoelectron spectroscopy.

  13. Prospects and limitations of cyclotron resonance laser acceleration

    SciTech Connect

    Chen, C. )

    1992-07-01

    The cyclotron resonance laser (CRL) accelerator is a novel concept of accelerating continuous charged-particle beams to moderately or highly relativistic energies. This paper discusses prospects and limitations of this concept. In particular, a three-dimensional, self-consistent theory is used to analyze the nonlinear interaction of an electron beam with an intense traveling electromagnetic wave in such an accelerator. The parameter regimes of experimental interest are identified on the basis of scaling calculations. The results of simulation modeling of a multimegavolt electron CRL accelerator are presented. The possibility of building continuous-wave (cw) CRL accelerators is discussed.

  14. Exposure of Polymeric Glazing Materials Using NREL's Ultra-Accelerated Weathering System (UAWS)

    SciTech Connect

    Bingham, C.; Jorgensen, G.; Wylie, A.

    2010-01-01

    NREL's Ultra-Accelerated Weathering System (UAWS) selectively reflects and concentrates natural sunlight ultraviolet irradiance below 475 nm onto exposed samples to provide accelerated weathering of materials while keeping samples within realistic temperature limits. This paper will explain the design and implementation of the UAWS which allow it to simulate the effect of years of weathering in weeks of exposure. Exposure chamber design and instrumentation will be discussed for both a prototype UAWS used to test glazing samples as well as a commercial version of UAWS. Candidate polymeric glazing materials have been subjected to accelerated exposure testing at a light intensity level of up to 50 UV suns for an equivalent outdoor exposure in Miami, FL exceeding 15 years. Samples include an impact modified acrylic, fiberglass, and polycarbonate having several thin UV-screening coatings. Concurrent exposure is carried out for identical sample sets at two different temperatures to allow thermal effects to be quantified along with resistance to UV.

  15. Derivation of temporary emergency exposure limits (TEELs).

    PubMed

    Craig, D K; Davis, J S; Hansen, D J; Petrocchi, A J; Powell, T J; Tuccinardi, T E

    2000-01-01

    Short-term chemical concentration limits are used in a variety of applications, including emergency planning and response, hazard assessment and safety analysis. Development of emergency response planning guidelines (ERPGs) and acute exposure guidance levels (AEGLs) are predicated on this need. Unfortunately, the development of peer-reviewed community exposure limits for emergency planning cannot be done rapidly (relatively few ERPGs or AEGLs are published each year). To be protective of Department of Energy (DOE) workers, on-site personnel and the adjacent general public, the DOE Subcommittee on Consequence Assessment and Protective Actions (SCAPA) has developed a methodology for deriving temporary emergency exposure limits (TEELs) to serve as temporary guidance until ERPGs or AEGLs can be developed. These TEELs are approximations to ERPGs to be used until peer-reviewed toxicology-based ERPGs, AEGL or equivalents can be developed. Originally, the TEEL method used only hierarchies of published concentration limits (e.g. PEL- or TLV-TWAs, -STELs or -Cs, and IDLHs) to provide estimated values approximating ERPGs. Published toxicity data (e.g. lc(50), lc(LO), ld(50) and ld(LO) for TEEL-3, and tc(LO) and td(LO) for TEEL-2) are included in the expanded method for deriving TEELs presented in this paper. The addition here of published toxicity data (in addition to the exposure limit hierarchy) enables TEELs to be developed for a much wider range of chemicals than before. Hierarchy-based values take precedence over toxicity-based values, and human toxicity data are used in preference to animal toxicity data. Subsequently, default assumptions based on statistical correlations of ERPGs at different levels (e.g. ratios of ERPG-3s to ERPG-2s) are used to calculate TEELs where there are gaps in the data. Most required input data are available in the literature and on CD ROMs, so the required TEELs for a new chemical can be developed quickly. The new TEEL hierarchy

  16. Nonlinear dynamics of autonomous vehicles with limits on acceleration

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    2014-07-01

    The stability of autonomous vehicle platoons with limits on acceleration and deceleration is determined. If the leading-vehicle acceleration remains within the limits, all vehicles in the platoon remain within the limits when the relative-velocity feedback coefficient is equal to the headway time constant [k=1/h]. Furthermore, if the sensitivity α>1/h, no collisions occur. String stability for small perturbations is assumed and the initial condition is taken as the equilibrium state. Other values of k and α that give stability with no collisions are found from simulations. For vehicles with non-negligible mechanical response, simulations indicate that the acceleration-feedback-control gain might have to be dynamically adjusted to obtain optimal performance as the response time changes with engine speed. Stability is demonstrated for some perturbations that cause initial acceleration or deceleration greater than the limits, yet do not cause collisions.

  17. Increased chronic acceleration exposure enhances work capacity.

    PubMed

    Burton, R R; Smith, A H

    1997-10-01

    Adult male chickens adapted to 1.75 or 2.5 G from long term centrifugation, were maximally exercised on an animal treadmill at 1 g (Earth's gravity) and compared with the exercise capacities of control chickens raised at 1 g. The increased-G birds had statistically significantly greater exercise capacities than the controls during the first 3 weeks of the study after the initial exercise exposure. Thereafter however for the following two months of the study, there was no difference in either group's exercise capacities. This early increased work capacity was attributed to the increased-G birds improved ability to maximize their muscular strength with neurological adaptation. The increased-G birds lost body mass at a 31% greater rate during exercise than the controls although this difference was not statistically significant. This increased body mass loss was considered to have resulted from increased use of glycogen during exercise.

  18. Ultra-accelerated natural sunlight exposure testing facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2003-08-12

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS to deliver a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in chamber means that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  19. Ultra-Accelerated Natural Sunlight Exposure Testing Facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2004-11-23

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  20. Gradient Limitations in Room Temperature and Superconducting Acceleration Structures

    SciTech Connect

    Solyak, N. A.

    2009-01-22

    Accelerating gradient is a key parameter of the accelerating structure in large linac facilities, like future Linear Collider. In room temperature accelerating structures the gradient is limited mostly by breakdown phenomena, caused by high surface electric fields or pulse surface heating. High power processing is a necessary procedure to clean surface and improve the gradient. In the best tested X-band structures the achieved gradient is exceed 100 MV/m in of {approx}200 ns pulses for breakdown rate of {approx}10{sup -7}. Gradient limit depends on number of factors and no one theory which can explain all sets of experimental results and predict gradient in new accelerating structure. In paper we briefly overview the recent experimental results of breakdown studies, progress in understanding of gradient limitations and scaling laws. Although superconducting rf technology has been adopted throughout the world for ILC, it has frequently been difficult to reach the predicted performance in these structures due to a number of factors: multipactoring, field emission, Q-slope, thermal breakdown. In paper we are discussing all these phenomena and the ways to increase accelerating gradient in SC cavity, which are a part of worldwide R and D program.

  1. Gradient limitations in room temperature and superconducting acceleration structures

    SciTech Connect

    Solyak, N.A.; /Fermilab

    2008-10-01

    Accelerating gradient is a key parameter of the accelerating structure in large linac facilities, like future Linear Collider. In room temperature accelerating structures the gradient is limited mostly by breakdown phenomena, caused by high surface electric fields or pulse surface heating. High power processing is a necessary procedure to clean surface and improve the gradient. In the best tested X-band structures the achieved gradient is exceed 100 MV/m in of {approx}200 ns pulses for breakdown rate of {approx} 10{sup -7}. Gradient limit depends on number of factors and no one theory which can explain all sets of experimental results and predict gradient in new accelerating structure. In paper we briefly overview the recent experimental results of breakdown studies, progress in understanding of gradient limitations and scaling laws. Although superconducting rf technology has been adopted throughout the world for ILC, it has frequently been difficult to reach the predicted performance in these structures due to a number of factors: multipactoring, field emission, Q-slope, thermal breakdown. In paper we are discussing all these phenomena and the ways to increase accelerating gradient in SC cavity, which are a part of worldwide R&D program.

  2. Gas breakdown limits for inverse Cherenkov laser accelerators

    SciTech Connect

    Liu, Y.; Pogorelsky, I.V.

    1995-07-01

    The probability of avalanche, tunneling and multiphoton ionization induced by a CO{sub 2} laser in H{sub 2} gas has been calculated. Laser light screening by a self-induced plasma density gradient is considered as the limiting factor for upscaling a CO{sub 2} laser-driven Inverse Cherenkov Laser Accelerator beyond 650 MeV/m. However, in near-resonance inverse Cherenkov acceleration where a shorter wavelength laser is used at a wavelength near the resonance of the gas (e.g. 248nm in H{sub 2}), the formation of a plasma is not a problem because the plasma density is below the critical density. In that case, the laser beam propagates unaffected through the plasma and the acceleration gradient is not limited by gas breakdown. Gradients > 1 GeV/m are possible.

  3. 47 CFR 1.1310 - Radiofrequency radiation exposure limits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Radiofrequency radiation exposure limits. 1... Radiofrequency radiation exposure limits. (a) Specific absorption rate (SAR) shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in § 1.1307(b) within...

  4. 47 CFR 1.1310 - Radiofrequency radiation exposure limits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Radiofrequency radiation exposure limits. 1... Radiofrequency radiation exposure limits. (a) Specific absorption rate (SAR) shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in § 1.1307(b) within...

  5. Diffusive shock acceleration - Acceleration rate, magnetic-field direction and the diffusion limit

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.

    1992-01-01

    This paper reviews the concept of diffusive shock acceleration, showing that the acceleration of charged particles at a collisionless shock is a straightforward consequence of the standard cosmic-ray transport equation, provided that one treats the discontinuity at the shock correctly. This is true for arbitrary direction of the upstream magnetic field. Within this framework, it is shown that acceleration at perpendicular or quasi-perpendicular shocks is generally much faster than for parallel shocks. Paradoxically, it follows also that, for a simple scattering law, the acceleration is faster for less scattering or larger mean free path. Obviously, the mean free path can not become too large or the diffusion limit becomes inapplicable. Gradient and curvature drifts caused by the magnetic-field change at the shock play a major role in the acceleration process in most cases. Recent observations of the charge state of the anomalous component are shown to require the faster acceleration at the quasi-perpendicular solar-wind termination shock.

  6. Human exposure limits to hypergolic fuels

    NASA Technical Reports Server (NTRS)

    Garcia, H. D.; James, J. T.; Limero, T. F.

    1992-01-01

    Over the past four decades, many studies have been conducted on the toxicities of the rocket propellants hydrazine (HZ) and monomethylhydrazine (MH). Numerous technical challenges have made it difficult to unambiguously interpret the results of these studies, and there is considerable divergence between results obtained by different investigators on the inhalation concentrations (MAC's) for each toxic effect inducible by exposure to hypergolic fuels in spacecraft atmospheres, NASA undertook a critical review of published and unpublished investigations on the toxicities of these compounds. The current state of the art practices for similar studies. While many questions remain unanswered, MAC's were determined using the best available data for a variety of toxic endpoints for potential continuous exposure durations ranging from 1 hour to 180 days. Spacecraft MAC's (SMAC's) were set for each compound based on the most sensitive toxic endpoint at each exposure duration.

  7. Laser Proton acceleration from mass limited silicon foils

    NASA Astrophysics Data System (ADS)

    Zeil, K.; Kraft, S.; Richter, T.; Metzkes, J.; Bussmann, M.; Schramm, U.; Sauerbrey, R.; Cowan, T. E.; Fuchs, J.; Buffechoux, S.

    2009-11-01

    We present recent studies on laser proton acceleration experiments using mass limited silicon targets. Small micro machined silicon foils with 2 μm thickness and 20x20 μm2 to 100x100μm2 size mounted on very tiny stalks were shot with the 100 TW LULI Laser (long pulse 150 fs) and with the new 150 TW DRACO Laser facility (short pulse 30 fs) of the Research Centre Dresden-Rossendorf. The experiments were carried out using high contrast levels. Proton spectra have been measured with magnetic spectrometers and radio chromic film stacks.

  8. Performance Limiting Effects in X-Band Accelerators

    SciTech Connect

    Wang, Faya; Adolphsen, Chris; Nantista, Christopher; /SLAC

    2012-06-11

    Acceleration gradient is a critical parameter for the design of future TeV-scale linear colliders. The major obstacle to higher gradient in room-temperature accelerators is rf breakdown, which is still a very mysterious phenomenon that depends on the geometry and material of the accelerator as well as the input power and operating frequency. Pulsed heating has been associated with breakdown for many years; however, there have been no experiments that clearly separate field and heating effects on the breakdown rate. Recently, such experiments have been performed at SLAC with both standing-wave and traveling-wave structures. These experiments have demonstrated that pulsed heating is limiting the gradient. Nevertheless the X-band structures breakdown studies show damage to the iris surfaces in locations of high electric field rather than of high magnetic field after thousands of breakdowns. It is not yet clear how the relative roles of electric field, magnetic field, and heating factor into the damage caused by rf breakdown. Thus, a dual-moded cavity has been designed to better study the electric field, magnetic field, and pulsed heating effects on breakdown damage.

  9. 10 CFR 850.22 - Permissible exposure limit.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Permissible exposure limit. 850.22 Section 850.22 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.22... concentration of beryllium greater than the permissible exposure limit established in 29 CFR 1910.1000,...

  10. 10 CFR 850.22 - Permissible exposure limit.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Permissible exposure limit. 850.22 Section 850.22 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.22... concentration of beryllium greater than the permissible exposure limit established in 29 CFR 1910.1000,...

  11. 10 CFR 850.22 - Permissible exposure limit.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Permissible exposure limit. 850.22 Section 850.22 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.22... concentration of beryllium greater than the permissible exposure limit established in 29 CFR 1910.1000,...

  12. 10 CFR 850.22 - Permissible exposure limit.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Permissible exposure limit. 850.22 Section 850.22 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.22... concentration of beryllium greater than the permissible exposure limit established in 29 CFR 1910.1000,...

  13. 10 CFR 850.22 - Permissible exposure limit.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Permissible exposure limit. 850.22 Section 850.22 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.22... concentration of beryllium greater than the permissible exposure limit established in 29 CFR 1910.1000,...

  14. 46 CFR 197.515 - Permissible exposure limits (PELs).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Permissible exposure limits (PELs). 197.515 Section 197.515 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.515 Permissible exposure limits (PELs). The...

  15. 46 CFR 197.515 - Permissible exposure limits (PELs).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Permissible exposure limits (PELs). 197.515 Section 197.515 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.515 Permissible exposure limits (PELs). The...

  16. 46 CFR 197.515 - Permissible exposure limits (PELs).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Permissible exposure limits (PELs). 197.515 Section 197.515 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.515 Permissible exposure limits (PELs). The...

  17. 46 CFR 197.515 - Permissible exposure limits (PELs).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Permissible exposure limits (PELs). 197.515 Section 197.515 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.515 Permissible exposure limits (PELs). The...

  18. 46 CFR 197.515 - Permissible exposure limits (PELs).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Permissible exposure limits (PELs). 197.515 Section 197.515 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.515 Permissible exposure limits (PELs). The...

  19. [Titanium dioxide nanoparticles: occupational exposure limits].

    PubMed

    Swidwińska-Gajewska, Anna Maria; Czerczak, Sławomir

    2014-01-01

    Titanium dioxide (TiO2) is produced in Poland as a high production volume chemical (HPVC). It is used mainly as a pigment for paints and coatings, plastics, paper, and also as additives to food and pharmaceuticals. Titanium dioxide nanoparticles are increasingly applied in cosmetics, textiles and plastics as the ultraviolet light blocker. This contributes to a growing occupational exposure to TiO2 nanoparticles. Nanoparticles are potentially responsible for the most adverse effects of titanium dioxide. Due to the absence of separate fraction of nanoobjects and appropriate measurement methods the maximum admissible concentrations (MAC) for particles < 100 nm and nano-TiO2 cannot be established. In the world there are 2 proposals of occupational exposure levels for titanium dioxide nanoparticles: 0.3 mg/m3, proposed by the National Institute for Occupational Safety and Health (NIOSH), and 0.6 mg/m3, proposed by experts of the New Energy and Industrial Technology Development Organization (NEDO). The authors of this article, based on the available data and existing methods for hygiene standards binding in Poland, concluded that the MAC value of 0.3 mg/m3 for nanoparticles TiO2 in the workplace air can be accepted.

  20. Careful telemedicine planning limits costly liability exposure.

    PubMed

    Edelstein, S A

    1999-12-01

    Recent Federal and state legislation and new payment opportunities from Medicare, Medicaid, and private payers may make it possible to offer telemedicine as a viable, cost-effective alternative to traditional care delivery in communities where access to health care is limited. Originally, nonexistent payment and expensive technology held back telemedicine but, these barriers are giving way to specific applications that can yield dramatic cost savings for group practices in the delivery of medical care while adding features and benefits not typically available in traditional delivery settings. Before joining a telemedicine network, group practices need to negotiate a variety of legal issues related to the corporate practice of medicine, patient confidentiality and privacy, malpractice, informed consent, licensure and credentialing, intellectual property, Medicare and Medicaid payment, fraud and abuse, medical device regulation, and antitrust.

  1. 47 CFR 1.1310 - Radiofrequency radiation exposure limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Radiofrequency radiation exposure limits. 1... Procedures Implementing the National Environmental Policy Act of 1969 § 1.1310 Radiofrequency radiation... exposure to radiofrequency (RF) radiation as specified in § 1.1307(b), except in the case of...

  2. Historical Context and Recent Advances in Exposure-Response Estimation for Deriving Occupational Exposure Limits.

    PubMed

    Wheeler, M W; Park, R M; Bailer, A J; Whittaker, C

    2015-01-01

    Virtually no occupational exposure standards specify the level of risk for the prescribed exposure, and most occupational exposure limits are not based on quantitative risk assessment (QRA) at all. Wider use of QRA could improve understanding of occupational risks while increasing focus on identifying exposure concentrations conferring acceptably low levels of risk to workers. Exposure-response modeling between a defined hazard and the biological response of interest is necessary to provide a quantitative foundation for risk-based occupational exposure limits; and there has been considerable work devoted to establishing reliable methods quantifying the exposure-response relationship including methods of extrapolation below the observed responses. We review several exposure-response modeling methods available for QRA, and demonstrate their utility with simulated data sets.

  3. Historical Context and Recent Advances in Exposure-Response Estimation for Deriving Occupational Exposure Limits

    PubMed Central

    Wheeler, M.W.; Park, R. M.; Bailer, A. J.; Whittaker, C.

    2015-01-01

    Virtually no occupational exposure standards specify the level of risk for the prescribed exposure, and most occupational exposure limits are not based on quantitative risk assessment (QRA) at all. Wider use of QRA could improve understanding of occupational risks while increasing focus on identifying exposure concentrations conferring acceptably low levels of risk to workers. Exposure-response modeling between a defined hazard and the biological response of interest is necessary to provide a quantitative foundation for risk-based occupational exposure limits; and there has been considerable work devoted to establishing reliable methods quantifying the exposure-response relationship including methods of extrapolation below the observed responses. We review several exposure-response modeling methods available for QRA, and demonstrate their utility with simulated data sets. PMID:26252067

  4. Issues for Simulation of Galactic Cosmic Ray Exposures for Radiobiological Research at Ground-Based Accelerators.

    PubMed

    Kim, Myung-Hee Y; Rusek, Adam; Cucinotta, Francis A

    2015-01-01

    For radiobiology research on the health risks of galactic cosmic rays (GCR) ground-based accelerators have been used with mono-energetic beams of single high charge, Z and energy, E (HZE) particles. In this paper, we consider the pros and cons of a GCR reference field at a particle accelerator. At the NASA Space Radiation Laboratory (NSRL), we have proposed a GCR simulator, which implements a new rapid switching mode and higher energy beam extraction to 1.5 GeV/u, in order to integrate multiple ions into a single simulation within hours or longer for chronic exposures. After considering the GCR environment and energy limitations of NSRL, we performed extensive simulation studies using the stochastic transport code, GERMcode (GCR Event Risk Model) to define a GCR reference field using 9 HZE particle beam-energy combinations each with a unique absorber thickness to provide fragmentation and 10 or more energies of proton and (4)He beams. The reference field is shown to well represent the charge dependence of GCR dose in several energy bins behind shielding compared to a simulated GCR environment. However, a more significant challenge for space radiobiology research is to consider chronic GCR exposure of up to 3 years in relation to simulations with animal models of human risks. We discuss issues in approaches to map important biological time scales in experimental models using ground-based simulation, with extended exposure of up to a few weeks using chronic or fractionation exposures. A kinetics model of HZE particle hit probabilities suggests that experimental simulations of several weeks will be needed to avoid high fluence rate artifacts, which places limitations on the experiments to be performed. Ultimately risk estimates are limited by theoretical understanding, and focus on improving knowledge of mechanisms and development of experimental models to improve this understanding should remain the highest priority for space radiobiology research.

  5. Issues for Simulation of Galactic Cosmic Ray Exposures for Radiobiological Research at Ground-Based Accelerators

    PubMed Central

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis A.

    2015-01-01

    For radiobiology research on the health risks of galactic cosmic rays (GCR) ground-based accelerators have been used with mono-energetic beams of single high charge, Z and energy, E (HZE) particles. In this paper, we consider the pros and cons of a GCR reference field at a particle accelerator. At the NASA Space Radiation Laboratory (NSRL), we have proposed a GCR simulator, which implements a new rapid switching mode and higher energy beam extraction to 1.5 GeV/u, in order to integrate multiple ions into a single simulation within hours or longer for chronic exposures. After considering the GCR environment and energy limitations of NSRL, we performed extensive simulation studies using the stochastic transport code, GERMcode (GCR Event Risk Model) to define a GCR reference field using 9 HZE particle beam–energy combinations each with a unique absorber thickness to provide fragmentation and 10 or more energies of proton and 4He beams. The reference field is shown to well represent the charge dependence of GCR dose in several energy bins behind shielding compared to a simulated GCR environment. However, a more significant challenge for space radiobiology research is to consider chronic GCR exposure of up to 3 years in relation to simulations with animal models of human risks. We discuss issues in approaches to map important biological time scales in experimental models using ground-based simulation, with extended exposure of up to a few weeks using chronic or fractionation exposures. A kinetics model of HZE particle hit probabilities suggests that experimental simulations of several weeks will be needed to avoid high fluence rate artifacts, which places limitations on the experiments to be performed. Ultimately risk estimates are limited by theoretical understanding, and focus on improving knowledge of mechanisms and development of experimental models to improve this understanding should remain the highest priority for space radiobiology research. PMID:26090339

  6. 30 CFR 56.5001 - Exposure limits for airborne contaminants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... concentration shall be determined by phase contrast microscopy (PCM) using the OSHA Reference Method in OSHA's asbestos standard found in 29 CFR 1910.1001, Appendix A, or a method at least equivalent to that method in... limit. When PCM results indicate a potential exposure exceeding the 0.1 f/cc full-shift limit or the 1...

  7. 30 CFR 56.5001 - Exposure limits for airborne contaminants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... concentration shall be determined by phase contrast microscopy (PCM) using the OSHA Reference Method in OSHA's asbestos standard found in 29 CFR 1910.1001, Appendix A, or a method at least equivalent to that method in... limit. When PCM results indicate a potential exposure exceeding the 0.1 f/cc full-shift limit or the 1...

  8. 30 CFR 56.5001 - Exposure limits for airborne contaminants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... concentration shall be determined by phase contrast microscopy (PCM) using the OSHA Reference Method in OSHA's asbestos standard found in 29 CFR 1910.1001, Appendix A, or a method at least equivalent to that method in... limit. When PCM results indicate a potential exposure exceeding the 0.1 f/cc full-shift limit or the 1...

  9. Exposure-Based Cat Modeling, Available data, Advantages, & Limitations

    NASA Astrophysics Data System (ADS)

    Michel, Gero; Hosoe, Taro; Schrah, Mike; Saito, Keiko

    2010-05-01

    This paper discusses the advantages and disadvantages of exposure data for cat-modeling and considers concepts of scale as well as the completeness of data and data scoring using field/model examples. Catastrophe modeling based on exposure data has been considered the panacea for insurance-related cat modeling since the late 1980's. Reasons for this include: • The ability to extend risk modeling to consider data beyond historical losses, • Usability across many relevant scales, • Flexibility in addressing complex structures and policy conditions, and • Ability to assess dependence of risk results on exposure-attributes and exposure-modifiers, such as lines of business, occupancy types, and mitigation features, at any given scale. In order to calculate related risk, monetary exposure is correlated to vulnerabilities that have been calibrated with historical results, plausibility concepts, and/or physical modeling. While exposure based modeling is widely adopted, we also need to be aware of its limitations which include: • Boundaries in our understanding of the distribution of exposure, • Spatial interdependence of exposure patterns and the time-dependence of exposure, • Incomplete availability of loss information to calibrate relevant exposure attributes/structure with related vulnerabilities and losses, • The scale-dependence of vulnerability, • Potential for missing or incomplete communication of assumptions made during model calibration, • Inefficiencies in the aggregation or disaggregation of vulnerabilities, and • Factors which can influence losses other than exposure, vulnerability, and hazard. Although we might assume that the higher the resolution the better, regional model calibration is often limited to lower than street level resolution with higher resolution being achieved by disaggregating results using topographic/roughness features with often loosely constrained and/or varying effects on losses. This suggests that higher accuracy

  10. Accelerated Fatigue of Dentin with Exposure to Lactic Acid

    PubMed Central

    Majd, H.; Ryou, H.; Mutluay, M. M.; Xu, Hockin H. K.; Arola, D.

    2013-01-01

    Composite restorations accumulate more biofilm than other dental materials. This increases the likelihood for the hard tissues supporting a restoration (i.e. dentin and enamel) to be exposed to acidic conditions beyond that resulting from dietary variations. In this investigation the fatigue strength and fatigue crack growth resistance of human coronal dentin were characterized within a lactic acid solution (with pH=5) and compared to that of controls evaluated in neutral conditions (pH=7). A comparison of the fatigue life distributions showed that the lactic acid exposure resulted in a significant reduction in the fatigue strength (p≤0.001), and nearly 30% reduction in the apparent endurance limit (from 44 MPa to 32 MPa). The reduction in pH also caused a significant decrease (p≤0.05) in the threshold stress intensity range required for the initiation of cyclic crack growth, and significant increase in the incremental rate of crack extension. Exposure of tooth structure to lactic acid may cause demineralization, but it also increases the likelihood of restored tooth failures via fatigue, and after short time periods. PMID:23948166

  11. Accelerated fatigue of dentin with exposure to lactic acid.

    PubMed

    Do, Dominic; Orrego, Santiago; Majd, Hessam; Ryou, Heonjune; Mutluay, Mustafa M; Xu, Hockin H K; Arola, Dwayne D

    2013-11-01

    Composite restorations accumulate more biofilm than other dental materials. This increases the likelihood for the hard tissues supporting a restoration (i.e. dentin and enamel) to be exposed to acidic conditions beyond that resulting from dietary variations. In this investigation the fatigue strength and fatigue crack growth resistance of human coronal dentin were characterized within a lactic acid solution (with pH = 5) and compared to that of controls evaluated in neutral conditions (pH = 7). A comparison of the fatigue life distributions showed that the lactic acid exposure resulted in a significant reduction in the fatigue strength (p ≤ 0.001), and nearly 30% reduction in the apparent endurance limit (from 44 MPa to 32 MPa). The reduction in pH also caused a significant decrease (p ≤ 0.05) in the threshold stress intensity range required for the initiation of cyclic crack growth, and significant increase in the incremental rate of crack extension. Exposure of tooth structure to lactic acid may cause demineralization, but it also increases the likelihood of restored tooth failures via fatigue, and after short time periods.

  12. Concepts and limitations of macroparticle accelerators using travelling magnetic waves

    SciTech Connect

    Wipf, S.L.

    1980-01-01

    The concept of an accelerator using a travelling magnetic wave acting on magnetized projectiles is discussed. Although superconductors have a high potential as projectile material, their low critical temperature makes them unsuitable. Among ferromagnetic materials dysprosium seems to be superior. For stable suspension and guidance a high conductivity, preferably superconducting, guide sheet is necessary. Magnetic field gradients of 10/sup 9/ A/m/sup 2/ travelling at 10/sup 6/ m/s should be achievable using present state-of-the-art components; resulting accelerations are greater than or equal to 500 km/s/sup 2/. A linear accelerator for final speeds of 50 km/s needs a length of 2.5 km. Guidance forces sufficient to produce acceleration of 2 x 10/sup 6/ m/s/sup 2/ allow circular accelerators of reasonable size to achieve hypervelocities for small (50 to 100 mg) projectiles. An accelerator of 170 m diameter would surpass the best results from light gas guns. Travelling waves suitable for accelerations of the order of 10/sup 4/ m/s/sup 2/ can be produced without switching, by means of flux displacing rotors, easily adapted to circular accelerators.

  13. Persistent exposure to poverty during childhood limits later leader emergence.

    PubMed

    Barling, Julian; Weatherhead, Julie G

    2016-09-01

    Increasing attention is being paid to the question of why some people emerge as leaders, and we investigated the effects of persistent exposure to poverty during childhood on later leadership role occupancy. We hypothesized that exposure to poverty would limit later leadership role occupancy through the indirect effects of the quality of schooling and personal mastery, and that gender would moderate the effects of exposure to poverty and personal mastery. Using the National Longitudinal Study of Youth provided multiwave and multisource data for a sample of 4,536 (1,533 leaders; 3,003 nonleaders). Both school quality and personal mastery mediated the effects of family poverty status on later leadership role occupancy. Although gender did not moderate the effects of poverty on leadership role occupancy, the indirect effects of early exposure to poverty on leadership role occupancy through personal mastery were moderated by gender. Conceptual and practical implications of these findings are discussed. (PsycINFO Database Record

  14. Persistent exposure to poverty during childhood limits later leader emergence.

    PubMed

    Barling, Julian; Weatherhead, Julie G

    2016-09-01

    Increasing attention is being paid to the question of why some people emerge as leaders, and we investigated the effects of persistent exposure to poverty during childhood on later leadership role occupancy. We hypothesized that exposure to poverty would limit later leadership role occupancy through the indirect effects of the quality of schooling and personal mastery, and that gender would moderate the effects of exposure to poverty and personal mastery. Using the National Longitudinal Study of Youth provided multiwave and multisource data for a sample of 4,536 (1,533 leaders; 3,003 nonleaders). Both school quality and personal mastery mediated the effects of family poverty status on later leadership role occupancy. Although gender did not moderate the effects of poverty on leadership role occupancy, the indirect effects of early exposure to poverty on leadership role occupancy through personal mastery were moderated by gender. Conceptual and practical implications of these findings are discussed. (PsycINFO Database Record PMID:27599090

  15. Silica exposure and chronic airflow limitation in pottery workers.

    PubMed

    Neukirch, F; Cooreman, J; Korobaeff, M; Pariente, R

    1994-01-01

    We assessed the relationship between exposure to silica dust and chronic airflow limitation in an epidemiological survey conducted among pottery workers and controls who were of the same socioeconomic status (average age: 35 y; 78% males). Data were collected by questionnaire for respiratory symptoms, allergy, respiratory history, smoking habits, and occupation. Lung function was measured with a computer-equipped Gauthier spirometer. We excluded subjects with silicosis or doubtful chest x-ray, and two exposure levels were defined. No differences were observed between exposed subjects and controls with respect to respiratory conditions. Mean pulmonary function values for men and women were significantly lower, after adjustment for age, height, and smoking habits, in even indirectly exposed pottery workers, compared with controls. These results suggest that exposure to silica dust is a risk factor for chronic airflow limitation and is independent of radiographic changes.

  16. Young Children's Limited and Narrow Exposure to Informational Text

    ERIC Educational Resources Information Center

    Yopp, Ruth Helen; Yopp, Hallie Kay

    2012-01-01

    Despite arguments for more fully including informational text in early childhood classrooms, research suggests that young children's exposure to the genre is quite limited. This article focuses on the informational books that children do encounter, specifically through read-alouds, and describes the narrow focus of those books. Informational…

  17. 47 CFR 1.1310 - Radiofrequency radiation exposure limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 300-1500 f/1500 30 1500-100,000 1.0 30 f = frequency in MHz * = Plane-wave equivalent power density... 1500 MHz, exposure limits for field strength and power density are also generally based on guidelines...) Electric field strength (V/m) Magnetic field strength (A/m) Power density (mW/cm2) Averaging time...

  18. Overcomingthe Dephasing Limit in the Bubble Regime by Synergybetween Direct Laser Acceleration and Laser Wakefield Acceleration

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Khudik, Vladimir; Shvets, Gennady

    2014-10-01

    Direct Laser Acceleration (DLA) in the bubble regime is an acceleration mechanism that combines the traditional plasma wakefield acceleration inside the plasma bubble with energy gain directly from the laser pulse. Recent experiments demonstrated one of the signatures of the DLA: highly efficient gamma-rays from resonantly excited betatron oscillations of accelerated electrons inside the plasma bubble. Here we propose another potential benefit of DLA: the reduction of dephasing between the accelerated electrons and accelerating field of the bubble. A simple semi-analytic model is developed to investigate the synergy between DLA and LWA acceleration mechanisms. We propose to enhance the DLA by adding a second time-delayed weak laser pulse capable of interacting with bubble electrons right after self-injection. This scenario is validated by direct PIC modeling using the 2D VLPL code. The prospects for achieving high-energy electrons at the Texas Petawatt laser are discussed. This work is supported by the US DOE grant DE-SC0007889.

  19. LIMITATIONS ON THE USES OF MULTIMEDIA EXPOSURE MEASUREMENTS FOR MULTIPATHWAY EXPOSURE ASSESSMENT - PART I: HANDLING OBSERVATIONS BELOW DETECTION LIMITS

    EPA Science Inventory

    Multimedia data from two probability-based exposure studies were investigated in terms of how censoring of non-detects affected estimation of population parameters and associations. Appropriate methods for handling censored below-detection-limit (BDL) values in this context were...

  20. Allowable exposure limits for carbon dioxide during extravehicular activity

    NASA Technical Reports Server (NTRS)

    Seter, Andrew J.

    1993-01-01

    The intent was to review the research pertaining to human exposure to carbon dioxide (CO2) and to recommend allowable exposure limits for extravehicular activity (EVA). Respiratory, renal, and gastrointestinal systems may be adversely affected by chronic low dose CO2 exposure. Ventilation was increased 15 percent with 1 percent CO2 and 50 percent with 2 percent CO2. Chronic exposure to less than 2 percent CO2 led to 20 day cycles of uncompensated and compensated respiratory acidosis. Acid-base changes were small. Histopathologic changes in guinea pig lungs have been noted with long term exposure to 1 percent CO2. No changes were seen with exposure to 0.5 percent CO2. Cycling of bone calcium stores with associated changes in blood and urinary calcium levels occurs with long term CO2 exposure. Histologic changes in bone have been noted in guinea pigs exposed to 1 percent CO2. Renal calcification has been noted in guinea pigs with exposure to as low as 0.5 percent CO2. An increase in gastric acidity was noted in subjects with long term exposure to 1 percent CO2. Cardiovascular and neurologic function were largely unaffected. A decrease in the incidence of respiratory, renal, and gastrointestinal disease was noted in submariners coincident with a decrease in ambient CO2 from 1.2 percent to 0.8-0.9 percent. Oxygen (O2) and CO2 stimulate respiration independently and cumulatively. The addition of CO2 to high dose O2 led to the faster onset of seizure activity in mice. Experiments evaluating the physiologic responses to intermittent, repetitive exposures to low dose CO2 and 100 percent O2 mixtures should be performed. A reduction in the current NASA standard for CO2 exposure during EVA of 1 percent (7.6 mmHg) for nominal and 2 percent (15.2 mmHg) for heavy exertion to 0.5 percent (3.8 mmHg) for nominal and 1 percent (7.6 mmHg) for heavy exertion may be prudent. At a minimum, the current NASA standard should not be liberalized.

  1. The occupational exposure limit for fluid aerosol generated in metalworking operations: limitations and recommendations.

    PubMed

    Park, Donguk

    2012-03-01

    The aim of this review was to assess current knowledge related to the occupational exposure limit (OEL) for fluid aerosols including either mineral or chemical oil that are generated in metalworking operations, and to discuss whether their OEL can be appropriately used to prevent several health risks that may vary among metalworking fluid (MWF) types. The OEL (time-weighted average; 5 mg/m(3), short-term exposure limit ; 15 mg/m(3)) has been applied to MWF aerosols without consideration of different fluid aerosol-size fractions. The OEL, is also based on the assumption that there are no significant differences in risk among fluid types, which may be contentious. Particularly, the health risks from exposure to water-soluble fluids may not have been sufficiently considered. Although adoption of The National Institute for Occupational Safety and Health's recommended exposure limit for MWF aerosol (0.5 mg/m(3)) would be an effective step towards minimizing and evaluating the upper respiratory irritation that may be caused by neat or diluted MWF, this would fail to address the hazards (e.g., asthma and hypersensitivity pneumonitis) caused by microbial contaminants generated only by the use of water-soluble fluids. The absence of an OEL for the water-soluble fluids used in approximately 80-90 % of all applicants may result in limitations of the protection from health risks caused by exposure to those fluids. PMID:22953224

  2. The Occupational Exposure Limit for Fluid Aerosol Generated in Metalworking Operations: Limitations and Recommendations

    PubMed Central

    2012-01-01

    The aim of this review was to assess current knowledge related to the occupational exposure limit (OEL) for fluid aerosols including either mineral or chemical oil that are generated in metalworking operations, and to discuss whether their OEL can be appropriately used to prevent several health risks that may vary among metalworking fluid (MWF) types. The OEL (time-weighted average; 5 mg/m3, short-term exposure limit ; 15 mg/m3) has been applied to MWF aerosols without consideration of different fluid aerosol-size fractions. The OEL, is also based on the assumption that there are no significant differences in risk among fluid types, which may be contentious. Particularly, the health risks from exposure to water-soluble fluids may not have been sufficiently considered. Although adoption of The National Institute for Occupational Safety and Health's recommended exposure limit for MWF aerosol (0.5 mg/m3) would be an effective step towards minimizing and evaluating the upper respiratory irritation that may be caused by neat or diluted MWF, this would fail to address the hazards (e.g., asthma and hypersensitivity pneumonitis) caused by microbial contaminants generated only by the use of water-soluble fluids. The absence of an OEL for the water-soluble fluids used in approximately 80-90 % of all applicants may result in limitations of the protection from health risks caused by exposure to those fluids. PMID:22953224

  3. 47 CFR 1.1310 - Radiofrequency radiation exposure limits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... frequency range from 100 MHz to 1500 MHz, exposure limits for field strength and power density are also...) Frequency range(MHz) Electric field strength(V/m) Magnetic field strength(A/m) Power density(mW/cm2...-300 27.5 0.073 0.2 30 300-1500 f/1500 30 1500-100,000 1.0 30 f = frequency in MHz * =...

  4. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing - Part 2

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerome C.; Kolody, Mark R.

    2012-01-01

    Evaluation of metals to predict service life of metal-based structures in corrosive environments has long relied on atmospheric exposure test sites. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions similar to those of the corrosive environment. Their reliability to correlate to atmospheric exposure test results is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated corrosion testing has yet to be universally accepted as a useful tool in predicting the long-term service life of a metal, despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard, and their use is crucial, a method that correlates timescales from accelerated testing to atmospheric exposure would be very valuable. This paper presents work that began with the characterization of the atmospheric environment at the Kennedy Space Center (KSC) Beachside Corrosion Test Site. The chemical changes that occur on low carbon steel, during atmospheric and accelerated corrosion conditions, were investigated using surface chemistry analytical methods. The corrosion rates and behaviors of panels subjected to long-term and accelerated corrosion conditions, involving neutral salt fog and alternating seawater spray, were compared to identify possible timescale correlations between accelerated and long-term corrosion performance. The results, as well as preliminary findings on the correlation investigation, are presented.

  5. An overview of occupational benzene exposures and occupational exposure limits in Europe and North America.

    PubMed

    Capleton, Alexander C; Levy, Leonard S

    2005-05-30

    Benzene has become one of the most intensely regulated substances in the world. Its ubiquitous use as a solvent has led to many working populations being exposed; in the early days often in uncontrolled conditions, leading to high exposures. Current occupational exposures are tightly controlled and are largely confined to workers in the petrochemical industry, vehicle mechanics, firefighters, workers exposed to automobile emissions, and some other occupational groups. Typically, occupational exposure levels are currently at or below 3.25 mg/m3 (1 ppm), and environmental exposures are typically below 50 microg/m3 (15 ppb). Smoking remains a significant source of exposure in both occupationally and non-occupationally exposed individuals. The early experiences of high occupational exposures led to the identification of haematopoietic effects of benzene and the need for improved control and regulation. As with most occupational standards, there has been a reduction in exposure limits as effects have been identified at ever-lower levels, accompanied by a societal concern for improved standards of occupational health. In 1946, the United States occupational exposure limit for benzene, promulgated by the American Conference of Governmental Industrial Hygienists, was 325 mg/m3 (100 ppm), but nowadays most European and North American countries have harmonised at 1.63-3.25mg/m3 (0.5-1 ppm). This latter figure was agreed within the European Union in 1997 and was adopted within national legislation by all Member States. The data on which this limit is set are essentially the same as those used by other standard-setting committees; this is an excellent example of how standards are set using science, pragmatism and societal values in the absence of complete information. PMID:15935799

  6. Strategies for setting occupational exposure limits for particles.

    PubMed Central

    Greim, H A; Ziegler-Skylakakis, K

    1997-01-01

    To set occupational exposure limits (OELs) for aerosol particles, dusts, or chemicals, one has to evaluate whether mechanistic considerations permit identification of a no observed effect level (NOEL). In the case of carcinogenic effects, this can be assumed if no genotoxicity is involved, and exposure is considered safe if it does not exceed the NOEL. If tumor induction is associated with genotoxicity, any exposure is considered to be of risk, although a NOEL may be identified in the animal or human exposure studies. This must also be assumed when no information on the carcinogenic mechanism, including genotoxicity, is available. Aerosol particles, especially fibrous dusts, which include man-made mineral fiber(s) (MMMF), present a challenge for toxicological evaluation. Many MMMF that have been investigated have induced tumors in animals and genotoxicity in vitro. Since these effects have been associated with long-thin fiber geometry and high durability in vivo, all fibers meeting such criteria are considered carcinogenic unless the opposite has been demonstrated. This approach is practicable. Investigations on fiber tumorigenicity/genotoxicity should include information on dose response, pathobiochemistry, particle clearance, and persistence of the material in the target organ. Such information will introduce quantitative aspects into the qualitative approach that has so far been used to classify fibrous dusts as carcinogens. The rationales for classifying the potential carcinogenicity of MMMF and for setting OELs used by the different European committees and regulatory agencies are described. PMID:9400750

  7. Limiting electron beam current for cyclic induction acceleration in a constant guide field

    SciTech Connect

    Kanunnikov, V.N.

    1982-09-01

    Theoretical relations are derived for the limiting beam current in a cyclic induction accelerator (CIA) with a constant guide field. The calculations are in agreement with the available experimental data. It is shown that the limiting average beam current in a CIA is of the order of 100 microamperes, i.e., the level attained in microtrons and linear accelerators. The CIA may find industrial applications.

  8. Scalar speed limits and cosmology: Acceleration from D-cceleration

    SciTech Connect

    Silverstein, Eva

    2004-11-15

    Causality on the gravity side of the AdS/CFT correspondence restricts motion on the moduli space of the N=4 super Yang-Mills theory by imposing a speed limit on how fast the scalar field may roll. This effect can be traced to higher-derivative operators arising from integrating out light degrees of freedom near the origin. In the strong coupling limit of the theory, the dynamics is well approximated by the Dirac-Born-Infeld Lagrangian for a probe D3-brane moving toward the horizon of the AdS Poincare patch, combined with an estimate of the (ultimately suppressed) rate of particle and string production in the system. We analyze the motion of a rolling scalar field explicitly in the strong coupling regime of the field theory and extend the analysis to cosmological systems obtained by coupling this type of field theory to four-dimensional gravity. This leads to a mechanism for slow roll inflation for a massive scalar at sub-Planckian vacuum expectation value without need for a flat potential (realizing a version of k inflation in a microphysical framework). It also leads to a variety of novel Friedman-Roberston-Walker cosmologies, some of which are related to those obtained with tachyon matter.

  9. Earlier speech exposure does not accelerate speech acquisition.

    PubMed

    Peña, Marcela; Werker, Janet F; Dehaene-Lambertz, Ghislaine

    2012-08-15

    Critical periods in language acquisition have been discussed primarily with reference to studies of people who are deaf or bilingual. Here, we provide evidence on the opening of sensitivity to the linguistic environment by studying the response to a change of phoneme at a native and nonnative phonetic boundary in full-term and preterm human infants using event-related potentials. Full-term infants show a decline in their discrimination of nonnative phonetic contrasts between 9 and 12 months of age. Because the womb is a high-frequency filter, many phonemes are strongly degraded in utero. Preterm infants thus benefit from earlier and richer exposure to broadcast speech. We find that preterms do not take advantage of this enriched linguistic environment: the decrease in amplitude of the mismatch response to a nonnative change of phoneme at the end of the first year of life was dependent on maturational age and not on the duration of exposure to broadcast speech. The shaping of phonological representations by the environment is thus strongly constrained by brain maturation factors.

  10. The Challenges of Limiting Exposure to THS in Vulnerable Populations.

    PubMed

    Samet, Jonathan M; Chanson, Dayana; Wipfli, Heather

    2015-09-01

    Research on active smoking and secondhand smoke exposure has led to policy changes to protect individuals from the adverse health impacts of tobacco smoke. Despite the extensive literature on tobacco, only recently has there been recognition that long-lived tobacco smoke components (known as "thirdhand smoke" or THS) in indoor environments where smoking has taken place may have adverse health consequences. This paper describes THS and addresses the challenges of limiting exposure to THS in vulnerable populations (e.g., nonsmokers and young children). We conducted a limited survey of key stakeholders in the Los Angeles area to better understand approaches to address THS in the real estate and automobile industries. Most respondents indicated concerns about past smoking for property value and reported using various techniques to eliminate THS. We consider examples of other pollutants as case studies, including radon, asbestos, and lead, to help frame policy directions for THS. Based on the information collected from stakeholders and the case studies, we offer policy approaches to managing THS. PMID:26231499

  11. Development of occupational exposure limits for the Hanford tank farms.

    PubMed

    Still, Kenneth R; Gardner, Donald E; Snyder, Robert; Anderson, Thomas J; Honeyman, James O; Timchalk, Charles

    2010-04-01

    Production of plutonium for the United States' nuclear weapons program from the 1940s to the 1980s generated 53 million gallons of radioactive chemical waste, which is stored in 177 underground tanks at the Hanford site in southeastern Washington State. Recent attempts to begin the retrieval and treatment of these wastes require moving the waste to more modern tanks and result in potential exposure of the workers to unfamiliar odors emanating from headspace in the tanks. Given the unknown risks involved, workers were placed on supplied air respiratory protection. CH2MHILL, the managers of the Hanford site tank farms, asked an Independent Toxicology Panel (ITP) to assist them in issues relating to an industrial hygiene and risk assessment problem. The ITP was called upon to help determine the risk of exposure to vapors from the tanks, and in general develop a strategy for solution of the problem. This paper presents the methods used to determine the chemicals of potential concern (COPCs) and the resultant development of screening values and Acceptable Occupational Exposure Limits (AOELs) for these COPCs. A total of 1826 chemicals were inventoried and evaluated. Over 1500 chemicals were identified in the waste tanks headspaces and more than 600 of these were assigned screening values; 72 of these compounds were recommended for AOEL development. Included in this list of 72 were 57 COPCs identified by the ITP and of these 47 were subsequently assigned AOELs. An exhaustive exposure assessment strategy was developed by the CH2MHILL industrial hygiene department to evaluate these COPCs. PMID:20180654

  12. Airborne isocyanate exposures in the collision repair industry and a comparison to occupational exposure limits.

    PubMed

    Reeb-Whitaker, Carolyn; Whittaker, Stephen G; Ceballos, Diana M; Weiland, Elisa C; Flack, Sheila L; Fent, Kenneth W; Thomasen, Jennifer M; Trelles Gaines, Linda G; Nylander-French, Leena A

    2012-01-01

    Isocyanate exposure was evaluated in 33 spray painters from 25 Washington State autobody shops. Personal breathing zone samples (n = 228) were analyzed for isophorone diisocyanate (IPDI) monomer, 1,6-hexamethylene diisocyanate (HDI) monomer, IPDI polyisocyanate, and three polyisocyanate forms of HDI. The objective was to describe exposures to isocyanates while spray painting, compare them with short-term exposure limits (STELs), and describe the isocyanate composition in the samples. The composition of polyisocyanates (IPDI and HDI) in the samples varied greatly, with maximum amounts ranging from up to 58% for HDI biuret to 96% for HDI isocyanurate. There was a significant inverse relationship between the percentage composition of HDI isocyanurate to IPDI and to HDI uretdione. Two 15-min STELs were compared: (1) Oregon's Occupational Safety and Health Administration (OR-OSHA) STEL of 1000 μg/m(3) for HDI polyisocyanate, and (2) the United Kingdom's Health and Safety Executive (UK-HSE) STEL of 70 μg NCO/m(3) for all isocyanates. Eighty percent of samples containing HDI polyisocyanate exceeded the OR-OSHA STEL while 98% of samples exceeded the UK-HSE STEL. The majority of painters (67%) wore half-face air-purifying respirators while spray painting. Using the OR-OSHA and the UK-HSE STELs as benchmarks, 21% and 67% of painters, respectively, had at least one exposure that exceeded the respirator's OSHA-assigned protection factor. A critical review of the STELs revealed the following limitations: (1) the OR-OSHA STEL does not include all polyisocyanates, and (2) the UK-HSE STEL is derived from monomeric isocyanates, whereas the species present in typical spray coatings are polyisocyanates. In conclusion, the variable mixtures of isocyanates used by autobody painters suggest that an occupational exposure limit is required that includes all polyisocyanates. Despite the limitations of the STELs, we determined that a respirator with an assigned protection factor of 25 or

  13. Airborne Isocyanate Exposures in the Collision Repair Industry and a Comparison to Occupational Exposure Limits

    PubMed Central

    Reeb-Whitaker, Carolyn; Whittaker, Stephen G.; Ceballos, Diana M.; Weiland, Elisa C.; Flack, Sheila L.; Fent, Kenneth W.; Thomasen, Jennifer M.; Gaines, Linda G. Trelles; Nylander-French, Leena A.

    2014-01-01

    Isocyanate exposure was evaluated in 33 spray painters from 25 Washington State autobody shops. Personal breathing zone samples (n = 228) were analyzed for isophorone diisocyanate (IPDI) monomer, 1,6-hexamethylene diisocyanate (HDI) monomer, IPDI polyisocyanate, and three polyisocyanate forms of HDI. The objective was to describe exposures to isocyanates while spray painting, compare them with short-term exposure limits (STELs), and describe the isocyanate composition in the samples. The composition of polyisocyanates (IPDI and HDI) in the samples varied greatly, with maximum amounts ranging from up to 58% for HDI biuret to 96% for HDI isocyanurate. There was a significant inverse relationship between the percentage composition of HDI isocyanurate to IPDI and to HDI uretdione. Two 15-min STELs were compared: (1) Oregon's Occupational Safety and Health Administration (OR-OSHA) STEL of 1000 μg/m3 for HDI polyisocyanate, and (2) the United Kingdom's Health and Safety Executive (UK-HSE) STEL of 70 μg NCO/m3 for all isocyanates. Eighty percent of samples containing HDI polyisocyanate exceeded the OR-OSHA STEL while 98% of samples exceeded the UKHSE STEL. The majority of painters (67%) wore half-face air-purifying respirators while spray painting. Using the OROSHA and the UK-HSE STELs as benchmarks, 21% and 67% of painters, respectively, had at least one exposure that exceeded the respirator's OSHA-assigned protection factor. A critical review of the STELs revealed the following limitations: (1) the OR-OSHA STEL does not include all polyisocyanates, and (2) the UK-HSE STEL is derived from monomeric isocyanates, whereas the species present in typical spray coatings are polyisocyanates. In conclusion, the variable mixtures of isocyanates used by autobody painters suggest that an occupational exposure limit is required that includes all polyisocyanates. Despite the limitations of the STELs, we determined that a respirator with an assigned protection factor of 25 or

  14. The Limited Impact of Exposure Duration on Holistic Word Processing.

    PubMed

    Chen, Changming; Abbasi, Najam Ul Hasan; Song, Shuang; Chen, Jie; Li, Hong

    2016-01-01

    The current study explored the impact of stimuli exposure duration on holistic word processing measured by the complete composite paradigm (CPc paradigm). The participants were asked to match the cued target parts of two characters which were presented for either a long (600 ms) or a short duration (170 ms). They were also tested by two popular versions of the CPc paradigm: the "early-fixed" task where the attention cue was visible from the beginning of each trial at a fixed position, and the "delayed-random" task where the cue showed up after the study character at random locations. The holistic word effect, as indexed by the alignment × congruency interaction, was identified in both tasks and was unaffected by the stimuli duration in both tasks. Meanwhile, the "delayed-random" task did not bring about larger holistic word effect than the "early-fixed" task. These results suggest the exposure duration (from around 150 to 600 ms) has a limited impact on the holistic word effect, and have methodological implications for experiment designs in this field. PMID:27375504

  15. The Limited Impact of Exposure Duration on Holistic Word Processing.

    PubMed

    Chen, Changming; Abbasi, Najam Ul Hasan; Song, Shuang; Chen, Jie; Li, Hong

    2016-01-01

    The current study explored the impact of stimuli exposure duration on holistic word processing measured by the complete composite paradigm (CPc paradigm). The participants were asked to match the cued target parts of two characters which were presented for either a long (600 ms) or a short duration (170 ms). They were also tested by two popular versions of the CPc paradigm: the "early-fixed" task where the attention cue was visible from the beginning of each trial at a fixed position, and the "delayed-random" task where the cue showed up after the study character at random locations. The holistic word effect, as indexed by the alignment × congruency interaction, was identified in both tasks and was unaffected by the stimuli duration in both tasks. Meanwhile, the "delayed-random" task did not bring about larger holistic word effect than the "early-fixed" task. These results suggest the exposure duration (from around 150 to 600 ms) has a limited impact on the holistic word effect, and have methodological implications for experiment designs in this field.

  16. Awareness and understanding of occupational exposure limits in Sweden.

    PubMed

    Schenk, Linda

    2013-04-01

    The efficiency of a risk management tool, such as occupational exposure limits (OELs), partly depends on the responsible parties' awareness and understanding of it. The aim of this study was to measure the awareness and understanding of OELs at Swedish workplaces and to collect opinions on their use and function. Through a web-based questionnaire targeting workers that are exposed to air pollutants or chemicals, and persons working with occupational health and safety or in management at workplaces where workers are exposed to air pollutants or chemicals 1017 responses were collected. The results show that awareness and understanding of Swedish OELs is low among workers, as well as managers and occupational health and safety employees. Statistically significant, but small, differences were found depending on the size of the company and the position in the company. Based on the results, it is recommended that authorities and the social partners target this lack of awareness and understanding regarding OELs. Also, other tools to ascertain a safe working environment with regards to chemicals exposure might be useful for Swedish workplaces.

  17. The Limited Impact of Exposure Duration on Holistic Word Processing

    PubMed Central

    Chen, Changming; Abbasi, Najam ul Hasan; Song, Shuang; Chen, Jie; Li, Hong

    2016-01-01

    The current study explored the impact of stimuli exposure duration on holistic word processing measured by the complete composite paradigm (CPc paradigm). The participants were asked to match the cued target parts of two characters which were presented for either a long (600 ms) or a short duration (170 ms). They were also tested by two popular versions of the CPc paradigm: the “early-fixed” task where the attention cue was visible from the beginning of each trial at a fixed position, and the “delayed-random” task where the cue showed up after the study character at random locations. The holistic word effect, as indexed by the alignment × congruency interaction, was identified in both tasks and was unaffected by the stimuli duration in both tasks. Meanwhile, the “delayed-random” task did not bring about larger holistic word effect than the “early-fixed” task. These results suggest the exposure duration (from around 150 to 600 ms) has a limited impact on the holistic word effect, and have methodological implications for experiment designs in this field. PMID:27375504

  18. Human exposure to airborne aniline and formation of methemoglobin: a contribution to occupational exposure limits.

    PubMed

    Käfferlein, Heiko Udo; Broding, Horst Christoph; Bünger, Jürgen; Jettkant, Birger; Koslitz, Stephan; Lehnert, Martin; Marek, Eike Maximilian; Blaszkewicz, Meinolf; Monsé, Christian; Weiss, Tobias; Brüning, Thomas

    2014-07-01

    Aniline is an important starting material in the manufacture of polyurethane-based plastic materials. Aniline-derived methemoglobinemia (Met-Hb) is well described in exposed workers although information on the dose-response association is limited. We used an experimental design to study the association between aniline in air with the formation of Met-Hb in blood and the elimination of aniline in urine. A 6-h exposure of 2 ppm aniline in 19 non-smoking volunteers resulted in a time-dependent increase in Met-Hb in blood and aniline in urine. The maximum Met-Hb level in blood (mean 1.21 ± 0.29 %, range 0.80-2.07 %) and aniline excretion in urine (mean 168.0 ± 51.8 µg/L, range 79.5-418.3 µg/L) were observed at the end of exposure, with both parameters rapidly decreasing after the end of exposure. After 24 h, the mean level of Met-Hb (0.65 ± 0.18 %) returned to the basal level observed prior to the exposure (0.72 ± 0.19 %); whereas, slightly elevated levels of aniline were still present in urine (means 17.0 ± 17.1 vs. 5.7 ± 3.8 µg/L). No differences between males and females as well as between slow and fast acetylators were found. The results obtained after 6-h exposure were also comparable to those observed in four non-smoking volunteers after 8-h exposure. Maximum levels of Met-Hb and aniline in urine were 1.57 % and 305.6 µg/L, respectively. Overall, our results contribute to the risk assessment of aniline and as a result, the protection of workers from aniline-derived adverse health effects at the workplace.

  19. Human exposure to airborne aniline and formation of methemoglobin: a contribution to occupational exposure limits.

    PubMed

    Käfferlein, Heiko Udo; Broding, Horst Christoph; Bünger, Jürgen; Jettkant, Birger; Koslitz, Stephan; Lehnert, Martin; Marek, Eike Maximilian; Blaszkewicz, Meinolf; Monsé, Christian; Weiss, Tobias; Brüning, Thomas

    2014-07-01

    Aniline is an important starting material in the manufacture of polyurethane-based plastic materials. Aniline-derived methemoglobinemia (Met-Hb) is well described in exposed workers although information on the dose-response association is limited. We used an experimental design to study the association between aniline in air with the formation of Met-Hb in blood and the elimination of aniline in urine. A 6-h exposure of 2 ppm aniline in 19 non-smoking volunteers resulted in a time-dependent increase in Met-Hb in blood and aniline in urine. The maximum Met-Hb level in blood (mean 1.21 ± 0.29 %, range 0.80-2.07 %) and aniline excretion in urine (mean 168.0 ± 51.8 µg/L, range 79.5-418.3 µg/L) were observed at the end of exposure, with both parameters rapidly decreasing after the end of exposure. After 24 h, the mean level of Met-Hb (0.65 ± 0.18 %) returned to the basal level observed prior to the exposure (0.72 ± 0.19 %); whereas, slightly elevated levels of aniline were still present in urine (means 17.0 ± 17.1 vs. 5.7 ± 3.8 µg/L). No differences between males and females as well as between slow and fast acetylators were found. The results obtained after 6-h exposure were also comparable to those observed in four non-smoking volunteers after 8-h exposure. Maximum levels of Met-Hb and aniline in urine were 1.57 % and 305.6 µg/L, respectively. Overall, our results contribute to the risk assessment of aniline and as a result, the protection of workers from aniline-derived adverse health effects at the workplace. PMID:24899222

  20. Theory of factors limiting high gradient operation of warm accelerating structures

    SciTech Connect

    Nusinovich, Gregory S.

    2014-07-22

    This report consists of two parts. In the first part we describe a study of the heating of microprotrusions on surfaces of accelerating structures. This ;process is believed to lead to breakdown in these structures. Our study revealed that for current accelerator parameters melting should not occur due to space charge limitations of the current emitted by a protrusion. The second part describes a novel concept to develop THz range sources based on harmonic cyclotron masers for driving future colliders. This work was stimulated by a recent request of SLAC to develop high power, high-efficiency sources of sub-THz radiation for future high-gradient accelerators.

  1. Preliminary results of accelerated exposure testing of solar cell system components

    NASA Technical Reports Server (NTRS)

    Anagnostou, E.; Forestieri, A. F.

    1977-01-01

    Plastic samples and solar cell sub modules were exposed to an accelerated outdoor environment in Arizona and an accelerated simulated environment in a cyclic ultraviolet exposure tester which included humidity exposure. These tests were for preliminary screening of materials suitable for use in the manufacture of solar cell modules which are to have a 20-year lifetime. The samples were exposed for various times up to six months, equivalent to a real time exposure of four years. Suitable materials were found to be FEP-A, FEP-C, PFA, acrylic, silicone compounds and adhesives and possibly parylene. The method of packaging the sub modules was also found to be important to their performance.

  2. Quantify landslide exposure in areas with limited hazard information

    NASA Astrophysics Data System (ADS)

    Pellicani, R.; Spilotro, G.; Van Westen, C. J.

    2012-04-01

    In Daunia region, located in the North-western part of Apulia (Southern Italy), landslides are the main source of damage to properties in the urban centers of the area, involving especially transportation system and the foundation stability of buildings. In the last 50 years, the growing demand for physical development of these unstable minor hillside and mountain centers has produced a very rapid expansion of built-up areas, often with poor planning of urban and territorial infrastructures, and invasion of the agricultural soil. Because of the expansion of the built-up towards not safe areas, human activities such as deforestation or excavation of slopes for road cuts and building sites, etc., have become important triggers for landslide occurrence. In the study area, the probability of occurrence of landslides is very difficult to predict, as well as the expected magnitude of events, due to the limited data availability on past landslide activity. Because the main limitations concern the availability of temporal data on landslides and triggering events (frequency), run-out distance and landslide magnitude, it was not possible to produce a reliable landslide hazard map and, consequently, a risk map. Given these limitations in data availability and details, a qualitative exposure map has been produced and combined with a landslide susceptibility map, both generated using a spatial multi-criteria evaluation (SMCE) procedure in a GIS system, for obtaining the qualitative landslide risk map. The qualitative analysis has been provided the spatial distribution of the exposure level in the study area; this information could be used in a preliminary stage of regional planning. In order to have a better definition of the risk level in the Daunia territory, the quantification of the economic losses at municipal level was carried out. For transforming these information on economic consequences into landslide risk quantification, it was necessary to assume the temporal

  3. The Global Landscape of Occupational Exposure Limits--Implementation of Harmonization Principles to Guide Limit Selection.

    PubMed

    Deveau, M; Chen, C-P; Johanson, G; Krewski, D; Maier, A; Niven, K J; Ripple, S; Schulte, P A; Silk, J; Urbanus, J H; Zalk, D M; Niemeier, R W

    2015-01-01

    Occupational exposure limits (OELs) serve as health-based benchmarks against which measured or estimated workplace exposures can be compared. In the years since the introduction of OELs to public health practice, both developed and developing countries have established processes for deriving, setting, and using OELs to protect workers exposed to hazardous chemicals. These processes vary widely, however, and have thus resulted in a confusing international landscape for identifying and applying such limits in workplaces. The occupational hygienist will encounter significant overlap in coverage among organizations for many chemicals, while other important chemicals have OELs developed by few, if any, organizations. Where multiple organizations have published an OEL, the derived value often varies considerably-reflecting differences in both risk policy and risk assessment methodology as well as access to available pertinent data. This article explores the underlying reasons for variability in OELs, and recommends the harmonization of risk-based methods used by OEL-deriving organizations. A framework is also proposed for the identification and systematic evaluation of OEL resources, which occupational hygienists can use to support risk characterization and risk management decisions in situations where multiple potentially relevant OELs exist.

  4. Adjusting exposure limits for long and short exposure periods using a physiological pharmacokinetic model

    SciTech Connect

    Andersen, M.E.; MacNaughton, M.G.; Clewell, H.J. III; Paustenbach, D.J.

    1987-04-01

    This paper advocates use of a physiologically-based pharmacokinetic (PB-PK) model for determining adjustment factors for unusual exposure schedules. The PB-PK model requires data on the blood:air and tissue:blood partition coefficients, the rate of metabolism of the chemical, organ volumes, organ blood flows and ventilation rates in humans. Laboratory data on two industrially important chemicals - styrene and methylene chloride - were used to illustrate the PB-PK approach. At inhaled concentrations near their respective 8-hr Threshold Limit Value - Time-weighted averages both of these chemicals are primarily eliminated from the body by metabolism. For these two chemicals, the appropriate risk indexing parameters are integrated tissue dose or total amount of parent chemical metabolized. These examples also illustrate how the model can be used to calculate risk based on various other measures of delivered dose. For the majority of volatile chemicals, the parameter most closely associated with risk is the integrated tissue dose. This analysis suggests that when pharmacokinetic data are not available, a simple inverse formula may be sufficient for adjustment in most instances and application of complex kinetic models unnecessary. At present, this PB-PK approach is recommended only for exposure periods of 4 to 16 hr/day, because the mechanisms of toxicity for some chemicals may vary for very short- or very long-term exposures. For these altered schedules, more biological information on recovery in rest periods and changing mechanisms of toxicity are necessary before any adjustment is attempted.

  5. Limits of fetal thyroid risk from radioiodine exposure

    SciTech Connect

    Lloyd, R.D.; Tripp, D.A.; Kerber, R.A.

    1996-04-01

    An incident in which a young women became pregnant soon after being treated with 444 MBq {sup 131}I for Graves disease prompted us to search local records for the occurrence of thyroid abnormalities among people exposed in utero to fallout radioiodine. The data base from the Utah Fallout Study indicated that there had been 480 cohort subjects for whom dose to thyroid from fallout radioiodine had been calculated and who could have received any thyroid dose before birth (2473 subjects had been re-examined in 1985-86 of the 4818 examined in 1965-70). Of these 480 subjects in this category, 403 of them could be located in the 1980`s and were examined for abnormalities. Although nodules, thyroiditis, hypothyroidism and goiter were seen among the 375 persons with in utero thyroid doses from fallout radioiodine below 0.42 Gy, no thyroid abnormalities of any kind occurred in the 4 persons with in utero thyroid doses of 0.5 to 2.6 Gy. In addition, no neoplasia was found in any of the 403 subjects examined about 3 decades after in utero fallout exposure. These limited data do not indicate that the fetal thyroid is more sensitive than the postnatal thyroid by more than about a factor of about 4 when thyroid dose is considered and by not much more than unity when the comparison is based on dose equivalent (x-ray vs. radioiodine). 21 refs., 1 tab.

  6. Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude

    DOEpatents

    Bogaty, John M.; Clifft, Benny E.; Bollinger, Lowell M.

    1995-01-01

    A beam current limiter for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity.

  7. Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude

    DOEpatents

    Bogaty, J.M.; Clifft, B.E.; Bollinger, L.M.

    1995-08-08

    A beam current limiter is disclosed for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity. 6 figs.

  8. Count rate limitations for pulse-counting instrumentation in pulsed accelerator fields.

    PubMed

    Justus, Alan L

    2012-01-01

    This paper discusses various concepts involved in the counting losses of pulse-counting health physics instrumentation when used within the pulsed radiation environments of typical accelerator fields in order to preestablish appropriate limitations in use. Discussed are the "narrow" pulse and the "wide" pulse cases, the special effect of neutron moderating assemblies, and the effect of pulse fine microstructure on the counting losses of the pulse-counting instrumentation. In the narrow-pulse case, the accelerator pulse width is less than or equal to the instrument's dead time; whereas in the wide-pulse case, the accelerator pulse width is significantly longer than the instrument's dead time. Examples are provided that highlight the various concepts and limitations.

  9. Correlating outdoor exposure with accelerated aging tests for aluminum solar reflectors

    NASA Astrophysics Data System (ADS)

    Wette, Johannes; Sutter, Florian; Fernández-García, Aránzazu

    2016-05-01

    Guaranteeing the durability of concentrated solar power (CSP) components is crucial for the success of the technology. The reflectors of the solar field are a key component of CSP plants, requiring reliable methods for service lifetime prediction. So far, no proven correlations exist to relate accelerated aging test results in climate chambers with relevant CSP exposure sites. In this work, correlations have been derived for selected testing conditions that excite the same degradation mechanisms as for outdoor exposure. Those testing conditions have been identified by performing an extensive microscopic comparison of the appearing degradation mechanisms on reference samples that have been weathered outdoors with samples that underwent a high variety of accelerated aging experiments. The herein developed methodology is derived for aluminum reflectors and future work will study its applicability to silvered-glass mirrors.

  10. Accelerating the Early Numeracy Development of Kindergartners with Limited Working Memory Skills through Remedial Education

    ERIC Educational Resources Information Center

    Toll, Sylke W. M.; Van Luit, Johannes E. H.

    2013-01-01

    Background: Young children with limited working memory skills are a special interest group among all children that score below average on early numeracy tests. This study examines the effect of accelerating the early numeracy development of these children through remedial education, by comparing them with children with typically working memory…

  11. Exposure to light at night accelerates aging and spontaneous uterine carcinogenesis in female 129/Sv mice

    PubMed Central

    Popovich, Irina G.; Zabezhinski, Mark A.; Panchenko, Andrei V.; Piskunova, Tatiana S.; Semenchenko, Anna V.; Tyndyk, Maragriata L.; Yurova, Maria N.; Anisimov, Vladimir N.

    2013-01-01

    The effect of the constant illumination on the development of spontaneous tumors in female 129/Sv mice was investigated. Forty-six female 129/Sv mice starting from the age of 2 mo were kept under standard light/dark regimen [12 h light (70 lx):12hr dark; LD, control group], and 46 of 129/Sv mice were kept under constant illumination (24 h a day, 2,500 lx, LL) from the age of 5 mo until to natural death. The exposure to the LL regimen significantly accelerated body weight gain, increased body temperature as well as acceleration of age-related disturbances in estrous function, followed by significant acceleration of the development of the spontaneous uterine tumors in female 129/Sv mice. Total tumor incidence as well as a total number of total or malignant tumors was similar in LL and LD group (p > 0.05). The mice from the LL groups survived less than those from the LD group (χ2 = 8.5; p = 0.00351, log-rank test). According to the estimated parameters of the Cox’s regression model, constant light regimen increased the relative risk of death in female mice compared with the control (LD) group (p = 0.0041). The data demonstrate in the first time that the exposure to constant illumination was followed by the acceleration of aging and spontaneous uterine tumorigenesis in female 129/Sv mice. PMID:23656779

  12. Performance Degradation of Encapsulated Monocrystalline-Si Solar Cells upon Accelerated Weathering Exposures: Preprint

    SciTech Connect

    Glick, S. H.; Pern, F. J.; Watson, G. L.; Tomek, D.; Raaff, J.

    2001-10-01

    Presented at 2001 NCPV Program Review Meeting: Performed accelerated exposures to study performance reliability/materials degradation of encapsulated c-Si cells using weathering protocols in 2 weatherometers. We have performed accelerated exposures to study performance reliability and materials degradation of a total of forty-one 3-cm x 3-cm monocrystalline-Si (c-Si) solar cells that were variously encapsulated using accelerated weathering protocols in two weatherometers (WOMs), with and without front specimen water sprays. Laminated cells (EVA/c-Si/EVA, ethylene vinyl acetate) with one of five superstrate/substrate variations and other features including with and without: (i) load resistance, (ii) Al foil light masks, and (iii) epoxy edge-sealing were studied. Three additional samples, omitting EVA, were exposed under a full-spectrum solar simulator, or heated in an oven, for comparison. After exposures, cell performance decreased irregularly, but to a relatively greater extent for samples exposed in WOM where light, heat, and humidity cycles were present (solar simulator or oven lacked such cycles). EVA laminates in the samples masked with aluminum (Al) foils were observed to retain moisture in WOM with water spray. Moisture effects caused substantial efficiency losses probably related in part to increasing series resistance.

  13. Bisphenol A exposure accelerated the aging process in the nematode Caenorhabditis elegans.

    PubMed

    Tan, Ling; Wang, Shunchang; Wang, Yun; He, Mei; Liu, Dahai

    2015-06-01

    Bisphenol A (BPA) is a well-known environmental estrogenic disruptor that causes adverse effects. Recent studies have found that chronic exposure to BPA is associated with a high incidence of several age-related diseases. Aging is characterized by progressive function decline, which affects quality of life. However, the effects of BPA on the aging process are largely unknown. In the present study, by using the nematode Caenorhabditis elegans as a model, we investigated the influence of BPA exposure on the aging process. The decrease in body length, fecundity, and population size and the increased egg laying defection suggested that BPA exposure resulted in fitness loss and reproduction aging in this animal. Lifetime exposure of worms to BPA shortened the lifespan in a dose-dependant manner. Moreover, prolonged BPA exposure resulted in age-related behavior degeneration and the accumulation of lipofuscin and lipid peroxide products. The expression of mitochondria-specific HSP-6 and endoplasmic reticulum (ER)-related HSP-70 exhibited hormetic decrease. The expression of ER-related HSP-4 decreased significantly while HSP-16.2 showed a dose-dependent increase. The decreased expression of GCS-1 and GST-4 implicated the reduced antioxidant ability under BPA exposure, and the increase in SOD-3 expression might be caused by elevated levels of reactive oxygen species (ROS) production. Finally, BPA exposure increased the generation of hydrogen peroxide-related ROS and superoxide anions. Our results suggest that BPA exposure resulted in an accelerated aging process in C. elegans mediated by the induction of oxidative stress.

  14. Prognostic evaluation of spinal microlesions under exposure of longitudinal blow accelerations of prolonged action.

    PubMed

    Mazurin YuV; Stupakov, G P

    1995-01-01

    The performed experimental investigations were aimed at qualitative and approximate quantitative estimation of parameters of cumulated microtraumatic destructions in spine, leading to its lowered bearing capabilities under prolonged loading with compressing exposures corresponding to high levelled maneuverable accelerations, which exceed 5 G and onset rates 10 G/s and more. Process of microlesions in bone tissues of vertebral bodies at this range of accelerations is not still sufficiently studied. Practical importance of these effects has close relation as to problem of high intensity flight maneuvering accelerations with onset rates up to 10 G/s and higher as well as to estimation if impact acceleration tolerance in ejection event with controllable flightpath of kicked out capatult seat. The data, received in natural experiments on spinal segments T11-L3 with fixation of acoustical emission signals (AES), suggest that stage of minor lesion of vertebral bodies (the first degree of severity), characterizing by avalanche-like increment of acoustical emission signals and starting point of specific crack in loading flow chart, may be pertained as having fragile character. PMID:11538944

  15. Safe human exposure limits for airborne linear siloxanes during spaceflight

    PubMed Central

    García, Hector D.; McMullin, Tami S.; Tobin, Joseph M.; James, John T.

    2013-01-01

    Background Low molecular weight siloxanes are used in industrial processes and consumer products, and their vapors have been detected in the atmospheres of the Space Shuttle and International Space Station. Therefore, the National Aeronautics and Space Administration (NASA) developed spacecraft maximum allowable concentrations (SMACs) for siloxane vapors to protect astronaut health. Since publication of these original SMACs, new studies and new risk assessment approaches have been published that warrant re-examination of the SMACs. Objective To reevaluate SMACs published for octamethyltrisiloxane (L3) for exposures ranging from 1 hour to 180 days, to develop a 1000-day SMAC, and to expand the applicability of those values to the family of linear siloxanes. Methods A literature review was conducted to identify studies conducted since the SMACs for L3 were set in 1994. The updated data were reviewed to determine the sensitive toxicity endpoints, and current risk assessment approaches and methods for dosimetric adjustments were evaluated. Results Recent data were used to update the original 1-hour, 24-hour, 30-day, and 180-day SMACs for L3, and a 1000-day SMAC was developed to protect crewmembers during future exploration beyond Earth orbit. Group SMACs for the linear siloxane family, including hexamethyldisiloxane (L2), L3, decamethyltetrasiloxane (L4), and dodecamethylpentasiloxane (L5), were set for exposures of 1-hour to 1000 days. Conclusion New SMACs, based on acute pulmonary and neurotoxicity at high doses only achievable with L2 and potential liver effects following longer-term exposures to L2 and L3, were established to protect crewmembers from the adverse effects of exposure to linear siloxanes. PMID:24255951

  16. Optimal proton acceleration from lateral limited foil sections and different laser pulse durations at relativistic intensity

    SciTech Connect

    Toncian, T.; Swantusch, M.; Toncian, M.; Willi, O.; Andreev, A. A.; Platonov, K. Y.

    2011-04-15

    The proton acceleration from a thin foil irradiated by a laser pulse at relativistic intensities is a process highly dependent on the electron dynamic at the rear side of the foil. By reducing the lateral size of the laser irradiated foil the hot electrons are confined in a small volume leading to an enhancement of both the maximum proton energy and the conversion efficiency in the target normal sheath acceleration regime. In this paper we demonstrate that an optimal lateral size of the target can be found. While a smaller target surface leads to a better hot electron confinement and enhances the Debye sheath accelerating the protons, it also leads to an increase of preplasma formation due to limited laser contrast available experimentally and hence to a decrease of the proton acceleration. The experimentally found optimum is in good agreement with analytic theory and 2D particle in cell simulations. In addition, the maximum proton energy as a function of pulse duration has been investigated. The experimental results fit to an analytical model.

  17. Accelerated 20-year sunlight exposure simulation of a photochromic foldable intraocular lens in a rabbit model

    PubMed Central

    Werner, Liliana; Abdel-Aziz, Salwa; Peck, Carolee Cutler; Monson, Bryan; Espandar, Ladan; Zaugg, Brian; Stringham, Jack; Wilcox, Chris; Mamalis, Nick

    2011-01-01

    PURPOSE To assess the long-term biocompatibility and photochromic stability of a new photochromic hydrophobic acrylic intraocular lens (IOL) under extended ultraviolet (UV) light exposure. SETTING John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA. DESIGN Experimental study. METHODS A Matrix Aurium photochromic IOL was implanted in right eyes and a Matrix Acrylic IOL without photochromic properties (n = 6) or a single-piece AcrySof Natural SN60AT (N = 5) IOL in left eyes of 11 New Zealand rabbits. The rabbits were exposed to a UV light source of 5 mW/cm2 for 3 hours during every 8-hour period, equivalent to 9 hours a day, and followed for up to 12 months. The photochromic changes were evaluated during slitlamp examination by shining a penlight UV source in the right eye. After the rabbits were humanely killed and the eyes enucleated, study and control IOLs were explanted and evaluated in vitro on UV exposure and studied histopathologically. RESULTS The photochromic IOL was as biocompatible as the control IOLs after 12 months under conditions simulating at least 20 years of UV exposure. In vitro evaluation confirmed the retained optical properties, with photochromic changes observed within 7 seconds of UV exposure. The rabbit eyes had clinical and histopathological changes expected in this model with a 12-month follow-up. CONCLUSIONS The new photochromic IOL turned yellow only on exposure to UV light. The photochromic changes were reversible, reproducible, and stable over time. The IOL was biocompatible with up to 12 months of accelerated UV exposure simulation. PMID:21241924

  18. Fetal dexamethasone exposure accelerates development of renal function: relationship to dose, cell differentiation and growth inhibition.

    PubMed

    Slotkin, T A; Seidler, F J; Kavlock, R J; Gray, J A

    1992-02-01

    Fetal exposure to high doses of glucocorticoids slows cellular development and impairs organ performance, in association with growth retardation. Nevertheless, low doses of glucocorticoids may enhance cell differentiation and accelerate specific functions. The current study examined this apparent paradox in the developing rat kidney, using doses of dexamethasone that span the threshold for growth impairment: 0.05 or 0.2 mg/kg given on gestational days 17, 18 and 19. At the lower dose, which did not significantly retard body growth, the postnatal development of tubular reabsorptive capabilities for sodium, potassium, osmotic particles, water and urea was accelerated. These effects were less notable at the higher dose, which caused initial body growth impairment. The selectivity toward promotion of tubular function was evidenced by the absence of effect of either dose of dexamethasone on development of glomerular filtration rate. Because of the wide spectrum of dexamethasone's effects on tubular function, we also assessed fetal kidney adenylate cyclase as a means of detecting altered cell differentiation in the prenatal period during which dexamethasone was given. Either glucocorticoid dose increased the total adenylate cyclase catalytic activity (assessed with forskolin). Thus, the net effect of fetal dexamethasone exposure on development of renal excretory capabilities probably represents the summation of promoted cell differentiation and slowed development consequent to growth retardation. At low dose levels, the former effect predominates, leading to enhanced functional development, whereas higher doses that interfere with general growth and development can offset the direct promotional effect.

  19. 30 CFR 56.5001 - Exposure limits for airborne contaminants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... concentration shall be determined by phase contrast microscopy (PCM) using the OSHA Reference Method in OSHA's asbestos standard found in 29 CFR 1910.1001, Appendix A, or a method at least equivalent to that method in.../cc excursion limit, samples shall be further analyzed using transmission electron...

  20. 30 CFR 56.5001 - Exposure limits for airborne contaminants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... concentration shall be determined by phase contrast microscopy (PCM) using the OSHA Reference Method in OSHA's asbestos standard found in 29 CFR 1910.1001, Appendix A, or a method at least equivalent to that method in.../cc excursion limit, samples shall be further analyzed using transmission electron...

  1. Further Analysis of Accelerated Exposure Testing of Thin-Glass Mirror Matrix

    SciTech Connect

    Kennedy, C. E.; Terwilliger, K.; Jorgensen, G. J.

    2007-01-01

    Concentrating solar power (CSP) companies have deployed thin-glass mirrors produced by wet-silver processes on {approx}1-mmthick, relatively lightweight glass. These mirrors are bonded to metal substrates in commercial installations and have the confidence of the CSP industry. Initial hemispherical reflectance is {approx}93%-96%, and the cost is {approx}$16.1/m{sup 2}-$43.0/m{sup 2}. However, corrosion was observed in mirror elements of operational solar systems deployed outdoors for 2 years. National Renewable Energy Laboratory (NREL) Advanced Materials Team has been investigating this problem. First, it was noted that this corrosion is very similar to the corrosion bands and spots observed on small (45 mm x 67 mm) thin-glass mirrors laminated to metal substrates with several different types of adhesives and subjected to accelerated exposure testing (AET) at NREL. The corrosion appears as dark splotches in the center of the mirror, with a corresponding 5%-20% loss in reflectivity. Secondly, two significant changes in mirror manufacture have occurred in the wet-chemistry process because of environmental concerns. The first is the method of forming a copper-free reflective mirror, and the second is the use of lead-free paints. However, the copper-free process requires stringent quality control and the lead-free paints were developed for interior applications. A test matrix of 84 combinations of sample constructions (mirror type/backprotective paint/adhesive/substrate) was devised for AET as a designed experiment to identify the most-promising mirrors, paints, and adhesives for use with concentrator designs. Two types of accelerated exposure were used: an Atlas Ci5000 WeatherOmeter (CI5000) and a BlueM damp-heat chamber. Based on an analysis of variance (ANOVA), the various factors and interactions were modeled. These samples now have more than 36 months of accelerated exposure, and most samples have completed their test cycle. We will discuss the results of the

  2. The NREL Outdoor Accelerated-weathering Tracking System and Photovoltaic Module Exposure Results

    SciTech Connect

    Basso, T. S.

    1998-10-31

    This paper describes the Outdoor Accelerated-weathering Tracking System (OATS) and interim results for the first OATS study on photovoltaic (PV) modules. With two test planes measuring 1.52 x 1.83 m, OATS provides a unique solar-concentrating exposure capability. Test sample temperatures are moderated by air blowers. Water spray capability exists for wetting samples. The OATS two-axis tracker points to the sun using software calculations. Non-imaging aluminum reflectors give a nominal clear-sky optical concentration ratio of three. Field-qualification measurements in the test plane under reflector conditions showed its relative irradiance non-uniformity was '' 15% for a clear-sky summer day with '' 75 mm as the smallest distance for that non-uniformity. Exposure studies began in November 1997 on seven pairs of commercially available ribbon silicon, crystalline silicon and amorphous silicon PV modules kept at constant resistive load. The modules were periodically removed from OATS for visual inspection and solar simulator performance measurements. There were no module failures. This PV module study is ongoing and later results will be compared to other testing techniques. Through July 1998, the modules under reflector conditions received 392 MJ/m2 of total ultraviolet (TUV) exposure. That was 2.07 times the TUV exposure compared to a south-facing fixed array tilted 40{sup o} up from horizontal at NREL. Similarly, the modules in the test plane under the covered reflectors received 1.04 times the fixed array TUV exposure. For the test plane under the covered reflectors there was a loss of 13% TUV exposure attributed to the reflectors blocking some of the diffuse-sky UV light. Also through July 1998, the OATS sunlight availability measured 95% compared to the cumulative global normal exposure at the NREL Solar Radiation Research Laboratory (SRRL). The OATS sunlight availability losses included downtime when the PV modules were removed, and when there were OAT S

  3. The NREL outdoor accelerated-weathering tracking system and photovoltaic module exposure results

    SciTech Connect

    Basso, T.S.

    1999-03-01

    This paper describes the Outdoor Accelerated-weathering Tracking System (OATS) and interim results for the first OATS study on photovoltaic (PV) modules. With two test planes measuring 1.52{times}1.83&hthinsp;m, OATS provides a unique solar-concentrating exposure capability. Test sample temperatures are moderated by air blowers. Water spray capability exists for wetting samples. The OATS two-axis tracker points to the sun using software calculations. Non-imaging aluminum reflectors give a nominal clear-sky optical concentration ratio of three. Field-qualification measurements in the test plane under reflector conditions showed its relative irradiance non-uniformity was {plus_minus}15{percent} for a clear-sky summer day with {plus_minus} 75 mm as the smallest distance for that non-uniformity. Exposure studies began in November 1997 on seven pairs of commercially available ribbon silicon, crystalline silicon and amorphous silicon PV modules kept at constant resistive load. The modules were periodically removed from OATS for visual inspection and solar simulator performance measurements. There were no module failures. This PV module study is ongoing and later results will be compared to other testing techniques. Through July 1998, the modules under reflector conditions received 392 MJ/m{sup 2} of total ultraviolet (TUV) exposure. That was 2.07 times the TUV exposure compared to a south-facing fixed array tilted 40{degree} up from horizontal at NREL. Similarly, the modules in the test plane under the covered reflectors received 1.04 times the fixed array TUV exposure. For the test plane under the covered reflectors there was a loss of 13{percent} TUV exposure attributed to the reflectors blocking some of the diffuse-sky UV light. Also through July 1998, the OATS sunlight availability measured 95{percent} compared to the cumulative global normal exposure at the NREL Solar Radiation Research Laboratory (SRRL). The OATS sunlight availability losses included downtime when

  4. Working toward exposure thresholds for blast-induced traumatic brain injury: thoracic and acceleration mechanisms.

    PubMed

    Courtney, Michael W; Courtney, Amy C

    2011-01-01

    Research in blast-induced lung injury resulted in exposure thresholds that are useful in understanding and protecting humans from such injury. Because traumatic brain injury (TBI) due to blast exposure has become a prominent medical and military problem, similar thresholds should be identified that can put available research results in context and guide future research toward protecting war fighters as well as diagnosis and treatment. At least three mechanical mechanisms by which the blast wave may result in brain injury have been proposed-a thoracic mechanism, head acceleration, and direct cranial transmission. These mechanisms need not be mutually exclusive. In this study, likely regions of interest for the first two mechanisms based on blast characteristics (positive pulse duration and peak effective overpressure) are developed using available data from blast experiments and related studies, including behind-armor blunt trauma and ballistic pressure wave studies. These related studies are appropriate to include because blast-like pressure waves are produced that result in neurological effects like those caused by blast. Results suggest that injury thresholds for each mechanism are dependent on blast conditions, and that under some conditions, more than one mechanism may contribute. There is a subset of blast conditions likely to result in TBI due to head acceleration and/or a thoracic mechanism without concomitant lung injury. These results can be used to guide experimental designs and compare additional data as they become available. Additional data are needed before actual probabilities or severity of TBI for a given exposure can be described. PMID:20483376

  5. [Environmental epidemiology research leads to a decrease of the exposure limit for mercury].

    PubMed

    Weihe, Pál; Debes, Froôi; White, Roberta F; Sørensen, Nicolina; Budtz-Jørgensen, Esben; Keiding, Niels; Grandjean, Philippe

    2003-01-01

    The central nervous system is particularly vulnerable to prenatal exposure to methylmercury. Due to the widespread exposure to methylmercury from fish, several prospective environmental epidemiology studies have been initiated, in which the maternal exposure during the pregnancy is related to the neurobehavioural development of the children. We have studied a Faroese birth cohort prenatally exposed to methylmercury from maternal intake of contaminated pilot whale meat. At seven years of age, clear dose-response relationships were observed for deficits in attention, language, and memory. An increase in blood pressure was also associated with the prenatal exposure level. The exposure limit for mercury has therefore been decreased.

  6. Prenatal exposure to low levels of androgen accelerates female puberty onset and reproductive senescence in mice.

    PubMed

    Witham, Emily A; Meadows, Jason D; Shojaei, Shadi; Kauffman, Alexander S; Mellon, Pamela L

    2012-09-01

    Sex steroid hormone production and feedback mechanisms are critical components of the hypothalamic-pituitary-gonadal (HPG) axis and regulate fetal development, puberty, fertility, and menopause. In female mammals, developmental exposure to excess androgens alters the development of the HPG axis and has pathophysiological effects on adult reproductive function. This study presents an in-depth reproductive analysis of a murine model of prenatal androgenization (PNA) in which females are exposed to a low dose of dihydrotestosterone during late prenatal development on embryonic d 16.5-18.5. We determined that PNA females had advanced pubertal onset and a delay in the time to first litter, compared with vehicle-treated controls. The PNA mice also had elevated testosterone, irregular estrous cyclicity, and advanced reproductive senescence. To assess the importance of the window of androgen exposure, dihydrotestosterone was administered to a separate cohort of female mice on postnatal d 21-23 [prepubertal androgenization (PPA)]. PPA significantly advanced the timing of pubertal onset, as observed by age of the vaginal opening, yet had no effects on testosterone or estrous cycling in adulthood. The absence of kisspeptin receptor in Kiss1r-null mice did not change the acceleration of puberty by the PNA and PPA paradigms, indicating that kisspeptin signaling is not required for androgens to advance puberty. Thus, prenatal, but not prepubertal, exposure to low levels of androgens disrupts normal reproductive function throughout life from puberty to reproductive senescence.

  7. Low-dose exposure to inorganic mercury accelerates disease and mortality in acquired murine lupus.

    PubMed

    Via, Charles S; Nguyen, Phuong; Niculescu, Florin; Papadimitriou, John; Hoover, Dennis; Silbergeld, Ellen K

    2003-08-01

    Inorganic mercury (iHg) is known to induce autoimmune disease in susceptible rodent strains. Additionally, in inbred strains of mice prone to autoimmune disease, iHg can accelerate and exacerbate disease manifestations. Despite these well-known links between iHg and autoimmunity in animal models, no association between iHg alone and autoimmune disease in humans has been documented. However, it is possible that low-level iHg exposure can interact with disease triggers to enhance disease expression or susceptibility. To address whether exposure to iHg can alter the course of subsequent acquired autoimmune disease, we used a murine model of acquired autoimmunity, lupus-like chronic graft-versus-host disease (GVHD), in which autoimmunity is induced using normal, nonautoimmune prone donor and F1 recipient mice resistant to Hg-induced autoimmunity. Our results indicate that a 2-week exposure to low-dose iHg (20 or 200 micro g/kg every other day) to donor and host mice ending 1 week before GVHD induction can significantly worsen parameters of disease severity, resulting in premature mortality. iHg pretreatment clearly worsened chronic lupus-like disease, rather than GVHD worsening iHg immunotoxicity. These results are consistent with the hypothesis that low-level, nontoxic iHg preexposure may interact with other risk factors, genetic or acquired, to promote subsequent autoimmune disease development.

  8. Proposal for the assessment of quantitative dermal exposure limits in occupational environments: Part 1. Development of a concept to derive a quantitative dermal occupational exposure limit

    PubMed Central

    Bos, P. M.; Brouwer, D. H.; Stevenson, H.; Boogaard, P. J.; de Kort, W. L.; van Hemmen, J. J.

    1998-01-01

    Dermal uptake of chemicals at the workplace may contribute considerably to the total internal exposure and so needs to be regulated. At present only qualitative warning signs--the "skin notations"--are available as instruments. An attempt was made to develop a quantitative dermal occupational exposure limit (DOEL) complementary to respiratory occupational exposure limits (OELs). The DOEL refers to the total dose deposited on the skin during a working shift. Based on available data and experience a theoretical procedure for the assessment of a DOEL was developed. A DOEL was derived for cyclophosphamide and 4,4-methylene dianiline (MDA) according to this procedure. The DOEL for MDA was tested for applicability in an actual occupational exposure scenario. An integrated approach is recommended for situations in which both dermal and respiratory exposures contribute considerably to the internal exposure of the worker. The starting point should be an internal health based occupational exposure limit--that is, the maximum dose to be absorbed without leading to adverse systemic effects. The proposed assessment of an external DOEL is then either based on absorption rate or absorption percentage. The estimation of skin penetration seems to be of crucial importance in this concept. If for a specific substance a maximal absorption rate can be estimated a maximal skin surface area to be exposed can be assessed which may then serve the purpose of a DOEL. As long as the actual skin surface exposed is smaller than this maximal skin surface area the internal OEL will not be exceeded, and therefore, no systemic health problems would be expected, independent of the dermal dose/unit area. If not, the DOEL may be interpreted as the product of dermal dose/unit area (mg/cm2) and exposed skin surface area (cm2). The proposed concept for a DOEL is relevant and can be made applicable for health surveillance in the occupational situation where dermal exposure contributes notably to the

  9. Flame acceleration due to wall friction: Accuracy and intrinsic limitations of the formulations

    NASA Astrophysics Data System (ADS)

    Demirgok, Berk; Sezer, Hayri; Akkerman, V.'Yacheslav

    2015-11-01

    The analytical formulations on the premixed flame acceleration induced by wall friction in two-dimensional (2D) channels [Bychkov et al., Phys. Rev. E 72 (2005) 046307] and cylindrical tubes [Akkerman et al., Combust. Flame 145 (2006) 206] are revisited. Specifically, pipes with one end closed are considered, with a flame front propagating from the closed pipe end to the open one. The original studies provide the analytical formulas for the basic flame and fluid characteristics such as the flame acceleration rate, the flame shape and its propagation speed, as well as the flame-generated flow velocity profile. In the present work, the accuracy of these approaches is verified, computationally, and the intrinsic limitations and validity domains of the formulations are identified. Specifically, the error diagrams are presented to demonstrate how the accuracy of the formulations depends on the thermal expansion in the combustion process and the Reynolds number associated with the flame propagation. It is shown that the 2D theory is accurate enough for a wide range of parameters. In contrast, the zeroth-order approximation for the cylindrical configuration appeared to be quite inaccurate and had to be revisited. It is subsequently demonstrated that the first-order approximation for the cylindrical geometry is very accurate for realistically large thermal expansions and Reynolds numbers. Consequently, unlike the zeroth-order approach, the first-order formulation can constitute a backbone for the comprehensive theory of the flame acceleration and detonation initiation in cylindrical tubes. Cumulatively, the accuracy of the formulations deteriorates with the reduction of the Reynolds number and thermal expansion.

  10. Theory of factors limiting high gradient operation of warm accelerating structures

    SciTech Connect

    Nusinovich, Gregory S.; Antonsen, Thomas M.; Kishek, Rami

    2014-07-25

    This final report summarizes the research performed during the time period from 8/1/2010 to 7/31/2013. It consists of two parts describing our studies in two directions: (a) analysis of factors limiting operation of dielectric-loaded accelerating (DLA) structures where the main problem is the occurrence of multipactor on dielectric surfaces, and (b) studies of effects associated with either RF magnetic or RF electric fields which may cause the RF breakdown in high-gradient metallic accelerating structures. In the studies of DLA structures, at least, two accomplishments should be mentioned: the development of a 3D non-stationary, self-consistent code describing the multipactor phenomena and yielding very good agreement with some experimental data obtained in joint ANL/NRL experiments. In the metallic structures, such phenomena as the heating and melting of micro-particles (metallic dust) by RF electric and magnetic fields in single-shot and rep-rate regimes is analyzed. Also, such processes in micro-protrusions on the structure surfaces as heating and melting due to the field emitted current and the Nottingham effect are thoroughly investigated with the account for space charge of emitted current on the field emission from the tip.

  11. Bright betatronlike x rays from radiation pressure acceleration of a mass-limited foil target.

    PubMed

    Yu, Tong-Pu; Pukhov, Alexander; Sheng, Zheng-Ming; Liu, Feng; Shvets, Gennady

    2013-01-25

    By using multidimensional particle-in-cell simulations, we study the electromagnetic emission from radiation pressure acceleration of ultrathin mass-limited foils. When a circularly polarized laser pulse irradiates the foil, the laser radiation pressure pushes the foil forward as a whole. The outer wings of the pulse continue to propagate and act as a natural undulator. Electrons move together with ions longitudinally but oscillate around the latter transversely, forming a self-organized helical electron bunch. When the electron oscillation frequency coincides with the laser frequency as witnessed by the electron, betatronlike resonance occurs. The emitted x rays by the resonant electrons have high brightness, short durations, and broad band ranges which may have diverse applications.

  12. Uses and limits of empirical data in measuring and modeling human lead exposure.

    PubMed Central

    Mushak, P

    1998-01-01

    This paper examines the uses and limits of empirical data in evaluating measurement and modeling approaches to human lead exposure. Empirical data from experiment or observation or both have been used in studies of lead exposure. For example, experimental studies have elucidated and quantified physiologic or biokinetic parameters of lead exposure under controlled conditions. Observation, i.e., epidemiology, has been widely applied to study population exposures to lead. There is growing interest in the use of lead exposure prediction models and their evaluation before use in risk assessment. Empirical studies of lead exposure must be fully understood, especially their limits, before they are applied as "standards" or reference information for evaluation of exposure models, especially the U.S. Environmental Protection Agency's lead biokinetic model that is a focus of this article. Empirical and modeled datasets for lead exposure may not agree due to a) problems with the observational data or b) problems with the model; caution should be exercised before either a model or observational data are rejected. There are at least three sources of discordance in cases where there is lack of agreement: a) empirical data are accurate but the model is flawed; b) the model is valid but reference empirical data are inaccurate; or c) neither empirical data nor model is accurate, and each is inaccurate in different ways. This paper evaluates some of the critical empirical input to biokinetic models, especially lead bioavailability. Images Figure 3 PMID:9860906

  13. Quantification of volatile organic compounds in smoke from prescribed burning and comparison with occupational exposure limits

    NASA Astrophysics Data System (ADS)

    Romagnoli, E.; Barboni, T.; Santoni, P.-A.; Chiaramonti, N.

    2014-05-01

    Prescribed burning represents a serious threat to personnel fighting fires due to smoke inhalation. The aim of this study was to investigate exposure by foresters to smoke from prescribed burning, focusing on exposure to volatile organic compounds (VOCs). The methodology for smoke sampling was first evaluated. Potentially dangerous compounds were identified among the VOCs emitted by smoke fires at four prescribed burning plots located around Corsica. The measured mass concentrations for several toxic VOCs were generally higher than those measured in previous studies due to the experimental framework (short sampling distance between the foresters and the flame, low combustion, wet vegetation). In particular, benzene, phenol and furfural exceeded the legal short-term exposure limits published in Europe and/or the United States. Other VOCs such as toluene, ethybenzene or styrene remained below the exposure limits. In conclusion, clear and necessary recommendations were made for protection of personnel involved in fighting fires.

  14. Workshop report: strategies for setting occupational exposure limits for engineered nanomaterials.

    PubMed

    Gordon, Steven C; Butala, John H; Carter, Janet M; Elder, Alison; Gordon, Terry; Gray, George; Sayre, Philip G; Schulte, Paul A; Tsai, Candace S; West, Jay

    2014-04-01

    Occupational exposure limits (OELs) are important tools for managing worker exposures to chemicals; however, hazard data for many engineered nanomaterials (ENMs) are insufficient for deriving OELs by traditional methods. Technical challenges and questions about how best to measure worker exposures to ENMs also pose barriers to implementing OELs. New varieties of ENMs are being developed and introduced into commerce at a rapid pace, further compounding the issue of OEL development for ENMs. A Workshop on Strategies for Setting Occupational Exposure Limits for Engineered Nanomaterials, held in September 2012, provided an opportunity for occupational health experts from various stakeholder groups to discuss possible alternative approaches for setting OELs for ENMs and issues related to their implementation. This report summarizes the workshop proceedings and findings, identifies areas for additional research, and suggests potential avenues for further progress on this important topic.

  15. Exposure to omega-3 fatty acids at early age accelerate bone growth and improve bone quality.

    PubMed

    Koren, Netta; Simsa-Maziel, Stav; Shahar, Ron; Schwartz, Betty; Monsonego-Ornan, Efrat

    2014-06-01

    Omega-3 fatty acids (FAs) are essential nutritional components that must be obtained from foods. Increasing evidence validate that omega-3 FAs are beneficial for bone health, and several mechanisms have been suggested to mediate their effects on bone, including alterations in calcium absorption and urinary calcium loss, prostaglandin synthesis, lipid oxidation, osteoblast formation and inhibition of osteoclastogenesis. However, to date, there is scant information regarding the effect of omega-3 FAs on the developing skeleton during the rapid growth phase. In this study we aim to evaluate the effect of exposure to high levels of omega-3 FAs on bone development and quality during prenatal and early postnatal period. For this purpose, we used the fat-1 transgenic mice that have the ability to convert omega-6 to omega-3 fatty acids and the ATDC5 chondrogenic cell line as models. We show that exposure to high concentrations of omega-3 FAs at a young age accelerates bone growth through alterations of the growth plate, associated with increased chondrocyte proliferation and differentiation. We further propose that those effects are mediated by the receptors G-protein coupled receptor 120 (GPR120) and hepatic nuclear factor 4α, which are expressed by chondrocytes in culture. Additionally, using a combined study on the structural and mechanical bone parameters, we show that high omega-3 levels contribute to superior trabecular and cortical structure, as well as to stiffer bones and improved bone quality. Most interestingly, the fat-1 model allowed us to demonstrate the role of maternal high omega-3 concentration on bone growth during the gestation and postnatal period.

  16. Application of pharmacokinetics to derive biological exposure indexes from threshold limit values

    SciTech Connect

    Leung, H.W.; Paustenbach, D.J.

    1988-09-01

    The importance of incorporating the fundamental concepts of pharmacokinetics into biological monitoring program that involve the collection of various body fluid and tissue specimens is discussed. The application of these principles to establish biological exposures indexes bioequivalent to airborne exposure limits is described. Specific illustrative examples involving acetone, aniline, benzene, carbon tetrachloride, dieldrin, ethylbenzene, hexane, lead, methylene chloride, pentachlorophenol, phenol, styrene, toluene and xylene are presented.

  17. Perceived benefits and challenges of repeated exposure to high fidelity simulation experiences of first degree accelerated bachelor nursing students.

    PubMed

    Kaddoura, Mahmoud; Vandyke, Olga; Smallwood, Christopher; Gonzalez, Kristen Mathieu

    2016-01-01

    This study explored perceptions of first-degree entry-level accelerated bachelor nursing students regarding benefits and challenges of exposure to multiple high fidelity simulation (HFS) scenarios, which has not been studied to date. These perceptions conformed to some research findings among Associate Degree, traditional non-accelerated, and second-degree accelerated Bachelor of Science in Nursing (BSN) students faced with one to two simulations. However, first-degree accelerated BSN students faced with multiple complex simulations perceived improvements on all outcomes, including critical thinking, confidence, competence, and theory-practice integration. On the negative side, some reported feeling overwhelmed by the multiple HFS scenarios. Evidence from this study supports HFS as an effective teaching and learning method for nursing students, along with valuable implications for many other fields. PMID:26260522

  18. Nonparametric bayes shrinkage for assessing exposures to mixtures subject to limits of detection.

    PubMed

    Herring, Amy H

    2010-07-01

    Assessing potential associations between exposures to complex mixtures and health outcomes may be complicated by a lack of knowledge of causal components of the mixture, highly correlated mixture components, potential synergistic effects of mixture components, and difficulties in measurement. We extend recently proposed nonparametric Bayes shrinkage priors for model selection to investigations of complex mixtures by developing a formal hierarchical modeling framework to allow different degrees of shrinkage for main effects and interactions and to handle truncation of exposures at a limit of detection. The methods are used to shed light on data from a study of endometriosis and exposure to environmental polychlorinated biphenyl congeners.

  19. Approaches and considerations for setting occupational exposure limits for sensory irritants: report of recent symposia.

    PubMed

    Paustenbach, D

    2001-01-01

    Over the past 50 years significant strides have been made in reducing occupational exposure to airborne chemicals. To a large extent, the impetus behind the reductions has been the identification of presumably safe levels of exposure, or occupational exposure limits (OELs). Most of the reduction in exposure has been to chemicals such as hepatotoxins, neurotoxins, nephrotoxins, and carcinogens that cause frank toxic effects. Recently, however, a number of industrial hygiene and occupational medicine initiatives have sought to identify acceptable levels of exposure to sensory irritants and reduce exposure to this class of chemicals. This article presents an overview of the field with emphasis on the work presented at two symposia sponsored by the Chemical Manufacturers Association: "How Do We Set an Occupational Exposure Limit (OEL) for Irritation?" (1998) at the American Industrial Hygiene Conference and Exposition and "Respiratory Tract Irritation and Olfaction Conference" (1997). The two symposia reviewed clinical and experimental methods used to assess odor and sensory irritation, to increase understanding of the research needed to establish OELs for sensory irritants, and to discuss how to use this information to identify appropriate values. The symposia illustrated that research in this area is evolving quickly and that there is already sufficient understanding to permit scientists to identify chemicals likely to be sensory irritants. Further, there appears to be an ample number of research methods for identification of airborne concentrations that should protect most workers. This article summarizes some of the key points raised at these symposia and suggests areas deserving of future study.

  20. Residual skin damage in rats 1 year after exposure to x rays or accelerated heavy ions

    SciTech Connect

    Leith, J.T.; McDonald, M.; Howard, J.

    1982-01-01

    In conjunction with a study on the biological effects of accelerated heavy ions on rat spinal cord, we were able to assess the residual skin damage remaining 1 year postirradiation. In this study, rats were irradiated with 230-kVp fractionated doses of either X rays, carbon ions, or neon ions. Four radiation fractions were given at daily intervals. For the carbon and neon ion exposures, rats were irradiated in both the plateau and spread Bragg peak (4 cm) regions of ionization. Comparing doses that produced complete epilation with a slight suggestion of a residual radiation scar, it was found that the relative biological effectivesness (RBE) values 1 year postirradiation for the four fraction irradiations were: carbon ions (plateau ionization region), 1.06; carbon ions (spread Bragg peak ionization region), 1.88; neon ions (plateau region of ionization), 1.55; and neon ions (spread Bragg peak ionization region), 2.26. RBE values for production of paralysis after spinal cord irradiation (using the same X-ray total dose levels for comparison purposes) were in all cases higher than the RBE values obtained from assessment of residual skin injury.

  1. Setting Occupational Exposure Limits for Chemical Allergens--Understanding the Challenges.

    PubMed

    Dotson, G S; Maier, A; Siegel, P D; Anderson, S E; Green, B J; Stefaniak, A B; Codispoti, C D; Kimber, I

    2015-01-01

    Chemical allergens represent a significant health burden in the workplace. Exposures to such chemicals can cause the onset of a diverse group of adverse health effects triggered by immune-mediated responses. Common responses associated with workplace exposures to low molecular weight (LMW) chemical allergens range from allergic contact dermatitis to life-threatening cases of asthma. Establishing occupational exposure limits (OELs) for chemical allergens presents numerous difficulties for occupational hygiene professionals. Few OELs have been developed for LMW allergens because of the unique biological mechanisms that govern the immune-mediated responses. The purpose of this article is to explore the primary challenges confronting the establishment of OELs for LMW allergens. Specific topics include: (1) understanding the biology of LMW chemical allergies as it applies to setting OELs; (2) selecting the appropriate immune-mediated response (i.e., sensitization versus elicitation); (3) characterizing the dose (concentration)-response relationship of immune-mediated responses; (4) determining the impact of temporal exposure patterns (i.e., cumulative versus acute exposures); and (5) understanding the role of individual susceptibility and exposure route. Additional information is presented on the importance of using alternative exposure recommendations and risk management practices, including medical surveillance, to aid in protecting workers from exposures to LMW allergens when OELs cannot be established.

  2. Setting Occupational Exposure Limits for Chemical Allergens—Understanding the Challenges

    PubMed Central

    Dotson, G. S.; Maier, A.; Siegel, P. D.; Anderson, S. E.; Green, B. J.; Stefaniak, A. B.; Codispoti, C. D.; Kimber, I.

    2015-01-01

    Chemical allergens represent a significant health burden in the workplace. Exposures to such chemicals can cause the onset of a diverse group of adverse health effects triggered by immune-mediated responses. Common responses associated with workplace exposures to low molecular weight (LMW) chemical allergens range from allergic contact dermatitis to life-threatening cases of asthma. Establishing occupational exposure limits (OELs) for chemical allergens presents numerous difficulties for occupational hygiene professionals. Few OELs have been developed for LMW allergens because of the unique biological mechanisms that govern the immune-mediated responses. The purpose of this article is to explore the primary challenges confronting the establishment of OELs for LMW allergens. Specific topics include: (1) understanding the biology of LMW chemical allergies as it applies to setting OELs; (2) selecting the appropriate immune-mediated response (i.e., sensitization versus elicitation); (3) characterizing the dose (concentration)-response relationship of immune-mediated responses; (4) determining the impact of temporal exposure patterns (i.e., cumulative versus acute exposures); and (5) understanding the role of individual susceptibility and exposure route. Additional information is presented on the importance of using alternative exposure recommendations and risk management practices, including medical surveillance, to aid in protecting workers from exposures to LMW allergens when OELs cannot be established. PMID:26583909

  3. Formate in serum and urine after controlled methanol exposure at the threshold limit value

    SciTech Connect

    d'Alessandro, A. ); Osterloh, J.D.; Chuwers, P.; Quinlan, P.J.; Kelly, T.J.; Becker, C.E. )

    1994-02-01

    Methanol will be present as a new air pollutant when methanol-powered vehicles are introduced in the United States. Little is known about the effect of low-dose methanol exposure. It is controversial whether or not formate, the main metabolite responsible for methanol's acute toxicity, is a sensitive biological marker of toxicity or exposure. We studied the effect of a 4-hr exposure at rest to 200 ppm of methanol vapors on endogenous serum formate and on urinary formic acid excretion. A randomized, double-blind study of human exposure to a constant concentration of methanol was performed in a whole-body exposure chamber. Twenty-six healthy volunteers, each serving as his or her own control, participated in sham and methanol exposures. Urine (at 0, 4, 8 hr) and serum specimens (15 time points over 8 hr) collected before, during, and after the exposure were measured for formate. We found no significant differences in serum formate concentration between exposure and control conditions either at any time point or for area under the curve. Mean concentrations at the end of the exposure were: exposed 14.28 [+-] 8.90 mg/l and control 12.68 [+-] 6.43 mg/l. A slight, but nonsignificant (p = 0.08), increase in urine formate excretion rate was found at 4 hr (exposed 2.17 [+-] 1.69 mg/4 hr and control 1.67 [+-] 1.02 mg/4 hr). Age, sex, folic acid level, and smoking were not significant covariates. At 200 ppm, methanol exposure does not contribute substantially to endogenous formate quantities. Serum and urine formate determinations are not sensitive biological markers of methanol exposure at the threshold limit value. 24 refs., 4 tabs.

  4. Proposed occupational exposure limit for 2,3,7,8-tetrachlorodibenzo-p-dioxin

    SciTech Connect

    Leung, H.W.; Murray, F.J.; Paustenbach, D.J.

    1988-09-01

    One contaminant produced unintentionally during the manufacture of chlorophenols and phenoxy herbicides is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The resulting TCDD-containing wastes have been detected at many hazardous waste sites which in recent years have been in the process of remediation. Concerns about worker exposure to TCDD-contaminated soil (dust) during remediation of hazardous waste sites have produced a need for an occupational exposure limit (OEL) for TCDD. The animal toxicology data and human experience with TCDD are reviewed, and an occupational exposure limit for TCDD is proposed. The animal data support risk estimations which are based on TCDD as a nongenotoxic carcinogen. Studies on human populations have failed to demonstrate clearly any significant long-term health effects at levels to which humans have been exposed. The data indicate that an 8-hr time-weighted average limit of 2 ng/m3 is appropriate, and the associated risk would be consistent with other carcinogens at their corresponding OELs. A preliminary OEL of 0.2 ng/m3 (200 pg/m3) is recommended, however, in light of other sources of exposure because of TCDD's ubiquitousness in the environment, its unclear mechanism of action, and its rather long biological half-life in humans. This limit provides an ample margin of safety to prevent chloracne following repeated, acute exposure, and it addresses those chronic effects of TCDD observed in animal studies as well as those observed after accidental human exposure. The resulting body burden caused by chronic exposure to TCDD at the proposed OEL is examined. Its toxicological significance is compared with human tissue data and with other similarly persistent chemicals. 74 references.

  5. The Impact of Different Permissible Exposure Limits on Hearing Threshold Levels Beyond 25 dBA

    PubMed Central

    Sayapathi, Balachandar S; Su, Anselm Ting; Koh, David

    2014-01-01

    Background: Development of noise-induced hearing loss is reliant on a few factors such as frequency, intensity, and duration of noise exposure. The occurrence of this occupational malady has doubled from 120 million to 250 million in a decade. Countries such as Malaysia, India, and the US have adopted 90 dBA as the permissible exposure limit. According to the US Occupational Safety and Health Administration (OSHA), the exposure limit for noise is 90 dBA, while that of the US National Institute of Occupational Safety and Health (NIOSH) is 85 dBA for 8 hours of noise exposure. Objectives: This study aimed to assess the development of hearing threshold levels beyond 25 dBA on adoption of 85 dBA as the permissible exposure limit compared to 90 dBA. Patients and Methods: This is an intervention study done on two automobile factories. There were 203 employees exposed to noise levels beyond the action level. Hearing protection devices were distributed to reduce noise levels to a level between the permissible exposure limit and action level. The permissible exposure limits were 90 and 85 dBA in factories 1 and 2, respectively, while the action levels were 85 and 80 dBA, respectively. The hearing threshold levels of participants were measured at baseline and at first month of postshift exposure of noise. The outcome was measured by a manual audiometer. McNemar and chi-square tests were used in the statistical analysis. Results: We found that hearing threshold levels of more than 25 dBA has changed significantly from pre-intervention to post-intervention among participants from both factories (3000 Hz for the right ear and 2000 Hz for the left ear). There was a statistically significant association between participants at 3000 Hz on the right ear at ‘deteriorated’ level ( χ² (1) = 4.08, φ = - 0.142, P = 0.043), whereas there was worsening of hearing threshold beyond 25 dBA among those embraced 90 dBA. Conclusions: The adoption of 85 dBA as the permissible exposure

  6. An improved limit on the charge of antihydrogen from stochastic acceleration

    NASA Astrophysics Data System (ADS)

    Ahmadi, M.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Charman, A. E.; Eriksson, S.; Evans, L. T.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Ishida, A.; Jones, S. A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Maxwell, D.; McKenna, J. T. K.; Menary, S.; Michan, J. M.; Momose, T.; Munich, J. J.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; So, C.; Tharp, T. D.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Zhmoginov, A. I.

    2016-01-01

    Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms- of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of |Q| < 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known to be no greater than about 10-21e for a diverse range of species including H2, He and SF6. Charge-parity-time symmetry and quantum anomaly cancellation demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge, then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement.

  7. An improved limit on the charge of antihydrogen from stochastic acceleration.

    PubMed

    Ahmadi, M; Baquero-Ruiz, M; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Charman, A E; Eriksson, S; Evans, L T; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; So, C; Tharp, T D; Thompson, R I; van der Werf, D P; Wurtele, J S; Zhmoginov, A I

    2016-01-21

    Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of |Q| < 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known to be no greater than about 10(-21)e for a diverse range of species including H2, He and SF6. Charge-parity-time symmetry and quantum anomaly cancellation demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge, then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement.

  8. An improved limit on the charge of antihydrogen from stochastic acceleration.

    PubMed

    Ahmadi, M; Baquero-Ruiz, M; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Charman, A E; Eriksson, S; Evans, L T; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; So, C; Tharp, T D; Thompson, R I; van der Werf, D P; Wurtele, J S; Zhmoginov, A I

    2016-01-21

    Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of |Q| < 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known to be no greater than about 10(-21)e for a diverse range of species including H2, He and SF6. Charge-parity-time symmetry and quantum anomaly cancellation demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge, then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement. PMID:26791725

  9. Toxicokinetic and toxicodynamic considerations when deriving health-based exposure limits for pharmaceuticals.

    PubMed

    Reichard, John F; Maier, M Andrew; Naumann, Bruce D; Pecquet, Alison M; Pfister, Thomas; Sandhu, Reena; Sargent, Edward V; Streeter, Anthony J; Weideman, Patricia A

    2016-08-01

    The purpose of this paper is to describe the use of toxicokinetic (TK) and toxicodynamic (TD) data in setting acceptable daily exposure (ADE) values and occupational exposure limits (OELs). Use of TK data can provide a more robust exposure limit based on a rigorous evaluation of systemic internal dose. Bioavailability data assist in extrapolating across different routes of exposure to be protective for route-based differences of exposure. Bioaccumulation data enable extrapolation to chronic exposures when the point of departure (PoD) is from a short-term critical study. Applied in the context of chemical-specific adjustment factors (CSAFs), TK data partially replace traditional default adjustment factors for interspecies extrapolation (extrapolation from studies conducted in animals to humans) and intraspecies variability (to account for human population variability). Default adjustments of 10-fold each for interspecies and intraspecies extrapolation are recommended in several guidelines, although some organization recommend other values. Such default factors may overestimate variability for many APIs, while not being sufficiently protective for variability with other APIs. For this reason, the use of chemical specific TK and TD data are preferred. Making full use of existing TK and TD data reduces underlying uncertainties, increases transparency, and ensures that resulting ADEs reflect the best available science. PMID:27224509

  10. The Scientific Basis of Uncertainty Factors Used in Setting Occupational Exposure Limits.

    PubMed

    Dankovic, D A; Naumann, B D; Maier, A; Dourson, M L; Levy, L S

    2015-01-01

    The uncertainty factor concept is integrated into health risk assessments for all aspects of public health practice, including by most organizations that derive occupational exposure limits. The use of uncertainty factors is predicated on the assumption that a sufficient reduction in exposure from those at the boundary for the onset of adverse effects will yield a safe exposure level for at least the great majority of the exposed population, including vulnerable subgroups. There are differences in the application of the uncertainty factor approach among groups that conduct occupational assessments; however, there are common areas of uncertainty which are considered by all or nearly all occupational exposure limit-setting organizations. Five key uncertainties that are often examined include interspecies variability in response when extrapolating from animal studies to humans, response variability in humans, uncertainty in estimating a no-effect level from a dose where effects were observed, extrapolation from shorter duration studies to a full life-time exposure, and other insufficiencies in the overall health effects database indicating that the most sensitive adverse effect may not have been evaluated. In addition, a modifying factor is used by some organizations to account for other remaining uncertainties-typically related to exposure scenarios or accounting for the interplay among the five areas noted above. Consideration of uncertainties in occupational exposure limit derivation is a systematic process whereby the factors applied are not arbitrary, although they are mathematically imprecise. As the scientific basis for uncertainty factor application has improved, default uncertainty factors are now used only in the absence of chemical-specific data, and the trend is to replace them with chemical-specific adjustment factors whenever possible. The increased application of scientific data in the development of uncertainty factors for individual chemicals also has

  11. The Scientific Basis of Uncertainty Factors Used in Setting Occupational Exposure Limits

    PubMed Central

    Dankovic, D. A.; Naumann, B. D.; Maier, A.; Dourson, M. L.; Levy, L. S.

    2015-01-01

    The uncertainty factor concept is integrated into health risk assessments for all aspects of public health practice, including by most organizations that derive occupational exposure limits. The use of uncertainty factors is predicated on the assumption that a sufficient reduction in exposure from those at the boundary for the onset of adverse effects will yield a safe exposure level for at least the great majority of the exposed population, including vulnerable subgroups. There are differences in the application of the uncertainty factor approach among groups that conduct occupational assessments; however, there are common areas of uncertainty which are considered by all or nearly all occupational exposure limit-setting organizations. Five key uncertainties that are often examined include interspecies variability in response when extrapolating from animal studies to humans, response variability in humans, uncertainty in estimating a no-effect level from a dose where effects were observed, extrapolation from shorter duration studies to a full life-time exposure, and other insufficiencies in the overall health effects database indicating that the most sensitive adverse effect may not have been evaluated. In addition, a modifying factor is used by some organizations to account for other remaining uncertainties—typically related to exposure scenarios or accounting for the interplay among the five areas noted above. Consideration of uncertainties in occupational exposure limit derivation is a systematic process whereby the factors applied are not arbitrary, although they are mathematically imprecise. As the scientific basis for uncertainty factor application has improved, default uncertainty factors are now used only in the absence of chemical-specific data, and the trend is to replace them with chemical-specific adjustment factors whenever possible. The increased application of scientific data in the development of uncertainty factors for individual chemicals also

  12. The Scientific Basis of Uncertainty Factors Used in Setting Occupational Exposure Limits.

    PubMed

    Dankovic, D A; Naumann, B D; Maier, A; Dourson, M L; Levy, L S

    2015-01-01

    The uncertainty factor concept is integrated into health risk assessments for all aspects of public health practice, including by most organizations that derive occupational exposure limits. The use of uncertainty factors is predicated on the assumption that a sufficient reduction in exposure from those at the boundary for the onset of adverse effects will yield a safe exposure level for at least the great majority of the exposed population, including vulnerable subgroups. There are differences in the application of the uncertainty factor approach among groups that conduct occupational assessments; however, there are common areas of uncertainty which are considered by all or nearly all occupational exposure limit-setting organizations. Five key uncertainties that are often examined include interspecies variability in response when extrapolating from animal studies to humans, response variability in humans, uncertainty in estimating a no-effect level from a dose where effects were observed, extrapolation from shorter duration studies to a full life-time exposure, and other insufficiencies in the overall health effects database indicating that the most sensitive adverse effect may not have been evaluated. In addition, a modifying factor is used by some organizations to account for other remaining uncertainties-typically related to exposure scenarios or accounting for the interplay among the five areas noted above. Consideration of uncertainties in occupational exposure limit derivation is a systematic process whereby the factors applied are not arbitrary, although they are mathematically imprecise. As the scientific basis for uncertainty factor application has improved, default uncertainty factors are now used only in the absence of chemical-specific data, and the trend is to replace them with chemical-specific adjustment factors whenever possible. The increased application of scientific data in the development of uncertainty factors for individual chemicals also has

  13. Elevated mortality from lung cancer associated with arsenic exposure for a limited duration.

    PubMed

    Nakadaira, Hiroto; Endoh, Kazuo; Katagiri, Mikio; Yamamoto, Masaharu

    2002-03-01

    In 1959, arsenic poisoning was detected in the town of Nakajo in Japan. The cause was exposure to inorganic arsenic in well water during 1954 to 1959. To examine the long-term effects of limited-duration arsenic exposure, we conducted mortality and survival studies for patients with chronic arsenic exposure and for control subjects from 1959 to 1992. The ratio of observed deaths to expected deaths from lung cancer was significantly high (7:0.64) for male patients. The lung cancer mortality rate was elevated markedly in subgroups with higher clinical severities of symptoms. Small cell carcinoma was specific to the exposed patients. The cumulative change of survival declined significantly in the exposed patients compared with the controls. The decline disappeared when lung cancer deaths were treated as lost to follow-up. The results showed that a 5-year period of arsenic exposure was associated with risk of lung cancer.

  14. Proposed Occupational Exposure Limits for Non-Carcinogenic Hanford Waste Tank Vapor Chemicals

    SciTech Connect

    Poet, Torka S.; Timchalk, Chuck

    2006-03-24

    A large number of volatile chemicals have been identified in the headspaces of tanks used to store mixed chemical and radioactive waste at the U.S. Department of Energy (DOE) Hanford Site, and there is concern that vapor releases from the tanks may be hazardous to workers. Contractually established occupational exposure limits (OELs) established by the Occupational Safety and Health Administration (OSHA) and American Conference of Governmental Industrial Hygienists (ACGIH) do not exist for all chemicals of interest. To address the need for worker exposure guidelines for those chemicals that lack OSHA or ACGIH OELs, a procedure for assigning Acceptable Occupational Exposure Limits (AOELs) for Hanford Site tank farm workers has been developed and applied to a selected group of 57 headspace chemicals.

  15. Abrasion and fatigue resistance of PDMS containing multiblock polyurethanes after accelerated water exposure at elevated temperature.

    PubMed

    Chaffin, Kimberly A; Wilson, Charles L; Himes, Adam K; Dawson, James W; Haddad, Tarek D; Buckalew, Adam J; Miller, Jennifer P; Untereker, Darrel F; Simha, Narendra K

    2013-11-01

    Segmented polyurethane multiblock polymers containing polydimethylsiloxane and polyether soft segments form tough and easily processed thermoplastic elastomers (PDMS-urethanes). Two commercially available examples, PurSil 35 (denoted as P35) and Elast-Eon E2A (denoted as E2A), were evaluated for abrasion and fatigue resistance after immersion in 85 °C buffered water for up to 80 weeks. We previously reported that water exposure in these experiments resulted in a molar mass reduction, where the kinetics of the hydrolysis reaction is supported by a straight forward Arrhenius analysis over a range of accelerated temperatures (37-85 °C). We also showed that the ultimate tensile properties of P35 and E2A were significantly compromised when the molar mass was reduced. Here, we show that the reduction in molar mass also correlated with a reduction in both the abrasion and fatigue resistance. The instantaneous wear rate of both P35 and E2A, when exposed to the reciprocating motion of an ethylene tetrafluoroethylene (ETFE) jacketed cable, increased with the inverse of the number averaged molar mass (1/Mn). Both materials showed a change in the wear surface when the number-averaged molar mass was reduced to ≈ 16 kg/mole, where a smooth wear surface transitioned to a 'spalling-like' pattern, leaving the wear surface with ≈ 0.3 mm cracks that propagated beyond the contact surface. The fatigue crack growth rate for P35 and E2A also increased in proportion to 1/Mn, after the molar mass was reduced below a critical value of ≈30 kg/mole. Interestingly, this critical molar mass coincided with that at which the single cycle stress-strain response changed from strain hardening to strain softening. The changes in both abrasion and fatigue resistance, key predictors for long term reliability of cardiac leads, after exposure of this class of PDMS-urethanes to water suggests that these materials are susceptible to mechanical compromise in vivo.

  16. Epidemiologic link between tuberculosis and cigarette/biomass smoke exposure: Limitations despite the vast literature.

    PubMed

    Bishwakarma, Raju; Kinney, William H; Honda, Jennifer R; Mya, Jenny; Strand, Matthew J; Gangavelli, Avani; Bai, Xiyuan; Ordway, Diane J; Iseman, Michael D; Chan, Edward D

    2015-05-01

    The geographic overlap between the prevalence of cigarette smoke (CS) exposure and tuberculosis (TB) in the world is striking. In recent years, relatively large number of studies has linked cigarette or biomass fuel smoke exposure and various aspects of TB. Our goals are to summarize the significance of the known published studies, graphically represent reports that quantified the association and discuss their potential limitations. PubMed searches were performed using the key words 'tuberculosis' with 'cigarette', 'tobacco', 'smoke' or 'biomass fuel smoke.' The references of relevant articles were examined for additional pertinent papers. A large number of mostly case-control and cross-sectional studies significantly associate both direct and second-hand smoke exposure with tuberculous infection, active TB, and/or more severe and lethal TB. Fewer link biomass fuel smoke exposure and TB. While a number of studies interpreted the association with multivariate analysis, other confounders are often not accounted for in these analyses. It is also important to emphasize that these retrospective studies can only show an association and not any causal link. We further explored the possibility that even if CS exposure is a risk factor for TB, several mechanisms may be responsible. Numerous studies associate cigarette and biomass smoke exposure with TB but the mechanism(s) remains largely unknown. While the associative link of these two health maladies is well established, more definitive, mechanistic studies are needed to cement the effect of smoke exposure on TB pathogenesis and to utilize this knowledge in empowering public health policies.

  17. 30 CFR 57.5060 - Limit on exposure to diesel particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., 1994 edition of 30 CFR, parts 1 to 199) as a high efficiency particulate air (HEPA) filter; (ii... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Limit on exposure to diesel particulate matter... MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Diesel Particulate...

  18. 30 CFR 57.5060 - Limit on exposure to diesel particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., 1994 edition of 30 CFR, parts 1 to 199) as a high efficiency particulate air (HEPA) filter; (ii... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Limit on exposure to diesel particulate matter... MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Diesel Particulate...

  19. 30 CFR 57.5060 - Limit on exposure to diesel particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., 1994 edition of 30 CFR, parts 1 to 199) as a high efficiency particulate air (HEPA) filter; (ii... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Limit on exposure to diesel particulate matter... MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Diesel Particulate...

  20. 30 CFR 57.5060 - Limit on exposure to diesel particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., 1994 edition of 30 CFR, parts 1 to 199) as a high efficiency particulate air (HEPA) filter; (ii... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Limit on exposure to diesel particulate matter... MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Diesel Particulate...

  1. 30 CFR 57.5060 - Limit on exposure to diesel particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., 1994 edition of 30 CFR, parts 1 to 199) as a high efficiency particulate air (HEPA) filter; (ii... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Limit on exposure to diesel particulate matter... MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Diesel Particulate...

  2. Short-term metal particulate exposures decrease cardiac acceleration and deceleration capacities in welders: a repeated-measures panel study

    PubMed Central

    Cavallari, Jennifer M; Fang, Shona C; Lu, Chensheng; Lin, Xihong; Mittleman, Murray A; Christiani, David C

    2016-01-01

    Objective Acceleration (AC) and deceleration (DC) capacities measure heart rate variability during speeding up and slowing down of the heart, respectively. We investigated associations between AC and DC with occupational short-term metal PM2.5 exposures. Methods A panel of 48 male welders had particulate matter less than 2.5 microns in diameter (PM2.5) exposure measurements over 4–6 h repeated over 5 sampling periods between January 2010 and June 2012. We simultaneously obtained continuous recordings of digital ECG using a Holter monitor. We analysed ECG data in the time domain to obtain hourly AC and DC. Linear mixed models were used to assess the associations between hourly PM2.5 exposure and each of hourly AC and DC, controlling for age, smoking status, active smoking, exposure to secondhand smoke, season/time of day when ECG reading was obtained and baseline AC or DC. We also ran lagged exposure response models for each successive hour up to 3 h after onset of exposure. Results Mean (SD) shift PM2.5 exposure during welding was 0.47 (0.43) mg/m3. Significant exposure–response associations were found for AC and DC with increased PM2.5 exposure. In our adjusted models without any lag between exposure and response, a 1 mg/m3 increase of PM2.5 was associated with a decrease of 1.46 (95% CI 1.00 to 1.92) ms in AC and a decrease of 1.00 (95% CI 0.53 to 1.46) ms in DC. The effect of PM2.5 on AC and DC was maximal immediately postexposure and lasted 1 h following exposure. Conclusions There are short-term effects of metal particulates on AC and DC. PMID:26644456

  3. Metalworking fluid mist occupational exposure limits: a discussion of alternative methods.

    PubMed

    Cohen, Howard; White, Eugene M

    2006-09-01

    NIOSH published a recommended exposure limit (REL) for metalworking fluids (MWF) in 1998 that was designed to prevent respiratory disorders associated with these industrial lubricants. The REL of 0.4 mg/m(3) (as a time-weighted average for up to 10 hours) was for the fraction of aerosol corresponding to deposition in the thoracic region of the lungs. This nonregulatory occupational exposure limit (OEL) corresponded to approximately 0.5 mg/m(3) for total particulate mass. Although this REL was designed to prevent respiratory disorders from MWF exposures, NIOSH acknowledged that exposures below the REL may still result in occupational asthma and hypersensitivity pneumonitis--two of the most significant respiratory illnesses associated with MWF. In the 8 years since the publication of the NIOSH MWF REL, neither the Occupational Safety and Health Administration (OSHA) nor the American Conference of Governmental Industrial Hygienists (ACGIH) has recommended an exposure limit for water-soluble MWF specifically, other than their previous exposure limits for mineral oil. An informal effort to benchmark companies involved in the manufacture of automobiles and automotive parts in North America indicated that most companies are using the NIOSH MWF REL as a guide for the purchase of new equipment. Furthermore, most companies have adopted a goal to limit exposures to below 1.0 mg/m3. We failed to find any company that has strictly enforced an OEL of 1.0 mg/m(3) through the use of either administrative controls or personal protective equipment, when engineering controls failed to bring the exposures to below this limit. We also found that most companies have failed to implement specific medical surveillance programs for those employees exposed to MWF mist above 1.0 mg/m(3). Organization Resources Counselors (ORC) published in 1999 (on their website) a "best practices" manual for maintaining MWF systems and reducing the likelihood of MWF-related illnesses. The emphasis of this

  4. Identifying an indoor air exposure limit for formaldehyde considering both irritation and cancer hazards

    PubMed Central

    Golden, Robert

    2011-01-01

    Formaldehyde is a well-studied chemical and effects from inhalation exposures have been extensively characterized in numerous controlled studies with human volunteers, including asthmatics and other sensitive individuals, which provide a rich database on exposure concentrations that can reliably produce the symptoms of sensory irritation. Although individuals can differ in their sensitivity to odor and eye irritation, the majority of authoritative reviews of the formaldehyde literature have concluded that an air concentration of 0.3 ppm will provide protection from eye irritation for virtually everyone. A weight of evidence-based formaldehyde exposure limit of 0.1 ppm (100 ppb) is recommended as an indoor air level for all individuals for odor detection and sensory irritation. It has recently been suggested by the International Agency for Research on Cancer (IARC), the National Toxicology Program (NTP), and the US Environmental Protection Agency (US EPA) that formaldehyde is causally associated with nasopharyngeal cancer (NPC) and leukemia. This has led US EPA to conclude that irritation is not the most sensitive toxic endpoint and that carcinogenicity should dictate how to establish exposure limits for formaldehyde. In this review, a number of lines of reasoning and substantial scientific evidence are described and discussed, which leads to a conclusion that neither point of contact nor systemic effects of any type, including NPC or leukemia, are causally associated with exposure to formaldehyde. This conclusion supports the view that the equivocal epidemiology studies that suggest otherwise are almost certainly flawed by identified or yet to be unidentified confounding variables. Thus, this assessment concludes that a formaldehyde indoor air limit of 0.1 ppm should protect even particularly susceptible individuals from both irritation effects and any potential cancer hazard. PMID:21635194

  5. Relative Humidity in Limited Streamer Tubes for Stanford Linear Accelerator Center's BaBar Detector

    SciTech Connect

    Lang, M.I.; Convery, M.; Menges, W.; /Queen Mary, U. of London

    2005-12-15

    The BABAR Detector at the Stanford Linear Accelerator Center studies the decay of B mesons created in e{sup +}e{sup -} collisions. The outermost layer of the detector, used to detect muons and neutral hadrons created during this process, is being upgraded from Resistive Plate Chambers (RPCs) to Limited Streamer Tubes (LSTs). The standard-size LST tube consists of eight cells, where a silver-plated wire runs down the center of each. A large potential difference is placed between the wires and ground. Gas flows through a series of modules connected with tubing, typically four. LSTs must be carefully tested before installation, as it will be extremely difficult to repair any damage once installed in the detector. In the testing process, the count rate in most modules showed was stable and consistent with cosmic ray rate over an approximately 500 V operating range between 5400 to 5900 V. The count in some modules, however, was shown to unexpectedly spike near the operation point. In general, the modules through which the gas first flows did not show this problem, but those further along the gas chain were much more likely to do so. The suggestion was that this spike was due to higher humidity in the modules furthest from the fresh, dry inflowing gas, and that the water molecules in more humid modules were adversely affecting the modules' performance. This project studied the effect of humidity in the modules, using a small capacitive humidity sensor (Honeywell). The sensor provided a humidity-dependent output voltage, as well as a temperature measurement from a thermistor. A full-size hygrometer (Panametrics) was used for testing and calibrating the Honeywell sensors. First the relative humidity of the air was measured. For the full calibration, a special gas-mixing setup was used, where relative humidity of the LST gas mixture could be varied from almost dry to almost fully saturated. With the sensor calibrated, a set of sensors was used to measure humidity vs. time

  6. Epidemiologic link between tuberculosis and cigarette/biomass smoke exposure: Limitations despite the vast literature.

    PubMed

    Bishwakarma, Raju; Kinney, William H; Honda, Jennifer R; Mya, Jenny; Strand, Matthew J; Gangavelli, Avani; Bai, Xiyuan; Ordway, Diane J; Iseman, Michael D; Chan, Edward D

    2015-05-01

    The geographic overlap between the prevalence of cigarette smoke (CS) exposure and tuberculosis (TB) in the world is striking. In recent years, relatively large number of studies has linked cigarette or biomass fuel smoke exposure and various aspects of TB. Our goals are to summarize the significance of the known published studies, graphically represent reports that quantified the association and discuss their potential limitations. PubMed searches were performed using the key words 'tuberculosis' with 'cigarette', 'tobacco', 'smoke' or 'biomass fuel smoke.' The references of relevant articles were examined for additional pertinent papers. A large number of mostly case-control and cross-sectional studies significantly associate both direct and second-hand smoke exposure with tuberculous infection, active TB, and/or more severe and lethal TB. Fewer link biomass fuel smoke exposure and TB. While a number of studies interpreted the association with multivariate analysis, other confounders are often not accounted for in these analyses. It is also important to emphasize that these retrospective studies can only show an association and not any causal link. We further explored the possibility that even if CS exposure is a risk factor for TB, several mechanisms may be responsible. Numerous studies associate cigarette and biomass smoke exposure with TB but the mechanism(s) remains largely unknown. While the associative link of these two health maladies is well established, more definitive, mechanistic studies are needed to cement the effect of smoke exposure on TB pathogenesis and to utilize this knowledge in empowering public health policies. PMID:25808744

  7. The beryllium quandary: will the lower exposure limits spur new developments in sampling and analysis?

    SciTech Connect

    Brisson, Michael

    2013-06-03

    At the time this article was written, new rulemakings were under consideration at OSHA and the U.S. Department of Energy (DOE) that would propose changes to occupational exposure limits for beryllium. Given these developments, it’s a good time to review the tools and methods available to IHs for assessing beryllium air and surface contamination in the workplace—what’s new and different, and what’s tried and true. The article discusses limit values and action levels for beryllium, problematic aspects of beryllium air sampling, sample preparation, sample analysis, and data evaluation.

  8. Exposure to 56Fe-particle radiation accelerates electrophysiological alterations in the hippocampus of APP23 transgenic mice.

    PubMed

    Vlkolinsky, R; Titova, E; Krucker, T; Chi, B B; Staufenbiel, M; Nelson, G A; Obenaus, A

    2010-03-01

    Abstract An unavoidable complication of space travel is exposure to high-charge, high-energy (HZE) particles. In animal studies, exposure of the CNS to HZE-particle radiation leads to neurological alterations similar to those seen in aging or Alzheimer's disease. In this study we examined whether HZE-particle radiation accelerated the age-related neuronal dysfunction that was previously described in transgenic mice overexpressing human amyloid precursor protein (APP). These APP23 transgenic mice exhibit age-related behavioral abnormalities and deficits in synaptic transmission. We exposed 7-week-old APP23 transgenic males to brain-only (56)Fe-particle radiation (600 MeV/nucleon; 1, 2, 4 Gy) and recorded synaptic transmission in hippocampal slices at 2, 6, 9, 14 and 18-24 months. We stimulated Schaeffer collaterals and recorded field excitatory postsynaptic potentials (fEPSP) and population spikes (PS) in CA1 neurons. Radiation accelerated the onset of age-related fEPSP decrements recorded at the PS threshold from 14 months of age to 9 months and reduced synaptic efficacy. At 9 months, radiation also reduced PS amplitudes. At 6 months, we observed a temporary deficit in paired-pulse inhibition of the PS at 2 Gy. Radiation did not significantly affect survival of APP23 transgenic mice. We conclude that irradiation of the brain with HZE particles accelerates Alzheimer's disease-related neurological deficits.

  9. Examining the limits of time reweighting and Kramers' rate theory to obtain correct kinetics from accelerated molecular dynamics.

    PubMed

    Xin, Yao; Doshi, Urmi; Hamelberg, Donald

    2010-06-14

    Accelerated molecular dynamics simulations are routinely being used to recover the correct canonical probability distributions corresponding to the original potential energy landscape of biomolecular systems. However, the limits of time reweighting, based on transition state theory, in obtaining true kinetic rates from accelerated molecular dynamics for biomolecular systems are less obvious. Here, we investigate this issue by studying the kinetics of cis-trans isomerization of peptidic omega bond by accelerated molecular dynamics. We find that time reweighting is valid for obtaining true kinetics when the original potential is not altered at the transition state regions, as expected. When the original potential landscape is modified such that the applied boost potential alters the transition state regions, time reweighting fails to reproduce correct kinetics and the reweighted rate is much slower than the true rate. By adopting the overdamped limit of Kramers' rate theory, we are successful in recovering correct kinetics irrespective of whether or not the transition state regions are modified. Furthermore, we tested the validity of the acceleration weight factor from the path integral formalism for obtaining the correct kinetics of cis-trans isomerization. It was found that this formulation of the weight factor is not suitable for long time scale processes such as cis-trans isomerization with high energy barriers.

  10. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic

    PubMed Central

    Stanton, Bruce A.

    2015-01-01

    This report is the outcome of the meeting: “Environmental and Human Health Consequences of Arsenic”, held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13–15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food and more than 200 million people ingest arsenic via drinking water at concentrations greater than international standards. Although the U.S. Environmental Protection Agency (EPA) has set a limit of 10 micrograms per liter (10 μg/L) in public water supplies and the WHO has recommended an upper limit of 10 μg/L, recent studies indicate that these limits are not protective enough. In addition, there are currently few standards for arsenic in food. Those who participated in the Summit support citizens, scientists, policymakers, industry and educators at the local, state, national and international levels to: (1) Establish science-based evidence for setting standards at the local, state, national, and global levels for arsenic in water and food; (2) Work with government agencies to set regulations for arsenic in water and food, to establish and strengthen non-regulatory programs, and to strengthen collaboration among government agencies, NGOs, academia, the private sector, industry and others; (3) Develop novel and cost-effective technologies for identification and reduction of exposure to arsenic in water; (4) Develop novel and cost-effective approaches to reduce arsenic exposure in juice, rice, and other relevant foods, and (5) Develop an Arsenic Education Plan to guide the development of science curricula as well as community outreach and education programs that serve to inform students and consumers about arsenic exposure and engage them in well water testing and development of remediation strategies. PMID:26231509

  11. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic.

    PubMed

    Stanton, Bruce A; Caldwell, Kathleen; Congdon, Clare Bates; Disney, Jane; Donahue, Maria; Ferguson, Elizabeth; Flemings, Elsie; Golden, Meredith; Guerinot, Mary Lou; Highman, Jay; James, Karen; Kim, Carol; Lantz, R Clark; Marvinney, Robert G; Mayer, Greg; Miller, David; Navas-Acien, Ana; Nordstrom, D Kirk; Postema, Sonia; Rardin, Laurie; Rosen, Barry; SenGupta, Arup; Shaw, Joseph; Stanton, Elizabeth; Susca, Paul

    2015-09-01

    This report is the outcome of the meeting "Environmental and Human Health Consequences of Arsenic" held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13-15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food, and more than 200 million people ingest arsenic via drinking water at concentrations greater than international standards. Although the US Environmental Protection Agency (EPA) has set a limit of 10 μg/L in public water supplies and the WHO has recommended an upper limit of 10 μg/L, recent studies indicate that these limits are not protective enough. In addition, there are currently few standards for arsenic in food. Those who participated in the Summit support citizens, scientists, policymakers, industry, and educators at the local, state, national, and international levels to (1) establish science-based evidence for setting standards at the local, state, national, and global levels for arsenic in water and food; (2) work with government agencies to set regulations for arsenic in water and food, to establish and strengthen non-regulatory programs, and to strengthen collaboration among government agencies, NGOs, academia, the private sector, industry, and others; (3) develop novel and cost-effective technologies for identification and reduction of exposure to arsenic in water; (4) develop novel and cost-effective approaches to reduce arsenic exposure in juice, rice, and other relevant foods; and (5) develop an Arsenic Education Plan to guide the development of science curricula as well as community outreach and education programs that serve to inform students and consumers about arsenic exposure and engage them in well water testing and development of remediation strategies.

  12. SIMULATIONS OF PARTICLE ACCELERATION BEYOND THE CLASSICAL SYNCHROTRON BURNOFF LIMIT IN MAGNETIC RECONNECTION: AN EXPLANATION OF THE CRAB FLARES

    SciTech Connect

    Cerutti, B.; Werner, G. R.; Uzdensky, D. A.; Begelman, M. C. E-mail: greg.werner@colorado.edu E-mail: mitch@jila.colorado.edu

    2013-06-20

    It is generally accepted that astrophysical sources cannot emit synchrotron radiation above 160 MeV in their rest frame. This limit is given by the balance between the accelerating electric force and the radiation reaction force acting on the electrons. The discovery of synchrotron gamma-ray flares in the Crab Nebula, well above this limit, challenges this classical picture of particle acceleration. To overcome this limit, particles must accelerate in a region of high electric field and low magnetic field. This is possible only with a non-ideal magnetohydrodynamic process, like magnetic reconnection. We present the first numerical evidence of particle acceleration beyond the synchrotron burnoff limit, using a set of two-dimensional particle-in-cell simulations of ultra-relativistic pair plasma reconnection. We use a new code, Zeltron, that includes self-consistently the radiation reaction force in the equation of motion of the particles. We demonstrate that the most energetic particles move back and forth across the reconnection layer, following relativistic Speiser orbits. These particles then radiate >160 MeV synchrotron radiation rapidly, within a fraction of a full gyration, after they exit the layer. Our analysis shows that the high-energy synchrotron flux is highly variable in time because of the strong anisotropy and inhomogeneity of the energetic particles. We discover a robust positive correlation between the flux and the cut-off energy of the emitted radiation, mimicking the effect of relativistic Doppler amplification. A strong guide field quenches the emission of >160 MeV synchrotron radiation. Our results are consistent with the observed properties of the Crab flares, supporting the reconnection scenario.

  13. Simulations of Particle Acceleration beyond the Classical Synchrotron Burnoff Limit in Magnetic Reconnection: An Explanation of the Crab Flares

    NASA Astrophysics Data System (ADS)

    Cerutti, B.; Werner, G. R.; Uzdensky, D. A.; Begelman, M. C.

    2013-06-01

    It is generally accepted that astrophysical sources cannot emit synchrotron radiation above 160 MeV in their rest frame. This limit is given by the balance between the accelerating electric force and the radiation reaction force acting on the electrons. The discovery of synchrotron gamma-ray flares in the Crab Nebula, well above this limit, challenges this classical picture of particle acceleration. To overcome this limit, particles must accelerate in a region of high electric field and low magnetic field. This is possible only with a non-ideal magnetohydrodynamic process, like magnetic reconnection. We present the first numerical evidence of particle acceleration beyond the synchrotron burnoff limit, using a set of two-dimensional particle-in-cell simulations of ultra-relativistic pair plasma reconnection. We use a new code, Zeltron, that includes self-consistently the radiation reaction force in the equation of motion of the particles. We demonstrate that the most energetic particles move back and forth across the reconnection layer, following relativistic Speiser orbits. These particles then radiate >160 MeV synchrotron radiation rapidly, within a fraction of a full gyration, after they exit the layer. Our analysis shows that the high-energy synchrotron flux is highly variable in time because of the strong anisotropy and inhomogeneity of the energetic particles. We discover a robust positive correlation between the flux and the cut-off energy of the emitted radiation, mimicking the effect of relativistic Doppler amplification. A strong guide field quenches the emission of >160 MeV synchrotron radiation. Our results are consistent with the observed properties of the Crab flares, supporting the reconnection scenario.

  14. Derivation of an occupational exposure limit for an inhalation analgesic methoxyflurane (Penthrox(®)).

    PubMed

    Frangos, John; Mikkonen, Antti; Down, Christin

    2016-10-01

    Methoxyflurane (MOF) a haloether, is an inhalation analgesic agent for emergency relief of pain by self administration in conscious patients with trauma and associated pain. It is administered under supervision of personnel trained in its use. As a consequence of supervised use, intermittent occupational exposure can occur. An occupational exposure limit has not been established for methoxyflurane. Human clinical and toxicity data have been reviewed and used to derive an occupational exposure limit (referred to as a maximum exposure level, MEL) according to modern principles. The data set for methoxyflurane is complex given its historical use as anaesthetic. Distinguishing clinical investigations of adverse health effects following high and prolonged exposure during anaesthesia to assess relatively low and intermittent exposure during occupational exposure requires an evidence based approach to the toxicity assessment and determination of a critical effect and point of departure. The principal target organs are the kidney and the central nervous system and there have been rare reports of hepatotoxicity, too. Methoxyflurane is not genotoxic based on in vitro bacterial mutation and in vivo micronucleus tests and it is not classifiable (IARC) as a carcinogenic hazard to humans. The critical effect chosen for development of a MEL is kidney toxicity. The point of departure (POD) was derived from the concentration response relationship for kidney toxicity using the benchmark dose method. A MEL of 15 ppm (expressed as an 8 h time weighted average (TWA)) was derived. The derived MEL is at least 50 times higher than the mean observed TWA (0.23 ppm) for ambulance workers and medical staff involved in supervising use of Penthrox. In typical treatment environments (ambulances and treatment rooms) that meet ventilation requirements the derived MEL is at least 10 times higher than the modelled TWA (1.5 ppm or less) and the estimated short term peak concentrations are

  15. Limited recovery of soil microbial activity after transient exposure to gasoline vapors.

    PubMed

    Modrzyński, Jakub J; Christensen, Jan H; Mayer, Philipp; Brandt, Kristian K

    2016-09-01

    During gasoline spills complex mixtures of toxic volatile organic compounds (VOCs) are released to terrestrial environments. Gasoline VOCs exert baseline toxicity (narcosis) and may thus broadly affect soil biota. We assessed the functional resilience (i.e. resistance and recovery of microbial functions) in soil microbial communities transiently exposed to gasoline vapors by passive dosing via headspace for 40 days followed by a recovery phase of 84 days. Chemical exposure was characterized with GC-MS, whereas microbial activity was monitored as soil respiration (CO2 release) and soil bacterial growth ([(3)H]leucine incorporation). Microbial activity was strongly stimulated and inhibited at low and high exposure levels, respectively. Microbial growth efficiency decreased with increasing exposure, but rebounded during the recovery phase for low-dose treatments. Although benzene, toluene, ethylbenzene and xylene (BTEX) concentrations decreased by 83-97% during the recovery phase, microbial activity in high-dose treatments did not recover and numbers of viable bacteria were 3-4 orders of magnitude lower than in control soil. Re-inoculation with active soil microorganisms failed to restore microbial activity indicating residual soil toxicity, which could not be attributed to BTEX, but rather to mixture toxicity of more persistent gasoline constituents or degradation products. Our results indicate a limited potential for functional recovery of soil microbial communities after transient exposure to high, but environmentally relevant, levels of gasoline VOCs which therefore may compromise ecosystem services provided by microorganisms even after extensive soil VOC dissipation. PMID:27376993

  16. Advances in Inhalation Dosimetry Models and Methods for Occupational Risk Assessment and Exposure Limit Derivation

    PubMed Central

    Kuempel, Eileen D.; Sweeney, Lisa M.; Morris, John B.; Jarabek, Annie M.

    2015-01-01

    The purpose of this article is to provide an overview and practical guide to occupational health professionals concerning the derivation and use of dose estimates in risk assessment for development of occupational exposure limits (OELs) for inhaled substances. Dosimetry is the study and practice of measuring or estimating the internal dose of a substance in individuals or a population. Dosimetry thus provides an essential link to understanding the relationship between an external exposure and a biological response. Use of dosimetry principles and tools can improve the accuracy of risk assessment, and reduce the uncertainty, by providing reliable estimates of the internal dose at the target tissue. This is accomplished through specific measurement data or predictive models, when available, or the use of basic dosimetry principles for broad classes of materials. Accurate dose estimation is essential not only for dose-response assessment, but also for interspecies extrapolation and for risk characterization at given exposures. Inhalation dosimetry is the focus of this paper since it is a major route of exposure in the workplace. Practical examples of dose estimation and OEL derivation are provided for inhaled gases and particulates. PMID:26551218

  17. Effect of Ultrasonic Peening and Accelerated Corrosion Exposure on the Residual Stress Distribution in Welded Marine Steel

    NASA Astrophysics Data System (ADS)

    Ahmad, Bilal; Fitzpatrick, Michael E.

    2015-03-01

    Specimens of DH36 marine steel were prepared with welded attachments. Residual stress measurements were made on the samples as-welded, following an ultrasonic peening treatment, and following accelerated corrosion exposure after ultrasonic peening. Neutron diffraction and the contour method were used for determining the residual stress profiles. The welding introduces tensile near-surface residual stress, approaching the material yield strength, and the ultrasonic peening overlays this with a compressive residual stress. Material removal by corrosion decreases the peak surface compressive stress slightly, by removal of a layer of stressed material, but does not cause significant redistribution of the residual stress profile.

  18. Limitations of predicting in vivo biostability of multiphase polyurethane elastomers using temperature-accelerated degradation testing.

    PubMed

    Padsalgikar, Ajay; Cosgriff-Hernandez, Elizabeth; Gallagher, Genevieve; Touchet, Tyler; Iacob, Ciprian; Mellin, Lisa; Norlin-Weissenrieder, Anna; Runt, James

    2015-01-01

    Polyurethane biostability has been the subject of intense research since the failure of polyether polyurethane pacemaker leads in the 1980s. Accelerated in vitro testing has been used to isolate degradation mechanisms and predict clinical performance of biomaterials. However, validation that in vitro methods reproduce in vivo degradation is critical to the selection of appropriate tests. High temperature has been proposed as a method to accelerate degradation. However, correlation of such data to in vivo performance is poor for polyurethanes due to the impact of temperature on microstructure. In this study, we characterize the lack of correlation between hydrolytic degradation predicted using a high temperature aging model of a polydimethylsiloxane-based polyurethane and its in vivo performance. Most notably, the predicted molecular weight and tensile property changes from the accelerated aging study did not correlate with clinical explants subjected to human biological stresses in real time through 5 years. Further, DMTA, ATR-FTIR, and SAXS experiments on samples aged for 2 weeks in PBS indicated greater phase separation in samples aged at 85°C compared to those aged at 37°C and unaged controls. These results confirm that microstructural changes occur at high temperatures that do not occur at in vivo temperatures. In addition, water absorption studies demonstrated that water saturation levels increased significantly with temperature. This study highlights that the multiphase morphology of polyurethane precludes the use of temperature accelerated biodegradation for the prediction of clinical performance and provides critical information in designing appropriate in vitro tests for this class of materials.

  19. The NREL Outdoor Accelerated-Weathering Tracking System Photovoltaic Module Exposure Results

    SciTech Connect

    Basso, T. S.

    2000-01-01

    Status results are presented for the Outdoor Accelerated-Weathering Tracking System (OATS) first study on photovoltaic (PV) modules. Studies began in November 1997 on pairs of commercially available crystalline silicon and amorphous silicon (a-Si) PV modules kept at constant resistive load.

  20. Evaluation of the toxicity data for peracetic acid in deriving occupational exposure limits: a minireview.

    PubMed

    Pechacek, Nathan; Osorio, Magdalena; Caudill, Jeff; Peterson, Bridget

    2015-02-17

    Peracetic acid (PAA) is a peroxide-based chemistry that is highly reactive and can produce strong local effects upon direct contact with the eyes, skin and respiratory tract. Given its increasing prominence in industry, attention has focused on health hazards and associated risks for PAA in the workplace. Occupational exposure limits (OEL) are one means to mitigate risks associated with chemical hazards in the workplace. A mini-review of the toxicity data for PAA was conducted in order to determine if the data were sufficient to derive health-based OELs. The available data for PAA frequently come from unpublished studies that lack sufficient study details, suffer from gaps in available information and often follow unconventional testing methodology. Despite these limitations, animal and human data suggest sensory irritation as the most sensitive endpoint associated with inhalation of PAA. Rodent RD50 data (the concentration estimated to cause a 50% depression in respiratory rate) were selected as the critical studies in deriving OELs. Based on these data, a range of 0.36-0.51mg/m(3) (0.1-0.2ppm) was calculated for a time-weighted average (TWA), and 1.2-1.7mg/m(3) (0.4-0.5ppm) as a range for a short-term exposure limit (STEL). These ranges compare favorably to other published OELs for PAA. Considering the applicable health hazards for this chemistry, a joint TWA/STEL OEL approach for PAA is deemed the most appropriate in assessing workplace exposures to PAA, and the selection of specific values within these proposed ranges represents a risk management decision. PMID:25542141

  1. Limits of NbTi and Nb3Sn, and development of W& R Bi-2212 High Field Accelerator Magnets

    SciTech Connect

    Cheng, Daniel; Dietderich, Daniel; Ferrracin, Paolo; Prestemon, Soren; Sabbi, GianLuca; Scanlan, Ron; Godeke, A.

    2007-06-01

    NbTi accelerator dipoles are limited to magnetic fields (H) of about 10 T, due to an intrinsic upper critical field (H{sub c2}) limitation of 14 T. To surpass this restriction, prototype Nb{sub 3}Sn magnets are being developed which have reached 16 T. We show that Nb{sub 3}Sn dipole technology is practically limited to 17 to 18 T due to insufficient high field pinning, and intrinsically to 20 to 22 T due to H{sub c2} limitations. Therefore, to obtain magnetic fields approaching 20 T and higher, a material is required with a higher H{sub c2} and sufficient high field pinning capacity. A realistic candidate for this purpose is Bi-2212, which is available in round wires and sufficient lengths for the fabrication of coils based on Rutherford-type cables. We initiated a program to develop the required technology to construct accelerator magnets from 'wind-and-react' (W&R) Bi-2212 coils. We outline the complications that arise through the use of Bi-2212, describe the development paths to address these issues, and conclude with the design of W&R Bi-2212 sub-scale magnets.

  2. Effects of repeated exposure to acceleration forces (+Gz) and anti-G manoeuvres on cardiac dimensions and performance

    PubMed Central

    Carter, Dan; Prokupetz, Alex; Harpaz, David; Barenboim, Erez

    2010-01-01

    Exposure to acceleration forces (+Gz) and anti-G protective manoeuvres causes changes in cardiac preload and afterload. These changes can result in cardiac hypertrophy or enlargement. Previous studies regarding the effect of acceleration in high-G aviators (HGAs) are few and inconclusive. An echocardiographic study was initiated to determine whether there are structural or functional cardiac differences between HGAs and low-G aviators (LGAs). The present study was a cross-sectional study in which echocardiographic parameters in HGAs were compared with those in LGAs. Both retrospective and prospective data were collected. Fifty aviators were included in each group. The aviators who participated in the present study were randomly chosen from a cohort with similar demographic characteristics and flying hours. No major differences were found in cardiac dimensions and function between HGAs and LGAs. The authors speculate that the reason why no major differences were found was due to the short period of total exposure to very high +Gz forces and anti-G measures. PMID:20664767

  3. [Pharmacological correction of central nervous system function in exposure to Coriolis acceleration].

    PubMed

    Karkishchenko, N N; Dimitriadi, N A; Molchanovskiĭ, V V

    1986-01-01

    Healthy volunteers with a low vestibular tolerance were exposed to Coriolis acceleration. Potassium orotate, pyracetame and riboxine were used as prophylactic measures against disorders in the function of the vestibular apparatus and higher compartments of the higher nervous system. The central nervous function was assessed with respect to the spectral power of electroencephalograms, short-term memory and mental performance. Potassium orotate given at a dose of 40 mg/kg body weight/day during 12-14 days as well as pyracetame given at a dose of 30 mg/kg body weight/day during 3 or 7 days increased significantly statokinetic tolerance and produced a protective effect on the central nervous function against Coriolis acceleration.

  4. Body composition changes in monkeys during long-term exposure to high acceleration fields

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Kodama, A. M.; Smith, A. H.

    1977-01-01

    Adult male pig-tailed monkeys, weighing 10-14 kg, were subjected to continuous centrifuging stress for 7 months in acceleration fields up to 2.5 g. In vivo analytical techniques were used to evaluate parameters of body composition, body-fluid distribution, and hematology. Statistically significant losses in total body mass, lean body mass, total body water, extracellular water content and interstitial water content proportional to the level of high g were demonstrated.

  5. Limiting Exposure to Medical Malpractice Claims and Defamatory Cyber Postings via Patient Contracts

    PubMed Central

    Segal, Jeffrey J.

    2008-01-01

    The documents patients sign on admission to a medical practice can constitute a legal contract. Medical practices around the country are attempting to use these documents as a prospective defense against medical malpractice claims. Protective contractual provisions are often attacked on grounds that they are legally void as a result of unconscionability. Widespread use of arbitration clauses have been met with mixed success. Arbitration clauses that limit damages available in medical negligence cases have been stricken in some states as having provisions that impose excessive entry costs on a patient starting the arbitration process. Other provisions relating to prequalification requirements for expert witnesses are now being used with increasing frequency. Clauses have even been placed in patient contracts that address cyber postings of adverse claims against physicians. Prospective patient contracts may be an effective means to limit exposure to medical malpractice lawsuits and to minimize defamatory cyber postings. PMID:19057975

  6. Silica-associated limited systemic sclerosis after occupational exposure to calcined diatomaceous earth.

    PubMed

    Moisan, Stéphanie; Rucay, Pierre; Ghali, Alaa; Penneau-Fontbonne, Dominique; Lavigne, Christian

    2010-10-01

    Silica-associated systemic sclerosis can occur in persons using calcined diatomaceous earth for filtration purpose. A limited systemic sclerosis was diagnosed in a 52-year-old male winegrower who had a combination of Raynaud's phenomenon, oesophageal dysfunction, sclerodactyly and telangectasia. The anti-centromere antibodies titre was 1/5000. The patient was frequently exposed to high atmospheric concentrations of calcined diatomaceous earth when performing the filtration of wines. Calcined diatomaceous earth is almost pure crystalline silica under the cristobalite form. The diagnosis of silica-associated limited systemic sclerosis after exposure to calcined diatomaceous earth was made. The patient's disease met the medical, administrative and occupational criteria given in the occupational diseases list 22 bis of the agriculture Social Security scheme and thence was presumed to be occupational in origin, without need to be proved. The diagnosis of occupational disease had been recognized by the compensation system of the agricultural health insurance.

  7. Pulmonary Evaluation of Permissible Exposure Limit of Syntroleum S-8 Synthetic Jet Fuel in Mice

    PubMed Central

    Wong, Simon S.; Thomas, Alana; Barbaris, Brian; Lantz, R. Clark; Witten, Mark L.

    2009-01-01

    No current studies have systematically examined pulmonary health effects associated with Syntroleum S-8 synthetic jet fuel (S-8). In order to gain an understanding about the threshold concentration in which lung injury is observed, C57BL/6 male mice were nose-only exposed to S-8 for 1 h/day for 7 days at average concentrations of 0 (control), 93, 352, and 616 mg/m3. Evaluation of pulmonary function, airway epithelial barrier integrity, and pathohistology was performed 24 h after the final exposures. Significant decreases were detected in expiratory lung resistance and total lung compliance of the 352 mg/m3 group, for which no clear concentration-dependent alterations could be determined. No significant changes in respiratory permeability were exhibited, indicating that there was no loss of epithelial barrier integrity following S-8 exposure. However, morphological examination and morphometric analysis of distal lung tissue, by using transmission electron microscopy, revealed cellular damage in alveolar type II epithelial cells, with significant increases in volume density of lamellar bodies/vacuoles at 352 and 616 S-8 mg/m3. Moreover, terminal bronchiolar Clara injury, as evidenced by apical membrane blebs, was observed at relatively low concentrations, suggesting if this synthetic jet fuel is utilized, the current permissible exposure limit of 350 mg/m3 for hydrocarbon fuels should cautiously be applied. PMID:19357071

  8. Development of backsheet tests and measurements to improve correlation of accelerated exposures to fielded modules

    NASA Astrophysics Data System (ADS)

    Felder, Thomas C.; Gambogi, William J.; Kopchick, James G.; Amspacher, Lucas; Peacock, R. Scott; Foltz, Benjamin; Stika, Katherine M.; Bradley, Alexander Z.; Hamzavy, Babak; Yu, Bao-Ling; Garreau-iles, Lucie; Fu, Oakland; Hu, Hongjie; Trout, T. John

    2015-09-01

    Matching accelerated test results to field observations is an important objective in the photovoltaic industry. We continue to develop test methods to strengthen correlations. We have previously reported good correlation of FTIR spectra between accelerated tests and field measurements. The availability of portable FTIR spectrometers has made measurement in the field convenient and reliable. Recently, nano-indentation has shown promise to correlate changes in backsheet mechanical properties. A precisely shaped stylus is pressed into a sample, load vs displacement recorded and mechanical properties of interest calculated in a nondestructive test. This test can be done on full size modules, allowing area variations in mechanical properties to be recorded. Finally, we will discuss optical profilometry. In this technique a white light interferogram of a surface is Fourier transformed to produce a three-dimensional image. Height differences from 1 nm to 5 mm can be detected over an area of a few cm. This technique can be used on minimodules, and is useful to determine crack and defect dimensions. Results will be presented correlating accelerated tests with fielded modules covering spectroscopic, mechanical, and morphological changes.

  9. Airborne exposure limits for chemical and biological warfare agents: is everything set and clear?

    PubMed

    Sabelnikov, Alex; Zhukov, Vladimir; Kempf, C Ruth

    2006-08-01

    Emergency response strategies (guidelines) for biological, chemical, nuclear, or radiological terrorist events should be based on scientifically established exposure limits for all the agents or materials involved. In the case of a radiological terrorist event, emergency response guidelines (ERG) have been worked out. In the case of a terrorist event with the use of chemical warfare (CW) agents the situation is not that clear, though the new guidelines and clean-up values are being generated based on re-evaluation of toxicological and risk data. For biological warfare (BW) agents, such guidelines do not yet exist. In this paper the current status of airborne exposure limits (AELs) for chemical and biological warfare (CBW) agents are reviewed. Particular emphasis is put on BW agents that lack such data. An efficient, temporary solution to bridge the gap in experimental infectious data and to set provisional AELs for BW agents is suggested. It is based on mathematically generated risks of infection for BW agents grouped by their alleged ID50 values in three categories: with low, intermediate and high ID50 values.

  10. The Global Landscape of Occupational Exposure Limits—Implementation of Harmonization Principles to Guide Limit Selection

    PubMed Central

    Deveau, M.; Chen, C-P; Johanson, G.; Krewski, D.; Maier, A.; Niven, K. J.; Ripple, S.; Schulte, P. A.; Silk, J.; Urbanus, J. H.; Zalk, D. M.; Niemeier, R. W.

    2015-01-01

    Occupational exposure limits (OELs) serve as health-based benchmarks against which measured or estimated workplace exposures can be compared. In the years since the introduction of OELs to public health practice, both developed and developing countries have established processes for deriving, setting, and using OELs to protect workers exposed to hazardous chemicals. These processes vary widely, however, and have thus resulted in a confusing international landscape for identifying and applying such limits in workplaces. The occupational hygienist will encounter significant overlap in coverage among organizations for many chemicals, while other important chemicals have OELs developed by few, if any, organizations. Where multiple organizations have published an OEL, the derived value often varies considerably—reflecting differences in both risk policy and risk assessment methodology as well as access to available pertinent data. This article explores the underlying reasons for variability in OELs, and recommends the harmonization of risk-based methods used by OEL-deriving organizations. A framework is also proposed for the identification and systematic evaluation of OEL resources, which occupational hygienists can use to support risk characterization and risk management decisions in situations where multiple potentially relevant OELs exist. PMID:26099071

  11. Setting occupational exposure limits for sensory irritants: the approach in the European Union.

    PubMed

    Meldrum, M

    2001-01-01

    Beginning in 1990, the European Commission initiated a program to establish European Union (EU)-wide occupational exposure limits (OELs). As in the United States and other countries, a panel of experts known as the Scientific Committee on Occupational Exposure Limits (SCOEL) was identified and brought together to identify the proper values. This article describes the approach used by SCOEL to identify appropriate values for sensory irritants. The EU panel believes that irritant effects in the eyes and respiratory tract can produce symptoms that range from trivial to serious, and that responses to irritants may be viewed as belonging to a continuum. One of the interesting differences between the approach used by the ACGIH TLV committee and the SCOEL is the use of five grades of irritation to evaluate this class of chemicals. For purposes of setting an OEL, the SCOEL makes no distinction between irritation or nuisance and related somatic effects such as headache. How the committee established an OEL for ethyl acetate is offered as an illustrative example.

  12. Early limited nitrosamine exposures exacerbate high fat diet-mediated type 2 diabetes and neurodegeneration

    PubMed Central

    2010-01-01

    Background Type 2 diabetes mellitus (T2DM) and several types of neurodegeneration, including Alzheimer's, are linked to insulin-resistance, and chronic high dietary fat intake causes T2DM with mild neurodegeneration. Intra-cerebral Streptozotocin, a nitrosamine-related compound, causes neurodegeneration, whereas peripheral treatment causes DM. Hypothesis Limited early exposures to nitrosamines that are widely present in the environment, enhance the deleterious effects of high fat intake in promoting T2DM and neurodegeneration. Methods Long Evans rat pups were treated with N-nitrosodiethylamine (NDEA) by i.p. injection, and upon weaning, they were fed with high fat (60%; HFD) or low fat (5%; LFD) chow for 8 weeks. Cerebella were harvested to assess gene expression, and insulin and insulin-like growth factor (IGF) deficiency and resistance in the context of neurodegeneration. Results HFD ± NDEA caused T2DM, neurodegeneration with impairments in brain insulin, insulin receptor, IGF-2 receptor, or insulin receptor substrate gene expression, and reduced expression of tau and choline acetyltransferase (ChAT), which are regulated by insulin and IGF-1. In addition, increased levels of 4-hydroxynonenal and nitrotyrosine were measured in cerebella of HFD ± NDEA treated rats, and overall, NDEA+HFD treatment reduced brain levels of Tau, phospho-GSK-3β (reflecting increased GSK-3β activity), glial fibrillary acidic protein, and ChAT to greater degrees than either treatment alone. Finally, pro-ceramide genes, examined because ceramides cause insulin resistance, oxidative stress, and neurodegeneration, were significantly up-regulated by HFD and/or NDEA exposure, but the highest levels were generally present in brains of HFD+NDEA treated rats. Conclusions Early limited exposure to nitrosamines exacerbates the adverse effects of later chronic high dietary fat intake in promoting T2DM and neurodegeneration. The mechanism involves increased generation of ceramides and probably

  13. Reduction of Endogenous Melatonin Accelerates Cognitive Decline in Mice in a Simulated Occupational Formaldehyde Exposure Environment

    PubMed Central

    Mei, Yufei; Duan, Chunli; Li, Xiaoxiao; Zhao, Yun; Cao, Fenghua; Shang, Shuai; Ding, Shumao; Yue, Xiangpei; Gao, Ge; Yang, Hui; Shen, Luxi; Feng, Xueyan; Jia, Jianping; Tong, Zhiqian; Yang, Xu

    2016-01-01

    Individuals afflicted with occupational formaldehyde (FA) exposure often suffer from abnormal behaviors such as aggression, depression, anxiety, sleep disorders, and in particular, cognitive impairments. Coincidentally, clinical patients with melatonin (MT) deficiency also complain of cognitive problems associated with the above mental disorders. Whether and how FA affects endogenous MT metabolism and induces cognitive decline need to be elucidated. To mimic occupational FA exposure environment, 16 healthy adult male mice were exposed to gaseous FA (3 mg/m3) for 7 consecutive days. Results showed that FA exposure impaired spatial memory associated with hippocampal neuronal death. Biochemical analysis revealed that FA exposure elicited an intensive oxidative stress by reducing systemic glutathione levels, in particular, decreasing brain MT concentrations. Inversely, intraperitoneal injection of MT markedly attenuated FA-induced hippocampal neuronal death, restored brain MT levels, and reversed memory decline. At tissue levels, injection of FA into the hippocampus distinctly reduced brain MT concentrations. Furthermore, at cellular and molecular levels, we found that FA directly inactivated MT in vitro and in vivo. These findings suggest that MT supplementation contributes to the rescue of cognitive decline, and may alleviate mental disorders in the occupational FA-exposed human populations. PMID:26938543

  14. UVB Exposure Does Not Accelerate Rates of Litter Decomposition in a Semiarid Riparian Ecosystem

    NASA Astrophysics Data System (ADS)

    Uselman, S. M.; Snyder, K. A.; Blank, R. R.; Jones, T. J.

    2010-12-01

    Aboveground litter decomposition is controlled mainly by substrate quality and climate factors across terrestrial ecosystems, but photodegradation from exposure to high-intensity ultraviolet-B (UVB) radiation may also be important in arid and semi-arid environments. We investigated the interactive effects of UVB exposure and litter quality on decomposition in a Tamarix-invaded riparian ecosystem during the establishment of an insect biological control agent in northern Nevada. Feeding by the northern tamarisk beetle (Diorhabda carinulata) on Tamarix spp. trees leads to altered leaf litter quality and increased exposure to solar UVB radiation from canopy opening. In addition, we examined the dynamics of litter decomposition of the invasive exotic Lepidium latifolium, because it is well-situated to invade beetle-infested Tamarix sites. Three leaf litter types (natural Tamarix, beetle-affected Tamarix, and L. latifolium) differing in substrate quality were decomposed in litterbags for one year in the field. Litterbags were subjected to one of three treatments: (1) Ambient UVB or (2) Reduced UVB (where UVB was manipulated by using clear plastic films that transmit or block UVB), and (3) No Cover (a control used to test for the effect of using the plastic films, i.e. a cover effect). Results showed a large cover effect on rates of decomposition and nutrient release, and our findings suggested that frequent cycles of freeze-thaw, and possibly rainfall intensity, influenced decomposition at this site. Contrary to our expectations, greater UVB exposure did not result in faster rates of decomposition. Greater UVB exposure resulted in decreased rates of decomposition and P release for the lower quality litter and no change in rates of decomposition and nutrient release for the two higher quality litter types, possibly due to a negative effect of UVB on soil microbes. Among litter types, rates of decomposition and net release of N and P followed this ranking: L. latifolium

  15. 29 CFR Appendix A to Subpart T to... - Examples of Conditions Which May Restrict or Limit Exposure to Hyperbaric Conditions

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH... disorders may restrict or limit occupational exposure to hyperbaric conditions depending on severity... or drug use. Conditions requiring continuous medication for control (e.g., antihistamines,...

  16. Prior exposure to acrolein accelerates pulmonary inflammation in influenza A-infected mice.

    PubMed

    Ong, Ferrer H C; Henry, Peter J; Burcham, Philip C

    2012-08-01

    The combustion product acrolein contributes to several smoke-related health disorders, but whether this immunomodulatory toxicant alters pulmonary susceptibility to viruses has received little attention. To study the effects of prior acrolein dosing on the severity of influenza A viral infection, male BALB/c mice received acrolein (1mg/kg) or saline (control) via oropharyngeal aspiration either 4- or 7-days prior to intranasal inoculation with either influenza A/PR/8/34 virus or vehicle. At 0, 2, 4 and 7 days post-inoculation, lung samples were assessed for histological changes while pulmonary inflammation was monitored by estimating immune cell numbers and cytokine levels in bronchoalveolar lavage fluid (BALF). After viral challenge, animals that were exposed to acrolein 4 days previously experienced greater weight loss and exhibited an accelerated inflammatory response at 2 days after viral inoculation. Thus compared to saline-pretreated, virus-challenged controls, BALF recovered from these mice contained higher numbers of macrophages and neutrophils in addition to increased levels of several inflammatory cytokines, including IL-1α, IL-1β, IL-6, TNF, IFN-γ, KC, and MCP-1. The acrolein-induced increase in viral susceptibility was suppressed by the carbonyl scavenger bisulphite. These findings suggest acute acrolein intoxication "primes" the lung to mount an accelerated immune response to inhaled viruses.

  17. Exposure to estradiol before but not during acquisition of LiCl-induced conditioned taste avoidance accelerates extinction.

    PubMed

    Chambers, Kathleen C; Hayes, Unja L

    2002-05-01

    Estradiol accelerates extinction of LiCl-induced conditioned taste avoidance when it is present continuously before and during acquisition. We have suggested that the effect of estradiol on extinction is due to its illness-associated, rather than learning-associated, properties. If this were the case, then one would expect estradiol to act before but not during acquisition. This expectation is based on previous work showing attenuation of learned taste avoidance when rats are given distal preexposure (greater than 24 h before conditioning) or proximal preexposure (less than 24 h before conditioning) to the illness-inducing agent LiCl before acquisition of a LiCl-induced conditioned taste avoidance. In three separate experiments, estradiol was administered during three different time periods via subcutaneous implantation of a 10-mm estradiol-filled capsule. In each experiment, the extinction of estradiol-treated females was compared to that of females implanted with empty capsules. In the first experiment, female rats were given distal exposure to estradiol before acquisition. Capsules were implanted 11 days before acquisition and were removed 2 days before acquisition. In the second experiment, female rats were given proximal exposure to estradiol before acquisition. Capsules were implanted 2.5 h before LiCl was paired with a sucrose solution and were removed 16.5 h later. In the third experiment, female rats were given exposure to estradiol during acquisition. Capsules were implanted at the same time as LiCl administration and were removed 18 h later. The only estradiol-treated females to show accelerated extinction were those given distal preexposure to estradiol in Experiment 1. These data do not support a learning-associated hypothesis and only partially support an illness-associated hypothesis. The failure to find accelerated extinction following proximal preexposure may reflect an inappropriate choice of the parameters used in the experiment or a difference

  18. Accelerated soil carbon turnover under tree plantations limits soil carbon storage

    PubMed Central

    Chen, Guangshui; Yang, Yusheng; Yang, Zhijie; Xie, Jinsheng; Guo, Jianfen; Gao, Ren; Yin, Yunfeng; Robinson, David

    2016-01-01

    The replacement of native forests by tree plantations is increasingly common globally, especially in tropical and subtropical areas. Improving our understanding of the long-term effects of this replacement on soil organic carbon (SOC) remains paramount for effectively managing ecosystems to mitigate anthropogenic carbon emissions. Meta-analyses imply that native forest replacement usually reduces SOC stocks and may switch the forest from a net sink to a net source of atmospheric carbon. Using a long-term chronosequence during which areas of subtropical native forest were replaced by Chinese fir, we show by direct measurement that plantations have significantly accelerated SOC turnover compared with native forest, an effect that has persisted for almost a century. The immediate stimulation of SOC decomposition was caused by warmer soil before the closure of the plantation’s canopy. Long-term reductions in SOC mean residence times were coupled to litter inputs. Faster SOC decomposition was associated with lower soil microbial carbon use efficiency, which was due to smaller litter inputs and reduced nutrient availabilities. Our results indicate a previously unelucidated control on long-term SOC dynamics in native forests and demonstrate a potential constraint on climate mitigation when such forests are replaced by plantations. PMID:26805949

  19. Experiences from Occupational Exposure Limits Set on Aerosols Containing Allergenic Proteins

    PubMed Central

    Nielsen, Gunnar D.

    2012-01-01

    Occupational exposure limits (OELs) together with determined airborne exposures are used in risk assessment based managements of occupational exposures to prevent occupational diseases. In most countries, OELs have only been set for few protein-containing aerosols causing IgE-mediated allergies. They comprise aerosols of flour dust, grain dust, wood dust, natural rubber latex, and the subtilisins, which are proteolytic enzymes. These aerosols show dose-dependent effects and levels have been established, where nearly all workers may be exposed without adverse health effects, which are required for setting OELs. Our aim is to analyse prerequisites for setting OELs for the allergenic protein-containing aerosols. Opposite to the key effect of toxicological reactions, two thresholds, one for the sensitization phase and one for elicitation of IgE-mediated symptoms in sensitized individuals, are used in the OEL settings. For example, this was the case for flour dust, where OELs were based on dust levels due to linearity between flour dust and its allergen levels. The critical effects for flour and grain dust OELs were different, which indicates that conclusion by analogy (read-across) must be scientifically well founded. Except for subtilisins, no OEL have been set for other industrial enzymes, where many of which are high volume chemicals. For several of these, OELs have been proposed in the scientific literature during the last two decades. It is apparent that the scientific methodology is available for setting OELs for proteins and protein-containing aerosols where the critical effect is IgE sensitization and IgE-mediated airway diseases. PMID:22843406

  20. Impulse noise exposure in early adulthood accelerates age-related hearing loss.

    PubMed

    Xiong, Min; Yang, Chuanhong; Lai, Huangwen; Wang, Jian

    2014-06-01

    The aim of this study was to investigate the influence of impulse noise on age-related hearing loss. The study consisted of two groups. Each group contained 109 men. Group I comprised veterans with normal hearing at the end of 1979 sino-vietnamese war. All these veterans were randomly selected from Guangzhou Military Command. Group II were men with no military experience randomly chosen from the health examination center of Guangzhou General Hospital of Guangzhou Military Command. Pure-tone thresholds of these two groups were measured and compared. The pure-tone thresholds of Group I were poorer than those of Group II at the frequencies of 4, 6 and 8 kHz. Thus, impulse noise accelerates age-related hearing loss.

  1. LIMITATIONS ON THE USES OF MULTIMEDIA EXPOSURE MEASUREMENTS FOR MULTIPATHWAY EXPOSURE ASSESSMENT - PART II: EFFECTS OF MISSING DATA AND IMPRECISION

    EPA Science Inventory

    Multimedia data from two probability-based exposure studies were investigated in terms of how missing data and measurement-error imprecision affected estimation of population parameters and associations. Missing data resulted mainly from individuals' refusing to participate in c...

  2. Derivation of an occupational exposure limit for inorganic borates using a weight of evidence approach.

    PubMed

    Maier, A; Vincent, M; Hack, E; Nance, P; Ball, W

    2014-04-01

    Inorganic borates are encountered in many settings worldwide, spurring international efforts to develop exposure guidance (US EPA, 2004; WHO, 2009; ATSDR, 2010) and occupational exposure limits (OEL) (ACGIH, 2005; MAK, 2011). We derived an updated OEL to reflect new data and current international risk assessment frameworks. We assessed toxicity and epidemiology data on inorganic borates to identify relevant adverse effects. International risk assessment frameworks (IPCS, 2005, 2007) were used to evaluate endpoint candidates: reproductive toxicity, developmental toxicity, and sensory irritation. For each endpoint, a preliminary OEL was derived and adjusted based on consideration of toxicokinetics, toxicodynamics, and other uncertainties. Selection of the endpoint point of departures (PODs) is supported by dose-response modeling. Developmental toxicity was the most sensitive systemic effect. An OEL of 1.6mgB/m(3) was estimated for this effect based on a POD of 63mgB/m(3) with an uncertainty factor (UF) of 40. Sensory irritation was considered to be the most sensitive effect for the portal of entry. An OEL of 1.4mgB/m(3) was estimated for this effect based on the identified POD and an UF of 1. An OEL of 1.4mgB/m(3) as an 8-h time-weighted average (TWA) is recommended.

  3. Point: Incident Exposures, Prevalent Exposures, and Causal Inference: Does Limiting Studies to Persons Who Are Followed From First Exposure Onward Damage Epidemiology?

    PubMed Central

    Vandenbroucke, Jan; Pearce, Neil

    2015-01-01

    The idea that epidemiologic studies should start from first exposure onward has been advocated in the past few years. The study of incident exposures is contrasted with studies of prevalent exposures in which follow-up may commence after first exposure. The former approach is seen as a hallmark of a good study and necessary for causal inference. We argue that studying incident exposures may be necessary in some situations, but it is not always necessary and is not the preferred option in many instances. Conducting a study involves decisions as to which person-time experience should be included. Although studies of prevalent exposures involve left truncation (missingness on the left), studies of incident exposures may involve right censoring (missingness on the right) and therefore may not be able to assess the long-term effects of exposure. These considerations have consequences for studies of dynamic (open) populations that involve a mixture of prevalent and incident exposures. We argue that studies with prevalent exposures will remain a necessity for epidemiology. The purpose of this paper is to restore the balance between the emphasis on first exposure cohorts and the richness of epidemiologic information obtained when studying prevalent exposures. PMID:26507305

  4. Improving Limit Surface Search Algorithms in RAVEN Using Acceleration Schemes: Level II Milestone

    SciTech Connect

    Alfonsi, Andrea; Rabiti, Cristian; Mandelli, Diego; Cogliati, Joshua Joseph; Sen, Ramazan Sonat; Smith, Curtis Lee

    2015-07-01

    The RAVEN code is becoming a comprehensive tool to perform Probabilistic Risk Assessment (PRA); Uncertainty Quantification (UQ) and Propagation; and Verification and Validation (V&V). The RAVEN code is being developed to support the Risk-Informed Safety Margin Characterization (RISMC) pathway by developing an advanced set of methodologies and algorithms for use in advanced risk analysis. The RISMC approach uses system simulator codes applied to stochastic analysis tools. The fundamental idea behind this coupling approach to perturb (by employing sampling strategies) timing and sequencing of events, internal parameters of the system codes (i.e., uncertain parameters of the physics model) and initial conditions to estimate values ranges and associated probabilities of figures of merit of interest for engineering and safety (e.g. core damage probability, etc.). This approach applied to complex systems such as nuclear power plants requires performing a series of computationally expensive simulation runs. The large computational burden is caused by the large set of (uncertain) parameters characterizing those systems. Consequently, exploring the uncertain/parametric domain, with a good level of confidence, is generally not affordable, considering the limited computational resources that are currently available. In addition, the recent tendency to develop newer tools, characterized by higher accuracy and larger computational resources (if compared with the presently used legacy codes, that have been developed decades ago), has made this issue even more compelling. In order to overcome to these limitations, the strategy for the exploration of the uncertain/parametric space needs to use at best the computational resources focusing the computational effort in those regions of the uncertain/parametric space that are “interesting” (e.g., risk-significant regions of the input space) with respect the targeted Figures Of Merit (FOM): for example, the failure of the system

  5. Limited ethanol exposure selectively alters the proliferation of precursor cells in the cerebral cortex.

    PubMed

    Miller, M W

    1996-02-01

    The present in vivo study tests the hypothesis that limited (4-day) exposure to ethanol differentially affects the proliferation of cortical precursors in the two cortical germinal zones [the ventricular zone (VZ) and the subventricular zone (SZ)] and their descendants in the mature brain. The offspring of pregnant rats fed a liquid diet containing 6.7% (v/v) ethanol when prosencephalic stem cells [gestation day (G) 6-69], VZ cells (G12-G15), and SZ cells were proliferating (G18- G21) throughout much of gestation (G6-G21). In addition, the offspring of rats pair-fed a liquid control diet or fed chow were examined. The pregnant dams were administered with bromodeoxyuridine (BrdU) on either G15 or G21. The ratio of the number of cells that incorporated BrdU to the total number (the labeling index) was determined 1-hr postinjection (i.e., on G15 or G21) or on postnatal day 60, Ethanol treatment between G6 and G21 reduced the ratio of cells labeled by an injection of BrdU on G15 in the fetus and in the adult, and increased the ratio of cells labeled on G21. Regardless of when the injection was placed, ethanol treatment between G6 and G9 had no effect upon the ratio of BrdU-labeled cells in the fetus or mature cortex. Exposure from G12 to G15 decreased the number of VZ cells in the fetus and the number of immunolabeled cells in the adult cortex labeled by an injection on G15. This exposure had no effect on the incorporation by SZ cells. In contrast, ethanol exposure from G18 to G21 increased the labeling indices for fetal SZ cells and for cells in the adult, but it had no effect on the ratio of labeled VZ cells. Although ethanol had no apparent effect on the proliferation of stem cells, it did alter the proliferation of cells in the VZ and SZ. These effects are time-dependent and underlie the ethanol-induced changes in the number of cells in the adult.

  6. An evaluation of compliance with occupational exposure limits for crystalline silica (quartz) in ten Georgia granite sheds.

    PubMed

    Wickman, Arthur R; Middendorf, Paul J

    2002-06-01

    Since the 1920s, industrial hygiene studies have documented granite shed workers' exposures to crystalline silica, and the data from these studies have contributed to a better understanding of the relationship between silica exposures and adverse health effects, such as silicosis. The majority of these studies were conducted in the Barre, Vermont, granite sheds. However, a second major granite processing region is located in Elberton, Georgia, where approximately 1800 workers are employed in 150 granite sheds and 45 quarries. The current study reports the exposures of 40 workers in 10 granite sheds in Elberton, Georgia. The arithmetic mean exposure to silica for all monitored employees was 0.052 mg/m3. Employees were classified into one of seven job task groups. The job task group with the greatest exposure was the top polish group, which had a mean exposure of 0.085 mg/m3. Among the top polish workers, the greatest percentage of exposures above the Occupational Safety and Health Administration's permissible exposure limit (OSHA PEL) occurred among the workers who used dry grinders. Wet methods were effective in reducing these exposures to below the OSHA PEL. The mean exposure of Elberton granite shed workers was less than the OSHA PEL, but was not below the threshold limit value of the American Conference of Industrial Hygienists (ACGIH TLV), which was lowered in the year 2000 to 0.05 mg/m3. The Elberton granite shed workers provide a valuable cohort for research on the effects of exposure to crystalline silica at levels between the ACGIH TLV and the OSHA PEL. They are a relatively permanent worker population, are concentrated geographically, and have a quantitatively documented exposure to crystalline silica over the past twenty years.

  7. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device

    PubMed Central

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C.; Marino, Stephen A.; Geard, Charles R.; Brenner, David J.; Garty, Guy

    2015-01-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields. PMID:26414507

  8. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device.

    PubMed

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C; Marino, Stephen A; Geard, Charles R; Brenner, David J; Garty, Guy

    2015-10-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields. PMID:26414507

  9. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device.

    PubMed

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C; Marino, Stephen A; Geard, Charles R; Brenner, David J; Garty, Guy

    2015-10-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields.

  10. Adaption By Low Dose Radiation Exposure: A Look at Scope and Limitations for Radioprotection.

    PubMed

    Mitchel, Ron E J

    2015-01-01

    The procedures and dose limitations used for radiation protection in the nuclear industry are founded on the assumption that risk is directly proportional to dose, without a threshold. Based on this idea that any dose, no matter how small, will increase risk, radiation protection regulations generally attempt to reduce any exposure to "as low as reasonably achievable" (ALARA). We know however, that these regulatory assumptions are inconsistent with the known biological effects of low doses. Low doses induce protective effects, and these adaptive responses are part of a general response to low stress. Adaptive responses have been tightly conserved during evolution, from single celled organisms up to humans, indicating their importance. Here we examine cellular and animal studies that show the influence of radiation induced protective effects on diverse diseases, and examine the radiation dose range that is effective for different tissues in the same animal. The concept of a dose window, with upper and lower effective doses, as well as the effect of multiple stressors and the influence of genetics will also be examined. The effect of the biological variables on low dose responses will be considered from the point of view of the limitations they may impose on any revised radiation protection regulations.

  11. Kinetic study of radiation-reaction-limited particle acceleration during the relaxation of unstable force-free equilibria

    DOE PAGES

    Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan; East, William E.; Blandford, Roger D.

    2016-09-07

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focusmore » on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The "flares" are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. As a result, higher magnetization studies are promising and will be carried out in the future.« less

  12. Kinetic Study of Radiation-reaction-limited Particle Acceleration During the Relaxation of Unstable Force-free Equilibria

    NASA Astrophysics Data System (ADS)

    Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan; East, William E.; Blandford, Roger D.

    2016-09-01

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focus on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The “flares” are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. Higher magnetization studies are promising and will be carried out in the future.

  13. Lack of blood formate accumulation in humans following exposure to methanol vapor at the current permissible exposure limit of 200 ppm

    SciTech Connect

    Lee, E.W.; Terzo, T.S.; D'Arcy, J.B.; Gross, K.B.; Schreck, R.M. )

    1992-02-01

    Accumulation of formate, the putative toxic metabolite of methanol, in the blood and the relationship between pulmonary intake and blood methanol concentration were investigated in six human volunteers following a 6-hr exposure to 200 ppm methanol (the current Occupational Safety and Health Administration 8-hr time-weighted average permissible exposure limit). At the end of a 6-hr exposure to 200 ppm methanol at rest, the blood methanol concentration was increased from a mean of 1.8 micrograms/mL to 7.0 micrograms/mL. Under light exercise, the total amount of methanol inhaled during the 6-hr exposure period was 1.8 times that inhaled at rest. However, no statistically significant increase in blood methanol concentration was observed under exercise: the concentrations averaged 8.1 micrograms/mL. Formate did not accumulate in the blood above its background level following the 6-hr exposures to 200 ppm methanol whether subjects were exposed at rest or during exercise. Unlike the data collected from epidemiologic studies, the authors' results were obtained under well-controlled methanol exposure conditions and by using appropriate dietary restrictions. The data show that (1) the biological load of methanol would be the same regardless of whether workers are engaged in light physical activity when they are exposed to methanol vapors below 200 ppm and (2) the formate that is associated with acute methanol toxicities in humans does not accumulate in blood when methanol exposure concentrations are below 200 ppm.

  14. Exposure to radiation accelerates normal brain aging and produces deficits in spatial learning and memory

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, B.; Casadesus, G.; Carey, A.; Rabin, B. M.; Joseph, J. A.

    Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles), produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism; oxidative stress damage to the central nervous system caused by an increased release of reactive oxygen species is likely responsible for the deficits seen in aging and following irradiation. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a "map" provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Supported by NASA Grants NAG9-1190 and NAG9-1529

  15. Investigations of the use of bioavailability data to adjust occupational exposure limits for active pharmaceutical ingredients.

    PubMed

    Naumann, Bruce D; Weideman, Patricia A; Sarangapani, Ramesh; Hu, Shu-Cheih; Dixit, Rakesh; Sargent, Edward V

    2009-11-01

    Occupational exposure limits (OELs) for active pharmaceutical ingredients have traditionally been established using no-observed-adverse-effect levels derived from clinical studies employing po and iv routes of administration and by applying default uncertainty factors or chemical-specific adjustment factors. However, exposure by the inhalation or dermal route is more relevant in terms of occupational safety. In this investigation, to explore new methods for route-to-route extrapolation, the bioavailability of MK-0679, a leukotriene D(4) receptor antagonist, was compared following iv, po, intranasal (in), or intratracheal (it) administration. The relative bioavailability of MK-0679 was iv congruent with it > po congruent with in. Bioavailability correction factors (BCFs) of 2.0 and 0.6 were derived from these data to adjust a hypothetical OEL of 0.1 mg/m(3) for MK-0679 with particle sizes of 10 and 50 mum, respectively. These BCFs were used to adjust the OEL established using po clinical data, to reflect the differences in bioavailability following deposition in different regions of the respiratory tract. To further investigate how bioavailability data could be used in setting OELs, a preliminary pharmacokinetic (PK) model was developed to describe the time course of plasma concentrations using the data from the route comparison study. An inhalation study was then performed to test the validity of using either empirical data or modeling approaches to derive BCFs when setting OELs. These investigations demonstrated how the use of route-specific PK data could reduce some of the uncertainties associated with route-to-route extrapolation and allow for improved precision and quantitative adjustments when establishing OELs. Further investigations are needed to better understand the factors responsible for differences in systemic uptake following deposition in different regions of the respiratory tract and how these can be generalized across different classes of soluble

  16. Systems Biology and Biomarkers of Early Effects for Occupational Exposure Limit Setting.

    PubMed

    DeBord, D Gayle; Burgoon, Lyle; Edwards, Stephen W; Haber, Lynne T; Kanitz, M Helen; Kuempel, Eileen; Thomas, Russell S; Yucesoy, Berran

    2015-01-01

    In a recent National Research Council document, new strategies for risk assessment were described to enable more accurate and quicker assessments. This report suggested that evaluating individual responses through increased use of bio-monitoring could improve dose-response estimations. Identification of specific biomarkers may be useful for diagnostics or risk prediction as they have the potential to improve exposure assessments. This paper discusses systems biology, biomarkers of effect, and computational toxicology approaches and their relevance to the occupational exposure limit setting process. The systems biology approach evaluates the integration of biological processes and how disruption of these processes by chemicals or other hazards affects disease outcomes. This type of approach could provide information used in delineating the mode of action of the response or toxicity, and may be useful to define the low adverse and no adverse effect levels. Biomarkers of effect are changes measured in biological systems and are considered to be preclinical in nature. Advances in computational methods and experimental -omics methods that allow the simultaneous measurement of families of macromolecules such as DNA, RNA, and proteins in a single analysis have made these systems approaches feasible for broad application. The utility of the information for risk assessments from -omics approaches has shown promise and can provide information on mode of action and dose-response relationships. As these techniques evolve, estimation of internal dose and response biomarkers will be a critical test of these new technologies for application in risk assessment strategies. While proof of concept studies have been conducted that provide evidence of their value, challenges with standardization and harmonization still need to be overcome before these methods are used routinely.

  17. Systems Biology and Biomarkers of Early Effects for Occupational Exposure Limit Setting

    PubMed Central

    DeBord, D. Gayle; Burgoon, Lyle; Edwards, Stephen W.; Haber, Lynne T.; Kanitz, M. Helen; Kuempel, Eileen; Thomas, Russell S.; Yucesoy, Berran

    2015-01-01

    In a recent National Research Council document, new strategies for risk assessment were described to enable more accurate and quicker assessments.( 1 ) This report suggested that evaluating individual responses through increased use of bio-monitoring could improve dose-response estimations. Identi-fication of specific biomarkers may be useful for diagnostics or risk prediction as they have the potential to improve exposure assessments. This paper discusses systems biology, biomarkers of effect, and computational toxicology approaches and their relevance to the occupational exposure limit setting process. The systems biology approach evaluates the integration of biological processes and how disruption of these processes by chemicals or other hazards affects disease outcomes. This type of approach could provide information used in delineating the mode of action of the response or toxicity, and may be useful to define the low adverse and no adverse effect levels. Biomarkers of effect are changes measured in biological systems and are considered to be preclinical in nature. Advances in computational methods and experimental -omics methods that allow the simultaneous measurement of families of macromolecules such as DNA, RNA, and proteins in a single analysis have made these systems approaches feasible for broad application. The utility of the information for risk assessments from -omics approaches has shown promise and can provide information on mode of action and dose-response relationships. As these techniques evolve, estimation of internal dose and response biomarkers will be a critical test of these new technologies for application in risk assessment strategies. While proof of concept studies have been conducted that provide evidence of their value, challenges with standardization and harmonization still need to be overcome before these methods are used routinely. PMID:26132979

  18. Systems Biology and Biomarkers of Early Effects for Occupational Exposure Limit Setting.

    PubMed

    DeBord, D Gayle; Burgoon, Lyle; Edwards, Stephen W; Haber, Lynne T; Kanitz, M Helen; Kuempel, Eileen; Thomas, Russell S; Yucesoy, Berran

    2015-01-01

    In a recent National Research Council document, new strategies for risk assessment were described to enable more accurate and quicker assessments. This report suggested that evaluating individual responses through increased use of bio-monitoring could improve dose-response estimations. Identification of specific biomarkers may be useful for diagnostics or risk prediction as they have the potential to improve exposure assessments. This paper discusses systems biology, biomarkers of effect, and computational toxicology approaches and their relevance to the occupational exposure limit setting process. The systems biology approach evaluates the integration of biological processes and how disruption of these processes by chemicals or other hazards affects disease outcomes. This type of approach could provide information used in delineating the mode of action of the response or toxicity, and may be useful to define the low adverse and no adverse effect levels. Biomarkers of effect are changes measured in biological systems and are considered to be preclinical in nature. Advances in computational methods and experimental -omics methods that allow the simultaneous measurement of families of macromolecules such as DNA, RNA, and proteins in a single analysis have made these systems approaches feasible for broad application. The utility of the information for risk assessments from -omics approaches has shown promise and can provide information on mode of action and dose-response relationships. As these techniques evolve, estimation of internal dose and response biomarkers will be a critical test of these new technologies for application in risk assessment strategies. While proof of concept studies have been conducted that provide evidence of their value, challenges with standardization and harmonization still need to be overcome before these methods are used routinely. PMID:26132979

  19. Quantification of the volatile organic compounds in the smoke from prescribed burning and comparison with the occupational exposure limits

    NASA Astrophysics Data System (ADS)

    Barboni, T.; Santoni, P.-A.

    2013-11-01

    Prescribed burning represents a serious threat to the personnel fighting fires because of smoke inhalation. This study aims to increase the knowledge about foresters exposure to the prescribed burning smoke by focusing on exposure to volatile organic compounds (VOCs). We initially assessed the methodology for smoke sampling. Then, we identified potentially dangerous molecules among the VOCs identified at 4 prescribed burning sites located around Corsica. The values measured were very high, exceeding the exposure limits, particularly for benzene, phenol, and furfural, whose concentrations were above short-term exposure limit (STEL) values. In conclusion, obvious but necessary recommendations were made for the protection of the personnel involved in fighting fires on a professional basis.

  20. Demodulation in tissue, the relevant parameters and the implications for limiting exposure.

    PubMed

    Silny, Jiri

    2007-06-01

    In the biomedical literature there are a number of reports that speculate about possible effects in the body due to the demodulation of electromagnetic fields. However, only few interactions in amplitude-modulated or even pulse-modulated electromagnetic waves are fundamentally plausible and have been demonstrated to occur in humans. The following observations fall into this specific category: thermal effects of amplitude- or pulse-modulated microwaves; demodulation of amplitude- or pulse-modulated electromagnetic waves in cell membranes; and demodulation of amplitude- or pulse-modulated electromagnetic fields in the electronics of implants such as cardiac pacemakers or cardioverter defibrillators. The possible consequences of these effects for the organism, their probability of occurrence in everyday life field conditions, and, consequently, the implications for limiting exposure are very different. Microwave hearing is a harmless effect which is perceived by humans only in strong fields with high peak power densities of more than 100 mW cm(-2). In normal residential or occupational environments the peak power density of even the strongest microwave sources is only around 1 mW cm(-2). Demodulation of pulse-modulated electromagnetic fields in the cell membranes decreases the stimulation threshold of nerves and muscles and can introduce numerous adverse effects ranging from perception of pain to dangerous cardiac fibrillations. The stimulation and demodulation effects are restricted to carrier frequencies up to several MHz. In experiments with 900 and 1,800 MHz packets with lengths of up to 100 ms and applied powers of up to 100 W, neither a direct stimulation of superficial nerves and muscles nor the conditioning of an electrical current stimulus could be confirmed. Pulse-modulated electromagnetic waves are demodulated in the electronic circuits of implants and can inhibit cardiac pacemakers and introduce cardiac arrest in this way. The highest sensitivity results

  1. Prenatal Arsenic Exposure Alters Gene Expression in the Adult Liver to a Proinflammatory State Contributing to Accelerated Atherosclerosis

    PubMed Central

    States, J. Christopher; Singh, Amar V.; Knudsen, Thomas B.; Rouchka, Eric C.; Ngalame, Ntube O.; Arteel, Gavin E.; Piao, Yulan; Ko, Minoru S. H.

    2012-01-01

    The mechanisms by which environmental toxicants alter developmental processes predisposing individuals to adult onset chronic disease are not well-understood. Transplacental arsenic exposure promotes atherogenesis in apolipoprotein E-knockout (ApoE−/−) mice. Because the liver plays a central role in atherosclerosis, diabetes and metabolic syndrome, we hypothesized that accelerated atherosclerosis may be linked to altered hepatic development. This hypothesis was tested in ApoE−/− mice exposed to 49 ppm arsenic in utero from gestational day (GD) 8 to term. GD18 hepatic arsenic was 1.2 µg/g in dams and 350 ng/g in fetuses. The hepatic transcriptome was evaluated by microarray analysis to assess mRNA and microRNA abundance in control and exposed pups at postnatal day (PND) 1 and PND70. Arsenic exposure altered postnatal developmental trajectory of mRNA and microRNA profiles. We identified an arsenic exposure related 51-gene signature at PND1 and PND70 with several hubs of interaction (Hspa8, IgM and Hnf4a). Gene ontology (GO) annotation analyses indicated that pathways for gluconeogenesis and glycolysis were suppressed in exposed pups at PND1, and pathways for protein export, ribosome, antigen processing and presentation, and complement and coagulation cascades were induced by PND70. Promoter analysis of differentially-expressed transcripts identified enriched transcription factor binding sites and clustering to common regulatory sites. SREBP1 binding sites were identified in about 16% of PND70 differentially-expressed genes. Western blot analysis confirmed changes in the liver at PND70 that included increases of heat shock protein 70 (Hspa8) and active SREBP1. Plasma AST and ALT levels were increased at PND70. These results suggest that transplacental arsenic exposure alters developmental programming in fetal liver, leading to an enduring stress and proinflammatory response postnatally that may contribute to early onset of atherosclerosis. Genes containing

  2. Acute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II Diabetes

    EPA Science Inventory

    Abstract for Society of Toxicology, March 22-25, 2015, San Diego, CAAcute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II DiabetesS.J. Snow1,3, D. Miller2, V. Bass2, M. Schladweiler3, A. Ledbetter3, J. Richards3, C...

  3. Exposure limit values for nanomaterials--capacity and willingness of users to apply a precautionary approach.

    PubMed

    van Broekhuizen, Pieter; Dorbeck-Jung, Bärbel

    2013-01-01

    In the European Union, the legal obligation for employers to provide a safe workplace for processing manufactured nanomaterials is a challenge when there is a lack of hazard information. The attitude of key stakeholders in industry, trade unions, branch and employers' organizations, and government policy advisors toward nano reference values (NRVs) has been investigated in a pilot study that was initiated by a coalition of Dutch employers' organizations and Dutch trade unions. NRVs are developed as provisional substitutes for health-based occupational exposure limits or derived no-effect levels and are based on a precautionary approach. NRVs have been introduced as a voluntary risk management instrument for airborne nanomaterials at the workplace. A measurement strategy to deal with simultaneously emitting process-generated nanoparticles was developed, allowing employers to use the NRVs for risk assessment. The motivational posture of most companies involved in the pilot study appears to be pro-active regarding worker protection and acquiescent to NRVs. An important driver to use NRVs seems to be a temporary certainty employers experience with regard to their legal obligation to take preventive action. Many interviewees welcome the voluntary character of NRVs, though trade unions and a few companies advocate a more binding status.

  4. Bioreactivity of the crystalline silica polymorphs, quartz and cristobalite, and implications for occupational exposure limits (OELs).

    PubMed

    Mossman, Brooke T; Glenn, Robert E

    2013-09-01

    Silica or silicon dioxides (SiO₂) are naturally occurring substances that comprise the vast majority of the earth's crust. Because of their prevalence and commercial applications, they have been widely studied for their potential to induce pulmonary fibrosis and other disorders. Historically, the focus in the workplace has been on the development of inflammation and fibrotic lung disease, the basis for promulgating workplace standards to protect workers. Crystalline silica (CS) polymorphs, predominantly quartz and cristobalite, are used in industry but are different in their mineralogy, chemistry, surface features, size dimensions and association with other elements naturally and during industrial applications. Epidemiologic, clinical and experimental studies in the literature historically have predominantly focused on quartz polymorphs. Thus, in this review, we summarize past scientific evaluations and recent peer-reviewed literature with an emphasis on cristobalite, in an attempt to determine whether quartz and cristobalite polymorphs differ in their health effects, toxicity and other properties that may dictate the need for various standards of protection in the workplace. In addition to current epidemiological and clinical reports, we review in vivo studies in rodents as well as cell culture studies that shed light on mechanisms intrinsic to the toxicity, altered cell responses and protective or defense mechanisms in response to these minerals. The medical and scientific literature indicates that the mechanisms of injury and potential causation of inflammation and fibrotic lung disease are similar for quartz and cristobalite. Our analysis of these data suggests similar occupational exposure limits (OELs) for these minerals in the workplace.

  5. Defining Occupational and Consumer Exposure Limits for Nanomaterials - First Experiences from REACH Registrations

    NASA Astrophysics Data System (ADS)

    Aschberger, K.; Klöslova, Z.; Falck, G.; Christensen, F. M.

    2013-04-01

    nanosized materials, they were not derived from hazard data for the nanoform. Different methods for deriving the DNELs were applied and few dossiers derived DNELs by applying the default assessment factors in the REACH guidance. Several DNELs were based on available Occupational Exposure Limits (OELs) for inhalable and respirable dust or the nuisance dust levels, which have not been established for nanosized materials. In general lower (i.e. less strict) assessment factors were applied with different types of justification. All DNELs were expressed in the mass metrics. It is important to note that submission, identification and selection of the dossiers addressed in this study was done before the adoption of the EC recommendation (2011/696/EU) on a definition of nanomaterial and before the publication of the revised ECHA guidance documents that include recommendations for nanomaterials.

  6. Historical limitations of determinant based exposure groupings in the rubber manufacturing industry

    PubMed Central

    Vermeulen, R; Kromhout, H

    2005-01-01

    Aims: To study the validity of using a cross-sectional industry-wide exposure survey to develop exposure groupings for epidemiological purposes that extend beyond the time period in which the exposure data were collected. Methods: Exposure determinants were used to group workers into high, medium, and low exposure groups. The contrast of this grouping and other commonly used grouping schemes based on plant and department within this exposure survey and a previously conducted survey within the same industry (and factories) were estimated and compared. Results: Grouping of inhalable and dermal exposure based on exposure determinants resulted in the highest, but still modest, contrast (ε ∼ 0.3). Classifying subjects based on a combination of plant and department resulted in a slightly lower contrast (ε ∼ 0.2). If the determinant based grouping derived from the 1997 exposure survey was used to classify workers in the 1988 survey the average contrast decreased significantly for both exposures (ε ∼ 0.1). On the contrary, the exposure classification based on plant and department increased in contrast (from ε ∼ 0.2 to ε ∼ 0.3) and retained its relative ranking overtime. Conclusions: Although determinant based groupings seem to result in more efficient groupings within a cross-sectional survey, they have to be used with caution as they might result in significant less contrast beyond the studied population or time period. It is concluded that a classification based on plant and department might be more desirable for retrospective studies in the rubber manufacturing industry, as they seem to have more historical relevance and are most likely more accurately recorded historically than information on exposure determinants in a particular industry. PMID:16234406

  7. Polymer gel dosimetry for neutron beam in the Neutron Exposure Accelerator System for Biological Effect Experiments (NASBEE)

    NASA Astrophysics Data System (ADS)

    Kawamura, H.; Sato, H.; Hamano, T.; Suda, M.; Yoshii, H.

    2015-01-01

    This study aimed to investigate whether gel dosimetry could be used to measure neutron beams. We irradiated a BANG3-type polymer gel dosimeter using neutron beams in the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) at the National Institute of Radiological Sciences (NIRS) in Japan. First, the polymer gels were irradiated from 0 to 7.0 Gy to investigate the dose-R2 responses. Irradiated gels were evaluated using 1.5-T magnetic resonance R2 images. Second, the polymer gels were irradiated to 1.0, 3.0, and 5.0 Gy to acquire a depth-R2 response curve. The dose-R2 response curve was linear up to approximately 7 Gy, with a slope of 1.25 Gy-1·s-1. Additionally, compared with the photon- irradiated gels, the neutron-irradiated gels had lower R2 values. The acquired depth-R2 curves of the central axis from the 3.0- and 5.0-Gy neutron dose-irradiated gels exhibited an initial build-up. Although, a detailed investigation is needed, polymer gel dosimetry is effective for measuring the dose-related R2 linearity and depth-R2 relationships of neutron beams.

  8. Limiter

    DOEpatents

    Cohen, S.A.; Hosea, J.C.; Timberlake, J.R.

    1984-10-19

    A limiter with a specially contoured front face is provided. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution. This limiter shape accommodates the various power scrape-off distances lambda p, which depend on the parallel velocity, V/sub parallel/, of the impacting particles.

  9. Testing the coherence between occupational exposure limits for inhalation and their biological limit values with a generalized PBPK-model: the case of 2-propanol and acetone.

    PubMed

    Huizer, Daan; Huijbregts, Mark A J; van Rooij, Joost G M; Ragas, Ad M J

    2014-08-01

    The coherence between occupational exposure limits (OELs) and their corresponding biological limit values (BLVs) was evaluated for 2-propanol and acetone. A generic human PBPK model was used to predict internal concentrations after inhalation exposure at the level of the OEL. The fraction of workers with predicted internal concentrations lower than the BLV, i.e. the 'false negatives', was taken as a measure for incoherence. The impact of variability and uncertainty in input parameters was separated by means of nested Monte Carlo simulation. Depending on the exposure scenario considered, the median fraction of the population for which the limit values were incoherent ranged from 2% to 45%. Parameter importance analysis showed that body weight was the main factor contributing to interindividual variability in blood and urine concentrations and that the metabolic parameters Vmax and Km were the most important sources of uncertainty. This study demonstrates that the OELs and BLVs for 2-propanol and acetone are not fully coherent, i.e. enforcement of BLVs may result in OELs being violated. In order to assess the acceptability of this "incoherence", a maximum population fraction at risk of exceeding the OEL should be specified as well as a minimum level of certainty in predicting this fraction.

  10. Protocol for a drugs exposure pregnancy registry for implementation in resource-limited settings

    PubMed Central

    2012-01-01

    Background The absence of robust evidence of safety of medicines in pregnancy, particularly those for major diseases provided by public health programmes in developing countries, has resulted in cautious recommendations on their use. We describe a protocol for a Pregnancy Registry adapted to resource-limited settings aimed at providing evidence on the safety of medicines in pregnancy. Methods/Design Sentinel health facilities are chosen where women come for prenatal care and are likely to come for delivery. Staff capacity is improved to provide better care during the pregnancy, to identify visible birth defects at delivery and refer infants with major anomalies for surgical or clinical evaluation and treatment. Consenting women are enrolled at their first antenatal visit and careful medical, obstetric and drug-exposure histories taken; medical record linkage is encouraged. Enrolled women are followed up prospectively and their histories are updated at each subsequent visit. The enrolled woman is encouraged to deliver at the facility, where she and her baby can be assessed. Discussion In addition to data pooling into a common WHO database, the WHO Pregnancy Registry has three important features: First is the inclusion of pregnant women coming for antenatal care, enabling comparison of birth outcomes of women who have been exposed to a medicine with those who have not. Second is its applicability to resource-poor settings regardless of drug or disease. Third is improvement of reproductive health care during pregnancies and at delivery. Facility delivery enables better health outcomes, timely evaluation and management of the newborn, and the collection of reliable clinical data. The Registry aims to improves maternal and neonatal care and also provide much needed information on the safety of medicines in pregnancy. PMID:22943425

  11. The Role of Home Smoking Bans in Limiting Exposure to Secondhand Tobacco Smoke in Hungary

    ERIC Educational Resources Information Center

    Paulik, Edit; Maroti-Nagy, A.; Nagymajtenyi, L.; Rogers, T.; Easterling, D.

    2013-01-01

    Our objective was to assess how exposure to secondhand tobacco smoke occurs in Hungarian homes, particularly among non-smokers, and to examine the effectiveness of home smoking bans in eliminating exposure to secondhand smoke at home. In 2009, 2286 non-smokers and smokers aged 16-70 years, who were selected randomly from a nationally…

  12. Straight Metalworking Fluids and All-Cause and Cardiovascular Mortality Analyzed by Using G-Estimation of an Accelerated Failure Time Model With Quantitative Exposure: Methods and Interpretations.

    PubMed

    Picciotto, Sally; Ljungman, Petter L; Eisen, Ellen A

    2016-04-01

    Straight metalworking fluids have been linked to cardiovascular mortality in analyses using binary exposure metrics, accounting for healthy worker survivor bias by using g-estimation of accelerated failure time models. A cohort of 38,666 Michigan autoworkers was followed (1941-1994) for mortality from all causes and ischemic heart disease. The structural model chosen here, using continuous exposure, assumes that increasing exposure from 0 to 1 mg/m(3) in any single year would decrease survival time by a fixed amount. Under that assumption, banning the fluids would have saved an estimated total of 8,468 (slope-based 95% confidence interval: 2,262, 28,563) person-years of life in this cohort. On average, 3.04 (slope-based 95% confidence interval: 0.02, 25.98) years of life could have been saved for each exposed worker who died from ischemic heart disease. Estimates were sensitive to both model specification for predicting exposure (multinomial or logistic regression) and characterization of exposure as binary or continuous in the structural model. Our results provide evidence supporting the hypothesis of a detrimental relationship between straight metalworking fluids and mortality, particularly from ischemic heart disease, as well as an instructive example of the challenges in obtaining and interpreting results from accelerated failure time models using a continuous exposure in the presence of competing risks. PMID:26968943

  13. The effect of time of exposure to elevated temperatures on the flammability limits of some common gaseous fuels in air

    SciTech Connect

    Wierzba, I.; Ale, B.B.

    1999-01-01

    The flammability limits of methane, ethylene, propane, and hydrogen were experimentally determined at elevated initial mixture temperatures up to 350 C at atmospheric pressure for upward flame propagation in a steel test tube apparatus. The existence of preignition reactions at these levels of temperatures that may influence the value of the flammability limits was also investigated. The fuel-air mixtures were exposed to elevated temperatures over different periods of time before spark ignition (up to 2 h). It was shown that the flammability limits for methane widened approximately linearly with an increase in the initial mixture temperature over the entire range of temperatures tested and were not affected by the length of the exposure time to these temperatures before spark ignition. However, different behavior was observed for the flammability limits of the other tested fuels--ethylene, propane, and hydrogen. At higher temperatures the flammability limits narrowed and were very significantly affected by the exposure time. The longer was the exposure time of fuel-air mixtures to the elevated temperatures, the narrower were their flammability limits.

  14. 29 CFR Appendix A to Subpart Y of... - Examples of Conditions Which May Restrict or Limit Exposure to Hyperbaric Conditions

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Examples of Conditions Which May Restrict or Limit Exposure to Hyperbaric Conditions A Appendix A to Subpart Y of Part 1926 Labor Regulations Relating to Labor... REGULATIONS FOR CONSTRUCTION Diving Pt. 1926, Subpt. Y, App. A Appendix A to Subpart Y of Part...

  15. 29 CFR Appendix A to Subpart T of... - Examples of Conditions Which May Restrict or Limit Exposure to Hyperbaric Conditions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Examples of Conditions Which May Restrict or Limit Exposure to Hyperbaric Conditions A Appendix A to Subpart T of Part 1910 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Commercial Diving...

  16. Limiter

    DOEpatents

    Cohen, Samuel A.; Hosea, Joel C.; Timberlake, John R.

    1986-01-01

    A limiter with a specially contoured front face accommodates the various power scrape-off distances .lambda..sub.p, which depend on the parallel velocity, V.sub..parallel., of the impacting particles. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution.

  17. Resolution limitations from detector pulse width and jitter in a linear orthogonal-acceleration time-of-flight mass spectrometer.

    PubMed

    Coles, J N; Guilhaus, M

    1994-08-01

    Recent and ongoing advances in timing electronics together with the development of ionization techniques suited to time-of-flight mass spectrometry (TOF-MS) have contributed to renewed interest in this method of mass analysis. Whereas low resolving powers (m/†m < 500) were once an almost unavoidable drawback in TOF-MS, recent developments in instrument geometries have produced much higher resolving powers for many ion sources. The temporal width of detector pulses and jitter in timing electronics, however, lead to contributions to peak widths that are essentially independent of the mass-analyzer ion optics. The effective detector pulse width (†t d ≈ 1-10 ns typically) can be a limiting factor in the development of high resolution time-of-flight (TOF) instruments with modest drift lengths (∼1 m), It also reduces the mass resolution more seriously for light ions. This article presents a method for distinguishing the instrumental "ion arrival-time" resolution (R o) of a linear TOF mass analyzer from that which is locally measured at a particular mass, limited by the broadening of the detector pulse width and electronics. The method also provides an estimate of †t d, that is useful in determining the temporal performance of the detection system. The model developed here is tested with data from a recently constructed orthogonal-acceleration TOF mass spectrometer equipped with a commercially available transient recorder (a LeCroy 400-Msamplejs digital oscilloscope) from which we obtained R o = 4240 ± 100 [full width at half maximum (FWHM)) and †t d = 3.0 ± 0.1 ns (FWHM).

  18. Limited infection upon human exposure to a recombinant raccoon pox vaccine vector.

    PubMed

    Rocke, Tonie E; Dein, F Joshua; Fuchsberger, Martina; Fox, Barry C; Stinchcomb, Dan T; Osorio, Jorge E

    2004-07-29

    A laboratory accident resulted in human exposure to a recombinant raccoon poxvirus (RCN) developed as a vaccine vector for antigens of Yersinia pestis for protection of wild rodents (and other animals) against plague. Within 9 days, the patient developed a small blister that healed within 4 weeks. Raccoon poxvirus was cultured from the lesion, and the patient developed antibody to plague antigen (F1) and RCN. This is the first documented case of human exposure to RCN.

  19. A comparison of REACH-derived no-effect levels for workers with EU indicative occupational exposure limit values and national limit values in Finland.

    PubMed

    Tynkkynen, Sallamari; Santonen, Tiina; Stockmann-Juvala, Helene

    2015-05-01

    The purpose of occupational exposure limits values (OELs) is to regulate exposure to chemicals and minimize the risk of health effects at work. National authorities are responsible for the setting and updating of national OELs. In addition, the EU sets indicative occupational exposure limit values (IOELVs), which have to be considered by the Member States. Under the new European legislation on chemicals (REACH), manufacturers and importers are obliged to establish derived no-effect levels (DNELs) for chemicals that are manufactured or imported in quantities >10 tonnes per year. Chemical safety data sheets must report both OELs and the DNEL values, if such have been set. This may cause confusion at workplaces, especially if the values differ from each other. In this study, we explored how EU IOELVs and Finnish national OELs [Haitallisiksi tunnetut pitoisuudet (HTP) values] correlate with worker inhalation DNELs for substances registered under REACH. The long-term DNEL value for workers (inhalation) was identical to the corresponding IOELV for the majority of the substances (64/87 cases). Comparison of DNELs with HTP values revealed that the values were identical or close to each other in 159 cases (49%), whereas the DNEL was considerably higher in 69 cases, and considerably lower in 87 cases. Examples of cases with high differences between Finnish national OELs and DNELs are given. However, as the DNELs were not systematically lower than the OELs, the default assessment factors suggested by REACH technical guidance had obviously not been used in many of the REACH registrations.

  20. Occupational exposure decisions: can limited data interpretation training help improve accuracy?

    PubMed

    Logan, Perry; Ramachandran, Gurumurthy; Mulhausen, John; Hewett, Paul

    2009-06-01

    Accurate exposure assessments are critical for ensuring that potentially hazardous exposures are properly identified and controlled. The availability and accuracy of exposure assessments can determine whether resources are appropriately allocated to engineering and administrative controls, medical surveillance, personal protective equipment and other programs designed to protect workers. A desktop study was performed using videos, task information and sampling data to evaluate the accuracy and potential bias of participants' exposure judgments. Desktop exposure judgments were obtained from occupational hygienists for material handling jobs with small air sampling data sets (0-8 samples) and without the aid of computers. In addition, data interpretation tests (DITs) were administered to participants where they were asked to estimate the 95th percentile of an underlying log-normal exposure distribution from small data sets. Participants were presented with an exposure data interpretation or rule of thumb training which included a simple set of rules for estimating 95th percentiles for small data sets from a log-normal population. DIT was given to each participant before and after the rule of thumb training. Results of each DIT and qualitative and quantitative exposure judgments were compared with a reference judgment obtained through a Bayesian probabilistic analysis of the sampling data to investigate overall judgment accuracy and bias. There were a total of 4386 participant-task-chemical judgments for all data collections: 552 qualitative judgments made without sampling data and 3834 quantitative judgments with sampling data. The DITs and quantitative judgments were significantly better than random chance and much improved by the rule of thumb training. In addition, the rule of thumb training reduced the amount of bias in the DITs and quantitative judgments. The mean DIT % correct scores increased from 47 to 64% after the rule of thumb training (P < 0.001). The

  1. Occupational exposure decisions: can limited data interpretation training help improve accuracy?

    PubMed

    Logan, Perry; Ramachandran, Gurumurthy; Mulhausen, John; Hewett, Paul

    2009-06-01

    Accurate exposure assessments are critical for ensuring that potentially hazardous exposures are properly identified and controlled. The availability and accuracy of exposure assessments can determine whether resources are appropriately allocated to engineering and administrative controls, medical surveillance, personal protective equipment and other programs designed to protect workers. A desktop study was performed using videos, task information and sampling data to evaluate the accuracy and potential bias of participants' exposure judgments. Desktop exposure judgments were obtained from occupational hygienists for material handling jobs with small air sampling data sets (0-8 samples) and without the aid of computers. In addition, data interpretation tests (DITs) were administered to participants where they were asked to estimate the 95th percentile of an underlying log-normal exposure distribution from small data sets. Participants were presented with an exposure data interpretation or rule of thumb training which included a simple set of rules for estimating 95th percentiles for small data sets from a log-normal population. DIT was given to each participant before and after the rule of thumb training. Results of each DIT and qualitative and quantitative exposure judgments were compared with a reference judgment obtained through a Bayesian probabilistic analysis of the sampling data to investigate overall judgment accuracy and bias. There were a total of 4386 participant-task-chemical judgments for all data collections: 552 qualitative judgments made without sampling data and 3834 quantitative judgments with sampling data. The DITs and quantitative judgments were significantly better than random chance and much improved by the rule of thumb training. In addition, the rule of thumb training reduced the amount of bias in the DITs and quantitative judgments. The mean DIT % correct scores increased from 47 to 64% after the rule of thumb training (P < 0.001). The

  2. Screening values for Non-Carcinogenic Hanford Waste Tank Vapor Chemicals that Lack Established Occupational Exposure Limits

    SciTech Connect

    Poet, Torka S.; Mast, Terryl J.; Huckaby, James L.

    2006-02-06

    Over 1,500 different volatile chemicals have been reported in the headspaces of tanks used to store high-level radioactive waste at the U.S. Department of Energy's Hanford Site. Concern about potential exposure of tank farm workers to these chemicals has prompted efforts to evaluate their toxicity, identify chemicals that pose the greatest risk, and incorporate that information into the tank farms industrial hygiene worker protection program. Established occupation exposure limits for individual chemicals and petroleum hydrocarbon mixtures have been used elsewhere to evaluate about 900 of the chemicals. In this report headspace concentration screening values were established for the remaining 600 chemicals using available industrial hygiene and toxicological data. Screening values were intended to be more than an order of magnitude below concentrations that may cause adverse health effects in workers, assuming a 40-hour/week occupational exposure. Screening values were compared to the maximum reported headspace concentrations.

  3. Behavioral Flexibility and Response Selection Are Impaired after Limited Exposure to Oxycodone

    ERIC Educational Resources Information Center

    Seip-Cammack, Katharine M.; Shapiro, Matthew L.

    2014-01-01

    Behavioral flexibility allows individuals to adapt to situations in which rewards and goals change. Potentially addictive drugs may impair flexible decision-making by altering brain mechanisms that compute reward expectancies, thereby facilitating maladaptive drug use. To investigate this hypothesis, we tested the effects of oxycodone exposure on…

  4. Early enriched environment exposure protects spatial memory and accelerates amyloid plaque formation in APP(Swe)/PS1(L166P) mice.

    PubMed

    Montarolo, Francesca; Parolisi, Roberta; Hoxha, Eriola; Boda, Enrica; Tempia, Filippo

    2013-01-01

    Enriched environment exposure improves several aspects of cognitive performance in Alzheimer's disease patients and in animal models and, although the role of amyloid plaques is questionable, several studies also assessed their response to enriched environment, with contrasting results. Here we report that rearing APP(Swe)/PS1(L166P) mice in an enriched environment since birth rescued the spatial memory impairment otherwise present at 6 months of age. At the same time, the exposure to the enriched environment caused a transient acceleration of plaque formation, while there was no effect on intracellular staining with the 6E10 antibody, which recognizes β-amyloid, full length amyloid precursor protein and its C-terminal fragments. The anticipation of plaque formation required exposure during early development, suggesting an action within critical periods for circuits formation. On the other hand, chronic neuronal activity suppression by tetrodotoxin decreased the number of plaques without affecting intracellular amyloid. These results indicate that enriched environment exposure since early life has a protective effect on cognitive deterioration although transiently accelerates amyloid deposition. In addition, the effects of the enriched environment might be due to increased neuronal activity, because plaques were reduced by suppression of electrical signaling by tetrodotoxin.

  5. Measuring exposure to the polyphenol metabolome in observational epidemiologic studies: current tools and applications and their limits123

    PubMed Central

    Zamora-Ros, Raul; Touillaud, Marina; Rothwell, Joseph A; Romieu, Isabelle; Scalbert, Augustin

    2014-01-01

    Much experimental evidence supports a protective role of dietary polyphenols against chronic diseases such as cardiovascular diseases, diabetes, and cancer. However, results from observational epidemiologic studies are still limited and are often inconsistent. This is largely explained by the difficulties encountered in the estimation of exposure to the polyphenol metabolome, which is composed of ∼500 polyphenols distributed across a wide variety of foods and characterized by diverse biological properties. Exposure to the polyphenol metabolome in epidemiologic studies can be assessed by the use of detailed dietary questionnaires or the measurement of biomarkers of polyphenol intake. The questionnaire approach has been greatly facilitated by the use of new databases on polyphenol composition but is limited by bias as a result of self-reporting. The use of polyphenol biomarkers holds much promise for objective estimation of polyphenol exposure in future metabolome-wide association studies. These approaches are reviewed and their advantages and limitations discussed by using examples of epidemiologic studies on polyphenols and cancer. The current improvement in these techniques, along with greater emphasis on the intake of individual polyphenols rather than polyphenols considered collectively, will help unravel the role of these major food bioactive constituents in disease prevention. PMID:24787490

  6. Decreased levels of the high molecular weight subunit of neurofilaments and accelerated neurofilament transport during the recovery phase of 2,5-hexanedione exposure.

    PubMed

    Pyle, S J; Amarnath, V; Graham, D G; Anthony, D C

    1993-01-01

    The neurotoxicant 2,5-hexanedione (HD) causes the accumulation of neurofilaments in the distal axon and an acceleration of neurofilament transport proximal to the site of their accumulation. It has been proposed that the acceleration of transport is due to the direct reaction of HD with neurofilament proteins and, conversely, that this acceleration is a secondary response to the axon to injury. The objective of this study was to determine whether the response of axons to HD intoxication includes acceleration of neurofilament transport. Pulse labelling was used to analyze neurofilament transport in age-matched rats exposed to HD or PBS. The animals receiving HD were exposed either throughout the period of radiolabel transport, or prior to the pulse labeling of neurofilament proteins. If acceleration of the rate of neurofilament transport was due to the direct reaction of HD with proteins, then neurofilaments synthesized after the exposure period should travel at control rates, since these proteins would not have been exposed to the toxicant. After 28 days of transport, optic nerve proteins were examined using SDS-PAGE, fluorography, and computerized densitometry. In both HD-treated groups, neurofilament transport was accelerated relative to age-matched control animals. In addition, the amount of NFH was decreased relative to other neurofilament subunits. The combination of accelerated transport and a diminished proportion of NFH is similar to the observations of neurofilament axonal transport during growth and development. These observations suggest that this persistent, secondary effect is a reparative response to injury that recapitulates axonal growth and development.

  7. Evaluation of exposure in mammography: limitations of average glandular dose and proposal of a new quantity.

    PubMed

    Geeraert, N; Klausz, R; Muller, S; Bloch, I; Bosmans, H

    2015-07-01

    The radiation risk in mammography is traditionally evaluated using the average glandular dose. This quantity for the average breast has proven to be useful for population statistics and to compare exposure techniques and systems. However it is not indicating the individual radiation risk based on the individual glandular amount and distribution. Simulations of exposures were performed for six appropriate virtual phantoms with varying glandular amount and distribution. The individualised average glandular dose (iAGD), i.e. the individual glandular absorbed energy divided by the mass of the gland, and the glandular imparted energy (GIE), i.e. the glandular absorbed energy, were computed. Both quantities were evaluated for their capability to take into account the glandular amount and distribution. As expected, the results have demonstrated that iAGD reflects only the distribution, while GIE reflects both the glandular amount and distribution. Therefore GIE is a good candidate for individual radiation risk assessment.

  8. Learning foreign labels from a foreign speaker: the role of (limited) exposure to a second language.

    PubMed

    Akhtar, Nameera; Menjivar, Jennifer; Hoicka, Elena; Sabbagh, Mark A

    2012-11-01

    Three- and four-year-olds (N = 144) were introduced to novel labels by an English speaker and a foreign speaker (of Nordish, a made-up language), and were asked to endorse one of the speaker's labels. Monolingual English-speaking children were compared to bilingual children and English-speaking children who were regularly exposed to a language other than English. All children tended to endorse the English speaker's labels when asked 'What do you call this?', but when asked 'What do you call this in Nordish?', children with exposure to a second language were more likely to endorse the foreign label than monolingual and bilingual children. The findings suggest that, at this age, exposure to, but not necessarily immersion in, more than one language may promote the ability to learn foreign words from a foreign speaker.

  9. Signal/Noise and Sensitometry Limitations in Chest Radiography: Implications of Regional Exposure Control

    NASA Astrophysics Data System (ADS)

    Plewes, D. B.; Shaw, C. G.; Ivanovich, M.

    1985-09-01

    The field of medical imaging has experienced many significant advances in recent years with the evolution of a host of computer assisted imaging methods. This growth has also been evident in the areas of more conventional radiography through improved resolution and sensitivity in screen/film technologies. However, in spite of these improvements the fundamental principles of radiographic projection imaging have not significantly changed since its earliest demonstration. A case in point is the nature of the irradiation technique itself which routinely uses a field. of radiation of spatially uniform intensity. These uniform fields can result in large variations in transmitted exposure when used in radio graphy of the chest, head and neck. These wide exposure variations often exceed the useful exposure range of conventional radiographic film/screen combinations and result in large portions of the image being rendered with suboptimal contrast. In chest radiography this is particularly evident, resulting in images where the thick mediastinal, diaphragmatic and heart regions are rendered with negligible contrast when the thinner lung zones are properly. exposed.

  10. A new limit on the time between the nucleosynthesis and the acceleration of cosmic rays in supernova remnants using the Co/Ni ratio

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Gupta, M.

    1990-01-01

    Using new cross section measurements of Ni into Co, data on the Co/Ni ratio in cosmic rays from the HEAO C spacecraft have been reinterpreted in terms of the time between nucleosynthesis and the acceleration of cosmic rays, delta t. The observed Co/Ni ratio is now consistent with interstellar fragmentation only, leading to a small or zero source abundance. In terms of the decay of e-process nucleosynthesis nuclides into Co after a supernova explosion, this permits an estimate of delta t = 4-30,000 yr for the time between nucleosynthesis and the acceleration of cosmic rays if supernovae are the direct progenitors of cosmic rays. These age limits are used in conjunction with models of the expansion of supernova remnants (SNRs), to estimate that cosmic rays are accelerated when the radius of these remnants is between 0.1 and 25 pc.

  11. Statistical methodology to evaluate food exposure to a contaminant and influence of sanitary limits: application to Ochratoxin A.

    PubMed

    Tressou, J; Leblanc, J Ch; Feinberg, M; Bertail, P

    2004-12-01

    This paper presents some statistical methodologies to evaluate the food exposure to a contaminant and quantify the outcome of a new maximum limit on a food item. Our application deals with Ochratoxin A (OTA). We focus on the quantitative evaluation of the distribution of exposure based on both consumption data and contamination data. One specific aspect of contamination data is left censorship due to the limits of detection. Three calculation procedures are proposed: [P1] a deterministic method using means of contamination; [P2] a probabilistic method using a parametric adjustment of the distributions of contamination taking into account the left censorship; and [P3] a non-parametric method which consists in randomly selecting the consumption data and the contamination values. Our main result shows that a non-parametric probabilistic approach is well adapted for the purpose of exposure assessment, when large samples are available. In the application to OTA, the probability to exceed a safe level is high, particularly for children. Simulations show that the impact of the existing standards on cereals and the currently proposed standards on wine generally do not significantly reduce the risk to be overexposed to OTA.

  12. Limited damage of tissue mimic caused by a collapsing bubble under low-frequency ultrasound exposure.

    PubMed

    Yoshida, Kenji; Obata, Kazuya; Tsukamoto, Akira; Ushida, Takashi; Watanabe, Yoshiaki

    2014-08-01

    In this study, we investigated the bubble induced serious damage to tissue mimic exposed to 27-kHz ultrasound. The initial bubble radius ranged from 80 to 100 μm, which corresponded approximately to the experimentally-evaluated resonant radius of the given ultrasound frequency. The tissue mimic consisted of 10 wt% gelatine gel covered with cultured canine kidney epithelial cells. The collapsing bubble behaviour during the ultrasound exposure with negative peak pressures of several hundred kPa was captured by a high-speed camera system. After ultrasound exposure, a cell viability test was conducted based on microscopic bright-field images and fluorescence images for living and dead cells. In the viability test, cells played a role in indicating the damaged area. The bubble oscillations killed the cells, and on occasion detached layers of cultured cells from the gel. The damaged area was comparable or slightly larger than the initial bubble size, and smaller than the maximum bubble size. We concluded that only a small area in close proximity to the bubble could be damaged even above transient cavitation threshold.

  13. Language-Dependent Pitch Encoding Advantage in the Brainstem Is Not Limited to Acceleration Rates that Occur in Natural Speech

    ERIC Educational Resources Information Center

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Smalt, Christopher J.; Bidelman, Gavin M.

    2010-01-01

    Experience-dependent enhancement of neural encoding of pitch in the auditory brainstem has been observed for only specific portions of native pitch contours exhibiting high rates of pitch acceleration, irrespective of speech or nonspeech contexts. This experiment allows us to determine whether this language-dependent advantage transfers to…

  14. Reassessment of data used in setting exposure limits for hot particles

    SciTech Connect

    Baum, J.W.; Kaurin, D.G.

    1991-05-01

    A critical review and a reassessment of data reviewed in NCRP Report 106 on effects of hot particles'' on the skin of pigs, monkeys, and humans were made. Our analysis of the data of Forbes and Mikhail on effects from activated UC{sub 2} particles, ranging in diameter from 144 {mu}m to 328 {mu}m, led to the formulation of a new model for prediction of both the threshold for acute ulceration and for ulcer diameter. A dose of 27 Gy at a depth of 1.33 mm in tissue in this model will result in an acute ulcer with a diameter determined by the radius over which this dose (at 1.33-mm depth) extends. Application of the model to the Forbes-Mikhail data yielded a threshold'' (5% probability) of 6 {times} 10{sup 9} beta particles from a point source on skin of mixed fission product beta particles, or about 10{sup 10} beta particles from Sr--Y-90, since few of the Sr-90 beta particles reach this depth. The data of Hopewell et al. for their 1 mm Sr-Y-90 exposures were also analyzed with the above model and yielded a predicted threshold of 2 {times} 10{sup 10} Sr-Y-90 beta particles for a point source on skin. Dosimetry values were employed in this latter analysis that are 3.3 times higher than previously reported for this source. An alternate interpretation of the Forbes and Mikhail data, derived from linear plots of the data, is that the threshold depends strongly on particle size with the smaller particles yielding a much lower threshold and smaller minimum size ulcer. Additional animal exposures are planned to distinguish between the above explanations. 17 refs., 3 figs., 3 tabs.

  15. Prevention of exposure to N-nitrosamines in the rubber industry: new vulcanization accelerators based on 'safe' amines.

    PubMed

    Wacker, C D; Spiegelhalder, B; Börzsönyi, M; Brune, G; Preussmann, R

    1987-01-01

    Introduction of 'safe' amino components into traditional accelerator molecules could be an effective measure to prevent formation of carcinogenic N-nitroso compounds during rubber production. About 20 new derivatives of the dithiocarbamate and sulfenamide class, based on 'safe' amines, were synthesized and shown to be suitable for industrial application. Some of the corresponding N-nitrosamines were prepared and investigated for mutagenicity in Salmonella typhimurium TA1535. No or weak mutagenic potential was observed in most cases. The nitrosatability of five sulfenamides derived from 'safe' amines was determined and found to be substantially lower than that of a commercial sulfenamide accelerator tested under identical conditions.

  16. Methods to infer the compliance status with interval-averaged and with instantaneous occupational exposure limits from the results of longer-duration, integrated air sampling.

    PubMed

    Hunsaker, Harry A

    2016-01-01

    The duration of integrated air sampling for a substance may exceed the time frame of a substance's occupational exposure limit. Nonetheless, the compliance status of a limit may be inferred, under some circumstances, by the application of certain methods to the results of longer-duration samples. The purpose of this article is to define the inference methods and to illustrate their utility with actual and hypothetical examples. A review of articles and reports in U.S.-based Industrial Hygiene publications and databases revealed that the methods often were not but arguably should have been applied. Also revealed were inappropriate conclusions about the compliance status with exposure limits. Among the benefits of employing the inference methods is gaining information on exposures that might otherwise be overlooked. This article discusses the potential limitations of using the methods, and highlights some of the challenges of using integrated air sampling for assessing compliance with shorter-term exposure limits. PMID:26366477

  17. Sub-diffraction-limited multilayer coatings for the 0.3-NA Micro-Exposure Tool for extreme ultraviolet lithography

    SciTech Connect

    Soufli, R; Hudyma, R M; Spiller, E; Gullikson, E M; Schmidt, M A; Robinson, J C; Baker, S L; Walton, C C; Taylor, J S

    2007-01-03

    This manuscript discusses the multilayer coating results for the primary and secondary mirrors of the Micro Exposure Tool (MET): a 0.30-numerical aperture (NA) lithographic imaging system with 200 x 600 {micro}m{sup 2} field of view at the wafer plane, operating in the extreme ultraviolet (EUV) wavelength region. Mo/Si multilayers were deposited by DC-magnetron sputtering on large-area, curved MET camera substrates, and a velocity modulation technique was implemented to consistently achieve multilayer thickness profiles with added figure errors below 0.1 nm rms to achieve sub-diffraction-limited performance. This work represents the first experimental demonstration of sub-diffraction-limited multilayer coatings for high-NA EUV imaging systems.

  18. Limited internal radiation exposure associated with resettlements to a radiation-contaminated homeland after the Fukushima Daiichi nuclear disaster.

    PubMed

    Tsubokura, Masaharu; Kato, Shigeaki; Nihei, Masahiko; Sakuma, Yu; Furutani, Tomoyuki; Uehara, Keisuke; Sugimoto, Amina; Nomura, Shuhei; Hayano, Ryugo; Kami, Masahiro; Watanobe, Hajime; Endo, Yukou

    2013-01-01

    Resettlement to their radiation-contaminated hometown could be an option for people displaced at the time of a nuclear disaster; however, little information is available on the safety implications of these resettlement programs. Kawauchi village, located 12-30 km southwest of the Fukushima Daiichi nuclear power plant, was one of the 11 municipalities where mandatory evacuation was ordered by the central government. This village was also the first municipality to organize the return of the villagers. To assess the validity of the Kawauchi villagers' resettlement program, the levels of internal Cesium (Cs) exposures were comparatively measured in returnees, commuters, and non-returnees among the Kawauchi villagers using a whole body counter. Of 149 individuals, 5 villagers had traceable levels of Cs exposure; the median detected level was 333 Bq/body (range, 309-1050 Bq/kg), and 5.3 Bq/kg (range, 5.1-18.2 Bq/kg). Median annual effective doses of villagers with traceable Cs were 1.1 x 10(-2) mSv/y (range, 1.0 x 10(-2)-4.1 x 10(-2) mSv/y). Although returnees had higher chances of consuming locally produced vegetables, Cochran-Mantel-Haenszel test showed that their level of internal radiation exposure was not significantly higher than that in the other 2 groups (p=0.643). The present findings in Kawauchi village imply that it is possible to maintain internal radiation exposure at very low levels even in a highly radiation-contaminated region at the time of a nuclear disaster. Moreover, the risks for internal radiation exposure could be limited with a strict food control intervention after resettlement to the radiation-contaminated village. It is crucial to establish an adequate number of radio-contaminated testing sites within the village, to provide immediate test result feedback to the villagers, and to provide education regarding the importance of re-testing in reducing the risk of high internal radiation exposure.

  19. Limited Internal Radiation Exposure Associated with Resettlements to a Radiation-Contaminated Homeland after the Fukushima Daiichi Nuclear Disaster

    PubMed Central

    Tsubokura, Masaharu; Kato, Shigeaki; Nihei, Masahiko; Sakuma, Yu; Furutani, Tomoyuki; Uehara, Keisuke; Sugimoto, Amina; Nomura, Shuhei; Hayano, Ryugo; Kami, Masahiro; Watanobe, Hajime; Endo, Yukou

    2013-01-01

    Resettlement to their radiation-contaminated hometown could be an option for people displaced at the time of a nuclear disaster; however, little information is available on the safety implications of these resettlement programs. Kawauchi village, located 12–30 km southwest of the Fukushima Daiichi nuclear power plant, was one of the 11 municipalities where mandatory evacuation was ordered by the central government. This village was also the first municipality to organize the return of the villagers. To assess the validity of the Kawauchi villagers’ resettlement program, the levels of internal Cesium (Cs) exposures were comparatively measured in returnees, commuters, and non-returnees among the Kawauchi villagers using a whole body counter. Of 149 individuals, 5 villagers had traceable levels of Cs exposure; the median detected level was 333 Bq/body (range, 309–1050 Bq/kg), and 5.3 Bq/kg (range, 5.1–18.2 Bq/kg). Median annual effective doses of villagers with traceable Cs were 1.1 x 10-2 mSv/y (range, 1.0 x 10-2-4.1 x 10-2 mSv/y). Although returnees had higher chances of consuming locally produced vegetables, Cochran-Mantel-Haenszel test showed that their level of internal radiation exposure was not significantly higher than that in the other 2 groups (p=0.643). The present findings in Kawauchi village imply that it is possible to maintain internal radiation exposure at very low levels even in a highly radiation-contaminated region at the time of a nuclear disaster. Moreover, the risks for internal radiation exposure could be limited with a strict food control intervention after resettlement to the radiation-contaminated village. It is crucial to establish an adequate number of radio-contaminated testing sites within the village, to provide immediate test result feedback to the villagers, and to provide education regarding the importance of re-testing in reducing the risk of high internal radiation exposure. PMID:24312602

  20. Exposure to a heat wave under food limitation makes an agricultural insecticide lethal: a mechanistic laboratory experiment.

    PubMed

    Dinh, Khuong V; Janssens, Lizanne; Stoks, Robby

    2016-10-01

    Extreme temperatures and exposure to agricultural pesticides are becoming more frequent and intense under global change. Their combination may be especially problematic when animals suffer food limitation. We exposed Coenagrion puella damselfly larvae to a simulated heat wave combined with food limitation and subsequently to a widespread agricultural pesticide (chlorpyrifos) in an indoor laboratory experiment designed to obtain mechanistic insights in the direct effects of these stressors in isolation and when combined. The heat wave reduced immune function (activity of phenoloxidase, PO) and metabolic rate (activity of the electron transport system, ETS). Starvation had both immediate and delayed negative sublethal effects on growth rate and physiology (reductions in Hsp70 levels, total fat content, and activity levels of PO and ETS). Exposure to chlorpyrifos negatively affected all response variables. While the immediate effects of the heat wave were subtle, our results indicate the importance of delayed effects in shaping the total fitness impact of a heat wave when followed by pesticide exposure. Firstly, the combination of delayed negative effects of the heat wave and starvation, and the immediate negative effect of chlorpyrifos considerably (71%) reduced larval growth rate. Secondly and more strikingly, chlorpyrifos only caused considerable (ca. 48%) mortality in larvae that were previously exposed to the combination of the heat wave and starvation. This strong delayed synergism for mortality could be explained by the cumulative metabolic depression caused by each of these stressors. Further studies with increased realism are needed to evaluate the consequences of the here-identified delayed synergisms at the level of populations and communities. This is especially important as this synergism provides a novel explanation for the poorly understood potential of heat waves and of sublethal pesticide concentrations to cause mass mortality.

  1. Exposure to a heat wave under food limitation makes an agricultural insecticide lethal: a mechanistic laboratory experiment.

    PubMed

    Dinh, Khuong V; Janssens, Lizanne; Stoks, Robby

    2016-10-01

    Extreme temperatures and exposure to agricultural pesticides are becoming more frequent and intense under global change. Their combination may be especially problematic when animals suffer food limitation. We exposed Coenagrion puella damselfly larvae to a simulated heat wave combined with food limitation and subsequently to a widespread agricultural pesticide (chlorpyrifos) in an indoor laboratory experiment designed to obtain mechanistic insights in the direct effects of these stressors in isolation and when combined. The heat wave reduced immune function (activity of phenoloxidase, PO) and metabolic rate (activity of the electron transport system, ETS). Starvation had both immediate and delayed negative sublethal effects on growth rate and physiology (reductions in Hsp70 levels, total fat content, and activity levels of PO and ETS). Exposure to chlorpyrifos negatively affected all response variables. While the immediate effects of the heat wave were subtle, our results indicate the importance of delayed effects in shaping the total fitness impact of a heat wave when followed by pesticide exposure. Firstly, the combination of delayed negative effects of the heat wave and starvation, and the immediate negative effect of chlorpyrifos considerably (71%) reduced larval growth rate. Secondly and more strikingly, chlorpyrifos only caused considerable (ca. 48%) mortality in larvae that were previously exposed to the combination of the heat wave and starvation. This strong delayed synergism for mortality could be explained by the cumulative metabolic depression caused by each of these stressors. Further studies with increased realism are needed to evaluate the consequences of the here-identified delayed synergisms at the level of populations and communities. This is especially important as this synergism provides a novel explanation for the poorly understood potential of heat waves and of sublethal pesticide concentrations to cause mass mortality. PMID:27390895

  2. Prey choice and habitat use drive sea otter pathogen exposure in a resource-limited coastal system

    USGS Publications Warehouse

    Johnson, Christine K.; Tinker, M. Tim; Estes, James A.; Conrad, Patricia A.; Staedler, Michelle M.; Miller, Melissa A.; Jessup, David A.; Mazet, Jonna A.K.

    2014-01-01

    The processes promoting disease in wild animal populations are highly complex, yet identifying these processes is critically important for conservation when disease is limiting a population. By combining field studies with epidemiologic tools, we evaluated the relationship between key factors impeding southern sea otter (Enhydra lutris nereis) population growth: disease and resource limitation. This threatened population has struggled to recover despite protection, so we followed radio-tagged sea otters and evaluated infection with 2 disease-causing protozoal pathogens, Toxoplasma gondii and Sarcocystis neurona, to reveal risks that increased the likelihood of pathogen exposure. We identified patterns of pathogen infection that are linked to individual animal behavior, prey choice, and habitat use. We detected a high-risk spatial cluster of S. neurona infections in otters with home ranges in southern Monterey Bay and a coastal segment near San Simeon and Cambria where otters had high levels of infection with T. gondii. We found that otters feeding on abalone, which is the preferred prey in a resource-abundant marine ecosystem, had a very low risk of infection with either pathogen, whereas otters consuming small marine snails were more likely to be infected with T. gondii. Individual dietary specialization in sea otters is an adaptive mechanism for coping with limited food resources along central coastal California. High levels of infection with protozoal pathogens may be an adverse consequence of dietary specialization in this threatened species, with both depleted resources and disease working synergistically to limit recovery.

  3. Chronic ozone exacerbates the reduction in photosynthesis and acceleration of senescence caused by limited N availability in Nicotiana sylvestris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated ozone (O3) and limiting soil nitrogen (N) availability both negatively affect crop performance. However, little is known about how the combination of elevated O3 and limiting N affect crop growth and metabolism. In this study, we grew tobacco (Nicotiana sylvestris) in ambient and elevated O...

  4. Cell inactivation, repair and mutation induction in bacteria after heavy ion exposure: results from experiments at accelerators and in space.

    PubMed

    Horneck, G; Schafer, M; Baltschukat, K; Weisbrod, U; Micke, U; Facius, R; Bucker, H

    1989-01-01

    To understand the mechanisms of accelerated heavy ions on biological matter, the responses of spores of B. subtilis to this structured high LET radiation was investigated applying two different approaches. 1) By the use of the Biostack concept, the inactivation probability as a function of radial distance to single particles' trajectory (i.e. impact parameter) was determined in space experiments as well as at accelerators using low fluences of heavy ions. It was found that spores can survive even a central hit and that the effective range of inactivation extends far beyond impact parameters where inactivation by delta-ray dose would be effective. Concerning the space experiment, the inactivation cross section exceeds those from comparable accelerator experiments by roughly a factor of 20. 2) From fluence effect curves, cross sections for inactivation and mutation induction, and the efficiency of repair processes were determined. They are influenced by the ions characteristics in a complex manner. According to dependence on LET, at least 3 LET ranges can be differentiated: A low LET range (app. < 200 keV/micrometers), where cross sections for inactivation and mutation induction follow a common curve for different ions and where repair processes are effective; an intermediate LET range of the so-called saturation cross section with negligible mutagenic and repair efficiency; and a high LET range (>1000 keV/micrometers) where the biological endpoints are majorly dependent on atomic mass and energy of the ion under consideration. PMID:11537282

  5. Mutagenicity assessment strategy for pharmaceutical intermediates to aid limit setting for occupational exposure.

    PubMed

    Araya, Selene; Lovsin-Barle, Ester; Glowienke, Susanne

    2015-11-01

    Pharmaceutical intermediates (IM) are used in the synthesis of active pharmaceutical ingredients. They are not intended for human administration, yet employees may be exposed to IM during the manufacturing process. In the context of occupational health, hazard assessment of IM is needed to identify potential intrinsic hazards which could cause unwanted adverse effects. In particular, a carcinogenic potential influences the protection strategy in the workplace. DNA reactive substances may, even if present at very low levels, lead to mutations and therefore, potentially cause cancer. The use of in silico methods to predict mutagenicity is increasingly acknowledged and implemented in the recently released ICH M7 guideline for the limitation of DNA reactive impurities. In this study we investigate the possibility to apply (quantitative) structure-activity-relationships ((Q)SARs) during hazard identification to reduce the number of Ames tests needed for a hazard assessment of IM while maintaining high standards of protection of employees. Ames test outcomes for 188 substances used in the pharmaceutical production were compared with their in silico predictions using two different (Q)SAR methodologies (knowledge based and statistical) complemented by expert knowledge. The results of the analysis showed that a negative prediction for mutagenicity provides a high confidence that the IM is not mutagenic in the Ames test with the negative predictive value of 97%. On the other hand the positive predictive value was only 57% and therefore considered too low to reliably consider positive predicted IM to be mutagenic. In order to avoid any unnecessary burden for occupational health purposes caused by falsely positive predicted IM, all positive predicted IM and those with insufficient coverage by the in silico systems are submitted to an Ames test to verify or reject the prediction. It is shown that the described in silico prediction approach ensures appropriate protection

  6. Mutagenicity assessment strategy for pharmaceutical intermediates to aid limit setting for occupational exposure.

    PubMed

    Araya, Selene; Lovsin-Barle, Ester; Glowienke, Susanne

    2015-11-01

    Pharmaceutical intermediates (IM) are used in the synthesis of active pharmaceutical ingredients. They are not intended for human administration, yet employees may be exposed to IM during the manufacturing process. In the context of occupational health, hazard assessment of IM is needed to identify potential intrinsic hazards which could cause unwanted adverse effects. In particular, a carcinogenic potential influences the protection strategy in the workplace. DNA reactive substances may, even if present at very low levels, lead to mutations and therefore, potentially cause cancer. The use of in silico methods to predict mutagenicity is increasingly acknowledged and implemented in the recently released ICH M7 guideline for the limitation of DNA reactive impurities. In this study we investigate the possibility to apply (quantitative) structure-activity-relationships ((Q)SARs) during hazard identification to reduce the number of Ames tests needed for a hazard assessment of IM while maintaining high standards of protection of employees. Ames test outcomes for 188 substances used in the pharmaceutical production were compared with their in silico predictions using two different (Q)SAR methodologies (knowledge based and statistical) complemented by expert knowledge. The results of the analysis showed that a negative prediction for mutagenicity provides a high confidence that the IM is not mutagenic in the Ames test with the negative predictive value of 97%. On the other hand the positive predictive value was only 57% and therefore considered too low to reliably consider positive predicted IM to be mutagenic. In order to avoid any unnecessary burden for occupational health purposes caused by falsely positive predicted IM, all positive predicted IM and those with insufficient coverage by the in silico systems are submitted to an Ames test to verify or reject the prediction. It is shown that the described in silico prediction approach ensures appropriate protection

  7. Accelerated Biodegradation of Veterinary Antibiotics in Agricultural Soil following Long-Term Exposure, and Isolation of a Sulfamethazine-degrading sp.

    PubMed

    Topp, Edward; Chapman, Ralph; Devers-Lamrani, Marion; Hartmann, Alain; Marti, Romain; Martin-Laurent, Fabrice; Sabourin, Lyne; Scott, Andrew; Sumarah, Mark

    2013-01-01

    The World Health Organization has identified antibiotic resistance as one of the top three threats to global health. There is concern that the use of antibiotics as growth promoting agents in livestock production contributes to the increasingly problematic development of antibiotic resistance. Many antibiotics are excreted at high rates, and the land application of animal manures represents a significant source of environmental exposure to these agents. To evaluate the long-term effects of antibiotic exposure on soil microbial populations, a series of field plots were established in 1999 that have since received annual applications of a mixture of sulfamethazine (SMZ), tylosin (TYL), and chlortetracycline (CTC). During the first 6 yr (1999-2004) soils were treated at concentrations of 0, 0.01 0.1, and 1.0 mg kg soil, in subsequent years at concentrations of 0, 0.1, 1.0, and 10 mg kg soil. The lower end of this concentration range is within that which would result from an annual application of manure from medicated swine. Following ten annual applications, the fate of the drugs in the soil was evaluated. Residues of SMZ and TYL, but not CTC were removed much more rapidly in soil with a history of exposure to 10 mg/kg drugs than in untreated control soil. Residues of C-SMZ were rapidly and thoroughly mineralized to CO in the historically treated soils, but not in the untreated soil. A SMZ-degrading sp. was isolated from the treated soil. Overall, these results indicate that soil bacteria adapt to long-term exposure to some veterinary antibiotics resulting in sharply reduced persistence. Accelerated biodegradation of antibiotics in matrices exposed to agricultural, wastewater, or pharmaceutical manufacturing effluents would attenuate environmental exposure to antibiotics, and merits investigation in the context of assessing potential risks of antibiotic resistance development in environmental matrices. PMID:23673752

  8. Limits of NbTi and Nb3Sn, and Development of W&R Bi-2212 HighField Accelerator Magnets

    SciTech Connect

    Godeke, A.; Cheng, D.; Dietderich, D.R.; Ferracin, P.; Prestemon,S.O.; Sa bbi, G.; Scanlan, R.M.

    2006-09-01

    NbTi accelerator dipoles are limited to magneticfields (H)of about 10 T, due to an intrinsic upper critical field (Hc2) limitationof 14 T. To surpass this restriction, prototype Nb3Sn magnets are beingdeveloped which have reached 16 T. We show that Nb3Sn dipole technologyis practically limited to 17 to 18 T due to insufficient high fieldpinning, and intrinsically to 20 to 22 T due to Hc2 limitations.Therefore, to obtain magnetic fields approaching 20 T and higher, amaterial is required with a higher Hc2 and sufficient high field pinningcapacity. A realistic candidate for this purpose is Bi-2212, which isavailable in roundwires and sufficient lengths for the fabrication ofcoils based on Rutherford-type cables. We initiated a program to developthe required technology to construct accelerator magnets from'windand-react' (W&R) Bi-2212 coils. We outline the complicationsthat arise through the use of Bi-2212, describe the development paths toaddress these issues, and conclude with the design of W&R Bi-2212sub-scale magnets.

  9. Limits of NbTi and Nb3Sn, and Development of W&R Bi-2212 HighField Accelerator Magnets

    SciTech Connect

    Godeke, A.; Cheng, D.; Dietderich, D.R.; Ferracin, P.; Prestemon,S.O.; Sabbi, G.; Scanlan, R.M.

    2006-12-01

    NbTi accelerator dipoles are limited to magnetic fields (H)of about 10 T, due to an intrinsic upper critical field(Hc2) limitationof 14 T. To surpass this restriction, prototype Nb3Sn magnets are beingdeveloped which have reached 16 T. We show that Nb3Sn dipole technologyis practically limited to 17 to 18 T due to insufficient high fieldpinning, and intrinsically to 20 to 22 T due to Hc2 limitations.Therefore, to obtain magnetic fields approaching 20 T and higher, amaterial is required with a higher Hc2 and sufficient high field pinningcapacity. A realistic candidate for this purpose is Bi-2212, which isavailable in roundwires and sufficient lengths for the fabrication ofcoils based on Rutherford-type cables. We initiated a program to developthe required technology to construct accelerator magnets from'windand-react' (W&R) Bi-2212 coils. We outline the complicationsthat arise through the use of Bi-2212, describe the development paths toaddress these issues, and conclude with the design of W&R Bi-2212sub-scale magnets.

  10. Multi-tissue analyses reveal limited inter-annual and seasonal variation in mercury exposure in an Antarctic penguin community.

    PubMed

    Brasso, Rebecka L; Polito, Michael J; Emslie, Steven D

    2014-10-01

    Inter-annual variation in tissue mercury concentrations in birds can result from annual changes in the bioavailability of mercury or shifts in dietary composition and/or trophic level. We investigated potential annual variability in mercury dynamics in the Antarctic marine food web using Pygoscelis penguins as biomonitors. Eggshell membrane, chick down, and adult feathers were collected from three species of sympatrically breeding Pygoscelis penguins during the austral summers of 2006/2007-2010/2011. To evaluate the hypothesis that mercury concentrations in penguins exhibit significant inter-annual variation and to determine the potential source of such variation (dietary or environmental), we compared tissue mercury concentrations with trophic levels as indicated by δ(15)N values from all species and tissues. Overall, no inter-annual variation in mercury was observed in adult feathers suggesting that mercury exposure, on an annual scale, was consistent for Pygoscelis penguins. However, when examining tissues that reflected more discrete time periods (chick down and eggshell membrane) relative to adult feathers, we found some evidence of inter-annual variation in mercury exposure during penguins' pre-breeding and chick rearing periods. Evidence of inter-annual variation in penguin trophic level was also limited suggesting that foraging ecology and environmental factors related to the bioavailability of mercury may provide more explanatory power for mercury exposure compared to trophic level alone. Even so, the variable strength of relationships observed between trophic level and tissue mercury concentrations across and within Pygoscelis penguin species suggest that caution is required when selecting appropriate species and tissue combinations for environmental biomonitoring studies in Antarctica.

  11. Evaluation of real-time techniques to measure hydrogen peroxide in air at the permissible exposure limit.

    PubMed

    Puskar, M A; Plese, M R

    1996-09-01

    The major occupational concern from bio-decontamination of equipment using vapor phase hydrogen peroxide (VHP) generation systems is potential operator exposure outside the protective barrier from possible VHP leaks or accidental releases from the sealed piece of equipment during decontamination. For this reason, different real time monitoring techniques were evaluated to determine their ability to accurately measure VHP at concentrations ranging from 0.5 ppm to 5 ppm. The results of this laboratory evaluation suggest that two of the four methods evaluated (the ion mobility spectrometer [IMS] and Polytron) will approximate the National Institute for Occupational Safety and Health +/- 25% accuracy requirements for measuring the concentration of VHP at and near the Occupational Safety and Health Administration permissible exposure limit of 1.0 ppm. Over the range of 0.5 ppm to 5.1 ppm VHP, the IMS had an approximate pooled method accuracy of +/- 21%, while the Polytron had a pooled method accuracy of +/- 22%. However, both instruments had false readings when exposed to nominal concentrations of methanol, bleach, and sulfur dioxide. The two additional VHP monitoring techniques evaluated (the single point monitor [SPM] and Draeger tube) were unable to accurately measure the concentration of VHP when the relative humidity was below 20%.

  12. "Nuisance dust": unprotective limits for exposure to coal mine dust in the United States, 1934-1969.

    PubMed

    Derickson, Alan

    2013-02-01

    I examine the dismissal of coal mine dust as a mere nuisance, not a potentially serious threat to extractive workers who inhaled it. In the 1930s, the US Public Health Service played a major role in conceptualizing coal mine dust as virtually harmless. Dissent from this position by some federal officials failed to dislodge either that view or the recommendation of minimal limitations on workplace exposure that flowed from it. Privatization of regulatory authority after 1940 ensured that miners would lack protection against respiratory disease. The reform effort that overturned the established misunderstanding in the late 1960s critically depended upon both the production of scientific findings and the emergence of a subaltern movement in the coalfields. This episode illuminates the steep challenges often facing advocates of stronger workplace health standards.

  13. “Nuisance Dust”: Unprotective Limits for Exposure to Coal Mine Dust in the United States, 1934–1969

    PubMed Central

    2013-01-01

    I examine the dismissal of coal mine dust as a mere nuisance, not a potentially serious threat to extractive workers who inhaled it. In the 1930s, the US Public Health Service played a major role in conceptualizing coal mine dust as virtually harmless. Dissent from this position by some federal officials failed to dislodge either that view or the recommendation of minimal limitations on workplace exposure that flowed from it. Privatization of regulatory authority after 1940 ensured that miners would lack protection against respiratory disease. The reform effort that overturned the established misunderstanding in the late 1960s critically depended upon both the production of scientific findings and the emergence of a subaltern movement in the coalfields. This episode illuminates the steep challenges often facing advocates of stronger workplace health standards. PMID:23237176

  14. Asymmetric otolith function and increased susceptibility to motion sickness during exposure to variations in gravitoinertial acceleration level

    NASA Technical Reports Server (NTRS)

    Lackner, James R.; Graybiel, Ashton; Johnson, Walter H.; Money, Kenneth E.

    1987-01-01

    Von Baumgarten and coworkers (1979, 1981) have suggested that asymmetries in otolith function between the left and right labyrinths may result from differences in otoconial mass and could play a role in space motion sickness. Such asymmetries would be centrally compensated for under terrestrial conditions, but on exposure to weightlessness the persisting central compensation would produce a central imbalance that could lead to motion sickness. In this work ocular counterrolling was used as a way of measuring the relative 'efficiency' of the left and right otoliths; the ocular counterrolling scores of individuals were compared with their susceptibility to motion sickness during passive exposure to variations in Gz in parabolic flight maneuvers. The experimental findings indicate that large asymmetries in counterrolling for leftward and rightward body tilts are associated with greater susceptibility to motion sickness in parabolic flight.

  15. Prey choice and habitat use drive sea otter pathogen exposure in a resource-limited coastal system

    USGS Publications Warehouse

    Johnson, Christine K.; Tinker, M.T.; Estes, J.A.; Conrad, P.A.; Staedler, M.; Miller, M.A.; Jessup, David A.; Mazet, J.A.K.

    2009-01-01

    The processes promoting disease in wild animal populations are highly complex, yet identifying these processes is critically important for conservation when disease is limiting a population. By combining field studies with epidemiologic tools, we evaluated the relationship between key factors impeding southern sea otter (Enhydra lutris nereis) population growth: disease and resource limitation. This threatened population has struggled to recover despite protection, so we followed radio-tagged sea otters and evaluated infection with 2 disease-causing protozoal pathogens, Toxoplasma gondii and Sarcocystis neurona, to reveal risks that increased the likelihood of pathogen exposure. We identified patterns of pathogen infection that are linked to individual animal behavior, prey choice, and habitat use. We detected a high-risk spatial cluster of S. neurona infections in otters with home ranges in southern Monterey Bay and a coastal segment near San Simeon and Cambria where otters had high levels of infection with T. gondii. We found that otters feeding on abalone, which is the preferred prey in a resource-abundant marine ecosystem, had a very low risk of infection with either pathogen, whereas otters consuming small marine snails were more likely to be infected with T. gondii. Individual dietary specialization in sea otters is an adaptive mechanism for coping with limited food resources along central coastal California. High levels of infection with protozoal pathogens may be an adverse consequence of dietary specialization in this threatened species, with both depleted resources and disease working synergistically to limit recovery. ?? 2009 by The National Academy of Sciences of the USA.

  16. Vitamin D Intake Determines Vitamin D Status of Postmenopausal Women, Particularly Those with Limited Sun Exposure123

    PubMed Central

    Cheng, Ting-Yuan David; Millen, Amy E.; Wactawski-Wende, Jean; Beresford, Shirley A. A.; LaCroix, Andrea Z.; Zheng, Yingye; Goodman, Gary E.; Thornquist, Mark D.; Neuhouser, Marian L.

    2014-01-01

    limited sun exposure. PMID:24598886

  17. Limitation of individual internal exposure by consideration of the confidence interval in routine personal dosimetry at the Chernobyl Sarcophagus.

    PubMed

    Bondarenko, O O; Melnychuk, D V; Medvedev, S Yu

    2003-01-01

    In view of the probabilistic nature and very wide uncertainty of internal exposure assessment, its deterministic ('precise') assessment does not protect against not exceeding established reference levels or even the dose limits for a particular individual. Minimising such potential risks can be achieved by setting up a sufficiently wide confidence interval for an expected dose distribution instead of its average ('best' estimate) value, and by setting the limit at the 99% fractile level. The ratio of the 99% level and the mean ('best' estimate) is referred to as the safety coefficient. It is shown for the typical radiological conditions inside the Chernobyl Sarcophagus that the safety coefficient corresponding to the 99% fractile of the expected internal dose distribution varies within the range from 5 to 10. The maintenance of minimum uncertainty and sufficient sensitivity of the indirect dosimetry method requires measurement of individual daily urinary excretion of 239Pu at a level of at least 4 x 10(-5) Bq. For the purpose of reducing the uncertainty of individual internal dose assessment and making dosimetric methods workable. it is suggested that the results of workplace monitoring are combined with the results of periodic urinary and faecal bioassay measurements.

  18. 250 mSv: temporary increase in the emergency exposure dose limit in response to the TEPCO Fukushima Daiichi NPP accident and its decision making process.

    PubMed

    Yasui, Shojiro

    2015-01-01

    The Great East Japan Earthquake on March 11, 2011, led to an accident at the Fukushima Daiichi Nuclear Power Plant of the Tokyo Electric Power Company (TEPCO). In response to this accident, on March 14, 2011, the Ministry of Health, Labour, and Welfare (MHLW) of Japan enforced an ordinance that temporarily increased the radiation exposure dose limit allowed to 250 mSv during the emergency. This article explains the processes of a) temporarily increasing emergency dose limits, b) controlling for the combined emergency and normal exposure doses, and c) reducing the limit back to 100 mSv. Major issues addressed when deliberating the reduction of the emergency limits includes the following: a) political initiative, b) a phased reduction of dose limits, and c) transitional measures for workers who were exposed to more than 100 mSv. This article also identifies key challenges that need further deliberation to be resolved. These include: a) establishing a pre-defined protocol for applying pre-accident emergency dose limits and/or amending post-accident limits; b) designating the conditions in which to apply or amend emergency dose limits; c) selecting methods of radiation control for individuals who are exposed to more than the normal exposure dose limit during emergency work; and d) designating the conditions under which to terminate or reduce emergency dose limits after the accident. PMID:25436995

  19. An accelerated non-Gaussianity based multichannel predictive deconvolution method with the limited supporting region of filters

    NASA Astrophysics Data System (ADS)

    Li, Zhong-xiao; Li, Zhen-chun

    2016-09-01

    The multichannel predictive deconvolution can be conducted in overlapping temporal and spatial data windows to solve the 2D predictive filter for multiple removal. Generally, the 2D predictive filter can better remove multiples at the cost of more computation time compared with the 1D predictive filter. In this paper we first use the cross-correlation strategy to determine the limited supporting region of filters where the coefficients play a major role for multiple removal in the filter coefficient space. To solve the 2D predictive filter the traditional multichannel predictive deconvolution uses the least squares (LS) algorithm, which requires primaries and multiples are orthogonal. To relax the orthogonality assumption the iterative reweighted least squares (IRLS) algorithm and the fast iterative shrinkage thresholding (FIST) algorithm have been used to solve the 2D predictive filter in the multichannel predictive deconvolution with the non-Gaussian maximization (L1 norm minimization) constraint of primaries. The FIST algorithm has been demonstrated as a faster alternative to the IRLS algorithm. In this paper we introduce the FIST algorithm to solve the filter coefficients in the limited supporting region of filters. Compared with the FIST based multichannel predictive deconvolution without the limited supporting region of filters the proposed method can reduce the computation burden effectively while achieving a similar accuracy. Additionally, the proposed method can better balance multiple removal and primary preservation than the traditional LS based multichannel predictive deconvolution and FIST based single channel predictive deconvolution. Synthetic and field data sets demonstrate the effectiveness of the proposed method.

  20. Exposure to sediments from polluted rivers has limited phenotypic effects on larvae and adults of Chironomus riparius.

    PubMed

    Arambourou, Hélène; Beisel, Jean-Nicolas; Branchu, Philippe; Debat, Vincent

    2014-06-15

    Laboratory studies have sometimes failed to detect a relationship between toxic stress and morphological defects in invertebrates. Several hypotheses have been proposed to account for this lack of effect. (1) It was suggested that only a combination of stressful conditions - rather than a single one - would affect the phenotype. (2) Phenotypic defects should be detected on adult individuals, rather than on juveniles. (3) Phenotypic abnormalities might mostly affect the progeny of the exposed individuals, some contaminants exhibiting trans-generational effects. In the present study, we test those three hypotheses. We first examined the effects of a multiple exposure by using laboratory Chironomus riparius larvae cultured on two sediments sampled in contaminated rivers and those containing a mixture of mineral and organic compounds. On the larvae, we investigated mentum phenotypes: the frequency of phenodeviants, the shape fluctuating asymmetry and the mean shape. To test whether adult's morphology was more sensitive than the larval's, we also measured asymmetry and mean shape of the adult wings. Finally, to test for a trans-generational phenotypic effect, we measured mentum shape variations in the offspring derived from the measured adults. Overall, our results point out a very limited phenotypic response to contaminated sediments, suggesting that a multiple exposure is not necessarily sufficient to generate phenotypic defects. Adult traits were no more affected than larval traits, discarding the hypothesis that adult phenotypes would be more sensitive biomarkers. Finally, no effect was detected on the offspring generation, suggesting that no trans-generational effect occurs. This general lack of effect suggests that the use of phenotypic defects in C. riparius as an indicator of sediment contamination should be considered cautiously. PMID:24691209

  1. Murine melanomas accelerated by a single UVR exposure carry photoproduct footprints but lack UV signature C>T mutations in critical genes.

    PubMed

    Mukhopadhyay, P; Ferguson, B; Muller, H K; Handoko, H Y; Walker, G J

    2016-06-23

    Ultraviolet radiation (UVR) exposure increases malignant melanoma (MM) risk, but in the context of acute, not cumulative exposure. C>T and CC>TT changes make up the overwhelming majority of single base substitutions (SBS) in MM DNA, as both precursor melanocytes and melanocytic lesions have incurred incidental exposures to sunlight. To study the mutagenic mechanisms by which acute sunburn accelerates MM, we sequenced the exomes of spontaneous and neonatal UVB-induced Cdk4-R24C::Tyr-NRASQ61K mouse MMs. UVR-induced MMs carried more SBSs than spontaneous MMs, but the levels of genomic instability, reflected by translocations and copy number changes, were not different. C>T/G>A was the most common SBS in spontaneous and UVR-induced MMs, only modestly increased in the latter. However, they tended to occur at the motif A/GpCpG (reflecting C>T transition due to spontaneous deamination of cytosine at CpG) in spontaneous MMs, and T/CpCpC/T (reflecting the effects of pyrimidine dimers on either side of the mutated C) in UVR-induced MMs. Unlike MMs associated with repetitive exposures, we observed no CC>TT changes. In addition, we also found UVR 'footprints' at T>A/A>Ts (at NpTpT) and T>C/A>G (at CpTpC). These footprints are also present in MMs from a chronic UVR mouse model, and in some human MMs, suggesting that they may be minor UVR signature changes. We found few significantly somatically mutated genes (~6 per spontaneous and 15 per UVR-induced melanoma) in addition to the Cdk4 and NRAS mutations already present. Trp53 was the most convincing recurrently mutated gene; however, in the UVR-induced MMs no Trp53 mutations were at C>T/G>A, suggesting that it was probably mutated during tumour progression, not directly induced by UVR photoproducts. The very low load of recurrent mutations convincingly induced by classical UVB-induced dimer photoproducts may support a role for cell extrinsic mechanisms, such as photoimmunosuppression and inflammation in driving MM after acute

  2. Murine melanomas accelerated by a single UVR exposure carry photoproduct footprints but lack UV signature C>T mutations in critical genes.

    PubMed

    Mukhopadhyay, P; Ferguson, B; Muller, H K; Handoko, H Y; Walker, G J

    2016-06-23

    Ultraviolet radiation (UVR) exposure increases malignant melanoma (MM) risk, but in the context of acute, not cumulative exposure. C>T and CC>TT changes make up the overwhelming majority of single base substitutions (SBS) in MM DNA, as both precursor melanocytes and melanocytic lesions have incurred incidental exposures to sunlight. To study the mutagenic mechanisms by which acute sunburn accelerates MM, we sequenced the exomes of spontaneous and neonatal UVB-induced Cdk4-R24C::Tyr-NRASQ61K mouse MMs. UVR-induced MMs carried more SBSs than spontaneous MMs, but the levels of genomic instability, reflected by translocations and copy number changes, were not different. C>T/G>A was the most common SBS in spontaneous and UVR-induced MMs, only modestly increased in the latter. However, they tended to occur at the motif A/GpCpG (reflecting C>T transition due to spontaneous deamination of cytosine at CpG) in spontaneous MMs, and T/CpCpC/T (reflecting the effects of pyrimidine dimers on either side of the mutated C) in UVR-induced MMs. Unlike MMs associated with repetitive exposures, we observed no CC>TT changes. In addition, we also found UVR 'footprints' at T>A/A>Ts (at NpTpT) and T>C/A>G (at CpTpC). These footprints are also present in MMs from a chronic UVR mouse model, and in some human MMs, suggesting that they may be minor UVR signature changes. We found few significantly somatically mutated genes (~6 per spontaneous and 15 per UVR-induced melanoma) in addition to the Cdk4 and NRAS mutations already present. Trp53 was the most convincing recurrently mutated gene; however, in the UVR-induced MMs no Trp53 mutations were at C>T/G>A, suggesting that it was probably mutated during tumour progression, not directly induced by UVR photoproducts. The very low load of recurrent mutations convincingly induced by classical UVB-induced dimer photoproducts may support a role for cell extrinsic mechanisms, such as photoimmunosuppression and inflammation in driving MM after acute

  3. Throwing the baby out with the bath water? Occupational hygienists' views on the revised dutch system for occupational exposure limits.

    PubMed

    Schenk, Linda; Palmen, Nicole Gm

    2013-06-01

    In 2007, the Dutch Working Conditions Act was revised with the goal to decrease the regulatory burden, and to open up for company-specific solutions of establishing a safe and healthy work environment. One tool geared towards company-specific solutions is the compilation of the Arbocatalogs, which are company or sector-level collections of safe working methods and guidelines developed both by employers and employees. The revision also introduced a new occupational exposure limit (OEL) system in the Netherlands. This system encompasses two kinds of OELs: private and public. Private OELs are to be derived by the industry, while public OELs are issued by the Ministry of Social Affairs and Employment. With this change, the majority of the previously set Dutch OELs were removed, as the substances in question now are falling under the private realm. The motivations, expectations, and practical impacts of these revisions have been investigated through interviews with stakeholder organizations and a questionnaire study targeted at occupational hygienists. The questionnaire results show that although the Arbocatalogs seem to be relatively well received, a majority of the Dutch occupational hygienists are still relatively negative to the changes. There is a fear that private OELs will be less scientifically robust than public OELs and that the lack of robustness will have a negative impact on the field of occupational hygiene as a whole. PMID:23253359

  4. Exposure-Based CBT for Older Adults After Fall Injury: Description of a Manualized, Time-Limited Intervention for Anxiety

    PubMed Central

    Jayasinghe, Nimali; Sparks, Martha A.; Kato, Kaori; Wilbur, Kaitlyn; Ganz, Sandy B.; Chiaramonte, Gabrielle R.; Stevens, Bradford L.; Barie, Philip S.; Lachs, Mark S.; O’Dell, Michael; Evans, Arthur T.; Bruce, Martha L.; Difede, JoAnn

    2014-01-01

    Fall accidents among older adults can be devastating events that, in addition to their physical consequences, lead to disabling anxiety warranting the attention of mental health practitioners. This article presents “Back on My Feet,” an exposure-based cognitive-behavioral therapy (CBT) protocol that is designed for older adults with posttraumatic stress disorder (PTSD), subthreshold PTSD, or fear of falling resulting from a traumatic fall. The protocol can be integrated into care once patients have been discharged from hospital or rehabilitation settings back to the community. Following a brief description of its development, the article presents a detailed account of the protocol, including patient evaluation and the components of the eight home-based sessions. The protocol addresses core symptoms of avoidance, physiological arousal/anxiety, and maladaptive thought patterns. Because older patients face different coping challenges from younger patients (for whom the majority of evidence-based CBT interventions have been developed), the discussion ends with limitations and special considerations for working with older, injured patients. The article offers a blueprint for mental health practitioners to address the needs of patients who may present with fall-related anxiety in primary care and other medical settings. Readers who wish to develop their expertise further can consult the online appendices, which include a clinician manual and patient workbook, as well as guidance on additional resources. PMID:25364226

  5. How accurate and precise are limited sampling strategies in estimating exposure to mycophenolic acid in people with autoimmune disease?

    PubMed

    Abd Rahman, Azrin N; Tett, Susan E; Staatz, Christine E

    2014-03-01

    maximum a posteriori (MAP) Bayesian analysis. Although mean bias was less when data were analysed using multiple linear regression, MAP Bayesian analysis is preferable because of its flexibility with respect to sample timing. Estimation of MPA AUC12 following EC-MPS administration using a limited sampling strategy with samples drawn within 3 h post-dose resulted in biased and imprecise results, likely due to a longer time to reach a peak MPA concentration (t max) with this formulation and more variable pharmacokinetic profiles. Inclusion of later sampling time points that capture enterohepatic recirculation and t max improved the predictive performance of strategies to predict EC-MPS exposure. Given the considerable pharmacokinetic variability associated with mycophenolate therapy, limited sampling strategies may potentially help in individualizing patient dosing. However, a compromise needs to be made between the predictive performance of the strategy and its clinical feasibility. An opportunity exists to combine research efforts globally to create an open-source database for MPA (AUC, concentrations and outcomes) that can be used and prospectively evaluated for AUC target-controlled dosing of MPA in autoimmune diseases.

  6. Exposure to 56Fe irradiation accelerates normal brain aging and produces deficits in spatial learning and memory

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, Barbara; Casadesus, Gemma; Carey, Amanda N.; Rabin, Bernard M.; Joseph, James A.

    Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles) such as 56Fe, produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism. For example, an increased release of reactive oxygen species, and the subsequent oxidative stress and inflammatory damage caused to the central nervous system, is likely responsible for the deficits seen in aging and following irradiation. Therefore, dietary antioxidants, such as those found in fruits and vegetables, could be used as countermeasures to prevent the behavioral changes seen in these conditions. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment, and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a “map” provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with 56Fe high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts, particularly middle-aged ones, to perform critical tasks during long-term space travel beyond the magnetosphere.

  7. Examination of virtual phantoms with respect to their possible use in assessing compliance with the electromagnetic field exposure limits specified by Directive 2013/35/EU.

    PubMed

    Zradziński, Patryk

    2015-01-01

    According to Directive 2013/35/EU, any assessment of hazards associated with exposure to electromagnetic fields (EMF) in the workplace needs an evaluation of quantities characterizing biophysical effects caused inside human bodies by exposure. Such quantities (induced electric field or specific energy absorption rate) may be evaluated by computer simulations in virtual models (phantoms), representing interaction between EMF and the worker's body with respect to modelling the EMF source, the structure of the working environment and the human body. The paper describes the effects of the properties of various virtual phantoms used in recently published studies on various aspects of EMF exposure with respect to their possible involvement in assessing occupational electromagnetic hazards as required by Directive 2013/35/ EU. The parameters of phantoms have been discussed with reference to: dimensions, posture, spatial resolution and electric contact with the ground. Such parameters should be considered and specified, and perhaps also standardized, in order to ensure that the numerical simulations yield reliable results in a compliance analysis against exposure limits or in an exposure assessment for EMF-related epidemiological studies. The outcomes of the presented examination of virtual phantoms used in numerical simulations show that they can be effectively used in the assessment of compliance with the exposure limits specified by Directive 2013/35/EU, but various other factors should be also considered, e.g., the relationship between phantom posture and a realistic exposure situation (flexible phantoms use), limited resolution preventing reliable evaluation of physical estimators of exposure, or a non-realistic area of phantom surface in contact with the ground. PMID:26224490

  8. [Limitations of occupational exposure to electromagnetic fields adopted by Polish law from the perspectives of international documents with particular reference to fields of low and medium frequencies].

    PubMed

    Karpowicz, Jolanta; Gryz, Krzysztof

    2003-01-01

    Following the provisions of the decree on maximum admissible strength (MAS) values, issued by the Minister of Labour and Social Policy, comprehensive and homogeneous principles of workers' protection against excessive exposure to 0-300 GHz electromagnetic fields have been in force since 2001. Different mechanisms responsible for interactions between electromagnetic field and human body, as well as the need to limit their harmful effects were taken into account while setting permissible exposure conditions. Owing to the fact that both the strength of electric and magnetic fields and exposure duration have been considered, Polish regulations facilitate a parallel harmonisation of the prohibited exposure levels with so-called "basic restriction" values adopted as a minimum protection level in many international guidelines and to implement a significantly higher level of workers' protection in case of long-duration per shift exposure (equivalent of "precautionary principle" applied in the evaluation of general public exposure). The approaches adopted in Polish regulations coincide in many points with a drafted EU directive. Amendments being introduced into Polish legal regulations on the environmental protection should maintain cohesion principle with legal regulations on occupational exposure to electromagnetic fields, and should take into account additional restrictions concerning the protection of residential areas, as practiced in many European countries.

  9. Low-dose neutron dose response of zebrafish embryos obtained from the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Kong, E. Y.; Konishi, T.; Kobayashi, A.; Suya, N.; Cheng, S. H.; Yu, K. N.

    2015-09-01

    The dose response of embryos of the zebrafish, Danio rerio, irradiated at 5 h post fertilization (hpf) by 2-MeV neutrons with ≤100 mGy was determined. The neutron irradiations were made at the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility in the National Institute of Radiological Sciences (NIRS), Chiba, Japan. A total of 10 neutron doses ranging from 0.6 to 100 mGy were employed (with a gamma-ray contribution of 14% to the total dose), and the biological effects were studied through quantification of apoptosis at 25 hpf. The responses for neutron doses of 10, 20, 25, and 50 mGy approximately fitted on a straight line, while those for neutron doses of 0.6, 1 and 2.5 mGy exhibited neutron hormetic effects. As such, hormetic responses were generically developed by different kinds of ionizing radiations with different linear energy transfer (LET) values. The responses for neutron doses of 70 and 100 mGy were significantly below the lower 95% confidence band of the best-fit line, which strongly suggested the presence of gamma-ray hormesis.

  10. The Biological Effectiveness of Accelerated Particles for the Induction of Chromosome Damage: Track Structure Effects and Cytogenetic Signatures of High-LET Exposure

    NASA Technical Reports Server (NTRS)

    George, K.; Hada, M.; Chappell, L.; Cucinotta, F. A.

    2012-01-01

    Track structure models predict that at a fixed value of LET, particles with lower charge number, Z will have a higher biological effectiveness compared to particles with a higher Z. In this report we investigated how track structure effects induction of chromosomal aberration in human cells. Human lymphocytes were irradiated in vitro with various energies of accelerated iron, silicon, neon, or titanium ions and chromosome damage was assessed in using three color FISH chromosome painting in chemically induced PCC samples collected a first cell division post irradiation. The LET values for these ions ranged from 30 to 195 keV/micrometers. Of the particles studied, Neon ions have the highest biological effectiveness for induction of total chromosome damage, which is consistent with track structure model predictions. For complex-type exchanges 64 MeV/ u Neon and 450 MeV/u Iron were equally effective and induced the most complex damage. In addition we present data on chromosomes exchanges induced by six different energies of protons (5 MeV/u to 2.5 GeV/u). The linear dose response term was similar for all energies of protons suggesting that the effect of the higher LET at low proton energies is balanced by the production of nuclear secondaries from the high energy protons. All energies of protons have a much higher percentage of complex-type chromosome exchanges than gamma rays, signifying a cytogenetic signature for proton exposures.

  11. Effects of food-cue exposure on dieting-related goals: a limitation to counteractive-control theory.

    PubMed

    Coelho, Jennifer S; Polivy, Janet; Herman, C Peter; Pliner, Patricia

    2008-09-01

    The present study investigated the effects of exposure to a food cue on the self-reported importance of dieting in those with low, medium, and high levels of dietary restraint. The results indicated that exposure to a food cue bolstered dieting-related goals in those who were low in dietary restraint but had no effect on the importance of dieting-related goals for those with medium or high levels of dietary restraint. The results demonstrate that exposure to temptations may differentially affect self-control processes depending on an individuals' level of dietary restraint.

  12. Long-term perchloroethylene exposure: a limited meta-analysis of neurobehavorial deficits in occupationally and residentially exposed groups

    EPA Science Inventory

    The literature concerning the neurobehavioral and neurophysiological effects of long-term exposure to perchloroethylene (PERC) in humans was meta-analyzed to provide a quantitative review and synthesis. The useable data base from this literature comprised studies reporting effec...

  13. Minimum exposure limits and measured relationships between the vitamin D, erythema and international commission on non-ionizing radiation protection solar ultraviolet.

    PubMed

    Downs, Nathan; Parisi, Alfio; Butler, Harry; Turner, Joanna; Wainwright, Lisa

    2015-01-01

    The International Commission on Non-Ionizing Radiation Protection (ICNIRP) has established guidelines for exposure to ultraviolet radiation in outdoor occupational settings. Spectrally weighted ICNIRP ultraviolet exposures received by the skin or eye in an 8 h period are limited to 30 J m(-2). In this study, the time required to reach the ICNIRP exposure limit was measured daily in 10 min intervals upon a horizontal plane at a subtropical Australian latitude over a full year and compared with the effective Vitamin D dose received to one-quarter of the available skin surface area for all six Fitzpatrick skin types. The comparison of measured solar ultraviolet exposures for the full range of sky conditions in the 2009 measurement period, including a major September continental dust event, show a clear relationship between the weighted ICNIRP and the effective vitamin D dose. Our results show that the horizontal plane ICNIRP ultraviolet exposure may be used under these conditions to provide minimum guidelines for the healthy moderation of vitamin D, scalable to each of the six Fitzpatrick skin types. PMID:25407011

  14. Minimum exposure limits and measured relationships between the vitamin D, erythema and international commission on non-ionizing radiation protection solar ultraviolet.

    PubMed

    Downs, Nathan; Parisi, Alfio; Butler, Harry; Turner, Joanna; Wainwright, Lisa

    2015-01-01

    The International Commission on Non-Ionizing Radiation Protection (ICNIRP) has established guidelines for exposure to ultraviolet radiation in outdoor occupational settings. Spectrally weighted ICNIRP ultraviolet exposures received by the skin or eye in an 8 h period are limited to 30 J m(-2). In this study, the time required to reach the ICNIRP exposure limit was measured daily in 10 min intervals upon a horizontal plane at a subtropical Australian latitude over a full year and compared with the effective Vitamin D dose received to one-quarter of the available skin surface area for all six Fitzpatrick skin types. The comparison of measured solar ultraviolet exposures for the full range of sky conditions in the 2009 measurement period, including a major September continental dust event, show a clear relationship between the weighted ICNIRP and the effective vitamin D dose. Our results show that the horizontal plane ICNIRP ultraviolet exposure may be used under these conditions to provide minimum guidelines for the healthy moderation of vitamin D, scalable to each of the six Fitzpatrick skin types.

  15. Quantification of print, radio and television exposure among previous blood donors in Kenya: an opportunity for encouraging repeat donation in a resource-limited setting?

    PubMed

    Basavaraju, S V; Mwangi, J; Kellogg, T A; Odawo, L; Marum, L H

    2010-10-01

    Blood services in sub-Saharan Africa experience blood shortages and low retention of voluntary, non-remunerated donors. To boost collections by encouraging repeat donations, the Kenya National Blood Transfusion Service is exploring the likelihood of reaching previous donors through targeted print, radio and television advertising. We analysed data from a national AIDS Indicator Survey to determine whether previous donors have significant exposure to media. Respondents reporting history of blood donation had significantly higher exposure to print, radio and television media than those without history of blood donation. Targeted media campaigns encouraging repeat donation are likely to reach previous donors even in resource-limited settings.

  16. Quantification of print, radio and television exposure among previous blood donors in Kenya: an opportunity for encouraging repeat donation in a resource-limited setting?

    PubMed

    Basavaraju, S V; Mwangi, J; Kellogg, T A; Odawo, L; Marum, L H

    2010-10-01

    Blood services in sub-Saharan Africa experience blood shortages and low retention of voluntary, non-remunerated donors. To boost collections by encouraging repeat donations, the Kenya National Blood Transfusion Service is exploring the likelihood of reaching previous donors through targeted print, radio and television advertising. We analysed data from a national AIDS Indicator Survey to determine whether previous donors have significant exposure to media. Respondents reporting history of blood donation had significantly higher exposure to print, radio and television media than those without history of blood donation. Targeted media campaigns encouraging repeat donation are likely to reach previous donors even in resource-limited settings. PMID:20598106

  17. Daily Exposure to Di(2-ethylhexyl) Phthalate Alters Estrous Cyclicity and Accelerates Primordial Follicle Recruitment Potentially Via Dysregulation of the Phosphatidylinositol 3-Kinase Signaling Pathway in Adult Mice1

    PubMed Central

    Hannon, Patrick R.; Peretz, Jackye; Flaws, Jodi A.

    2014-01-01

    ABSTRACT Humans are exposed daily to di(2-ethylhexyl) phthalate (DEHP), a plasticizer found in many consumer, medical, and building products containing polyvinyl chloride. Large doses of DEHP disrupt normal ovarian function; however, the effects of DEHP at environmentally relevant levels, the effects of DEHP on folliculogenesis, and the mechanisms by which DEHP disrupts ovarian function are unclear. The present study tested the hypothesis that relatively low levels of DEHP disrupt estrous cyclicity as well as accelerate primordial follicle recruitment by dysregulating phosphatidylinositol 3-kinase (PI3K) signaling. Adult CD-1 mice were orally dosed with DEHP (20 μg/kg/day–750 mg/kg/day) daily for 10 and 30 days. Following dosing, the effects on estrous cyclicity were examined, and follicle numbers were histologically quantified. Further, the ovarian mRNA and protein levels of PI3K signaling factors that are associated with early folliculogenesis were quantified. The data indicate that 10- and 30-day exposure to DEHP prolonged the duration of estrus and accelerated primordial follicle recruitment. Specifically, DEHP exposure decreased the percentage of primordial follicles and increased the percentage of primary follicles counted following 10-day exposure and increased the percentage of primary follicles counted following 30-day exposure. DEHP exposure, at doses that accelerate folliculogenesis, increased the levels of 3-phosphoinositide-dependent protein kinase-1, mammalian target of rapamycin complex 1, and protein kinase B and decreased the levels of phosphatase and tensin homolog, potentially driving PI3K signaling. Collectively, relatively low levels of DEHP disrupt estrous cyclicity and accelerate primordial follicle recruitment potentially via a mechanism involving dysregulation of PI3K signaling. PMID:24804967

  18. Stress of the Endoplasmic Reticulum of Neurons in Stroke Can Be Maximally Limited by Combined Exposure to Hypercapnia and Hypoxia.

    PubMed

    Tregub, P P; Kulikov, V P; Motin, Yu G; Nagibaeva, M E; Zabrodina, A S

    2016-08-01

    We studied the expression of chaperone GRP-78 and transcription factor NF-kB during the development of ischemic tolerance of the brain after combined and isolated exposure to hypoxia and hypercapnia. Combined exposure to hypoxia and hypercapnia maximally increased the expression of chaperone GRP-78 and transcription factor NF-kB, while the formation of ischemia-induced tolerance under conditions of hypercapnic hypoxia can be associated with activation of adaptive stress mechanisms in the endoplasmic reticulum. Under these conditions, hypercapnia in combination with hypoxia is a priority factor for activation of GRP-78 and transcription factor NF-kB. PMID:27591867

  19. Early Liver and Kidney Dysfunction Associated with Occupational Exposure to Sub-Threshold Limit Value Levels of Benzene, Toluene, and Xylenes in Unleaded Petrol

    PubMed Central

    Neghab, Masoud; Hosseinzadeh, Kiamars; Hassanzadeh, Jafar

    2015-01-01

    Background Unleaded petrol contains significant amounts of monocyclic aromatic hydrocarbons such as benzene, toluene, and xylenes (BTX). Toxic responses following occupational exposure to unleaded petrol have been evaluated only in limited studies. The main purpose of this study was to ascertain whether (or not) exposure to unleaded petrol, under normal working conditions, is associated with any hepatotoxic or nephrotoxic response. Methods This was a cross-sectional study in which 200 employees of Shiraz petrol stations with current exposure to unleaded petrol, as well as 200 unexposed employees, were investigated. Atmospheric concentrations of BTX were measured using standard methods. Additionally, urine and fasting blood samples were taken from individuals for urinalysis and routine biochemical tests of kidney and liver function. Results The geometric means of airborne concentrations of BTX were found to be 0.8 mg m−3, 1.4 mg m−3, and 2.8 mg m−3, respectively. Additionally, means of direct bilirubin, alanine aminotransferase, aspartate aminotransferase, blood urea and plasma creatinine were significantly higher in exposed individuals than in unexposed employees. Conversely, serum albumin, total protein, and serum concentrations of calcium and sodium were significantly lower in petrol station workers than in their unexposed counterparts. Conclusion The average exposure of petrol station workers to BTX did not exceed the current threshold limit values (TLVs) for these chemicals. However, evidence of subtle, subclinical and prepathologic early liver and kidney dysfunction was evident in exposed individuals. PMID:26929843

  20. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  1. NIOSH comments to DOL on the Mine Safety and Health Administration proposed rule on permissible exposure limit for diesel particulate, July 10, 1992

    SciTech Connect

    Niemeier, R.W.

    1992-07-10

    The testimony discussed the views of NIOSH concerning the establishment of a permissible exposure limit for diesel particulate to control exposure to diesel exhaust in the mining industry. As requested by the Mine Safety and Health Association, NIOSH was in the process of developing a sampling and analytical method for airborne diesel exhaust particles and had proposed the use of elemental carbon as a surrogate measure of particulate diesel exhaust. The testimony also reviewed the genotoxicity of diesel soot. Studies have indicated that respired diesel soot particles on the surface of the lung alveoli and respiratory bronchioles can be dispersed in the surfactant rich aqueous phase lining of the surfaces. Other specific issues discussed included the effect of environmental background levels of diesel particulate on diesel particulate exposure, health effects resulting from exposure to diesel particulate, methods available to measure diesel particulate exposure in underground mines, and after treatment devices being developed for over the road vehicles and the level of diesel particulate reduction that can be achieved. Attachments presented a research plan for the development of a sampling and analytical method for airborne diesel exhaust particles, and a status report on the project.

  2. Limiting the Amount and Duration of Antigen Exposure During Priming Increases Memory T Cell Requirement for Costimulation During Recall

    PubMed Central

    Floyd, Tamara L.; Koehn, Brent H.; Kitchens, William H.; Robertson, Jennifer M.; Cheeseman, Jennifer A.; Stempora, Linda; Larsen, Christian P.; Ford, Mandy L.

    2011-01-01

    Donor-reactive memory T cells can play an important role in mediating graft rejection following transplantation. Transplant recipients acquire donor-reactive memory T cells not only through prior sensitization with alloantigens, but also through previous exposure to environmental pathogens that are cross-reactive with allogeneic peptide:MHC complexes. Current dogma suggests that most, if not all, memory T cell responses are independent of the requirement for CD28 and/ or CD154/CD40-mediated costimulation in order to mount a recall response. However, heterogeneity among memory T cells is increasingly being appreciated, and one important factor known to impact the function and phenotype of antigen-specific T cell responses is the amount/duration of antigen exposure. Importantly, the impact of antigen exposure on development of costimulation independence is currently unknown. Here, we interrogated the effect of decreased antigen amount/duration during priming on the ability of donor-reactive memory T cells to mediate costimulation blockade-resistant rejection during a recall response following transplantation in a murine model. Recipients possessing donor-reactive memory T cell responses that were generated under conditions of reduced antigen exposure exhibited similar frequencies of antigen-specific T cells at day 30 post infection, but, strikingly, failed to mediate costimulation blockade-resistant rejection following challenge with an OVA-expressing skin graft. Thus, these data demonstrate the amount/ duration of antigen exposure is a critical factor in determining memory T cells' relative requirement for costimulation during the recall response following transplantation. PMID:21257960

  3. Chronic acceleration and brain density

    NASA Technical Reports Server (NTRS)

    Hoffman, L. F.; Smith, A. H.

    1982-01-01

    Tests carried out on rabbits show that the effect of chronic acceleration is not uniform among the various tissues studied. Although body mass is reduced by the treatment, as expected, no change is apparent in brain mass or in the density of cerebrospinal fluid. Acceleration-induced changes are encountered in tissue density, the myocardium exhibiting a transient increase followed by an exponential decrease toward a limit and the brain showing an arithmetic increase in density with continued exposure to 2.5 G. The data are seen as suggesting that a specific brain load is not a regulated phenomenon and that no physiological processes occur to attenuate the increased load imposed by the hyperdynamic environment. An equation is derived indicating that the stimulus potential per unit of brain load increases with body size, even though brain density decreases and cerebrospinal fluid density increases.

  4. Radiographic abnormalities in long-tenure Vermont granite workers and the permissible exposure limit for crystalline silica.

    PubMed

    Graham, W G; Vacek, P M; Morgan, W K; Muir, D C; Sisco-Cheng, B

    2001-04-01

    This study was undertaken to assess the prevalence of radiographic abnormalities consistent with silicosis in a group of 600 retired granite workers who were receiving pensions. Files of regional clinics and hospitals were searched for chest radiographs taken on these men, and 470 x-ray films suitable for interpretation were located. After exclusions (women, and men who had worked in the granite industry elsewhere), 408 x-ray films were independently read by three experienced readers using the 1980 International Labour Office scheme. Dust exposures were estimated for workers hired after 1940, when the dust-control standard of 10 million particles per cubic foot (mppcf) (equivalent to 0.1 mg/m3) was put in place and monitored by the Vermont Division of Industrial Hygiene. Dust levels were initially high but were gradually reduced from 1940 to 1954, after which average quartz exposures stabilized to a mean of approximately 0.05 to 0.06 mg/m3; however, about 10% to 15% of samples after 1954 exceeded 0.1 mg/m3. Of the 408 x-ray films, 58 were taken on workers hired before dust controls were instituted in 1940, and 25.9% showed abnormalities (a profusion score of 1/0 or greater). A total of 350 x-ray films were taken on workers hired in 1940 or after, and the prevalence in this group was 5.7%. The radiographic changes in workers hired after 1940 are likely due to excessive exposures during the first 15 years of dust control. We conclude that if the exposure standard of 0.1 mg/m3 is rigorously observed in the workplace, radiographic abnormalities caused by quartz dust in long-term workers will be rare.

  5. Cytotoxicity testing of materials with limited in vivo exposure is affected by the duration of cell-material contact.

    PubMed

    Ciapetti, G; Granchi, D; Stea, S; Savarino, L; Verri, E; Gori, A; Savioli, F; Montanaro, L

    1998-12-15

    Silicones for dental impression largely are used to record the geometry of hard and soft dental tissues. They are considered to be medical devices, and the assessment of cytotoxicity is a necessary step in the evaluation of their biocompatibility. Extracts of six addition-type and six condensation-type silicones have been tested with L929 cells according to the ISO 10993-Part 5 standard. The cytotoxicity was evaluated by three different methods: neutral red uptake, propidium iodide (PI) staining, and amido black staining. According to the selected specific assay, contact between cells and material extracts was maintained for 24 h in the first series of experiments; then, considering that in vivo application of these materials is restricted to a few minutes, additional experiments were performed after 1 h of cell/extract contact. Analysis of the results showed that the addition-type silicones are nontoxic even when tested after prolonged exposure of the cells to the materials while the condensation-type silicones were cytotoxic at 24 h of incubation. Nevertheless, harm to the patient actually could be negligible, considering its very short time of exposure in vivo. This is supported by our finding that most are not toxic after 1 h. We suggest that the experimental conditions of cytotoxicity testing have to be relevant to the in vivo situation; accordingly, the time of exposure should be designed carefully. PMID:9827670

  6. Laser acceleration with open waveguides

    SciTech Connect

    Xie, Ming

    1999-03-01

    A unified framework based on solid-state open waveguides is developed to overcome all three major limitations on acceleration distance and hence on the feasibility of two classes of laser acceleration. The three limitations are due to laser diffraction, acceleration phase slippage, and damage of waveguide structure by high power laser. The two classes of laser acceleration are direct-field acceleration and ponderomotive-driven acceleration. Thus the solutions provided here encompass all mainstream approaches for laser acceleration, either in vacuum, gases or plasmas.

  7. Work to save dose: contrasting effective dose rates from radon exposure in workplaces and residences against the backdrop of public and occupational limits

    SciTech Connect

    Whicker, Jeffrey J; Mcnaughton, Michael W

    2009-01-01

    Office workers are exposed to radon while at work and at home. Though there has been a multitude of studies reporting the measurements of radon concentrations and potential lung and effective doses associated with radon and progeny exposure in homes, similar studies on the concentrations and subsequent effective dose rates in the non-mine workplaces are lacking. Additionally, there are few, if any, comparative analyses of radon exposures at more 'typical' workplace with residential exposures within the same county. The purposes of this study were to measure radon concentrations in office and residential spaces in the same county and explore the radiation dose implications. Sixty-five track-etch detectors were deployed in office spaces and 47 were deployed in residences, all within Los Alamos County, New Mexico, USA. The sampling periods for these measurements were generally about three months. The measured concentrations were used to calculate and compare effective dose rates resulting from exposure while at work and at home. Results showed that full-time office workers receive on average about 8 times greater exposure at home than while in the office (2.3 mSv yr-! versus 0.3 mSv yr-!). The estimated effective dose rate for a more homebound person was about 3 mSv yr-!. Estimating effective doses from background radon exposure in the same county as Los Alamos National Laboratory, with thousands of'radiological workers,' highlights interesting contrasts in radiation protection standards that span public and occupational settings. For example, the effective dose rate from background radon exposure in unregulated office spaces ranged up to 1.1 mSv yr-!, which is similar to the 1 mSv yr-! threshold for regulation ofa 'radiological worker,' as defined in the Department of Energy regulations for occupational exposure. Additionally, the estimated average effective dose total of> 3 mSv yf! from radon background exposure in homes stands in contrast to the 0.1 mSv yr-! air

  8. Switched matrix accelerator

    SciTech Connect

    Whittum, David H.; Tantawi, Sami G.

    2001-01-01

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We also provide an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392 GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium.

  9. Switched Matrix Accelerator

    SciTech Connect

    Whittum, David H

    2000-10-04

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm-wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We provide also an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392. GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high-power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium.

  10. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  11. Can Accelerators Accelerate Learning?

    SciTech Connect

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-10

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  12. Laser selection based on maximum permissible exposure limits for visible and middle-near infrared repetitively pulsed lasers.

    SciTech Connect

    Augustoni, Arnold L.

    2004-03-01

    The Maximum Permissible Exposure (MPE) is central to laser hazard analysis and is in general a function of the radiant wavelength. The selection of a laser for a particular application may allow for flexibility in the selection of the radiant wavelength. This flexibility would allow the selection of a particular laser based on the MPE and the hazards associated with that radiant wavelength. The Calculations of the MPEs for various laser wavelength ranges are presented. Techniques for determining eye safe viewing distances for both aided and unaided viewing and the determination of flight hazard distances are presented as well.

  13. Theoretical assessment of the maximum obtainable power in wireless power transfer constrained by human body exposure limits in a typical room scenario.

    PubMed

    Chen, Xi Lin; De Santis, Valerio; Umenei, Aghuinyue Esai

    2014-07-01

    In this study, the maximum received power obtainable through wireless power transfer (WPT) by a small receiver (Rx) coil from a relatively large transmitter (Tx) coil is numerically estimated in the frequency range from 100 kHz to 10 MHz based on human body exposure limits. Analytical calculations were first conducted to determine the worst-case coupling between a homogeneous cylindrical phantom with a radius of 0.65 m and a Tx coil positioned 0.1 m away with the radius ranging from 0.25 to 2.5 m. Subsequently, three high-resolution anatomical models were employed to compute the peak induced field intensities with respect to various Tx coil locations and dimensions. Based on the computational results, scaling factors which correlate the cylindrical phantom and anatomical model results were derived. Next, the optimal operating frequency, at which the highest transmitter source power can be utilized without exceeding the exposure limits, is found to be around 2 MHz. Finally, a formulation is proposed to estimate the maximum obtainable power of WPT in a typical room scenario while adhering to the human body exposure compliance mandates. PMID:24889372

  14. [Norms and standards for radiofrequency electromagnetic fields in Latin America: guidelines for exposure limits and measurement protocols].

    PubMed

    Skvarca, Jorge; Aguirre, Aníbal

    2006-01-01

    New technologies that use electromagnetic fields (EMF) have proved greatly beneficial to humankind. EMF are used in a variety of ways in the transmission of electrical energy and in telecommunications, industry, and medicine. However, some studies have shown that EMF could be detrimental to one's health, having found an association between exposure to EMF on the one hand, and the incidence of some types of cancer as well as behavioral changes on the other. Although so far there is no concrete proof that exposure to low-intensity EMF is hazardous, researchers continue to study the issue in an attempt to reach a consensus opinion and to establish safety standards. While developing and establishing such norms and standards have traditionally been the responsibility of international specialized agencies, national health authorities should take an active part in this process. Currently the Pan American Health Organization is promoting scientific research, often in the form of epidemiologic studies, in order to propose uniform norms and standards. Some Latin American countries, including Argentina, Brazil, Chile, Colombia, Costa Rica, Ecuador, Mexico, Peru, and Venezuela, have already enacted incomplete or partial legislation based on recommended international standards. This article describes the norms established in Latin America and the particular approach taken by each country.

  15. Playback Experiments for Noise Exposure.

    PubMed

    Holles, Sophie; Simpson, Stephen D; Lecchini, David; Radford, Andrew N

    2016-01-01

    Playbacks are a useful tool for conducting well-controlled and replicated experiments on the effects of anthropogenic noise, particularly for repeated exposures. However, playbacks are unlikely to fully reproduce original sources of anthropogenic noise. Here we examined the sound pressure and particle acceleration of boat noise playbacks in a field experiment and reveal that although there remain recognized limitations, the signal-to-noise ratios of boat playbacks to ambient noise do not exceed those of a real boat. The experimental setup tested is therefore of value for use in experiments on the effects of repeated exposure of aquatic animals to boat noise. PMID:26610992

  16. Early Combination Antiretroviral Therapy Limits Exposure to HIV-1 Replication and Cell-Associated HIV-1 DNA Levels in Infants

    PubMed Central

    McManus, Margaret; Mick, Eric; Hudson, Richard; Mofenson, Lynne M.; Sullivan, John L.; Somasundaran, Mohan; Luzuriaga, Katherine

    2016-01-01

    The primary aim of this study was to measure HIV-1 persistence following combination antiretroviral therapy (cART) in infants and children. Peripheral blood mononuclear cell (PBMC) HIV-1 DNA was quantified prior to and after 1 year of cART in 30 children, stratified by time of initiation (early, age <3 months, ET; late, age >3 months-2 years, LT). Pre-therapy PBMC HIV-1 DNA levels correlated with pre-therapy plasma HIV-1 levels (r = 0.59, p<0.001), remaining statistically significant (p = 0.002) after adjustment for prior perinatal antiretroviral exposure and age at cART initiation. PBMC HIV-1 DNA declined significantly after 1 year of cART (Overall: -0.91±0.08 log10 copies per million PBMC, p<0.001; ET: -1.04±0.11 log10 DNA copies per million PBMC, p<0.001; LT: -0.74 ±0.13 log10 DNA copies per million PBMC, p<0.001) but rates of decline did not differ significantly between ET and LT. HIV-1 replication exposure over the first 12 months of cART, estimated as area-under-the-curve (AUC) of circulating plasma HIV-1 RNA levels, was significantly associated with PBMC HIV-1 DNA at one year (r = 0.51, p = 0.004). In 21 children with sustained virologic suppression after 1 year of cART, PBMC HIV-1 DNA levels continued to decline between years 1 and 4 (slope -0.21 log10 DNA copies per million PBMC per year); decline slopes did not differ significantly between ET and LT. PBMC HIV-1 DNA levels at 1 year and 4 years of cART correlated with age at cART initiation (1 year: p = 0.04; 4 years: p = 0.03) and age at virologic control (1 and 4 years, p = 0.02). Altogether, these data indicate that reducing exposure to HIV-1 replication and younger age at cART initiation are associated with lower HIV-1 DNA levels at and after one year of age, supporting the concept that HIV-1 diagnosis and cART initiation in infants should occur as early as possible. PMID:27104621

  17. Phase 2 Study of Accelerated Hypofractionated Thoracic Radiation Therapy and Concurrent Chemotherapy in Patients With Limited-Stage Small-Cell Lung Cancer

    SciTech Connect

    Xia, Bing; Hong, Ling-Zhi; Cai, Xu-Wei; Zhu, Zheng-Fei; Liu, Qi; Zhao, Kuai-Le; Fan, Min; Mao, Jing-Fang; Yang, Huan-Jun; Wu, Kai-Liang; Fu, Xiao-Long

    2015-03-01

    Purpose: To prospectively investigate the efficacy and toxicity of accelerated hypofractionated thoracic radiation therapy (HypoTRT) combined with concurrent chemotherapy in the treatment of limited-stage small-cell lung cancer (LS-SCLC), with the hypothesis that both high radiation dose and short radiation time are important in this setting. Methods and Materials: Patients with previously untreated LS-SCLC, Eastern Cooperative Oncology Group performance status of 0 to 2, and adequate organ function were eligible. HypoTRT of 55 Gy at 2.5 Gy per fraction over 30 days was given on the first day of the second or third cycle of chemotherapy. An etoposide/cisplatin regimen was given to 4 to 6 cycles. Patients who had a good response to initial treatment were offered prophylactic cranial irradiation. The primary endpoint was the 2-year progression-free survival rate. Results: Fifty-nine patients were enrolled from July 2007 through February 2012 (median age, 58 years; 86% male). The 2-year progression-free survival rate was 49.0% (95% confidence interval [CI] 35.3%-62.7%). Median survival time was 28.5 months (95% CI 9.0-48.0 months); the 2-year overall survival rate was 58.2% (95% CI 44.5%-71.9%). The 2-year local control rate was 76.4% (95% CI 63.7%-89.1%). The severe hematologic toxicities (grade 3 or 4) were leukopenia (32%), neutropenia (25%), and thrombocytopenia (15%). Acute esophagitis and pneumonitis of grade ≥3 occurred in 25% and 10% of the patients, respectively. Thirty-eight patients (64%) received prophylactic cranial irradiation. Conclusion: Our study showed that HypoTRT of 55 Gy at 2.5 Gy per fraction daily concurrently with etoposide/cisplatin chemotherapy has favorable survival and acceptable toxicity. This radiation schedule deserves further investigation in LS-SCLC.

  18. Longitudinal laser ion acceleration in low density targets: experimental optimization on the Titan laser facility and numerical investigation of the ultra-high intensity limit

    NASA Astrophysics Data System (ADS)

    d'Humières, E.; Chen, S.; Lobet, Mathieu; Sciscio, M.; Antici, Patrizio; Bailly-Grandvaux, Mathieu; Gangolf, Thomas; Revet, Guilhem; Santos, Joao J.; Schroer, Anna-Marie; Willi, O.; Tikhonchuk, Vladimir T.; Pepin, Henri; Fuchs, Julien

    2015-05-01

    Recent theoretical and experimental studies suggest the possibility of enhancing the efficiency and ease of laser acceleration of protons and ions using underdense or near critical plasmas through electrostatic shocks. Very promising results were recently obtained in this regime. In these experiments, a first ns pulse was focused on a thin target to explode it and a second laser with a high intensity was focused on the exploded foil. The delay between two lasers allowed to control the density gradient seen by the second laser pulse. The transition between various laser ion acceleration regimes depending on the density gradient length was studied. With a laser energy of a few Joules, protons with energies close to the energies of TNSA accelerated protons were obtained for various exploded foils configurations. In the high energy regime (~180 J), protons with energies significantly higher than the ones of TNSA accelerated protons were obtained when exploding the foil while keeping a good beam quality. These results demonstrate that low-density targets are promising candidates for an efficient proton source that can be optimized by choosing appropriate plasma conditions. New experiments were also performed in this regime with gas jets. Scaling shock acceleration in the low density regime to ultra high intensities is a challenge as radiation losses and electron positron pair production change the optimization of the shock process. Using large-scale Particle-In-Cell simulations, the transition to this regime in which intense beams of relativistic ions can be produced is investigated.

  19. The LDCE Particle Impact Experiment as flown on STS-46. [limited duration space environment candidate materials exposure (LDCE)

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Tanner, William G.; Borg, Janet; Bibring, Jean-Pierre; Alexander, W. Merle; Maag, Andrew J.

    1992-01-01

    Many materials and techniques have been developed by the authors to sample the flux of particles in Low Earth Orbit (LEO). Though regular in-site sampling of the flux in LEO the materials and techniques have produced data which compliment the data now being amassed by the Long Duration Exposure Facility (LDEF) research activities. Orbital debris models have not been able to describe the flux of particles with d sub p less than or = 0.05 cm, because of the lack of data. Even though LDEF will provide a much needed baseline flux measurement, the continuous monitoring of micron and sub-micron size particles must be carried out. A flight experiment was conducted on the Space Shuttle as part of the LDCE payload to develop an understanding of the Spatial Density (concentration) as a function of size (mass) for particle sizes 1 x 10(exp 6) cm and larger. In addition to the enumeration of particle impacts, it is the intent of the experiment that hypervelocity particles be captured and returned intact. Measurements will be performed post flight to determine the flux density, diameters, and subsequent effects on various optical, thermal control and structural materials. In addition to these principal measurements, the Particle Impact Experiment (PIE) also provides a structure and sample holders for the exposure of passive material samples to the space environment, e.g., thermal cycling, and atomic oxygen, etc. The experiment will measure the optical property changes of mirrors and will provide the fluence of the ambient atomic oxygen environment to other payload experimenters. In order to augment the amount of material returned in a form which can be analyzed, the survivability of the experiment as well as the captured particles will be assessed. Using Sandia National Laboratory's hydrodynamic computer code CTH, hypervelocity impacts on the materials which comprise the experiments have been investigated and the progress of these studies are reported.

  20. Experience-dependent enhancement of pitch-specific responses in the auditory cortex is limited to acceleration rates in normal voice range.

    PubMed

    Krishnan, A; Gandour, J T; Suresh, C H

    2015-09-10

    The aim of this study is to determine how pitch acceleration rates within and outside the normal pitch range may influence latency and amplitude of cortical pitch-specific responses (CPR) as a function of language experience (Chinese, English). Responses were elicited from a set of four pitch stimuli chosen to represent a range of acceleration rates (two each inside and outside the normal voice range) imposed on the high rising Mandarin Tone 2. Pitch-relevant neural activity, as reflected in the latency and amplitude of scalp-recorded CPR components, varied depending on language-experience and pitch acceleration of dynamic, time-varying pitch contours. Peak latencies of CPR components were shorter in the Chinese than the English group across stimuli. Chinese participants showed greater amplitude than English for CPR components at both frontocentral and temporal electrode sites in response to pitch contours with acceleration rates inside the normal voice pitch range as compared to pitch contours with acceleration rates that exceed the normal range. As indexed by CPR amplitude at the temporal sites, a rightward asymmetry was observed for the Chinese group only. Only over the right temporal site was amplitude greater in the Chinese group relative to the English. These findings may suggest that the neural mechanism(s) underlying processing of pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to acceleration in just those rising pitch contours that fall within the bounds of one's native language. More broadly, enhancement of native pitch stimuli and stronger rightward asymmetry of CPR components in the Chinese group is consistent with the notion that long-term experience shapes adaptive, distributed hierarchical pitch processing in the auditory cortex, and reflects an interaction with higher order, extrasensory processes beyond the sensory memory trace.

  1. Experience-dependent enhancement of pitch-specific responses in the auditory cortex is limited to acceleration rates in normal voice range

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Suresh, Chandan H.

    2015-01-01

    The aim of this study is to determine how pitch acceleration rates within and outside the normal pitch range may influence latency and amplitude of cortical pitch-specific responses (CPR) as a function of language experience (Chinese, English). Responses were elicited from a set of four pitch stimuli chosen to represent a range of acceleration rates (two each inside and outside the normal voice range) imposed on the high rising Mandarin Tone 2. Pitch-relevant neural activity, as reflected in the latency and amplitude of scalp-recorded CPR components, varied depending on language-experience and pitch acceleration of dynamic, time-varying pitch contours. Peak latencies of CPR components were shorter in the Chinese than the English group across stimuli. Chinese participants showed greater amplitude than English for CPR components at both frontocentral and temporal electrode sites in response to pitch contours with acceleration rates inside the normal voice pitch range as compared to pitch contours with acceleration rates that exceed the normal range. As indexed by CPR amplitude at the temporal sites, a rightward asymmetry was observed for the Chinese group only. Only over the right temporal site was amplitude greater in the Chinese group relative to the English. These findings may suggest that the neural mechanism(s) underlying processing of pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to acceleration in just those rising pitch contours that fall within the bounds of one’s native language. More broadly, enhancement of native pitch stimuli and stronger rightward asymmetry of CPR components in the Chinese group is consistent with the notion that long-term experience shapes adaptive, distributed hierarchical pitch processing in the auditory cortex, and reflects an interaction with higher-order, extrasensory processes beyond the sensory memory trace. PMID:26166727

  2. Tolerance of ARPE 19 cells to organophosphorus pesticide chlorpyrifos is limited to concentration and time of exposure.

    PubMed

    Gomathy, Narayanan; Sumantran, Venil N; Shabna, A; Sulochana, K N

    2015-01-01

    Age related macular degeneration is a blinding disease common in elder adults. The prevalence of age related macular degeneration has been found to be 1.8% in the Indian population. Organophosphates are widely used insecticides with well documented neurological effects, and the persistent nature of these compounds in the body results in long term health effects. Farmers exposed to organophosphorus pesticides in USA had an earlier onset of age related macular degeneration when compared to unexposed controls. A recent study found significant levels of an organophosphate, termed chlorpyrifos, in the blood samples of Indian farmers. Therefore, in understanding the link between age related macular degeneration and chlorpyrifos, the need for investigation is important. Our data show that ARPE-19 (retinal pigment epithelial cells) exhibit a cytoprotective response to chlorpyrifos as measured by viability, mitochondrial membrane potential, superoxide dismutase activity, and increased levels of glutathione peroxidase and reduced glutathione, after 24 h exposure to chlorpyrifos. However, this cytoprotective response was absent in ARPE-19 cells exposed to the same range of concentrations of chlorpyrifos for 48 h. These results have physiological significance, since HPLC analysis showed that effects of chlorpyrifos were mediated through its entry into ARPE-19 cells. HPLC analysis also showed that chlorpyrifos remained stable, as we recovered up to 80% of the chlorpyrifos added to 6 different ocular tissues. PMID:25619908

  3. Accelerators (4/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  4. Accelerators (3/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  5. Accelerators (5/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  6. Accelerators (5/5)

    SciTech Connect

    2009-07-09

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  7. Accelerators (4/5)

    SciTech Connect

    2009-07-08

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  8. Accelerators (3/5)

    SciTech Connect

    2009-07-07

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  9. Physiological effects of sublethal acid exposure in juvenile rainbow trout on a limited or unlimited ration during a simulated global warming scenario.

    PubMed

    D'Cruz, L M; Dockray, J J; Morgan, I J; Wood, C M

    1998-01-01

    Changes in the physiology and cost of living of fish were studied during exposure to simulated global warming and environmental acidification, alone and in combination. Trout were exposed to slightly elevated water temperatures (+2 degrees C), in the presence and absence of sublethal acidity (pH 5.2) in synthetic softwater for 90 d (8 degrees - 12 degrees C). Fish were either fed to satiation (ca. 1%-3% of their wet-body weight daily) or fed 1% of their wet-body weight once every 4 d. Satiation-fed fish exposed to sublethal pH showed no ionoregulatory disturbances but exhibited increased appetites and growth compared to fish in control pH waters. In contrast, fish maintained on a limited ration did not grow and showed typical ionoregulatory responses to acid stress, with lower whole-body Na+ and Cl- concentrations and greater mortality. Detrimental effects were greater in the global warming scenario (+2 degrees C). Overall, a slight temperature increase and sublethal pH increased the cost of living as determined by increased food consumption in satiation-fed fish and greater mortalities in fish maintained on a limited ration. Most important, these findings suggest that fish given sufficient food can compensate for increased energy expenditure or difficulties in maintaining ion balance associated with low pH exposure.

  10. Evaluation of EDXRF configurations to improve the limit of detection and exposure for in vivo quantification of gadolinium in tumor tissue

    NASA Astrophysics Data System (ADS)

    Santibáñez, M.; Vásquez, M.; Figueroa, R. G.; Valente, M.

    2016-05-01

    In this paper the configuration of an Energy Dispersive X-Ray Fluorescence (EDXRF) system optimized for in vivo quantification of gadolinium in tumor tissue was studied. The system was configured using XMI-MSIM software designed to predict the XRF spectral response using Monte Carlo simulations. The studied setup is comprised of an X-ray tube, tuned to different voltages, and a copper filter system configured with variable thickness, which emits a spectrally narrow beam centered on the specific excitation energy. The values for the central energy excitation and the spectral width were adjusted to optimize the system, using like figures of merit: minimization of the limit of detection, measurement uncertainty and radiation exposure. These values were obtained in two stages. The first was successive simulations of incident spectra with central energy in the range of 50-70 keV. The second was comprised of simulations with incident spectra of different widths (8-29 keV), all with the same determined central energy, evaluating the limit of detection depending on the exposure. This made it possible to find the best balance between system sensitivity and the delivered dose. The obtained results were compared with those produced by radioactive sources of 241Am whose activity was set to produce the same exposure as the proposed setup. To evaluate the feasibility of in vivo quantification, a set of tumor phantoms of 1-6 cm3 at different depths and labeled with a gadolinium concentration of 250 ppm was evaluated. From the resulting spectrum, calibration curves were obtained in function of the size and depth of the tumor, allowing for the evaluation of the potential of the methodology.

  11. Modeling the effects of a speed limit reduction on traffic-related elemental carbon (EC) concentrations and population exposure to EC

    NASA Astrophysics Data System (ADS)

    Lefebvre, W.; Fierens, F.; Trimpeneers, E.; Janssen, S.; Van de Vel, K.; Deutsch, F.; Viaene, P.; Vankerkom, J.; Dumont, G.; Vanpoucke, C.; Mensink, C.; Peelaerts, W.; Vliegen, J.

    2011-01-01

    Despite the scarce effect of speed limit reduction measures on total mass PM 10 and PM 2.5 concentrations, it is shown that the effect on the probably more hazardous component elemental carbon (EC) is more important which means that, from the viewpoint of health benefit, speed reductions during smog episodes may well be justified. Especially in the very dense highway network in Flanders with a 60% share of diesel cars (the highest in Europe) a speed limit reduction from 120 to 90 km/h during winter smog episodes on selected sections of Flemish highways leads to a significant decrease of the EC concentrations near those highways. Key findings are that the decrease in EC depends on the distance from the highways. In the direct vicinity of the highways, a decrease compared to the base-line scenario where no speed limit changes were implemented of up to 30% of the EC concentrations is modeled. Within a distance of 1500 m of the concerned highway sections there is an average decrease in EC of 0.18 μg m -3 affecting about 1 million people living in these areas. When the speed limit reduction measure is in force, the EC exposure of about 300,000 people decreases by at least 5% and 7500 people experience a decrease of 15% or more.

  12. Cadmium exposure and sulfate limitation reveal differences in the transcriptional control of three sulfate transporter (Sultr1;2) genes in Brassica juncea

    PubMed Central

    2014-01-01

    Background Cadmium (Cd) exposure and sulfate limitation induce root sulfate uptake to meet the metabolic demand for reduced sulfur. Although these responses are well studied, some aspects are still an object of debate, since little is known about the molecular mechanisms by which changes in sulfate availability and sulfur metabolic demand are perceived and transduced into changes in the expression of the high-affinity sulfate transporters of the roots. The analysis of the natural variation occurring in species with complex and highly redundant genome could provide precious information to better understand the topic, because of the possible retention of mutations in the sulfate transporter genes. Results The analysis of plant sulfur nutritional status and root sulfate uptake performed on plants of Brassica juncea – a naturally occurring allotetraploid species – grown either under Cd exposure or sulfate limitation showed that both these conditions increased root sulfate uptake capacity but they caused quite dissimilar nutritional states, as indicated by changes in the levels of nonprotein thiols, glutathione and sulfate of both roots and shoots. Such behaviors were related to the general accumulation of the transcripts of the transporters involved in root sulfate uptake (BjSultr1;1 and BjSultr1;2). However, a deeper analysis of the expression patterns of three redundant, fully functional, and simultaneously expressed Sultr1;2 forms (BjSultr1;2a, BjSultr1;2b, BjSultr1;2c) revealed that sulfate limitation induced the expression of all the variants, whilst BjSultr1;2b and BjSultr1;2c only seemed to have the capacity to respond to Cd. Conclusions A novel method to estimate the apparent kM for sulfate, avoiding the use of radiotracers, revealed that BjSultr1;1 and BjSultr1;2a/b/c are fully functional high-affinity sulfate transporters. The different behavior of the three BjSultr1;2 variants following Cd exposure or sulfate limitation suggests the existence of at least

  13. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  14. The Use of a Vehicle Acceleration Exposure Limit Model and a Finite Element Crash Test Dummy Model to Evaluate the Risk of Injuries During Orion Crew Module Landings

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Fasanella, Edwin L.; Tabiei, Ala; Brinkley, James W.; Shemwell, David M.

    2008-01-01

    A review of astronaut whole body impact tolerance is discussed for land or water landings of the next generation manned space capsule named Orion. LS-DYNA simulations of Orion capsule landings are performed to produce a low, moderate, and high probability of injury. The paper evaluates finite element (FE) seat and occupant simulations for assessing injury risk for the Orion crew and compares these simulations to whole body injury models commonly referred to as the Brinkley criteria. The FE seat and crash dummy models allow for varying the occupant restraint systems, cushion materials, side constraints, flailing of limbs, and detailed seat/occupant interactions to minimize landing injuries to the crew. The FE crash test dummies used in conjunction with the Brinkley criteria provides a useful set of tools for predicting potential crew injuries during vehicle landings.

  15. Induction of genomic instability in TK6 human lymphoblasts exposed to 137Cs gamma radiation: comparison to the induction by exposure to accelerated 56Fe particles

    NASA Technical Reports Server (NTRS)

    Evans, Helen H.; Horng, Min-Fen; Ricanati, Marlene; Diaz-Insua, M.; Jordan, Robert; Schwartz, Jeffrey L.

    2003-01-01

    The induction of genomic instability in TK6 human lymphoblasts by exposure to (137)Cs gamma radiation was investigated by measuring the frequency and characteristics of unstable clones isolated approximately 36 generations after exposure. Clones surviving irradiation and control clones were analyzed for 17 characteristics including chromosomal aberrations, growth defects, alterations in response to a second irradiation, and mutant frequencies at the thymidine kinase and Na(+)/K(+) ATPase loci. Putative unstable clones were defined as those that exhibited a significant alteration in one or more characteristics compared to the controls. The frequency and characteristics of the unstable clones were compared in clones exposed to (137)Cs gamma rays or (56)Fe particles. The majority of the unstable clones isolated after exposure to either gamma rays or (56)Fe particles exhibited chromosomal instability. Alterations in growth characteristics, radiation response and mutant frequencies occurred much less often than cytogenetic alterations in these unstable clones. The frequency and complexity of the unstable clones were greater after exposure to (56)Fe particles than to gamma rays. Unstable clones that survived 36 generations after exposure to gamma rays exhibited increases in the incidence of dicentric chromosomes but not of chromatid breaks, whereas unstable clones that survived 36 generations after exposure to (56)Fe particles exhibited increases in both chromatid and chromosome aberrations.

  16. Dietary supplementation with n-3 fatty acids from weaning limits brain biochemistry and behavioural changes elicited by prenatal exposure to maternal inflammation in the mouse model

    PubMed Central

    Li, Q; Leung, Y O; Zhou, I; Ho, L C; Kong, W; Basil, P; Wei, R; Lam, S; Zhang, X; Law, A C K; Chua, S E; Sham, P C; Wu, E X; McAlonan, G M

    2015-01-01

    Prenatal exposure to maternal immune activation (MIA) increases the risk of schizophrenia and autism in the offspring. The MIA rodent model provides a valuable tool to directly test the postnatal consequences of exposure to an early inflammatory insult; and examine novel preventative strategies. Here we tested the hypotheses that behavioural differences in the MIA mouse model are accompanied by in vivo and ex vivo alterations in brain biochemistry; and that these can be prevented by a post-weaning diet enriched with n-3 polyunsaturated fatty acid (PUFA). The viral analogue PolyI:C (POL) or saline (SAL) was administered to pregnant mice on gestation day 9. Half the resulting male offspring (POL=21; SAL=17) were weaned onto a conventional lab diet (n-6 PUFA); half were weaned onto n-3 PUFA-enriched diet. In vivo magnetic resonance spectroscopy measures were acquired prior to behavioural tests; glutamic acid decarboxylase 67 (GAD67) and tyrosine hydroxylase protein levels were measured ex vivo. The main findings were: (i) Adult MIA-exposed mice fed a standard diet had greater N-acetylaspartate/creatine (Cr) and lower myo-inositol/Cr levels in the cingulate cortex in vivo. (ii) The extent of these metabolite differences was correlated with impairment in prepulse inhibition. (iii) MIA-exposed mice on the control diet also had higher levels of anxiety and altered levels of GAD67 ex vivo. (iv) An n-3 PUFA diet prevented all the in vivo and ex vivo effects of MIA observed. Thus, n-3 PUFA dietary enrichment from early life may offer a relatively safe and non-toxic approach to limit the otherwise persistent behavioural and biochemical consequences of prenatal exposure to inflammation. This result may have translational importance. PMID:26393487

  17. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  18. An isotope dilution gas chromatography/mass spectrometry method for trace analysis of xylene and its metabolites in tissues following threshold limit value exposures

    SciTech Connect

    Pyon, K.H.; Kracko, D.A.; Strunk, M.R.

    1995-12-01

    The existence of a nose-brain barrier that functions to protect the central nervous system (CNS) from inhaled toxicants has been postulated. Just as a blood-brain barrier protects the CNS from systemic toxicants, the nose-brain barrier may have similar characteristic functions. One component of interest is nasal xenobiotic metabolism and its effect on the transport of pollutants into the CNS at environmentally plausible levels of exposure. Previous results have shown that inhaled xylene are dimethyl phenol (DMP) and methyl benzyl alcohol (MBA), and the nonvolatile metabolites are toluic acid (TA) and methyl hippuric acid (MHA). The nonvolatile metabolites of xylene, along with a small quantity of volatiles, representing either parent xylene or volatile metabolites, are transported via the olfactory epithelium to the glomeruli within the olfactory bulbs of the brain. Further work will be done to establish the linearity for each analyte at the actual highest detection limit of the GC/MS.

  19. Examining Geospatial Technology Tools to Compensate for Limited Exposures and Integrate Diverse Map and Data Resources in Geological Studies of the Southern Blue Ridge

    NASA Astrophysics Data System (ADS)

    Collins, N.; Ryan, J. G.

    2010-12-01

    Constraining the tectonic and metamorphic history of rock units in the southern Blue Ridge of western North Carolina is complicated by limited exposures and extensive vegetative cover, as well as burial by human development. Integrating varied data sources for field relations using cyberinformation tools may provide a means around such difficulties. We are examining several different Geographical Information Systems (GIS) tools as a means for effectively integrating available map data, both toward meeting research objectives as well as to facilitate classroom and field instruction. Commercial GIS platforms like ArcGIS and associated software can effectively integrate diverse geoscience information resources within a single platform. The Internet provides free access to databases ranging from geochemical datasets to topographical and structural data. Public domain geochemical databases like EarthChem provide spatially controlled elemental data on rock samples collected by many researchers over extended periods. Once incorporated within the ArcGIS template, this information can then be exported into free geospatial visualization applications such as Goggle Earth, as well as 3D manipulation programs like Fledermaus. Geospatially controlled USGS and NCGS geologic maps and geophysical datasets provide a useful base for examining mafic and ultramafic rock exposures in the Blue Ridge. One can resolve the exposures of specific rock types from these map resources within ArcGIS, as well as fault locations, and magnetics and gravity data. High-resolution DEMs permit data-intensive focusing on areas of interest, and Fledermaus manipulations permit 3D visualization. The output maps and visualizations are of publishable quality, and permit the manipulation of data across a region to infer contact trends and/or chemical or mineralogical, as well as to identify discontinuities that may be geologically relevant. “All-in-one” GIS applications like GeoMapApp have many of these

  20. Limitations Placed on the Time Coverage, Isoplanatic Patch Size and Exposure Time for Solar Observations Using Image Selection Procedures in the Presence of Telescope Aberrations

    NASA Astrophysics Data System (ADS)

    Beckers, J. M.; Rimmele, T. R.

    1996-12-01

    Image selection, adaptive optics and post-facto image restoration methods are all techniques being used for diffraction limited imaging with ground-based solar and stellar telescopes. Often these techniques are used in a hybrid form like e.g. the application of adaptive optics and/or post-facto image restoration in combination with already good images obtained by image selection in periods of good seeing. Fried (JOSA 56, 1372, 1966), Hecquet and Coupinot (J. Optics/Paris 16, 21, 1985) and Beckers ("Solar and Stellar Granulation", Kluwer, Rutten & Severino Eds, 55, 1988) already discussed the usefulness of image selection, or the "Lucky Observer" mode, for high resolution imaging. All assumed perfect telescope optics. In case of moderate telescope aberrations image selection can still lead to diffraction limited imaging but only when the atmospheric wavefront aberration happens to compensate that of the telescope. In this "Very Lucky Observer" mode the probability of obtaining a good image is reduced over the un-aberrated case, as are the size of the isoplanatic patch and the exposure time. We describe an analysis of these effects for varying telescope aberrations. These result in a strong case for the removal of telescope aberrations either by initial implementation or by the use of slow active optics.

  1. Bisphenol A accelerates toxic amyloid formation of human islet amyloid polypeptide: a possible link between bisphenol A exposure and type 2 diabetes.

    PubMed

    Gong, Hao; Zhang, Xin; Cheng, Biao; Sun, Yue; Li, Chuanzhou; Li, Ting; Zheng, Ling; Huang, Kun

    2013-01-01

    Bisphenol A (BPA) is a chemical compound widely used in manufacturing plastic products. Recent epidemiological studies suggest BPA exposure is positively associated with the incidence of type 2 diabetes mellitus (T2DM), however the mechanisms underlying this link remain unclear. Human islet amyloid polypeptide (hIAPP) is a hormone synthesized and secreted by the pancreatic β-cells. Misfolding of hIAPP into toxic oligomers and mature fibrils can disrupt cell membrane and lead to β-cell death, which is regarded as one of the causative factors of T2DM. To test whether there are any connections between BPA exposure and hIAPP misfolding, we investigated the effects of BPA on hIAPP aggregation using thioflavin-T based fluorescence, transmission electronic microscopy, circular dichroism, dynamic light scattering, size-exclusion chromatography, fluorescence-dye leakage assay in an artificial micelle system and the generation of reactive oxygen species in INS-1 cells. We demonstrated that BPA not only dose-dependently promotes the aggregation of hIAPP and enhances the membrane disruption effects of hIAPP, but also promotes the extent of hIAPP aggregation related oxidative stress. Taken together, our results suggest that BPA exposure increased T2DM risk may involve the exacerbated toxic aggregation of hIAPP.

  2. Long-term exposure to gold nanoparticles accelerates larval metamorphosis without affecting mass in wood frogs (Lithobates sylvaticus) at environmentally relevant concentrations.

    PubMed

    Fong, Peter P; Thompson, Lucas B; Carfagno, Gerardo L F; Sitton, Andrea J

    2016-09-01

    Nanoparticles are environmental contaminants of emerging concern. Exposure to engineered nanoparticles has been shown to have detrimental effects on aquatic organisms. The authors synthesized gold nanoparticles (18.1 ± 3.5 nm) and tested their effects on time to and weight at metamorphosis in wood frog (Lithobates sylvaticus) tadpoles, a species known to be sensitive to environmental stressors. Continuous exposure to all concentrations of gold nanoparticles (0.05 pM, 0.5 pM, and 5 pM in particles) for up to 55 d significantly reduced time to metamorphosis by as much as an average of 3 d (p < 0.05). However, exposure to gold nanoparticles had no effect on tadpole mass at metamorphosis. The approximately 18-nm gold nanoparticles used were metastable in dechlorinated tap water, resulting in a change in surface charge and aggregation over time, leading to negatively charged aggregates that were on the order of 60 nm to 110 nm. Nanoparticle aggregation could exacerbate the effect on time to metamorphosis. To the authors' knowledge, the present study is the first report on the effect of engineered nanoparticles of any kind on life-history variables in an amphibian, a taxonomic group that has been declining globally for at least 25 yr. Environ Toxicol Chem 2016;35:2304-2310. © 2016 SETAC. PMID:26873819

  3. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  4. Ion Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Barnard, John J.; Horioka, Kazuhiko

    The description of beams in RF and induction accelerators share many common features. Likewise, there is considerable commonality between electron induction accelerators (see Chap. 7) and ion induction accelerators. However, in contrast to electron induction accelerators, there are fewer ion induction accelerators that have been operated as application-driven user facilities. Ion induction accelerators are envisioned for applications (see Chap. 10) such as Heavy Ion Fusion (HIF), High Energy Density Physics (HEDP), and spallation neutron sources. Most ion induction accelerators constructed to date have been limited scale facilities built for feasibility studies for HIF and HEDP where a large numbers of ions are required on target in short pulses. Because ions are typically non-relativistic or weakly relativistic in much of the machine, space-charge effects can be of crucial importance. This contrasts the situation with electron machines, which are usually strongly relativistic leading to weaker transverse space-charge effects and simplified longitudinal dynamics. Similarly, the bunch structure of ion induction accelerators relative to RF machines results in significant differences in the longitudinal physics.

  5. Survival of residual neutrophils and accelerated myelopoiesis limit the efficacy of antibody-mediated depletion of Ly-6G+ cells in tumor-bearing mice.

    PubMed

    Moses, Katrin; Klein, Johanna C; Männ, Linda; Klingberg, Anika; Gunzer, Matthias; Brandau, Sven

    2016-06-01

    Expansion of Ly-6G(+) myeloid cells has been reported in most murine cancer models. However, divergent findings exist regarding the role and effect of these cells on host immunity and tumor progression. Antibody-mediated depletion of Ly-6G(+) cells is a common technique to assess the in vivo relevance of these cells. Interpretation of results crucially depends on the efficacy and course of depletion. We established murine head and neck cancer models and analyzed the efficacy of antibody-mediated depletion by flow cytometry, conventional histology, and intravital imaging with a novel Ly-6G-transgenic mouse model. The first phase of depletion was characterized by effective elimination of Ly-6G(+) cells from the peripheral blood. Nevertheless, viable, resistant cells were found to reside in the tumor tissue and spleen. This peripheral depletion phase was associated with high systemic levels of granulocyte colony-stimulating factor and KC and enhanced splenic production of Ly-6G(+) cells. Even under sustained treatment with either αGr-1 or αLy-6G antibodies, peripheral blood depletion ended after approximately 1 wk and was followed by reappearance of immature Ly-6G(+) cells with an immunoregulatory phenotype. Reappearance of these depletion-resistant immature cells was enhanced in tumor-bearing, compared with naïve, control mice. Collectively, our data suggest that depletion of Ly-6G(+) myeloid cells in tumor-bearing mice is counteracted by the persistence of intratumoral cells, enhanced extramedullary granulopoiesis, and accelerated reappearance of immature cells. Hence, extensive monitoring of in vivo kinetics and tissue distribution of Ly-6G(+) cells is required in depletion studies.

  6. Limitations of the American Society of Therapeutic Radiology and Oncology Consensus Panel Guidelines on the Use of Accelerated Partial Breast Irradiation

    SciTech Connect

    Vicini, Frank; Arthur, Douglas; Wazer, David; Chen, Peter; Mitchell, Christina; Wallace, Michelle; Kestin, Larry; Ye, Hong

    2011-03-15

    Purpose: We applied the American Society of Therapeutic Radiology and Oncology (ASTRO) Consensus Panel (CP) guidelines for the use of accelerated partial breast irradiation (APBI) to patients treated with this technique to determine the ability of the guidelines to differentiate patients with significantly different clinical outcomes. Methods and Materials: A total of 199 patients treated with APBI and 199 with whole-breast irradiation (WBI) (matched for tumor size, nodal status, age, margins, receptor status, and tamoxifen use) were stratified into the three ASTRO CP levels of suitability ('suitable,' 'cautionary,' and 'unsuitable') to assess rates of ipsilateral breast tumor recurrence (IBTR), regional nodal failure, distant metastases, disease-free survival, cause-specific survival, and overall survival based on CP category. Median follow-up was 11.1 years. Results: Analysis of the APBI and WBI patient groups, either separately or together (n = 398), did not demonstrate statistically significant differences in 10-year actuarial rates of IBTR when stratified by the three ASTRO groups. Regional nodal failure and distant metastasis were generally progressively worse when comparing the suitable to cautionary to unsuitable CP groups. However, when analyzing multiple clinical, pathologic, or treatment-related variables, only patient age was associated with IBTR using WBI (p = 0.002). Conclusions: The ASTRO CP suitable group predicted for a low risk of IBTR; however, the cautionary and unsuitable groups had an equally low risk of IBTR, supporting the need for continued refinement of patient selection criteria as additional outcome data become available and for the continued accrual of patients to Phase III trials.

  7. Erratic boulder trains and cosmogenic exposure dating of former glacial limits: A case-study from Tierra del Fuego, southernmost South America

    NASA Astrophysics Data System (ADS)

    Darvill, Christopher; Stokes, Chris; Bentley, Mike

    2014-05-01

    Erratic Boulder Trains (EBTs) are a spectacular yet poorly-understood glacial geomorphological feature. These linear clusters of glacial erratic boulders help to illustrate the flow-lines of former glaciers by pin-pointing the parent rock from which they have originated and are often used as targets for cosmogenic nuclide exposure dating. Consequently, there is a need to understand their geomorphological significance to improve ice-sheet reconstructions and provide important contextual information for dating studies. The EBTs in Tierra del Fuego are some of the finest examples of this feature in the world, and this paper presents the first comprehensive mapping and physical assessment of four boulder trains. Unlike most other examples, they were deposited laterally rather than medially and are tightly clustered, presenting linear features only a few kilometres long that contain hundreds to thousands of huge boulders (often >8 m in diameter). The size and angularity of the boulders strongly supports the hypothesis that they were deposited as a supraglacial rock avalanche. The boulders have been the subject of previous cosmogenic dating, which have yielded anomalously young ages from deposits thought to be hundreds of thousands of years old. Analysis of weathering proxies shows little difference between boulder trains thought to be of radically different ages, with important implications for the timing of glaciations and potentially contradicting previous age constraints on glacial limits in the region.

  8. Wakefield accelerators

    SciTech Connect

    Simpson, J.D.

    1990-01-01

    The search for new methods to accelerate particle beams to high energy using high gradients has resulted in a number of candidate schemes. One of these, wakefield acceleration, has been the subject of considerable R D in recent years. This effort has resulted in successful proof of principle experiments and in increased understanding of many of the practical aspects of the technique. Some wakefield basics plus the status of existing and proposed experimental work is discussed, along with speculations on the future of wake field acceleration. 10 refs., 6 figs.

  9. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  10. Effects of limited exposure of rabbit chondrocyte cultures to parathyroid hormone and dibutyryl adenosine 3',5'-monophosphate on cartilage-characteristic proteoglycan synthesis

    SciTech Connect

    Kato, Y.; Koike, T.; Iwamoto, M.; Kinoshita, M.; Sato, K.; Hiraki, Y.; Suzuki, F.

    1988-05-01

    Treatment of rabbit chondrocyte cultures with PTH or (Bu)2cAMP for 30 h increased by 2- to 3-fold the incorporation of (35S)sulfate and 3H radioactivity with glucosamine as the precursor into large chondroitin sulfate proteoglycans characteristically found in cartilage matrix. However, PTH and (Bu)2cAMP did not increase either (35S)sulfate incorporation into small proteoglycans or the incorporation of 3H radioactivity into hyaluronic acid and other glycosaminoglycans. PTH and (Bu)2cAMP also increased the incorporation of (3H) serine into both proteoglycans and total protein. In all cultures described above, the stimulation of (3H)serine incorporation into proteoglycans exceeded that of (3H)serine incorporation into total protein. These data indicate that PTH and (Bu)2cAMP selectively stimulate cartilage proteoglycan synthesis while they increase total protein synthesis. Since cAMP seems to play a mediatory role in the action of PTH, we elected to examine the effects of a limited exposure of chondrocytes to PTH or (Bu)2cAMP on the synthesis of proteoglycans. Treatment with PTH or (Bu)2cAMP for only the initial 2-7 h did not increase the rates of incorporation of (35S)sulfate, the 3H radioactivity with glucosamine, and (3H)serine into proteoglycans, as measured at 30 h, despite the fact that this treatment brought about a rapid and transient rise in the cAMP level. Furthermore, the application of prostaglandin I2 at concentrations that increased cAMP levels in a similar fashion as did PTH did not affect (35S) sulfate incorporation into proteoglycans.

  11. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  12. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  13. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  14. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  15. Muon acceleration in cosmic-ray sources

    SciTech Connect

    Klein, Spencer R.; Mikkelsen, Rune E.; Becker Tjus, Julia

    2013-12-20

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup –1}. At gradients above 1.6 keV cm{sup –1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  16. Vibration safety limits for magnetic resonance elastography.

    PubMed

    Ehman, E C; Rossman, P J; Kruse, S A; Sahakian, A V; Glaser, K J

    2008-02-21

    Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within a tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit, and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans.

  17. AN OVERVIEW OF THE ADVANTAGES AND LIMITATIONS OF PROBABILISTIC EXPOSURE AND RISK ASSESSMENT METHODS USED IN EVALUATING HEALTH IMPACTS OF ENVIRONMENTAL CHEMICALS

    EPA Science Inventory

    Human exposures to environmental pollutants widely vary depending on the emission patterns that result in microenvironmental pollutant concentrations, as well as behavioral factors that determine the extent of an individual's contact with these pollutants. Each component of the s...

  18. Accelerated molecular dynamics methods

    SciTech Connect

    Perez, Danny

    2011-01-04

    The molecular dynamics method, although extremely powerful for materials simulations, is limited to times scales of roughly one microsecond or less. On longer time scales, dynamical evolution typically consists of infrequent events, which are usually activated processes. This course is focused on understanding infrequent-event dynamics, on methods for characterizing infrequent-event mechanisms and rate constants, and on methods for simulating long time scales in infrequent-event systems, emphasizing the recently developed accelerated molecular dynamics methods (hyperdynamics, parallel replica dynamics, and temperature accelerated dynamics). Some familiarity with basic statistical mechanics and molecular dynamics methods will be assumed.

  19. Biomonitoring - An Exposure Science Tool for Exposure and Risk Assessment

    EPA Science Inventory

    Biomonitoring studies of environmental stressors are useful for confirming exposures, estimating dose levels, and evaluating human health risks. However, the complexities of exposure-biomarker and biomarker-response relationships have limited the use of biomarkers in exposure sc...

  20. Prenatal exposure to escitalopram and/or stress in rats produces limited effects on endocrine, behavioral, or gene expression measures in adult male rats

    PubMed Central

    Bourke, Chase H.; Stowe, Zachary N.; Neigh, Gretchen N.; Olson, Darin E.; Owens, Michael J.

    2013-01-01

    Stress and/or antidepressants during pregnancy have been implicated in a wide range of long-term effects in the offspring. We investigated the long-term effects of prenatal stress and/or clinically relevant antidepressant exposure on male adult offspring in a model of the pharmacotherapy of maternal depression. Female Sprague-Dawley rats were implanted with osmotic minipumps that delivered clinically relevant exposure to the antidepressant escitalopram throughout gestation. Subsequently, pregnant females were exposed on gestational days 10–20 to a chronic unpredictable mild stress paradigm. The male offspring were analyzed in adulthood. Baseline physiological measurements were largely unaltered by prenatal manipulations. Behavioral characterization of the male offspring, with or without pre-exposure to an acute stressor, did not reveal any group differences. Prenatal stress exposure resulted in a faster return towards baseline following the peak response to an acute restraint stressor, but not an airpuff startle stressor, in adulthood. Microarray analysis of the hippocampus and hypothalamus comparing all treatment groups revealed no significantly-altered transcripts. Real time PCR of the hippocampus confirmed that several transcripts in the CRFergic, serotonergic, and neural plasticity pathways were unaffected by prenatal exposures. This stress model of maternal depression and its treatment indicate that escitalopram use and/or stress during pregnancy produced no alterations in our measures of male adult behavior or the transcriptome, however prenatal stress exposure resulted in some evidence for increased glucocorticoid negative feedback following an acute restraint stress. Study design should be carefully considered before implications for human health are ascribed to prenatal exposure to stress or antidepressant medication. PMID:23906943

  1. Prenatal exposure to escitalopram and/or stress in rats produces limited effects on endocrine, behavioral, or gene expression measures in adult male rats.

    PubMed

    Bourke, Chase H; Stowe, Zachary N; Neigh, Gretchen N; Olson, Darin E; Owens, Michael J

    2013-01-01

    Stress and/or antidepressants during pregnancy have been implicated in a wide range of long-term effects in the offspring. We investigated the long-term effects of prenatal stress and/or clinically relevant antidepressant exposure on male adult offspring in a model of the pharmacotherapy of maternal depression. Female Sprague-Dawley rats were implanted with osmotic minipumps that delivered clinically relevant exposure to the antidepressant escitalopram throughout gestation. Subsequently, pregnant females were exposed on gestational days 10-20 to a chronic unpredictable mild stress paradigm. The male offspring were analyzed in adulthood. Baseline physiological measurements were largely unaltered by prenatal manipulations. Behavioral characterization of the male offspring, with or without pre-exposure to an acute stressor, did not reveal any group differences. Prenatal stress exposure resulted in a faster return towards baseline following the peak response to an acute restraint stressor, but not an airpuff startle stressor, in adulthood. Microarray analysis of the hippocampus and hypothalamus comparing all treatment groups revealed no significantly-altered transcripts. Real time PCR of the hippocampus confirmed that several transcripts in the CRFergic, serotonergic, and neural plasticity pathways were unaffected by prenatal exposures. This stress model of maternal depression and its treatment indicate that escitalopram use and/or stress during pregnancy produced no alterations in our measures of male adult behavior or the transcriptome, however prenatal stress exposure resulted in some evidence for increased glucocorticoid negative feedback following an acute restraint stress. Study design should be carefully considered before implications for human health are ascribed to prenatal exposure to stress or antidepressant medication. PMID:23906943

  2. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  3. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  4. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  5. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  6. Radionuclide production for positron emission tomography: Choosing an appropriate accelerator

    NASA Astrophysics Data System (ADS)

    Votaw, John R.; Nickles, R. Jerome

    1989-04-01

    The appropriate accelerator for producing 18F, 15O, 13N and 11C depends upon the existing conditions at the intended installation site. The existence of limited resources (e.g. financial, space, etc.) require that the relationship between the accelerator beam energy ( E) and beam current ( I), the yield ( Y) and the external radiation burden be known for each of the reactions leading to the above end products. The interdependence of these parameters is calculated using published cross section data. Isoexposure curves I = D( E) trace the locus of points ( I, E) that cause the radiation exposure, outside a concrete shield of given thickness, to equal a set value. Similarly, isoyield curves I = Y( E) trace the production of the desired radionuclide. The appropriate accelerator must have operating parameters within the region of ( I, E) space bounded by the critical yield and exposure isocontours. The final choice among the candidates within this region is then governed by the particular constraints of an institution (e.g. technical support, manpower requirements, cost, etc.). Factors leading to the purchase of an accelerator at the University of Wisconsin-Madison are presented.

  7. IWGT report on quantitative approaches to genotoxicity risk assessment II. Use of point-of-departure (PoD) metrics in defining acceptable exposure limits and assessing human risk.

    PubMed

    MacGregor, James T; Frötschl, Roland; White, Paul A; Crump, Kenny S; Eastmond, David A; Fukushima, Shoji; Guérard, Melanie; Hayashi, Makoto; Soeteman-Hernández, Lya G; Johnson, George E; Kasamatsu, Toshio; Levy, Dan D; Morita, Takeshi; Müller, Lutz; Schoeny, Rita; Schuler, Maik J; Thybaud, Véronique

    2015-05-01

    This is the second of two reports from the International Workshops on Genotoxicity Testing (IWGT) Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (the QWG). The first report summarized the discussions and recommendations of the QWG related to the need for quantitative dose-response analysis of genetic toxicology data, the existence and appropriate evaluation of threshold responses, and methods to analyze exposure-response relationships and derive points of departure (PoDs) from which acceptable exposure levels could be determined. This report summarizes the QWG discussions and recommendations regarding appropriate approaches to evaluate exposure-related risks of genotoxic damage, including extrapolation below identified PoDs and across test systems and species. Recommendations include the selection of appropriate genetic endpoints and target tissues, uncertainty factors and extrapolation methods to be considered, the importance and use of information on mode of action, toxicokinetics, metabolism, and exposure biomarkers when using quantitative exposure-response data to determine acceptable exposure levels in human populations or to assess the risk associated with known or anticipated exposures. The empirical relationship between genetic damage (mutation and chromosomal aberration) and cancer in animal models was also examined. It was concluded that there is a general correlation between cancer induction and mutagenic and/or clastogenic damage for agents thought to act via a genotoxic mechanism, but that the correlation is limited due to an inadequate number of cases in which mutation and cancer can be compared at a sufficient number of doses in the same target tissues of the same species and strain exposed under directly comparable routes and experimental protocols.

  8. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  9. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  10. Accelerated life testing of spacecraft subsystems

    NASA Technical Reports Server (NTRS)

    Wiksten, D.; Swanson, J.

    1972-01-01

    The rationale and requirements for conducting accelerated life tests on electronic subsystems of spacecraft are presented. A method for applying data on the reliability and temperature sensitivity of the parts contained in a sybsystem to the selection of accelerated life test parameters is described. Additional considerations affecting the formulation of test requirements are identified, and practical limitations of accelerated aging are described.

  11. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  12. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  13. Maximal acceleration and radiative processes

    NASA Astrophysics Data System (ADS)

    Papini, Giorgio

    2015-08-01

    We derive the radiation characteristics of an accelerated, charged particle in a model due to Caianiello in which the proper acceleration of a particle of mass m has the upper limit 𝒜m = 2mc3/ℏ. We find two power laws, one applicable to lower accelerations, the other more suitable for accelerations closer to 𝒜m and to the related physical singularity in the Ricci scalar. Geometrical constraints and power spectra are also discussed. By comparing the power laws due to the maximal acceleration (MA) with that for particles in gravitational fields, we find that the model of Caianiello allows, in principle, the use of charged particles as tools to distinguish inertial from gravitational fields locally.

  14. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1974-01-01

    Detailed measurements of the axial velocity profile and electromagnetic structure of a high power, quasi-steady MPD discharge are used to formulate a gasdynamic model of the acceleration process. Conceptually dividing the accelerated plasma into an inner flow and an outer flow, it is found that more than two-thirds of the total power in the plasma is deposited in the inner flow, accelerating it to an exhaust velocity of 12.5 km/sec. The outer flow, which is accelerated to a velocity of only 6.2 km/sec, appears to provide a current conduction path between the inner flow and the anode. Related cathode studies have shown that the critical current for the onset of terminal voltage fluctuations, which was recently shown to be a function of the cathode area, appears to reach an asymptote for cathodes of very large surface area. Detailed floating potential measurements show that the fluctuations are confined to the vicinity of the cathode and hence reflect a cathode emission process rather than a fundamental limit on MPD performance.

  15. The limits of applicability of the sound exposure level (SEL) metric to temporal threshold shifts (TTS) in beluga whales, Delphinapterus leucas.

    PubMed

    Popov, Vladimir V; Supin, Alexander Ya; Rozhnov, Viatcheslav V; Nechaev, Dmitry I; Sysueva, Evgenia V

    2014-05-15

    The influence of fatiguing sound level and duration on post-exposure temporary threshold shift (TTS) was investigated in two beluga whales (Delphinapterus leucas). The fatiguing sound was half-octave noise with a center frequency of 22.5 kHz. TTS was measured at a test frequency of 32 kHz. Thresholds were measured by recording rhythmic evoked potentials (the envelope following response) to a test series of short (eight cycles) tone pips with a pip rate of 1000 s(-1). TTS increased approximately proportionally to the dB measure of both sound pressure (sound pressure level, SPL) and duration of the fatiguing noise, as a product of these two variables. In particular, when the noise parameters varied in a manner that maintained the product of squared sound pressure and time (sound exposure level, SEL, which is equivalent to the overall noise energy) at a constant level, TTS was not constant. Keeping SEL constant, the highest TTS appeared at an intermediate ratio of SPL to sound duration and decreased at both higher and lower ratios. Multiplication (SPL multiplied by log duration) better described the experimental data than an equal-energy (equal SEL) model. The use of SEL as a sole universal metric may result in an implausible assessment of the impact of a fatiguing sound on hearing thresholds in odontocetes, including under-evaluation of potential risks.

  16. High-dose vitamin D3 reduces deficiency caused by low UVB exposure and limits HIV-1 replication in urban Southern Africans

    PubMed Central

    Coussens, Anna K.; Naude, Celeste E.; Goliath, Rene; Chaplin, George; Wilkinson, Robert J.; Jablonski, Nina G.

    2015-01-01

    Cape Town, South Africa, has a seasonal pattern of UVB radiation and a predominantly dark-skinned urban population who suffer high HIV-1 prevalence. This coexistent environmental and phenotypic scenario puts residents at risk for vitamin D deficiency, which may potentiate HIV-1 disease progression. We conducted a longitudinal study in two ethnically distinct groups of healthy young adults in Cape Town, supplemented with vitamin D3 in winter, to determine whether vitamin D status modifies the response to HIV-1 infection and to identify the major determinants of vitamin D status (UVB exposure, diet, pigmentation, and genetics). Vitamin D deficiency was observed in the majority of subjects in winter and in a proportion of individuals in summer, was highly correlated with UVB exposure, and was associated with greater HIV-1 replication in peripheral blood cells. High-dosage oral vitamin D3 supplementation attenuated HIV-1 replication, increased circulating leukocytes, and reversed winter-associated anemia. Vitamin D3 therefore presents as a low-cost supplementation to improve HIV-associated immunity. PMID:26080414

  17. High-dose vitamin D3 reduces deficiency caused by low UVB exposure and limits HIV-1 replication in urban Southern Africans

    NASA Astrophysics Data System (ADS)

    Coussens, Anna K.; Naude, Celeste E.; Goliath, Rene; Chaplin, George; Wilkinson, Robert J.; Jablonski, Nina G.

    2015-06-01

    Cape Town, South Africa, has a seasonal pattern of UVB radiation and a predominantly dark-skinned urban population who suffer high HIV-1 prevalence. This coexistent environmental and phenotypic scenario puts residents at risk for vitamin D deficiency, which may potentiate HIV-1 disease progression. We conducted a longitudinal study in two ethnically distinct groups of healthy young adults in Cape Town, supplemented with vitamin D3 in winter, to determine whether vitamin D status modifies the response to HIV-1 infection and to identify the major determinants of vitamin D status (UVB exposure, diet, pigmentation, and genetics). Vitamin D deficiency was observed in the majority of subjects in winter and in a proportion of individuals in summer, was highly correlated with UVB exposure, and was associated with greater HIV-1 replication in peripheral blood cells. High-dosage oral vitamin D3 supplementation attenuated HIV-1 replication, increased circulating leukocytes, and reversed winter-associated anemia. Vitamin D3 therefore presents as a low-cost supplementation to improve HIV-associated immunity.

  18. The limits of applicability of the sound exposure level (SEL) metric to temporal threshold shifts (TTS) in beluga whales, Delphinapterus leucas.

    PubMed

    Popov, Vladimir V; Supin, Alexander Ya; Rozhnov, Viatcheslav V; Nechaev, Dmitry I; Sysueva, Evgenia V

    2014-05-15

    The influence of fatiguing sound level and duration on post-exposure temporary threshold shift (TTS) was investigated in two beluga whales (Delphinapterus leucas). The fatiguing sound was half-octave noise with a center frequency of 22.5 kHz. TTS was measured at a test frequency of 32 kHz. Thresholds were measured by recording rhythmic evoked potentials (the envelope following response) to a test series of short (eight cycles) tone pips with a pip rate of 1000 s(-1). TTS increased approximately proportionally to the dB measure of both sound pressure (sound pressure level, SPL) and duration of the fatiguing noise, as a product of these two variables. In particular, when the noise parameters varied in a manner that maintained the product of squared sound pressure and time (sound exposure level, SEL, which is equivalent to the overall noise energy) at a constant level, TTS was not constant. Keeping SEL constant, the highest TTS appeared at an intermediate ratio of SPL to sound duration and decreased at both higher and lower ratios. Multiplication (SPL multiplied by log duration) better described the experimental data than an equal-energy (equal SEL) model. The use of SEL as a sole universal metric may result in an implausible assessment of the impact of a fatiguing sound on hearing thresholds in odontocetes, including under-evaluation of potential risks. PMID:24829327

  19. Electromagnetic modeling in accelerator designs

    SciTech Connect

    Cooper, R.K.; Chan, K.C.D.

    1990-01-01

    Through the years, electromagnetic modeling using computers has proved to be a cost-effective tool for accelerator designs. Traditionally, electromagnetic modeling of accelerators has been limited to resonator and magnet designs in two dimensions. In recent years with the availability of powerful computers, electromagnetic modeling of accelerators has advanced significantly. Through the above conferences, it is apparent that breakthroughs have been made during the last decade in two important areas: three-dimensional modeling and time-domain simulation. Success in both these areas have been made possible by the increasing size and speed of computers. In this paper, the advances in these two areas will be described.

  20. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  1. Force Limited Vibration Testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry; Chang, Kurng Y.

    2005-01-01

    This slide presentation reviews the concept and applications of Force Limited Vibration Testing. The goal of vibration testing of aerospace hardware is to identify problems that would result in flight failures. The commonly used aerospace vibration tests uses artificially high shaker forces and responses at the resonance frequencies of the test item. It has become common to limit the acceleration responses in the test to those predicted for the flight. This requires an analysis of the acceleration response, and requires placing accelerometers on the test item. With the advent of piezoelectric gages it has become possible to improve vibration testing. The basic equations have are reviewed. Force limits are analogous and complementary to the acceleration specifications used in conventional vibration testing. Just as the acceleration specification is the frequency spectrum envelope of the in-flight acceleration at the interface between the test item and flight mounting structure, the force limit is the envelope of the in-flight force at the interface . In force limited vibration tests, both the acceleration and force specifications are needed, and the force specification is generally based on and proportional to the acceleration specification. Therefore, force limiting does not compensate for errors in the development of the acceleration specification, e.g., too much conservatism or the lack thereof. These errors will carry over into the force specification. Since in-flight vibratory force data are scarce, force limits are often derived from coupled system analyses and impedance information obtained from measurements or finite element models (FEM). Fortunately, data on the interface forces between systems and components are now available from system acoustic and vibration tests of development test models and from a few flight experiments. Semi-empirical methods of predicting force limits are currently being developed on the basis of the limited flight and system test

  2. Dose limits for astronauts

    NASA Technical Reports Server (NTRS)

    Sinclair, W. K.

    2000-01-01

    Radiation exposures to individuals in space can greatly exceed natural radiation exposure on Earth and possibly normal occupational radiation exposures as well. Consequently, procedures limiting exposures would be necessary. Limitations were proposed by the Radiobiological Advisory Panel of the National Academy of Sciences/National Research Council in 1970. This panel recommended short-term limits to avoid deterministic effects and a single career limit (of 4 Sv) based on a doubling of the cancer risk in men aged 35 to 55. Later, when risk estimates for cancer had increased and were recognized to be age and sex dependent, the NCRP, in Report No. 98 in 1989, recommended a range of career limits based on age and sex from 1 to 4 Sv. NCRP is again in the process of revising recommendations for astronaut exposure, partly because risk estimates have increased further and partly to recognize trends in limiting radiation exposure occupationally on the ground. The result of these considerations is likely to be similar short-term limits for deterministic effects but modified career limits.

  3. Dose limits for astronauts.

    PubMed

    Sinclair, W K

    2000-11-01

    Radiation exposures to individuals in space can greatly exceed natural radiation exposure on Earth and possibly normal occupational radiation exposures as well. Consequently, procedures limiting exposures would be necessary. Limitations were proposed by the Radiobiological Advisory Panel of the National Academy of Sciences/National Research Council in 1970. This panel recommended short-term limits to avoid deterministic effects and a single career limit (of 4 Sv) based on a doubling of the cancer risk in men aged 35 to 55. Later, when risk estimates for cancer had increased and were recognized to be age and sex dependent, the NCRP, in Report No. 98 in 1989, recommended a range of career limits based on age and sex from 1 to 4 Sv. NCRP is again in the process of revising recommendations for astronaut exposure, partly because risk estimates have increased further and partly to recognize trends in limiting radiation exposure occupationally on the ground. The result of these considerations is likely to be similar short-term limits for deterministic effects but modified career limits. PMID:11045534

  4. Radiation Safety System for SPIDER Neutral Beam Accelerator

    NASA Astrophysics Data System (ADS)

    Sandri, S.; Coniglio, A.; D'Arienzo, M.; Poggi, C.

    2011-12-01

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports have been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.

  5. Radiation Safety System for SPIDER Neutral Beam Accelerator

    SciTech Connect

    Sandri, S.; Poggi, C.; Coniglio, A.; D'Arienzo, M.

    2011-12-13

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports have been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.

  6. Laser Acceleration in Vacuum and Gases with Capillary Waveguide

    SciTech Connect

    Xie, Ming

    1999-02-01

    A unified framework is developed to overcome all three major limitations on acceleration and distance and hence on the feasibility of two classes of laser acceleration. The three limitations are due to laser diffraction, acceleration phase slippage, and structure damage by high power laser if solid-state optical waveguide is used. The two classes of laser acceleration are direct-field acceleration and ponderomotive-driven acceleration. Thus this letter and its companion [1] provide solutions that are crucial to all mainstream approaches for laser acceleration, either in vacuum, gases or plasmas.

  7. Accelerated Test Method for Corrosion Protective Coatings Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Calle, Luz

    2015-01-01

    This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.

  8. Suppressing Parasitic Effects in a Long Dielectric Wakefield Accelerator

    SciTech Connect

    Shchegolkov, Dmitry; Simakov, Evgenya Ivanovna; Jing, Chunguang; Li, Chen; Zholents, Alexander A.; Power, John G.

    2014-08-27

    Dielectric wakefield acceleration is a promising concept for increasing the accelerating gradient above the limits of conventional accelerators. Although superior gradients are reported in short dielectric wakefield accelerator tubes, problems arise when it comes to efficiency and multi-meter long interaction lengths. Here we discuss possible issues and provide some solutions backed by simulations.

  9. Typical whole body vibration exposure magnitudes encountered in the open pit mining industry.

    PubMed

    Howard, Bryan; Sesek, Richard; Bloswick, Don

    2009-01-01

    According to recent research, a causal link has been established between occupational exposure to whole body vibration and an increased occurrence of low back pain. To aid in the further development of an in-house health and safety program for a large open pit mining facility interested in reducing back pain among its operators, whole body vibration magnitudes were characterized for a range of jobs. Specifically, thirty-five individual jobs from five different areas across the facility were evaluated for tri-axial acceleration levels during normal operating conditions. Tri-axial acceleration magnitudes were categorized into thirteen job groups. Job groups were ranked according to exposure and compared to the ISO 2631-1 standard for health risk assessment. Three of the thirteen job groups produced tri-axial acceleration magnitudes below the ISO 2631-1 low/moderate health caution limit for a twelve hour exposure. Six of the thirteen job groups produced exposures within the moderate health risk range. Four job groups were found to subject operators to WBV acceleration magnitudes above the moderate/high health caution limit. PMID:20037244

  10. Repeated exposure to 5D9, an inhibitor of 3D polymerase, effectively limits the replication of foot-and-mouth disease virus in host cells

    PubMed Central

    Rai, Devendra K.; Schafer, Elizabeth; Singh, Kamalendra; McIntosh, Mark A.; Sarafianos, Stefan G.; Rieder, Elizabeth

    2014-01-01

    Foot-and-mouth disease (FMD) is a highly contagious disease of livestock caused by a highly variable RNA virus (FMDV) that has seven serotypes and more than sixty subtypes. Both prophylactic and post-infection means of controlling the disease outbreak, including universally applicable vaccines and emergency response measures such as therapeutic treatments, are on high demand. In this study, we analyzed the long-term exposure outcome to a previously identified inhibitor of 3D polymerase (FMDV 3Dpol) for controlling FMDV infection and for the selection of resistance mutants. The results showed that no escape mutant viruses were isolated from FMDV A24 Cruzeiro infections in cell culture treated with gradually increasing concentrations of the antiviral compound 5D9 (4-chloro-N′-thieno, [2,3-d]pyrimidin-4-ylbenzenesulfonohydrazide) over ten passages. Biochemical and plaque assays revealed that when 5D9 was used at concentrations within a non-toxic range in cells, it drove the virus to undetectable levels at passage eight to ten. This is in contrast with observations made on parallel control (untreated) passages exhibiting fully viable and stable virus progenies. Collectively, the results demonstrated that under the experimental conditions, treatment with 5D9 does not confer a resistant phenotype and the virus is unable to evade the antiviral effect of the inhibitor. Further efforts using quantitative structure-property relationship (QSPR) based modifications of the 5D9 compound may result in the successful development of an effective in vivo antiviral drug targeting FMDV. PMID:23578728

  11. Possibilities and limitations of fluorescence in situ hybridization technique in retrospective detection of low dose radiation exposure in post-chernobyl human cohorts.

    PubMed

    Maznyk, N A; Vinnikov, V A

    2005-01-01

    Cytogenetic analysis using the fluorescence in situ hybridisation (FISH) technique was performed late time after the Chernobyl accident in groups of liquidators, evacuees from 30 km exclusive zone, residents of radioactively contaminated areas and control donors age-matched to exposed persons. Stable and unstable chromosome type exchanges were recorded using a hybrid conventional-PAINT nomenclature. The mean yield of stable chromosome exchanges in liquidators did not correlate with registered radiation doses but had a clear negative dependence on the duration of liquidators' staying in Chernobyl zone, that was in a good agreement with early data based on conventional dicentrics plus rings analysis. The overspontaneous excess for stable chromosome exchange level appeared to be higher in evacuees 16-40 years old than that of senior persons, whereas no age-dependent difference occurred for initially induced dicentrics plus rings yields in this cohort. The stable chromosome exchange yield, as well as combined yield of dicentrics plus rings and potentially unstable incomplete translocations in residents of radioactively contaminated areas showed a reasonable positive correlation with levels of 137Cs contamination. The observed yields of stable chromosome exchanges in all three exposed groups appeared to be somewhat lower than those of expected from unstable exchange-based doses which were referred to an in vitro dose response of stable exchanges outcome in human lymphocytes. Thus, FISH analysis can be successfully applied for qualitative cytogenetic indication of past and chronic radiation exposure to low doses but further refinement of FISH-based system for quantitative dose assessment is still required. Some practical approaches of solving this task are discussed.

  12. Ion wave breaking acceleration

    NASA Astrophysics Data System (ADS)

    Liu, B.; Meyer-ter-Vehn, J.; Bamberg, K.-U.; Ma, W. J.; Liu, J.; He, X. T.; Yan, X. Q.; Ruhl, H.

    2016-07-01

    Laser driven ion wave breaking acceleration (IWBA) in plasma wakefields is investigated by means of a one-dimensional (1D) model and 1D/3D particle-in-cell (PIC) simulations. IWBA operates in relativistic transparent plasma for laser intensities in the range of 1020- 1023 W /cm2 . The threshold for IWBA is identified in the plane of plasma density and laser amplitude. In the region just beyond the threshold, self-injection takes place only for a fraction of ions and in a limited time period. This leads to well collimated ion pulses with peaked energy spectra, in particular for 3D geometry.

  13. Is the Universe's Acceleration Eternal?

    NASA Astrophysics Data System (ADS)

    Bean, Rachel; Magueijo, Joao; Barrow, John

    2002-12-01

    We present a new interpretation of recent observations suggesting that the expansion of the Universe has recently started to accelerate. First we introduce a cosmological model with a minimally coupled quintessence field driven by a potential motivated by M-theory. We find that late-time acceleration does not have to lead to the usual predictions of perpetual acceleration. The model allows another broad class of scenarios in which today's acceleration is a transient phenomenon which is succeeded by a return to matter domination and decelerating expansion. Quintessence scenarios provide a simple explanation for the observed acceleration of the Universe. Yet, explaining why acceleration did not start a long time ago remains a challenge. The idea that the transition from radiation to matter domination played a dynamical role in triggering acceleration has been put forward in various guises. We, secondly, propose a simple dilaton-derived quintessence model in which temporary vacuum domination is naturally triggered by the radiation to matter transition. In this model Einstein's gravity is preserved but quintessence couples non-minimally to the cold dark matter, but not to "visible" matter. Such couplings have been attributed to the dilaton in the low-energy limit of string theory beyond tree level.

  14. Electrostatic Plasma Accelerator (EPA)

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1995-01-01

    The application of electric propulsion to communications satellites, however, has been limited to the use of hydrazine thrusters with electric heaters for thrust and specific impulse augmentation. These electrothermal thrusters operate at specific impulse levels of approximately 300 s with heater powers of about 500 W. Low power arcjets (1-3 kW) are currently being investigated as a way to increase specific impulse levels to approximately 500 s. Ion propulsion systems can easily produce specific impulses of 3000 s or greater, but have yet to be applied to communications satellites. The reasons most often given for not using ion propulsion systems are their high level of overall complexity, low thrust with long burn times, and the difficulty of integrating the propulsion system into existing commercial spacecraft busses. The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass.

  15. Radiative damping in plasma-based accelerators

    NASA Astrophysics Data System (ADS)

    Kostyukov, I. Yu.; Nerush, E. N.; Litvak, A. G.

    2012-11-01

    The electrons accelerated in a plasma-based accelerator undergo betatron oscillations and emit synchrotron radiation. The energy loss to synchrotron radiation may seriously affect electron acceleration. The electron dynamics under combined influence of the constant accelerating force and the classical radiation reaction force is studied. It is shown that electron acceleration cannot be limited by radiation reaction. If initially the accelerating force was stronger than the radiation reaction force, then the electron acceleration is unlimited. Otherwise the electron is decelerated by radiative damping up to a certain instant of time and then accelerated without limits. It is shown that regardless of the initial conditions the infinite-time asymptotic behavior of an electron is governed by a self-similar solution providing that the radiative damping becomes exactly equal to 2/3 of the accelerating force. The relative energy spread induced by the radiative damping decreases with time in the infinite-time limit. The multistage schemes operating in the asymptotic acceleration regime when electron dynamics is determined by the radiation reaction are discussed.

  16. Acceleration technologies for charged particles: an introduction

    NASA Astrophysics Data System (ADS)

    Carter, Richard G.

    2011-01-01

    Particle accelerators have many important uses in scientific experiments, in industry and in medicine. This paper reviews the variety of technologies which are used to accelerate charged particles to high energies. It aims to show how the capabilities and limitations of these technologies are related to underlying physical principles. The paper emphasises the way in which different technologies are used together to convey energy from the electrical supply to the accelerated particles.

  17. Laboratory Test of Newton's Second Law for Small Accelerations

    SciTech Connect

    Gundlach, J. H.; Schlamminger, S.; Spitzer, C. D.; Choi, K.-Y.; Woodahl, B. A.; Coy, J. J.; Fischbach, E.

    2007-04-13

    We have tested the proportionality of force and acceleration in Newton's second law, F=ma, in the limit of small forces and accelerations. Our tests reach well below the acceleration scales relevant to understanding several current astrophysical puzzles such as the flatness of galactic rotation curves, the Pioneer anomaly, and the Hubble acceleration. We find good agreement with Newton's second law at accelerations as small as 5x10{sup -14} m/s{sup 2}.

  18. Laboratory test of Newton's second law for small accelerations.

    PubMed

    Gundlach, J H; Schlamminger, S; Spitzer, C D; Choi, K-Y; Woodahl, B A; Coy, J J; Fischbach, E

    2007-04-13

    We have tested the proportionality of force and acceleration in Newton's second law, F=ma, in the limit of small forces and accelerations. Our tests reach well below the acceleration scales relevant to understanding several current astrophysical puzzles such as the flatness of galactic rotation curves, the Pioneer anomaly, and the Hubble acceleration. We find good agreement with Newton's second law at accelerations as small as 5 x 10(-14) m/s(2).

  19. Accelerator Test of an Imaging Calorimeter

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.; Adams, James H., Jr.; Binns, R. W.; Derrickson, J. H.; Fountain, W. F.; Howell, L. W.; Gregory, J. C.; Hink, P. L.; Israel, M. H.; Kippen, R. M.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Imaging Calorimeter for ACCESS (ICA) utilizes a thin sampling calorimeter concept for direct measurements of high-energy cosmic rays. The ICA design uses arrays of small scintillating fibers to measure the energy and trajectory of the produced cascades. A test instrument has been developed to study the performance of this concept at accelerator energies and for comparison with simulations. Two test exposures have been completed using a CERN test beam. Some results from the accelerator tests are presented.

  20. Regulating the introduction of new chemicals under section 5 of TSCA: improving the efficiency of the process and reducing potential injury in the workplace through the use of operational MSDS and exposure limits.

    PubMed

    Rosenthal, I; Jayjock, M A; Keener, R L; Plamondon, J E

    1991-10-01

    The Toxic Substances Control Act (TSCA) authorizes the EPA to take appropriate actions to ensure that new and existing chemicals do not pose "unreasonable risk" to health or the environment. Section 2(b)(3) of the Act directs the Agency to accomplish this objective in a manner that does "not impede unduly or create unnecessary economic barriers to technological innovation." In recent years, critics have felt that the EPA has failed to achieve these primary goals of TSCA. This paper considers some of the reasons for this criticism and advocates an alternate approach of exposure limits and operationally sufficient controls to assist in achieving these goals. An illustration of how this alternate approach might work under practical conditions is presented, using as an example a new chemical substance from the class of acrylate monomers. These concepts and risk assessments provide data for a better design of future studies according to good laboratory practice and quality assurance. PMID:1669965

  1. Occupational exposure to crystalline silica and autoimmune disease.

    PubMed

    Parks, C G; Conrad, K; Cooper, G S

    1999-10-01

    Occupational exposure to silica dust has been examined as a possible risk factor with respect to several systemic autoimmune diseases, including scleroderma, rheumatoid arthritis, systemic lupus erythematosus, and some of the small vessel vasculitidies with renal involvement (e.g., Wegener granulomatosis). Crystalline silica, or quartz, is an abundant mineral found in sand, rock, and soil. High-level exposure to respirable silica dust can cause chronic inflammation and fibrosis in the lung and other organs. Studies of specific occupational groups with high-level silica exposure (e.g., miners) have shown increased rates of autoimmune diseases compared to the expected rates in the general population. However, some clinic- and population-based studies have not demonstrated an association between silica exposure and risk of autoimmune diseases. This lack of effect may be due to the limited statistical power of these studies to examine this association or because the lower- or moderate-level exposures that may be more common in the general population were not considered. Experimental studies demonstrate that silica can act as an adjuvant to nonspecifically enhance the immune response. This is one mechanism by which silica might be involved in the development of autoimmune diseases. Given that several different autoimmune diseases may be associated with silica dust exposure, silica dust may act to promote or accelerate disease development, requiring some other factor to break immune tolerance or initiate autoimmunity. The specific manifestation of this effect may depend on underlying differences in genetic susceptibility or other environmental exposures.

  2. Occupational exposure to crystalline silica and autoimmune disease.

    PubMed Central

    Parks, C G; Conrad, K; Cooper, G S

    1999-01-01

    Occupational exposure to silica dust has been examined as a possible risk factor with respect to several systemic autoimmune diseases, including scleroderma, rheumatoid arthritis, systemic lupus erythematosus, and some of the small vessel vasculitidies with renal involvement (e.g., Wegener granulomatosis). Crystalline silica, or quartz, is an abundant mineral found in sand, rock, and soil. High-level exposure to respirable silica dust can cause chronic inflammation and fibrosis in the lung and other organs. Studies of specific occupational groups with high-level silica exposure (e.g., miners) have shown increased rates of autoimmune diseases compared to the expected rates in the general population. However, some clinic- and population-based studies have not demonstrated an association between silica exposure and risk of autoimmune diseases. This lack of effect may be due to the limited statistical power of these studies to examine this association or because the lower- or moderate-level exposures that may be more common in the general population were not considered. Experimental studies demonstrate that silica can act as an adjuvant to nonspecifically enhance the immune response. This is one mechanism by which silica might be involved in the development of autoimmune diseases. Given that several different autoimmune diseases may be associated with silica dust exposure, silica dust may act to promote or accelerate disease development, requiring some other factor to break immune tolerance or initiate autoimmunity. The specific manifestation of this effect may depend on underlying differences in genetic susceptibility or other environmental exposures. PMID:10970168

  3. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  4. Air Pollution Exposure

    PubMed Central

    Balmes, John R.; Collard, Harold R.

    2015-01-01

    Air pollution exposure is a well-established risk factor for several adverse respiratory outcomes, including airways diseases and lung cancer. Few studies have investigated the relationship between air pollution and interstitial lung disease (ILD) despite many forms of ILD arising from environmental exposures. There are potential mechanisms by which air pollution could cause, exacerbate, or accelerate the progression of certain forms of ILD via pulmonary and systemic inflammation as well as oxidative stress. This article will review the current epidemiologic and translational data supporting the plausibility of this relationship and propose a new conceptual framework for characterizing novel environmental risk factors for these forms of lung disease. PMID:25846532

  5. Operational Radiation Protection in High-Energy Physics Accelerators: Implementation of ALARA in Design and Operation of Accelerators

    SciTech Connect

    Fasso, A.; Rokni, S.; /SLAC

    2011-06-30

    It used to happen often, to us accelerator radiation protection staff, to be asked by a new radiation worker: ?How much dose am I still allowed?? And we smiled looking at the shocked reaction to our answer: ?You are not allowed any dose?. Nowadays, also thanks to improved training programs, this kind of question has become less frequent, but it is still not always easy to convince workers that staying below the exposure limits is not sufficient. After all, radiation is still the only harmful agent for which this is true: for all other risks in everyday life, from road speed limits to concentration of hazardous chemicals in air and water, compliance to regulations is ensured by keeping below a certain value. It appears that a tendency is starting to develop to extend the radiation approach to other pollutants (1), but it will take some time before the new attitude makes it way into national legislations.

  6. Antimutagenicity of WR-1065 in L5178Y cells exposed to accelerated (56)Fe ions

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; Evans, T. E.; Horng, M. F.

    2002-01-01

    The ability of the aminothiol WR-1065 [N-(2-mercaptoethyl)-1,3-diaminopropane] to protect L5178Y (LY) cells against the cytotoxic and mutagenic effects of exposure to accelerated (56)Fe ions (1.08 GeV/nucleon) was determined. It was found that while WR-1065 reduced the mutagenicity in both cell lines when it was present during the irradiation, the addition of WR-1065 after the exposure had no effect on the mutagenicity of the radiation in either cell line. No marked protection against the cytotoxic effects of exposure to (56)Fe ions was provided by WR-1065 when added either during or after irradiation in either cell line. We reported previously that WR-1065 protected the LY-S1 and LY-SR1 cell lines against both the cytotoxicity and mutagenicity of X radiation when present during exposure, but that its protection when administered after exposure was limited to the mutagenic effects in the radiation-hypersensitive cell line, LY-S1. The results indicate that the mechanisms involved differ in the protection against cytotoxic compared to mutagenic effects and in the protection against damage caused by accelerated (56)Fe ions compared to X radiation.

  7. The physiological basis for spacecraft environmental limits

    NASA Technical Reports Server (NTRS)

    Waligora, J. M. (Compiler)

    1979-01-01

    Limits for operational environments are discussed in terms of acceptable physiological changes. The environmental factors considered are pressure, contaminants, temperature, acceleration, noise, rf radiation, and weightlessness.

  8. Repair of overheating linear accelerator

    SciTech Connect

    Barkley, Walter; Baldwin, William; Bennett, Gloria; Bitteker, Leo; Borden, Michael; Casados, Jeff; Fitzgerald, Daniel; Gorman, Fred; Johnson, Kenneth; Kurennoy, Sergey; Martinez, Alberto; O’Hara, James; Perez, Edward; Roller, Brandon; Rybarcyk, Lawrence; Stark, Peter; Stockton, Jerry

    2004-01-01

    Los Alamos Neutron Science Center (LANSCE) is a proton accelerator that produces high energy particle beams for experiments. These beams include neutrons and protons for diverse uses including radiography, isotope production, small feature study, lattice vibrations and material science. The Drift Tube Linear Accelerator (DTL) is the first portion of a half mile long linear section of accelerator that raises the beam energy from 750 keV to 100 MeV. In its 31st year of operation (2003), the DTL experienced serious issues. The first problem was the inability to maintain resonant frequency at full power. The second problem was increased occurrences of over-temperature failure of cooling hoses. These shortcomings led to an investigation during the 2003 yearly preventative maintenance shutdown that showed evidence of excessive heating: discolored interior tank walls and coper oxide deposition in the cooling circuits. Since overheating was suspected to be caused by compromised heat transfer, improving that was the focus of the repair effort. Investigations revealed copper oxide flow inhibition and iron oxide scale build up. Acid cleaning was implemented with careful attention to protection of the base metal, selection of components to clean and minimization of exposure times. The effort has been very successful in bringing the accelerator through a complete eight month run cycle allowing an incredible array of scientific experiments to be completed this year (2003-2004). This paper will describe the systems, investigation analysis, repair, return to production and conclusion.

  9. Parasite infection accelerates age polyethism in young honey bees

    PubMed Central

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C.

    2016-01-01

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens. PMID:26912310

  10. Parasite infection accelerates age polyethism in young honey bees.

    PubMed

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C

    2016-01-01

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens. PMID:26912310

  11. Parasite infection accelerates age polyethism in young honey bees.

    PubMed

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C

    2016-02-25

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens.

  12. Laser acceleration in novel media

    NASA Astrophysics Data System (ADS)

    Tajima, T.

    2014-05-01

    With newly available compact laser technology [1] we are capable of producing 100 PW-class laser pulses with a single-cycle duration on the femtosecond timescale. With this fs intense laser we can produce a coherent X-ray pulse that is also compressed, well into the hard X-ray regime (˜10 keV) and with a power up to as much as 10 Exawatts. We suggest utilizing these coherent X-rays to drive the acceleration of particles. Such X-rays are focusable far beyond the diffraction limit of the original laser wavelength and when injected into a crystal it forms a metallic-density electron plasma ideally suited for laser wakefield acceleration. If the X-ray field is limited by the Schwinger field at the focal size of ˜100 nm, the achievable energy is 1 PeV over 50 m. (If the X-rays are focused further, much higher energies beyond this are possible). These processes are not limited to only electron acceleration, and if ions are pre-accelerated to beyond GeV they are capable of being further accelerated using a LWFA scheme [2] to similar energies as electrons over the same distance-scales. Such high energy proton (and ion) beams can induce copious neutrons, which can also give rise to intense compact muon beams and neutrino beams that may be portable. High-energy gamma rays can also be efficiently emitted with a bril- liance many orders of magnitude above the brightest X-ray sources by this accelerating process, from both the betatron radiation as well as the dominant radiative-damping dynamics. With the exceptional conditions enabled by this technology we envision a whole scope of new physical phenomena, including: the possibility of laser self-focus in the vacuum, neutron manipulation by the beat of such lasers, zeptosecond spectroscopy of nuclei, etc. Further, we now introduce along with the idea of vacuum as a nonlinear medium, the Schwinger Fiber Accelerator. This is a self-organized vacuum fiber acceleration concept, in which the repeated process of self-focusing and

  13. Prenatal Exposure of Cypermethrin Induces Similar Alterations in Xenobiotic-Metabolizing Cytochrome P450s and Rate-Limiting Enzymes of Neurotransmitter Synthesis in Brain Regions of Rat Offsprings During Postnatal Development.

    PubMed

    Singh, Anshuman; Mudawal, Anubha; Maurya, Pratibha; Jain, Rajeev; Nair, Saumya; Shukla, Rajendra K; Yadav, Sanjay; Singh, Dhirendra; Khanna, Vinay Kumar; Chaturvedi, Rajnish Kumar; Mudiam, Mohana K R; Sethumadhavan, Rao; Siddiqi, Mohammad Imran; Parmar, Devendra

    2016-08-01

    Oral administration of low doses of cypermethrin to pregnant Wistar rats led to a dose-dependent differences in the induction of xenobiotic-metabolizing cytochrome P450s (CYPs) messenger RNA (mRNA) and protein in brain regions isolated from the offsprings postnatally at 3 weeks that persisted up to adulthood. Similar alterations were observed in the expression of rate-limiting enzymes of neurotransmitter synthesis in brain regions of rat offsprings. These persistent changes were associated with alterations in circulating levels of growth hormone (GH), cognitive functions, and accumulation of cypermethrin and its metabolites in brain regions of exposed offsprings. Though molecular docking studies failed to identify similarities between the docked conformations of cypermethrin with CYPs and neurotransmitter receptors, in silico analysis identified regulatory sequences of CYPs in the promoter region of rate-limiting enzymes of neurotransmitter synthesis. Further, rechallenge of the prenatally exposed offsprings at adulthood with cypermethrin (p.o. 10 mg/kg × 6 days) led to a greater magnitude of alterations in the expression of CYPs and rate-limiting enzymes of neurotransmitter synthesis in different brain regions. These alterations were associated with a greater magnitude of decrease in the circulating levels of GH and cognitive functions in rechallenged offsprings. Our data has led us to suggest that due to the immaturity of CYPs in fetus or during early development, even the low-level exposure of cypermethrin may be sufficient to interact with the CYPs, which in turn affect the neurotransmission processes and may help in explaining the developmental neurotoxicity of cypermethrin.

  14. Accelerator-driven Transmutation of Waste

    NASA Astrophysics Data System (ADS)

    Venneri, Francesco

    1998-04-01

    Nuclear waste from commercial power plants contains large quantities of plutonium, other fissionable actinides, and long-lived fission products that are potential proliferation concerns and create challenges for the long-term storage. Different strategies for dealing with nuclear waste are being followed by various countries because of their geologic situations and their views on nuclear energy, reprocessing and non-proliferation. The current United States policy is to store unprocessed spent reactor fuel in a geologic repository. Other countries are opting for treatment of nuclear waste, including partial utilization of the fissile material contained in the spent fuel, prior to geologic storage. Long-term uncertainties are hampering the acceptability and eventual licensing of a geologic repository for nuclear spent fuel in the US, and driving up its cost. The greatest concerns are with the potential for radiation release and exposure from the spent fuel for tens of thousands of years and the possible diversion and use of the actinides contained in the waste for weapons construction. Taking advantage of the recent breakthroughs in accelerator technology and of the natural flexibility of subcritical systems, the Accelerator-driven Transmutation of Waste (ATW) concept offers the United States and other countries the possibility to greatly reduce plutonium, higher actinides and environmentally hazardous fission products from the waste stream destined for permanent storage. ATW does not eliminate the need for, but instead enhances the viability of permanent waste repositories. Far from being limited to waste destruction, the ATW concept also brings to the table new technologies that could be relevant for next-generation power producing reactors. In the ATW concept, spent fuel would be shipped to the ATW site where the plutonium, transuranics and selected long-lived fission products would be destroyed by fission or transmutation in their first and only pass through the

  15. Laser driven acceleration in vacuum and gases

    SciTech Connect

    Sprangle, P.; Esarey, E.; Hafizi, B.; Hubbard, R.; Krall, J.; Ting, A.

    1997-03-01

    Several important issues pertaining to particle acceleration in vacuum and gases are discussed. The limitations of laser vacuum acceleration as they relate to electron slippage, laser diffraction, material damage, and electron aperture effects are presented. Limitations on the laser intensity and particle self-fields due to material breakdown are quantified. In addition, the reflection of the self-fields associated with the accelerated particles places a limit on the number of particles. Two configurations for the inverse Cherenkov accelerator (ICA) are considered, in which the electromagnetic driver is propagated in a waveguide that is (i) lined with a dielectric material or (ii) filled with a neutral gas. The acceleration gradient in the ICA is limited by tunneling and collisional ionization in the dielectric liner or gas. Ionization can lead to significant modification of the optical properties of the waveguide, altering the phase velocity and causing particle slippage, thus disrupting the acceleration process. Maximum accelerating gradients and pulse durations are presented for a 10 {mu}m and a 1 mm wavelength driver. We show that the use of an unguided Bessel (axicon) beam can enhance the energy gain compared to a higher order Gaussian beam. The enhancement factor is N{sup 1/2}, where N is the number of lobes in the Bessel beam. {copyright} {ital 1997 American Institute of Physics.}

  16. Immunological Priming Requires Tregs and Interleukin-10-Producing Macrophages to Accelerate Resolution from Severe Lung Inflammation

    PubMed Central

    Eto, Yoshiki; Tripathi, Ashutosh; Mandke, Pooja; Mock, Jason R.; Garibaldi, Brian T.; Singer, Benjamin D.; Sidhaye, Venkataramana K.; Horton, Maureen R.; King, Landon S.; D'Alessio, Franco R.

    2014-01-01

    Overwhelming lung inflammation frequently occurs following exposure to both direct infectious and non-infectious agents, and is a leading cause of mortality world-wide. In that context, immunomodulatory strategies may be utilized to limit severity of impending organ damage. We sought to determine whether priming the lung by activating the immune system, or immunological priming, could accelerate resolution of severe lung inflammation. We assessed the importance of alveolar macrophages, regulatory T cells, and their potential interaction during immunological priming. We demonstrate that oropharyngeal delivery of low-dose lipopolysaccharide can immunologically prime the lung to augment alveolar macrophage production of interleukin-10 and enhance resolution of lung inflammation induced by a lethal dose of lipopolysaccharide or by pseudomonas bacterial pneumonia. Interleukin-10 deficient mice did not achieve priming and were unable to accelerate lung injury resolution. Depletion of lung macrophages or regulatory T cells during the priming response completely abrogated the positive effect of immunological priming on resolution of lung inflammation and significantly reduced alveolar macrophage interleukin-10 production. Finally, we demonstrated that oropharyngeal delivery of synthetic CpG-oligonucleotides elicited minimal lung inflammation compared to low-dose lipopolysaccharide, but nonetheless primed the lung to accelerate resolution of lung injury following subsequent lethal lipopolysaccharide exposure. Immunological priming is a viable immunomodulatory strategy used to enhance resolution in an experimental acute lung injury model with the potential for therapeutic benefit against a wide array of injurious exposures. PMID:24688024

  17. TURBULENT SHEAR ACCELERATION

    SciTech Connect

    Ohira, Yutaka

    2013-04-10

    We consider particle acceleration by large-scale incompressible turbulence with a length scale larger than the particle mean free path. We derive an ensemble-averaged transport equation of energetic charged particles from an extended transport equation that contains the shear acceleration. The ensemble-averaged transport equation describes particle acceleration by incompressible turbulence (turbulent shear acceleration). We find that for Kolmogorov turbulence, the turbulent shear acceleration becomes important on small scales. Moreover, using Monte Carlo simulations, we confirm that the ensemble-averaged transport equation describes the turbulent shear acceleration.

  18. The direction of acceleration

    NASA Astrophysics Data System (ADS)

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.

  19. Remote handling and accelerators

    NASA Astrophysics Data System (ADS)

    Wilson, M. T.

    The high-current levels of contemporary and proposed accelerator facilities induce radiation levels into components, requiring consideration be given to maintenance techniques that reduce personnel exposure. Typical components involved include beamstops, targets, collimators, windows, and instrumentation that intercepts the direct beam. Also included are beam extraction, injection, splitting, and kicking regions, as well as purposeful spill areas where beam tails are trimmed and neutral particles are deposited. Scattered beam and secondary particles activate components all along a beamline such as vacuum pipes, magnets, and shielding. Maintenance techniques vary from hands-on to TV-viewed operation using state-of-the-art servomanipulators. Bottom- or side-entry casks are used with thimble-type target and diagnostic assemblies. Long-handled tools are operated from behind shadow shields. Swinging shield doors, unstacking block, and horizontally rolling shield roofs are all used to provide access. Common to all techniques is the need to make operations simple and to provide a means of seeing and reaching the area.

  20. Induced activation in accelerator components

    NASA Astrophysics Data System (ADS)

    Bungau, Cristian; Bungau, Adriana; Cywinski, Robert; Barlow, Roger; Edgecock, Thomas Robert; Carlsson, Patrick; Danared, Hâkan; Mezei, Ferenc; Holm, Anne Ivalu Sander; Møller, Søren Pape; Thomsen, Heine Dølrath

    2014-08-01

    The residual activity induced in particle accelerators is a serious issue from the point of view of radiation safety as the long-lived radionuclides produced by fast or moderated neutrons and impact protons cause problems of radiation exposure for staff involved in the maintenance work and when decommissioning the facility. This paper presents activation studies of the magnets and collimators in the High Energy Beam Transport line of the European Spallation Source due to the backscattered neutrons from the target and also due to the direct proton interactions and their secondaries. An estimate of the radionuclide inventory and induced activation are predicted using the GEANT4 code.

  1. Occupational Diesel Exposure, Duration of Employment, and Lung Cancer

    PubMed Central

    Picciotto, Sally; Costello, Sadie; Eisen, Ellen A.

    2016-01-01

    Background: If less healthy workers terminate employment earlier, thus accumulating less exposure, yet remain at greater risk of the health outcome, estimated health effects of cumulative exposure will be biased downward. If exposure also affects termination of employment, then the bias cannot be addressed using conventional methods. We examined these conditions as a prelude to a reanalysis of lung cancer mortality in the Diesel Exhaust in Miners Study. Methods: We applied an accelerated failure time model to assess the effect of exposures to respirable elemental carbon (a surrogate for diesel) on time to termination of employment among nonmetal miners who ever worked underground (n = 8,307). We then applied the parametric g-formula to assess how possible interventions setting respirable elemental carbon exposure limits would have changed lifetime risk of lung cancer, adjusting for time-varying employment status. Results: Median time to termination was 36% shorter (95% confidence interval = 33%, 39%), per interquartile range width increase in respirable elemental carbon exposure. Lung cancer risk decreased with more stringent interventions, with a risk ratio of 0.8 (95% confidence interval = 0.5, 1.1) comparing a limit of ≤25 µg/m3 respirable elemental carbon to no intervention. The fraction of cases attributable to diesel exposure was 27% in this population. Conclusions: The g-formula controlled for time-varying confounding by employment status, the signature of healthy worker survivor bias, which was also affected by diesel exposure. It also offers an alternative approach to risk assessment for estimating excess cumulative risk, and the impact of interventions based entirely on an observed population. PMID:26426944

  2. Accelerating Particles with Plasma

    SciTech Connect

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  3. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  4. Linear accelerator: A concept

    NASA Technical Reports Server (NTRS)

    Mutzberg, J.

    1972-01-01

    Design is proposed for inexpensive accelerometer which would work by applying pressure to fluid during acceleration. Pressure is used to move shuttle, and shuttle movement is sensed and calibrated to give acceleration readings.

  5. Improved plasma accelerator

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  6. Report on accelerated corrosion studies.

    SciTech Connect

    Mowry, Curtis Dale; Glass, Sarah Jill; Sorensen, Neil Robert

    2011-03-01

    Sandia National Laboratories (SNL) conducted accelerated atmospheric corrosion testing for the U.S. Consumer Product Safety Commission (CPSC) to help further the understanding of the development of corrosion products on conductor materials in household electrical components exposed to environmental conditions representative of homes constructed with problem drywall. The conditions of the accelerated testing were chosen to produce corrosion product growth that would be consistent with long-term exposure to environments containing humidity and parts per billion (ppb) levels of hydrogen sulfide (H{sub 2}S) that are thought to have been the source of corrosion in electrical components from affected homes. This report documents the test set-up, monitoring of electrical performance of powered electrical components during the exposure, and the materials characterization conducted on wires, screws, and contact plates from selected electrical components. No degradation in electrical performance (measured via voltage drop) was measured during the course of the 8-week exposure, which was approximately equivalent to 40 years of exposure in a light industrial environment. Analyses show that corrosion products consisting of various phases of copper sulfide, copper sulfate, and copper oxide are found on exposed surfaces of the conductor materials including wires, screws, and contact plates. The morphology and the thickness of the corrosion products showed a range of character. In some of the copper wires that were observed, corrosion product had flaked or spalled off the surface, exposing fresh metal to the reaction with the contaminant gasses; however, there was no significant change in the wire cross-sectional area.

  7. MEQALAC rf accelerating structure

    SciTech Connect

    Keane, J.; Brodowski, J.

    1981-01-01

    A prototype MEQALAC capable of replacing the Cockcroft Walton pre-injector at BNL is being fabricated. Ten milliamperes of H/sup -/ beam supplied from a source sitting at a potential of -40 kilovolt is to be accelerated to 750 keV. This energy gain is provided by a 200 Megahertz accelerating system rather than the normal dc acceleration. Substantial size and cost reduction would be realized by such a system over conventional pre-accelerator systems.

  8. Acceleration gradient of a plasma wakefield accelerator

    SciTech Connect

    Uhm, Han S.

    2008-02-25

    The phase velocity of the wakefield waves is identical to the electron beam velocity. A theoretical analysis indicates that the acceleration gradient of the wakefield accelerator normalized by the wave breaking amplitude is K{sub 0}({xi})/K{sub 1}({xi}), where K{sub 0}({xi}) and K{sub 1}({xi}) are the modified Bessel functions of the second kind of order zero and one, respectively and {xi} is the beam parameter representing the beam intensity. It is also shown that the beam density must be considerably higher than the diffuse plasma density for the large radial velocity of plasma electrons that are required for a high acceleration gradient.

  9. Acceleration: It's Elementary

    ERIC Educational Resources Information Center

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  10. Far field acceleration

    SciTech Connect

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

  11. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  12. Radiation Shielding at High-Energy Electron and Proton Accelerators

    SciTech Connect

    Rokni, Sayed H.; Cossairt, J.Donald; Liu, James C.; /SLAC

    2007-12-10

    The goal of accelerator shielding design is to protect the workers, general public, and the environment against unnecessary prompt radiation from accelerator operations. Additionally, shielding at accelerators may also be used to reduce the unwanted background in experimental detectors, to protect equipment against radiation damage, and to protect workers from potential exposure to the induced radioactivity in the machine components. The shielding design for prompt radiation hazards is the main subject of this chapter.

  13. Military Exposures

    MedlinePlus

    ... Index Agent Orange Agent Orange Home Facts about Herbicides Veterans' Diseases Birth Defects Benefits Exposure Locations Provider ... for Providers Diagnosis and Treatment of Exposure Health Effects More Provider Resources » return to top Get Email ...

  14. Harmonic ratcheting for fast acceleration

    NASA Astrophysics Data System (ADS)

    Cook, N.; Brennan, J. M.; Peggs, S.

    2014-04-01

    A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.

  15. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  16. Acceleration Environment of the International Space Station

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Kelly, Eric; Keller, Jennifer

    2009-01-01

    Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available

  17. Lasers and new methods of particle acceleration

    SciTech Connect

    Parsa, Z.

    1998-02-01

    There has been a great progress in development of high power laser technology. Harnessing their potential for particle accelerators is a challenge and of great interest for development of future high energy colliders. The author discusses some of the advances and new methods of acceleration including plasma-based accelerators. The exponential increase in sophistication and power of all aspects of accelerator development and operation that has been demonstrated has been remarkable. This success has been driven by the inherent interest to gain new and deeper understanding of the universe around us. With the limitations of the conventional technology it may not be possible to meet the requirements of the future accelerators with demands for higher and higher energies and luminosities. It is believed that using the existing technology one can build a linear collider with about 1 TeV center of mass energy. However, it would be very difficult (or impossible) to build linear colliders with energies much above one or two TeV without a new method of acceleration. Laser driven high gradient accelerators are becoming more realistic and is expected to provide an alternative, (more compact, and more economical), to conventional accelerators in the future. The author discusses some of the new methods of particle acceleration, including laser and particle beam driven plasma based accelerators, near and far field accelerators. He also discusses the enhanced IFEL (Inverse Free Electron Laser) and NAIBEA (Nonlinear Amplification of Inverse-Beamstrahlung Electron Acceleration) schemes, laser driven photo-injector and the high energy physics requirements.

  18. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  19. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  20. Influence of emittance on transverse dynamics of accelerated bunches in the plasma-dielectric wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Kniaziev, R. R.; Sotnikov, G. V.

    2016-09-01

    We study theoretically transverse dynamics of the bunch of charged particles with the finite emittance in the plasma-dielectric wakefield accelerator. Parameters of bunches are chosen the same as available from the 15 MeV Argonne Wakefield Accelerator beamline. The goal of the paper is to study the behavior of bunches of charged particles with different emittances while accelerating these bunches by wakefields in plasma-dielectric structures. Obtained results allow us to determine the limits of the emittance of the bunch where dynamics of the accelerated particles remains stable.

  1. Six-degree-of-freedom whole-body vibration exposure levels during routine skidder operations.

    PubMed

    Jack, R J; Oliver, M; Dickey, J P; Cation, S; Hayward, G; Lee-Shee, N

    2010-05-01

    This research focuses on quantifying six-degree-of-freedom (6-DOF) whole-body vibration (WBV) exposure levels that occur in Northern Ontario skidders during routine field operating tasks. 6-DOF vibration running root-mean-square (RMS) acceleration levels at the operator/seat interface were determined for eight skidders while driving loaded, driving unloaded, picking up a load, dropping off a load and ploughing logs under field operating conditions. The acceleration data were weighted in accordance with ISO 2631-1:1997 and evaluated for both health and comfort outcomes. The mean running RMS weighted translational and rotational accelerations all exceeded 0.36 m/s(2) and 0.14 rad/s(2). The greatest average accelerations occurred while driving unloaded with this condition displaying translational vibration total values (VTV) that exceeded the upper limit of the ISO 2631-1:1997 health caution zone within an average of 2.3 h. Utilizing 6-DOF VTV, virtually all operating conditions would be designated as uncomfortable. STATEMENT OF RELEVANCE: This study provides one of the most comprehensive reports on vibration exposures in seated vehicle operators. The results are geared towards ergonomists with discussions on health effects and measurement concerns, while providing the raw vibration exposure data that will be useful to vehicle, component and vibration sensor designers.

  2. Enhancing proton acceleration by using composite targets

    SciTech Connect

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-07-10

    Efficient laser ion acceleration requires high laser intensities, which can only be obtained by tightly focusing laser radiation. In the radiation pressure acceleration regime, where the tightly focused laser driver leads to the appearance of the fundamental limit for the maximum attainable ion energy, this limit corresponds to the laser pulse group velocity as well as to another limit connected with the transverse expansion of the accelerated foil and consequent onset of the foil transparency. These limits can be relaxed by using composite targets, consisting of a thin foil followed by a near critical density slab. Such targets provide guiding of a laser pulse inside a self-generated channel and background electrons, being snowplowed by the pulse, compensate for the transverse expansion. The use of composite targets results in a significant increase in maximum ion energy, compared to a single foil target case.

  3. Experiment specific processing of residual acceleration data

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Alexander, J. I. D.

    1992-01-01

    To date, most Spacelab residual acceleration data collection projects have resulted in data bases that are overwhelming to the investigator of low-gravity experiments. This paper introduces a simple passive accelerometer system to measure low-frequency accelerations. Model responses for experiments using actual acceleration data are produced and correlations are made between experiment response and the accelerometer time history in order to test the idea that recorded acceleration data and experimental responses can be usefully correlated. Spacelab 3 accelerometer data are used as input to a variety of experiment models, and sensitivity limits are obtained for particular experiment classes. The modeling results are being used to create experiment-specific residual acceleration data processing schemes for interested investigators.

  4. Photon acceleration in plasma wake wave

    SciTech Connect

    Bu, Zhigang; Shen, Baifei Yi, Longqing; Zhang, Hao; Huang, Shan; Li, Shun

    2015-04-15

    The photon acceleration effect in a laser wake field is investigated based on photon Hamiltonian dynamics. A test laser pulse is injected into a plasma wave at an incident angle θ{sub i}, which could slow down the photon velocity along the propagating direction of the wake wave so as to increase the acceleration distance for the photons. The photon trapping condition is analyzed in detail, and the maximum frequency shift of the trapped photon is obtained. The acceleration gradient and dephasing length are emphatically studied. The compression of the test laser pulse is examined and used to interpret the acceleration process. The limit of finite transverse width of the wake wave on photon acceleration is also discussed.

  5. Occupational exposure in MRI

    PubMed Central

    Mcrobbie, D W

    2012-01-01

    This article reviews occupational exposure in clinical MRI; it specifically considers units of exposure, basic physical interactions, health effects, guideline limits, dosimetry, results of exposure surveys, calculation of induced fields and the status of the European Physical Agents Directive. Electromagnetic field exposure in MRI from the static field B0, imaging gradients and radiofrequency transmission fields induces electric fields and currents in tissue, which are responsible for various acute sensory effects. The underlying theory and its application to the formulation of incident and induced field limits are presented. The recent International Commission on Non-Ionizing Radiation Protection (ICNIRP) Bundesministerium für Arbeit und Soziales and Institute of Electrical and Electronics Engineers limits for incident field exposure are interpreted in a manner applicable to MRI. Field measurements show that exposure from movement within the B0 fringe field can exceed ICNIRP reference levels within 0.5 m of the bore entrance. Rate of change of field dB/dt from the imaging gradients is unlikely to exceed the new limits, although incident field limits can be exceeded for radiofrequency (RF) exposure within 0.2–0.5 m of the bore entrance. Dosimetric surveys of routine clinical practice show that staff are exposed to peak values of 42±24% of B0, with time-averaged exposures of 5.2±2.8 mT for magnets in the range 0.6–4 T. Exposure to time-varying fields arising from movement within the B0 fringe resulted in peak dB/dt of approximately 2 T s−1. Modelling of induced electric fields from the imaging gradients shows that ICNIRP-induced field limits are unlikely to be exceeded in most situations; however, movement through the static field may still present a problem. The likely application of the limits is discussed with respect to the reformulation of the European Union (EU) directive and its possible implications for MRI. PMID:22457400

  6. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  7. Accelerating, hyperaccelerating, and decelerating networks

    NASA Astrophysics Data System (ADS)

    Gagen, M. J.; Mattick, J. S.

    2005-07-01

    Many growing networks possess accelerating statistics where the number of links added with each new node is an increasing function of network size so the total number of links increases faster than linearly with network size. In particular, biological networks can display a quadratic growth in regulator number with genome size even while remaining sparsely connected. These features are mutually incompatible in standard treatments of network theory which typically require that every new network node possesses at least one connection. To model sparsely connected networks, we generalize existing approaches and add each new node with a probabilistic number of links to generate either accelerating, hyperaccelerating, or even decelerating network statistics in different regimes. Under preferential attachment for example, slowly accelerating networks display stationary scale-free statistics relatively independent of network size while more rapidly accelerating networks display a transition from scale-free to exponential statistics with network growth. Such transitions explain, for instance, the evolutionary record of single-celled organisms which display strict size and complexity limits.

  8. Inverse free-electron laser accelerator

    SciTech Connect

    Pellegrini, C.; Campisi, R.

    1982-01-01

    We first describe the basic physical properties of an inverse free-electron laser and make an estimate of the order of magnitude of the accelerating field obtainable with such a system; then apply the general ideas to the design of an actual device and through this example we give a more accurate evaluation of the fundamental as well as the technical limitations that this acceleration scheme imposes.

  9. The Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  10. Relativistic Shocks: Particle Acceleration and Magnetization

    NASA Astrophysics Data System (ADS)

    Sironi, L.; Keshet, U.; Lemoine, M.

    2015-10-01

    We review the physics of relativistic shocks, which are often invoked as the sources of non-thermal particles in pulsar wind nebulae (PWNe), gamma-ray bursts (GRBs), and active galactic nuclei (AGN) jets, and as possible sources of ultra-high energy cosmic-rays. We focus on particle acceleration and magnetic field generation, and describe the recent progress in the field driven by theory advances and by the rapid development of particle-in-cell (PIC) simulations. In weakly magnetized or quasi parallel-shocks (i.e. where the magnetic field is nearly aligned with the flow), particle acceleration is efficient. The accelerated particles stream ahead of the shock, where they generate strong magnetic waves which in turn scatter the particles back and forth across the shock, mediating their acceleration. In contrast, in strongly magnetized quasi-perpendicular shocks, the efficiencies of both particle acceleration and magnetic field generation are suppressed. Particle acceleration, when efficient, modifies the turbulence around the shock on a long time scale, and the accelerated particles have a characteristic energy spectral index of s_{γ}˜eq2.2 in the ultra-relativistic limit. We discuss how this novel understanding of particle acceleration and magnetic field generation in relativistic shocks can be applied to high-energy astrophysical phenomena, with an emphasis on PWNe and GRB afterglows.

  11. Wake field accelerators

    SciTech Connect

    Wilson, P.B.

    1986-02-01

    In a wake field accelerator a high current driving bunch injected into a structure or plasma produces intense induced fields, which are in turn used to accelerate a trailing charge or bunch. The basic concepts of wake field acceleration are described. Wake potentials for closed cavities and periodic structures are derived, as are wake potentials on a collinear path with a charge distribution. Cylindrically symmetric structures excited by a beam in the form of a ring are considered. (LEW)

  12. ACCELERATION RESPONSIVE SWITCH

    DOEpatents

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  13. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  14. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  15. EXOTIC MAGNETS FOR ACCELERATORS.

    SciTech Connect

    WANDERER, P.

    2005-09-18

    Over the last few years, several novel magnet designs have been introduced to meet the requirements of new, high performance accelerators and beam lines. For example, the FAIR project at GSI requires superconducting magnets ramped at high rates ({approx} 4 T/s) in order to achieve the design intensity. Magnets for the RIA and FAIR projects and for the next generation of LHC interaction regions will need to withstand high doses of radiation. Helical magnets are required to maintain and control the polarization of high energy protons at RHIC. In other cases, novel magnets have been designed in response to limited budgets and space. For example, it is planned to use combined function superconducting magnets for the 50 GeV proton transport line at J-PARC to satisfy both budget and performance requirements. Novel coil winding methods have been developed for short, large aperture magnets such as those used in the insertion region upgrade at BEPC. This paper will highlight the novel features of these exotic magnets.

  16. Actinides, accelerators and erosion

    NASA Astrophysics Data System (ADS)

    Tims, S. G.; Fifield, L. K.

    2012-10-01

    Fallout isotopes can be used as artificial tracers of soil erosion and sediment accumulation. The most commonly used isotope to date has been 137Cs. Concentrations of 137Cs are, however, significantly lower in the Southern Hemisphere, and furthermore have now declined to 35% of original values due to radioactive decay. As a consequence the future utility of 137Cs is limited in Australia, with many erosion applications becoming untenable within the next 20 years, and there is a need to replace it with another tracer. Plutonium could fill this role, and has the advantages that there were six times as many atoms of Pu as of 137Cs in fallout, and any loss to decay has been negligible due to the long half-lives of the plutonium isotopes. Uranium-236 is another long-lived fallout isotope with significant potential for exploitation as a tracer of soil and sediment movement. Uranium is expected to be more mobile in soils than plutonium (or caesium), and hence the 236U/Pu ratio will vary with soil depth, and so could provide an independent measure of the amount of soil loss. In this paper we discuss accelerator based ultra-sensitive measurements of plutonium and 236U isotopes and their advantages over 137Cs as tracers of soil erosion and sediment movement.

  17. Radiation Safety System of the B-Factory at the Stanford Linear Accelerator Center

    SciTech Connect

    Liu, James C.

    1998-10-12

    The radiation safety system (RSS) of the B-Factory accelerator facility at the Stanford Linear Accelerator Center (SLAC) is described. The RSS, which is designed to protect people from prompt radiation exposure due to beam operation, consists of the access control system (ACS) and the radiation containment system (RCS). The ACS prevents people from being exposed to the very high radiation levels inside a beamline shielding housing. The ACS consists of barriers, a standard entry module at every entrance, and beam stoppers. The RCS prevents people from being exposed to the radiation outside a shielding housing, due to either normal or abnormal operation. The RCS consists of power limiting devices, shielding, dump/collimator, and an active radiation monitor system. The inter-related system elements for the ACS and RCS, as well as the associated interlock network, are described. The policies and practices in setting up the RSS are also compared with the regulatory requirements.

  18. Acceleration of polarized protons in circular accelerators

    SciTech Connect

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  19. Airbreathing Acceleration Toward Earth Orbit

    SciTech Connect

    Whitehead, J C

    2007-05-09

    As flight speed increases, aerodynamic drag rises more sharply than the availability of atmospheric oxygen. The ratio of oxygen mass flux to dynamic pressure cannot be improved by changing altitude. The maximum possible speed for airbreathing propulsion is limited by the ratio of air capture area to vehicle drag area, approximately Mach 6 at equal areas. Simulation of vehicle acceleration shows that the use of atmospheric oxygen offers a significant potential for minimizing onboard consumables at low speeds. These fundamental calculations indicate that a practical airbreathing launch vehicle would accelerate to near steady-state speed while consuming only onboard fuel, then transition to rocket propulsion. It is suggested that an aircraft carrying a rocket-propelled vehicle to approximately Mach 5 could be a realistic technical goal toward improving access to orbit.

  20. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  1. Particle acceleration in flares

    NASA Technical Reports Server (NTRS)

    Benz, Arnold O.; Kosugi, Takeo; Aschwanden, Markus J.; Benka, Steve G.; Chupp, Edward L.; Enome, Shinzo; Garcia, Howard; Holman, Gordon D.; Kurt, Victoria G.; Sakao, Taro

    1994-01-01

    Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, gamma-rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.

  2. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases.

  3. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. PMID:24365468

  4. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  5. The Association between Environmental Lead Exposure and Bone Density in Children

    PubMed Central

    Campbell, James R.; Rosier, Randy N.; Novotny, Leonore; Puzas, J. Edward

    2004-01-01

    Osteoporosis is a decrease in bone mineral density (BMD) that predisposes individuals to fractures. Although an elderly affliction, a predisposition may develop during adolescence if a sufficient peak BMD is not achieved. Rat studies have found that lead exposure is associated with decreased BMD. However, human studies are limited. We hypothesized that the BMD of children with high lead exposure would be lower than the BMD of children with low lead exposure. We collected data on 35 subjects; 16 had low cumulative lead exposure (mean, 6.5 μg/dL), and 19 had high exposure (mean, 23.6 μg/dL). All were African American; there was no difference between the groups by sex, age, body mass index, socioeconomic status, physical activity, or calcium intake. Significant differences in BMD between low and high cumulative lead exposure were noted in the head (1.589 vs. 1.721 g/cm2), third lumbar vertebra (0.761 vs. 0.819 g/cm2), and fourth lumbar vertebra (0.712 vs. 0.789 g/cm2). Contrary to our hypothesis, subjects with high lead exposure had a significantly higher BMD than did subjects with low lead exposure. This may reflect a true phenomenon because lead exposure has been reported to accelerate bony maturation by inhibiting the effects of parathyroid hormone–related peptide. Accelerated maturation of bone may ultimately result in a lower peak BMD being achieved in young adulthood, thus predisposing to osteoporosis in later life. Future studies need to investigate this proposed model. PMID:15289167

  6. High temperature experiment for accelerator inertial fusion

    SciTech Connect

    Lee, E.P.

    1985-05-01

    The High Temperature Experiment (HTE) is intended to produce temperatures of 50 to 100 eV in solid density targets driven by heavy ion beams from a multiple beam induction linac. The fundamental variables (particle species, energy, number of beamlets, current and pulse length) must be fixed to achieve the temperature at minimum cost, subject to criteria of technical feasibility and relevance to the development of a Fusion Driver. The conceptual design begins with an assumed (radiation-limited) target temperature and uses limitations due to particle range, beamlet perveance, and target disassembly to bound the allowable values of mass number (A) and energy (E). An accelerator model is then applied to determine the minimum length accelerator, which is a guide to total cost. The accelerator model takes into account limits on transportable charge, maximum gradient, core mass per linear meter, and head-to-tail momentum variation within a pulse.

  7. Angular velocities, angular accelerations, and coriolis accelerations

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  8. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  9. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph

    2010-07-29

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?.

  10. Particle Acceleration in Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi

    2005-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma ray burst (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments.

  11. Microscale acceleration history discriminators

    DOEpatents

    Polosky, Marc A.; Plummer, David W.

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  12. Diagnostics for induction accelerators

    SciTech Connect

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960`s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore`s Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail.

  13. KEK digital accelerator

    NASA Astrophysics Data System (ADS)

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  14. Physics and Accelerator Applications of RF Superconductivity

    SciTech Connect

    H. Padamsee; K. W. Shepard; Ron Sundelin

    1993-12-01

    A key component of any particle accelerator is the device that imparts energy gain to the charged particle. This is usually an electromagnetic cavity resonating at a microwave frequency, chosen between 100 and 3000 MHz. Serious attempts to utilize superconductors for accelerating cavities were initiated more than 25 years ago with the acceleration of electrons in a lead-plated resonator at Stanford University (1). The first full-scale accelerator, the Stanford SCA, was completed in 1978 at the High Energy Physics Laboratory (HEPL) (2). Over the intervening one and a half decades, superconducting cavities have become increasingly important to particle accelerators for nuclear physics and high energy physics. For continuous operation, as is required for many applications, the power dissipation in the walls of a copper structure is quite substantial, for example, 0.1 megawatts per meter of structure operating at an accelerating field of 1 million volts/meter (MV/m). since losses increase as the square of the accelerating field, copper cavities become severely uneconomical as demand for higher fields grows with the higher energies called for by experimenters to probe ever deeper into the structure of matter. Rf superconductivity has become an important technology for particle accelerators. Practical structures with attractive performance levels have been developed for a variety of applications, installed in the targeted accelerators, and operated over significant lengths of time. Substantial progress has been made in understanding field and Q limitations and in inventing cures to advance performance. The technical and economical potential of rf superconductivity makes it an important candidate for future advanced accelerators for free electron lasers, for nuclear physics, and for high energy physics, at the luminosity as well as at the energy frontiers.

  15. Laser driven electron acceleration in vacuum, gases and plasmas

    SciTech Connect

    Sprangle, P.; Esarey, E.; Krall, J.

    1996-04-19

    This paper discusses some of the important issues pertaining to laser acceleration in vacuum, neutral gases and plasmas. The limitations of laser vacuum acceleration as they relate to electron slippage, laser diffraction, material damage and electron aperture effects, are discussed. An inverse Cherenkov laser acceleration configuration is presented in which a laser beam is self guided in a partially ionized gas. Optical self guiding is the result of a balance between the nonlinear self focusing properties of neutral gases and the diffraction effects of ionization. The stability of self guided beams is analyzed and discussed. In addition, aspects of the laser wakefield accelerator are presented and laser driven accelerator experiments are briefly discussed.

  16. Controllable Laser Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Takano, M.; Barada, D.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Wang, W. M.; Limpouch, J.; Andreev, A.; Bulanov, S. V.; Sheng, Z. M.; Klimo, O.; Psikal, J.; Ma, Y. Y.; Li, X. F.; Yu, Q. S.

    2016-02-01

    In this paper a future laser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. Especially a collimation device is focused in this paper. The future laser ion accelerator should have an ion source, ion collimators, ion beam bunchers, and ion post acceleration devices [Laser Therapy 22, 103(2013)]: the ion particle energy and the ion energy spectrum are controlled to meet requirements for a future compact laser ion accelerator for ion cancer therapy or for other purposes. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching would be successfully realized by a multistage laser-target interaction.

  17. Cascaded radiation pressure acceleration

    SciTech Connect

    Pei, Zhikun; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Zhang, Lingang; Yi, Longqing; Shi, Yin; Xu, Zhizhan

    2015-07-15

    A cascaded radiation-pressure acceleration scheme is proposed. When an energetic proton beam is injected into an electrostatic field moving at light speed in a foil accelerated by light pressure, protons can be re-accelerated to much higher energy. An initial 3-GeV proton beam can be re-accelerated to 7 GeV while its energy spread is narrowed significantly, indicating a 4-GeV energy gain for one acceleration stage, as shown in one-dimensional simulations and analytical results. The validity of the method is further confirmed by two-dimensional simulations. This scheme provides a way to scale proton energy at the GeV level linearly with laser energy and is promising to obtain proton bunches at tens of gigaelectron-volts.

  18. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  19. Requirements for Simulating Space Radiation With Particle Accelerators

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Wilson, J. W.; Cucinotta, F.; Kim, M-H Y.

    2004-01-01

    Interplanetary space radiation consists of fully ionized nuclei of atomic elements with high energy for which only the few lowest energy ions can be stopped in shielding materials. The health risk from exposure to these ions and their secondary radiations generated in the materials of spacecraft and planetary surface enclosures is a major limiting factor in the management of space radiation risk. Accurate risk prediction depends on a knowledge of basic radiobiological mechanisms and how they are modified in the living tissues of a whole organism. To a large extent, this knowledge is not currently available. It is best developed at ground-based laboratories, using particle accelerator beams to simulate the components of space radiation. Different particles, in different energy regions, are required to study different biological effects, including beams of argon and iron nuclei in the energy range 600 to several thousand MeV/nucleon and carbon beams in the energy range of approximately 100 MeV/nucleon to approximately 1000 MeV/nucleon. Three facilities, one each in the United States, in Germany and in Japan, currently have the partial capability to satisfy these constraints. A facility has been proposed using the Brookhaven National Laboratory Booster Synchrotron in the United States; in conjunction with other on-site accelerators, it will be able to provide the full range of heavy ion beams and energies required. International cooperation in the use of these facilities is essential to the development of a safe international space program.

  20. Psychological effects of thought acceleration.

    PubMed

    Pronin, Emily; Jacobs, Elana; Wegner, Daniel M

    2008-10-01

    Six experiments found that manipulations that increase thought speed also yield positive affect. These experiments varied in both the methods used for accelerating thought (i.e., instructions to brainstorm freely, exposure to multiple ideas, encouragement to plagiarize others' ideas, performance of easy cognitive tasks, narration of a silent video in fast-forward, and experimentally controlled reading speed) and the contents of the thoughts that were induced (from thoughts about money-making schemes to thoughts of five-letter words). The results suggested that effects of thought speed on mood are partially rooted in the subjective experience of thought speed. The results also suggested that these effects can be attributed to the joy-enhancing effects of fast thinking (rather than only to the joy-killing effects of slow thinking). This work is inspired by observations of a link between "racing thoughts" and euphoria in cases of clinical mania, and potential implications of that observed link are discussed.

  1. Lifetime Prediction for Degradation of Solar Mirrors using Step-Stress Accelerated Testing (Presentation)

    SciTech Connect

    Lee, J.; Elmore, R.; Kennedy, C.; Gray, M.; Jones, W.

    2011-09-01

    This research is to illustrate the use of statistical inference techniques in order to quantify the uncertainty surrounding reliability estimates in a step-stress accelerated degradation testing (SSADT) scenario. SSADT can be used when a researcher is faced with a resource-constrained environment, e.g., limits on chamber time or on the number of units to test. We apply the SSADT methodology to a degradation experiment involving concentrated solar power (CSP) mirrors and compare the results to a more traditional multiple accelerated testing paradigm. Specifically, our work includes: (1) designing a durability testing plan for solar mirrors (3M's new improved silvered acrylic "Solar Reflector Film (SFM) 1100") through the ultra-accelerated weathering system (UAWS), (2) defining degradation paths of optical performance based on the SSADT model which is accelerated by high UV-radiant exposure, and (3) developing service lifetime prediction models for solar mirrors using advanced statistical inference. We use the method of least squares to estimate the model parameters and this serves as the basis for the statistical inference in SSADT. Several quantities of interest can be estimated from this procedure, e.g., mean-time-to-failure (MTTF) and warranty time. The methods allow for the estimation of quantities that may be of interest to the domain scientists.

  2. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin M.

    2007-08-22

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  3. Current limiters

    SciTech Connect

    Loescher, D.H.; Noren, K.

    1996-09-01

    The current that flows between the electrical test equipment and the nuclear explosive must be limited to safe levels during electrical tests conducted on nuclear explosives at the DOE Pantex facility. The safest way to limit the current is to use batteries that can provide only acceptably low current into a short circuit; unfortunately this is not always possible. When it is not possible, current limiters, along with other design features, are used to limit the current. Three types of current limiters, the fuse blower, the resistor limiter, and the MOSFET-pass-transistor limiters, are used extensively in Pantex test equipment. Detailed failure mode and effects analyses were conducted on these limiters. Two other types of limiters were also analyzed. It was found that there is no best type of limiter that should be used in all applications. The fuse blower has advantages when many circuits must be monitored, a low insertion voltage drop is important, and size and weight must be kept low. However, this limiter has many failure modes that can lead to the loss of over current protection. The resistor limiter is simple and inexpensive, but is normally usable only on circuits for which the nominal current is less than a few tens of milliamperes. The MOSFET limiter can be used on high current circuits, but it has a number of single point failure modes that can lead to a loss of protective action. Because bad component placement or poor wire routing can defeat any limiter, placement and routing must be designed carefully and documented thoroughly.

  4. Radiation Safety Systems for Accelerator Facilities

    SciTech Connect

    James C. Liu; Jeffrey S. Bull; John Drozdoff; Robert May; Vaclav Vylet

    2001-10-01

    The Radiation Safety System (RSS) of an accelerator facility is used to protect people from prompt radiation hazards associated with accelerator operation. The RSS is a fully interlocked, engineered system with a combination of passive and active elements that are reliable, redundant, and fail-safe. The RSS consists of the Access Control System (ACS) and the Radiation Containment System (RCS). The ACS is to keep people away from the dangerous radiation inside the shielding enclosure. The RCS limits and contains the beam/radiation conditions to protect people from the prompt radiation hazards outside the shielding enclosure in both normal and abnormal operations. The complexity of a RSS depends on the accelerator and its operation, as well as associated hazard conditions. The approaches of RSS among different facilities can be different. This report gives a review of the RSS for accelerator facilities.

  5. Induction and prevention of acceleration atelectasis.

    PubMed

    Tacker, W A; Balldin, U I; Burton, R R; Glaister, D H; Gillingham, K K; Mercer, J R

    1987-01-01

    Acceleration atelectasis is the absorptional collapse of alveoli in the dependent lung due to increased accelerative forces. It is exacerbated by breathing 100% oxygen and, during +Gz exposure, by the use of an anti-G suit. Experiments were conducted on 12 subjects using simulated aerial combat maneuvers (SACM) with G profiles having peak exposures of either 4.5 G or 9 G. Decreases in vital capacity (VC) measurements were used as quantification of atelectasis, two types of reduction being identified and described. Labile reductions in VC were readily restored by a deep breath or cough. Such reduction approximated 28% following the 4.5-G SACM and 25% following the 9-G SACM. More persistent (so called) stable reductions were of lesser degree, values of -20% being seen following both 9 G and 4.5 G maneuvers. Acceleration atelectasis causes symptoms of chest pain, coughing, and shortness of breath. Subjective ratings of the severity of these symptoms were obtained from the subjects, and these were much greater following the 4.5-G SACM exposures than after the 9-G runs. Acceleration atelectasis was reduced by dilution of the inspired oxygen concentration by argon and nitrogen (evaluated at 95, 82.5, 70, 50, and 20% oxygen); the addition of unassisted positive pressure at 30 mm Hg (4 kPa) to the breathing mask; or the performance of the anti-G straining maneuver (AGSM).

  6. Large electrostatic accelerators

    SciTech Connect

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  7. Analyzing radial acceleration with a smartphone acceleration sensor

    NASA Astrophysics Data System (ADS)

    Vogt, Patrik; Kuhn, Jochen

    2013-03-01

    This paper continues the sequence of experiments using the acceleration sensor of smartphones (for description of the function and the use of the acceleration sensor, see Ref. 1) within this column, in this case for analyzing the radial acceleration.

  8. Ionization and pulse lethargy effects in inverse Cherenkov accelerators

    SciTech Connect

    Sprangle, P.; Hubbard, R.F.,; Hafizi, B.,

    1997-05-01

    Ionization processes limit the accelerating gradient and place an upper limit on the pulse duration of the electromagnetic driver in the inverse Cherenkov accelerator (ICA). Group velocity slippage, i.e., pulse lethargy, on the other hand, imposes a lower limit on the pulse duration. These limits are obtained for two ICA configurations in which the electromagnetic driver (e.g., laser or millimeter wave source) is propagated in a waveguide that is (i) lined with a dielectric material or (ii) filled with a neutral gas. In either configuration the electromagnetic driving field is guided and has an axial electric field with phase velocity equal to the speed of light in vacuum, c. The intensity of the driver in the ICA, and therefore the acceleration gradient, is limited by tunneling and collisional ionization effects. Partial ionization of the dielectric liner or gas can lead to significant modification of the dispersive properties of the waveguide, altering the phase velocity of the accelerating field and causing particle slippage, thus disrupting the acceleration process. An additional limitation on the pulse duration is imposed since the group velocity of the driving pulse is less than c and the pulse slips behind the accelerated electrons. Hence for sufficiently short pulses the electrons outrun the pulse, terminating the acceleration. Limitations on the driver pulse duration and accelerating gradient, due to ionization and pulse lethargy, are estimated for the two ICA configurations. Maximum accelerating gradients and pulse durations are presented for a 10 {mu}m, 1 mm, and 1 cm wavelength electromagnetic driver. The combination of ionization and pulse lethargy effects impose severe limitations on the maximum energy gain in inverse Cherenkov accelerators. {copyright} {ital 1997} {ital The American Physical Society}

  9. Confronting Twin Paradox Acceleration

    NASA Astrophysics Data System (ADS)

    Murphy, Thomas W.

    2016-05-01

    The resolution to the classic twin paradox in special relativity rests on the asymmetry of acceleration. Yet most students are not exposed to a satisfactory analysis of what exactly happens during the acceleration phase that results in the nonaccelerated observer's more rapid aging. The simple treatment presented here offers both graphical and quantitative solutions to the problem, leading to the correct result that the acceleration-induced age gap is 2Lβ years when the one-way distance L is expressed in light-years and velocity β ≡v/c .

  10. Twisted waveguide accelerating structure.

    SciTech Connect

    Kang, Y. W.

    2000-08-15

    A hollow waveguide with a uniform cross section may be used for accelerating charged particles if the phase velocity of an accelerating mode is equal to or less than the free space speed of light. Regular straight hollow waveguides have phase velocities of propagating electromagnetic waves greater than the free-space speed of light. if the waveguide is twisted, the phase velocities of the waveguide modes become slower. The twisted waveguide structure has been modeled and computer simulated in 3-D electromagnetic solvers to show the slow-wave properties for the accelerating mode.

  11. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  12. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  13. Accelerated corrosion of stainless steel in thiocyanate-containing solutions

    SciTech Connect

    Pistorius, P Chris; Li, Wen

    2012-09-19

    It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, which is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk sulfide

  14. Tripartite entanglement of fermionic system in accelerated frames

    SciTech Connect

    Khan, Salman

    2014-09-15

    The dynamics of tripartite entanglement of fermionic system in noninertial frames through linear contraction criterion when one or two observers are accelerated is investigated. In one observer accelerated case the entanglement measurement is not invariant with respect to the partial realignment of different subsystems and for two observers accelerated case it is invariant. It is shown that the acceleration of the frame does not generate entanglement in any bipartite subsystems. Unlike the bipartite states, the genuine tripartite entanglement does not completely vanish in both one observer accelerated and two observers accelerated cases even in the limit of infinite acceleration. The degradation of tripartite entanglement is fast when two observers are accelerated than when one observer is accelerated. It is shown that tripartite entanglement is a better resource for quantum information processing than the bipartite entanglement in noninertial frames. - Highlights: • Tripartite entanglement of fermionic system in noninertial frames is studied. • Linear contraction criterion for quantifying tripartite entanglement is used. • Acceleration does not produce any bipartite entanglement. • The invariance of entanglement quantifier depends on accelerated observers. • The tripartite entanglement degrades against the acceleration, it never vanishes.

  15. Accelerator on a Chip

    ScienceCinema

    England, Joel

    2016-07-12

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  16. Charged particle accelerator grating

    DOEpatents

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  17. Non-accelerator experiments

    SciTech Connect

    Goldhaber, M.

    1986-01-01

    This report discusses several topics which can be investigated without the use of accelerators. Topics covered are: (1) proton decay, (2) atmospheric neutrinos, (3) neutrino detection, (4) muons from Cygnus X-3, and (5) the double-beta decay.

  18. Dielectric assist accelerating structure

    NASA Astrophysics Data System (ADS)

    Satoh, D.; Yoshida, M.; Hayashizaki, N.

    2016-01-01

    A higher-order TM02 n mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

  19. CLASHING BEAM PARTICLE ACCELERATOR

    DOEpatents

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  20. Rare Isotope Accelerators

    NASA Astrophysics Data System (ADS)

    Savard, Guy

    2002-04-01

    The next frontier for low-energy nuclear physics involves experimentation with accelerated beams of short-lived radioactive isotopes. A new facility, the Rare Isotope Accelerator (RIA), is proposed to produce large amount of these rare isotopes and post-accelerate them to energies relevant for studies in nuclear physics, astrophysics and the study of fundamental interactions at low energy. The basic science motivation for this facility will be introduced. The general facility layout, from the 400 kW heavy-ion superconducting linac used for production of the required isotopes to the novel production and extraction schemes and the highly efficient post-accelerator, will be presented. Special emphasis will be put on a number of technical breakthroughs and recent R&D results that enable this new facility.

  1. Accelerator on a Chip

    SciTech Connect

    England, Joel

    2014-06-30

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  2. HEAVY ION LINEAR ACCELERATOR

    DOEpatents

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  3. Wake field acceleration experiments

    SciTech Connect

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics. I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs.

  4. Vibration control in accelerators

    SciTech Connect

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  5. The impact of dosing interval in a novel tandem oral dosing strategy: enhancing the exposure of low solubility drug candidates in a preclinical setting.

    PubMed

    Chiang, Po-Chang; South, Sarah A; Wene, Steve P

    2011-01-01

    In drug discovery, time and resource constraints necessitate increasingly early decision making to accelerate or stop preclinical programs. Early discovery drug candidates may be potent inhibitors of new targets, but all too often exhibit poor pharmaceutical or pharmacokinetic properties that limit the in vivo exposure. Low solubility of a drug candidate often leads to poor oral bioavailability and poor dose linearity. This issue is more significant for efficacy and target safety studies where high drug exposures are desired. When solubility issues are confronted, enabling formulations are often required to improve the exposure. However, this approach often requires a substantial and lengthy investment to develop the formulation. Previously, we introduced a gastrointestinal (GI) transit time-based novel oral tandem dosing strategy that enhanced in vivo exposures in rats. In this study, a refined time interval versus dose theory was tested. The resulting in vivo exposures based on altering frequency and doses were compared, and significant impacts were found.

  6. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema

    None

    2016-07-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  7. Collective field accelerator

    DOEpatents

    Luce, John S.

    1978-01-01

    A collective field accelerator which operates with a vacuum diode and utilizes a grooved cathode and a dielectric anode that operates with a relativistic electron beam with a .nu./.gamma. of .about. 1, and a plurality of dielectric lenses having an axial magnetic field thereabout to focus the collectively accelerated electrons and ions which are ejected from the anode. The anode and lenses operate as unoptimized r-f cavities which modulate and focus the beam.

  8. Rolamite acceleration sensor

    DOEpatents

    Abbin, Joseph P.; Briner, Clifton F.; Martin, Samuel B.

    1993-01-01

    A rolamite acceleration sensor which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently.

  9. Microgravity Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Microgravity Acceleration Measurement System (MAMS) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  10. Rolamite acceleration sensor

    DOEpatents

    Abbin, J.P.; Briner, C.F.; Martin, S.B.

    1993-12-21

    A rolamite acceleration sensor is described which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently. 6 figures.

  11. Microwave inverse Cerenkov accelerator

    NASA Astrophysics Data System (ADS)

    Zhang, T. B.; Marshall, T. C.; LaPointe, M. A.; Hirshfield, J. L.

    1997-03-01

    A Microwave Inverse Cerenkov Accelerator (MICA) is currently under construction at the Yale Beam Physics Laboratory. The accelerating structure in MICA consists of an axisymmetric dielectrically lined waveguide. For the injection of 6 MeV microbunches from a 2.856 GHz RF gun, and subsequent acceleration by the TM01 fields, particle simulation studies predict that an acceleration gradient of 6.3 MV/m can be achieved with a traveling-wave power of 15 MW applied to the structure. Synchronous injection into a narrow phase window is shown to allow trapping of all injected particles. The RF fields of the accelerating structure are shown to provide radial focusing, so that longitudinal and transverse emittance growth during acceleration is small, and that no external magnetic fields are required for focusing. For 0.16 nC, 5 psec microbunches, the normalized emittance of the accelerated beam is predicted to be less than 5πmm-mrad. Experiments on sample alumina tubes have been conducted that verify the theoretical dispersion relation for the TM01 mode over a two-to-one range in frequency. No excitation of axisymmetric or non-axisymmetric competing waveguide modes was observed. High power tests showed that tangential electric fields at the inner surface of an uncoated sample of alumina pipe could be sustained up to at least 8.4 MV/m without breakdown. These considerations suggest that a MICA test accelerator can be built to examine these predictions using an available RF power source, 6 MeV RF gun and associated beam line.

  12. Amps particle accelerator definition study

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1975-01-01

    The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.

  13. Accelerated Tank Closure Demonstration Project

    SciTech Connect

    SAMS, T.L.

    2003-02-01

    Among the highest priorities for action under the ''Hanford Federal Facility and Agreement and Consent Order'', hereafter referred to as the Tri-Party Agreement, is the retrieval, treatment and disposal of Hanford Site tank waste. Tank waste is recognized as one of the primary threats to the Columbia River and one of the most complex technical challenges. Progress has been made in resolving safety issues, characterizing tank waste and past tank leaks, enhancing double-shell tank waste transfer and operations systems, retrieving single-shell tank waste, deploying waste treatment facilities, and planning for the disposal of immobilized waste product. However, limited progress has been made in developing technologies and providing a sound technical basis for tank system closure. To address this limitation the Accelerated Tank Closure Demonstration Project was created to develop information through technology demonstrations in support of waste retrieval and closure decisions. To complete its mission the Accelerated Tank Closure Demonstration Project has adopted performance objectives that include: protecting human health and the environment; minimizing/eliminating potential waste releases to the soil and groundwater; preventing water infiltration into the tank; maintaining accessibility of surrounding tanks for future closure; maintaining tank structural integrity; complying with applicable waste retrieval, disposal, and closure regulations; and maintaining flexibility for final closure options in the future.

  14. Laser Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Malka, Victor

    The continuing development of powerful laser systems has permitted to extend the interaction of laser beams with matter far into the relativistic domain, and to demonstrate new approaches for producing energetic particle beams. The extremely large electric fields, with amplitudes exceeding the TV/m level, that are produced in plasma medium are of relevance particle acceleration. Since the value of this longitudinal electric field, 10,000 times larger than those produced in conventional radio-frequency cavities, plasma accelerators appear to be very promising for the development of compact accelerators. The incredible progresses in the understanding of laser plasma interaction physic, allows an excellent control of electron injection and acceleration. Thanks to these recent achievements, laser plasma accelerators deliver today high quality beams of energetic radiation and particles. These beams have a number of interesting properties such as shortness, brightness and spatial quality, and could lend themselves to applications in many fields, including medicine, radio-biology, chemistry, physics and material science,security (material inspection), and of course in accelerator science.

  15. Biomedical accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  16. Accelerators for America's Future

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  17. Improving Rural Teachers' Attitudes towards Acceleration

    ERIC Educational Resources Information Center

    Olthouse, Jill M.

    2015-01-01

    Gifted students see both educational benefits and barriers as a result of living in rural communities. Benefits include increased individual attention and community engagement; barriers include limited curricular options (Lawrence, 2009). Acceleration is an option that has positive academic outcomes but is underused, especially in rural areas.…

  18. Compact RF ion source for industrial electrostatic ion accelerator

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  19. Compact RF ion source for industrial electrostatic ion accelerator.

    PubMed

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  20. Diffusive Shock Acceleration and Reconnection Acceleration Processes

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.; Cummings, A.; Stone, E.; Decker, R.

    2015-12-01

    Shock waves, as shown by simulations and observations, can generate high levels of downstream vortical turbulence, including magnetic islands. We consider a combination of diffusive shock acceleration (DSA) and downstream magnetic-island-reconnection-related processes as an energization mechanism for charged particles. Observations of electron and ion distributions downstream of interplanetary shocks and the heliospheric termination shock (HTS) are frequently inconsistent with the predictions of classical DSA. We utilize a recently developed transport theory for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets. Particle energization associated with the anti-reconnection electric field, a consequence of magnetic island merging, and magnetic island contraction, are considered. For the former only, we find that (i) the spectrum is a hard power law in particle speed, and (ii) the downstream solution is constant. For downstream plasmoid contraction only, (i) the accelerated spectrum is a hard power law in particle speed; (ii) the particle intensity for a given energy peaks downstream of the shock, and the distance to the peak location increases with increasing particle energy, and (iii) the particle intensity amplification for a particular particle energy, f(x,c/{c}0)/f(0,c/{c}0), is not 1, as predicted by DSA, but increases with increasing particle energy. The general solution combines both the reconnection-induced electric field and plasmoid contraction. The observed energetic particle intensity profile observed by Voyager 2 downstream of the HTS appears to support a particle acceleration mechanism that combines both DSA and magnetic-island-reconnection-related processes.