Science.gov

Sample records for acceleration measurement systems

  1. Microgravity Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Microgravity Acceleration Measurement System (MAMS) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  2. Space Acceleration Measurement System-II

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Space Acceleration Measurement System (SAMS-II) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  3. Space Acceleration Measurement System for Free Flyers

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.

    1999-01-01

    Experimenters from the fluids, combustion, materials, and life science disciplines all use the microgravity environment of space to enhance their understanding of fundamental physical phenomena caused by disturbances from events such as spacecraft maneuvers, equipment operations, atmospheric drag, and (for manned flights) crew movement. Space conditions reduce gravity but do not eliminate it. To quantify the level of these disturbances, NASA developed the Space Acceleration Measurement System (SAMS) series to collect data characterizing the acceleration environment on the space shuttles. This information is provided to investigators so that they can evaluate how the microgravity environment affects their experiments. Knowledge of the microgravity environment also helps investigators to plan future experiments. The original SAMS system flew 20 missions on the shuttle as well as on the Russian space station Mir. Presently, Lewis is developing SAMS-II for the International Space Station; it will be a distributed system using digital output sensor heads. The latest operational version of SAMS, SAMS-FF, was originally designed for free flyer spacecraft and unmanned areas. SAMS-FF is a flexible, modular system, housed in a lightweight package, and it uses advances in technology to improve performance. The hardware package consists of a control and data acquisition module, three different types of sensors, data storage devices, and ground support equipment interfaces. Three different types of sensors are incorporated to measure both high- and low-frequency accelerations and the roll rate velocity. Small, low-power triaxial sensor heads (TSH's) offer high resolution and selectable bandwidth, and a special low-frequency accelerometer is available for high-resolution, low-frequency applications. A state-of-the-art, triaxial fiberoptic gyroscope that measures extremely low roll rates is housed in a compact package. The versatility of the SAMS-FF system is shown in the three

  4. Advanced Microgravity Acceleration Measurement Systems (AMAMS) Being Developed

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Kacpura, Thomas J.

    2003-01-01

    The Advanced Microgravity Acceleration Measurement Systems (AMAMS) project is part of NASA s Instrument Technology Development program to develop advanced sensor systems. The primary focus of the AMAMS project is to develop microelectromechanical systems (MEMS) for acceleration sensor systems to replace existing electromechanical sensor systems presently used to assess relative gravity levels aboard spacecraft. These systems are used to characterize both vehicle and payload responses to low-gravity vibroacoustic environments. The collection of microgravity acceleration data is useful to the microgravity life sciences, microgravity physical sciences, and structural dynamics communities. The inherent advantages of semiconductor-based systems are reduced size, mass, and power consumption, with enhanced long-term calibration stability.

  5. Development of a Wireless Displacement Measurement System Using Acceleration Responses

    PubMed Central

    Park, Jong-Woong; Sim, Sung-Han; Jung, Hyung-Jo; Spencer, Billie F.

    2013-01-01

    Displacement measurements are useful information for various engineering applications such as structural health monitoring (SHM), earthquake engineering and system identification. Most existing displacement measurement methods are costly, labor-intensive, and have difficulties particularly when applying to full-scale civil structures because the methods require stationary reference points. Indirect estimation methods converting acceleration to displacement can be a good alternative as acceleration transducers are generally cost-effective, easy to install, and have low noise. However, the application of acceleration-based methods to full-scale civil structures such as long span bridges is challenging due to the need to install cables to connect the sensors to a base station. This article proposes a low-cost wireless displacement measurement system using acceleration. Developed with smart sensors that are low-cost, wireless, and capable of on-board computation, the wireless displacement measurement system has significant potential to impact many applications that need displacement information at multiple locations of a structure. The system implements an FIR-filter type displacement estimation algorithm that can remove low frequency drifts typically caused by numerical integration of discrete acceleration signals. To verify the accuracy and feasibility of the proposed system, laboratory tests are carried out using a shaking table and on a three storey shear building model, experimentally confirming the effectiveness of the proposed system. PMID:23881123

  6. Space acceleration measurement system triaxial sensor head error budget

    NASA Technical Reports Server (NTRS)

    Thomas, John E.; Peters, Rex B.; Finley, Brian D.

    1992-01-01

    The objective of the Space Acceleration Measurement System (SAMS) is to measure and record the microgravity environment for a given experiment aboard the Space Shuttle. To accomplish this, SAMS uses remote triaxial sensor heads (TSH) that can be mounted directly on or near an experiment. The errors of the TSH are reduced by calibrating it before and after each flight. The associated error budget for the calibration procedure is discussed here.

  7. Microgravity Acceleration Measurement System (MAMS) Flight Configuration Verification and Status

    NASA Technical Reports Server (NTRS)

    Wagar, William

    2000-01-01

    The Microgravity Acceleration Measurement System (MAMS) is a precision spaceflight instrument designed to measure and characterize the microgravity environment existing in the US Lab Module of the International Space Station. Both vibratory and quasi-steady triaxial acceleration data are acquired and provided to an Ethernet data link. The MAMS Double Mid-Deck Locker (DMDL) EXPRESS Rack payload meets all the ISS IDD and ICD interface requirements as discussed in the paper which also presents flight configuration illustrations. The overall MAMS sensor and data acquisition performance and verification data are presented in addition to a discussion of the Command and Data Handling features implemented via the ISS, downlink and the GRC Telescience Center displays.

  8. Space Acceleration Measurement System (SAMS)/Orbital Acceleration Research Experiment (OARE)

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak

    1998-01-01

    The Life and Microgravity Spacelab (LMS) payload flew on the Orbiter Columbia on mission STS-78 from June 20th to July 7th, 1996. The LMS payload on STS-78 was dedicated to life sciences and microgravity experiments. Two accelerometer systems managed by the NASA Lewis Research Center (LERC) flew to support these experiments, namely the Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurements System (SAMS). In addition, the Microgravity Measurement Assembly (NOAA), managed by the European Space Research and Technology Center (ESA/ESTEC), and sponsored by NASA, collected acceleration data in support of the experiments on-board the LMS mission. OARE downlinked real-time quasi-steady acceleration data, which was provided to the investigators. The SAMS recorded higher frequency data on-board for post-mission analysis. The MMA downlinked real-time quasi-steady as well as higher frequency acceleration data, which was provided to the investigators. The Principal Investigator Microgravity Services (PIMS) project at NASA LERC supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. A summary report was prepared by PIMS to furnish interested experiment investigators with a guide to evaluate the acceleration environment during STS-78, and as a means of identifying areas which require further study. The summary report provides an overview of the STS-78 mission, describes the accelerometer systems flown on this mission, discusses some specific analyses of the accelerometer data in relation to the various activities which occurred during the mission, and presents plots resulting from these analyses as a snapshot of the environment during the mission. Numerous activities occurred during the STS-78 mission that are of interest to the low-gravity community. Specific activities of interest during this mission were crew exercise, radiator deployment, Vernier Reaction

  9. Optical system for measurement of pyrotechnic test accelerations

    NASA Astrophysics Data System (ADS)

    Lieberman, Paul; Czajkowski, John; Rehard, John

    1992-12-01

    This effort was directed at comparing the response of several different accelerometer and amplifier combinations to the pyrotechnic pulse simulating the ordnance separation of stages of multistage missiles. These pyrotechnic events can contain peak accelerations in excess of 100,000 G and a frequency content exceeding 100,000 Hz. The main thrust of this work was to compare the several accelerometer systems with each other and with a very accurate laser Doppler displacement meter in order to establish the frequency bands and acceleration amplitudes where the accelerometer systems are in error. The comparisons were made in simple sine-wave and low-acceleration amplitude environments, as well as in very severe pyroshock environments. An optical laser Doppler displacement meter (LDDM) was used to obtain the displacement velocity and acceleration histories, as well as the corresponding shock spectrum.

  10. Non-Destructive Damping Measurement for Wafer-Level Packaged Microelectromechanical System (MEMS) Acceleration Switches

    DTIC Science & Technology

    2014-09-01

    Non-destructive Damping Measurement for Wafer-level Packaged Microelectromechanical System (MEMS) Acceleration Switches by Ryan Knight and...Microelectromechanical System (MEMS) Acceleration Switches Ryan Knight and Evan Cheng Sensors and Electron Devices Directorate, ARL...Damping Measurement for Wafer-level Packaged Microelectromechanical System (MEMS) Acceleration Switches 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  11. The Awful Truth About Zero-Gravity: Space Acceleration Measurement System; Orbital Acceleration Research Experiment

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Earth's gravity holds the Shuttle in orbit, as it does satellites and the Moon. The apparent weightlessness experienced by astronauts and experiments on the Shuttle is a balancing act, the result of free-fall, or continuously falling around Earth. An easy way to visualize what is happening is with a thought experiment that Sir Isaac Newton did in 1686. Newton envisioned a mountain extending above Earth's atmosphere so that friction with the air would be eliminated. He imagined a cannon atop the mountain and aimed parallel to the ground. Firing the cannon propels the cannonball forward. At the same time, Earth's gravity pulls the cannonball down to the surface and eventual impact. Newton visualized using enough powder to just balance gravity so the cannonball would circle the Earth. Like the cannonball, objects orbiting Earth are in continuous free-fall, and it appears that gravity has been eliminated. Yet, that appearance is deceiving. Activities aboard the Shuttle generate a range of accelerations that have effects similar to those of gravity. The crew works and exercises. The main data relay antenna quivers 17 times per second to prevent 'stiction,' where parts stick then release with a jerk. Cooling pumps, air fans, and other systems add vibration. And traces of Earth's atmosphere, even 200 miles up, drag on the Shuttle. While imperceptible to us, these vibrations can have a profound impact on the commercial research and scientific experiments aboard the Shuttle. Measuring these forces is necessary so that researchers and scientists can see what may have affected their experiments when analyzing data. On STS-107 this service is provided by the Space Acceleration Measurement System for Free Flyers (SAMS-FF) and the Orbital Acceleration Research Experiment (OARE). Precision data from these two instruments will help scientists analyze data from their experiments and eliminate outside influences from the phenomena they are studying during the mission.

  12. Method for direct measurement of cosmic acceleration by 21-cm absorption systems.

    PubMed

    Yu, Hao-Ran; Zhang, Tong-Jie; Pen, Ue-Li

    2014-07-25

    So far there is only indirect evidence that the Universe is undergoing an accelerated expansion. The evidence for cosmic acceleration is based on the observation of different objects at different distances and requires invoking the Copernican cosmological principle and Einstein's equations of motion. We examine the direct observability using recession velocity drifts (Sandage-Loeb effect) of 21-cm hydrogen absorption systems in upcoming radio surveys. This measures the change in velocity of the same objects separated by a time interval and is a model-independent measure of acceleration. We forecast that for a CHIME-like survey with a decade time span, we can detect the acceleration of a ΛCDM universe with 5σ confidence. This acceleration test requires modest data analysis and storage changes from the normal processing and cannot be recovered retroactively.

  13. Method for Direct Measurement of Cosmic Acceleration by 21-cm Absorption Systems

    NASA Astrophysics Data System (ADS)

    Yu, Hao-Ran; Zhang, Tong-Jie; Pen, Ue-Li

    2014-07-01

    So far there is only indirect evidence that the Universe is undergoing an accelerated expansion. The evidence for cosmic acceleration is based on the observation of different objects at different distances and requires invoking the Copernican cosmological principle and Einstein's equations of motion. We examine the direct observability using recession velocity drifts (Sandage-Loeb effect) of 21-cm hydrogen absorption systems in upcoming radio surveys. This measures the change in velocity of the same objects separated by a time interval and is a model-independent measure of acceleration. We forecast that for a CHIME-like survey with a decade time span, we can detect the acceleration of a ΛCDM universe with 5σ confidence. This acceleration test requires modest data analysis and storage changes from the normal processing and cannot be recovered retroactively.

  14. Measuring Model Rocket Acceleration.

    ERIC Educational Resources Information Center

    Jenkins, Randy A.

    1993-01-01

    Presents an experiment that measures the acceleration and velocity of a model rocket. Lift-off information is transmitted to a computer that creates a graph of the velocity. Discusses the analysis of the computer-generated data and differences between calculated and experimental velocity and acceleration of several rocket types. (MDH)

  15. A fiber optic strain measurement and quench localization system for use in superconducting accelerator dipole magnets

    SciTech Connect

    van Oort, J.M.; Scanlan, R.M.; ten Kate, H.H.J.

    1994-10-17

    A novel fiber-optic measurement system for superconducting accelerator magnets is described. The principal component is an extrinsic Fabry-Perot Interferometer to determine localized strain and stress in coil windings. The system can be used either as a sensitive relative strain measurement system or as an absolute strain detector. Combined, one can monitor the mechanical behaviour of the magnet system over time during construction, long time storage and operation. The sensing mechanism is described, together with various tests in laboratory environments. The test results of a multichannel test matrix to be incorporated first in the dummy coils and then in the final version of a 13T Nb{sub 3}Sn accelerator dipole magnet are presented. Finally, the possible use of this system as a quench localization system is proposed.

  16. Automatic Control System of Ion Electrostatic Accelerator and Anti-Interference Measures

    NASA Astrophysics Data System (ADS)

    Sun, Zhenwu; Huo, Yuping; Liu, Gencheng; Li, Yuxiao; Li, Tao

    2007-02-01

    An automatic control system for the electrostatic accelerator has been developed by adopting the PLC (Programmable Logic Controller) control technique, infrared and optical-fibre transmission technique and network communication with the purpose to improve the intelligence level of the accelerator and to enhance the ability of monitoring, collecting and recording parameters. In view of the control system' structure, some anti-interference measures have been adopted after analyzing the interference sources. The measures in hardware include controlling the position of the corona needle, using surge arresters, shielding, ground connection and stabilizing the voltage. The measures in terms of software involve inter-blocking protection, soft-spacing, time delay, and diagnostic and protective programs. The electromagnetic compatible ability of the control system has thus been effectively improved.

  17. Space acceleration measurement system description and operations on the First Spacelab Life Sciences Mission

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; Finley, Brian D.

    1991-01-01

    The Space Acceleration Measurement System (SAMS) project and flight units are briefly described. The SAMS operations during the STS-40 mission are summarized, and a preliminary look at some of the acceleration data from that mission are provided. The background and rationale for the SAMS project is described to better illustrate its goals. The functions and capabilities of each SAMS flight unit are first explained, then the STS-40 mission, the SAMS's function for that mission, and the preparation of the SAMS are described. Observations about the SAMS operations during the first SAMS mission are then discussed. Some sample data are presented illustrating several aspects of the mission's microgravity environment.

  18. Requirements and Development of an Acceleration Measurement System for International Space Station Microgravity Science Payloads

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    1997-01-01

    The International Space Station is being developed by NASA and international partners as a versatile user platform to allow long term on-orbit investigations of a variety of scientific and technology arenas. In particular, scientific studies are planned within a research class known as microgravity science in areas such as biotechnology, combustion, fluid physics, and materials sciences. An acceleration measurement system is in development to aid such research conducted in the on-orbit conditions of apparent weightlessness. This system provides a general purpose acceleration measurement capability in support of these payloads and investigators. Such capability allows for systematic study of scientific phenomena by obtaining information regarding the local accelerations present during experiment operations. Preparations for implementing this flight measurement system involves two distinct stages: requirements development prior to initiating the design activity, and the design activity itself. This paper defines the requirements definition approach taken, provides an overview of the results of the requirements phase, and outlines the initial design considerations being addressed for this measurement system. Some preliminary engineering approaches are also described.

  19. Summary Status of the Space Acceleration Measurement System (SAMS), September 1993

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1994-01-01

    The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the First Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered eighteen gigabytes of data representing sixty-eight days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and the Microgravity Measurement and Analysis project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.

  20. Space Acceleration Measurement System-II: Microgravity Instrumentation for the International Space Station Research Community

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    1999-01-01

    The International Space Station opens for business in the year 2000, and with the opening, science investigations will take advantage of the unique conditions it provides as an on-orbit laboratory for research. With initiation of scientific studies comes a need to understand the environment present during research. The Space Acceleration Measurement System-II provides researchers a consistent means to understand the vibratory conditions present during experimentation on the International Space Station. The Space Acceleration Measurement System-II, or SAMS-II, detects vibrations present while the space station is operating. SAMS-II on-orbit hardware is comprised of two basic building block elements: a centralized control unit and multiple Remote Triaxial Sensors deployed to measure the acceleration environment at the point of scientific research, generally within a research rack. Ground Operations Equipment is deployed to complete the command, control and data telemetry elements of the SAMS-II implementation. Initially, operations consist of user requirements development, measurement sensor deployment and use, and data recovery on the ground. Future system enhancements will provide additional user functionality and support more simultaneous users.

  1. A hybrid data acquisition system for magnetic measurements of accelerator magnets

    SciTech Connect

    Wang, X.; Hafalia, R.; Joseph, J.; Lizarazo, J.; Martchevsky, M.; Sabbi, G. L.

    2011-06-03

    A hybrid data acquisition system was developed for magnetic measurement of superconducting accelerator magnets at LBNL. It consists of a National Instruments dynamic signal acquisition (DSA) card and two Metrolab fast digital integrator (FDI) cards. The DSA card records the induced voltage signals from the rotating probe while the FDI cards records the flux increment integrated over a certain angular step. This allows the comparison of the measurements performed with two cards. In this note, the setup and test of the system is summarized. With a probe rotating at a speed of 0.5 Hz, the multipole coefficients of two magnets were measured with the hybrid system. The coefficients from the DSA and FDI cards agree with each other, indicating that the numerical integration of the raw voltage acquired by the DSA card is comparable to the performance of the FDI card in the current measurement setup.

  2. Active control of an innovative seat suspension system with acceleration measurement based friction estimation

    NASA Astrophysics Data System (ADS)

    Ning, Donghong; Sun, Shuaishuai; Li, Hongyi; Du, Haiping; Li, Weihua

    2016-12-01

    In this paper, an innovative active seat suspension system for vehicles is presented. This seat suspension prototype is built with two low cost actuators each of which has one rotary motor and one gear reducer. A H∞ controller with friction compensation is designed for the seat suspension control system where the friction is estimated and compensated based on the measurement of seat acceleration. This principal aim of this research was to control the low frequency vibration transferred or amplified by the vehicle (chassis) suspension, and to maintain the passivity of the seat suspension at high frequency (isolation vibration) while taking into consideration the trade-off between the active seat suspension cost and its high frequency performance. Sinusoidal excitations of 1-4.5 Hz were applied to test the active seat suspension both when controlled and when uncontrolled and this is compared with a well-tuned passive heavy duty vehicle seat suspension. The results indicate the effectiveness of the proposed control algorithm within the tested frequencies. Further tests were conducted using the excitations generated from a quarter-car model under bump and random road profiles. The bump road tests indicate the controlled active seat suspension has good transient response performance. The Power Spectral Density (PSD) method and ISO 2631-1 standards were applied to analyse the seat suspension's acceleration under random road conditions. Although some low magnitude and high frequency noise will inevitably be introduced by the active system, the weighted-frequency Root Mean Square (RMS) acceleration shows that this may not have a large effect on ride comfort. In fact, the ride comfort is improved from being an 'a little uncomfortable' to a 'not uncomfortable' level when compared with the well-tuned passive seat suspension. This low cost active seat suspension design and the proposed controller with the easily measured feedback signals are very practical for real

  3. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  4. SAMS Acceleration Measurements on MIR

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Kenneth; Finkelstein, Robert; Reckart, Timothy

    1997-01-01

    During NASA Increment 3 (September 1996 to January 1997), about 5 gigabytes of acceleration data were collected by the Space Acceleration Measurement System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 11 optical disks and were returned to Earth on STS-81. During this time, SAMS data were collected in the Priroda module to support the following experiments: the Mir Structural Dynamics Experiment (MiSDE) and Binary Colloidal Alloy Tests (BCAT). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-81 operations, a Progress engine burn, attitude control thruster operation, and crew exercise. Also included are a description of the Mir module orientations, and the panel notations within the modules. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. Variations in the acceleration environment caused by unique activities such as crew exercise and life-support fans are presented. The analyses included herein complement those presented in previous mission summary reports published by the Principal Investigator Microgravity Services (PIMS) group.

  5. Low Frequency Vibration Characteristics of the Space Acceleration Measurement System 2 Tape Drive Assembly

    NASA Technical Reports Server (NTRS)

    Javeed, Mehzad; Russell, James W.

    1996-01-01

    This report summarizes results of force and moment measurements of the Space Acceleration Measurement System 2 (SAMS 2) Tape Drive Assembly (TDA) over the frequency range from 0.35 Hz to 256 Hz for steady state operations including write, read, rewind, and fast forward. Time domain force results are presented for transient TDA operations that include software eject, manual eject, and manual load. Three different mounting configurations were employed for attaching the inner box with the tape drive unit to the outer box. Two configurations employed grommet sets with spring rates of 42 and 62 pounds per inch respectively. The third configuration employed a set of metallic washers. For all four steady state operations the largest average forces were on the Y axis with the metallic washers and were less than 0.005 pounds. The largest average moments were on the X axes with the washers and were less than 0.030 pound inches. At the third octave centerband frequency of 31.5 Hz, the 42 pound per inch grommets showed the greatest forces and moments for read and write operations. At the third octave centerband frequency of 49.6 Hz, the 62 pound per inch grommets showed the greatest forces and moments for rewind operation. Transient operation forces ranged from 0.75 pounds for the software eject to greater than 1 pound for manual load and eject.

  6. Measurement of 151Sm with the HI-13 accelerator mass spectrometry system

    NASA Astrophysics Data System (ADS)

    Yin, Xinyi; He, Ming; Dong, Kejun; Wu, Shaoyong; Zhang, Jinsong; Zhang, Jilong; Wang, Tongxin; Cui, Anzhi; Ouyang, Yinggen; Zhang, Zhiyong; Yuan, Jian; Jiang, Shan

    2010-05-01

    151Sm is an interesting nuclide in many research fields. Measurement methods of the long-lived 151Sm with accelerator mass spectrometry have been developed at China Institute of Atomic Energy. The chemical form of samples was Sm 2O 3 and the extracted ion was SmO -. To date, the sensitivity, that is, the isotopic ratio, of 151Sm measured using accelerator mass spectrometry is about 10 -8. This method was also used to measure the concentration of tracer 151Sm in biological samples for clarifying whether the rare earth elements can enter into the brain. It is not possible at present to determine whether the tracer has penetrated the blood-brain barrier into the brain.

  7. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  8. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  9. Microgravity acceleration measurement and environment characterization science (17-IML-1)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Acceleration Measurement System (SAMS) is a general purpose instrumentation system designed to measure the accelerations onboard the Shuttle Orbiter and Shuttle/Spacelab vehicles. These measurements are used to support microgravity experiments and investigation into the microgravity environment of the vehicle. Acceleration measurements can be made at locations remote from the SAMS main instrumentation unit by the use of up to three remote triaxial sensor heads. The prime objective for SAMS on the International Microgravity Lab (IML-1) mission will be to measure the accelerations experienced by the Fluid Experiment System (FES). The SAMS acceleration measurements for FES will be complemented by low level, low frequency acceleration measurements made by the Orbital Acceleration Research Experiment (OARE) installed on the shuttle. Secondary objectives for SAMS will be to measure accelerations at several specific locations to enable the acceleration transfer function of the Spacelab module to be analyzed. This analysis effort will be in conjunction with similar measurements analyses on other Spacelab missions.

  10. A variable acceleration calibration system

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas H.

    2011-12-01

    A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.

  11. An Wearable Energy Expenditure Analysis System based on the 15-channel Whole-body Segment Acceleration Measurement.

    PubMed

    Jang, Yongwon; Jung, M; Kang, Jaemin; Chan Kim, Hee

    2005-01-01

    The measurement of the amount of energy utilized during physical activity has generated considerable interests from various groups ranging from exercise physiologists to nutritionists and fitness center workers. To date, however, the existing energy expenditure estimation methods are not so reliable and compact. In this paper, we propose a new method for accurately and easily estimating energy expenditure during physical activity with a novel algorithm. This method involves acquiring acceleration signals through a 15-channel whole-body segment acceleration measurement system and then estimating the calories expended using a newly developed algorithm. The results of 3 subjects' experiments were compared with a commercially available mask type indirect calorimeter and a 9-axis accelerometry-based calorimeter. The results demonstrate that the proposed method provides a new and reliable way to estimate human energy expenditure during physical activity.

  12. RFQ accelerator tuning system

    DOEpatents

    Bolie, Victor W.

    1990-01-01

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.

  13. RFQ accelerator tuning system

    DOEpatents

    Bolie, V.W.

    1990-07-03

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.

  14. Atomic References for Measuring Small Accelerations

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Yu, Nan

    2009-01-01

    Accelerometer systems that would combine the best features of both conventional (e.g., mechanical) accelerometers and atom interferometer accelerometers (AIAs) have been proposed. These systems are intended mainly for use in scientific research aboard spacecraft but may also be useful on Earth in special military, geological, and civil-engineering applications. Conventional accelerometers can be sensitive, can have high dynamic range, and can have high frequency response, but they lack accuracy and long-term stability. AIAs have low frequency response, but they offer high sensitivity, and high accuracy for measuring small accelerations. In a system according to the proposal, a conventional accelerometer would be used to perform short-term measurements of higher-frequency components of acceleration, while an AIA would be used to provide consistent calibration of, and correction of errors in, the measurements of the conventional accelerometer in the lower-frequency range over the long term. A brief description of an AIA is prerequisite to a meaningful description of a system according to the proposal. An AIA includes a retroreflector next to one end of a cell that contains a cold cloud of atoms in an ultrahigh vacuum. The atoms in the cloud are in free fall. The retroreflector is mounted on the object, the acceleration of which is to be measured. Raman laser beams are directed through the cell from the end opposite the retroreflector, then pass back through the cell after striking the retroreflector. The Raman laser beams together with the cold atoms measure the relative acceleration, through the readout of the AIA, between the cold atoms and the retroreflector.

  15. Hubble Space Telescope Program on STS-95 Supported by Space Acceleration Measurement System for Free Flyers

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.

    2000-01-01

    John Glenn's historic return to space was a primary focus of the STS 95 space shuttle mission; however, the 83 science payloads aboard were the focus of the flight activities. One of the payloads, the Hubble Space Telescope Orbital System Test (HOST), was flown in the cargo bay by the NASA Goddard Space Flight Center. It served as a space flight test of upgrade components for the telescope before they are installed in the shuttle for the next Hubble Space Telescope servicing mission. One of the upgrade components is a cryogenic cooling system for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). The cooling is required for low noise in the receiver's sensitive electronic instrumentation. Originally, a passive system using dry ice cooled NICMOS, but the ice leaked away and must be replaced. The active cryogenic cooler can provide the cold temperatures required for the NICMOS, but there was a concern that it would create vibrations that would affect the fine pointing accuracy of the Hubble platform.

  16. g--Acceleration of Gravity: Its Measurement from the Shape of Water by Using a Computerized Rotational System

    ERIC Educational Resources Information Center

    Pintao, Carlos A. F.; de Souza Filho, Moacir P.

    2007-01-01

    This paper proposes a different experimental setup compared with the traditional ones, in order to determine the acceleration of gravity, which is carried out by using a fluid at a constant rotation. A computerized rotational system--by using a data acquisition system with specific software, a power amplifier and a rotary motion sensor--is…

  17. ION ACCELERATION SYSTEM

    DOEpatents

    Luce, J.S.; Martin, J.A.

    1960-02-23

    Well focused, intense ion beams are obtained by providing a multi- apertured source grid in front of an ion source chamber and an accelerating multi- apertured grid closely spaced from and in alignment with the source grid. The longest dimensions of the elongated apertures in the grids are normal to the direction of the magnetic field used with the device. Large ion currents may be withdrawn from the source, since they do not pass through any small focal region between the grids.

  18. Development of an accelerator based system for in vivo neutron activation analysis measurements of manganese in humans

    NASA Astrophysics Data System (ADS)

    Arnold, Michelle Lynn

    2001-11-01

    Manganese is required by the human body, but as with many heavy elements, in large amounts it can be toxic, producing a neurological disorder similar to that of Parkinson's Disease. The primary industrial uses of the element are for the manufacturing of steel and alkali batteries. Environmental exposure may occur via drinking water or exhaust emissions from vehicles using gasoline with the manganese containing compound MMT as an antiknock agent (MMT has been approved for use in both Canada and the United States). Preclinical symptoms of toxicity have recently been detected in individuals occupationally exposed to airborne manganese at levels below the present threshold limit value set by the EPA. Evidence also suggests that early detection of manganese toxicity is crucial since once the symptoms have developed past a certain point, the syndrome will continue to progress even if manganese exposure ceases. The development of a system for in vivo neutron activation analysis (IVNAA) measurement of manganese levels was investigated, with the goal being to have a means of monitoring both over exposed and manganese deficient populations. The McMaster KN-accelerator was used to provide low-energy neutrons, activation within an irradiation site occurred via the 55Mn(n,gamma) 56Mn capture reaction, and the 847 keV gamma-rays emitted when 56Mn decayed were measured using one or more Nal(TI) detectors. The present data regarding manganese metabolism and storage within the body are limited, and it is unclear what the optimal measurement site would be to provide a suitable biomarker of past exposure. Therefore the feasibility of IVNAA measurements in three sites was examined---the liver, brain and hand bones. Calibration curves were derived, minimum detectable limits determined and resulting doses calculated for each site (experimentally in the case of the liver and hand bones, and through computer simulations for the brain). Detailed analytical calculations of the 7Li(p,n) 7Be

  19. Measurement of Coriolis Acceleration with a Smartphone

    ERIC Educational Resources Information Center

    Shaku, Asif; Kraft, Jakob

    2016-01-01

    Undergraduate physics laboratories seldom have experiments that measure the Coriolis acceleration. This has traditionally been the case owing to the inherent complexities of making such measurements. Articles on the experimental determination of the Coriolis acceleration are few and far between in the physics literature. However, because modern…

  20. A Microcomputer-Controlled Measurement of Acceleration.

    ERIC Educational Resources Information Center

    Crandall, A. Jared; Stoner, Ronald

    1982-01-01

    Describes apparatus and method used to allow rapid and repeated measurement of acceleration of a ball rolling down an inclined plane. Acceleration measurements can be performed in an hour with the apparatus interfaced to a Commodore PET microcomputer. A copy of the BASIC program is available from the authors. (Author/JN)

  1. Improvement of Space Shuttle Main Engine Low Frequency Acceleration Measurements

    NASA Technical Reports Server (NTRS)

    Stec, Robert C.

    1999-01-01

    The noise floor of low frequency acceleration data acquired on the Space Shuttle Main Engines is higher than desirable. Difficulties of acquiring high quality acceleration data on this engine are discussed. The approach presented in this paper for reducing the acceleration noise floor focuses on a search for an accelerometer more capable of measuring low frequency accelerations. An overview is given of the current measurement system used to acquire engine vibratory data. The severity of vibration, temperature, and moisture environments are considered. Vibratory measurements from both laboratory and rocket engine tests are presented.

  2. PRECISE CHARGE MEASUREMENT FOR LASER PLASMA ACCELERATORS

    SciTech Connect

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Sokollik, Thomas; Shiraishi, Satomi; Tilborg, Jeroen van; Osterhoff, Jens; Donahue, Rich; Rodgers, David; Smith, Alan; Byrne, Warren; Leemans, Wim

    2011-07-19

    Cross-calibrations of charge diagnostics are conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). Employed diagnostics are a scintillating screen, activation based measurement, and integrating current transformer. The diagnostics agreed within {+-}8 %, showing that they can provide accurate charge measurements for LPAs provided they are used properly.

  3. Measurement of Coriolis Acceleration with a Smartphone

    NASA Astrophysics Data System (ADS)

    Shakur, Asif; Kraft, Jakob

    2016-05-01

    Undergraduate physics laboratories seldom have experiments that measure the Coriolis acceleration. This has traditionally been the case owing to the inherent complexities of making such measurements. Articles on the experimental determination of the Coriolis acceleration are few and far between in the physics literature. However, because modern smartphones come with a raft of built-in sensors, we have a unique opportunity to experimentally determine the Coriolis acceleration conveniently in a pedagogically enlightening environment at modest cost by using student-owned smartphones. Here we employ the gyroscope and accelerometer in a smartphone to verify the dependence of Coriolis acceleration on the angular velocity of a rotatingtrack and the speed of the sliding smartphone.

  4. Gravity Acceleration Measurements Using a Soundcard

    ERIC Educational Resources Information Center

    Abellan-Garcia, Francisco J.; Garcia-Gamuz, Jose Antonio; Valerdi-Perez, Ramon P.; Ibanez-Mengual, Jose A.

    2012-01-01

    The aim of this paper is to determine the acceleration due to gravity "g", using a simple and low-cost experimental device. The time taken for a metallic ball to travel a predetermined distance is measured and recorded by a series of optical sensors. Four pairs of sensors are placed along the external surface of a vertical methacrylate tube at…

  5. Acceleration and Velocity Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truax, Roger

    2016-01-01

    A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an Autoregressive Moving Average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. shape sensing, fiber optic strain sensor, system equivalent reduction and expansion process.

  6. Importance, reliability and usefulness of acceleration measures in team sports.

    PubMed

    Delaney, Jace A; Cummins, Cloe J; Thornton, Heidi R; Duthie, Grant M

    2017-02-08

    The ability to accelerate, decelerate and change direction efficiently is imperative to successful team-sports performance. Traditional intensity-based thresholds for acceleration and deceleration may be inappropriate for time-series data, and have been shown to exhibit poor reliability, suggesting other techniques may be preferable. This study assessed movement data from one professional rugby league team throughout two full seasons and one pre-season period. Using both 5 Hz and 10 Hz global positioning systems (GPS) units, a range of acceleration-based variables were evaluated for their inter-unit reliability, ability to discriminate between positions, and associations with perceived muscle soreness. The reliability of 5 Hz GPS for measuring acceleration and deceleration ranged from good to poor (CV = 3.7-27.1%), with the exception of high-intensity deceleration efforts (CV = 11.1-11.8%), the 10 Hz units exhibited moderate to good inter-unit reliability (CV = 1.2-6.9%). Reliability of average metrics (average acceleration/deceleration, average acceleration and average deceleration) ranged from good to moderate (CV = 1.2-6.5%). Substantial differences were detected between positions using time spent accelerating and decelerating for all magnitudes, but these differences were less clear when considering the count or distance above acceleration/deceleration thresholds. All average metrics detected substantial differences between positions. All measures were similarly related to perceived muscle soreness, with the exception of high-intensity acceleration and deceleration counts. This study has proposed that averaging the acceleration/deceleration demands over an activity may be a more appropriate method compared to threshold-based methods, due to a greater reliability between units, whilst not sacrificing sensitivity to within and between-subject changes.

  7. Interferometric Measurement of Acceleration at Relativistic Speeds

    NASA Astrophysics Data System (ADS)

    Christian, Pierre; Loeb, Abraham

    2017-01-01

    We show that an interferometer moving at a relativistic speed relative to a point source of light offers a sensitive probe of acceleration. Such an accelerometer contains no moving parts, and is thus more robust than conventional “mass-on-a-spring” accelerometers. In an interstellar mission to Alpha Centauri, such an accelerometer could be used to measure the masses of exoplanets and their host stars as well as test theories of modified gravity.

  8. Summary Report of Mission Acceleration Measurements for STS-89

    NASA Technical Reports Server (NTRS)

    Hrovat, Kenneth; McPherson, Kevin

    1999-01-01

    Support of microgravity research on the 89th flight of the Space Transportation System (STS-89) and a continued effort to characterize the acceleration environment of the Space Shuttle Orbiter and the Mir Space Station form the basis for this report. For the STS-89 mission, the Space Shuttle Endeavour was equipped with a Space Acceleration Measurement System (SAMS) unit, which collected more than a week's worth of data. During docked operations with Mir, a second SAMS unit collected approximately a day's worth of data yielding the only set of acceleration measurements recorded simultaneously on the two spacecraft. Based on the data acquired by these SAMS units, this report serves to characterize a number of acceleration events and quantify their impact on the local nature of the accelerations experienced at the Mechanics of Granular Materials (MGM) experiment location. Crew activity was shown to nearly double the median root-mean-square (RMS) acceleration level calculated below 10 Hz, while the Enhanced Orbiter Refrigerator/Freezer operating at about 22 Hz was a strong acceleration source in the vicinity of the MGM location. The MGM science requirement that the acceleration not exceed plus or minus 1 mg was violated numerous times during their experiment runs; however, no correlation with sample instability has been found to this point. Synchronization between the SAMS data from Endeavour and from Mir was shown to be close much of the time, but caution with respect to exact timing should be exercised when comparing these data. When orbiting as a separate vehicle prior to docking, Endeavour had prominent structural modes above 3 Hz, while Mir exhibited a cluster of modes around 1 Hz. When mated, a transition to common modes was apparent in the two SAMS data sets. This report is not a comprehensive analysis of the acceleration data, so those interested in further details should contact the Principal Investigator Microgravity Services team at the National Aeronautics

  9. Measurement of absolute gravity acceleration in Firenze

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  10. Measurement of Impact Acceleration: Mouthpiece Accelerometer Versus Helmet Accelerometer

    PubMed Central

    Higgins, Michael; Halstead, P. David; Snyder-Mackler, Lynn; Barlow, David

    2007-01-01

    Context: Instrumented helmets have been used to estimate impact acceleration imparted to the head during helmet impacts. These instrumented helmets may not accurately measure the actual amount of acceleration experienced by the head due to factors such as helmet-to-head fit. Objective: To determine if an accelerometer attached to a mouthpiece (MP) provides a more accurate representation of headform center of gravity (HFCOG) acceleration during impact than does an accelerometer attached to a helmet fitted on the headform. Design: Single-factor research design in which the independent variable was accelerometer position (HFCOG, helmet, MP) and the dependent variables were g and Severity Index (SI). Setting: Independent impact research laboratory. Intervention(s): The helmeted headform was dropped (n = 168) using a National Operating Committee on Standards for Athletic Equipment (NOCSAE) drop system from the standard heights and impact sites according to NOCSAE test standards. Peak g and SI were measured for each accelerometer position during impact. Main Outcome Measures: Upon impact, the peak g and SI were recorded for each accelerometer location. Results: Strong relationships were noted for HFCOG and MP measures, and significant differences were seen between HFCOG and helmet g measures and HFCOG and helmet SI measures. No statistically significant differences were noted between HFCOG and MP g and SI measures. Regression analyses showed a significant relationship between HFCOG and MP measures but not between HFCOG and helmet measures. Conclusions: Upon impact, MP acceleration (g) and SI measurements were closely related to and more accurate in measuring HFCOG g and SI than helmet measurements. The MP accelerometer is a valid method for measuring head acceleration. PMID:17597937

  11. Accelerated degradation of silicon metallization systems

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1983-01-01

    Clemson University has been engaged for the past five years in a program to determine the reliability attributes of solar cells by means of accelerated test procedures. The cells are electrically measured and visually inspected and then subjected for a period of time to stress in excess of that normally encountered in use, and then they are reinspected. Changes are noted and the process repeated. This testing has thus far involved 23 different unencapsulated cell types from 12 different manufacturers, and 10 different encapsulated cell types from 9 different manufacturers. Reliability attributes of metallization systems can be classified as major or minor, depending on the severity of the effects observed. As a result of the accelerated testing conducted under the Clemson program, major effects have been observed related to contact resistance and to mechanical adherence and solderability. This paper does not attempt a generalized survey of accelerated test results, but rather concentrates on one particular attribute of metallization that has been observed to cause electrical degradation - increased contact resistance due to Schottky barrier formation. In this example basic semiconductor theory was able to provide an understanding of the electrical effects observed during accelerated stress testing.

  12. Polarization measurement of laser-accelerated protons

    SciTech Connect

    Raab, Natascha; Engels, Ralf; Engin, Ilhan; Greven, Patrick; Holler, Astrid; Lehrach, Andreas; Maier, Rudolf; Büscher, Markus; Cerchez, Mirela; Swantusch, Marco; Toncian, Monika; Toncian, Toma; Willi, Oswald; Gibbon, Paul; Karmakar, Anupam

    2014-02-15

    We report on the successful use of a laser-driven few-MeV proton source to measure the differential cross section of a hadronic scattering reaction as well as on the measurement and simulation study of polarization observables of the laser-accelerated charged particle beams. These investigations were carried out with thin foil targets, illuminated by 100 TW laser pulses at the Arcturus laser facility; the polarization measurement is based on the spin dependence of hadronic proton scattering off nuclei in a Silicon target. We find proton beam polarizations consistent with zero magnitude which indicates that for these particular laser-target parameters the particle spins are not aligned by the strong magnetic fields inside the laser-generated plasmas.

  13. The Spallation Neutron Source accelerator system design

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  14. RHIC sextant test: Accelerator systems and performance

    SciTech Connect

    Pilat, F.; Trbojevic, D.; Ahrens, L.

    1997-08-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning.

  15. Energy Measurement in a Plasma Wakefield Accelerator

    SciTech Connect

    Ischebeck, R

    2007-07-06

    In the E-167 plasma wakefield acceleration experiment, electrons with an initial energy of 42GeV are accelerated in a meter-scale lithium plasma. Particles are leaving plasma with a large energy spread. To determine the spectrum of the accelerated particles, a two-plane spectrometer has been set up.

  16. Variable Acceleration Force Calibration System (VACS)

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.; Parker, Peter A.; Johnson, Thomas H.; Landman, Drew

    2014-01-01

    Conventionally, force balances have been calibrated manually, using a complex system of free hanging precision weights, bell cranks, and/or other mechanical components. Conventional methods may provide sufficient accuracy in some instances, but are often quite complex and labor-intensive, requiring three to four man-weeks to complete each full calibration. To ensure accuracy, gravity-based loading is typically utilized. However, this often causes difficulty when applying loads in three simultaneous, orthogonal axes. A complex system of levers, cranks, and cables must be used, introducing increased sources of systematic error, and significantly increasing the time and labor intensity required to complete the calibration. One aspect of the VACS is a method wherein the mass utilized for calibration is held constant, and the acceleration is changed to thereby generate relatively large forces with relatively small test masses. Multiple forces can be applied to a force balance without changing the test mass, and dynamic forces can be applied by rotation or oscillating acceleration. If rotational motion is utilized, a mass is rigidly attached to a force balance, and the mass is exposed to a rotational field. A large force can be applied by utilizing a large rotational velocity. A centrifuge or rotating table can be used to create the rotational field, and fixtures can be utilized to position the force balance. The acceleration may also be linear. For example, a table that moves linearly and accelerates in a sinusoidal manner may also be utilized. The test mass does not have to move in a path that is parallel to the ground, and no re-leveling is therefore required. Balance deflection corrections may be applied passively by monitoring the orientation of the force balance with a three-axis accelerometer package. Deflections are measured during each test run, and adjustments with respect to the true applied load can be made during the post-processing stage. This paper will

  17. Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab

    SciTech Connect

    McGee, M.W.; Leibfritz, J.; Martinez, A.; Pischalnikov, Y.; Schappert, W.; /Fermilab

    2011-03-01

    The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule No.1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

  18. SAMS Acceleration Measurement on Mir From March to September 1996

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Ken; Truong, Duc; Reckart, Timothy

    1997-01-01

    During NASA Increment 2 (March to September 1996), over 15 gigabytes of acceleration data were collected by the Space Acceleration Measurement System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 55 optical disks and were returned to Earth on STS-79. During this time, SAMS data were collected in the Kristall and Kvant modules, and in the Priroda module to support the following experiments: the Queen's University Experiments in Liquid Diffusion (QUELD), the Technological Evaluation of the MIM (TEM), the Forced Flow Flame Spreading Test (FFFT), and Candle Flames in Microgravity (CFM). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-76 operations, an extravehicular activity (EVA) to install and deploy solar panels on the Kvant module, a Progress engine burn to raise Mir's altitude, and an on-orbit SAMS calibration procedure. Also included are a description of the Mir module orientations, and the panel notations within the modules. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. Variations in the acceleration environment caused by unique activities such as crew exercise and life-support fans are presented. The analyses included herein complement those presented in previous mission summary reports published by the Principal Investigator Microgravity Services (PIMS) group.

  19. Radiation Safety Systems for Accelerator Facilities

    SciTech Connect

    Liu, James C

    2001-10-17

    The Radiation Safety System (RSS) of an accelerator facility is used to protect people from prompt radiation hazards associated with accelerator operation. The RSS is a fully interlocked, engineered system with a combination of passive and active elements that are reliable, redundant, and fail-safe. The RSS consists of the Access Control System (ACS) and the Radiation Containment System (RCS). The ACS is to keep people away from the dangerous radiation inside the shielding enclosure. The RCS limits and contains the beam/radiation conditions to protect people from the prompt radiation hazards outside the shielding enclosure in both normal and abnormal operations. The complexity of a RSS depends on the accelerator and its operation, as well as associated hazard conditions. The approaches of RSS among different facilities can be different. This report gives a review of the RSS for accelerator facilities.

  20. Radiation Safety Systems for Accelerator Facilities

    SciTech Connect

    James C. Liu; Jeffrey S. Bull; John Drozdoff; Robert May; Vaclav Vylet

    2001-10-01

    The Radiation Safety System (RSS) of an accelerator facility is used to protect people from prompt radiation hazards associated with accelerator operation. The RSS is a fully interlocked, engineered system with a combination of passive and active elements that are reliable, redundant, and fail-safe. The RSS consists of the Access Control System (ACS) and the Radiation Containment System (RCS). The ACS is to keep people away from the dangerous radiation inside the shielding enclosure. The RCS limits and contains the beam/radiation conditions to protect people from the prompt radiation hazards outside the shielding enclosure in both normal and abnormal operations. The complexity of a RSS depends on the accelerator and its operation, as well as associated hazard conditions. The approaches of RSS among different facilities can be different. This report gives a review of the RSS for accelerator facilities.

  1. Accelerator system for neutron radiography

    SciTech Connect

    Rusnak, B; Hall, J

    2000-09-21

    The field of x-ray radiography is well established for doing non-destructive evaluation of a vast array of components, assemblies, and objects. While x-rays excel in many radiography applications, their effectiveness diminishes rapidly if the objects of interest are surrounded by thick, high-density materials that strongly attenuate photons. Due to the differences in interaction mechanisms, neutron radiography is highly effective in imaging details inside such objects. To obtain a high intensity neutron source suitable for neutron imaging a 9-MeV linear accelerator is being evaluated for putting a deuteron beam into a high-pressure deuterium gas cell. As a windowless aperture is needed to transport the beam into the gas cell, a low-emittance is needed to minimize losses along the high-energy beam transport (HEBT) and the end station. A description of the HEBT, the transport optics into the gas cell, and the requirements for the linac will be presented.

  2. Don't Use Airtracks to Measure Gravity Acceleration.

    ERIC Educational Resources Information Center

    Kluk, Edward; Lopez, John L.

    1992-01-01

    Presents one way, using simple materials available in hardware stores, to obtain accurate measurements of gravity acceleration in student laboratories. Analyzes a time-of-flight measuring scheme and discusses the experimental arrangements to make the measurements. (MDH)

  3. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema

    None

    2016-07-12

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  4. Autonomous dynamic displacement estimation from data fusion of acceleration and intermittent displacement measurements

    NASA Astrophysics Data System (ADS)

    Kim, Junhee; Kim, Kiyoung; Sohn, Hoon

    2014-01-01

    Addressing the importance of displacement measurement of structural responses in the field of structural health monitoring, this paper presents an autonomous algorithm for dynamic displacement estimation from acceleration integration fused with displacement data intermittently measured. The presented acceleration integration algorithm of multi-rate Kalman filtering distinguishes itself from the past study in the literature by explicitly considering acceleration measurement bias. Furthermore, the algorithm is formulated by unique state definition of integration errors and error dynamics system modeling. To showcase performance of the algorithm, a series of laboratory dynamic experiments for measuring structural responses of acceleration and displacement are conducted. Improved results are demonstrated through comparison between the proposed and past study.

  5. Application accelerator system having bunch control

    DOEpatents

    Wang, D.; Krafft, G.A.

    1999-06-22

    An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig.

  6. Application accelerator system having bunch control

    DOEpatents

    Wang, Dunxiong; Krafft, Geoffrey Arthur

    1999-01-01

    An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.

  7. The EMMA Accelerator, a Diagnostic Systems Overview

    SciTech Connect

    Kalinin, A.; Berg, J.; Bliss, N. Cox, G.; Dufau, M.; Gallagher, A.; Hill, C.; Jones, J.; Ma, L.; McIntosh, P.; Muratori, B.; Oates, A.; Shepherd B.; Smith, R.; Hock, K.; Holder, D.; Ibison, M., Kirkman I.; Borrell, R.; Crisp, J.; Fellenz, B.; Wendt, M.

    2011-09-04

    The 'EMMA' Non-Scaling Fixed Field Alternating Gradient (ns-FFAG) international project is currently being commissioned at Daresbury Laboratory, UK. This accelerator has been equipped with a number of diagnostic systems to facilitate this. These systems include a novel time-domain-multiplexing BPM system, moveable screen systems, a time-of-flight instrument, Faraday cups, and injection/extraction tomography sections to analyze the single bunch beams. An upgrade still to implement includes the installation of wall current monitors. This paper gives an overview of these systems and shows some data and results from the diagnostics that have contributed to the successful demonstration of a serpentine acceleration by this novel accelerator.

  8. Summary Report of Mission Acceleration Measurements for STS-78. Launched June 20, 1996

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Hrovat, Kenneth; McPherson, Kevin M.; Moskowitz, Milton E.; Rogers, Melissa J. B.

    1997-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-78 mission using accelerometers from three different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System and the Microgravity Measurement Assembly. The quasi-steady environment was also calculated in near real-time during the mission by the Microgravity Analysis Workstation. The Orbital Acceleration Research Experiment provided investigators with real-time quasi-steady acceleration measurements. The Space Acceleration Measurement System recorded higher frequency data on-board for post-mission analysis. The Microgravity Measurement Assembly provided investigators with real-time quasi-steady and higher frequency acceleration measurements. The Microgravity Analysis Workstation provided calculation of the quasi-steady environment. This calculation was presented to the science teams in real-time during the mission. The microgravity environment related to several different Orbiter, crew and experiment operations is presented and interpreted in this report. A radiator deploy, the Flight Control System checkout, and a vernier reaction control system reboost demonstration had minimal effects on the acceleration environment, with excitation of frequencies in the 0.01 to 10 Hz range. Flash Evaporator System venting had no noticeable effect on the environment while supply and waste water dumps caused excursions of 2 x lO(exp -6) to 4 x 10(exp -6) g in the Y(sub b) and Z(sub b) directions. Crew sleep and ergometer exercise periods can be clearly seen in the acceleration data, as expected. Accelerations related to the two Life Science Laboratory Equipment Refrigerator/Freezers were apparent in the data as are accelerations caused by the Johnson Space Center Projects Centrifuge. As on previous microgravity missions, several signals are present in the acceleration data for which a source has not been identified. The causes of these accelerations

  9. Acceleration and Velocity Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truax, Roger

    2015-01-01

    A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an autoregressive moving average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. Simple harmonic motion is assumed for the acceleration computations, and the central difference equation with a linear autoregressive model is used for the computations of velocity. A cantilevered rectangular wing model is used to validate the simple approach. Quality of the computed deflection, acceleration, and velocity values are independent of the number of fibers. The central difference equation with a linear autoregressive model proposed in this study follows the target response with reasonable accuracy. Therefore, the handicap of the backward difference equation, phase shift, is successfully overcome.

  10. RHIC Sextant Test - Accelerator Systems and Performance

    NASA Astrophysics Data System (ADS)

    Pilat, F.; Ahrens, L.; Brown, K.; Connolly, R.; dell, G. F.; Fischer, W.; Kewisch, J.; Mackay, W.; Mane, V.; Peggs, S.; Satogata, T.; Tepikian, S.; Thompson, P.; Trbojevic, D.; Tsoupas, N.; Wei, J.

    1997-05-01

    One sextant of the RHIC collider and the full AtR (AGS to RHIC) transfer line have been commissioned in early 1997 with beam. We describe here the design and performance of the accelerator systems during the test, such as the magnet and power supply systems, instrumentation subsystems and application software. After reviewing the main milestones of the commissioning we describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems preformance and their impact on the plannig for RHIC installation and commissioning.

  11. Fermilab accelerator control system: Analog monitoring facilities

    SciTech Connect

    Seino, K.; Anderson, L.; Smedinghoff, J.

    1987-10-01

    Thousands of analog signals are monitored in different areas of the Fermilab accelerator complex. For general purposes, analog signals are sent over coaxial or twinaxial cables with varying lengths, collected at fan-in boxes and digitized with 12 bit multiplexed ADCs. For higher resolution requirements, analog signals are digitized at sources and are serially sent to the control system. This paper surveys ADC subsystems that are used with the accelerator control systems and discusses practical problems and solutions, and it describes how analog data are presented on the console system.

  12. SAMS Acceleration Measurements on Mir (NASA Increment 4)

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1998-01-01

    During NASA Increment 4 (January to May 1997), about 5 gigabytes of acceleration data were collected by the Space Acceleration Measurements System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 28 optical disks which were returned to Earth on STS-84. During this increment, SAMS data were collected in the Priroda module to support the Mir Structural Dynamics Experiment (MiSDE), the Binary Colloidal Alloy Tests (BCAT), Angular Liquid Bridge (ALB), Candle Flames in Microgravity (CFM), Diffusion Controlled Apparatus Module (DCAM), Enhanced Dynamic Load Sensors (EDLS), Forced Flow Flame Spreading Test (FFFr), Liquid Metal Diffusion (LMD), Protein Crystal Growth in Dewar (PCG/Dewar), Queen's University Experiments in Liquid Diffusion (QUELD), and Technical Evaluation of MIM (TEM). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-84 operations, a Progress engine bum, Soyuz vehicle docking and undocking, and Progress vehicle docking. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. The analyses included herein complement those presented in previous summary reports prepared by the Principal Investigator Microgravity Services (PIMS) group.

  13. Summary Report of Mission Acceleration Measurements for STS-95

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Hrovat, Kenneth

    2000-01-01

    John H. Glenn's historic return to space was a primary focus of the STS-95 mission. The Hubble Space Telescope (HST) Orbital Systems Test (HOST). an STS-95 payload, was an in-flight demonstration of HST components to be installed during the next HST servicing mission. One of the components under evaluation was the cryocooler for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Based on concerns about vibrations from the operation of the NICMOS cryocooler affecting the overall HST line-of-sight requirements, the Space Acceleration Measurement System for Free-Flyers (SAMS-FF) was employed to measure the vibratory environment of the STS-95 mission, including any effects introduced by the NICMOS cryocooler. The STS-95 mission represents the first STS mission supported by SAMS-FF. Utilizing a Control and Data Acquisition Unit (CDU) and two triaxial sensor heads (TSH) mounted on the HOST support structure in Discovery's cargo bay, the SAMS-FF and the HOST project were able to make vibratory measurements both on-board the vibration-isolated NICMOS cryocooler and off-board the cryocooler mounting plate. By comparing the SAMS-FF measured vibrations on-board and off-board the NICMOS cryocooler, HST engineers could assess the cryocooler g-jitter effects on the HST line-of-sight requirements. The acceleration records from both SAMS-FF accelerometers were analyzed and significant features of the microgravity environment are detailed in this report.

  14. Radionuclide measurements by accelerator mass spectrometry at Arizona

    NASA Technical Reports Server (NTRS)

    Jull, A. J. T.; Donahue, D. J.; Zabel, T. H.

    1986-01-01

    Over the past years, Tandem Accelerator Mass Spectrometry (TAMS) has become established as an important method for radionuclide analysis. In the Arizona system the accelerator is operated at a thermal voltage of 1.8MV for C-14 analysis, and 1.6 to 2MV for Be-10. Samples are inserted into a cesium sputter ion source in solid form. Negative ions sputtered from the target are accelerated to about 25kV, and the injection magnet selects ions of a particular mass. Ions of the 3+ charge state, having an energy of about 9MeV are selected by an electrostatic deflector, surviving ions pass through two magnets, where only ions of the desired mass-energy product are selected. The final detector is a combination ionization chamber to measure energy loss (and hence, Z), and a silicon surface-barrier detector which measures residual energy. After counting the trace iosotope for a fixed time, the injected ions are switched to the major isotope used for normalization. These ions are deflected into a Faraday cup after the first high-energy magnet. Repeated measurements of the isotope ratio of both sample and standards results in a measurement of the concentration of the radionuclide. Recent improvements in sample preparation for C-14 make preparation of high-beam current graphite targets directly from CO2 feasible. Except for some measurements of standards and backgrounds for Be-10 measurements to date have been on C-14. Although most results have been in archaeology and quaternary geology, studies have been expanded to include cosmogenic C-14 in meteorites. The data obtained so far tend to confirm the antiquity of Antarctic meteorites from the Allan Hills site. Data on three samples of Yamato meteorites gave terrestrial ages of between about 3 and 22 thousand years.

  15. Argonne Tandem-Linac Accelerator System

    SciTech Connect

    Bollinger, L.M.

    1983-01-01

    Design considerations and operational experience for the existing heavy-ion accelerator consisting of a tandem injecting into a superconducting linac are summarized, with emphasis on the general features of the system. This introduction provides the basis for a discussion of the objectives and design of ATLAS, a larger tandem-linac system being formed by expanding the existing superconducting linac.

  16. Three Component Velocity and Acceleration Measurement Using FLEET

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett F.; Calvert, Nathan; Dogariu, Arthur; Miles, Richard P.

    2014-01-01

    The femtosecond laser electronic excitation and tagging (FLEET) method has been used to measure three components of velocity and acceleration for the first time. A jet of pure N2 issuing into atmospheric pressure air was probed by the FLEET system. The femtosecond laser was focused down to a point to create a small measurement volume in the flow. The long-lived lifetime of this fluorescence was used to measure the location of the tagged particles at different times. Simultaneous images of the flow were taken from two orthogonal views using a mirror assembly and a single intensified CCD camera, allowing two components of velocity to be measured in each view. These different velocity components were combined to determine three orthogonal velocity components. The differences between subsequent velocity components could be used to measure the acceleration. Velocity accuracy and precision were roughly estimated to be +/-4 m/s and +/-10 m/s respectively. These errors were small compared to the approx. 100 m/s velocity of the subsonic jet studied.

  17. Linear and angular head acceleration measurements in collegiate football.

    PubMed

    Rowson, Steven; Brolinson, Gunnar; Goforth, Mike; Dietter, Dave; Duma, Stefan

    2009-06-01

    Each year, between 1.6x10(6) and 3.8x10(6) concussions are sustained by athletes playing sports, with football having the highest incidence. The high number of concussions in football provides a unique opportunity to collect biomechanical data to characterize mild traumatic brain injury. Human head acceleration data for a range of impact severities were collected by instrumenting the helmets of collegiate football players with accelerometers. The helmets of ten Virginia Tech football players were instrumented with measurement devices for every game and practice for the 2007 football season. The measurement devices recorded linear and angular accelerations about each of the three axes of the head. Data for each impact were downloaded wirelessly to a sideline data collection system shortly after each impact occurred. Data were collected for 1712 impacts, creating a large and unbiased data set. While a majority of the impacts were of relatively low severity (<30 g and <2000 rad/s2), 172 impacts were greater than 40 g and 143 impacts were greater than 3000 rad/s2. No instrumented player sustained a clinically diagnosed concussion during the 2007 season. A large and unbiased data set was compiled by instrumenting the helmets of collegiate football players. Football provides a unique opportunity to collect head acceleration data of varying severity from human volunteers. The addition of concurrent concussive data may advance the understanding of the mechanics of mild traumatic brain injury. With an increased understanding of the biomechanics of head impacts in collegiate football and human tolerance to head acceleration, better equipment can be designed to prevent head injuries.

  18. Gait analysis using gravitational acceleration measured by wearable sensors.

    PubMed

    Takeda, Ryo; Tadano, Shigeru; Todoh, Masahiro; Morikawa, Manabu; Nakayasu, Minoru; Yoshinari, Satoshi

    2009-02-09

    A novel method for measuring human gait posture using wearable sensor units is proposed. The sensor units consist of a tri-axial acceleration sensor and three gyro sensors aligned on three axes. The acceleration and angular velocity during walking were measured with seven sensor units worn on the abdomen and the lower limb segments (both thighs, shanks and feet). The three-dimensional positions of each joint are calculated from each segment length and joint angle. Joint angle can be estimated mechanically from the gravitational acceleration along the anterior axis of the segment. However, the acceleration data during walking includes three major components; translational acceleration, gravitational acceleration and external noise. Therefore, an optimization analysis was represented to separate only the gravitational acceleration from the acceleration data. Because the cyclic patterns of acceleration data can be found during constant walking, a FFT analysis was applied to obtain some characteristic frequencies in it. A pattern of gravitational acceleration was assumed using some parts of these characteristic frequencies. Every joint position was calculated from the pattern under the condition of physiological motion range of each joint. An optimized pattern of the gravitational acceleration was selected as a solution of an inverse problem. Gaits of three healthy volunteers were measured by walking for 20s on a flat floor. As a result, the acceleration data of every segment was measured simultaneously. The characteristic three-dimensional walking could be shown by the expression using a stick figure model. In addition, the trajectories of the knee joint in the horizontal plane could be checked by visual imaging on a PC. Therefore, this method provides important quantitive information for gait diagnosis.

  19. Mobile Accelerator Neutron Radiography System

    DTIC Science & Technology

    1984-10-01

    Labyrinth in Shielded Lxposure Area ..... .................... . I.I.. 76 Gate , with Safety Interlock Switch, at Ertry to Shielaed Neutron Exposure...terminal connected to the +200 kv point of the main high voltage power supply, and therefore it " floats " on top of the 200 kv. Typically operated at 5 kv...condition and abort a run. Interlocks are on the gates and doors to shut off the system in the case of Q) 4-1 S- wLG) V) 0o to -j, a):; o1 V) 0.> L

  20. PARTS: (Plasma Accelerated Reusable Transport System)

    NASA Astrophysics Data System (ADS)

    Aherne, Michael; Davis, Phil; England, Matt; Gustavsson, Jake; Pankow, Steve; Sampaio, Chere; Savella, Phil

    2002-01-01

    The Plasma Accelerated Reusable Transport System (PARTS) is an unmanned cargo shuttle intended to ferry large payloads to and from Martian orbit using a highly efficient VAriable Specific Impulse Magnetoplasma Rocket (VASIMR). The design of PARTS focuses on balancing cost and minimizing transit time for a chosen payload consisting of vehicles, satellites, and other components provided by interested parties.

  1. Measurement and Data Distribution for Microgravity Accelerations on the International Space Station

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Hrovat, Kenneth

    1999-01-01

    Two accelerometer systems will be available on the International Space Station to support microgravity payloads with information about the quasi-steady and vibratory acceleration environment of the research facilities. The Microgravity Acceleration Measurement System will record contributions to the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. The Space Acceleration Measurement System-II will measure vibratory disturbances on-board due to vehicle, crew, and equipment disturbances. Due to the dynamic nature of the microgravity environment and its potential to influence sensitive experiments, NASA's Principal Investigator Microgravity Services project has initiated a plan through which the data from these instruments will be distributed to researchers in a timely and meaningful fashion. Beyond the obvious benefit of correlation between accelerations and the scientific phenomena being studied, such information is also useful for hardware developers who can gain qualitative and quantitative feedback about their facility acceleration output to station.

  2. SAMS Acceleration Measurements on Mir from June to November 1995

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Hrovat, Ken; Moskowitz, Milton; McPherson, Kevin

    1996-01-01

    The NASA Microgravity Science and Applications Division (MSAD) sponsors science experiments on a variety of microgravity carriers, including sounding rockets, drop towers, parabolic aircraft, and Orbiter missions. The MSAD sponsors the Space Acceleration Measurement System (SAMS) to support microgravity science experiments with acceleration measurements to characterize the microgravity environment to which the experiments were exposed. The Principal Investigator Microgravity Services project at the NASA Lewis Research Center supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. In 1993, a cooperative effort was started between the United States and Russia involving science utilization of the Russian Mir space station by scientists from the United States and Russia. MSAD is currently sponsoring science experiments participating in the Shuttle-Mir Science Program in cooperation with the Russians on the Mir space station. Included in the complement of MSAD experiments and equipment is a SAMS unit In a manner similar to Orbiter mission support, the SAMS unit supports science experiments from the U.S. and Russia by measuring the microgravity environment during experiment operations. The initial SAMS supported experiment was a Protein Crystal Growth (PCG) experiment from June to November 1995. SAMS data were obtained during the PCG operations on Mir in accordance with the PCG Principal Investigator's requirements. This report presents an overview of the SAMS data recorded to support this PCG experiment. The report contains plots of the SAMS 100 Hz sensor head data as an overview of the microgravity environment, including the STS-74 Shuttle-Mir docking.

  3. TOWARD A DIRECT MEASUREMENT OF THE COSMIC ACCELERATION

    SciTech Connect

    Darling, Jeremy

    2012-12-20

    We present precise H I 21 cm absorption line redshifts observed in multiple epochs to directly constrain the secular redshift drift z-dot or the cosmic acceleration, {Delta}v/{Delta}t{sub circle}. A comparison of literature analog spectra to contemporary digital spectra shows significant acceleration likely attributable to systematic instrumental errors. However, we obtain robust constraints using primarily Green Bank Telescope digital data. Ten objects spanning z = 0.09-0.69 observed over 13.5 years show z-dot = (-2.3 {+-} 0.8) Multiplication-Sign 10{sup -8} yr{sup -1} or {Delta}v/{Delta}t{sub circle} = -5.5 {+-} 2.2 m s{sup -1} yr{sup -1}. The best constraint from a single object, 3C 286 at (z) = 0.692153275(85), is z-dot = (1.6 {+-} 4.7) Multiplication-Sign 10{sup -8} yr{sup -1} or {Delta}v/{Delta}t{sub circle} = 2.8 {+-} 8.4 m s{sup -1} yr{sup -1}. These measurements are three orders of magnitude larger than the theoretically expected acceleration at z = 0.5, z-dot = 2 Multiplication-Sign 10{sup -11} yr{sup -1} or {Delta}v/{Delta}t{sub circle} = 0.3 cm s{sup -1} yr{sup -1}, but they demonstrate the lack of peculiar acceleration in absorption line systems and the long-term frequency stability of modern radio telescopes. A comparison of UV metal absorption lines to the 21 cm line improves constraints on the cosmic variation of physical constants: {Delta}({alpha}{sup 2} g{sub p} {mu})/{alpha}{sup 2} g{sub p} {mu} = (- 1.2 {+-} 1.4) Multiplication-Sign 10{sup -6} in the redshift range z = 0.24-2.04. The linear evolution over the last 10.4 Gyr is (- 0.2 {+-} 2.7) Multiplication-Sign 10{sup -16} yr{sup -1}, consistent with no variation. The cosmic acceleration could be directly measured in {approx}125 years using current telescopes or in {approx}5 years using a Square Kilometer Array, but systematic effects will arise at the 1 cm s{sup -1} yr{sup -1} level.

  4. Induction accelerators for the phase rotator system

    SciTech Connect

    Reginato, Lou; Yu, Simon; Vanecek, Dave

    2001-07-30

    The principle of magnetic induction has been applied to the acceleration of high current beams in betatrons and a variety of induction accelerators. The linear induction accelerator (LIA) consists of a simple nonresonant structure where the drive voltage is applied to an axially symmetric gap that encloses a toroidal ferromagnetic material. The change in flux in the magnetic core induces an axial electric field that provides particle acceleration. This simple nonresonant (low Q) structure acts as a single turn transformer that can accelerate from hundreds of amperes to tens of kiloamperes, basically only limited by the drive impedance. The LIA is typically a low gradient structure that can provide acceleration fields of varying shapes and time durations from tens of nanoseconds to several microseconds. The efficiency of the LIA depends on the beam current and can exceed 50% if the beam current exceeds the magnetization current required by the ferromagnetic material. The acceleration voltage available is simply given by the expression V=A dB/dt. Hence, for a given cross section of material, the beam pulse duration influences the energy gain. Furthermore, a premium is put on minimizing the diameter, which impacts the total weight or cost of the magnetic material. The diameter doubly impacts the cost of the LIA since the power (cost) to drive the cores is proportional to the volume as well. The waveform requirements during the beam pulse makes it necessary to make provisions in the pulsing system to maintain the desired dB/dt during the useful part of the acceleration cycle. This is typically done two ways, by using the final stage of the pulse forming network (PFN) and by the pulse compensation network usually in close proximity of the acceleration cell. The choice of magnetic materials will be made by testing various materials both ferromagnetic and ferrimagnetic. These materials will include the nickel-iron, silicon steel amorphous and various types of ferrites not

  5. COMMISSIONING OF THE SPALLATION NEUTRON SOURCE ACCELERATOR SYSTEMS

    SciTech Connect

    Plum, Michael A

    2007-01-01

    The Spallation Neutron Source accelerator complex consists of a 2.5 MeV H- front-end injector system, a 186 MeV normal-conducting linear accelerator, a 1 GeV superconducting linear accelerator, an accumulator ring, and associated beam transport lines. The linac was commissioned in five discrete runs, starting in 2002 and completed in 2005. The accumulator ring and associated beam transport lines were commissioned in two runs from January to April 2006. With the completed commissioning of the SNS accelerator, the facility has begun initial low-power operations. In the course of beam commissioning, most beam performance parameters and beam intensity goals have been achieved at low duty factor. A number of beam dynamics measurements have been performed, including emittance evolution, transverse coupling in the ring, beam instability thresholds, and beam distributions on the target. The commissioning results, achieved beam performance and initial operating experience of the SNS will be discussed

  6. [Tomodensitometry measurements of proximal tibia and acceleration in marathon athletes].

    PubMed

    Gremion, Gérald; Cordey, Jacques; Leyvraz, Pierre-François; Rizzoli, René; Crettenand, Antoinette; Gobelet, Charles; Dériaz, Olivier; Crettenand, Andre

    2004-02-01

    We evaluated bone adaptation of the tibia to mechanical stresses in male marathon runners and in sedentary controls in function of the ground impact measured by accelerometry and of the bone mineral density assessed by peripheral quantitative computed tomography (QCT). Sixty-three subjects (51 runners and 12 controls) were enrolled. All had measurements of bone mineral density of the proximal tibia and of acceleration at the same site during a jogging at 9 km/hour. The results show a significant higher cortical BMD in runners with the higher value of late accelerations (at 50 ms after the contact with the ground). The late acceleration might be related to muscle contraction.

  7. Measurement of Electron Clouds in Large Accelerators by Microwave Dispersion

    SciTech Connect

    De Santis, S.; Byrd, J.M.; Caspers, F.; Krasnykh, A.; Kroyer, T.; Pivi, M.T.F.; Sonnad, K.G.; /LBL, Berkeley

    2008-03-19

    Clouds of low energy electrons in the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation at high currents. Furthermore, it is difficult to probe their density over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave transmitted over a section of the accelerator and used it to measure the average electron cloud density over a 50 m section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center.

  8. Measurement of electron clouds in large accelerators by microwave dispersion.

    PubMed

    De Santis, S; Byrd, J M; Caspers, F; Krasnykh, A; Kroyer, T; Pivi, M T F; Sonnad, K G

    2008-03-07

    Clouds of low energy electrons in the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation at high currents. Furthermore, it is difficult to probe their density over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave transmitted over a section of the accelerator and used it to measure the average electron cloud density over a 50 m section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center.

  9. Acceleration display system for aircraft zero-gravity research

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1987-01-01

    The features, design, calibration, and testing of Lewis Research Center's acceleration display system for aircraft zero-gravity research are described. Specific circuit schematics and system specifications are included as well as representative data traces from flown trajectories. Other observations learned from developing and using this system are mentioned where appropriate. The system, now a permanent part of the Lewis Learjet zero-gravity program, provides legible, concise, and necessary guidance information enabling pilots to routinely fly accurate zero-gravity trajectories. Regular use of this system resulted in improvements of the Learjet zero-gravity flight techniques, including a technique to minimize later accelerations. Lewis Gates Learjet trajectory data show that accelerations can be reliably sustained within 0.01 g for 5 consecutive seconds, within 0.02 g for 7 consecutive seconds, and within 0.04 g for up to 20 second. Lewis followed the past practices of acceleration measurement, yet focussed on the acceleration displays. Refinements based on flight experience included evolving the ranges, resolutions, and frequency responses to fit the pilot and the Learjet responses.

  10. Small system for tritium accelerator mass spectrometry

    DOEpatents

    Roberts, Mark L.; Davis, Jay C.

    1993-01-01

    Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and .sup.3 He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

  11. Small system for tritium accelerator mass spectrometry

    DOEpatents

    Roberts, M.L.; Davis, J.C.

    1993-02-23

    Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and [sup 3]He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

  12. Accelerating Science Driven System Design With RAMP

    SciTech Connect

    Wawrzynek, John

    2015-05-01

    Researchers from UC Berkeley, in collaboration with the Lawrence Berkeley National Lab, are engaged in developing an Infrastructure for Synthesis with Integrated Simulation (ISIS). The ISIS Project was a cooperative effort for “application-driven hardware design” that engages application scientists in the early parts of the hardware design process for future generation supercomputing systems. This project served to foster development of computing systems that are better tuned to the application requirements of demanding scientific applications and result in more cost-effective and efficient HPC system designs. In order to overcome long conventional design-cycle times, we leveraged reconfigurable devices to aid in the design of high-efficiency systems, including conventional multi- and many-core systems. The resulting system emulation/prototyping environment, in conjunction with the appropriate intermediate abstractions, provided both a convenient user programming experience and retained flexibility, and thus efficiency, of a reconfigurable platform. We initially targeted the Berkeley RAMP system (Research Accelerator for Multiple Processors) as that hardware emulation environment to facilitate and ultimately accelerate the iterative process of science-driven system design. Our goal was to develop and demonstrate a design methodology for domain-optimized computer system architectures. The tangible outcome is a methodology and tools for rapid prototyping and design-space exploration, leading to highly optimized and efficient HPC systems.

  13. Measurements of Acceleration Due to Gravity.

    ERIC Educational Resources Information Center

    Crummett, Bill

    1990-01-01

    The principle means by which g has been measured are summarized. Discussed are "Kater's Reversible Pendulum," falling rules, and interferometry methods. Types of corrections and various sources of uncertainty are considered. (CW)

  14. COAXIAL WIRE MEASUREMENTS IN NLC ACCELERATING STRUCTURES

    SciTech Connect

    Jones, Roger M

    2002-06-20

    The coaxial wire method provides an experimental way of measuring wake fields without the need for a particle beam. A special setup has been designed and is in the process of being fabricated at SLAC to measure the loss factors and synchronous frequencies of dipole modes in both traveling and standing wave structures for the Next Linear Collider (NLC). The method is described and predictions based on electromagnetic field simulations are discussed.

  15. Vacuum system for Advanced Test Accelerator

    SciTech Connect

    Denhoy, B.S.

    1981-09-03

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10/sup -6/ torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing.

  16. A study of the influence of the data acquisition system sampling rate on the accuracy of measured acceleration loads for transport aircraft

    NASA Technical Reports Server (NTRS)

    Whitehead, Julia H.

    1992-01-01

    A research effort was initiated at National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC), to describe the relationship between the sampling rate and the accuracy of acceleration loads obtained from the data acquisition system of a transport aircraft. An accelerometer was sampled and digitized at a rate of 100 samples per second onboard a NASA Boeing 737 (B-737) flight research aircraft. Numerical techniques were used to reconstruct 2.5 hours of flight data into its original input waveform and then re-sample the waveform into rates of 4, 8, 16, and 32 samples per second. Peak-between-means counting technique and power spectral analysis were used to evaluate each sampling rate using the 32 samples per second data as the comparison. This paper presents the results from these methods and includes in appendix A, the peak-between-means counting results used in a general fatigue analysis for each of the sampling rates.

  17. Kr II laser-induced fluorescence for measuring plasma acceleration.

    PubMed

    Hargus, W A; Azarnia, G M; Nakles, M R

    2012-10-01

    We present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator also known as a Hall effect thruster, which has heritage as spacecraft propulsion. The 728.98 nm Kr II transition from the metastable 5d(4)D(7/2) to the 5p(4)P(5/2)(∘) state was used for the measurement of laser-induced fluorescence within the plasma discharge. From these measurements, it is possible to measure velocity as krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions may also be extracted from the fluorescence data since available hyperfine splitting data allow for the Kr II 5d(4)D(7/2)-5p(4)P(5/2)(∘) transition lineshape to be modeled. From the analysis, the fluorescence lineshape appears to be a reasonable estimate for the relatively broad ion velocity distributions. However, due to an apparent overlap of the ion creation and acceleration regions within the discharge, the distributed velocity distributions increase ion temperature determination uncertainty significantly. Using the most probable ion velocity as a representative, or characteristic, measure of the ion acceleration, overall propellant energy deposition, and effective electric fields may be calculated. With this diagnostic technique, it is possible to nonintrusively characterize the ion acceleration both within the discharge and in the plume.

  18. Kr II laser-induced fluorescence for measuring plasma acceleration

    NASA Astrophysics Data System (ADS)

    Hargus, W. A.; Azarnia, G. M.; Nakles, M. R.

    2012-10-01

    We present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator also known as a Hall effect thruster, which has heritage as spacecraft propulsion. The 728.98 nm Kr II transition from the metastable 5d4D7/2 to the 5p ^4P^circ _{5/2} state was used for the measurement of laser-induced fluorescence within the plasma discharge. From these measurements, it is possible to measure velocity as krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions may also be extracted from the fluorescence data since available hyperfine splitting data allow for the Kr II 5d4D7/2-5p ^4P^circ _{5/2} transition lineshape to be modeled. From the analysis, the fluorescence lineshape appears to be a reasonable estimate for the relatively broad ion velocity distributions. However, due to an apparent overlap of the ion creation and acceleration regions within the discharge, the distributed velocity distributions increase ion temperature determination uncertainty significantly. Using the most probable ion velocity as a representative, or characteristic, measure of the ion acceleration, overall propellant energy deposition, and effective electric fields may be calculated. With this diagnostic technique, it is possible to nonintrusively characterize the ion acceleration both within the discharge and in the plume.

  19. Precision Magnet Measurements for X-Band Accelerator Quadrupole Triplets

    SciTech Connect

    Marsh, R A; Anderson, S G; Armstrong, J P

    2012-05-16

    An X-band test station is being developed at LLNL to investigate accelerator optimization for future upgrades to mono-energetic gamma-ray (MEGa-Ray) technology at LLNL. Beamline magnets will include an emittance compensation solenoid, windowpane steering dipoles, and quadrupole magnets. Demanding tolerances have been placed on the alignment of these magnets, which directly affects the electron bunch beam quality. A magnet mapping system has been established at LLNL in order to ensure the delivered magnets match their field specification, and the mountings are aligned and capable of reaching the specified alignment tolerances. The magnet measurement system will be described which uses a 3-axis Lakeshore gauss probe mounted on a 3-axis translation stage. Alignment accuracy and precision will be discussed, as well as centering measurements and analysis. The dependence on data analysis over direct multi-pole measurement allows a significant improvement in useful alignment information. Detailed analysis of measurements on the beamline quadrupoles will be discussed, including multi-pole content both from alignment of the magnets, and the intrinsic level of multi-pole magnetic field.

  20. Model measurements for new accelerating techniques

    SciTech Connect

    Aronson, S.; Haseroth, H.; Knott, J.; Willis, W.

    1988-06-01

    We summarize the work carried out for the past two years, concerning some different ways for achieving high-field gradients, particularly in view of future linear lepton colliders. These studies and measurements on low power models concern the switched power principle and multifrequency excitation of resonant cavities. 15 refs., 12 figs.

  1. Passive Accelerometer System Measurements on MIR

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.

    1997-01-01

    The Passive Accelerometer System (PAS) is a simple moving ball accelerometer capable of measuring the small magnitude steady relative acceleration that occurs in a low earth orbit spacecraft due to atmospheric drag and the earth's gravity gradient. The acceleration is measured by recording the average velocity of the spherical ball over a suitable time increment. A modified form of Stokes law is used to convert the average velocity into an acceleration. PAS was used to measure acceleration on the MIR space station and on the first United States Microgravity Laboratory (USML-1). The PAS measurement on MIR revealed remarkably low acceleration levels in the SPEKTR module.

  2. Fermilab Tevatron high level RF accelerating systems

    NASA Astrophysics Data System (ADS)

    Kerns, Q.; Kerns, C.; Miller, H.; Tawser, S.; Reid, J.; Webber, R.; Wildman, D.

    1985-06-01

    Eight tuned RF cavities have been installed and operated in the F0 straight section of the Tevatron. Their mechanical placement along the beam line enables them to be operated for colliding beams as two independent groups of four cavities, group 1-4 accelerating antiprotons and group 5-8 accelerating protons. The only difference is that the spacing between cavities 4 and 5 was increased to stay clear of the F0 colliding point. The cavities can easily be rephased by switching cables in a low-level distribution system (fan-out) so that the full accelerating capability of all eight cavities can be used during a fixed target operations. Likewise, the cables from capacitive probes on each cavity gap can be switched to proper lengths and summed in a fan-back system to give an RF signal representing the amplitude and phase as seen by the beam separately for protons and antiprotons. Such signals have been used to phase lock the Tevatron to the Main Ring for synchronous transfer.

  3. Open Hardware for CERN's accelerator control systems

    NASA Astrophysics Data System (ADS)

    van der Bij, E.; Serrano, J.; Wlostowski, T.; Cattin, M.; Gousiou, E.; Alvarez Sanchez, P.; Boccardi, A.; Voumard, N.; Penacoba, G.

    2012-01-01

    The accelerator control systems at CERN will be upgraded and many electronics modules such as analog and digital I/O, level converters and repeaters, serial links and timing modules are being redesigned. The new developments are based on the FPGA Mezzanine Card, PCI Express and VME64x standards while the Wishbone specification is used as a system on a chip bus. To attract partners, the projects are developed in an `Open' fashion. Within this Open Hardware project new ways of working with industry are being evaluated and it has been proven that industry can be involved at all stages, from design to production and support.

  4. Accelerator and rf system development for NLC

    SciTech Connect

    Vlieks, A.E.; Callin, R.; Deruyter, H.

    1993-04-01

    An experimental station for an X-band Next Linear Collider has been constructed at SLAC. This station consists of a klystron and modulator, a low-loss waveguide system for rf power distribution, a SLED II pulse-compression and peak-power multiplication system, acceleration sections and beam-line components (gun, prebuncher, preaccelerator, focussing elements and spectrometer). An extensive program of experiments to evaluate the performance of all components is underway. The station is described in detail in this paper, and results to date are presented.

  5. Measurement of the magnetic field coefficients of particle accelerator magnets

    SciTech Connect

    Herrera, J.; Ganetis, G.; Hogue, R.; Rogers, E.; Wanderer, P.; Willen, E.

    1989-01-01

    An important aspect in the development of magnets to be used in particle accelerators is the measurement of the magnetic field in the beam aperture. In general it is necessary to measure the harmonic multipoles in the dipole, quadrupole, and sextupole magnets for a series of stationary currents (plateaus). This is the case for the Superconducting Super Collider (SSC) which will be ramped to high field over a long period (/approximately/1000 sec.) and then remain on the flat top for the duration of the particle collision phase. In contrast to this mode of operation, the Booster ring being constructed for the Brookhaven AGS, will have a fast ramp rate of approximately 10 Hz. The multipole fields for these Booster magnets must therefore be determined ''on the ramp.'' In this way the effect of eddy currents will be taken into account. The measurement system which we will describe in this paper is an outgrowth of that used for the SSC dipoles. It has the capability of measuring the field multipoles on both a plateau or during a fast ramp. In addition, the same basic coil assembly is used to obtain the magnetic multipoles in dipole, quadrupole, and sextupole magnets. 2 refs., 3 figs., 1 tab.

  6. A flexible and configurable system to test accelerator magnets

    SciTech Connect

    Jerzy M. Nogiec et al.

    2001-07-20

    Fermilab's accelerator magnet R and D programs, including production of superconducting high gradient quadrupoles for the LHC insertion regions, require rigorous yet flexible magnetic measurement systems. Measurement systems must be capable of handling various types of hardware and extensible to all measurement technologies and analysis algorithms. A tailorable software system that satisfies these requirements is discussed. This single system, capable of distributed parallel signal processing, is built on top of a flexible component-based framework that allows for easy reconfiguration and run-time modification. Both core and domain-specific components can be assembled into various magnet test or analysis systems. The system configured to comprise a rotating coil harmonics measurement is presented. Technologies as Java, OODB, XML, JavaBeans, software bus and component-based architectures are used.

  7. Control system modeling for superconducting accelerator

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Pozniak, Krzysztof; Romaniuk, Ryszard; Simrock, Stefan

    2006-10-01

    A digital control of superconducting cavities for a linear accelerator is presented. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. FPGA based controller supported by MATLAB system was developed to investigate the novel firmware implementation. Algebraic model in complex domain is proposed for the system analyzing. Calibration procedure of a signal path is considered for a multi-channel control. Identification of the system parameters is carried out by the least squares method application. Control tables: Feed-Forward and Set-Point are determined for the required cavity performance, according to the recognized process. Feedback loop is tuned by fitting a complex gain of a corrector unit. Adaptive control algorithm is applied for feed-forward and feedback modes. Experimental results are presented for a cavity representative operation.

  8. Longitudinal impedance measurement of an RK-TBA induction accelerating gap

    SciTech Connect

    Eylon, S.; Henestroza, E.; Kim, J.-S.; Houck, T.L.; Westenskow, G.A.; Yu, S.S.

    1997-05-01

    Induction accelerating gap designs are being studied for Relativistic Klystron Two-Beam Accelerator (RK-TBA) applications. The accelerating gap has to satisfy the following major requirements: hold-off of the applied accelerating voltage pulse, low transverse impedance to limit beam breakup, low longitudinal impedance at the beam-modulation frequency to minimize power loss. Various gap geometries, materials and novel insulating techniques were explored to optimize the gap design. We report on the experimental effort to evaluate the rf properties of the accelerating gaps in a simple pillbox cavity structure. The experimental cavity setup was designed using the AMOS, MAFIA and URMEL numerical codes. Longitudinal impedance measurements above beam-tube cut-off frequency using a single-wire measuring system are presented.

  9. Studies of acceleration processes in the corona using ion measurements on the solar probe mission

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.

    1978-01-01

    The energy spectra and composition of particles escaping from the Sun provide essential information on mechanisms responsible for their acceleration, and may also be used to characterize the regions where they are accelerated and confined and through which they propagate. The suprathermal energy range, which extends from solar wind energies (approximately 1 KeV) to about 1 MeV/nucleon, is of special interest to studies of nonthermal acceleration processes because a large fraction of particles is likely to be accelerated into this energy range. Data obtained from near earth observations of particles in the suprathermal energy range are reviewed. The necessary capabilities of an a ion composition experiment in the solar probe mission and the required ion measurements are discussed. A possible configuration of an instrument consisting of an electrostatic deflection system, modest post acceleration, and a time of flight versus energy system is described as well as its possible location on the spacecraft.

  10. Critical Systems Engineering Accelerator: Aerospace Demonstrator

    NASA Astrophysics Data System (ADS)

    Moreno, Ricardo; Fernandez, Gonzalo; Regada, Raul; Basanta, Luis; Alana, Elena; del Carmen Lomba, Maria

    2014-08-01

    Nowadays, the complexity and functionality of space systems is increasing more and more. Safety critical systems have to guarantee strong safety and dependability constraints. This paper presents CRYSTAL (Critical sYSTem engineering AcceLeration), a cross-domain ARTEMIS project for increasing the efficiency of the embedded software development in the industry through the definition of an integrated tool chain. CRYSTAL involves four major application domains: Aerospace, Automotive, Rail and Medical Healthcare. The impact in the Space Domain will be evaluated through a demonstrator implemented using CRYSTAL framework: the Low Level Software for an Avionics Control Unit, capable to run Application SW for autonomous navigation, image acquisition control, data compression and/or data handling. Finally, the results achieved will be evaluated taking into account the ECSS (European Committee for Space Standardization) standards and procedures.

  11. Kr II laser-induced fluorescence for measuring plasma acceleration

    SciTech Connect

    Hargus, W. A. Jr.

    2012-10-15

    We present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator also known as a Hall effect thruster, which has heritage as spacecraft propulsion. The 728.98 nm Kr II transition from the metastable 5d{sup 4}D{sub 7/2} to the 5p{sup 4}P{sub 5/2}{sup Ring-Operator} state was used for the measurement of laser-induced fluorescence within the plasma discharge. From these measurements, it is possible to measure velocity as krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions may also be extracted from the fluorescence data since available hyperfine splitting data allow for the Kr II 5d{sup 4}D{sub 7/2}-5p{sup 4}P{sub 5/2}{sup Ring-Operator} transition lineshape to be modeled. From the analysis, the fluorescence lineshape appears to be a reasonable estimate for the relatively broad ion velocity distributions. However, due to an apparent overlap of the ion creation and acceleration regions within the discharge, the distributed velocity distributions increase ion temperature determination uncertainty significantly. Using the most probable ion velocity as a representative, or characteristic, measure of the ion acceleration, overall propellant energy deposition, and effective electric fields may be calculated. With this diagnostic technique, it is possible to nonintrusively characterize the ion acceleration both within the discharge and in the plume.

  12. Accelerator Mass Spectrometry for Measurement of Long-Lived Radioisotopes

    NASA Astrophysics Data System (ADS)

    Elmore, David; Phillips, Fred M.

    1987-05-01

    Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes 10Be, 14C, 26Al, 36Cl, and 129I can now be measured in small natural samples having isotopic abundances in the range 10-12 to 10-15 and as few as 105 atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of half-lives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences.

  13. Accelerator mass spectrometry for measurement of long-lived radioisotopes.

    PubMed

    Elmore, D; Phillips, F M

    1987-05-01

    Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes (10)Be, (14)C,(26)A1, 36Cl, and (129)1 can now be measured in small natural samples having isotopic abundances in the range 10(-12) to 10(- 5) and as few as 10(5) atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of halflives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences.

  14. Preliminary OARE absolute acceleration measurements on STS-50

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James

    1993-01-01

    On-orbit Orbital Acceleration Research Experiment (OARE) data on STS-50 was examined in detail during a 2-day time period. Absolute acceleration levels were derived at the OARE location, the orbiter center-of-gravity, and at the STS-50 spacelab Crystal Growth Facility. The tri-axial OARE raw acceleration measurements (i.e., telemetered data) during the interval were filtered using a sliding trimmed mean filter in order to remove large acceleration spikes (e.g., thrusters) and reduce the noise. Twelve OARE measured biases in each acceleration channel during the 2-day interval were analyzed and applied to the filtered data. Similarly, the in situ measured x-axis scale factors in the sensor's most sensitive range were also analyzed and applied to the data. Due to equipment problem(s) on this flight, both y- and z- axis sensitive range scale factors were determined in a separate process (using the OARE maneuver data) and subsequently applied to the data. All known significant low-frequency corrections at the OARE location (i.e., both vertical and horizontal gravity-gradient, and rotational effects) were removed from the filtered data in order to produce the acceleration components at the orbiter's center-of-gravity, which are the aerodynamic signals along each body axes. Results indicate that there is a force of unknown origin being applied to the Orbiter in addition to the aerodynamic forces. The OARE instrument and all known gravitational and electromagnetic forces were reexamined, but none produce the observed effect. Thus, it is tentatively concluded that the Orbiter is creating the environment observed.

  15. Measurement of acceleration: a new method of monitoring neuromuscular function.

    PubMed

    Viby-Mogensen, J; Jensen, E; Werner, M; Nielsen, H K

    1988-01-01

    A new method for monitoring neuromuscular function based on measurement of acceleration is presented. The rationale behind the method is Newton's second law, stating that the acceleration is directly proportional to the force. For measurement of acceleration, a piezo-electric ceramic wafer was used. When this piezo electrode was fixed to the thumb, an electrical signal proportional to the acceleration was produced whenever the thumb moved in response to nerve stimulation. The electrical signal was registered and analysed in a Myograph 2000 neuromuscular transmission monitor. In 35 patients anaesthetized with halothane, train-of-four ratios measured with the accelerometer (ACT-TOF) were compared with simultaneous mechanical train-of-four ratios (FDT-TOF). Control ACT-TOF ratios were significantly higher than control FDT-TOF ratios: 116 +/- 12 and 98 +/- 4 (mean +/- s.d.), respectively. In five patients not given any relaxant during the anaesthetic procedure (20-60 min), both responses were remarkably constant. In 30 patients given vecuronium, a close linear relationship was found during recovery between ACT-TOF and FDT-TOF ratios. It is concluded that the method fulfils the basic requirements for a simple and reliable clinical monitoring tool.

  16. Summary Report of Mission Acceleration Measurements for STS-73, Launched October 20, 1995

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; DeLombard, Richard

    1996-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-73 mission using accelerometers from five different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System, the Three-dimensional Microgravity Accelerometer, the Microgravity Measuring Device, and Suppression of Transient Accelerations by Levitation Evaluation System. The Microgravity Analysis Workstation quasi-steady environment calculation and comparison of this calculation with Orbital Acceleration Research Experiment data was used to assess how appropriate a planned attitude was expected to be for one Crystal Growth Facility experiment sample. The microgravity environment related to several different Orbiter, crew, and experiment operations is presented and interpreted in this report. Data are examined to show the effects of vernier reaction control system jet firings for Orbiter attitude control. This is compared to examples of data when no thrusters were firing, when the primary reaction control system jets were used for attitude control, and when single vernier jets were fired for test purposes. In general, vernier jets, when used for attitude control, cause accelerations in the 3 x 10(exp -4) g to 7 x 10(exp -4) g range. Primary jets used in this manner cause accelerations in the 0.01 to 0.025 g range. Other significant disturbance sources characterized are water dump operations, with Y(sub b) axis acceleration deviations of about 1 x 10(exp -6) g; payload bay door opening motion, with Y(sub o) and Z(sub o) axis accelerations of frequency 0.4 Hz; and probable Glovebox fan operations with notable frequency components at 20, 38, 43, 48, and 53 Hz. The STS-73 microgravity environment is comparable to the environments measured on earlier microgravity science missions.

  17. Summary Report of Mission Acceleration Measurement for STS-87, Launched November 19, 1997

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; DeLombard, Richard; Reckart, Timothy

    1999-01-01

    Two accelerometer systems, the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System, were used to measure and record the microgravity environment of the Orbiter Columbia during the STS-87 mission in November-December 1997. Data from two separate Space Acceleration Measurement System units were telemetered to the ground during the mission and data plots were displayed for investigators of the Fourth United States Microgravity Payload experiments in near real-time using the World Wide Web. Plots generated using Orbital Acceleration Research Experiment data (telemetered to the ground using a tape delay) were provided to the investigators using the World Wide Web approximately twelve hours after data recording. Disturbances in the microgravity environment as recorded by these instruments are grouped by source type: Orbiter systems, on-board activities, payload operations, and unknown sources. The environment related to the Ku-band antenna dither, Orbiter structural modes, attitude deadband collapses, water dump operations, crew sleep, and crew exercise was comparable to the effects of these sources on previous Orbiter missions. Disturbances related to operations of the Isothermal Dendritic Growth Experiment and Space Acceleration Measurement Systems that were not observed on previous missions are detailed. The effects of Orbiter cabin and airlock depressurization and extravehicular activities are also reported for the first time. A set of data plots representing the entire mission is included in the CD-ROM version of this report.

  18. Summary Report of Mission Acceleration Measurement for STS-87: Launched November 19, 1997

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; DeLombard, Richard; Reckart, Timothy

    1999-01-01

    Two accelerometer systems, the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System, were used to measure and record the microgravity environment of the Orbiter Columbia during the STS-87 mission in November-December 1997. Data from two separate Space Acceleration Measurement System units were telemetered to the ground during the mission and data plots were displayed for investigators of the Fourth United States Microgravity Payload experiments in near real-time using the World Wide Web. Plots generated using Orbital Acceleration Research Experiment data (telemetered to the ground using a tape delay) were provided to the investigators using the World Wide Web approximately twelve hours after data recording. Disturbances in the microgravity environment as recorded by these instruments are grouped by source type: Orbiter systems, on-board activities, payload operations, and unknown sources. The environment related to the Ku-band antenna dither, Orbiter structural modes, attitude deadband collapses, water dump operations, crew sleep, and crew exercise was comparable to the effects of these sources on previous Orbiter missions. Disturbances related to operations of the Isothermal Dendritic Growth Experiment and Space Acceleration Measurement Systems that were not observed on previous missions are detailed. The effects of Orbiter cabin and airlock depressurization and extravehicular activities are also reported for the first time. A set of data plots representing the entire mission is included in the CD-ROM version of this report.

  19. Systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators

    DOEpatents

    Grisham, Larry R

    2013-12-17

    The present invention provides systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators. Advantageously, the systems and methods of the present invention improve the practically obtainable performance of these electrostatic accelerators by addressing, among other things, voltage holding problems and conditioning issues. The problems and issues are addressed by flowing electric currents along these accelerator electrodes to produce magnetic fields that envelope the accelerator electrodes and their support structures, so as to prevent very low energy electrons from leaving the surfaces of the accelerator electrodes and subsequently picking up energy from the surrounding electric field. In various applications, this magnetic insulation must only produce modest gains in voltage holding capability to represent a significant achievement.

  20. Measuring the acceleration due to gravity using an IR transceiver

    NASA Astrophysics Data System (ADS)

    AbdElazem, Sohaib; Al-Basheer, Watheq

    2015-07-01

    In this paper, we present a new technique to study the dynamics of a free-falling object in a lab setting and to measure the acceleration due to gravity g using a simple and economic setup. The precise measurement of time taken for an object to fall freely passing an infrared (IR) transceiver is utilized to deduce the acceleration due to gravity. The reflected IR intensity from a free-falling 0.19 m rod of equally spaced white stripes of 0.01 m is detected and sent to a digital oscilloscope to observe and record the falling time period of each stripe. By fitting recorded elapsed falling times to the well-known quadratic equation of motion under constant acceleration, an accurate value of the acceleration due to gravity of g = 9.8092 ± 0.0384 m s-2 is obtained. In addition to its accuracy, the proposed technique is safer and more economic than most of the other currently used setups to determine g in undergraduate teaching labs. This study may provide undergraduate lab instructors with an efficient teaching technique for a traditional classroom experiment.

  1. BIOCONAID System (Bionic Control of Acceleration Induced Dimming). Final Report.

    ERIC Educational Resources Information Center

    Rogers, Dana B.; And Others

    The system described represents a new technique for enhancing the fidelity of flight simulators during high acceleration maneuvers. This technique forces the simulator pilot into active participation and energy expenditure similar to the aircraft pilot undergoing actual accelerations. The Bionic Control of Acceleration Induced Dimming (BIOCONAID)…

  2. Radio frequency systems for present and future accelerators

    SciTech Connect

    Raka, E.C.

    1987-01-01

    Rf systems are described for the FNAL Main Ring and Tevatron Ring, CERN SPS and LEP, and HERA proton acceleration system, CERN PS e/sup +/e/sup minus/ acceleration system, and CERN EPA monochromatic cavity. Low impedance rf systems in CERN ISR, the Brookhaven CBA, and SSC are also discussed.

  3. Climate-driven vertical acceleration of Icelandic crust measured by continuous GPS geodesy

    NASA Astrophysics Data System (ADS)

    Compton, Kathleen; Bennett, Richard A.; Hreinsdóttir, Sigrún

    2015-02-01

    Earth's present-day response to enhanced glacial melting resulting from climate change can be measured using Global Positioning System (GPS) technology. We present data from 62 continuously operating GPS instruments in Iceland. Statistically significant upward velocity and accelerations are recorded at 27 GPS stations, predominantly located in the Central Highlands region of Iceland, where present-day thinning of the Iceland ice caps results in velocities of more than 30 mm/yr and uplift accelerations of 1-2 mm/yr2. We use our acceleration estimates to back calculate to a time of zero velocity, which coincides with the initiation of ice loss in Iceland from ice mass balance calculations and Arctic warming trends. We show, through a simple inversion, a direct relationship between ice mass balance measurements and vertical position and show that accelerated unloading is required to reproduce uplift observations for a simple elastic layer over viscoelastic half-space model.

  4. Absolute gravity acceleration measurement in atomic sensor laboratories

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2012-03-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the Florence University (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the measurement of forces with high spatial resolution are in progress. Both experiments require an independent knowledge on the local value of g. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are ( 980 492 160.6 ± 4.0) μGal and ( 980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  5. Measurement of acceleration in femtosecond laser-plasmas

    SciTech Connect

    Haessner, R.; Theobald, W.; Niedermeier, S.; Michelmann, K.; Feurer, T.; Schillinger, H.; Sauerbrey, R.

    1998-02-20

    Accelerations up to 4x10{sup 19} m/s{sup 2} are measured in femtosecond laser-produced plasmas at intensities of 10{sup 18} W/cm{sup 2} using the Frequency Resolved Optical Gating (FROG) technique. A high density plasma is formed by focusing an ultrashort unchirped laser pulse on a plane carbon target and part of the reflected pulse is eventually detected by a FROG autocorrelator. Radiation pressure and thermal pressure accelerate the plasma which causes a chirp in the reflected laser pulse. The retrieved phase and amplitude information reveal that the plasma motion is dominated by the large light pressure which pushes the plasma into the target. This is supported by theoretical estimates and by the results of independently measured time integrated spectra of the reflected pulse.

  6. Summary of SLAC's SEY Measurement On Flat Accelerator Wall Materials

    SciTech Connect

    Le Pimpec, F.; /PSI, Villigen /SLAC

    2007-06-08

    The electron cloud effect (ECE) causes beam instabilities in accelerator structures with intense positively charged bunched beams. Reduction of the secondary electron yield (SEY) of the beam pipe inner wall is effective in controlling cloud formation. We summarize SEY results obtained from flat TiN, TiZrV and Al surfaces carried out in a laboratory environment. SEY was measured after thermal conditioning, as well as after low energy, less than 300 eV, particle exposure.

  7. Measurement of the Decelerating Wake in a Plasma Wakefield Accelerator

    SciTech Connect

    Blumenfeld, I.; Decker, F. J.; Hogan, M. J.; Ischebeck, R.; Iverson, R. H.; Kirby, N.; Siemann, R. H.; Walz, D. R.; Clayton, C. E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W. B.; Zhou, M.; Katsouleas, T.; Muggli, P.; Oz, E.

    2009-01-22

    Recent experiments at SLAC have shown that high gradient acceleration of electrons is achievable in meter scale plasmas. Results from these experiments show that the wakefield is sensitive to parameters in the electron beam which drives it. In the experiment the bunch lengths were varied systematically at constant charge. The effort to extract a measurement of the decelerating wake from the maximum energy loss of the electron beam is discussed.

  8. Vacuum systems of linear accelerators of the NICA injection complex

    NASA Astrophysics Data System (ADS)

    Kosachev, V. V.; Bazanov, A. M.; Butenko, A. V.; Galimov, A. R.; Nesterov, A. V.; Pivin, R. V.; Smirnov, A. V.

    2016-12-01

    The NICA project, which includes several accelerators of charged particles, is under construction in the Laboratory of High Energy Physics, Joint Institute for Nuclear Research (JINR), Dubna. Obtaining the required vacuum conditions is one of the key points in implementing the project, because reaching the required ion lifetime at all stages of particle acceleration is what determines the effective luminosity of the experiments in the long run. Currently, modernization of the vacuum system of the injection complex of the LU-20 linear accelerator of light ions, one of oldest accelerators in the JINR, is being carried out and the new HILAC linear accelerator for the acceleration of gold ions in the collider mode of the NICA complex is being installed. At the end parts of the linear accelerators, the residual gas pressure must be approximately 10-5 Pa, which is determined by the maximum amplitude of the RF electric field used for the acceleration of ions.

  9. Summary Report of Mission Acceleration Measurements for STS-89: Launched January 22, 1998

    NASA Technical Reports Server (NTRS)

    Hrovat, Kenneth; McPherson, Kevin

    1999-01-01

    Support of microgravity research on the 89th flight of the Space Transportation System (STS-89) and a continued effort to characterize the acceleration environment of the Space Shuttle Orbiter and the Mir Space Station form the basis for this report. For the STS-89 mission, the Space Shuttle Endeavour was equipped with a Space Acceleration Measurement System (SAMS) unit, which collected more than a week's worth of data. During docked operations with Mir, a second SAMS unit collected approximately a day's worth of data yielding the only set of acceleration measurements recorded simultaneously on the two spacecraft. Based on the data acquired by these SAMS units, this report serves to characterize a number of acceleration events and quantify their impact on the local nature of the accelerations experienced at the Mechanics of Granular Materials (MGM) experiment location. Crew activity was shown to nearly double the median root-mean-square (RMS) acceleration level calculated below 10 Hz, while the Enhanced Orbiter Refrigerator/Freezer operating at about 22 Hz was a strong acceleration source in the vicinity of the MGM location. The MGM science requirement that the acceleration not exceed q I mg was violated numerous times during their experiment runs; however, no correlation with sample instability has been found to this point. Synchronization between the SAMS data from Endeavour and from Mir was shown to be close much of the time, but caution with respect to exact timing should be exercised when comparing these data. When orbiting as a separate vehicle prior to docking, Endeavour had prominent structural modes above 3 Hz, while Mir exhibited a cluster of modes around 1 Hz. When mated, a transition to common modes was apparent in the two SAMS data sets. This report is not a comprehensive analysis of the acceleration data, so those interested in further details should contact the Principal Investigator Microgravity Services team at the National Aeronautics and Space

  10. The accelerating growth of online tagging systems

    NASA Astrophysics Data System (ADS)

    Wu, L. F.

    2011-09-01

    Research on the growth of online tagging systems not only is interesting in its own right, but also yields insights for website management and semantic web analysis. Traditional models that describing the growth of online systems can be divided between linear and nonlinear versions. Linear models, including the BA model [A.L. Barabasi, R. Albert, Science 286, 509 (1999)], assume that the average activity of users is a constant independent of population. Hence the total activity is a linear function of population. On the contrary, nonlinear models suggest that the average activity is affected by the size of the population and the total activity is a nonlinear function of population. In the current study, supporting evidences for the nonlinear growth assumption are obtained from data on Internet users' tagging behavior. A power law relationship between the number of new tags (F) and the population (P), which can be expressed as F~Pγ (γ > 1), is found. I call this pattern accelerating growth and find it relates the to time-invariant heterogeneity in individual activities. I also show how a greater heterogeneity leads to a faster growth.

  11. SEU-tolerant IQ detection algorithm for LLRF accelerator system

    NASA Astrophysics Data System (ADS)

    Grecki, M.

    2007-08-01

    High-energy accelerators use RF field to accelerate charged particles. Measurements of effective field parameters (amplitude and phase) are tasks of great importance in these facilities. The RF signal is downconverted in frequency but keeping the information about amplitude and phase and then sampled in ADC. One of the several tasks for LLRF control system is to estimate the amplitude and phase (or I and Q components) of the RF signal. These parameters are further used in the control algorithm. The XFEL accelerator will be built using a single-tunnel concept. Therefore electronic devices (including LLRF control system) will be exposed to ionizing radiation, particularly to a neutron flux generating SEUs in digital circuits. The algorithms implemented in FPGA/DSP should therefore be SEU-tolerant. This paper presents the application of the WCC method to obtain immunity of IQ detection algorithm to SEUs. The VHDL implementation of this algorithm in Xilinx Virtex II Pro FPGA is presented, together with results of simulation proving the algorithm suitability for systems operating in the presence of SEUs.

  12. Dynamic response of an accelerator driven system to accelerator beam interruptions for criticality

    NASA Astrophysics Data System (ADS)

    Lafuente, A.; Abanades, A.; Leon, P. T.; Sordo, F.; Martinez-Val, J. M.

    2008-06-01

    Subcritical nuclear reactors driven by intense neutron sources can be very suitable tools for nuclear waste transmutation, particularly in the case of minor actinides with very low fractions of delayed neutrons. A proper control of these systems needs to know at every time the absolute value of the reactor subcriticality (negative reactivity), which must be measured by fully reliable methods, usually conveying a short interruption of the accelerator beam in order to assess the neutron flux reduction. Those interruptions should be very short in time, for not disturbing too much the thermal magnitudes of the reactor. Otherwise, the cladding and the fuel would suffer from thermal fatigue produced by those perturbations, and the mechanical integrity of the reactor would be jeopardized. It is shown in this paper that beam interruptions of the order of 400 μs repeated every second would not disturb significantly the reactor thermal features, while enabling for an adequate measurement of the negative reactivity.

  13. Sonic boom measurements from accelerating supersonic tracked sleds

    NASA Technical Reports Server (NTRS)

    Reed, J. W.

    1974-01-01

    Supersonic sled tests on the Sandia 1524-m (5000-ft) track generate sonic booms of sufficient intensity to allow some airblast measurements at distance scales not obtained from wind tunnel or flight tests. During acceleration, an emitted curved boom wave propagates to a caustic, or focus. Detailed measurements around these caustics may help to clarify the overpressure magnification which can occur from real aircraft operations. Six fixed pressure gages have been operated to document the general noise field, and a mobile array of twelve gages.

  14. Satellite Gravity Measurements Confirm Accelerated Melting of Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Chen, J. L.; Wilson, C. R.; Tapley, B. D.

    2006-09-01

    Using time-variable gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, we estimate ice mass changes over Greenland during the period April 2002 to November 2005. After correcting for the effects of spatial filtering and limited resolution of GRACE data, the estimated total ice melting rate over Greenland is -239 +/- 23 cubic kilometers per year, mostly from East Greenland. This estimate agrees remarkably well with a recent assessment of -224 +/- 41 cubic kilometers per year, based on satellite radar interferometry data. GRACE estimates in southeast Greenland suggest accelerated melting since the summer of 2004, consistent with the latest remote sensing measurements.

  15. Aluminum Hugoniot Measurement on the Sandia Z Accelerator

    SciTech Connect

    Asay, J.R.; Bernard, M.A.; Clark, B.F.; Fleming, K.J.; Hall, C.A.; Hauer, A.; Knudson, M.; Kyrala, G.; Trott, W.M.

    1999-06-23

    Aluminum has been investigated at multi-Mbar pressures through planar impacts generated by guns and explosives, and ablatively driven shocks from high energy lasers. Because it is well characterized, it is often used as a reference in relative Hugoniot measurements. To determine equation of state measure- ment capabilities on the Sandia Z accelerator, Hugoniot states of type 1100 aluminum were determined in the 1.8 to 4.5 Mbar range for comparisons to published data. Ablatively driven shocks on 6.5mm diameter samples were measured using velocity interferometry and laser based shock arrival sensors. In each ex- periment, both shock and particle velocities were independently measured to determine Hugoniot states. Many of the experiments performed had multiple measurements of these two parameters for redundancy and diagnostic validation. Results indicate agreement with the extrapolation of a previously established, lower pressure, Hugoniot within error bounds representing the experimental uncertainties.

  16. The computer monitor and control system for the munich MP tandem accelerator

    NASA Astrophysics Data System (ADS)

    Mörchen, H.; Off, J.; Rohrer, L.; Schnitter, H.

    1981-05-01

    Presently a computer monitor and control system for the Munich MP tandem accelerator is being developed. It is based on a PDP-11/34 with disc units, DEC-tapes, and an interactive graphic terminal. The accelerator is connected to the system via CAMAC hardware. A monitor program takes all data and stores the accelerator status in the memory and in a direct access file. A logbook file is created and the logbook is printed. During test-runs subsystems of the accelerator have been controlled. A beam transport program controlling a quadrupole doublet and optimizing the beam current measured at a Faraday cup was operated successfully.

  17. Electric field simulation and measurement of a pulse line ion accelerator

    NASA Astrophysics Data System (ADS)

    Shen, Xiao-Kang; Zhang, Zi-Min; Cao, Shu-Chun; Zhao, Hong-Wei; Wang, Bo; Shen, Xiao-Li; Zhao, Quan-Tang; Liu, Ming; Jing, Yi

    2012-07-01

    An oil dielectric helical pulse line to demonstrate the principles of a Pulse Line Ion Accelerator (PLIA) has been designed and fabricated. The simulation of the axial electric field of an accelerator with CST code has been completed and the simulation results show complete agreement with the theoretical calculations. To fully understand the real value of the electric field excited from the helical line in PLIA, an optical electric integrated electric field measurement system was adopted. The measurement result shows that the real magnitude of axial electric field is smaller than that calculated, probably due to the actual pitch of the resister column which is much less than that of helix.

  18. Ram accelerator direct launch system for space cargo

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A new method of efficiently accelerating relatively large masses (up to several metric tons) to velocities of 0.6 km/sec up to 12 km/sec using chemical energy has been developed. The vehicle travels through a tube filled with a premixed gaseous fuel and oxidizer mixture. There is no propellant on-board the vehicle. The tube acts as the outer cowling of a ram jet and the energy release process travels with the vehicle. The ballistic efficiency remains high up to extremely high velocities and the acceleration can be maintained at a nearly constant level. Five modes of ram accelerator operation have been investigated; these modes differ primarily in the method of chemical heat release and the operational velocity range, and include two subsonic combustion modes (one of which involves thermally choke a combustion behind the vehicle) and three detonation drive modes. These modes of propulsion are capable of efficient acceleration in the range of 0.6-12 km/sec, although aerodynamic heating becomes severe above about 8 km/sec. Experiments carried out to date at the University of Washington up to 2 km/sec have established proof of principle of the ram accelerator concept and have shown close agreement between predicted and measured performance. A launch system capable of delivering two metric tons into low earth orbit was selected for the purposes of the present study. The preliminary analysis indicates that the overall dimensions of a restricted acceleration (less than approx. 1000 g) launch facility would require a tube 1 m in diameter, with an overall length of approximately 4 km. As in any direct launch scheme, a small on-board rocket is required to circularize the otherwise highly elliptical orbit which intersects the Earth. Various orbital insertion scenarios have been explored for the case of a 9 km/sec ram accelerator launch. These include direct insertion through a single circularization maneuver (i.e., on rocket burn), insertion involving two burns, and a

  19. Comparing current cluster, massively parallel, and accelerated systems

    SciTech Connect

    Barker, Kevin J; Davis, Kei; Hoisie, Adolfy; Kerbyson, Darren J; Pakin, Scott; Lang, Mike; Sancho Pitarch, Jose C

    2010-01-01

    Currently there is large architectural diversity in high perfonnance computing systems. They include 'commodity' cluster systems that optimize per-node performance for small jobs, massively parallel processors (MPPs) that optimize aggregate perfonnance for large jobs, and accelerated systems that optimize both per-node and aggregate performance but only for applications custom-designed to take advantage of such systems. Because of these dissimilarities, meaningful comparisons of achievable performance are not straightforward. In this work we utilize a methodology that combines both empirical analysis and performance modeling to compare clusters (represented by a 4,352-core IB cluster), MPPs (represented by a 147,456-core BG/P), and accelerated systems (represented by the 129,600-core Roadrunner) across a workload of four applications. Strengths of our approach include the ability to compare architectures - as opposed to specific implementations of an architecture - attribute each application's performance bottlenecks to characteristics unique to each system, and to explore performance scenarios in advance of their availability for measurement. Our analysis illustrates that application performance is essentially unrelated to relative peak performance but that application performance can be both predicted and explained using modeling.

  20. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator

    SciTech Connect

    Hiratsuka, Junichi Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki; Miyamoto, Kenji

    2016-02-15

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  1. On-line system identification for control system applications in particle accelerators

    NASA Astrophysics Data System (ADS)

    Chowdhary, Mahesh

    1997-08-01

    Particle accelerators require a number of feedback systems in order to stabilize a variety of parameters. The Continuous Electron Beam Accelerator at Thomas Jefferson National Accelerator Facility presents a unique set of control and identification problems. This accelerator produces a continuous electron beam with energies between 0.5 and 4.0 GeV to be delivered to the experimental halls. In order to meet stringent beam quality requirements specified by the experimental halls, the position and the energy of the electron beam needs to stabilized at various locations in the accelerator. A number of noise measurement tests were conducted at various locations in the accelerator to obtain accurate information about the amplitude and the frequency of disturbances on the beam orbit and energy. Results of these measurements indicate that the line power harmonics were the primary source of disturbance on the beam orbit and energy. A prototype fast feedback system was implemented in the injector and the East Arc regions of the accelerator to stabilize the beam position and energy at these locations. The scheme of implementation of these systems and measurements of their performance are presented here. These feedback systems have to operate under conditions of varying noise characteristics and changing dynamics of the systems. For the feedback systems to always perform optimally, the knowledge of time varying noise characteristics and changing system dynamics needs to be incorporated into the feedback strategy. The approach presented in this work is to perform on-line system identification using a formulation of Fast Transversal Filter (FTF) in order to extract the time varying information from input/output data of the feedback system. A simulation test stand was developed using an analog computer to represent a continuous time system whose noise characteristics and dynamics could be changed in a controlled manner. An on-line system identification algorithm was implemented

  2. Summary Report of Mission Acceleration Measurements for STS-65, Launched 8 July 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1995-01-01

    The second flight of the International Microgravity Laboratory (IML-2) payload on board the STS-65 mission was supported by three accelerometer instruments: The Orbital Acceleration Research Experiment (OARE) located close to the orbiter center of mass; the Quasi-Steady Acceleration Measurement experiment, and the Space Acceleration Measurement System (SAMS), both in the Spacelab module. A fourth accelerometer, the Microgravity Measuring Device recorded data in the middeck in support of exercise isolation tests.Data collected by OARE and SAMS during IML-2 are displayed in this report. The OARE data represent the microgravity environment below 1 Hz. The SAMS data represent the environment in the 0.01 Hz to 100 Hz range. Variations in the environment caused by unique activities are presented. Specific events addressed are: crew activity, crew exercise, experiment component mixing activities, experiment centrifuge operations, refrigerator/freezer operations and circulation pump operations. The analyses included in this report complement analyses presented in other mission summary reports.

  3. High spatial resolution measurements in a single stage ram accelerator

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented in this paper. The ram accelerator is a ramjet-in-tube device which operates in a manner similar to that of a conventional ramjet. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Utilization of special highly instrumented sections of tube has allowed the recording of gas dynamic phenomena with high resolution. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) in a single stage gas mixture are presented and reveal the three-dimensional character of the flow field induced by projectile fins and the canting of the fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, three-dimensional CFD code. The knowledge gained from these experiments and simulations is useful in understanding the underlying nature of ram accelerator propulsive regimes, as well as assisting in the validation of three-dimensional CFD coded which model unsteady, chemically reactive flows.

  4. [The security system of SIEMENS digital linear accelerator].

    PubMed

    Wang, Jianping

    2013-03-01

    The security system plays an important role to protect the safety of patients and equipment in radiotherapy. The principle and structure of three kinds of security system of the Siemens digital linear accelerator were analyzed with some examples.

  5. Lessons from Adaptive Level One Accelerator (ALOA) System Implementation

    NASA Technical Reports Server (NTRS)

    Patel, Umesh D.; Brambora, Clifford; Ghuman, Parminder; Day, John H. (Technical Monitor)

    2001-01-01

    The Adaptive Level One Accelerator (ALOA) system was developed as part of the Earth Science Data and Information System (ESDIS) project. The reconfigurable computing technologies were investigated for Level 1 satellite telemetry data processing to achieve computing acceleration and cost reduction for the next-generation Level 1 data processing systems. The MODIS instrument calibration algorithm was implemented using reconfigurable a computer. The system development process and the lessons learned throughout the design cycle are summarized in this paper.

  6. Application of real-time digitization techniques in beam measurement for accelerators

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Zhan, Lin-Song; Gao, Xing-Shun; Liu, Shu-Bin; An, Qi

    2016-04-01

    Beam measurement is very important for accelerators. In this paper, modern digital beam measurement techniques based on IQ (In-phase & Quadrature-phase) analysis are discussed. Based on this method and high-speed high-resolution analog-to-digital conversion, we have completed three beam measurement electronics systems designed for the China Spallation Neutron Source (CSNS), Shanghai Synchrotron Radiation Facility (SSRF), and Accelerator Driven Sub-critical system (ADS). Core techniques of hardware design and real-time system calibration are discussed, and performance test results of these three instruments are also presented. Supported by National Natural Science Foundation of China (11205153, 10875119), Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N27), and the Fundamental Research Funds for the Central Universities (WK2030040029),and the CAS Center for Excellence in Particle Physics (CCEPP).

  7. A Fine-Tooth Comb to Measure the Accelerating Universe

    NASA Astrophysics Data System (ADS)

    2008-09-01

    worth recalling that the kind of precision required, 1 cm/s, corresponds, on the focal plane of a typical high-resolution spectrograph, to a shift of a few tenths of a nanometre, that is, the size of some molecules," explains PhD student and team member Constanza Araujo-Hauck from ESO. The new calibration technique comes from the combination of astronomy and quantum optics, in a collaboration between researchers at ESO and the Max Planck Institute for Quantum Optics. It uses ultra-short pulses of laser light to create a 'frequency comb' - light at many frequencies separated by a constant interval - to create just the kind of precise 'ruler' needed to calibrate a spectrograph. After successful tests in the MPQ laboratory in 2007, the team have successfully tested a prototype device using the laser comb at the VTT (Vacuum Tower Telescope) solar telescope in Tenerife, on 8 March 2008, measuring the spectrum of the Sun in infrared light. The results are already impressive, and the technique promises to achieve the accuracy needed to study these big astronomical questions. "In our tests in Tenerife, we have already achieved beyond state-of-the-art accuracy. Now we are going to make the system more versatile, and develop it even further," says team member Tilo Steinmetz, from Menlo Systems GmbH, a spin-off company from the Max Planck Institute, which was founded to commercialise the frequency comb technique. Having tested the technique on a solar telescope, a new version of the system is now being built for the HARPS planet-finder instrument on ESO's 3.6-metre telescope at La Silla in Chile, before being considered for future generations of instruments. One of the ambitious project to be realised with the E-ELT, called CODEX, aims to measure the recently discovered acceleration of the universe directly, by following the velocities of distant galaxies and quasars over a 20-year period. This would let astronomers test Einstein's general relativity and the nature of the recently

  8. Summary Report of Mission Acceleration Measurements for STS-75, Launched February 22, 1996

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; Moskowitz, Milton E.; McPherson, Kevin M.; DeLombard, Richard

    1996-01-01

    Two accelerometers provided acceleration data during the STS-75 mission in support of the third United States Microgravity Payload (USMP-3) experiments. The Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurement System (SAMS) provided a measure of the microgravity environment of the Space Shuttle Columbia. The OARE provided investigators with quasi-steady acceleration measurements after about a six hour time lag dictated by downlink constraints. SAMS data were downlinked in near-real-time and recorded on-board for post-mission analysis. An overview of the mission is provided as are brief discussions of these two accelerometer systems. Data analysis techniques used to process SAMS and OARE data are discussed Using a combination of these techniques, the microgravity environment related to several different Orbiter, crew, and experiment operations is presented and interpreted. The microgravity environment represented by SAMS and OARE data is comparable to the environments measured by the instruments on earlier microgravity science missions. The OARE data compared well with predictions of the quasi-steady environment. The SAMS data show the influence of thruster firings and crew motion (transient events) and of crew exercise, Orbiter systems, and experiment operations (oscillatory events). Thruster activity on this mission appears to be somewhat more frequent than on other microgravity missions with the combined firings of the F5L and F5R jets producing significant acceleration transients. The specific crew activities performed in the middeck and flight deck, the SPREE table rotations, the waste collection system compaction, and the fuel cell purge had negligible effects on the microgravity environment of the USMP-3 carriers. The Ku band antenna repositioning activity resulted in a brief interruption of the ubiquitous 17 Hz signal in the SAMS data. In addition, the auxiliary power unit operations during the Flight Control System checkout

  9. Three-grid accelerator system for an ion propulsion engine

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1994-01-01

    An apparatus is presented for an ion engine comprising a three-grid accelerator system with the decelerator grid biased negative of the beam plasma. This arrangement substantially reduces the charge-exchange ion current reaching the accelerator grid at high tank pressures, which minimizes erosion of the accelerator grid due to charge exchange ion sputtering, known to be the major accelerator grid wear mechanism. An improved method for life testing ion engines is also provided using the disclosed apparatus. In addition, the invention can also be applied in materials processing.

  10. Proliferation Potential of Accelerator-Drive Systems: Feasibility Calculations

    SciTech Connect

    Riendeau, C.D.; Moses, D.L.; Olson, A.P.

    1998-11-01

    Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for accelerator-driven spallation neutron sources and subcritical reactors. Energy and power requirements were calculated for a proton accelerator-driven neutron spallation source and subcritical reactors to produce a significant amount of fissile material--plutonium.

  11. Summary report of mission acceleration measurements for STS-60, SPACEHAB2, launched 11 February 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1994-01-01

    The STS-60 mission, which launched on 11 February 1994, carried seven accelerometer systems. This report describes the configuration of each of these systems, where they were located on the Orbiter and the name of a contact person for each system. The Space Acceleration Measurement System (SAMS) was one of the accelerometer systems on-board and this mission marked its eighth successful flight. Acceleration data are provided here for SAMS which flew under an agreement between the NASA Microgravity Science and Applications division and the NASA office of Advanced Concepts and Technology. Acceleration data for the other accelerometer systems are not presented here. SAMS was located in the commercial SPACEHAB laboratory, on its second flight. The SAMS system was configured with three triaxial sensor heads with filter cut-offs of 5, 10, and 50 Hz. The acceleration environment related to an experiment centrifuge, an experiment refrigerator freezer unit, a SAMS sensor head rotation, an Orbiter shudder, and payload deploy activities are discussed. In the Appendices, all of the data from SAMS Head B (10 Hz) are plotted to provide an overview of the environment during the majority of the STS-60 mission. An evaluation form is included at the end of the report to solicit users' comments about the usefulness of this series of reports.

  12. Tracking accelerated aging of composites with ultrasonic attenuation measurements

    SciTech Connect

    Chinn, D.J.; Durbin, P.F.; Thomas, G.H.; Groves, S.E.

    1996-10-01

    Composite materials are steadily replacing traditional materials in many industries. For many carbon composite materials, particularly in aerospace applications, durability is a critical design parameter which must be accurately characterized. Lawrence Livermore National Laboratory (LLNL) and Boeing Commercial Airplane Group have established a cooperative research and development agreement (CRADA) to assist in the high speed research program at Boeing. LLNL`s expertise in fiber composites, computer modeling, mechanical testing, chemical analysis and nondestructive evaluation (ND) will contribute to the study of advanced composite materials in commercial aerospace applications. Through thermo-mechanical experiments with periodic chemical analysis and nondestructive evaluation, the aging mechanisms in several continuous fiber polymer composites will be studied. Several measurement techniques are being studied for their correlation with aging. This paper describes through-transmission ultrasonic attenuation measurements of isothermally aged composite materials and their use as a tracking parameter for accelerated aging.

  13. Techniques for increasing the reliability of accelerator control system electronics

    SciTech Connect

    Utterback, J.

    1993-09-01

    As the physical size of modern accelerators becomes larger and larger, the number of required control system circuit boards increases, and the probability of one of those circuit boards failing while in service also increases. In order to do physics, the experimenters need the accelerator to provide beam reliably with as little down time as possible. With the advent of colliding beams physics, reliability becomes even more important due to the fact that a control system failure can cause the loss of painstakingly produced antiprotons. These facts prove the importance of keeping reliability in mind when designing and maintaining accelerator control system electronics.

  14. Hadron production measurements to constrain accelerator neutrino beams

    SciTech Connect

    Korzenev, Alexander

    2015-07-15

    A precise prediction of expected neutrino fluxes is required for a long-baseline accelerator neutrino experiment. The flux is used to measure neutrino cross sections at the near detector, while at the far detector it provides an estimate of the expected signal for the study of neutrino oscillations. In the talk several approaches to constrain the ν flux are presented. The first is the traditional one when an interaction chain for the neutrino parent hadrons is stored to be weighted later with real measurements. In this approach differential hadron cross sections are used which, in turn, are measured in ancillary hadron production experiments. The approach is certainly model dependent because it requires an extrapolation to different incident nucleon momenta assuming x{sub F} scaling as well as extrapolation between materials having different atomic numbers. In the second approach one uses a hadron production yields off a real target exploited in the neutrino beamline. Yields of neutrino parent hadrons are parametrized at the surface of the target, thus one avoids to trace the particle interaction history inside the target. As in the case of the first approach, a dedicated ancillary experiment is mandatory. Recent results from the hadron production experiments – NA61/SHINE at CERN (measurements for T2K) and MIPP at Fermilab (measurements for NuMI) – are reviewed.

  15. Hadron production measurements to constrain accelerator neutrino beams

    NASA Astrophysics Data System (ADS)

    Korzenev, Alexander

    2015-07-01

    A precise prediction of expected neutrino fluxes is required for a long-baseline accelerator neutrino experiment. The flux is used to measure neutrino cross sections at the near detector, while at the far detector it provides an estimate of the expected signal for the study of neutrino oscillations. In the talk several approaches to constrain the ν flux are presented. The first is the traditional one when an interaction chain for the neutrino parent hadrons is stored to be weighted later with real measurements. In this approach differential hadron cross sections are used which, in turn, are measured in ancillary hadron production experiments. The approach is certainly model dependent because it requires an extrapolation to different incident nucleon momenta assuming xF scaling as well as extrapolation between materials having different atomic numbers. In the second approach one uses a hadron production yields off a real target exploited in the neutrino beamline. Yields of neutrino parent hadrons are parametrized at the surface of the target, thus one avoids to trace the particle interaction history inside the target. As in the case of the first approach, a dedicated ancillary experiment is mandatory. Recent results from the hadron production experiments - NA61/SHINE at CERN (measurements for T2K) and MIPP at Fermilab (measurements for NuMI) - are reviewed.

  16. Charged-Particle Acceleration and Energy Loss Measurements on OMEGA

    NASA Astrophysics Data System (ADS)

    Hicks, D. G.; Li, C. K.; Séguin, F. H.; Ram, A. K.; Frenje, J. A.; Petrasso, R. D.; Soures, J. M.; Glebov, V. Yu.; Meyerhofer, D. D.; Roberts, S.; Sorce, C.; Stoeckl, C.; Sangster, T. C.; Phillips, T. W.

    2000-10-01

    Measurements have been made of charged fusion products produced in D ^3He-filled targets irradiated on OMEGA. Comparing the energy shifts of four particle types has probed two distinct physical processes: electrostatic acceleration in the low-density corona and energy loss in the high-density target. When the burn occurred during the laser pulse, particle energy shifts were dominated by acceleration effects. Using a simple mode, the time history of the target's electrostatic potential was found and shown to decay to zero soon after laser irradiation was complete. When the burn occurred after the pulse, particle energy shifts were dominated by energy losses in the target, allowing charged-particle stopping-power predictions to be tested. The results provide the first verification of the general form of stopping power theories over a wide velocity range. This work was supported by the U.S. DOE Office of ICF under Coop. Agreem. No. DE-FC03-92SF19460.

  17. A large distributed digital camera system for accelerator beam diagnostics

    NASA Astrophysics Data System (ADS)

    Catani, L.; Cianchi, A.; Di Pirro, G.; Honkavaara, K.

    2005-07-01

    Optical diagnostics, providing images of accelerated particle beams using radiation emitted by particles impinging a radiator, typically a fluorescent screen, has been extensively used, especially on electron linacs, since the 1970's. Higher intensity beams available in the last decade allow extending the use of beam imaging techniques to perform precise measurements of important beam parameters such as emittance, energy, and energy spread using optical transition radiation (OTR). OTR-based diagnostics systems are extensively used on the superconducting TESLA Test Facility (TTF) linac driving the vacuum ultraviolet free electron laser (VUV-FEL) at the Deutsches Elektronen-Synchrotron facility. Up to 30 optical diagnostic stations have been installed at various positions along the 250-m-long linac, each equipped with a high-performance digital camera. This paper describes the new approach to the design of the hardware and software setups required by the complex topology of such a distributed camera system.

  18. Measuring test mass acceleration noise in space-based gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Congedo, Giuseppe

    2015-03-01

    The basic constituent of interferometric gravitational wave detectors—the test-mass-to-test-mass interferometric link—behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as nongravitational spurious forces. This last contribution is going to be characterized by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system's free evolution dominating the slow displacement dynamics of low-frequency detectors. Working with acceleration also provides an effective way to subtract measured signals acting as systematics, including the actuation forces. Because of the strong similarity with the equations of motion, the optimal subtraction of systematic signals, known within some amplitude and time shift, with the focus on measuring the noise provides an effective way to solve the problem and marginalize over nuisance parameters. The F statistic, in widespread use throughout the gravitation waves community, is included in the method and suitably generalized to marginalize over linear parameters and noise at the same time. The method is applied to LPF simulator data and, thanks to its generality, can also be applied to the data reduction and analysis of future gravitational wave detectors.

  19. Effects of changing from non-accelerated to accelerated MRI for follow-up in brain atrophy measurement.

    PubMed

    Leung, Kelvin K; Malone, Ian M; Ourselin, Sebastien; Gunter, Jeffrey L; Bernstein, Matt A; Thompson, Paul M; Jack, Clifford R; Weiner, Michael W; Fox, Nick C

    2015-02-15

    Stable MR acquisition is essential for reliable measurement of brain atrophy in longitudinal studies. One attractive recent advance in MRI is to speed up acquisition using parallel imaging (e.g. reducing volumetric T1-weighted acquisition scan times from around 9 to 5 min). In some studies, a decision to change to an accelerated acquisition may have been deliberately taken, while in others repeat scans may occasionally be accidentally acquired with an accelerated acquisition. In ADNI, non-accelerated and accelerated scans were acquired in the same scanning session on each individual. We investigated the impact on brain atrophy as measured by k-means normalized boundary shift integral (KN-BSI) and deformation-based morphometry when changing from non-accelerated to accelerated MRI acquisitions over a 12-month interval using scans of 422 subjects from ADNI. KN-BSIs were calculated using both a non-accelerated baseline scan and non-accelerated 12-month scans (i.e. consistent acquisition), and a non-accelerated baseline scan and an accelerated 12-month scan (i.e. changed acquisition). Fluid-based non-rigid registration was also performed on those scans to estimate the brain atrophy rate. We found that the effect on KN-BSI and fluid-based non-rigid registration depended on the scanner manufacturer. For KN-BSI, in Philips and Siemens scanners, the change had very little impact on the measured atrophy rate (increase of 0.051% in Philips and -0.035% in Siemens from consistent acquisition to changed acquisition), whereas, in GE, the change caused a mean reduction of 0.65% in the brain atrophy rate. This is likely due to the difference in tissue contrast between gray matter and cerebrospinal fluid in the non-accelerated and accelerated scans in GE, which uses IR-FSPGR instead of MP-RAGE. For fluid-based non-rigid registration, the change caused a mean increase of 0.29% in the brain atrophy rate in the changed acquisition compared with consistent acquisition in Philips

  20. Summary report of mission acceleration measurements for Spacehab-01, STS-57 launched 21 June 1993

    NASA Technical Reports Server (NTRS)

    Finley, Brian; Grodsinsky, Carlos; Delombard, Richard

    1994-01-01

    The maiden voyage of the commercial Spacehab laboratory module onboard the STS-57 mission was integrated with several accelerometer packages, one of which was the Space Acceleration Measurement System (SAMS). The June 21st 1993, launch was the seventh successful mission for the Office of Life and Microgravity Sciences and Application's (OLMSA) SAMS unit. This flight was also complemented by a second accelerometer system. The Three Dimensional Microgravity Accelerometer (3-DMA), a Code C funded acceleration measurement system, offering an on-orbit residual calibration as a reference for the unit's four triaxial accelerometers. The SAMS accelerometer unit utilized three remote triaxial sensor heads mounted on the forward Spacehab module bulkhead and on one centrally located experiment locker door. These triaxial heads had filter cut-offs set to 5, 50, and 1000 Hz. The mission also included other experiment specific accelerometer packages in various locations.

  1. Automatic detection of lameness in gestating group-housed sows using positioning and acceleration measurements.

    PubMed

    Traulsen, I; Breitenberger, S; Auer, W; Stamer, E; Müller, K; Krieter, J

    2016-06-01

    Lameness is an important issue in group-housed sows. Automatic detection systems are a beneficial diagnostic tool to support management. The aim of the present study was to evaluate data of a positioning system including acceleration measurements to detect lameness in group-housed sows. Data were acquired at the Futterkamp research farm from May 2012 until April 2013. In the gestation unit, 212 group-housed sows were equipped with an ear sensor to sample position and acceleration per sow and second. Three activity indices were calculated per sow and day: path length walked by a sow during the day (Path), number of squares (25×25 cm) visited during the day (Square) and variance of the acceleration measurement during the day (Acc). In addition, data on lameness treatments of the sows and a weekly lameness score were used as reference systems. To determine the influence of a lameness event, all indices were analysed in a linear random regression model. Test day, parity class and day before treatment had a significant influence on all activity indices (P<0.05). In healthy sows, indices Path and Square increased with increasing parity, whereas variance slightly decreased. The indices Path and Square showed a decreasing trend in a 14-day period before a lameness treatment and to a smaller extent before a lameness score of 2 (severe lameness). For the index acceleration, there was no obvious difference between the lame and non-lame periods. In conclusion, positioning and acceleration measurements with ear sensors can be used to describe the activity pattern of sows. However, improvements in sampling rate and analysis techniques should be made for a practical application as an automatic lameness detection system.

  2. High spatial resolution measurements of ram accelerator gas dynamic phenomena

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Data obtained by using a special highly instrumented section of tube has allowed the recording of gas dynamic phenomena with a spatial resolution on the order of one tenth the projectile length. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) are presented and reveal the 3D character of the flowfield induced by projectile fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, 3D CFD code.

  3. Failure Mode Effects Analysis for an Accelerator Control System

    SciTech Connect

    Hartman, Steven M

    2009-01-01

    Failure mode effects analysis (FMEA) has been used in industry for design, manufacturing and assembly process quality control. It describes a formal approach for categorizing how a process may fail and for prioritizing failures based on their severity, frequency and likelihood of detection. Experience conducting a partial FMEA of an accelerator subsystem and its related control system will be reviewed. The applicability of the FMEA process to an operational accelerator control system will be discussed.

  4. Accelerated Aging System for Prognostics of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Vashchenko, Vladislav; Wysocki, Philip; Saha, Sankalita

    2010-01-01

    Prognostics is an engineering discipline that focuses on estimation of the health state of a component and the prediction of its remaining useful life (RUL) before failure. Health state estimation is based on actual conditions and it is fundamental for the prediction of RUL under anticipated future usage. Failure of electronic devices is of great concern as future aircraft will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. Therefore, development of prognostics solutions for electronics is of key importance. This paper presents an accelerated aging system for gate-controlled power transistors. This system allows for the understanding of the effects of failure mechanisms, and the identification of leading indicators of failure which are essential in the development of physics-based degradation models and RUL prediction. In particular, this system isolates electrical overstress from thermal overstress. Also, this system allows for a precise control of internal temperatures, enabling the exploration of intrinsic failure mechanisms not related to the device packaging. By controlling the temperature within safe operation levels of the device, accelerated aging is induced by electrical overstress only, avoiding the generation of thermal cycles. The temperature is controlled by active thermal-electric units. Several electrical and thermal signals are measured in-situ and recorded for further analysis in the identification of leading indicators of failures. This system, therefore, provides a unique capability in the exploration of different failure mechanisms and the identification of precursors of failure that can be used to provide a health management solution for electronic devices.

  5. COMPACT PROTON INJECTOR AND FIRST ACCELERATOR SYSTEM TEST FOR COMPACT PROTON DIELECTRIC WALL CANCER THERAPY ACCELERATOR

    SciTech Connect

    Chen, Y; Guethlein, G; Caporaso, G; Sampayan, S; Blackfield, D; Cook, E; Falabella, S; Harris, J; Hawkins, S; Nelson, S; Poole, B; Richardson, R; Watson, J; Weir, J; Pearson, D

    2009-04-23

    A compact proton accelerator for cancer treatment is being developed by using the high-gradient dielectric insulator wall (DWA) technology [1-4]. We are testing all the essential DWA components, including a compact proton source, on the First Article System Test (FAST). The configuration and progress on the injector and FAST will be presented.

  6. Feedback control of torsion balance in measurement of gravitational constant G with angular acceleration method.

    PubMed

    Quan, Li-Di; Xue, Chao; Shao, Cheng-Gang; Yang, Shan-Qing; Tu, Liang-Cheng; Wang, Yong-Ji; Luo, Jun

    2014-01-01

    The performance of the feedback control system is of central importance in the measurement of the Newton's gravitational constant G with angular acceleration method. In this paper, a PID (Proportion-Integration-Differentiation) feedback loop is discussed in detail. Experimental results show that, with the feedback control activated, the twist angle of the torsion balance is limited to [Formula: see text] at the signal frequency of 2 mHz, which contributes a [Formula: see text] uncertainty to the G value.

  7. Accelerator room photoneutron and photon background measurements using thermoluminescent dosimeters.

    PubMed

    Anderson, D W; Hwang, C C

    1983-02-01

    Photoneutron dose equivalents and photon doses in the treatment room of a clinical linear accelerator were measured with sets of isotopically enriched LiF thermoluminescent dosimeters and a moderating sphere. Dosimeter neutron calibrations with 252Cf sources were repeated many times during the extended series of measurements because the 6LiF dosimeter sensitivity increased with successive neutron irradiations. Expressed as a fraction of the primary bremsstrahlung beam dose at maximum, the photoneutron background was 2.04 +/- 0.05 mrem/rad (10(-3) Sv/Gy) at 1 m lateral to beam center in the patient midplane at 25 MV. The fraction of this result due to thermal neutrons was found to be only about 2%. The photon background dose was 2.98 +/- 0.04 mrad/rad (10(-3) Gy/Gy). The photoneutron dose equivalent per unit primary dose was found to be nearly independent of the collimator size used but increased by 40% when the bremsstrahlung endpoint energy was increased from 20 to 35 MeV with no change in flattening filters.

  8. FemtoMolar measurements using accelerator mass spectrometry.

    PubMed

    Salehpour, Mehran; Forsgard, Niklas; Possnert, Göran

    2009-03-01

    Accelerator mass spectrometry (AMS) is an ultra-sensitive analytical method suitable for the detection of sub-nM concentrations of labeled biological substances such as pharmaceutical drugs in body fluids. A limiting factor in extending the concentration measurements to the sub-pM range is the natural (14)C content in living tissues. This was circumvented by separating the labeled drug from the tissue matrix, using standard high-performance liquid chromatography (HPLC) procedures. As the separated total drug amount is in the few fg range, it is not possible to use a standard AMS sample preparation method, where mg sizes are required. We have utilized a sensitive carbon carrier method where a (14)C-deficient compound is added to the HPLC fractions and the composite sample is prepared and analyzed by AMS. Using 50 microL human blood plasma aliquots, we have demonstrated concentration measurements below 20 fM, containing sub-amol amounts of the labeled drug. The method has the immediate potential of operating in the sub-fM region.

  9. Field Installation and Real-Time Data Processing of the New Integrated SeismoGeodetic System with Real-Time Acceleration and Displacement Measurements for Earthquake Characterization Based on High-Rate Seismic and GPS Data

    NASA Astrophysics Data System (ADS)

    Zimakov, Leonid; Jackson, Michael; Passmore, Paul; Raczka, Jared; Alvarez, Marcos; Barrientos, Sergio

    2015-04-01

    We will discuss and show the results obtained from an integrated SeismoGeodetic System, model SG160-09, installed in the Chilean National Network. The SG160-09 provides the user high rate GNSS and accelerometer data, full epoch-by-epoch measurement integrity and, using the Trimble Pivot™ SeismoGeodetic App, the ability to create combined GNSS and accelerometer high-rate (200Hz) displacement time series in real-time. The SG160-09 combines seismic recording with GNSS geodetic measurement in a single compact, ruggedized package. The system includes a low-power, 220-channel GNSS receiver powered by the latest Trimble-precise Maxwell™6 technology and supports tracking GPS, GLONASS and Galileo signals. The receiver incorporates on-board GNSS point positioning using Real-Time Precise Point Positioning (PPP) technology with satellite clock and orbit corrections delivered over IP networks. The seismic recording element includes an ANSS Class A, force balance triaxial accelerometer with the latest, low power, 24-bit A/D converter, which produces high-resolution seismic data. The SG160-09 processor acquires and packetizes both seismic and geodetic data and transmits it to the central station using an advanced, error-correction protocol with back fill capability providing data integrity between the field and the processing center. The SG160-09 has been installed in the seismic station close to the area of the Iquique earthquake of April 1, 2014, in northern Chile, a seismically prone area at the current time. The hardware includes the SG160-09 system, external Zephyr Geodetic-2 GNSS antenna, and high-speed Internet communication media. Both acceleration and displacement data was transmitted in real-time to the National Seismological Center in Santiago for real-time data processing using Earthworm / Early Bird software. Command/Control of the field station and real-time GNSS position correction are provided via the Pivot software suite. Data from the SG160-09 system was

  10. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    NASA Astrophysics Data System (ADS)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  11. Helium refrigeration systems for super-conducting accelerators

    SciTech Connect

    Ganni, V.

    2015-12-04

    Many of the present day accelerators are based on superconducting technology which requires 4.5-K or 2-K helium refrigeration systems. These systems utilize superconducting radio frequency (SRF) cavities and/or superconducting magnets which are packaged into vacuum vessels known as cryo-modules (CM’s). Many of the present day accelerators are optimized to operate primarily at around 2-K, requiring specialized helium refrigeration systems which are cost intensive to produce and to operate. Some of the cryogenic refrigeration system design considerations for these challenging applications are discussed.

  12. Helium refrigeration systems for super-conducting accelerators

    NASA Astrophysics Data System (ADS)

    Ganni, V.

    2015-12-01

    Many of the present day accelerators are based on superconducting technology which requires 4.5-K or 2-K helium refrigeration systems. These systems utilize superconducting radio frequency (SRF) cavities and/or superconducting magnets which are packaged into vacuum vessels known as cryo-modules (CM's). Many of the present day accelerators are optimized to operate primarily at around 2-K, requiring specialized helium refrigeration systems which are cost intensive to produce and to operate. Some of the cryogenic refrigeration system design considerations for these challenging applications are discussed.

  13. ISABELLE accelerator software, control system, and beam diagnostic philosophy

    SciTech Connect

    Cornacchia, M.; Humphrey, J.W.; Niederer, J.; Poole, J.H.

    1981-01-01

    The ISABELLE Project combines two large proton accelerators with two storage rings in the same facility using superconducting magnet technology. This combination leads to severe constraints on beam loss in magnets and involves complex treatment of magnetic field imperfections and correction elements. The consequent demands placed upon beam diagnostics, accelerator model programs, and the computer oriented control system are discussed in terms of an illustrative operation scenario.

  14. Systems Engineering Measurement Primer

    DTIC Science & Technology

    1998-03-01

    Systems Engineering Measurement Primer A Basic Introduction to Systems Engineering Measurement Concepts and Use Version 1.0 March 1998 This document...Federal Systems Garry Roedler Lockheed Martin Management & Data Systems Cathy Tilton The National Registry, Inc. E. Richard Widmann Raytheon Systems...IV 1. INTRODUCTION

  15. Time-resolved energy spectrum measurement of a linear induction accelerator with the magnetic analyzer

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Jiang, Xiao-Guo; Yang, Guo-Jun; Chen, Si-Fu; Zhang, Zhuo; Wei, Tao; Li, Jin

    2015-01-01

    We recently set up a time-resolved optical beam diagnostic system. Using this system, we measured the high current electron beam energy in the accelerator under construction. This paper introduces the principle of the diagnostic system, describes the setup, and shows the results. A bending beam line was designed using an existing magnetic analyzer with a 300 mm-bending radius and a 60° bending angle at hard-edge approximation. Calculations show that the magnitude of the beam energy is about 18 MeV, and the energy spread is within 2%. Our results agree well with the initial estimates deduced from the diode voltage approach.

  16. Plume properties measurement of an Electron Cyclotron Resonance Accelerator

    NASA Astrophysics Data System (ADS)

    Correyero, Sara; Vialis, Theo; Jarrige, Julien; Packan, Denis

    2016-09-01

    Some emergent technologies for Electric Propulsion, such as the Electron Cyclotron Resonance Accelerator (ECRA), include magnetic nozzles to guide and expand the plasma. The advantages of this concept are well known: wall-plasma contact is avoided, it provides a current-free plume, it can allow to control thrust by modifying the magnetic field geometry, etc. However, their industrial application requires the understanding of the physical mechanisms involved, such as the electron thermodynamics at the plasma plume expansion, which is crucial to determine propulsive performances. This work presents a detailed characterization of the plasma plume axial profile in an ECR plasma thruster developed at ONERA. Langmuir, emissive, Faraday and ion energy probes are used to measure the electric potential space evolution, the current and electron energy distribution function in the plume, from the near field to the far field. The experimental results are compared with a quasi-1D (paraxial) steady-state kinetic model of a quasineutral collisionless magnetized plasma which is able to determine consistently the axial evolution of the electric potential and the electron and ion distribution functions with their associated properties.

  17. Summary Report of Mission Acceleration Measurements for STS-62, Launched 4 March 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1994-01-01

    The second mission of the United States Microgravity Payload on-board the STS-62 mission was supported with three accelerometer instruments: the Orbital Acceleration Research Experiment (OARE) and two units of the Space Acceleration Measurements System (SAMS). The March 4, 1994 launch was the fourth successful mission for OARE and the ninth successful mission for SAMS. The OARE instrument utilizes a sensor for very low frequency measurements below one Hertz. The accelerations in this frequency range are typically referred to as quasisteady accelerations. One of the SAMS units had two remote triaxial sensor heads mounted on the forward MPESS structure between two furnance experiments, MEPHISTO and AADSF. These triaxial heads had low-pass filter cut-off frequencies at 10 and 25 Hz. The other SAMS unit utilized three remote triaxial sensor heads. Two of the sensor heads were mounted on the aft MPESS structure between the two experiments IDGE and ZENO. These triaxial heads had low-pass filter cut-off frequencies at 10 and 25 Hz. The third sensor head was mounted on the thermostat housing inside the IDGE experiment container. This triaxial head had a low-pass filter cut-off frequency at 5 Hz. This report is prepared to furnish interested experiment investigators with a guide to evaluating the acceleration environment during STS-62 and as a means of identifying areas which require further study. To achieve this purpose, various pieces of information are included, such as an overview of the STS-62 mission, a description of the accelerometer system flown on STS-62, some specific analysis of the accelerometer data in relation to the various mission activities, and an overview of the low-gravity environment during the entire mission. An evaluation form is included at the end of the report to solicit users' comments about the usefulness of this series of reports.

  18. Preliminary description of the ground test accelerator cryogenic cooling system

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.

    1988-01-01

    The Ground Test Accelerator (GTA) under construction at the Los Alamos National Laboratory is part of the Neutral Particle Beam Program supported by the Strategic Defense Initiative Office. The GTA is a full-sized test facility to evaluate the feasibility of using a negative ion accelerator to produce a neutral particle beam (NPB). The NPB would ultimately be used outside the earth's atmosphere as a target discriminator or as a directed energy weapon. The operation of the GTA at cryogenic temperature is advantageous for two reasons: first, the decrease of temperature caused a corresponding decrease in the rf heating of the copper in the various units of the accelerator, and second, at the lower temperature the decrease in the thermal expansion coefficient also provides greater thermal stability and consequently, better operating stability for the accelerator. This paper discusses the cryogenic cooling system needed to achieve these advantages. 5 figs., 3 tabs.

  19. Measurement of Neutrons Produced by Beam-Target Interactions via a Coaxial Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Cauble, Scott; Poehlmann, Flavio; Rieker, Gregory; Cappelli, Mark

    2011-10-01

    This poster presents a method to measure neutron yield from a coaxial plasma accelerator. Stored electrical energies between 1 and 19 kJ are discharged within a few microseconds across the electrodes of the coaxial gun, accelerating deuterium gas samples to plasma beam energies well beyond the keV energy range. The focus of this study is to examine the interaction of the plasma beam with a deuterated target by designing and fabricating a detector to measure neutron yield. Given the strong electromagnetic pulse associated with our accelerator, indirect measurement of neutrons via threshold-dependent nuclear activation serves as both a reliable and definitive indicator of high-energy particles for our application. Upon bombardment with neutrons, discs or stacks of metal foils placed near the deuterated target undergo nuclear activation reactions, yielding gamma-emitting isotopes whose decay is measured by a scintillation detector system. By collecting gamma ray spectra over time and considering nuclear cross sections, the magnitude of the original neutron pulse is inferred.

  20. A High Reliability Accelerator Control System

    NASA Astrophysics Data System (ADS)

    Callahan, John; Collins, John; Hunt, William; Qualls, Andrew

    1997-05-01

    This paper describes the control system developed at IUCF for the Cooler Injector Synchrotron (CIS). The Hardware system is VME based and employs fiber optic data transmission for high noise rejection. The hardware includes several modules designed and manufactured at IUCF to meet specifications not attainable with commercial hardware. These modules feature active redundancy with automatic switch over for high reliability; built in test and self diagnosis with centralized failure and system health monitoring for rapid maintenance; and very low drift and self calibration for maximum repeatability. We describe several modules including high precision ramping and non-ramping DAC/ADCs and a deep memory timing sequencer. We give a brief overview of the software system, which is based on Vsystem from Vista, Inc.

  1. A GPGPU accelerated modeling environment for quantitatively characterizing karst systems

    NASA Astrophysics Data System (ADS)

    Myre, J. M.; Covington, M. D.; Luhmann, A. J.; Saar, M. O.

    2011-12-01

    The ability to derive quantitative information on the geometry of karst aquifer systems is highly desirable. Knowing the geometric makeup of a karst aquifer system enables quantitative characterization of the systems response to hydraulic events. However, the relationship between flow path geometry and karst aquifer response is not well understood. One method to improve this understanding is the use of high speed modeling environments. High speed modeling environments offer great potential in this regard as they allow researchers to improve their understanding of the modeled karst aquifer through fast quantitative characterization. To that end, we have implemented a finite difference model using General Purpose Graphics Processing Units (GPGPUs). GPGPUs are special purpose accelerators which are capable of high speed and highly parallel computation. The GPGPU architecture is a grid like structure, making it is a natural fit for structured systems like finite difference models. To characterize the highly complex nature of karst aquifer systems our modeling environment is designed to use an inverse method to conduct the parameter tuning. Using an inverse method reduces the total amount of parameter space needed to produce a set of parameters describing a system of good fit. Systems of good fit are determined with a comparison to reference storm responses. To obtain reference storm responses we have collected data from a series of data-loggers measuring water depth, temperature, and conductivity at locations along a cave stream with a known geometry in southeastern Minnesota. By comparing the modeled response to those of the reference responses the model parameters can be tuned to quantitatively characterize geometry, and thus, the response of the karst system.

  2. Emerging standards with application to accelerator safety systems

    SciTech Connect

    Mahoney, K.L.; Robertson, H.P.

    1997-08-01

    This paper addresses international standards which can be applied to the requirements for accelerator personnel safety systems. Particular emphasis is given to standards which specify requirements for safety interlock systems which employ programmable electronic subsystems. The work draws on methodologies currently under development for the medical, process control, and nuclear industries.

  3. Versatile Low Level RF System For Linear Accelerators

    SciTech Connect

    Potter, James M.

    2011-06-01

    The Low Level RF (LLRF) system is the source of all of the rf signals required for an rf linear accelerator. These signals are amplified to drive accelerator and buncher cavities. It can even provide the synchronizing signal for the rf power for a synchrotron. The use of Direct Digital Synthesis (DDS) techniques results in a versatile system that can provide multiple coherent signals at the same or different frequencies with adjustable amplitudes and phase relations. Pulsing the DDS allows rf switching with an essentially infinite on/off ratio. The LLRF system includes a versatile phase detector that allows phase-locking the rf frequency to a cavity at any phase angle over the full 360 deg. range. With the use of stepper motor driven slug tuners multiple cavity resonant frequencies can be phase locked to the rf source frequency. No external phase shifters are required and there is no feedback loop phase setup required. All that is needed is to turn the frequency feedback on. The use of Digital Signal Processing (DSP) allows amplitude and phase control over the entire rf pulse. This paper describes the basic principles of a LLRF system that has been used for both proton accelerators and electron accelerators, including multiple tank accelerators, sub-harmonic and fundamental bunchers, and synchrotrons.

  4. Effects of acceleration on gait measures in three horse gaits.

    PubMed

    Nauwelaerts, Sandra; Zarski, Lila; Aerts, Peter; Clayton, Hilary

    2015-05-01

    Animals switch gaits according to locomotor speed. In terrestrial locomotion, gaits have been defined according to footfall patterns or differences in center of mass (COM) motion, which characterizes mechanisms that are more general and more predictive than footfall patterns. This has generated different variables designed primarily to evaluate steady-speed locomotion, which is easier to standardize in laboratory conditions. However, in the ecology of an animal, steady-state conditions are rare and the ability to accelerate, decelerate and turn is essential. Currently, there are no data available that have tested whether COM variables can be used in accelerative or decelerative conditions. This study used a data set of kinematics and kinetics of horses using three gaits (walk, trot, canter) to evaluate the effects of acceleration (both positive and negative) on commonly used gait descriptors. The goal was to identify variables that distinguish between gaits both at steady state and during acceleration/deceleration. These variables will either be unaffected by acceleration or affected by it in a predictable way. Congruity, phase shift and COM velocity angle did not distinguish between gaits when the dataset included trials in unsteady conditions. Work (positive and negative) and energy recovery distinguished between gaits and showed a clear relationship with acceleration. Hodographs are interesting graphical representations to study COM mechanics, but they are descriptive rather than quantitative. Force angle, collision angle and collision fraction showed a U-shaped relationship with acceleration and seem promising tools for future research in unsteady conditions.

  5. Space Launch System Accelerated Booster Development Cycle

    NASA Technical Reports Server (NTRS)

    Arockiam, Nicole; Whittecar, William; Edwards, Stephen

    2012-01-01

    With the retirement of the Space Shuttle, NASA is seeking to reinvigorate the national space program and recapture the public s interest in human space exploration by developing missions to the Moon, near-earth asteroids, Lagrange points, Mars, and beyond. The would-be successor to the Space Shuttle, NASA s Constellation Program, planned to take humans back to the Moon by 2020, but due to budgetary constraints was cancelled in 2010 in search of a more "affordable, sustainable, and realistic" concept2. Following a number of studies, the much anticipated Space Launch System (SLS) was unveiled in September of 2011. The SLS core architecture consists of a cryogenic first stage with five Space Shuttle Main Engines (SSMEs), and a cryogenic second stage using a new J-2X engine3. The baseline configuration employs two 5-segment solid rocket boosters to achieve a 70 metric ton payload capability, but a new, more capable booster system will be required to attain the goal of 130 metric tons to orbit. To this end, NASA s Marshall Space Flight Center recently released a NASA Research Announcement (NRA) entitled "Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction." The increased emphasis on affordability is evident in the language used in the NRA, which is focused on risk reduction "leading to an affordable Advanced Booster that meets the evolved capabilities of SLS" and "enabling competition" to "enhance SLS affordability. The purpose of the work presented in this paper is to perform an independent assessment of the elements that make up an affordable and realistic path forward for the SLS booster system, utilizing advanced design methods and technology evaluation techniques. The goal is to identify elements that will enable a more sustainable development program by exploring the trade space of heavy lift booster systems and focusing on affordability, operability, and reliability at the system and subsystem levels5. For this study

  6. Accelerator-feasible N -body nonlinear integrable system

    NASA Astrophysics Data System (ADS)

    Danilov, V.; Nagaitsev, S.

    2014-12-01

    Nonlinear N -body integrable Hamiltonian systems, where N is an arbitrary number, have attracted the attention of mathematical physicists for the last several decades, following the discovery of some number of these systems. This paper presents a new integrable system, which can be realized in facilities such as particle accelerators. This feature makes it more attractive than many of the previous such systems with singular or unphysical forces.

  7. Accelerator-Feasible N-Body Nonlinear Integrable System

    SciTech Connect

    Danilov, V.; Nagaitsev, S.

    2014-12-23

    Nonlinear N-body integrable Hamiltonian systems, where N is an arbitrary number, attract the attention of mathematical physicists for the last several decades, following the discovery of some number of these systems. This paper presents a new integrable system, which can be realized in facilities such as particle accelerators. This feature makes it more attractive than many of the previous such systems with singular or unphysical forces.

  8. Thermal performance analysis and measurements of the prototype cryomodules of European XFEL accelerator - part I

    NASA Astrophysics Data System (ADS)

    Wang, X. L.; Barbanotti, S.; Eschke, J.; Jensch, K.; Klos, R.; Maschmann, W.; Petersen, B.; Sawlanski, O.

    2014-11-01

    The European X-Ray Free Electron Laser (XFEL), the research facility currently under construction in the Hamburg area, Germany, is based on a superconducting linear accelerator that brings electrons to almost the speed of light. The linear accelerator consists of 100 accelerating cryomodules (CMs) operating at the temperature of 2 K. The thermal performances of the accelerator CMs are a key element to determine the heat load budget, the required capacity and the cost of the XFEL refrigerating system and to guarantee its efficient operation. The measurement of the thermal performances of the CMs is also an important step in the qualification of the CMs during the series production. This paper describes the thermal performance analysis of the European XFEL prototype cryomodules. The analysis takes into account all the main contributors (multilayer insulation, current leads, power couplers, support posts, and cavities) to the static and dynamic heat loads at various cryogenic temperature levels. Existing empirical databases are reviewed and used to evaluate the heat transfer through the multilayer insulation and numerical simulations are developed to investigate the heat loads generated from the different CM components.

  9. Measurements and simulations of wakefields at the Accelerator Test Facility 2

    NASA Astrophysics Data System (ADS)

    Snuverink, J.; Ainsworth, R.; Boogert, S. T.; Cullinan, F. J.; Lyapin, A.; Kim, Y. I.; Kubo, K.; Kuroda, S.; Okugi, T.; Tauchi, T.; Terunuma, N.; Urakawa, J.; White, G. R.

    2016-09-01

    Wakefields are an important factor in accelerator design, and are a real concern when preserving the low beam emittance in modern machines. Charge dependent beam size growth has been observed at the Accelerator Test Facility (ATF2), a test accelerator for future linear collider beam delivery systems. Part of the explanation of this beam size growth is wakefields. In this paper we present numerical calculations of the wakefields produced by several types of geometrical discontinuities in the beam line as well as tracking simulations to estimate the induced effects. We also discuss precision beam kick measurements performed with the ATF2 cavity beam position monitor system for a test wakefield source in a movable section of the vacuum chamber. Using an improved model independent method we measured a wakefield kick for this movable section of about 0.49 V /pC /mm , which, compared to the calculated value from electromagnetic simulations of 0.41 V /pC /mm , is within the systematic error.

  10. SAMS Acceleration Measurements on Mir from November 1995 to March 1996

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1997-01-01

    The NASA Microgravity Science and Applications Division (MSAD) sponsors science experiments on a variety of microgravity carriers, including Orbiter missions and Russia's Mir space station. The MSAD sponsors the Space Acceleration Measurement System (SAMS) at the NASA Lewis Research Center (LERC) to support these science experiments by providing acceleration measurements to characterize the microgravity environment to which the experiments were exposed. The LeRC Principal Investigator Microgravity Services (PIMS) project supports principal investigations of microgravity science experiments as they evaluate the effects of varying acceleration levels on their experiments. In 1994, a SAMS unit was installed on the Mir space station. In a manner similar to Orbiter mission support, the SAMS unit supports science experiments from the U.S. and Russia by measuring the microgravity environment during experiment operations. Previous reports have summarized the SAMS data acquired during the period from September 1994 to November 1995. During the time period from November 1995 to March 1996, the primary SAMS-supported experiment was a Protein Crystal Growth (PCG) experiment. SAMS data were obtained during the PCG operations on Mir in accordance with the requirements specified by the PCG Principal Investigator. Also included in this data are mission events of interest, such as the undocking of STS-74 from Mir (November 1995) and the docking of Atlantis (STS-76) to Mir in March 1996. This report presents an overview of the SAMS data recorded in the interval from November 1995 to March 1996.

  11. Design of a ram accelerator mass launch system

    NASA Technical Reports Server (NTRS)

    Aarnio, Michael; Armerding, Calvin; Berschauer, Andrew; Christofferson, Erik; Clement, Paul; Gohd, Robin; Neely, Bret; Reed, David; Rodriguez, Carlos; Swanstrom, Fredrick

    1988-01-01

    The ram accelerator mass launch system has been proposed to greatly reduce the costs of placing acceleration-insensitive payloads into low earth orbit. The ram accelerator is a chemically propelled, impulsive mass launch system capable of efficiently accelerating relatively large masses from velocities of 0.7 km/sec to 10 km/sec. The principles of propulsion are based on those of a conventional supersonic air-breathing ramjet; however the device operates in a somewhat different manner. The payload carrying vehicle resembles the center-body of the ramjet and accelerates through a stationary tube which acts as the outer cowling. The tube is filled with premixed gaseous fuel and oxidizer mixtures that burn in the vicinity of the vehicle's base, producing a thrust which accelerates the vehicle through the tube. This study examines the requirement for placing a 2000 kg vehicle into a 500 km circular orbit with a minimum amount of on-board rocket propellant for orbital maneuvers. The goal is to achieve a 50 pct payload mass fraction. The proposed design requirements have several self-imposed constraints that define the vehicle and tube configurations. Structural considerations on the vehicle and tube wall dictate an upper acceleration limit of 1000 g's and a tube inside diameter of 1.0 m. In-tube propulsive requirements and vehicle structural constraints result in a vehicle diameter of 0.76 m, a total length of 7.5 m and a nose-cone half angle of 7 degrees. An ablating nose-cone constructed from carbon-carbon composite serves as the thermal protection mechanism for atmospheric transit.

  12. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    NASA Astrophysics Data System (ADS)

    Rodi, A. R.; Leon, D. C.

    2012-11-01

    A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns - angle of attack, angle of sideslip, dynamic pressure and the error in static pressure - if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft - a trailing cone - and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.

  13. Raman distributed temperature measurement at CERN high energy accelerator mixed field radiation test facility (CHARM)

    NASA Astrophysics Data System (ADS)

    Toccafondo, Iacopo; Nannipieri, Tiziano; Signorini, Alessandro; Guillermain, Elisa; Kuhnhenn, Jochen; Brugger, Markus; Di Pasquale, Fabrizio

    2015-09-01

    In this paper we present a validation of distributed Raman temperature sensing (RDTS) at the CERN high energy accelerator mixed field radiation test facility (CHARM), newly developed in order to qualify electronics for the challenging radiation environment of accelerators and connected high energy physics experiments. By investigating the effect of wavelength dependent radiation induced absorption (RIA) on the Raman Stokes and anti-Stokes light components in radiation tolerant Ge-doped multi-mode (MM) graded-index optical fibers, we demonstrate that Raman DTS used in loop configuration is robust to harsh environments in which the fiber is exposed to a mixed radiation field. The temperature profiles measured on commercial Ge-doped optical fibers is fully reliable and therefore, can be used to correct the RIA temperature dependence in distributed radiation sensing systems based on P-doped optical fibers.

  14. SAMS Acceleration Measurements on Mir from May 1997 to June 1998 (NASA Increments 5, 6, and 7)

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1999-01-01

    During NASA Increments 5, 6, and 7 (May 1997 to June 1998), about eight gigabytes of acceleration data were collected by the Space Acceleration Measurement System (SAMS) onboard the Russian Space Station Mir. The data were recorded on twenty-seven optical disks which were returned to Earth on Orbiter missions STS-86, STS-89, and STS-91. During these increments, SAMS data were collected in the Priroda module to support various microgravity experiments. This report points out some of the salient features of the microgravity acceleration environment to which the experiments were exposed. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. The analyses included herein complement those presented in previous Mir increment summary reports prepared by the Principal Investigator Microgravity Services project.

  15. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.

    2016-09-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  16. Cryogenic cooling system for the Ground Test Accelerator

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.; Moeller, J.; Durham, F.; Spulgis, I.

    1994-12-31

    A cryogenic cooling system has been designed, built and tested for the Ground Test Accelerator (GTA) at the Los Alamos National Laboratory. Major components of the GTA require cooling to less than 50 K to reduce rf-heating and to increase thermal stability. The cooling system is capable of cooling (at an acceptable rate for thermal stresses) the cryogenically cooled components and then maintaining them at their operating temperature during accelerator testing for all modes and power levels of operation. The accelerator components are cooled by circulating cold, dense helium gas (about 21 K and 2.1 MPa) through the components. The circulating helium is refrigerated in a heat exchanger that uses boiling liquid hydrogen as a source of refrigeration. The cryogenic cooling system consists of the following major components: a liquid hydrogen (LH{sub 2}) storage Dewar with a transfer line to an LH{sub 2} run tank containing an LH{sub 2}/gaseous helium (GHe) heat exchanger, circulation lines, and a circulation pump. The system, sized to cool a load of approximately 40 kW at temperatures as low as 20 K, is operational, but has not yet been operated in conjunction with the accelerator.

  17. Cryogenic cooling system for the ground test accelerator

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.; Moeller, J.; Durham, F. ); Spulgis, I. )

    1993-01-01

    A cryogenic cooling system has been designed, built and tested for the Ground Test Accelerator (GTA) at the Los Alamos National Laboratory. Major components of the GTA require cooling to less than 50 K to reduce rf-heating and to increase thermal stability. The cooling system is capable of cooling (at an acceptable rate for thermal stresses) the cryogenically cooled components and then maintaining them at their operating temperature during accelerator testing for all modes and power levels of operation. The accelerator components are cooled by circulating cold, dense helium gas (about 21 K and 2.1 MPa) through the components. The circulating helium is refrigerated in a heat exchanger that uses boiling liquid hydrogen as a source of refrigeration. The cryogenic cooling system consists of the following major components: a liquid hydrogen (LH[sub 2]) storage Dewar with a transfer line to an LH[sub 2] run tank containing an LH[sub 2]/gaseous helium (GHe) heat exchanger, circulation lines, and a circulation pump. The system, sized to cool a load of approximately 40 kW at temperatures as low as 20 K, is operational, but has not yet been operated in conjunction with the accelerator.

  18. Cryogenic cooling system for the ground test accelerator

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.; Moeller, J.; Durham, F.; Spulgis, I.

    1993-06-01

    A cryogenic cooling system has been designed, built and tested for the Ground Test Accelerator (GTA) at the Los Alamos National Laboratory. Major components of the GTA require cooling to less than 50 K to reduce rf-heating and to increase thermal stability. The cooling system is capable of cooling (at an acceptable rate for thermal stresses) the cryogenically cooled components and then maintaining them at their operating temperature during accelerator testing for all modes and power levels of operation. The accelerator components are cooled by circulating cold, dense helium gas (about 21 K and 2.1 MPa) through the components. The circulating helium is refrigerated in a heat exchanger that uses boiling liquid hydrogen as a source of refrigeration. The cryogenic cooling system consists of the following major components: a liquid hydrogen (LH{sub 2}) storage Dewar with a transfer line to an LH{sub 2} run tank containing an LH{sub 2}/gaseous helium (GHe) heat exchanger, circulation lines, and a circulation pump. The system, sized to cool a load of approximately 40 kW at temperatures as low as 20 K, is operational, but has not yet been operated in conjunction with the accelerator.

  19. Actinide Measurements by Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory

    SciTech Connect

    Brown, T A; Marchetti, A A; Martinelli, R E; Cox, C C; Knezovich, J P; Hamilton, T F

    2003-09-25

    We report on the development of an accelerator mass spectrometry (AMS) system for the measurement of actinides at Lawrence Livermore National Laboratory. This AMS system is centered on a recently completed heavy isotope beam line that was designed particularly for high sensitivity, robust, high-throughput measurements of actinide concentrations and isotopic ratios. A fast isotope switching capability has been incorporated in the system, allowing flexibility in isotope selection and for the quasi-continuous normalization to a reference isotope spike. Initially, our utilization of the heavy isotope system has concentrated on the measurement of Pu isotopes. Under current operating conditions, background levels equivalent to {approx}1 x 10{sup 5} atoms are observed during routine {sup 239}Pu and {sup 240}Pu measurements. Measurements of samples containing {approx}10{sup 13} {sup 238}U atoms demonstrate that the system provides a {sup 238}U rejection factor during {sup 239}Pu measurements of {approx}10{sup 7}. Measurements of known materials, combined with results from an externally organized inter-comparison program, indicate that our {sup 239}Pu measurements are accurate and precise down to the {micro}Bq level ({approx}10{sup 6} atoms). Recently, we have investigated the performance of our heavy isotope AMS system in measurements of {sup 237}Np and {sup 236}U. Results of these investigations are discussed. The sensitivity shown by our Pu measurements, combined with the high throughput and interference rejection capabilities of our AMS system, demonstrate that AMS can provide a rapid and cost-effective measurement technique for actinides in a wide variety of studies.

  20. Systemic risk measures

    NASA Astrophysics Data System (ADS)

    Guerra, Solange Maria; Silva, Thiago Christiano; Tabak, Benjamin Miranda; de Souza Penaloza, Rodrigo Andrés; de Castro Miranda, Rodrigo César

    2016-01-01

    In this paper we present systemic risk measures based on contingent claims approach and banking sector multivariate density. We also apply network measures to analyze bank common risk exposure. The proposed measures aim to capture credit risk stress and its potential to become systemic. These indicators capture not only individual bank vulnerability, but also the stress dependency structure between them. Furthermore, these measures can be quite useful for identifying systemically important banks. The empirical results show that these indicators capture with considerable fidelity the moments of increasing systemic risk in the Brazilian banking sector in recent years.

  1. Summary Report of Mission Acceleration Measurements for MSL-1: STS-83, Launched April 14, 1997; STS-94, Launched July 1, 1997

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Kenneth; Tschen, Peter; McPherson, Kevin; Nati, Maurizio; Reckart, Timothy A.

    1998-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-83 and STS-94 flights of the Microgravity Science Laboratory (MSL-1) mission using four different accelerometer systems: the Orbital Acceleration Research Experiment (OARE), the Space Acceleration Measurement System (SAMS), the Microgravity Measurement Assembly (MMA), and the Quasi-Steady Acceleration Measurement (QSAM) system. All four accelerometer systems provided investigators with acceleration measurements downlinked in near-real-time. Data from each system was recorded for post-mission analysis. The OARE measured the Shuttle's acceleration with high resolution in the quasi-steady frequency regime below about 0.1 Hz. The SAMS provided investigators with higher frequency acceleration measurements up to 25 Hz. The QSAM and MMA systems provided investigators with quasi-steady and higher frequency (up to 100 Hz) acceleration measurements, respectively. The microgravity environment related to various Orbiter maneuvers, crew activities, and experiment operations as measured by the OARE and MMA is presented and interpreted in section 8 of this report.

  2. Nuclear data needs for accelerator-driven transmutation systems

    SciTech Connect

    Arthur, E.D.; Wilson, W.B.; Young, P.G.

    1994-07-01

    The possibilities of several new technologies based on use of intense, medium-energy proton accelerators are being investigated at Los Alamos National Laboratory. The potential new areas include destruction of long-lived components of nuclear waste, plutonium burning, energy production, and production of tritium. The design, assessment, and safety analysis of potential facilities involves the understanding of complex combinations of nuclear processes, which in turn places new requirements on nuclear data that transcend the traditional needs of the fission and fusion reactor communities. In this paper an assessment of the nuclear data needs for systems currently being considered in the Los Alamos Accelerator-Driven Transmutation Technologies program is given.

  3. Summary Report of Mission Acceleration Measurements for STS-79. Launched 16 Sep. 1996

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Moskowitz, Milton E.; Hrovat, Kenneth; Reckart, Timothy A.

    1997-01-01

    The Space Acceleration Measurement System (SAMS) collected acceleration data in support of the Mechanics of Granular Materials experiment during the STS-79 Mir docking mission, September 1996. STS-79 was the first opportunity to record SAMS data on an Orbiter while it was docked to Mir. Crew exercise activities in the Atlantis middeck and the Mir base module are apparent in the data. The acceleration signals related to the Enhanced Orbiter Refrigerator Freezer had different characteristics when comparing the data recorded on Atlantis on STS-79 with the data recorded on Mir during STS-74. This is probably due, at least in part, to different transmission paths and SAMS sensor head mounting mechanisms. Data collected on Atlantis during the STS-79 docking indicate that accelerations due to vehicle and solar array structural modes from Mir transfer to Atlantis and that the structural modes of the Atlantis-Mir complex are different from those of either vehicle independently. A 0.18 Hz component of the SAMS data, present while the two vehicles were docked, was probably caused by the Mir solar arrays. Compared to Atlantis structural modes of about 3.9 and 4.9 Hz, the Atlantis-Mir complex has structural components of about 4.5 and 5.1 Hz. After docking, apparent structural modes appeared in the data at about 0.8 and 1.8 Hz. The appearance, disappearance, and change in the structural modes during the docking and undocking phases of the joint Atlantis-Mir operations indicates that the structural modes of the two spacecraft have an effect on the microgravity environment of each other. The transfer of structural and equipment related accelerations between vehicles is something that should be considered in the International Space Station era.

  4. SAMS Acceleration Measurements on Mir From January to May 1997 (NASA Increment 4)

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1998-01-01

    During NASA Increment 4 (January to May 1997), about 5 gigabytes of acceleration data were collected by the Space Acceleration Measurements System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 28 optical disks which were returned to Earth on STS-84. During this increment, SAMS data were collected in the Priroda module to support the Mir Structural Dynamics Experiment (MiSDE), the Binary Colloidal Alloy Tests (BCAT), Angular Liquid Bridge (ALB), Candle Flames in Microgravity (CFM), Diffusion Controlled Apparatus Module (DCAM), Enhanced Dynamic Load Sensors (EDLS), Forced Flow Flame Spreading Test (FFFT), Liquid Metal Diffusion (LMD), Protein Crystal Growth in Dewar (PCG/Dewar), Queen's University Experiments in Liquid Diffusion (QUELD), and Technical Evaluation of MIM (TEM). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-84 operations, a Progress engine burn, Soyuz vehicle docking and undocking, and Progress vehicle docking. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. The analyses included herein complement those presented in previous summary reports prepared by the Principal Investigator Microgravity Services (PIMS) group.

  5. Summary Report of Mission Acceleration Measurements for STS-95: Launched October 19, 1998

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Hrovat, Kevin

    2000-01-01

    John H. Glenn's historic return to space was a primary focus of the STS-95 mission. The Hubble Space Telescope (HST) orbital Systems Test (HOST), an STS-95 payload, was an in-flight demonstration of HST components to be installed during the next HST servicing mission. One of the components under evaluation was the cryocooler for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Based on concerns about vibrations from the operation of the NICMOS cryocooler affecting the overall HST line-of-sight requirements, the Space Acceleration Measurement System for Free-Flyers (SAMS-FF) was employed to measure the vibratory environment of the STS-95 mission, including any effects introduced by the NICMOS cryocooler. The STS-95 mission represents the first STS mission supported by SAMS-FF. Utilizing a Control and Data Acquisition Unit (CDU) and two triaxial sensor heads (TSH) mounted on the HOST support structure in Discovery's cargo bay, the SAMS-FF and the HOST project were able to make vibratory measurements both on-board the vibration-isolated NICMOS cryocooler and off-board the cryocooler mounting plate. By comparing the SAMS-FF measured vibrations on-board and off-board the NICMOS cryocooler, HST engineers could assess the cryocooler g-jitter effects on the HST line-of-sight requirements. The acceleration records from both SAMS-FF accelerometers were analyzed and significant features of the microgravity environment are detailed in this report.

  6. Ram accelerator direct space launch system - New concepts

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.

    1992-01-01

    The ram accelerator, a chemically driven ramjet-in-tube device is a new option for direct launch of acceleration-insensitive payloads into earth orbit. The projectile is the centerbody of a ramjet and travels through a tube filled with a premixed fuel-oxidizer mixture. The tube acts as the cowl of the ramjet. A number of new concepts for a ram accelerator space launch system are presented. The velocity and acceleration capabilities of a number of ram accelerator drive modes, including several new modes, are given. Passive (fin) stabilization during atmospheric transit is investigated and found to be promising. Gasdynamic heating in-tube and during atmospheric transit is studied; the former is found to be severe, but may be alleviated by the selection of the most suitable drive modes, transpiration cooling, or a hydrogen gas core in the launch tube. To place the payload in earth orbit, scenarios using one impulse and three impulses (with an aeropass) and a new scenario involving an auxiliary vehicle are studied. The auxiliary vehicle scenario is found to be competitive regarding payload, and requires a much simpler projectile, but has the disadvantage of requiring the auxiliary vehicle.

  7. Feasibility of miniaturized instrumentation of the inflatable sphere for temperature, pressure and acceleration measurement

    NASA Technical Reports Server (NTRS)

    Luers, J. K.

    1975-01-01

    The feasibility of instrumenting the inflatable passive sphere (presently used to provide upper atmosphere density measurements) with miniaturized thermistors, pressure transducers, and accelerometers was analyzed. Data from the sensors must be transmitted by an onboard telemetry system to a ground receiving station. To assure a sufficiently slow fall velocity for the sphere the additional mass of the sensor and telemetry hardware must be less than 100 grams. Other constraints that must be satisfied by the sensor and telemetry systems include the ability to withstand a 150 g launch acceleration, the ability to function in both high and low temperature and pressure environments and be sufficiently small to be packaged within the body of a 3.81 cm diameter dart. A differential transducer that will measure the difference between ambient and internal sphere pressures is recommended. The application of each type of measurement relative to its ability to monitor sphere malfunction and to provide additional meteorological data is considered.

  8. Concurrent validity of accelerations measured using a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces.

    PubMed

    Cole, Michael H; van den Hoorn, Wolbert; Kavanagh, Justin K; Morrison, Steven; Hodges, Paul W; Smeathers, James E; Kerr, Graham K

    2014-01-01

    Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations; i) subtraction of the best linear fit from the data (detrending); and ii) use of orientation information (quaternions) from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12) using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences <0.16 m.s(-2)). Detrending produced slightly better agreement between the inertial measurement unit and Vicon system on firm surfaces (delta range: -0.05 to 0.06 vs. 0.00 to 0.14 m.s(-2)), whereas the quaternion method performed better when walking on compliant and uneven walkways (delta range: -0.16 to -0.02 vs. -0.07 to 0.07 m.s(-2)). The technique used to compensate for gravitational accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments.

  9. Three dimensional finite element methods: Their role in the design of DC accelerator systems

    NASA Astrophysics Data System (ADS)

    Podaru, Nicolae C.; Gottdang, A.; Mous, D. J. W.

    2013-04-01

    High Voltage Engineering has designed, built and tested a 2 MV dual irradiation system that will be applied for radiation damage studies and ion beam material modification. The system consists of two independent accelerators which support simultaneous proton and electron irradiation (energy range 100 keV - 2 MeV) of target sizes of up to 300 × 300 mm2. Three dimensional finite element methods were used in the design of various parts of the system. The electrostatic solver was used to quantify essential parameters of the solid-state power supply generating the DC high voltage. The magnetostatic solver and ray tracing were used to optimize the electron/ion beam transport. Close agreement between design and measurements of the accelerator characteristics as well as beam performance indicate the usefulness of three dimensional finite element methods during accelerator system design.

  10. High performance/low cost accelerator control system

    NASA Astrophysics Data System (ADS)

    Magyary, S.; Glatz, J.; Lancaster, H.; Selph, F.; Fahmie, M.; Ritchie, A.; Timossi, C.; Hinkson, C.; Benjegerdes, R.

    1980-10-01

    Implementation of a high performance computer control system tailored to the requirements of the Super HILAC accelerator is described. This system uses a distributed structure with fiber optic data links; multiple CPUs operate in parallel at each node. A large number of the latest 16 bit microcomputer boards are used to get a significant processor bandwidth. Dynamically assigned and labeled knobs together with touch screens allow a flexible and efficient operator interface. An X-Y vector graphics system allows display and labeling of real time signals as well as general plotting functions. Both the accelerator parameters and the graphics system can be driven from BASIC interactive programs in addition to the precanned user routines.

  11. Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center

    SciTech Connect

    S. Setiniyaz, T.A. Forest, K. Chouffani, Y. Kim, A. Freyberger

    2012-07-01

    A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.

  12. Accelerate!

    PubMed

    Kotter, John P

    2012-11-01

    The old ways of setting and implementing strategy are failing us, writes the author of Leading Change, in part because we can no longer keep up with the pace of change. Organizational leaders are torn between trying to stay ahead of increasingly fierce competition and needing to deliver this year's results. Although traditional hierarchies and managerial processes--the components of a company's "operating system"--can meet the daily demands of running an enterprise, they are rarely equipped to identify important hazards quickly, formulate creative strategic initiatives nimbly, and implement them speedily. The solution Kotter offers is a second system--an agile, networklike structure--that operates in concert with the first to create a dual operating system. In such a system the hierarchy can hand off the pursuit of big strategic initiatives to the strategy network, freeing itself to focus on incremental changes to improve efficiency. The network is populated by employees from all levels of the organization, giving it organizational knowledge, relationships, credibility, and influence. It can Liberate information from silos with ease. It has a dynamic structure free of bureaucratic layers, permitting a level of individualism, creativity, and innovation beyond the reach of any hierarchy. The network's core is a guiding coalition that represents each level and department in the hierarchy, with a broad range of skills. Its drivers are members of a "volunteer army" who are energized by and committed to the coalition's vividly formulated, high-stakes vision and strategy. Kotter has helped eight organizations, public and private, build dual operating systems over the past three years. He predicts that such systems will lead to long-term success in the 21st century--for shareholders, customers, employees, and companies themselves.

  13. Energy Measurements of Trapped Electrons from a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, Neil; Berry, Melissa; Blumenfeld, Ian; Decker, Franz-Josef; Hogan, Mark J.; Ischebeck, Rasmus; Iverson, Richard; Siemann, Robert H.; Walz, Dieter; Auerbach, David; Clayton, Christopher E.; Huang, Chengkun; Johnson, Devon; Joshi, Chandrashekhar; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Zhou, Miaomiao; Katsouleas, Thomas; Muggli, Patric

    2006-11-27

    Recent electron beam driven plasma wakefield accelerator experiments carried out at SLAC indicate trapping of plasma electrons. More charge came out of than went into the plasma. Most of this extra charge had energies at or below the 10 MeV level. In addition, there were trapped electron streaks that extended from a few GeV to tens of GeV, and there were mono-energetic trapped electron bunches with tens of GeV in energy.

  14. Energy Measurements of Trapped Electrons from a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, Neal; Auerbach, David; Berry, Melissa; Blumenfeld, Ian; Clayton, Christopher E.; Decer, Franz-Josef; Hogan, Mark J.; Huang, Chengkun; Ischebeck, Rasmus; Iverson, Richard; Johnson, Devon; Joshi, Chadrashekhar; Katsouleas, Thomas; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Muggli, Patric; Oz, Erdem; Siemann, Robert H.; Walz, Dieter; Zhou, Miaomiao; /SLAC /UCLA /Southern California U.

    2007-01-03

    Recent electron beam driven plasma wakefield accelerator experiments carried out at SLAC indicate trapping of plasma electrons. More charge came out of than went into the plasma. Most of this extra charge had energies at or below the 10 MeV level. In addition, there were trapped electron streaks that extended from a few GeV to tens of GeV, and there were mono-energetic trapped electron bunches with tens of GeV in energy.

  15. A PVDF transducer for low-frequency acceleration measurements.

    PubMed

    Daku, Brian L F; Mohamed, Enas M A; Prugger, Arnfinn F

    2004-07-01

    A unique acceleration transducer, using piezoelectric PVDF, has been developed for low-frequency vibration monitoring. The paper develops the theoretical model for this low-cost, robust sensor. The theoretical model is validated using experimental results from laboratory tests. The sensor was also installed in an underground potash mine alongside a commercial geophone for a three-month in-mine test producing results that show a close correspondence between the two transducers.

  16. High Power Cyclotrons for Accelerator Driven System (ADS)

    NASA Astrophysics Data System (ADS)

    Calabretta, Luciano

    2012-03-01

    We present an accelerator module based on a injector cyclotron and a Superconducting Ring Cyclotron (SRC) able to accelerate H2+ molecules. H2+ molecules are extracted from the SRC stripping the binding electron by a thin carbon foil. The SRC will be able to deliver proton beam with maximum energy of 800 MeV and a maximum power of 8 MW. This module is forecasted for the DAEdALUS (Decay At rest Experiment for δcp At Laboratory for Underground Science) experiment, which is a neutrino experiment proposed by groups of MIT and Columbia University. Extensive beam dynamics studies have been carrying out in the last two years and proved the feasibility of the design. The use of H2+ molecules beam has three main advantages: 1) it reduces the space charge effects, 2) because of stripping extraction, it simplifies the extraction process w.r.t. single turn extraction and 3) we can extract more than one beam out of one SRC. A suitable upgraded version of the cyclotron module able to deliver up to 10MW beam is proposed to drive ADS. The accelerator system which is presented, consists of having three accelerators modules. Each SRC is equipped with two extraction systems delivering two beams each one with a power up to 5 MW. Each accelerator module, feeds both the two reactors at the same time. The three accelerators modules assure to maintain continuity in functioning of the two reactors. In normal operation, all the three accelerators module will deliver 6.6 MW each one, just in case one of the three accelerator module will be off, due to a fault or maintenance, the other two modules are pushed at maximum power of 10 MW. The superconducting magnetic sector of the SRC, as well as the normal conducting sector of the injector cyclotron, is calculated with the TOSCA module of OPERA3D. Here the main features of the injector cyclotron, of the SRC and the beam dynamic along the cyclotrons are presented.

  17. Precision volume measurement system.

    SciTech Connect

    Fischer, Erin E.; Shugard, Andrew D.

    2004-11-01

    A new precision volume measurement system based on a Kansas City Plant (KCP) design was built to support the volume measurement needs of the Gas Transfer Systems (GTS) department at Sandia National Labs (SNL) in California. An engineering study was undertaken to verify or refute KCP's claims of 0.5% accuracy. The study assesses the accuracy and precision of the system. The system uses the ideal gas law and precise pressure measurements (of low-pressure helium) in a temperature and computer controlled environment to ratio a known volume to an unknown volume.

  18. Waveband Analysis of Track Irregularities in High-Speed Railway from On-Board Acceleration Measurement

    NASA Astrophysics Data System (ADS)

    Lee, Jun Seok; Choi, Sunghoon; Kim, Sang-Soo; Kim, Young Guk; Kim, Seog Won; Park, Choonsoo

    This paper is focused on waveband analysis of the lateral and vertical track irregularities from the on-board acceleration measurement of in-service high-speed trains. The track irregularities play important roles to determine dynamic stability of vehicles and ride quality of passengers, so that their amplitude and wavelength should be monitored continuously and carefully. Measuring acceleration at the axle-box or bogie of the trains has been under consideration for low-cost implementation and robust to a harsh railway environment. To estimate the track irregularities, lateral and vertical vibration caused by the wheel/track interaction is measured by the axle-box and bogie mounted accelerometers of an in-service high-speed train. A Kalman filter is used to prevent unrealistic drifts in the estimation. By applying the waveband-pass and compensation filters to the estimated displacement, it is possible to estimate the track irregularities. A distance-wavelength representation is used to identify their waveband in an intuitive way. It is verified by comparing with a commercial track geometry measurement system. From their comparison, it confirms that the representation can produce a satisfactory result.

  19. Compact Superconducting Radio-frequency Accelerators and Innovative RF Systems

    SciTech Connect

    Kephart, Robert; Chattopadhyay, Swaapan; Milton, Stephen

    2015-04-10

    We will present several new technical and design breakthroughs that enable the creation of a new class of compact linear electron accelerators for industrial purposes. Use of Superconducting Radio-Frequency (SRF) cavities allow accelerators less than 1.5 M in length to create electron beams beyond 10 MeV and with average beam powers measured in 10’s of KW. These machines can have the capability to vary the output energy dynamically to produce brehmstrahlung x-rays of varying spectral coverage for applications such as rapid scanning of moving cargo for security purposes. Such compact accelerators will also be cost effective for many existing and new industrial applications. Examples include radiation crosslinking of plastics and rubbers, creation of pure materials with surface properties radically altered from the bulk, modification of bulk or surface optical properties of materials, sterilization of medical instruments animal solid or liquid waste, and destruction of organic compounds in industrial waste water effluents. Small enough to be located on a mobile platform, such accelerators will enable new remediation methods for chemical and biological spills and/or in-situ crosslinking of materials. We will describe one current design under development at Fermilab including plans for prototype and value-engineering to reduce costs. We will also describe development of new nano-structured field-emitter arrays as sources of electrons, new methods for fabricating and cooling superconducting RF cavities, and a new novel RF power source based on magnetrons with full phase and amplitude control.

  20. Ultrasonic linear measurement system

    NASA Technical Reports Server (NTRS)

    Marshall, Scot H. (Inventor)

    1991-01-01

    An ultrasonic linear measurement system uses the travel time of surface waves along the perimeter of a three-dimensional curvilinear body to determine the perimeter of the curvilinear body. The system can also be used piece-wise to measure distances along plane surfaces. The system can be used to measure perimeters where use of laser light, optical means or steel tape would be extremely difficult, time consuming or impossible. It can also be used to determine discontinuities in surfaces of known perimeter or dimension.

  1. The computer-based control system of the NAC accelerator

    NASA Astrophysics Data System (ADS)

    Burdzik, G. F.; Bouckaert, R. F. A.; Cloete, I.; Dutoit, J. S.; Kohler, I. H.; Truter, J. N. J.; Visser, K.; Wikner, V. C. S. J.

    The National Accelerator Center (NAC) of the CSIR is building a two-stage accelerator which will provide charged-particle beams for use in medical and research applications. The control system for this accelerator is based on three mini-computers and a CAMAC interfacing network. Closed-loop control is being relegated to the various subsystems of the accelerators, and the computers and CAMAC network will be used in the first instance for data transfer, monitoring and servicing of the control consoles. The processing power of the computers will be utilized for automating start-up and beam-change procedures, for providing flexible and convenient information at the control consoles, for fault diagnosis and for beam-optimizing procedures. Tasks of a localized or dedicated nature are being off-loaded onto microcomputers, which are being used either in front-end devices or as slaves to the mini-computers. On the control consoles only a few instruments for setting and monitoring variables are being provided, but these instruments are universally-linkable to any appropriate machine variable.

  2. Positron Injector Accelerator and RF System for the ILC

    SciTech Connect

    Wang, J.W.; Adolphsen, C.; Bharadwaj, V.; Bowden, G.; Jongewaard, E.; Li, Z.; Miller, R.; Sheppard, J.C.; /SLAC

    2007-03-28

    Due to the extremely high energy deposition from positrons, electrons, photons and neutrons behind the positron target, and because a solenoid is required to focus the large emittance positron beam, the 1.3 GHz preaccelerator has to use normal conducting structures up to energy of 400 MeV. There are many challenges in the design of the normal-conducting portion of the ILC positron injector system such as obtaining high positron yield with required emittance, achieving adequate cooling with the high RF and particle loss heating, and sustaining high accelerator gradients during millisecond-long pulses in a strong magnetic field. Considering issues of feasibility, reliability and cost savings for the ILC, the proposed design for the positron injector contains both standing-wave (SW) and traveling-wave (TW) L-band accelerator structures. A short version of the new type of the SW section is under fabrication and testing. An updated status report is given. This paper also covers acceleration vs. deceleration for pre-accelerator sections, SW vs. TW structures, as well as longitudinal matching from target to linac and linac to damping ring.

  3. Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer

    SciTech Connect

    Sorrentino, F.; Lien, Y.-H.; Rosi, G.; Tino, G. M.; Bertoldi, A.; Bodart, Q.; Cacciapuoti, L.; Angelis, M. de; Prevedelli, M.

    2012-09-10

    We demonstrate a method to measure the gravitational acceleration with a dual cloud atom interferometer; the use of simultaneous atom interferometers reduces the effect of seismic noise on the gravity measurement. At the same time, the apparatus is capable of accurate measurements of the vertical gravity gradient. The ability to determine the gravity acceleration and gravity gradient simultaneously and with the same instrument opens interesting perspectives in geophysical applications.

  4. Lessons learned on the Ground Test Accelerator control system

    SciTech Connect

    Kozubal, A.J.; Weiss, R.E.

    1994-09-01

    When we initiated the control system design for the Ground Test Accelerator (GTA), we envisioned a system that would be flexible enough to handle the changing requirements of an experimental project. This control system would use a developers` toolkit to reduce the cost and time to develop applications for GTA, and through the use of open standards, the system would accommodate unforeseen requirements as they arose. Furthermore, we would attempt to demonstrate on GTA a level of automation far beyond that achieved by existing accelerator control systems. How well did we achieve these goals? What were the stumbling blocks to deploying the control system, and what assumptions did we make about requirements that turned out to be incorrect? In this paper we look at the process of developing a control system that evolved into what is now the ``Experimental Physics and Industrial Control System`` (EPICS). Also, we assess the impact of this system on the GTA project, as well as the impact of GTA on EPICS. The lessons learned on GTA will be valuable for future projects.

  5. Fluence and dose measurements for an accelerator neutron beam

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Byun, S. H.; McNeill, F. E.; Mothersill, C. E.; Seymour, C. B.; Prestwich, W. V.

    2007-10-01

    The 3 MV Van de Graaff accelerator at McMaster University accelerator laboratory is extended to a neutron irradiation facility for low-dose bystander effects research. A long counter and an Anderson-Braun type neutron monitor have been used as monitors for the determination of the total fluence. Activation foils were used to determine the thermal neutron fluence rate (around 106 neutrons s-1). Meanwhile, the interactions of neutrons with the monitors have been simulated using a Monte Carlo N Particle (MCNP) code. Bystander effects, i.e. damage occurring in cells that were not traversed by radiation but were in the same radiation environment, have been well observed following both alpha and gamma irradiation of many cell lines. Since neutron radiation involves mixed field (including gamma and neutron radiations), we need to differentiate the doses for the bystander effects from the two radiations. A tissue equivalent proportional counter (TEPC) filled with propane based tissue equivalent gas simulating a 2 μm diameter tissue sphere has been investigated to estimate the neutron and gamma absorbed doses. A photon dose contamination of the neutron beam is less than 3%. The axial dose distribution follows the inverse square law and lateral and vertical dose distributions are relatively uniform over the irradiation area required by the biological study.

  6. Validity of a Wearable Accelerometer Device to Measure Average Acceleration Values During High-Speed Running.

    PubMed

    Alexander, Jeremy P; Hopkinson, Trent L; Wundersitz, Daniel W T; Serpell, Benjamin G; Mara, Jocelyn K; Ball, Nick B

    2016-11-01

    Alexander, JP, Hopkinson, TL, Wundersitz, DWT, Serpell, BG, Mara, JK, and Ball, NB. Validity of a wearable accelerometer device to measure average acceleration values during high-speed running. J Strength Cond Res 30(11): 3007-3013, 2016-The aim of this study was to determine the validity of an accelerometer to measure average acceleration values during high-speed running. Thirteen subjects performed three sprint efforts over a 40-m distance (n = 39). Acceleration was measured using a 100-Hz triaxial accelerometer integrated within a wearable tracking device (SPI-HPU; GPSports). To provide a concurrent measure of acceleration, timing gates were positioned at 10-m intervals (0-40 m). Accelerometer data collected during 0-10 m and 10-20 m provided a measure of average acceleration values. Accelerometer data was recorded as the raw output and filtered by applying a 3-point moving average and a 10-point moving average. The accelerometer could not measure average acceleration values during high-speed running. The accelerometer significantly overestimated average acceleration values during both 0-10 m and 10-20 m, regardless of the data filtering technique (p < 0.001). Body mass significantly affected all accelerometer variables (p < 0.10, partial η = 0.091-0.219). Body mass and the absence of a gravity compensation formula affect the accuracy and practicality of accelerometers. Until GPSports-integrated accelerometers incorporate a gravity compensation formula, the usefulness of any accelerometer-derived algorithms is questionable.

  7. Classroom performance system use in an accelerated graduate nursing program.

    PubMed

    Grimes, Corinne; Joiner Rogers, Glenda; Volker, Deborah; Ramberg, Elizabeth

    2010-01-01

    Many students who enter accelerated nursing programs have not been exposed to the analysis, prediction, and decision-making skills needed by today's RN. To foster practice with complex concepts in the classroom and to give teachers immediate feedback about student in-class mastery of core material, use of an audience participation system within the classroom may be useful. This article reports the implementation of a classroom performance system and the results ofa program evaluation project designed to capture the system's impact on student and faculty satisfaction and student learning outcomes. Project results and implications for further work are presented.

  8. The new control system of the Saclay Linear Accelerator

    SciTech Connect

    Gournay, J.F.; Garreau, F.; Giraud, A.; Gourcy, G.; Rouault, J.

    1985-10-01

    A new control system for the Saclay Linear Accelerator is now being designed. The computer control architecture is based on 3 dedicated VME crates with MC68000 micro-processors : one crate with a disk-based operating system will run the high level application programs and the data base management facilities, another one will manage the man-machine communications and the third one will interface the system to the linac equipments. Communications between the VME microcomputers will be done through 16 bit parallel links. The software is modular and organized in specific layers, the data base is fully distributed. About 90% of the code is written in Fortran.

  9. Quick setup of unit test for accelerator controls system

    SciTech Connect

    Fu, W.; D'Ottavio, T.; Gassner, D.; Nemesure, S.; Morris, J.

    2011-03-28

    Testing a single hardware unit of an accelerator control system often requires the setup of a program with graphical user interface. Developing a dedicated application for a specific hardware unit test could be time consuming and the application may become obsolete after the unit tests. This paper documents a methodology for quick design and setup of an interface focused on performing unit tests of accelerator equipment with minimum programming work. The method has three components. The first is a generic accelerator device object (ADO) manager which can be used to setup, store, and log testing controls parameters for any unit testing system. The second involves the design of a TAPE (Tool for Automated Procedure Execution) sequence file that specifies and implements all te testing and control logic. The sting third is the design of a PET (parameter editing tool) page that provides the unit tester with all the necessary control parameters required for testing. This approach has been used for testing the horizontal plane of the Stochastic Cooling Motion Control System at RHIC.

  10. Electrochemical thermodynamic measurement system

    DOEpatents

    Reynier, Yvan; Yazami, Rachid; Fultz, Brent T.

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  11. Metabolic rate measurement system

    NASA Technical Reports Server (NTRS)

    Koester, K.; Crosier, W.

    1980-01-01

    The Metabolic Rate Measurement System (MRMS) is an uncomplicated and accurate apparatus for measuring oxygen consumption and carbon dioxide production of a test subject. From this one can determine the subject's metabolic rate for a variety of conditions, such as resting or light exercise. MRMS utilizes an LSI/11-03 microcomputer to monitor and control the experimental apparatus.

  12. Lessons from two field tests on pipeline damage detection using acceleration measurement

    NASA Astrophysics Data System (ADS)

    Shinozuka, Masanobu; Lee, Sungchil; Kim, Sehwan; Chou, Pai H.

    2011-04-01

    Early detection of pipeline damages has been highlighted in water supply industry. Water pressure change in pipeline due to a sudden rupture causes pipe to vibrate and the pressure change propagates through the pipeline. From the measurement of pipe vibration the rupture can be detected. In this paper, the field test results and observations are provided for implementing next generation of SCADA system for pipeline rupture detection. Two field tests were performed on real buried plastic and metal pipelines for rupture detection. The rupture was simulated by introducing sudden water pressure drop caused by water blow-off and valve control. The measured acceleration data at the pipe surfaces were analyzed in both time and frequency domain. In time domain, the sudden narrow increase of acceleration amplitude was used as an indication of rupture event. For the frequency domain analysis, correlation function and the short time Fourier Transform technique were adopted to trace the dominant frequency shift. The success of rupture detection was found to be dependent on several factors. From the frequency analysis, the dominant frequency of metal water pipe was shifted by the water pressure drop, however, it was hard to identify from the plastic pipeline. Also the influence of existing facility such as airvac on pipe vibrations was observed. Finally, several critical lessons learned in the viewpoint of field measurement are discussed in this paper.

  13. Current measuring system

    DOEpatents

    Dahl, David A.; Appelhans, Anthony D.; Olson, John E.

    1997-01-01

    A current measuring system comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device.

  14. Current measuring system

    DOEpatents

    Dahl, D.A.; Appelhans, A.D.; Olson, J.E.

    1997-09-09

    A current measuring system is disclosed comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device. 4 figs.

  15. MEASUREMENTS OF THE CORONAL ACCELERATION REGION OF A SOLAR FLARE

    SciTech Connect

    Krucker, Saem; Hudson, H. S.; Glesener, L.; Lin, R. P.; White, S. M.; Masuda, S.; Wuelser, J.-P.

    2010-05-10

    The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Nobeyama Radioheliograph (NoRH) are used to investigate coronal hard X-ray and microwave emissions in the partially disk-occulted solar flare of 2007 December 31. The STEREO mission provides EUV images of the flare site at different viewing angles, establishing a two-ribbon flare geometry and occultation heights of the RHESSI and NoRH observations of {approx}16 Mm and {approx}25 Mm, respectively. Despite the occultation, intense hard X-ray emission up to {approx}80 keV occurs during the impulsive phase from a coronal source that is also seen in microwaves. The hard X-ray and microwave source during the impulsive phase is located {approx}6 Mm above thermal flare loops seen later at the soft X-ray peak time, similar in location to the above-the-loop-top source in the Masuda flare. A single non-thermal electron population with a power-law distribution (with spectral index of {approx}3.7 from {approx}16 keV up to the MeV range) radiating in both bremsstrahlung and gyrosynchrotron emission can explain the observed hard X-ray and microwave spectrum, respectively. This clearly establishes the non-thermal nature of the above-the-loop-top source. The large hard X-ray intensity requires a very large number (>5 x 10{sup 35} above 16 keV for the derived upper limit of the ambient density of {approx}8 x 10{sup 9} cm{sup -3}) of suprathermal electrons to be present in this above-the-loop-top source. This is of the same order of magnitude as the number of ambient thermal electrons. We show that collisional losses of these accelerated electrons would heat all ambient electrons to superhot temperatures (tens of keV) within seconds. Hence, the standard scenario, with hard X-rays produced by a beam comprising the tail of a dominant thermal core plasma, does not work. Instead, all electrons in the above-the-loop-top source seem to be accelerated, suggesting that the above-the-loop-top source is itself the

  16. First measurements of laser-accelerated proton induced luminescence

    SciTech Connect

    Floquet, V.; Ceccotti, T.; Dobosz Dufrenoy, S.; Bonnaud, G.; Monot, P.; Martin, Ph.; Gremillet, L.

    2012-09-15

    We present our first results about laser-accelerated proton induced luminescence in solids. In the first part, we describe the optimization of the proton source as a function of the target thickness as well as the laser pulse duration and energy. Due to the ultra high contrast ratio of our laser beam, we succeeded in using targets ranging from the micron scale down to nanometers thickness. The two optimal thicknesses we put in evidence are in good agreement with numerical simulations. Laser pulse duration shows a small influence on proton maximum energy, whereas the latter turns out to vary almost linearly as a function of laser energy. Thanks to this optimisation work, we have been able to acquire images of the proton energy deposition in a solid scintillator.

  17. Digital capacitance measuring system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The hardware phase of a digital capacitance measuring system is presented with the major emphasis placed on the electrical design and operation. Test results are included of the three units fabricated. The system's interface is applicable to existing requirements for the space shuttle vehicle.

  18. A Comparison of Accelerated and Non-accelerated MRI Scans for Brain Volume and Boundary Shift Integral Measures of Volume Change: Evidence from the ADNI Dataset.

    PubMed

    Manning, Emily N; Leung, Kelvin K; Nicholas, Jennifer M; Malone, Ian B; Cardoso, M Jorge; Schott, Jonathan M; Fox, Nick C; Barnes, Josephine

    2017-03-18

    The aim of this study was to assess whether the use of accelerated MRI scans in place of non-accelerated scans influenced brain volume and atrophy rate measures in controls and subjects with mild cognitive impairment and Alzheimer's disease. We used data from 861 subjects at baseline, 573 subjects at 6 months and 384 subjects at 12 months from the Alzheimer's Disease Neuroimaging Initiative (ADNI). We calculated whole-brain, ventricular and hippocampal atrophy rates using the k-means boundary shift integral (BSI). Scan quality was visually assessed and the proportion of good quality accelerated and non-accelerated scans compared. We also compared MMSE scores, vascular burden and age between subjects with poor quality scans with those with good quality scans. Finally, we estimated sample size requirements for a hypothetical clinical trial when using atrophy rates from accelerated scans and non-accelerated scans. No significant differences in whole-brain, ventricular and hippocampal volumes and atrophy rates were found between accelerated and non-accelerated scans. Twice as many non-accelerated scan pairs suffered from at least some motion artefacts compared with accelerated scan pairs (p ≤ 0.001), which may influence the BSI. Subjects whose accelerated scans had significant motion had a higher mean vascular burden and age (p ≤ 0.05) whilst subjects whose non-accelerated scans had significant motion had poorer MMSE scores (p ≤ 0.05). No difference in estimated sample size requirements was found when using accelerated vs. non-accelerated scans. Accelerated scans reduce scan time and are better tolerated. Therefore it may be advantageous to use accelerated over non-accelerated scans in clinical trials that use ADNI-type protocols, especially in more cognitively impaired subjects.

  19. Methodology for the calibration of and data acquisition with a six-degree-of-freedom acceleration measurement device

    NASA Astrophysics Data System (ADS)

    Lee, Harvey; Plank, Gordon; Weinstock, Herbert; Coltman, Michael

    1989-06-01

    Described here is a methodology for calibrating and gathering data with a six-degree-of-freedom acceleration measurement device that is intended to measure head acceleration of anthropomorphic dummies and human volunteers in automotive crash testing and head impact trauma studies. Error models (system equations) were developed for systems using six accelerometers in a coplanar (3-2-1) configuration, nine accelerometers in a coplanar (3-3-3) configuration and nine accelerometers in a non-coplanar (3-2-2-2) configuration and the accuracy and stability of these systems were compared. The model was verified under various input and computational conditions. Results of parametric sensitivity analyses which included parameters such as system geometry, coordinate system location, data sample rate and accelerometer cross axis sensitivities are presented. Recommendations to optimize data collection and reduction are given. Complete source listings of all of the software developed are presented.

  20. Cryogenic system for the MYRRHA superconducting linear accelerator

    SciTech Connect

    Chevalier, Nicolas R.; Junquera, Tomas; Thermeau, Jean-Pierre; Romão, Luis Medeiros; Vandeplassche, Dirk

    2014-01-29

    SCK⋅CEN, the Belgian Nuclear Research Centre, is designing MYRRHA, a flexible fast spectrum research reactor (80 MW{sub th}), conceived as an accelerator driven system (ADS), able to operate in sub-critical and critical modes. It contains a continuous-wave (CW) superconducting (SC) proton accelerator of 600 MeV, a spallation target and a multiplying core with MOX fuel, cooled by liquid lead-bismuth (Pb-Bi). From 17 MeV onward, the SC accelerator will consist of 48 β=0.36 spoke-loaded cavities (352 MHz), 34 β=0.47 elliptical cavities (704 MHz) and 60 β=0.65 elliptical cavities (704 MHz). We present an analysis of the thermal loads and of the optimal operating temperature of the cryogenic system. In particular, the low operating frequency of spoke cavities makes their operation in CW mode possible both at 4.2 K or at 2 K. Our analysis outlines the main factors that determine at what temperature the spoke cavities should be operated. We then present different cryogenic fluid distribution schemes, important characteristics (storage, transfer line, etc.) and the main challenges offered by MYRRHA in terms of cryogenics.

  1. Cryogenic system for the MYRRHA superconducting linear accelerator

    NASA Astrophysics Data System (ADS)

    Chevalier, Nicolas R.; Junquera, Tomas; Thermeau, Jean-Pierre; Romão, Luis Medeiros; Vandeplassche, Dirk

    2014-01-01

    SCKṡCEN, the Belgian Nuclear Research Centre, is designing MYRRHA, a flexible fast spectrum research reactor (80 MWth), conceived as an accelerator driven system (ADS), able to operate in sub-critical and critical modes. It contains a continuous-wave (CW) superconducting (SC) proton accelerator of 600 MeV, a spallation target and a multiplying core with MOX fuel, cooled by liquid lead-bismuth (Pb-Bi). From 17 MeV onward, the SC accelerator will consist of 48 β=0.36 spoke-loaded cavities (352 MHz), 34 β=0.47 elliptical cavities (704 MHz) and 60 β=0.65 elliptical cavities (704 MHz). We present an analysis of the thermal loads and of the optimal operating temperature of the cryogenic system. In particular, the low operating frequency of spoke cavities makes their operation in CW mode possible both at 4.2 K or at 2 K. Our analysis outlines the main factors that determine at what temperature the spoke cavities should be operated. We then present different cryogenic fluid distribution schemes, important characteristics (storage, transfer line, etc.) and the main challenges offered by MYRRHA in terms of cryogenics.

  2. An Integrated Enterprise Accelerator Database for the SLC Control System

    SciTech Connect

    Lahey, Terri E

    2002-08-07

    Since its inception in the early 1980's, the SLC Control System has been driven by a highly structured memory-resident real-time database. While efficient, its rigid structure and file-based sources makes it difficult to maintain and extract relevant information. The goal of transforming the sources for this database into a relational form is to enable it to be part of a Control System Enterprise Database that is an integrated central repository for SLC accelerator device and Control System data with links to other associated databases. We have taken the concepts developed for the NLC Enterprise Database and used them to create and load a relational model of the online SLC Control System database. This database contains data and structure to allow querying and reporting on beamline devices, their associations and parameters. In the future this will be extended to allow generation of EPICS and SLC database files, setup of applications and links to other databases such as accelerator maintenance, archive data, financial and personnel records, cabling information, documentation etc. The database is implemented using Oracle 8i. In the short term it will be updated daily in batch from the online SLC database. In the longer term, it will serve as the primary source for Control System static data, an R&D platform for the NLC, and contribute to SLC Control System operations.

  3. Neutron source strength measurements for Varian, Siemens, Elekta, and General Electric linear accelerators.

    PubMed

    Followill, David S; Stovall, Marilyn S; Kry, Stephen F; Ibbott, Geoffrey S

    2003-01-01

    The shielding calculations for high energy (>10 MV) linear accelerators must include the photoneutron production within the head of the accelerator. Procedures have been described to calculate the treatment room door shielding based on the neutron source strength (Q value) for a specific accelerator and energy combination. Unfortunately, there is currently little data in the literature stating the neutron source strengths for the most widely used linear accelerators. In this study, the neutron fluence for 36 linear accelerators, including models from Varian, Siemens, Elekta/Philips, and General Electric, was measured using gold-foil activation. Several of the models and energy combinations had multiple measurements. The neutron fluence measured in the patient plane was independent of the surface area of the room, suggesting that neutron fluence is more dependent on the direct neutron fluence from the head of the accelerator than from room scatter. Neutron source strength, Q, was determined from the measured neutron fluences. As expected, Q increased with increasing photon energy. The Q values ranged from 0.02 for a 10 MV beam to 1.44(x10(12)) neutrons per photon Gy for a 25 MV beam. The most comprehensive set of neutron source strength values, Q, for the current accelerators in clinical use are presented for use in calculating room shielding.

  4. Design of a Ram Accelerator mass launch system

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Ram Accelerator, a chemically propelled, impulsive mass launch system, is presented as a viable concept for directly launching acceleration-insensitive payloads into low Earth orbit. The principles of propulsion are based on those of an airbreathing supersonic ramjet. The payload vehicle acts as the ramjet centerbody and travels through a fixed launch tube that acts as the ramjet outer cowling. The launch tube is filled with premixed gaseous fuel and oxidizer mixtures that combust at the base of the vehicle and produce thrust. Two modes of in-tube propulsion involving ramjet cycles are used in sequence to accelerate the vehicle from 0.7 km/sec to 9 km/sec. Requirements for placing a 2000 kg vehicle into a 500-km circular orbit, with a minimum amount of onboard rocket propellant for orbital maneuvers, are examined. It is shown that in-tube propulsion requirements dictate a launch tube length of 5.1 km to achieve an exit velocity of 9 km/sec, with peak accelerations not to exceed 1000 g's. Aerodynamic heating due to atmospheric transit requires minimal ablative protection and the vehicle retains a large percentage of its exit velocity. An indirect orbital insertion maneuver with aerobraking and two apogee burns is examined to minimize the required onboard propellant mass. An appropriate onboard propulsion system design to perform the required orbital maneuvers with minimum mass requirements is also determined. The structural designs of both the launch tube and the payload vehicle are examined using simple structural and finite element analysis for various materials.

  5. Intense and exciting: current and future accelerator-based measurements of neutrino oscillation

    NASA Astrophysics Data System (ADS)

    Whitehead, Lisa

    2017-01-01

    Accelerator-based experiments have been crucial in our understanding of neutrino oscillations. In this talk, I will give an overview of current accelerator-based neutrino oscillation experiments, which have observed electron neutrino appearance and made precision measurements of the parameters governing muon neutrino disappearance. I will discuss what the current set of experiments can contribute to the remaining questions in neutrino oscillation physics, including measuring the CP violating phase, determining the mass hierarchy, resolving the θ23 octant, and searching for sterile neutrinos. Finally, I will describe the plans and physics goals for future accelerator-based neutrino experiments.

  6. Modeling of accelerator systems and experimental verification of Quarter-Wave Resonator steering

    NASA Astrophysics Data System (ADS)

    Benatti, Carla

    beam pipe, which has the potential to induce steering on the beam. These additional complications make this a significant device to study in order to optimize the accelerator's overall performance. The NSCL and ReA, along with FRIB, are first introduced to provide background and motivate the central modeling objectives presented throughout this work. In the next chapter, underlying beam physics principles are then discussed, as they form the basis from which modeling methods are derived. The modeling methods presented include multi-particle tracking and beam envelope matrix transport. The following chapter investigates modeling elements in more detail, including quadrupoles, solenoids, and coaxial accelerating cavities. Assemblies of accelerator elements, or lattices, have been modeled as well, and a method for modeling multiple charge state transport using linear matrix methods is also given. Finally, an experiment studying beam steering induced by QWR resonators is presented, the first systematic experimental investigation of this effect. As mentioned earlier, characterization of this steering on beam properties is important for accurate modeling of the beam transport through the linac. The measurement technique devised at ReA investigates the effect's dependence on the beam's vertical offset within the cavity, the cavity amplitude, and the beam energy upon entrance into the cavity. The results from this experiment agree well with the analytical predictions based on geometrical parameters calculated from on-axis field profiles. The incorporation of this effect into modeling codes has the potential to speed up complex accelerator operations and tuning procedures in systems using QWRs.

  7. Video integrated measurement system.

    PubMed

    Spector, B; Eilbert, L; Finando, S; Fukuda, F

    1982-06-01

    A Video Integrated Measurement (VIM) System is described which incorporates the use of various noninvasive diagnostic procedures (moire contourography, electromyography, posturometry, infrared thermography, etc.), used individually or in combination, for the evaluation of neuromusculoskeletal and other disorders and their management with biofeedback and other therapeutic procedures. The system provides for measuring individual diagnostic and therapeutic modes, or multiple modes by split screen superimposition, of real time (actual) images of the patient and idealized (ideal-normal) models on a video monitor, along with analog and digital data, graphics, color, and other transduced symbolic information. It is concluded that this system provides an innovative and efficient method by which the therapist and patient can interact in biofeedback training/learning processes and holds considerable promise for more effective measurement and treatment of a wide variety of physical and behavioral disorders.

  8. Oceanic wave measurement system

    NASA Technical Reports Server (NTRS)

    Holmes, J. F.; Miles, R. T. (Inventor)

    1980-01-01

    An oceanic wave measured system is disclosed wherein wave height is sensed by a barometer mounted on a buoy. The distance between the trough and crest of a wave is monitored by sequentially detecting positive and negative peaks of the output of the barometer and by combining (adding) each set of two successive half cycle peaks. The timing of this measurement is achieved by detecting the period of a half cycle of wave motion.

  9. Acceleration Measurement and Characterization in Support of the USMP-4 Payloads

    NASA Technical Reports Server (NTRS)

    Rogers, M. J. B.; Hrovat, K.; McPherson, K.; DeLombard, R.; Reckart, T.

    1999-01-01

    One common characteristic of the USMP-4 experiments is that various effects of gravity make it difficult, if not impossible, to achieve usable results when performing the experiments on Earth's surface. Therefore, the investigators took advantage of the microgravity environment afforded by being in low-Earth orbit to perform their research. Interpretation of the experiment results both during the mission and upon post-mission analyses of data and samples required an understanding of the microgravity environment in which the experiments were conducted. To achieve that understanding, data were collected using the Orbital Acceleration Research Experiment (OARE) and two Space Acceleration Measurement Systems (SAMS). Data from those systems, combined with an assessment of mission and experiment activities, were used to characterize the microgravity environment that existed on Columbia during the mission. The text herein gives details about some characteristics of the environment that were noted during the mission and during post-mission data analysis. The disturbances studied include the Ku-band antenna 17 Hz dither; the effect of changing the Orbiter attitude deadband limits; the effects of different bicycle ergometer configurations; and the effect of IDGE (Isothermal Dendritic Growth Experiment) experiment fans and SAMS computer hard drives. Additional information about the microgravity environment is provided. Supplementary data plots representing the environment throughout the majority of the mission are available at the Uniform Resource Locator (URL). Data files for both SAMS and OARE are accessible via anonymous file transfer protocol from the file server.

  10. Radiation Safety System for SPIDER Neutral Beam Accelerator

    SciTech Connect

    Sandri, S.; Poggi, C.; Coniglio, A.; D'Arienzo, M.

    2011-12-13

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports have been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.

  11. Sensorimotor System Measurement Techniques

    PubMed Central

    Riemann, Bryan L.; Myers, Joseph B.; Lephart, Scott M.

    2002-01-01

    Objective: To provide an overview of currently available sensorimotor assessment techniques. Data Sources: We drew information from an extensive review of the scientific literature conducted in the areas of proprioception, neuromuscular control, and motor control measurement. Literature searches were conducted using MEDLINE for the years 1965 to 1999 with the key words proprioception, somatosensory evoked potentials, nerve conduction testing, electromyography, muscle dynamometry, isometric, isokinetic, kinetic, kinematic, posture, equilibrium, balance, stiffness, neuromuscular, sensorimotor, and measurement. Additional sources were collected using the reference lists of identified articles. Data Synthesis: Sensorimotor measurement techniques are discussed with reference to the underlying physiologic mechanisms, influential factors and locations of the variable within the system, clinical research questions, limitations of the measurement technique, and directions for future research. Conclusions/Recommendations: The complex interactions and relationships among the individual components of the sensorimotor system make measuring and analyzing specific characteristics and functions difficult. Additionally, the specific assessment techniques used to measure a variable can influence attained results. Optimizing the application of sensorimotor research to clinical settings can, therefore, be best accomplished through the use of common nomenclature to describe underlying physiologic mechanisms and specific measurement techniques. PMID:16558672

  12. ACCELERATORS: A GUI tool for beta function measurement using MATLAB

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Ling; Tian, Shun-Qiang; Jiang, Bo-Cheng; Liu, Gui-Min

    2009-04-01

    The beta function measurement is used to detect the shift in the betatron tune as the strength of an individual quadrupole magnet is varied. A GUI (graphic user interface) tool for the beta function measurement is developed using the MATLAB program language in the Linux environment, which facilitates the commissioning of the Shanghai Synchrotron Radiation Facility (SSRF) storage ring. In this paper, we describe the design of the application and give some measuring results and discussions about the definition of the measurement. The program has been optimized to solve some restrictions of the AT tracking code. After the correction with LOCO (linear optics from closed orbits), the horizontal and the vertical root mean square values (rms values) can be reduced to 0.12 and 0.10.

  13. Laser measurements for experiments on the TROLL accelerator

    NASA Astrophysics Data System (ADS)

    Hogeland, S.

    1992-06-01

    Propagation of an electron beam over long distances can be accomplished by using a laser produced plasma channel. In experiments at the EPOCH Laboratory, a krypton/fluoride laser, lasing at 248 nm, is used to ionize trimethylamine gas to create a 91 m long channel. The laser radius was measured as 2.4 cm. Laser energy was measured and ranged from 0.5 to 6 J.

  14. Preparing accelerator systems for the RHIC sextant commissioning

    SciTech Connect

    Trbojevic, D.; Pilat, F.; Ahrens, L.

    1997-07-01

    The Relativistic Heavy Ion Collider (RHIC) construction is progressing steadily towards completion in 1999 when beams will circulate in both collider rings. One of the major tests of the RHIC project was the commissioning of the first sextant with gold ion beams in early 1997. This is a report on preparation of the RHIC accelerator systems for the first sextant test. It includes beam position monitors, timing, injection correction through the magnetic septum and kickers, current transformers, flags and the ionization beam profile monitors, beam loss monitors, beam and quench permit link system, power supply controls, and the configuration database system. The software and hardware development and coordination of the different systems before commissioning were regularly checked during bi-weekly, and (later) weekly, progress report meetings.

  15. Preparing Accelerator Systems for the RHIC Sextant Commissioning

    NASA Astrophysics Data System (ADS)

    Trbojevic, D.; Pilat, F.; Ahrens, L.; Barton, D.; Clifford, T.; Connoly, R.; Fischer, W.; Harrison, M.; Mackay, W.; Olsen, B.; Peggs, S.; Satogata, T.; Tepikian, S.; Thompson, P.; Trahern, C.; Witkover, R.

    1997-05-01

    The Relativistic Heavy Ion Collider (RHIC) construction is progressing steadily towards the beginning of the 1999 when beams will first be circulated in both collider rings. One of the major tests of the RHIC project is the commissioning of the first sextant with gold ion beams. This is a report on the preparation of the RHIC accelerator systems during the first sextant test, including beam position monitors, timing, injection correction through the magnetic septum and kickers, current transformers, ``flags'' and the ionization beam profile monitors, beam loss monitors, beam and quench permit link system, power supply controls, and the CYBASE data base system. The software and hardware development and coordination of the different systems before commissioning were regularly checked during bi-weekly, and (later) weekly, progress report meetings.

  16. Improving and Accelerating Drug Development for Nervous System Disorders

    PubMed Central

    Pankevich, Diana E.; Altevogt, Bruce M.; Dunlop, John; Gage, Fred H.; Hyman, Steve E.

    2014-01-01

    Advances in the neurosciences have placed the field in the position where it is poised to significantly reduce the burden of nervous system disorders. However, drug discovery, development and translation for nervous system disorders still pose many unique challenges. The key scientific challenges can be summarized as follows: mechanisms of disease, target identification and validation, predictive models, biomarkers for patient stratification and as endpoints for clinical trials, clear regulatory pathways, reliability and reproducibility of published data, and data sharing and collaboration. To accelerate nervous system drug development the Institute of Medicine’s Forum on Neuroscience and Nervous System Disorders has hosted a series of public workshops that brought together representatives of industry, government (including both research funding and regulatory agencies), academia, and patient groups to discuss these challenges and offer potential strategies to improve the translational neuroscience. PMID:25442933

  17. Yeast dynamic metabolic flux measurement in nutrient-rich media by HPLC and accelerator mass spectrometry.

    PubMed

    Stewart, Benjamin J; Navid, Ali; Turteltaub, Kenneth W; Bench, Graham

    2010-12-01

    Metabolic flux, the flow of metabolites through networks of enzymes, represents the dynamic productive output of cells. Improved understanding of intracellular metabolic fluxes will enable targeted manipulation of metabolic pathways of medical and industrial importance to a greater degree than is currently possible. Flux balance analysis (FBA) is a constraint-based approach to modeling metabolic fluxes, but its utility is limited by a lack of experimental measurements. Incorporation of experimentally measured fluxes as system constraints will significantly improve the overall accuracy of FBA. We applied a novel, two-tiered approach in the yeast Saccharomyces cerevisiae to measure nutrient consumption rates (extracellular fluxes) and a targeted intracellular flux using a (14)C-labeled precursor with HPLC separation and flux quantitation by accelerator mass spectrometry (AMS). The use of AMS to trace the intracellular fate of (14)C-glutamine allowed the calculation of intracellular metabolic flux through this pathway, with glutathione as the metabolic end point. Measured flux values provided global constraints for the yeast FBA model which reduced model uncertainty by more than 20%, proving the importance of additional constraints in improving the accuracy of model predictions and demonstrating the use of AMS to measure intracellular metabolic fluxes. Our results highlight the need to use intracellular fluxes to constrain the models. We show that inclusion of just one such measurement alone can reduce the average variability of model predicted fluxes by 10%.

  18. Angular Impact Mitigation System for Bicycle Helmets to Reduce Head Acceleration and Risk of Traumatic Brain Injury

    PubMed Central

    Hansen, Kirk; Dau, Nathan; Feist, Florian; Deck, Caroline; Willinger, Rémy; Madey, Steven M.; Bottlang, Michael

    2013-01-01

    Angular acceleration of the head is a known cause of traumatic brain injury (TBI), but contemporary bicycle helmets lack dedicated mechanisms to mitigate angular acceleration. A novel Angular Impact Mitigation (AIM) system for bicycle helmets has been developed that employs an elastically suspended aluminum honeycomb liner to absorb linear acceleration in normal impacts as well as angular acceleration in oblique impacts. This study tested bicycle helmets with and without AIM technology to comparatively assess impact mitigation. Normal impact tests were performed to measure linear head acceleration. Oblique impact tests were performed to measure angular head acceleration and neck loading. Furthermore, acceleration histories of oblique impacts were analyzed in a computational head model to predict the resulting risk of TBI in the form of concussion and diffuse axonal injury (DAI). Compared to standard helmets, AIM helmets resulted in a 14% reduction in peak linear acceleration (p < 0.001), a 34% reduction in peak angular acceleration (p < 0.001), and a 22% to 32% reduction in neck loading (p < 0.001). Computational results predicted that AIM helmets reduced the risk of concussion and DAI by 27% and 44%, respectively. In conclusion, these results demonstrated that AIM technology could effectively improve impact mitigation compared to a contemporary expanded polystyrene-based bicycle helmet, and may enhance prevention of bicycle-related TBI. Further research is required. PMID:23770518

  19. Angular Impact Mitigation system for bicycle helmets to reduce head acceleration and risk of traumatic brain injury.

    PubMed

    Hansen, Kirk; Dau, Nathan; Feist, Florian; Deck, Caroline; Willinger, Rémy; Madey, Steven M; Bottlang, Michael

    2013-10-01

    Angular acceleration of the head is a known cause of traumatic brain injury (TBI), but contemporary bicycle helmets lack dedicated mechanisms to mitigate angular acceleration. A novel Angular Impact Mitigation (AIM) system for bicycle helmets has been developed that employs an elastically suspended aluminum honeycomb liner to absorb linear acceleration in normal impacts as well as angular acceleration in oblique impacts. This study tested bicycle helmets with and without AIM technology to comparatively assess impact mitigation. Normal impact tests were performed to measure linear head acceleration. Oblique impact tests were performed to measure angular head acceleration and neck loading. Furthermore, acceleration histories of oblique impacts were analyzed in a computational head model to predict the resulting risk of TBI in the form of concussion and diffuse axonal injury (DAI). Compared to standard helmets, AIM helmets resulted in a 14% reduction in peak linear acceleration (p<0.001), a 34% reduction in peak angular acceleration (p<0.001), and a 22-32% reduction in neck loading (p<0.001). Computational results predicted that AIM helmets reduced the risk of concussion and DAI by 27% and 44%, respectively. In conclusion, these results demonstrated that AIM technology could effectively improve impact mitigation compared to a contemporary expanded polystyrene-based bicycle helmet, and may enhance prevention of bicycle-related TBI. Further research is required.

  20. Ion accelerator systems for high power 30 cm thruster operation

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1982-01-01

    Two and three-grid accelerator systems for high power ion thruster operation were investigated. Two-grid translation tests show that over compensation of the 30 cm thruster SHAG grid set spacing the 30 cm thruster radial plasma density variation and by incorporating grid compensation only sufficient to maintain grid hole axial alignment, it is shown that beam current gains as large as 50% can be realized. Three-grid translation tests performed with a simulated 30 cm thruster discharge chamber show that substantial beamlet steering can be reliably affected by decelerator grid translation only, at net-to-total voltage ratios as low as 0.05.

  1. Measuring the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator

    SciTech Connect

    Albert, F.; Pollock, B. B.; Shaw, J. L.; Marsh, K. A.; Ralph, J. E.; Chen, Y. -H.; Alessi, D.; Pak, A.; Clayton, C. E.; Glenzer, S. H.; Joshi, C.

    2014-07-22

    This paper presents a new technique to measure the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator. Measurements are performed with a stacked image plates spectrometer, capable of detecting broadband x-ray radiation up to 1 MeV. It can provide measurements of the betatron x-ray spectrum at any angle of observation (within a 40 mrad cone) and of the beam profile. A detailed description of our data analysis is given, along with comparison for several shots. As a result, these measurements provide useful information on the dynamics of the electrons are they are accelerated and wiggled by the wakefield.

  2. Measurement of Gravitational Acceleration Using a Computer Microphone Port

    ERIC Educational Resources Information Center

    Khairurrijal; Eko Widiatmoko; Srigutomo, Wahyu; Kurniasih, Neny

    2012-01-01

    A method has been developed to measure the swing period of a simple pendulum automatically. The pendulum position is converted into a signal frequency by employing a simple electronic circuit that detects the intensity of infrared light reflected by the pendulum. The signal produced by the electronic circuit is sent to the microphone port and…

  3. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  4. Dynamics of laser-driven proton acceleration exhibited by measured laser absorptivity and reflectivity

    PubMed Central

    Bin, J. H.; Allinger, K.; Khrennikov, K.; Karsch, S.; Bolton, P. R.; Schreiber, J.

    2017-01-01

    Proton acceleration from nanometer thin foils with intense laser pulses is investigated experimentally. We analyzed the laser absorptivity by parallel monitoring of laser transmissivity and reflectivity with different laser intensities when moving the targets along the laser axis. A direct correlation between laser absorptivity and maximum proton energy is observed. Experimental results are interpreted in analytical estimation, exhibiting a coexistence of plasma expansion and light-sail form of radiation pressure acceleration (RPA-LS) mechanisms during the entire proton acceleration process based on the measured laser absorptivity and reflectivity. PMID:28272471

  5. Optics measurement and correction during acceleration with beta-squeeze in RHIC

    SciTech Connect

    Liu, C.; Marusic, A.; Minty, M.

    2015-05-03

    In the past, beam optics correction at RHIC has only taken place at injection and at final energy, with interpolation of corrections partially into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats that, if corrected, could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoiding the high-order multipole fields sampled by particles within the bunch. We recently demonstrated successful beam optics corrections during acceleration at RHIC. We verified conclusively the superior control of the beam realized via these corrections

  6. Dynamics of laser-driven proton acceleration exhibited by measured laser absorptivity and reflectivity

    NASA Astrophysics Data System (ADS)

    Bin, J. H.; Allinger, K.; Khrennikov, K.; Karsch, S.; Bolton, P. R.; Schreiber, J.

    2017-03-01

    Proton acceleration from nanometer thin foils with intense laser pulses is investigated experimentally. We analyzed the laser absorptivity by parallel monitoring of laser transmissivity and reflectivity with different laser intensities when moving the targets along the laser axis. A direct correlation between laser absorptivity and maximum proton energy is observed. Experimental results are interpreted in analytical estimation, exhibiting a coexistence of plasma expansion and light-sail form of radiation pressure acceleration (RPA-LS) mechanisms during the entire proton acceleration process based on the measured laser absorptivity and reflectivity.

  7. In situ measurement system

    DOEpatents

    Lord, D.E.

    1980-11-24

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop hairpin configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. Measurement means are provided for obtaining for each pair the electrical resistance of each element and the difference in electrical resistance of the paired elements, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner means sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  8. Numerical design and model measurements for a 1.3 GHz microtron accelerating cavity

    NASA Astrophysics Data System (ADS)

    Kleeven, W. J. G. M.; Theeuwen, M. E. H. J.; Knoben, M. H. M.; Moerdijk, A. J.; Botman, J. I. M.; van der Heide, J. A.; Timmermans, C. J.; Hagedoorn, H. L.

    1992-05-01

    As part of the free electron laser project TEUFEL, a 25 MeV racetrack microtron is under construction at the Eindhoven University. The accelerating cavity of this microtron is a standing wave on axis coupled structure. It consists of three accelerating cells and two coupling cells. Numerical field calculations for this cavity were done with the computer codes SUPERFISH, URMEL-T and MAFIA. Not only the accelerating modes but also the dangerous beam breakup modes were calculated with MAFIA. An aluminium, scale 1:1 model of the structure was made in order to measure various cavity properties. Field profiles were measured with the perturbation ball method. An equivalent LC-circuit simulation of the accelerating structure was made, which serves as a model for the interpretation of the results.

  9. Novel Approach to Linear Accelerator Superconducting Magnet System

    SciTech Connect

    Kashikhin, Vladimir; /Fermilab

    2011-11-28

    Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

  10. Acceleration of matrix element computations for precision measurements

    SciTech Connect

    Brandt, Oleg; Gutierrez, Gaston; Wang, M. H.L.S.; Ye, Zhenyu

    2014-11-25

    The matrix element technique provides a superior statistical sensitivity for precision measurements of important parameters at hadron colliders, such as the mass of the top quark or the cross-section for the production of Higgs bosons. The main practical limitation of the technique is its high computational demand. Using the example of the top quark mass, we present two approaches to reduce the computation time of the technique by a factor of 90. First, we utilize low-discrepancy sequences for numerical Monte Carlo integration in conjunction with a dedicated estimator of numerical uncertainty, a novelty in the context of the matrix element technique. We then utilize a new approach that factorizes the overall jet energy scale from the matrix element computation, a novelty in the context of top quark mass measurements. The utilization of low-discrepancy sequences is of particular general interest, as it is universally applicable to Monte Carlo integration, and independent of the computing environment.

  11. PRECISION MEASUREMENT OF MUON G-2 AND ACCELERATOR RELATED ISSUES

    SciTech Connect

    BROWN,H.N.; BUNCE,G.; CAREY,R.M.; CUSHMAN,P.; DANBY,G.T.; DEBEVEC,P.T.; DEILE,M.; DENG,H.; DENINGER,W.; DHAWAN,S.K.; ET AL; MENG,W.

    2001-09-21

    A precision measurement of the anomalous g value, a{sub {mu}}=(g-2)/2, for the positive muon has been made using high intensity protons available at the Brookhaven AGS. The result based on the 1999 data a{sub {mu}}=11659202(14)(6) x 10{sup 10} (1.3ppm) is in good agreement with previous measurements and has an error one third that of the combined previous data. The current theoretical value from the standard model is a{sub {mu}} (SM)=11659159.6(6.7) x 10{sup 10} (0.57 ppm) and differ by over 2.5 standard deviation with experiment. Issues with reducing systematic errors and enhancing the injection and storage efficiencies are discussed.

  12. Summary Report of mission acceleration measurements for STS-66. Launched November 3, 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1995-01-01

    Experiments flown in the middeck of Atlantis during the STS-66 mission were supported by the Space Acceleration Measurement System (SAMS). In particular, the three triaxial SAMS sensor heads collected data in support of protein crystal growth experiments. Data collected during STS-66 are reviewed in this report. The STS-66 SAMS data represent the microgravity environment in the 0.01 Hz to 10 Hz range. Variations in the environment related to differing levels of crew activity are discussed in the report. A comparison is made among times when the crew was quiet during a public affairs conference, working quietly, and exercising. These levels of activity are also compared to levels recorded by a SAMS unit in the Spacelab on Columbia during the STS-65 mission.

  13. Low-noise pulsed current source for magnetic-field measurements of magnets for accelerators

    NASA Astrophysics Data System (ADS)

    Omelyanenko, M. M.; Borisov, V. V.; Donyagin, A. M.; Khodzhibagiyan, H. G.; Kostromin, S. A.; Makarov, A. A.; Shemchuk, A. V.

    2017-01-01

    The schematic diagram, design, and technical characteristics of the pulsed current source developed and produced for the magnetic-field measurement system of superconducting magnets for accelerators are described. The current source is based on the current regulator with pass transistor bank in the linear mode. Output current pulses (0-100 A) are produced by utilizing the energy of the preliminarily charged capacitor bank (5-40 V), which is additionally charged between pulses. The output current does not have the mains frequency and harmonics ripple. The relative noise level is less than-100 dB (or 10-5) of RMS value (it is defined as the ratio of output RMS noise current to a maximal output current of 100 A within the operating bandwidth, expressed in dB). The work was performed at the Veksler and Baldin Laboratory of High Energy Physics, Joint Institute for Nuclear Research (JINR).

  14. Orbiter Aerodynamic Acceleration Flight Measurements in the Rarefied-Flow Transition Regime

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Wilmoth, Richard G.; LeBeau, Gerald J.

    1996-01-01

    Acceleration data taken from the Orbital Acceleration Research Experiment (OARE) during reentry on STS-62 have been analyzed using calibration factors taken on orbit. This is the first Orbiter mission which collected OARE data during the Orbiter reentry phase. The data examined include the flight regime from orbital altitudes down to about 90 km which covers the free-molecule-flow regime and the upper altitude fringes of the rarefied-flow transition into the hypersonic continuum. Ancillary flight data on Orbiter position, orientation, velocity, and rotation rates have been used in models to transform the measured accelerations to the Orbiter center-of-gravity, from which aerodynamic accelerations along the Orbiter body axes have been calculated. Residual offsets introduced in the measurements by unmodeled Orbiter forces are identified and discussed. Direct comparisons are made between the OARE flight data and an independent micro-gravity accelerometer experiment, the High Resolution Accelerometer Package (HiRAP), which also obtained flight data on reentry during the mission down to about 95 km. The resulting OARE aerodynamic acceleration measurements along the Orbiter's body axis, aid the normal to axial acceleration ratio in the free-molecule-flow and transition-flow regimes are presented and compared with numerical simulations from three direct simulation Monte Carlo codes.

  15. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider

    SciTech Connect

    Liu, C.; Marusic, A.; Minty, M.

    2014-09-09

    To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.

  16. Developing an Accelerator Driven System (ADS) based on electron accelerators and heavy water

    NASA Astrophysics Data System (ADS)

    Feizi, H.; Ranjbar, A. H.

    2016-02-01

    An ADS based on electron accelerators has been developed specifically for energy generation and medical applications. Monte Carlo simulations have been performed using FLUKA code to design a hybrid electron target and the core components. The composition, geometry of conversion targets and the coolant system have been optimized for electron beam energies of 20 to 100 MeV . Furthermore, the photon and photoneutron energy spectra, distribution and energy deposition for various incoming electron beam powers have been studied. Light-heavy water of various mixtures have been used as heat removal for the targets, as γ-n converters and as neutron moderators. We have shown that an electron LINAC, as a neutron production driver for ADSs, is capable of producing a neutron output of > 3.5 × 1014 (n/s/mA). Accordingly, the feasibility of an electron-based ADS employing the designed features is promising for energy generation and high intense neutron production which have various applications such as medical therapies.

  17. Laser angle measurement system

    NASA Technical Reports Server (NTRS)

    Pond, C. R.; Texeira, P. D.; Wilbert, R. E.

    1980-01-01

    The design and fabrication of a laser angle measurement system is described. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the mode. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. Optical and electrical schematics, system maintenance and operation procedures are included, and the results of a demonstration test are given.

  18. Acceleration of matrix element computations for precision measurements

    DOE PAGES

    Brandt, Oleg; Gutierrez, Gaston; Wang, M. H.L.S.; ...

    2014-11-25

    The matrix element technique provides a superior statistical sensitivity for precision measurements of important parameters at hadron colliders, such as the mass of the top quark or the cross-section for the production of Higgs bosons. The main practical limitation of the technique is its high computational demand. Using the example of the top quark mass, we present two approaches to reduce the computation time of the technique by a factor of 90. First, we utilize low-discrepancy sequences for numerical Monte Carlo integration in conjunction with a dedicated estimator of numerical uncertainty, a novelty in the context of the matrix elementmore » technique. We then utilize a new approach that factorizes the overall jet energy scale from the matrix element computation, a novelty in the context of top quark mass measurements. The utilization of low-discrepancy sequences is of particular general interest, as it is universally applicable to Monte Carlo integration, and independent of the computing environment.« less

  19. Wear Measurement System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Lewis Research Center developed a tribometer for in-house wear tests. Implant Sciences Corporation (ISC), working on a NASA contract to develop coatings to enhance the wear capabilities of materials, adapted the tribometer for its own use and developed a commercial line of user-friendly systems. The ISC-200 is a pin-on-disk type of tribometer, functioning like a record player and creating a wear groove on the disk, with variables of speed and load. The system can measure the coefficient of friction, the wear behavior between materials, and the integrity of thin films or coatings. Applications include measuring wear on contact lenses and engine parts and testing disk drives.

  20. Wavefront-sensor-based electron density measurements for laser-plasma accelerators

    SciTech Connect

    Plateau, Guillaume; Matlis, Nicholas; Geddes, Cameron; Gonsalves, Anthony; Shiraishi, Satomi; Lin, Chen; van Mourik, Reinier; Leemans, Wim

    2010-02-20

    Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength, hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, have greater phase sensitivity, straightforward analysis, improving shot-to-shot plasma-density diagnostics.

  1. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that

  2. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  3. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  4. Measurement of Head Scatter Factor for Linear Accelerators using Indigenously Designed Columnar Mini Phantom

    NASA Astrophysics Data System (ADS)

    Appasamy, Murugan; Xavier, Sidonia; Kuppusamy, Thayalan; Velayudham, Ramasubramanian

    2011-01-01

    A columnar mini phantom is designed as recommended by ESTRO to measure the Head Scatter Factor (Sc) for 6 MV beam of two linear accelerators. The measurement of Sc at different orientations of the chamber, parallel and perpendicular at 1.5 cm depth predicts the deviation of 2.05% and 1.9% for Elekta and Siemens linear accelerators respectively. The measurement of Sc at 1.5 cm is higher compared to 10 cm depth for both the linear accelerators suggesting the electron contamination at 1.5 cm depth. The effect of wedges on Sc yields a significant contribution of 3.5% and 5% for Siemens and Elekta linear accelerators respectively. The collimator exchange effect reveals the opening of upper jaw increases the Sc irrespective of the linear accelerator. The result emphasizes the need of Sc measurement at 10 cm. The presence of wedge influences the Sc value and the SSD has no influence on Sc. The measured Sc values are in good agreement with the published data.

  5. Contour measurement system

    NASA Technical Reports Server (NTRS)

    Currie, J. R.; Kissel, R. R.; Deaton, E. T., Jr.; Campbell, R. A. (Inventor)

    1979-01-01

    A measurement system for measuring the departures from a straight line of discrete track sections of a track along a coal face in a mine employing a vehicle having a pair of spaced wheel assemblies which align with the track is presented. A reference arm pivotally connects between the wheel assemblies, and there is indicating means for measuring the angle of pivot between the arm and each of the wheel assemblies. The length of the device is less than the length of a track section, and thus when one of the wheel assemblies is on one track section and one is on an adjoining track section, the sum of the indicated angles will be indicative of the angle between track sections. Thus, from the length of a track section and angle, the departure of each track section from the line may be calculated.

  6. Cross-Section Measurements with the Radioactive Isotope Accelerator (RIA)

    SciTech Connect

    Stoyer, M A; Moody, K J; Wild, J F; Patin, J B; Shaughnessy, D A; Stoyer, N J; Harris, L J

    2002-11-19

    RIA will produce beams of exotic nuclei of unprecedented luminosity. Preliminary studies of the feasibility of measuring cross-sections of interest to the science based stockpile stewardship (SBSS) program will be presented, and several experimental techniques will be discussed. Cross-section modeling attempts for the A = 95 mass region will be shown. In addition, several radioactive isotopes could be collected for target production or medical isotope purposes while the main in-beam experiments are running. The inclusion of a broad range mass analyzer (BRAMA) capability at RIA will enable more effective utilization of the facility, enabling the performance of multiple experiments at the same time. This option will be briefly discussed.

  7. Shielding design for a laser-accelerated proton therapy system.

    PubMed

    Fan, J; Luo, W; Fourkal, E; Lin, T; Li, J; Veltchev, I; Ma, C-M

    2007-07-07

    In this paper, we present the shielding analysis to determine the necessary neutron and photon shielding for a laser-accelerated proton therapy system. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. A special particle selection and collimation device is needed to generate desired proton beams for energy- and intensity-modulated proton therapy. A great number of unwanted protons and even more electrons as a side-product of laser acceleration have to be stopped by collimation devices and shielding walls, posing a challenge in radiation shielding. Parameters of primary particles resulting from the laser-target interaction have been investigated by particle-in-cell simulations, which predicted energy spectra with 300 MeV maximum energy for protons and 270 MeV for electrons at a laser intensity of 2 x 10(21) W cm(-2). Monte Carlo simulations using FLUKA have been performed to design the collimators and shielding walls inside the treatment gantry, which consist of stainless steel, tungsten, polyethylene and lead. A composite primary collimator was designed to effectively reduce high-energy neutron production since their highly penetrating nature makes shielding very difficult. The necessary shielding for the treatment gantry was carefully studied to meet the criteria of head leakage <0.1% of therapeutic absorbed dose. A layer of polyethylene enclosing the whole particle selection and collimation device was used to shield neutrons and an outer layer of lead was used to reduce photon dose from neutron capture and electron bremsstrahlung. It is shown that the two-layer shielding design with 10-12 cm thick polyethylene and 4 cm thick lead can effectively absorb the unwanted particles to meet the shielding requirements.

  8. Shielding design for a laser-accelerated proton therapy system

    NASA Astrophysics Data System (ADS)

    Fan, J.; Luo, W.; Fourkal, E.; Lin, T.; Li, J.; Veltchev, I.; Ma, C.-M.

    2007-07-01

    In this paper, we present the shielding analysis to determine the necessary neutron and photon shielding for a laser-accelerated proton therapy system. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. A special particle selection and collimation device is needed to generate desired proton beams for energy- and intensity-modulated proton therapy. A great number of unwanted protons and even more electrons as a side-product of laser acceleration have to be stopped by collimation devices and shielding walls, posing a challenge in radiation shielding. Parameters of primary particles resulting from the laser-target interaction have been investigated by particle-in-cell simulations, which predicted energy spectra with 300 MeV maximum energy for protons and 270 MeV for electrons at a laser intensity of 2 × 1021 W cm-2. Monte Carlo simulations using FLUKA have been performed to design the collimators and shielding walls inside the treatment gantry, which consist of stainless steel, tungsten, polyethylene and lead. A composite primary collimator was designed to effectively reduce high-energy neutron production since their highly penetrating nature makes shielding very difficult. The necessary shielding for the treatment gantry was carefully studied to meet the criteria of head leakage <0.1% of therapeutic absorbed dose. A layer of polyethylene enclosing the whole particle selection and collimation device was used to shield neutrons and an outer layer of lead was used to reduce photon dose from neutron capture and electron bremsstrahlung. It is shown that the two-layer shielding design with 10-12 cm thick polyethylene and 4 cm thick lead can effectively absorb the unwanted particles to meet the shielding requirements.

  9. An improved 8 GeV beam transport system for the Fermi National Accelerator Laboratory

    SciTech Connect

    Syphers, M.J.

    1987-06-01

    A new 8 GeV beam transport system between the Booster and Main Ring synchrotrons at the Fermi National Accelerator Laboratory is presented. The system was developed in an effort to improve the transverse phase space area occupied by the proton beam upon injection into the Main Ring accelerator. Problems with the original system are described and general methods of beamline design are formulated. Errors in the transverse properties of a beamline at the injection point of the second synchrotron and their effects on the region in transverse phase space occupied by a beam of particles are discussed. Results from the commissioning phase of the project are presented as well as measurements of the degree of phase space dilution generated by the transfer of 8 GeV protons from the Booster synchrotron to the Main Ring synchrotron.

  10. Measuring the Acceleration Due to Gravity: An Experiment Galileo Could Have Run.

    ERIC Educational Resources Information Center

    Mentzer, Robert G.

    1984-01-01

    Today students routinely measure the acceleration due to gravity (g) with strobes and high-speed photography. However, it is possible to measure g using equipment and reasoning available to Galileo. Such an experiment (and the equipment needed) is described. (JN)

  11. Fast-acting calorimeter measures heat output of plasma gun accelerator

    NASA Technical Reports Server (NTRS)

    Dethlefson, R.; Larson, A. V.; Liebing, L.

    1967-01-01

    Calorimeter measures the exhaust energy from a shot of a pulsed plasma gun accelerator. It has a fast response time and requires only one measurement to determine the total energy. It uses a long ribbon of copper foil wound around a glass frame to form a reentrant cavity.

  12. Blade Vibration Measurement System

    NASA Technical Reports Server (NTRS)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  13. The measurement of tremor using a velocity transducer: comparison to simultaneous recordings using transducers of displacement, acceleration and muscle activity.

    PubMed

    Norman, K E; Edwards, R; Beuter, A

    1999-10-15

    Precise kinematic measurements of tremor have historically been obtained using accelerometers. However, current technology permits precise measurements in velocity and displacement. The primary advantage of velocity recording is that only one step of integration or differentiation is required for either displacement or acceleration. A method is presented of measuring finger tremor using a laser system that transduces velocity precisely. Measurements of postural finger tremor thus obtained were compared to those simultaneously obtained from a laser system that transduces displacement, from an accelerometer and from surface electromyography (EMG) of the extensor digitorum communis. A range of amplitude and frequency content was obtained by testing control subjects and subjects with Parkinson's disease. The velocity transducer showed excellent correspondence of amplitude and frequency measurement with the displacement transducer. Measures of absolute and relative amplitude correlated well (r > or = 0.96 in amplitude measures in displacement, velocity and acceleration), and high coherence was found throughout the frequency range of interest. Measurements by the accelerometer generally showed poorer correspondence with those of the other instruments. EMG measurements showed good correspondence in some trials but poorer correspondence in others, attributed to the low level of muscle activity required in the task. Precise kinematic measurements appear to be highly sensitive to neuromotor impairment.

  14. Coupling MCNP-DSP and LAHET Monte Carlo Codes for Designing Subcriticality Monitors for Accelerator-Driven Systems

    SciTech Connect

    Valentine, T.E.; Rugama, Y. Munoz-Cobos, J.; Perez, R.

    2000-10-23

    The design of reactivity monitoring systems for accelerator-driven systems must be investigated to ensure that such systems remain subcritical during operation. The Monte Carlo codes LAHET and MCNP-DSP were combined together to facilitate the design of reactivity monitoring systems. The coupling of LAHET and MCNP-DSP provides a tool that can be used to simulate a variety of subcritical measurements such as the pulsed neutron, Rossi-{alpha}, or noise analysis measurements.

  15. An Accelerated Recursive Doubling Algorithm for Block Tridiagonal Systems

    SciTech Connect

    Seal, Sudip K

    2014-01-01

    Block tridiagonal systems of linear equations arise in a wide variety of scientific and engineering applications. Recursive doubling algorithm is a well-known prefix computation-based numerical algorithm that requires O(M^3(N/P + log P)) work to compute the solution of a block tridiagonal system with N block rows and block size M on P processors. In real-world applications, solutions of tridiagonal systems are most often sought with multiple, often hundreds and thousands, of different right hand sides but with the same tridiagonal matrix. Here, we show that a recursive doubling algorithm is sub-optimal when computing solutions of block tridiagonal systems with multiple right hand sides and present a novel algorithm, called the accelerated recursive doubling algorithm, that delivers O(R) improvement when solving block tridiagonal systems with R distinct right hand sides. Since R is typically about 100 1000, this improvement translates to very significant speedups in practice. Detailed complexity analyses of the new algorithm with empirical confirmation of runtime improvements are presented. To the best of our knowledge, this algorithm has not been reported before in the literature.

  16. Radionuclides in man and his environment measured by accelerator mass spectrometry

    SciTech Connect

    Hellborg, Ragnar; Erlandsson, Bengt; Kiisk, Madis; Persson, Per; Skog, Goeran; Stenstroem, Kristina; Mattsson, Soeren; Leide-Svegborn, Sigrid; Olofsson, Mikael

    1999-06-10

    Accelerator mass spectrometry (AMS) is a highly sensitive analytical method for measuring very low concentrations of both radionuclides and stable nuclides. For radioanalytical purposes, the main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg size) and shorter measuring times (less than one hour). In this report some current applications of the AMS technique at the Lund Pelletron accelerator are presented, in particular studies of {sup 14}C-labeled pharmaceuticals used in clinical nuclear medicine and biomedical research.

  17. SUMP MEASURING SYSTEM

    SciTech Connect

    Vrettos, N; Athneal Marzolf, A; Casandra Robinson, C; James Fiscus, J; Daniel Krementz, D; Thomas Nance, T

    2007-11-26

    The process sumps in H-Canyon at the Savannah River Site (SRS) collect leaks from process tanks and jumpers. To prevent build-up of fissile material the sumps are frequently flushed which generates liquid waste and is prone to human error. The development of inserts filled with a neutron poison will allow a reduction in the frequency of flushing. Due to concrete deterioration and deformation of the sump liners the current dimensions of the sumps are unknown. Knowledge of these dimensions is necessary for development of the inserts. To solve this problem a remote Sump Measurement System was designed, fabricated, and tested to aid development of the sump inserts.

  18. Phase and amplitude control system for Stanford Linear Accelerator

    SciTech Connect

    Yoo, S.J.

    1983-09-26

    The computer controlled phase and amplitude detection system measures the instantaneous phase and amplitude of a 1 micro-second 2856 MHz rf pulse at a 180 Hz rate. This will be used for phase feedback control, and also for phase and amplitude jitter measurement. The program, which was originally written by John Fox and Keith Jobe, has been modified to improve the function of the system. The software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system.

  19. Radiological Hazard of Spallation Products in Accelerator-Driven System

    SciTech Connect

    Saito, M.; Stankovskii, A.; Artisyuk, V.; Korovin, Yu.; Shmelev, A.; Titarenko, Yu.

    2002-09-15

    The central issue underlying this paper is related to elucidating the hazard of radioactive spallation products that might be an important factor affecting the design option of accelerator-driven systems (ADSs). Hazard analysis based on the concept of Annual Limit on Intake identifies alpha-emitting isotopes of rare earths (REs) (dysprosium, gadolinium, and samarium) as the dominant contributors to the overall toxicity of traditional (W, Pb, Pb-Bi) targets. The matter is addressed from several points of view: code validation to simulate their yields, choice of material for the neutron producing targets, and challenging the beam type. The paper quantitatively determines the domain in which the toxicity of REs exceeds that of polonium activation products broadly discussed now in connection with advertising lead-bismuth technology for the needs of ADSs.

  20. Operational Characteristics of an Accelerator Driven Fissile Solution System

    SciTech Connect

    Kimpland, Robert Herbert

    2016-11-28

    Operational characteristics represent the set of responses that a nuclear system exhibits during normal operation. Operators rely on this behavior to assess the status of the system and to predict the consequences of off-normal events. These characteristics largely refer to the relationship between power and system operating conditions. The static and dynamic behavior of a chain-reacting system, operating at sufficient power, is primarily governed by reactivity effects. The science of reactor physics has identified and evaluated a number of such effects, including Doppler broadening and shifts in the thermal neutron spectrum. Often these reactivity effects are quantified in the form of feedback coefficients that serve as coupling coefficients relating the neutron population and the physical mechanisms that drive reactivity effects, such as fissile material temperature and density changes. The operational characteristics of such nuclear systems usually manifest themselves when perturbations between system power (neutron population) and system operating conditions arise. Successful operation of such systems require the establishment of steady equilibrium conditions. However, prior to obtaining the desired equilibrium (steady-state) conditions, an approach from zero-power (startup) must occur. This operational regime may possess certain limiting system conditions that must be maintained to achieve effective startup. Once steady-state is achieved, a key characteristic of this operational regime is the level of stability that the system possesses. Finally, a third operational regime, shutdown, may also possess limiting conditions of operation that must be maintained. This report documents the operational characteristics of a “generic” Accelerator Driven Fissile Solution (ADFS) system during the various operational regimes of startup, steady-state operation, and shutdown. Typical time-dependent behavior for each operational regime will be illustrated, and key system

  1. Theoretical analysis of acceleration measurements in a model of an operating wind turbine

    NASA Astrophysics Data System (ADS)

    White, Jonathan R.; Adams, Douglas E.; Rumsey, Mark A.

    2010-04-01

    Wind loading from turbulence and gusts can cause damage in horizontal axis wind turbines. These unsteady loads and the resulting damage initiation and propagation are difficult to predict. Unsteady loads enter at the rotor and are transmitted to the drivetrain. The current generation of wind turbine has drivetrain-mounted vibration and bearing temperature sensors, a nacelle-mounted inertial measurement unit, and a nacelle-mounted anemometer and wind vane. Some advanced wind turbines are also equipped with strain measurements at the root of the rotor. This paper analyzes additional measurements in a rotor blade to investigate the complexity of these unsteady loads. By identifying the spatial distribution, amplitude, and frequency bandwidth of these loads, design improvements could be facilitated to reduce uncertainties in reliability predictions. In addition, dynamic load estimates could be used in the future to control high-bandwidth aerodynamic actuators distributed along the rotor blade to reduce the saturation of slower pitch actuators currently used for wind turbine blades. Local acceleration measurements are made along a rotor blade to infer operational rotor states including deflection and dynamic modal contributions. Previous work has demonstrated that acceleration measurements can be experimentally acquired on an operating wind turbine. Simulations on simplified rotor blades have also been used to demonstrate that mean blade loading can be estimated based on deflection estimates. To successfully apply accelerometers in wind turbine applications for load identification, the spectral and spatial characteristics of each excitation source must be understood so that the total acceleration measurement can be decomposed into contributions from each source. To demonstrate the decomposition of acceleration measurements in conjunction with load estimation methods, a flexible body model has been created with MSC.ADAMSThe benefit of using a simulation model as opposed

  2. Theoretical analysis of acceleration measurements in a model of an operating wind turbine.

    SciTech Connect

    Adams, Douglas E.; Rumsey, Mark Allen; White, Jonathan Randall

    2010-04-01

    Wind loading from turbulence and gusts can cause damage in horizontal axis wind turbines. These unsteady loads and the resulting damage initiation and propagation are difficult to predict. Unsteady loads enter at the rotor and are transmitted to the drivetrain. The current generation of wind turbine has drivetrain-mounted vibration and bearing temperature sensors, a nacelle-mounted inertial measurement unit, and a nacelle-mounted anemometer and wind vane. Some advanced wind turbines are also equipped with strain measurements at the root of the rotor. This paper analyzes additional measurements in a rotor blade to investigate the complexity of these unsteady loads. By identifying the spatial distribution, amplitude, and frequency bandwidth of these loads, design improvements could be facilitated to reduce uncertainties in reliability predictions. In addition, dynamic load estimates could be used in the future to control high-bandwidth aerodynamic actuators distributed along the rotor blade to reduce the saturation of slower pitch actuators currently used for wind turbine blades. Local acceleration measurements are made along a rotor blade to infer operational rotor states including deflection and dynamic modal contributions. Previous work has demonstrated that acceleration measurements can be experimentally acquired on an operating wind turbine. Simulations on simplified rotor blades have also been used to demonstrate that mean blade loading can be estimated based on deflection estimates. To successfully apply accelerometers in wind turbine applications for load identification, the spectral and spatial characteristics of each excitation source must be understood so that the total acceleration measurement can be decomposed into contributions from each source. To demonstrate the decomposition of acceleration measurements in conjunction with load estimation methods, a flexible body model has been created with MSC.ADAMS{copyright} The benefit of using a simulation model

  3. RFQ (radio-frequency quadrupole) accelerator tuning system

    DOEpatents

    Bolie, V.W.

    1988-04-12

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in responsive to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. 3 figs., 2 tabs.

  4. Measurement of the stellar 58Ni(n ,γ )59Ni cross section with accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ludwig, Peter; Rugel, Georg; Dillmann, Iris; Faestermann, Thomas; Fimiani, Leticia; Hain, Karin; Korschinek, Gunther; Lachner, Johannes; Poutivtsev, Mikhail; Knie, Klaus; Heil, Michael; Käppeler, Franz; Wallner, Anton

    2017-03-01

    The 58Ni(n ,γ )59Ni cross section was measured with a combination of the activation technique and accelerator mass spectrometry (AMS). The neutron activations were performed at the Karlsruhe 3.7 MV Van de Graaff accelerator using the quasistellar neutron spectrum at k T =25 keV produced by the 7Li(p ,n )7Be reaction. The subsequent AMS measurements were carried out at the 14 MV tandem accelerator of the Maier-Leibnitz Laboratory in Garching using the gas-filled analyzing magnet system (GAMS). Three individual samples were measured, yielding a Maxwellian-averaged cross section at k T =30 keV of <σ> 30 keV = 30.4 (23)syst(9)stat mbarn. This value is slightly lower than two recently published measurements using the time-of-flight (TOF) method, but agrees within the uncertainties. Our new results also resolve the large discrepancy between older TOF measurements and our previous value.

  5. The feasibility of isobaric suppression of 26Mg via post-accelerator foil stripping for the measurement of 26Al [The feasibility of isobaric suppression of 26Mg via post-accelerator foil stripping for the measurement of 26Al.

    DOE PAGES

    Tumey, Scott J.; Brown, Thomas A.; Finkel, Robert C.; ...

    2012-09-13

    Most accelerator mass spectrometry measurements of 26Al utilize the Al- ion despite lower source currents compared with AlO- since the stable isobar 26Mg does not form elemental negative ions. A gas-filled magnet allows sufficient suppression of 26Mg thus enabling the use of the more intense 26AlO- ion. However, most AMS systems do not include a gas-filled magnet. We therefore explored the feasibility of suppressing 26Mg by using a post-accelerator stripping foil. With this approach, combined with the use of alternative cathode matrices, we were able to suppress 26Mg by a factor of twenty. This suppression was insufficient to enable themore » use of 26AlO-, however further refinement of our system may permit its use in the future.« less

  6. The DPC-2000 advanced control system for the Dynamitron accelerator

    NASA Astrophysics Data System (ADS)

    Kestler, Bernard A.; Lisanti, Thomas F.

    1993-07-01

    The DPC-2000 is an advanced control system utilizing the latest technology in computer control circuitry and components. Its overall design is modular and technologically advanced to keep up with customer and engineering demands. The full control system is presented as four units. They are the Remote I/O (Input / Output), Local Analog and Digital I/O, Operator Interface and the Main Computer. The central processing unit, the heart of the system, executes a high level language program that communicates to the different sub-assemblies through advanced serial and parallel communication lines. All operational parameters of the accelerator are monitored, controlled and corrected at close to 20 times per second. The operator is provided with a selection of many informative screen displays. The control program handles all graphic screen displays and the updating of these screens directly; it does not have to communicate to a display terminal. This adds to the quick response and excellent operator feedback received while operating the machine. The CPU also has the ability to store and record all process variable setpoints for each product that will be treated. This allows the operator to set up the process parameters by selecting the product identification code from a menu presented on the display screen. All process parameters are printed to report at regular intervals during a process run for later analysis and record keeping.

  7. Measurement of acceleration while walking as an automated method for gait assessment in dairy cattle.

    PubMed

    Chapinal, N; de Passillé, A M; Pastell, M; Hänninen, L; Munksgaard, L; Rushen, J

    2011-06-01

    The aims were to determine whether measures of acceleration of the legs and back of dairy cows while they walk could help detect changes in gait or locomotion associated with lameness and differences in the walking surface. In 2 experiments, 12 or 24 multiparous dairy cows were fitted with five 3-dimensional accelerometers, 1 attached to each leg and 1 to the back, and acceleration data were collected while cows walked in a straight line on concrete (experiment 1) or on both concrete and rubber (experiment 2). Cows were video-recorded while walking to assess overall gait, asymmetry of the steps, and walking speed. In experiment 1, cows were selected to maximize the range of gait scores, whereas no clinically lame cows were enrolled in experiment 2. For each accelerometer location, overall acceleration was calculated as the magnitude of the 3-dimensional acceleration vector and the variance of overall acceleration, as well as the asymmetry of variance of acceleration within the front and rear pair of legs. In experiment 1, the asymmetry of variance of acceleration in the front and rear legs was positively correlated with overall gait and the visually assessed asymmetry of the steps (r ≥ 0.6). Walking speed was negatively correlated with the asymmetry of variance of the rear legs (r=-0.8) and positively correlated with the acceleration and the variance of acceleration of each leg and back (r ≥ 0.7). In experiment 2, cows had lower gait scores [2.3 vs. 2.6; standard error of the difference (SED)=0.1, measured on a 5-point scale] and lower scores for asymmetry of the steps (18.0 vs. 23.1; SED=2.2, measured on a continuous 100-unit scale) when they walked on rubber compared with concrete, and their walking speed increased (1.28 vs. 1.22 m/s; SED=0.02). The acceleration of the front (1.67 vs. 1.72 g; SED=0.02) and rear (1.62 vs. 1.67 g; SED=0.02) legs and the variance of acceleration of the rear legs (0.88 vs. 0.94 g; SED=0.03) were lower when cows walked on rubber

  8. Thermal microstructure measurement system

    NASA Technical Reports Server (NTRS)

    Carver, Michael J. (Inventor)

    1985-01-01

    A thermal microstructure measurement system (TMMS) operates autonomously h its own internal power supply and telemeters data to a platform. A thermal array is mounted on a cross-braced frame designed to orient itself normal to existing currents with fixed sensor positioning bars protruding from the cross bars. A plurality of matched thermistors, conductivity probes and inclinometers are mounted on the frame. A compass and pressure transducer are contained in an electronics package suspended below the array. The array is deployed on a taut mooring below a subsurface float. Data are digitized, transmitted via cable to a surface buoy and then telemetered to the platform where the data is processed via a computer, recorded and/or displayed. The platform computer also sends commands to the array via telemetry.

  9. Acceleration and Rotation in a Pendulum Ride, Measured Using an iPhone 4

    ERIC Educational Resources Information Center

    Pendrill, Ann-Marie; Rohlen, Johan

    2011-01-01

    Many modern cell phones have built-in sensors that may be used as a resource for physics education. Amusement rides offer examples of many different types of motion, where the acceleration leads to forces experienced throughout the body. A comoving 3D-accelerometer gives an electronic measurement of the varying forces acting on the rider, but a…

  10. Measurement System and Method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Carl, James R. (Inventor); Byerly, Kent A. (Inventor)

    2003-01-01

    System and methods are disclosed for fluid measurements which may be utilized to determine mass flow rates such as instantaneous mass flow of a fluid stream. In a preferred embodiment, the present invention may be utilized to compare an input mass flow to an output mass flow of a drilling fluid circulation stream. In one embodiment, a fluid flow rate is determined by utilizing a microwave detector in combination with an acoustic sensor. The acoustic signal is utilized to eliminate 2pi phase ambiguities in a reflected microwave signal. In another embodiment, a fluid flow rate may be determined by detecting a phase shift of an acoustic signal across two different predetermined transmission paths. A fluid density may be determined by detecting a calibrated phase shift of an acoustic signal through the fluid. In another embodiment, a second acoustic signal may be transmitted through the fluid to define a particular 2pi phase range which defines the phase shift. The present invention may comprise multiple transmitters/receivers operating at different frequencies to measure instantaneous fuel levels of cryogenic fuels within containers positioned in zero or near zero gravity environments. In one embodiment, a moveable flexible collar of transmitter/receivers may be utilized to determine inhomogenuities within solid rocket fuel tubes.

  11. A New Ground Motion Intensity Measure, Peak Filtered Acceleration (PFA), to Estimate Collapse Vulnerability of Buildings in Earthquakes

    NASA Astrophysics Data System (ADS)

    Song, Shiyan

    In this thesis, we develop an efficient collapse prediction model, the PFA (Peak Filtered Acceleration) model, for buildings subjected to different types of ground motions. For the structural system, the PFA model covers modern steel and reinforced concrete moment-resisting frame buildings (potentially reinforced concrete shear wall buildings). For ground motions, the PFA model covers ramp-pulse-like ground motions, long-period ground motions, and short-period ground motions. To predict whether a building will collapse in response to a given ground motion, we first extract long-period components from the ground motion using a Butterworth low-pass filter with suggested order and cutoff frequency. The order depends on the type of ground motion, and the cutoff frequency depends on the building's natural frequency and ductility. We then compare the filtered acceleration time history with the capacity of the building. The capacity of the building is a constant for 2-dimentional buildings and a limit domain for 3-dimentional buildings. If the filtered acceleration exceeds the building's capacity, the building is predicted to collapse. Otherwise, it is expected to survive the ground motion. The parameters used in PFA model, which include fundamental period, global ductility and lateral capacity, can be obtained either from numerical analysis or interpolation based on the reference building system proposed in this thesis. The PFA collapse prediction model greatly reduces computational complexity while archiving good accuracy. It is verified by FEM simulations of 13 frame building models and 150 ground motion records. Based on the developed collapse prediction model, we propose to use PFA (Peak Filtered Acceleration) as a new ground motion intensity measure for collapse prediction. We compare PFA with traditional intensity measures PGA, PGV, PGD, and Sa in collapse prediction and find that PFA has the best performance among all the intensity measures. We also provide a

  12. SU-E-T-543: Measurement of Neutron Activation From Different High Energy Varian Linear Accelerators

    SciTech Connect

    Thatcher, T; Madsen, S; Sudowe, R; Meigooni, A Soleimani

    2015-06-15

    Purpose: Linear accelerators producing photons above 10 MeV may induce photonuclear reactions in high Z components of the accelerator. These liberated neutrons can then activate the structural components of the accelerator and other materials in the beam path through neutron capture reactions. The induced activity within the accelerator may contribute to additional dose to both patients and personnel. This project seeks to determine the total activity and activity per activated isotope following irradiation in different Varian accelerators at energies above 10 MeV. Methods: A Varian 21IX accelerator was used to irradiate a 30 cm × 30 cm × 20 cm solid water phantom with 15 MV x-rays. The phantom was placed at an SSD of 100 cm and at the center of a 20 cm × 20 cm field. Activation induced gamma spectra were acquired over a 5 minute interval after 1 and 15 minutes from completion of the irradiation. All measurements were made using a CANBERRA Falcon 5000 Portable HPGe detector. The majority of measurements were made in scattering geometry with the detector situated at 90° to the incident beam, 30 cm from the side of the phantom and approximately 10 cm from the top. A 5 minute background count was acquired and automatically subtracted from all subsequent measurements. Photon spectra were acquired for both open and MLC fields. Results: Based on spectral signatures, nuclides have been identified and their activities calculated for both open and MLC fields. Preliminary analyses suggest that activities from the activation products in the microcurie range. Conclusion: Activation isotopes have been identified and their relative activities determined. These activities are only gross estimates since efficiencies have not been determined for this source-detector geometry. Current efforts are focused on accurate determination of detector efficiencies using Monte Carlo calculations.

  13. Thrust Stand Measurements Using Alternative Propellants in the Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2011-01-01

    Storable propellants (for example water, ammonia, and hydrazine) are attractive for deep space propulsion due to their naturally high density at ambient interplanetary conditions, which obviates the need for a cryogenic/venting system. Water in particular is attractive due to its ease of handling and availability both terrestrially and extra-terrestrially. While many storable propellants are reactive and corrosive, a propulsion scheme where the propellant is insulated from vulnerable (e.g. metallic) sections of the assembly would be well-suited to process these otherwise incompatible propellants. Pulsed inductive plasma thrusters meet this criterion because they can be operated without direct propellant-electrode interaction. During operation of these devices, electrical energy is capacitively stored and then discharged through an inductive coil creating a time-varying current in the coil that interacts with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, many pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil before the main current pulse via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and a static magnetic field from a set of permanent magnets arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the theta

  14. Accelerated Molecular Dynamics Simulations of Reactive Hydrocarbon Systems

    SciTech Connect

    Stuart, Steven J.

    2014-02-25

    The research activities in this project consisted of four different sub-projects. Three different accelerated dynamics techniques (parallel replica dynamics, hyperdynamics, and temperature-accelerated dynamics) were applied to the modeling of pyrolysis of hydrocarbons. In addition, parallel replica dynamics was applied to modeling of polymerization.

  15. Hypersonic rarefied-flow aerodynamics inferred from Shuttle Orbiter acceleration measurements

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Hinson, E. W.

    1989-01-01

    Data obtained from multiple flights of sensitive accelerometers on the Space Shuttle Orbiter during reentry have been used to develop an improved aerodynamic model for the Orbiter normal- and axial-force coefficients in hypersonic rarefied flow. The lack of simultaneous atmospheric density measurements was overcome in part by using the ratio of normal-to-axial acceleration, in which density cancels, as a constraint. Differences between the preflight model and the flight-acceleration-derived model in the continuum regime are attributed primarily to real gas effects. New insights are gained into the variation of the force coefficients in the transition between the continuum regime and free molecule flow.

  16. Wire Measurement of Impedance of an X-Band Accelerating Structure

    SciTech Connect

    Baboi, N

    2004-09-02

    Several tens of thousands of accelerator structures will be needed for the next generation of normal conducting linear colliders known as the GLC/NLC (Global Linear Collider/Next Linear Collider). To prevent the beam being driven into a disruptive BBU (Beam Break-Up) mode or at the very least, the emittance being significantly diluted, it is important to damp down the wakefield left by driving bunches to a manageable level. Manufacturing errors and errors in design need to be measured and compared with prediction. In this paper a bench-top method of measuring transverse impedances in X-band accelerating structures is described. Utilizing an off-axis wire the S parameters are measured and converted to impedance. Measurements in a damped and detuned structure built for GLC/NLC are presented and the results are discussed.

  17. Design and Flight Tests of an Adaptive Control System Employing Normal-Acceleration Command

    NASA Technical Reports Server (NTRS)

    McNeill, Water E.; McLean, John D.; Hegarty, Daniel M.; Heinle, Donovan R.

    1961-01-01

    An adaptive control system employing normal-acceleration command has been designed with the aid of an analog computer and has been flight tested. The design of the system was based on the concept of using a mathematical model in combination with a high gain and a limiter. The study was undertaken to investigate the application of a system of this type to the task of maintaining nearly constant dynamic longitudinal response of a piloted airplane over the flight envelope without relying on air data measurements for gain adjustment. The range of flight conditions investigated was between Mach numbers of 0.36 and 1.15 and altitudes of 10,000 and 40,000 feet. The final adaptive system configuration was derived from analog computer tests, in which the physical airplane control system and much of the control circuitry were included in the loop. The method employed to generate the feedback signals resulted in a model whose characteristics varied somewhat with changes in flight condition. Flight results showed that the system limited the variation in longitudinal natural frequency of the adaptive airplane to about half that of the basic airplane and that, for the subsonic cases, the damping ratio was maintained between 0.56 and 0.69. The system also automatically compensated for the transonic trim change. Objectionable features of the system were an exaggerated sensitivity of pitch attitude to gust disturbances, abnormally large pitch attitude response for a given pilot input at low speeds, and an initial delay in normal-acceleration response to pilot control at all flight conditions. The adaptive system chatter of +/-0.05 to +/-0.10 of elevon at about 9 cycles per second (resulting in a maximum airplane normal-acceleration response of from +/-0.025 g to +/- 0.035 g) was considered by the pilots to be mildly objectionable but tolerable.

  18. Integration Test of the High Voltage Hall Accelerator System Components

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John

    2013-01-01

    NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.

  19. ACCELERATORS: Preliminary result of bunch length measurement using a modified Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Lin, Xu-Ling; Zhang, Jian-Bing; Luo, Feng; Bei, Hua; Lu, Shan-Liang; Yu, Tie-Min; Dai, Zhi-Min

    2009-10-01

    Based on the femtosecond accelerator device which was built at the Shanghai Institute of Applied Physics (SINAP), recently a modified far infrared Michelson interferometer has been developed to measure the length of electron bunches via the optical autocorrelation method. Compared with our former normal Michelson interferometer, we use a hollow retroreflector instead of a flat mirror as the reflective mirror. The experimental setup and results of the bunch length measurement will be described in this paper.

  20. Non-destructive sub-picocoulomb charge measurement for laser-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Mittelberger, D. E.; Gonsalves, A. J.; Daniels, J.; Mao, H.-S.; Stulle, F.; Bergoz, J.; Leemans, W. P.

    2017-03-01

    Precise diagnostics of sub-picocoulomb level particle bunches produced by laser-plasma accelerators (LPAs) can be a significant challenge. We report here on charge measurements using the newly developed Turbo-ICT for LPAs. A comparison of the Turbo-ICT, a conventional integrating current transformer (ICT), and a scintillating screen (Lanex) was carried out. Results show that the Turbo-ICT can measure sub-picocoulomb charge accurately and has significantly improved noise immunity compared to the ICT.

  1. [Pharmacological correction of central nervous system function in exposure to Coriolis acceleration].

    PubMed

    Karkishchenko, N N; Dimitriadi, N A; Molchanovskiĭ, V V

    1986-01-01

    Healthy volunteers with a low vestibular tolerance were exposed to Coriolis acceleration. Potassium orotate, pyracetame and riboxine were used as prophylactic measures against disorders in the function of the vestibular apparatus and higher compartments of the higher nervous system. The central nervous function was assessed with respect to the spectral power of electroencephalograms, short-term memory and mental performance. Potassium orotate given at a dose of 40 mg/kg body weight/day during 12-14 days as well as pyracetame given at a dose of 30 mg/kg body weight/day during 3 or 7 days increased significantly statokinetic tolerance and produced a protective effect on the central nervous function against Coriolis acceleration.

  2. Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages

    DOEpatents

    Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph

    2014-05-13

    Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.

  3. Buildup region and skin-dose measurements for the Therac 6 linear accelerator for radiation therapy.

    PubMed

    Tannous, N B; Gagnon, W F; Almond, P R

    1981-01-01

    Buildup and surface-dose measurements were taken for the 6 MV photon beam from a Therac 6 linear accelerator manufactured by Atomic Energy of Canada Limited (AECL) with and without a lucite blocking tray in place. Further measurements were made with a copper filter designed to reduce secondary electrons emitted by photon interactions with the Lucite tray. The results are discussed in relation to skin-sparing for radiation therapy patients. The measurements were made with a fixed volume PTW parallel-plate ionization chamber and corrected to zero-chamber volume. The results were found to be consistent with similar measurements taken with a variable volume extrapolation chamber.

  4. Buildup region and skin-dose measurements for the Therac 6 Linear Accelerator for radiation therapy

    SciTech Connect

    Tannous, N.B.J.; Gagnon, W.F.; Almond, P.R.

    1981-05-01

    Buildup and surface-dose measurements were taken for the 6 MV photon beam from a Therac 6 linear accelerator manufactured by Atomic Energy of Canada Limited (AECL) with and without a lucite blocking tray in place. Further measurements were made with a copper filter designed to reduce secondary electrons emitted by photon interactions with the Lucite tray. The results are discussed in relation to skin-sparing for radiation therapy patients. The measurements were made with a fixed volume PTW parallel-plate ionization chamber and corrected to zero-chamber volume. The results were found to be consistent with similar measurements taken with a variable volume extrapolation chamber.

  5. Disposition of Nuclear Waste Using Subcritical Accelerator-Driven Systems

    SciTech Connect

    Doolen, G.D.; Venneri, F.; Li, N.; Williamson, M.A.; Houts, M.; Lawrence, G.

    1998-06-27

    ATW destroys virtually all the plutonium and higher actinides without reprocessing the spent fuel in a way that could lead to weapons material diversion. An ATW facility consists of three major elements: (1) a high-power proton linear accelerator; (2) a pyrochemical spent fuel treatment i waste cleanup system; (3) a liquid lead-bismuth cooled burner that produces and utilizes an intense source-driven neutron flux for transmutation in a heterogeneous (solid fuel) core. The concept is the result of many years of development at LANL as well as other major international research centers. Once demonstrated and developed, ATW could be an essential part of a global non-proliferation strategy for countries that could build up large quantities of plutonium from their commercial reactor waste. ATW technology, initially proposed in the US, has received wide and rapidly increasing attention abroad, especially in Europe and the Far East with major programs now being planned, organized and tided. Substantial convergence presently exists on the technology choices among the programs, opening the possibility of a strong and effective international collaboration on the phased development of the ATW technology.

  6. HUBBLE PARAMETER MEASUREMENT CONSTRAINTS ON THE COSMOLOGICAL DECELERATION-ACCELERATION TRANSITION REDSHIFT

    SciTech Connect

    Farooq, Omer; Ratra, Bharat E-mail: ratra@phys.ksu.edu

    2013-03-20

    We compile a list of 28 independent measurements of the Hubble parameter between redshifts 0.07 {<=} z {<=} 2.3 and use this to place constraints on model parameters of constant and time-evolving dark energy cosmologies. These H(z) measurements by themselves require a currently accelerating cosmological expansion at about, or better than, 3{sigma} confidence. The mean and standard deviation of the six best-fit model deceleration-acceleration transition redshifts (for the three cosmological models and two Hubble constant priors we consider) are z{sub da} = 0.74 {+-} 0.05, in good agreement with the recent Busca et al. determination of z{sub da} = 0.82 {+-} 0.08 based on 11 H(z) measurements between redshifts 0.2 {<=} z {<=} 2.3, almost entirely from baryon-acoustic-oscillation-like data.

  7. C-14 content of ten meteorites measured by tandem accelerator mass spectrometry

    NASA Technical Reports Server (NTRS)

    Brown, R. M.; Andrews, H. R.; Ball, G. C.; Burn, N.; Imahori, Y.; Milton, J. C. D.; Fireman, E. L.

    1984-01-01

    Measurements of C-14 in three North American and seven Antarctic meteorites show in most cases that this cosmogenic isotope, which is tightly bound, was separated from absorbed atmospheric radiocarbon by stepwise heating extractions. The present upper limit to age determination by the accelerator method varies from 50,000 to 70,000 years, depending on the mass and carbon content of the sample. The natural limit caused by cosmic ray production of C-14 in silicate rocks at 2000 m elevation is estimated to be 55,000 + or - 5000 years. An estimation is also made of the 'weathering ages' of the Antarctic meteorites from the specific activity of loosely bound CO2 which is thought to be absorbed from the terrestrial atmosphere. Accelerator measurements are found to agree with previous low level counting measurements, but are more sensitive and precise.

  8. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

    DOE PAGES

    Golovin, G.; Banerjee, S.; Liu, C.; ...

    2016-04-19

    Here, the recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense lasermore » probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.« less

  9. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

    SciTech Connect

    Golovin, G.; Banerjee, S.; Liu, C.; Chen, S.; Zhang, J.; Zhao, B.; Zhang, P.; Veale, M.; Wilson, M.; Seller, P.; Umstadter, D.

    2016-04-19

    Here, the recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.

  10. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging.

    PubMed

    Golovin, G; Banerjee, S; Liu, C; Chen, S; Zhang, J; Zhao, B; Zhang, P; Veale, M; Wilson, M; Seller, P; Umstadter, D

    2016-04-19

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.

  11. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

    PubMed Central

    Golovin, G.; Banerjee, S.; Liu, C.; Chen, S.; Zhang, J.; Zhao, B.; Zhang, P.; Veale, M.; Wilson, M.; Seller, P.; Umstadter, D.

    2016-01-01

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays. PMID:27090440

  12. [The first linear electron accelerator Therac 15-Saturne in clinical service. 2. Measurement of electron radiation].

    PubMed

    Strauch, B

    1985-09-01

    Therac 15-Saturne is a linear accelerator for photon and electron radiation with a double scattering screen system. It has proved its worth during more than three years of clinical use. The dosimetric data of both kinds of radiation correspond to the international requirements for modern therapy units. The trimmer system for electron radiation is equipped with a continuous field size adjustment device for the whole range of field sizes. Thus a fast and precise adjustment is possible without any changing of tubes.

  13. Accelerator systems and instrumentation for the NuMI neutrino beam

    NASA Astrophysics Data System (ADS)

    Zwaska, Robert Miles

    The Neutrinos at the Main Injector (NuMI) neutrino beam facility began operating at the Fermi National Accelerator Laboratory in 2005. NuMI produces an intense, muon-neutrino beam to a number of experiments. Fore most of these experiments is MINOS---the Main Injector Neutrino Oscillation Search---that uses two neutrino detectors in the beam, one at Fermilab and one in northern Minnesota, to investigate the phenomenon of neutrino oscillations. NuMI is a conventional, horn-focused neutrino beam. It is designed to accept a 400 kW, 120 GeV proton beam from the Fermilab Main Injector accelerator. The proton beam is steered onto a target, producing a secondary beam of mesons which are focused into a long evacuated volume where they decay to muons and neutrinos. Pulsed toroidal magnets (horns) focus an adjustable meson momentum range. Design of the beamline and its components is challenged by the 400 kW average proton beam power. To achieve such high proton power, the Fermilab Main Injector (MI) must store and accelerate ˜ 4x1013 protons per acceleration cycle. This requires the MI to be loaded with 6 or more batches of protons from the 8 GeV Booster accelerator. Such multiple-batch injection involves a synchronization of the two machines not previously required by the Fermilab accelerators. In this dissertation, we investigate timing errors that can arise between the two accelerators, and a feedback system which enables multiple Booster transfers into the Main Injector without significant loss of beam. Using this method of synchronous transfer, the Main Injector has delivered as many as 3x1013 protons per pulse to the NuMI beam. The instrumentation to assess the quality of the neutrino beam includes arrays of radiation-tolerant ionization chambers downstream of the decay volume. These arrays detect the remnant hadrons and tertiary muons produced with the neutrinos. This thesis discusses measurements using the arrays, including diagnostics of potential beam errors and

  14. Commissioning measurements for photon beam data on three TrueBeam linear accelerators, and comparison with Trilogy and Clinac 2100 linear accelerators.

    PubMed

    Beyer, Gloria P

    2013-01-07

    This study presents the beam data measurement results from the commissioning of three TrueBeam linear accelerators. An additional evaluation of the measured beam data within the TrueBeam linear accelerators contrasted with two other linear accelerators from the same manufacturer (i.e., Clinac and Trilogy) was performed to identify and evaluate any differences in the beam characteristics between the machines and to evaluate the possibility of beam matching for standard photon energies. We performed a comparison of commissioned photon beam data for two standard photon energies (6 MV and 15 MV) and one flattening filter-free ("FFF") photon energy (10 FFF) between three different TrueBeam linear accelerators. An analysis of the beam data was then performed to evaluate the reproducibility of the results and the possibility of "beam matching" between the TrueBeam linear accelerators. Additionally, the data from the TrueBeam linear accelerator was compared with comparable data obtained from one Clinac and one Trilogy linear accelerator models produced by the same manufacturer to evaluate the possibility of "beam matching" between the TrueBeam linear accelerators and the previous models. The energies evaluated between the linear accelerator models are the 6 MV for low energy and the 15 MV for high energy. PDD and output factor data showed less than 1% variation and profile data showed variations within 1% or 2 mm between the three TrueBeam linear accelerators. PDD and profile data between the TrueBeam, the Clinac, and Trilogy linear accelerators were almost identical (less than 1% variation). Small variations were observed in the shape of the profile for 15 MV at shallow depths (< 5 cm) probably due to the differences in the flattening filter design. A difference in the penumbra shape was observed between the TrueBeam and the other linear accelerators; the TrueBeam data resulted in a slightly greater penumbra width. The diagonal scans demonstrated significant differences

  15. Neutron dose measurements with the GSI ball at high-energy accelerators.

    PubMed

    Fehrenbacher, G; Gutermuth, F; Kozlova, E; Radon, T; Schuetz, R

    2007-01-01

    A moderator-type neutron monitor containing pairs of TLD 600/700 elements (Harshaw) modified with the addition of a lead layer (GSI ball) for the measurement of the ambient dose equivalent from neutrons at medium- and high-energy accelerators, is introduced in this work. Measurements were performed with the Gesellschaft für Schwerionenforschung (GSI) ball as well as with conventional polyethylene (PE) spheres at the high-energy accelerator SPS at European Organization for Nuclear Research [CERN (CERF)] and in Cave A of the heavy-ion synchrotron SIS at GSI. The measured dose values are compared with dose values derived from calculated neutron spectra folded with dose conversion coefficients. The estimated reading of the spheres calculated by means of the response functions and the neutron spectra is also included in the comparison. The analysis of the measurements shows that the PE/Pb sphere gives an improved estimate on the ambient dose equivalent of the neutron radiation transmitted through shielding of medium- and high-energy accelerators.

  16. Using MMS measurements to validate models of reconnection-driven magnetotail reconfiguration and particle acceleration during substorms

    NASA Astrophysics Data System (ADS)

    Baker, Daniel N.

    2016-04-01

    New data from the Magnetospheric Multiscale (MMS) mission confirms and greatly extends the view that substorms are a configurational instability driven by magnetic reconnection. We have studied in detail a powerful storm period in June 2015 which shows that substorm events seen sequentially by the four MMS spacecraft subsequently feed the powerful enhancement of the radiation belts observed by the Van Allen Probes mission. Several sequences of significant southward IMF along with a period of high (VSW≥500 km/s) solar wind speed occurred following a strong interplanetary shock wave impact on the magnetosphere. We see that substorms provide a "seed" population, while high-speed solar wind drives the acceleration to relativistic energies in this two-step geomagnetic activity scenario. Thus, MMS data help validate models that invoke reconnection as a fundamental driver of magnetospheric particle acceleration. The data for several separate events on 22 June 2015 show that the magnetosphere progresses through a specific, well-observed sequence of energy-loading and stress-developing states until the entire system suddenly reconfigures. Energetic electron fluxes measured by the several MMS spacecraft reveal the clear temporal occurrence characteristics and the obvious relationships to concurrently measured solar wind drivers. This shows that enhancements in substorms are a key first step in the acceleration of radiation belt electrons to high energies as observed subsequently by the Van Allen Probes instrumentation. Thus, this high-resolution observational evidence along with the accompanying modeling has demonstrated that magnetospheric substorms are an important acceleration component within the coupled near-Earth system.

  17. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines...

  18. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines...

  19. Equation of State Measurements of Dense Plasmas Heated by Laser Accelerated MeV Protons

    NASA Astrophysics Data System (ADS)

    Dyer, Gilliss; Bernstein, Aaron; Cho, Byoung-Ick; Grigsby, Will; Dalton, Allen; Shepherd, Ronnie; Ping, Yuan; Chen, Hui; Widmann, Klaus; Ozterhoz, Jens; Ditmire, Todd

    2008-04-01

    Using a fast proton beam generated with an ultra intense laser we have generated and measured the equation of state of solid density plasma at temperatures near 20 eV, a regime in which there have been few previous experimental measurements. The laser accelerated a directional, short pulse of MeV protons, which isochorically heated a solid slab of aluminum. Using two simultaneous, temporally resolved measurements we observed the thermal emission and expansion of the heated foil with picosecond time resolution. With these data we were able to confirm, to within 10%, the SESAME equation-of-state table in this dense plasma region.

  20. Measuring the cosmic-ray acceleration efficiency of a supernova remnant.

    PubMed

    Helder, E A; Vink, J; Bassa, C G; Bamba, A; Bleeker, J A M; Funk, S; Ghavamian, P; van der Heyden, K J; Verbunt, F; Yamazaki, R

    2009-08-07

    Cosmic rays are the most energetic particles arriving at Earth. Although most of them are thought to be accelerated by supernova remnants, the details of the acceleration process and its efficiency are not well determined. Here we show that the pressure induced by cosmic rays exceeds the thermal pressure behind the northeast shock of the supernova remnant RCW 86, where the x-ray emission is dominated by synchrotron radiation from ultrarelativistic electrons. We determined the cosmic-ray content from the thermal Doppler broadening measured with optical spectroscopy, combined with a proper-motion study in x-rays. The measured postshock proton temperature, in combination with the shock velocity, does not agree with standard shock heating, implying that >50% of the postshock pressure is produced by cosmic rays.

  1. Method and apparatus for measuring gravitational acceleration utilizing a high temperature superconducting bearing

    DOEpatents

    Hull, John R.

    2000-01-01

    Gravitational acceleration is measured in all spatial dimensions with improved sensitivity by utilizing a high temperature superconducting (HTS) gravimeter. The HTS gravimeter is comprised of a permanent magnet suspended in a spaced relationship from a high temperature superconductor, and a cantilever having a mass at its free end is connected to the permanent magnet at its fixed end. The permanent magnet and superconductor combine to form a bearing platform with extremely low frictional losses, and the rotational displacement of the mass is measured to determine gravitational acceleration. Employing a high temperature superconductor component has the significant advantage of having an operating temperature at or below 77K, whereby cooling may be accomplished with liquid nitrogen.

  2. Acceleration analysis of multi-rigid body system and its application for vehicle based stabilized platform system

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Luo, Erjuan; Jia, Lei; Liu, Bo

    2017-01-01

    The traditional representation of acceleration of a rigid body is given in terms of the angular acceleration and linear acceleration of a point attached to the rigid body. Since this representation has no coordinate invariance, the acceleration transformation of a multi-rigid-body system is complicated. In this paper, the physical meaning of the time derivative of a twist is investigated. It reveals that the rigid-body acceleration comprises the angular acceleration and tangent acceleration of a point which is attached to the rigid body and instantaneously coincident with the origin of frame in use. Their composition presents a six-dimensional representation of the rigid-body acceleration, which is verified to be of coordinate invariance. Based on the representation, the transformation of the rigid-body accelerations is performed conveniently, and the corresponding formula of composition accelerations of one rigid body relative to any other bodies in a multi-rigid-body system is presented. The method is then extended to the application of a vehicle stabilized platform system. The method is verified to be effective by analyzing the virtual prototype of the vehicle-based stabilized platform system. This paper builds a bridge for the six-dimensional rigid-body acceleration from theory achievements to practical application.

  3. Mining volume measurement system

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph Saul (Inventor)

    1988-01-01

    In a shaft with a curved or straight primary segment and smaller off-shooting segments, at least one standing wave is generated in the primary segment. The shaft has either an open end or a closed end and approximates a cylindrical waveguide. A frequency of a standing wave that represents the fundamental mode characteristic of the primary segment can be measured. Alternatively, a frequency differential between two successive harmonic modes that are characteristic of the primary segment can be measured. In either event, the measured frequency or frequency differential is characteristic of the length and thus the volume of the shaft based on length times the bore area.

  4. Measurement and Characterization of the Acceleration Environment on Board the Space Station

    NASA Technical Reports Server (NTRS)

    Baugher, Charles R. (Editor)

    1990-01-01

    This workshop provides a comprehensive overview of the work and status of each of these areas to provide a basis for establishing a systematic approach to the challenge of avoiding these difficulties during the Space Station era of materials experimentation. The discussions were arranged in the order of: the scientific understanding of the requirements for a micro-gravity environment, a history of acceleration measurements on spacecraft, the state of accelerometer technology, and the current understanding of the predicted Space Station environment.

  5. Application of Burnable Absorbers in an Accelerator-Driven System

    SciTech Connect

    Wallenius, Jan; Tucek, Kamil; Carlsson, Johan; Gudowski, Waclaw

    2001-01-15

    The application of burnable absorbers (BAs) to minimize power peaking, reactivity loss, and capture-to-fission probabilities in an accelerator-driven waste transmutation system has been investigated. Boron-10-enriched B{sub 4}C absorber rods were introduced into a lead-bismuth-cooled core fueled with transuranic (TRU) discharges from light water reactors to achieve the smallest possible power peakings at beginning-of-life (BOL) subcriticality level of 0.97. Detailed Monte Carlo simulations show that a radial power peaking equal to 1.2 at BOL is attainable using a four-zone differentiation in BA content. Using a newly written Monte Carlo burnup code, reactivity losses were calculated to be 640 pcm per percent TRU burnup for unrecycled TRU discharges. Comparing to corresponding values in BA-free cores, BA introduction diminishes reactivity losses in TRU-fueled subcritical cores by {approx}20%. Radial power peaking after 300 days of operation at 1200-MW thermal power was <1.75 at a subcriticality level of {approx}0.92, which appears to be acceptable, with respect to limitations in cladding and fuel temperatures. In addition, the use of BAs yields significantly higher fission-to-capture probabilities in even-neutron-number nuclides. Fission-to-absorption probability ratio for {sup 241}Am equal to 0.33 was achieved in the configuration studied. Hence, production of the strong alpha-emitter {sup 242}Cm is reduced, leading to smaller fuel-swelling rates and pin pressurization. Disadvantages following BA introduction, such as increase of void worth and decrease of Doppler feedback in conjunction with small values of {beta}{sub eff}, need to be addressed by detailed studies of subcritical core dynamics.

  6. A six degree of freedom head acceleration measurement device for use in football.

    PubMed

    Rowson, Steven; Beckwith, Jonathan G; Chu, Jeffrey J; Leonard, Daniel S; Greenwald, Richard M; Duma, Stefan M

    2011-02-01

    The high incidence rate of concussions in football provides a unique opportunity to collect biomechanical data to characterize mild traumatic brain injury. The goal of this study was to validate a six degree of freedom (6DOF) measurement device with 12 single-axis accelerometers that uses a novel algorithm to compute linear and angular head accelerations for each axis of the head. The 6DOF device can be integrated into existing football helmets and is capable of wireless data transmission. A football helmet equipped with the 6DOF device was fitted to a Hybrid III head instrumented with a 9 accelerometer array. The helmet was impacted using a pneumatic linear impactor. Hybrid III head accelerations were compared with that of the 6DOF device. For all impacts, peak Hybrid III head accelerations ranged from 24 g to 176 g and 1,506 rad/s(2) to 14,431 rad/s(2). Average errors for peak linear and angular head acceleration were 1% ± 18% and 3% ± 24%, respectively. The average RMS error of the temporal response for each impact was 12.5 g and 907 rad/s(2).

  7. New electronic control systems for ILU accelerators, initiating the development of unique irradiation systems based on them

    NASA Astrophysics Data System (ADS)

    Bezuglov, V. V.; Bryazgin, A. A.; Vlasov, A. Y.; Kokin, E. N.; Shtarklev, E. A.

    2016-12-01

    This study is devoted to the development and industrial implementation of automated electronbeam irradiation systems based on ILU type accelerators, as well as the development of electronics and software for the creation of new technological solutions on the industrial application of accelerated electron beams. This study gives a description of the power-supply and control systems for an independent electronbeam scanning unit included in a universal one- or four-window extraction unit. The new control and protection systems for ILU accelerator pulsed power supply are also described; these systems resulted in the development of a unique 3-modulator power supply for the multiresonator ILU-14 accelerator.

  8. Image processing and computer controls for video profile diagnostic system in the ground test accelerator (GTA)

    SciTech Connect

    Wright, R.M.; Zander, M.E.; Brown, S.K.; Sandoval, D.P.; Gilpatrick, J.D.; Gibson, H.E.

    1992-09-01

    This paper describes the application of video image processing to beam profile measurements on the Ground Test Accelerator (GTA). A diagnostic was needed to measure beam profiles in the intermediate matching section (IMS) between the radio-frequency quadrupole (RFQ) and the drift tube linac (DTL). Beam profiles are measured by injecting puffs of gas into the beam. The light emitted from the beam-gas interaction is captured and processed by a video image processing system, generating the beam profile data. A general purpose, modular and flexible video image processing system, imagetool, was used for the GTA image profile measurement. The development of both software and hardware for imagetool and its integration with the GTA control system (GTACS) will be discussed. The software includes specialized algorithms for analyzing data and calibrating the system. The underlying design philosophy of imagetool was tested by the experience of building and using the system, pointing the way for future improvements. The current status of the system will be illustrated by samples of experimental data.

  9. Image processing and computer controls for video profile diagnostic system in the ground test accelerator (GTA)

    SciTech Connect

    Wright, R.M.; Zander, M.E.; Brown, S.K.; Sandoval, D.P.; Gilpatrick, J.D.; Gibson, H.E.

    1992-01-01

    This paper describes the application of video image processing to beam profile measurements on the Ground Test Accelerator (GTA). A diagnostic was needed to measure beam profiles in the intermediate matching section (IMS) between the radio-frequency quadrupole (RFQ) and the drift tube linac (DTL). Beam profiles are measured by injecting puffs of gas into the beam. The light emitted from the beam-gas interaction is captured and processed by a video image processing system, generating the beam profile data. A general purpose, modular and flexible video image processing system, imagetool, was used for the GTA image profile measurement. The development of both software and hardware for imagetool and its integration with the GTA control system (GTACS) will be discussed. The software includes specialized algorithms for analyzing data and calibrating the system. The underlying design philosophy of imagetool was tested by the experience of building and using the system, pointing the way for future improvements. The current status of the system will be illustrated by samples of experimental data.

  10. Ambient dose and dose rate measurements in the vicinity of Elekta Precise accelerators for radiation therapy.

    PubMed

    Zutz, H; Hupe, O

    2014-12-01

    In radiation therapy, commercially available medical linear accelerators (LINACs) are used. At high primary beam energies in the 10-MeV range, the leakage dose of the accelerator head and the backscatter from the room walls, the air and the patient become more important. Therefore, radiation protection measurements of photon dose rates in the treatment room and in the maze are performed to quantify the radiation field. Since the radiation of the LINACs is usually pulsed with short radiation pulse durations in the microsecond range, there are problems with electronic dose (rate) meters commonly used in radiation protection. In this paper measurements with ionisation chambers are presented and electronic dosemeters are used for testing at selected positions. The measured time-averaged dose rate ranges from a few microsieverts per hour in the maze to some millisieverts per hour in the vicinity of the accelerator head and up to some sieverts per hour in the blanked primary beam and several hundred sieverts per hour in the direct primary beam.

  11. Calculating Nozzle Side Loads using Acceleration Measurements of Test-Based Models

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Ruf, Joe

    2007-01-01

    As part of a NASA/MSFC research program to evaluate the effect of different nozzle contours on the well-known but poorly characterized "side load" phenomena, we attempt to back out the net force on a sub-scale nozzle during cold-flow testing using acceleration measurements. Because modeling the test facility dynamics is problematic, new techniques for creating a "pseudo-model" of the facility and nozzle directly from modal test results are applied. Extensive verification procedures were undertaken, resulting in a loading scale factor necessary for agreement between test and model based frequency response functions. Side loads are then obtained by applying a wide-band random load onto the system model, obtaining nozzle response PSD's, and iterating both the amplitude and frequency of the input until a good comparison of the response with the measured response PSD for a specific time point is obtained. The final calculated loading can be used to compare different nozzle profiles for assessment during rocket engine nozzle development and as a basis for accurate design of the nozzle and engine structure to withstand these loads. The techniques applied within this procedure have extensive applicability to timely and accurate characterization of all test fixtures used for modal test.A viewgraph presentation on a model-test based pseudo-model used to calculate side loads on rocket engine nozzles is included. The topics include: 1) Side Loads in Rocket Nozzles; 2) Present Side Loads Research at NASA/MSFC; 3) Structural Dynamic Model Generation; 4) Pseudo-Model Generation; 5) Implementation; 6) Calibration of Pseudo-Model Response; 7) Pseudo-Model Response Verification; 8) Inverse Force Determination; 9) Results; and 10) Recent Work.

  12. Acceleration units for the Induction Linac Systems Experiment (ILSE)

    SciTech Connect

    Faltens, A.; Brady, V.; Brodzik, D.; Hansen, L.; Laslett, L.J.; Mukherjee, S.; Bubp, D.; Ravenscroft, D.; Reginato, L.

    1989-03-01

    The design of a high current heavy ion induction linac driver for inertial confinement fusion is optimized by adjusting the acceleration units along the length of the accelerator to match the beam current, energy, and pulse duration at any location. At the low energy end of the machine the optimum is a large number of electrostatically focused parallel beamlets, whereas at higher energies the optimum is a smaller number of magnetically focused beams. ILSE parallels this strategy by using 16 electrostatically focused beamlets at the low end followed by 4 magnetically focused beams after beam combining. 3 refs., 2 figs.

  13. RADIATION PROTECTION SYSTEM INSTALLATION FOR THE ACCELERATOR PRODUCTION OF TRITIUM/LOW ENERGY DEMONSTRATION ACCELERATOR PROJECT (APT/LEDA)

    SciTech Connect

    J. WILMARTH; M. SMITH; T. TOMEI

    1999-07-01

    The APT/LEDA personnel radiation protection system installation was accomplished using a flexible, modular proven system which satisfied regulatory orders, project design criteria, operational modes, and facility requirements. The goal of providing exclusion and safe access of personnel to areas where prompt radiation in the LEDA facility is produced was achieved with the installation of a DOE-approved Personnel Access Control System (PACS). To satisfy the facility configuration design, the PACS, a major component of the overall radiation safety system, conveniently provided five independent areas of personnel access control. Because of its flexibility and adaptability the Los Alamos Neutron Science Center (LANSCE) designed Radiation Security System (RSS) was efficiently configured to provide the desired operational modes and satisfy the APT/LEDA project design criteria. The Backbone Beam Enable (BBE) system based on the LANSCE RSS provided the accelerator beam control functions with redundant, hardwired, tamper-resistant hardware. The installation was accomplished using modular components.

  14. Properties of accelerated particles at the Sun from gamma-ray and neutron measurements

    NASA Astrophysics Data System (ADS)

    Share, Gerald; Murphy, Ronald

    The properties of accelerated ions and electrons that interact in the solar atmosphere and photosphere can be revealed through measurements of the resulting hard X-ray and gamma-ray emissions. These properties provide information on the acceleration processes and particle transport. Comparison of these properties with those measured in solar energetic particles in space indicates whether the two particle populations have a common origin. These studies require both good spectral measurements and a sound theoretical basis for understanding the processes related to gamma-ray production. We discuss advances in the calculation of gamma-ray spectra from proton, alpha-particle and heavy-ion interactions that are used in determining the spectra and composition of the accelerated particles. We focus on intense flares observed by the Solar Maximum Mission gamma-ray spectrometer and on the remarkable 2005 January 20 flare and Ground Level Event observed by RHESSI and Coronas. Our studies suggest that in most of the flares the heavy interacting particles at the Sun have a composition that is similar to gradual SEP events (i.e. a coronal composition) but that in at least one flare they have a composition close to that observed in impulsive SEP events. We are also finding evidence that the interacting particles may be enhanced in alpha particles and heavier nuclei relative to protons. We discuss details of the 2005 January 20 flare in which we find clear evidence for two distinct acceleration processes occurring within two minutes that produce significantly different particle spectra. Gamma-ray emission from this event was evident up to 4 hours after flare onset. We discuss the implications of these observations. This work was supported by NASA under grants to the University of Maryland and DPRs to NRL.

  15. Properties of Accelerated Particles at the Sun from Gamma-Ray and Neutron Measurements

    NASA Astrophysics Data System (ADS)

    Murphy, Ronald; Share, G.; Kozlovsky, B.

    2010-05-01

    The properties of accelerated ions and electrons that interact in the solar atmosphere and photosphere can be revealed through measurements of the resulting hard X-ray and gamma-ray emissions. These properties provide information on the acceleration processes and particle transport. Comparison of these properties with those measured for solar energetic particles in space indicates whether the two particle populations have a common origin. These studies require both good spectral measurements and a sound theoretical basis for understanding the processes related to gamma-ray production. We discuss advances in the calculation of gamma-ray spectra from proton, alpha-particle and heavy-ion interactions that are used to determine the spectra and composition of the accelerated particles. We focus on intense flares observed by the Solar Maximum Mission gamma-ray spectrometer and on the remarkable 2005 January 20 flare and Ground Level Event observed by RHESSI and Coronas. Our studies suggest that in most of these flares the heavy interacting particles at the Sun have a composition that is similar to gradual SEP events (i.e. a coronal composition), but that in at least one flare they have a composition close to that observed in impulsive SEP events. We are also finding evidence that the interacting particles may be enhanced in alpha particles and heavier nuclei relative to protons. We discuss details of the 2005 January 20 flare in which we find clear evidence for two distinct acceleration processes occurring within two minutes that produce significantly different particle spectra. Gamma-ray emission from this event was evident for up to 4 hours after flare onset. We discuss the implications of these observations. This work was supported by NASA under DPRs to NRL and grants to the University of Maryland.

  16. Comparison of measured Varian Clinac 21EX and TrueBeam accelerator electron field characteristics.

    PubMed

    Lloyd, Samantha A M; Zavgorodni, Sergei; Gagne, Isabelle M

    2015-07-08

    Dosimetric comparisons of radiation fields produced by Varian's newest linear accelerator, the TrueBeam, with those produced by older Varian accelerators are of interest from both practical and research standpoints. While photon fields have been compared in the literature, similar comparisons of electron fields have not yet been reported. In this work, electron fields produced by the TrueBeam are compared with those produced by Varian's Clinac 21EX accelerator. Diode measurements were taken of fields shaped with electron applicators and delivered at 100 cm SSD, as well as those shaped with photon MLCs without applicators and delivered at 70 cm SSD for field sizes ranging from 5 × 5 to 25 × 25 cm² at energies between 6 and 20 MeV. Additionally, EBT2 and EBT3 radio-chromic film measurements were taken of an MLC-shaped aperture with closed leaf pairs delivered at 70 cm SSD using 6 and 20 MeV electrons. The 6 MeV fields produced by the TrueBeam and Clinac 21EX were found to be almost indistinguishable. At higher energies, TrueBeam fields shaped by electron applicators were generally flatter and had less photon contamination compared to the Clinac 21EX. Differences in PDDs and profiles fell within 3% and 3 mm for the majority of measurements. The most notable differences for open fields occurred in the profile shoulders for the largest applicator field sizes. In these cases, the TrueBeam and Clinac 21EX data differed by as much as 8%. Our data indicate that an accurate electron beam model of the Clinac 21EX could be used as a starting point to simulate electron fields that are dosimetrically equivalent to those produced by the TrueBeam. Given that the Clinac 21EX shares head geometry with Varian's iX, Trilogy, and Novalis TX accelerators, our findings should also be applicable to these machines.

  17. Measurements of the Influence of Acceleration and Temperature of Bodies on their Weight

    SciTech Connect

    Dmitriev, Alexander L.

    2008-01-21

    A brief review of experimental research of the influence of acceleration and temperatures of test mass upon gravitation force, executed between the 1990s and the beginning of 2000 at the St.-Petersburg State University of Information Technologies, Mechanics and Optics in cooperation with D. I. Mendeleev's Institute of Metrology is provided. According to a phenomenological notion, the acceleration of a test mass caused by external action, for example electromagnetic forces, results in changes of the gravitational properties of this mass. Consequences are a dependence upon gravity on the size and sign of test mass acceleration, and also on its absolute temperature. Results of weighing a rotor of a mechanical gyroscope with a horizontal axis, an anisotropic crystal with the big difference of the speed of longitudinal acoustic waves, measurements of temperature dependence of weight of metal bars of nonmagnetic materials, and also measurement of restitution coefficients at quasi-elastic impact of a steel ball about a massive plate are given. In particular, a reduction of apparent mass of a horizontal rotor with relative size 3.10{sup -6} at a speed of rotation of 18.6 thousand rev/min was observed. A negative temperature dependence of the weight of a brass core with relative size near 5.10{sup -4} K{sup -1} at room temperature was measured; this temperature factor was found to be a maximum for light and elastic metals. All observably experimental effects, have probably a general physical reason connected with the weight change dependent upon acceleration of a body or at thermal movement of its microparticles. The reduction of mass at high temperatures is of particular interest for propulsion applications.

  18. Systems Measures of Water Distribution System Resilience

    SciTech Connect

    Klise, Katherine A.; Murray, Regan; Walker, La Tonya Nicole

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  19. Automated ac galvanomagnetic measurement system

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Espy, P. N.

    1985-01-01

    An automated, ac galvanomagnetic measurement system is described. Hall or van der Pauw measurements in the temperature range 10-300 K can be made at a preselected magnetic field without operator attendance. Procedures to validate sample installation and correct operation of other system functions, such as magnetic field and thermometry, are included. Advantages of ac measurements are discussed.

  20. Earth's gravity field modelling based on satellite accelerations derived from onboard GPS phase measurements

    NASA Astrophysics Data System (ADS)

    Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H. H.

    2017-02-01

    GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth's gravity field. We propose a new data processing method which makes use of the `average acceleration' approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.

  1. Effectiveness of variable-gain Kalman filter based on angle error calculated from acceleration signals in lower limb angle measurement with inertial sensors.

    PubMed

    Teruyama, Yuta; Watanabe, Takashi

    2013-01-01

    The wearable sensor system developed by our group, which measured lower limb angles using Kalman-filtering-based method, was suggested to be useful in evaluation of gait function for rehabilitation support. However, it was expected to reduce variations of measurement errors. In this paper, a variable-Kalman-gain method based on angle error that was calculated from acceleration signals was proposed to improve measurement accuracy. The proposed method was tested comparing to fixed-gain Kalman filter and a variable-Kalman-gain method that was based on acceleration magnitude used in previous studies. First, in angle measurement in treadmill walking, the proposed method measured lower limb angles with the highest measurement accuracy and improved significantly foot inclination angle measurement, while it improved slightly shank and thigh inclination angles. The variable-gain method based on acceleration magnitude was not effective for our Kalman filter system. Then, in angle measurement of a rigid body model, it was shown that the proposed method had measurement accuracy similar to or higher than results seen in other studies that used markers of camera-based motion measurement system fixing on a rigid plate together with a sensor or on the sensor directly. The proposed method was found to be effective in angle measurement with inertial sensors.

  2. Measurements of Neutron Induced Cross Sections at the Oak Ridge Electron Linear Accelerator

    SciTech Connect

    Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.

    1999-09-20

    We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and the fission cross sections of 233U in the energy range from 0.36 eV to ~700 keV. We report average fission and total cross sections. Also, we measured the neutron total cross sections of 27Al and Natural chlorine as well as the capture cross section of Al over an energy range from 100 eV up to about 400 keV.

  3. Ram accelerator direct launch system for space cargo

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Hertzberg, A.

    1987-01-01

    The ram accelerator, a chemically-propelled mass driver, is presented as a new approach for directly launching acceleration-insensitive pay-loads into LEO. The cargo vehicle resembles the centerbody of a conventional ramjet and travels through a launch tube filled with a premixed gaseous fuel and oxidizer mixture. The tube acts as the outer cowling of the ramjet and the combustion process travels with the vehicle. Two modes of ram accelerator drive are described, which when used in sequence, are capable of accelerating the cargo vehicle to 10 km/sec. The requirements for placing a 2000 kg vehicle with 50 percent payload fraction into a 400 km orbit, with a minimum of on-board rocket propellant for circularization maneuvers, are examined. It is shown that aerodynamic heating during atmospheric transit results in very little ablation of the nose. Both direct and indirect orbital insertion scenarios are investigated, and a three-step maneuver consisting of two burns and aerobraking is found to minimize the on-board propellant mass. A scenario involving a parking orbit below the desired final orbit is suggested as a means to increase the flexibility of the mass launch concept.

  4. Particle Acceleration at Relativistic Shocks in Extragalactic Systems

    NASA Astrophysics Data System (ADS)

    Baring, Matthew G.; Summerlin, Errol J.

    2009-11-01

    Diffusive shock acceleration (DSA) at relativistic shocks is expected to be an important acceleration mechanism in a variety of astrophysical objects including extragalactic jets in active galactic nuclei and gamma ray bursts. These sources remain strong and interesting candidate sites for the generation of ultra-high energy cosmic rays. In this paper, key predictions of DSA at relativistic shocks that are salient to the issue of cosmic ray ion and electron production are outlined. Results from a Monte Carlo simulation of such diffusive acceleration in test-particle, relativistic, oblique, MHD shocks are presented. Simulation output is described for both large angle and small angle scattering scenarios, and a variety of shock obliquities including superluminal regimes when the de Hoffman-Teller frame does not exist. The distribution function power-law indices compare favorably with results from other techniques. They are found to depend sensitively on the mean magnetic field orientation in the shock, and the nature of MHD turbulence that propagates along fields in shock environs. An interesting regime of flat spectrum generation is addressed, providing evidence for its origin being due to shock drift acceleration. The impact of these theoretical results on gamma-ray burst and blazar science is outlined. Specifically, Fermi gamma-ray observations of these cosmic sources are already providing significant constraints on important environmental quantities for relativistic shocks, namely the frequency of scattering and the level of field turbulence.

  5. Using Solar Gamma Rays to Measure Heavy Accelerated Particles at the Sun

    NASA Astrophysics Data System (ADS)

    Share, G. H.; Murphy, R. J.

    2008-05-01

    Solar flare gamma-ray spectra contain information on heavy (>He) accelerated particle spectra and composition through measurement of highly Doppler broadened (~10%) lines. These gamma-rays are emitted when the nuclei de-excite following their interaction with chromospheric H and He; these are called inverse reactions in contrast to the direct reactions from accelerated p and α-particles that produce narrower lines. The ability to distinguish and measure the broadened features is complicated by their large number, the narrow lines, the presence of strong solar bremsstrahlung and nuclear continua, as well as by instrumental effects. The instrumental continuum from Compton scattering is minimized when the gamma-ray detector has a high photopeak efficiency and is relatively well shielded, as was the case for the Solar Maximum Mission spectrometer (GRS). It is also important that the detector response be well determined. We have constructed a new GRS response matrix based on a Monte Carlo calculation and apply it to spectra from strong nuclear-line flares. We use new theoretical gamma-ray templates derived from nuclear physics calculations for elements such as C, O, Ne, Mg, Si, and Fe to fit the spectra and derive information on the heavy-accelerated ions. This technique can also be applied to data from the RHESSI spectrometer, with its larger Compton continuum, if the instrument response is well determined. This work was supported under NASA Grants NNX07AH81G, NNX07AO74G, and NNG06GG14G.

  6. Development and applications of a multi-purpose digital controller with a System-on-Chip FPGA for accelerators

    NASA Astrophysics Data System (ADS)

    Kurimoto, Yoshinori; Nakamura, Keigo

    2016-12-01

    J-PARC Main Ring (MR) is a high intensity proton synchrotron which accelerates protons from 3 GeV to 30 GeV. It has operated at a beam intensity of 390 kW and an upgrade toward the megawatt rating is scheduled. For higher beam intensity, some of the accelerator components require more intelligent and complicated functions. To consolidate such functions among various components, we developed multi-purpose digital boards using a System-on-Chip Field-Programmable Gated Array (SoC FPGA). In this paper, we describe the details of our developed boards as well as their possible applications. As an application of the boards, we have successfully performed the measurement of the betatron amplitude function during beam acceleration in J-PARC MR. The experimental setup and results of the measurement are also described in detail.

  7. A Support System for Motion Training Using Motion Capture and Acceleration Sensors

    NASA Astrophysics Data System (ADS)

    Hayashi, Takahiro; Onai, Rikio

    This paper presents a support system for motion training for dances, sports, gestures, etc. In our previous study, we developed a prototype system for supporting motion training using motion caputure, i.e., marker tracking using a DV camera. The prototype system scores a user's motion by comparing tracking data of the user and a model with DP matching. The prototype system has a limit that it cannot accurately obtain acceleration of each part of the body because marker tracking using a DV camera cannot obtain three dimensional motion. By this limit, two different motions sometimes cannot be distinguished. For more effective motion training, in this study, we propose a system combining motion capture and acceleration sensors. We have examined the effectiveness of using acceleration sensors in motion training by comparing the proposed system with the prototype system. Experimental results have shown that two different motions can be more clearly distinguished by using the acceleration sensors.

  8. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    NASA Astrophysics Data System (ADS)

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Cooper, G. W.; Gomez, M. R.; Slutz, S.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Torres, J. A.; Bur, J. A.; Cuneo, M. E.; Glebov, V. Yu; Harvey-Thompson, A. J.; Herrman, M. C.; Hess, M. H.; Johns, O.; Jones, B.; Lamppa, D. C.; Lash, J. S.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Reneker, J.; Robertson, G. K.; Rochau, G. A.; Savage, M. E.; Smith, I. C.; Styron, J. D.; Vesey, R. A.

    2016-05-01

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ∼2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner∼1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.

  9. Measurements of the Argonne Wakefield Accelerator's low charge, 4 MeV RF photocathode witness beam.

    SciTech Connect

    Power, J.

    1998-04-01

    The Argonne Wakefield Accelerator's (AWA) witness RF photocathode gun produced its first electron beam in April of 1996. We have characterized the charge, energy, emittance and bunch length of the witness beam over the last several months. The emittance Was measured by both a quad scan that fitted for space charge using an in house developed Mathematica routine and a pepper pot technique. The bunch length was measured by imaging Cherenkov light from a quartz plate to a Hamamatsu streak camera with 2 psec resolution. A beam energy of 3.9 Mev was measured with a 6 inch round pole spectrometer while a beam charge was measured with both an ICT and a Faraday Cup. Although the gun will normally be run at 100 pC it has produced charges from 10 pC to 4 nc. All results of the measurements to date are presented here.

  10. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    SciTech Connect

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Cooper, G. W.; Gomez, M. R.; Slutz, S.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Torres, J. A.; Bur, J. A.; Cuneo, M. E.; Glebov, V. Yu; Harvey-Thompson, A. J.; Herrman, M. C.; Hess, M. H.; Johns, O.; Jones, B.; Lamppa, D. C.; Lash, J. S.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Reneker, J.; Robertson, G. K.; Rochau, G. A.; Savage, M. E.; Smith, I. C.; Styron, J. D.; Vesey, R. A.

    2016-05-26

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ~2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner ~ 1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Furthermore, plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.

  11. Neutron field measurements for alara purposes around a Van de Graaff accelerator building.

    PubMed

    Kockerols, P; Lebacq, A L; Gasparro, J; Hult, M; Janssens, H; Lövestam, G; Vanhavere, F

    2004-01-01

    The Institute for Reference Materials and Measurements operates a 7.0 MV Van de Graaff accelerator to generate monoenergetic neutron radiation for experimental applications. Owing to increased intensities of generated neutron fields and the more stringent regulation related to the maximum dose for the public, a concrete shielding wall surrounding the experimental building was constructed. This paper presents a study aiming at evaluating the effect of the shielding on the neutron field outside the wall. For this purpose, the following measurements were carried out around the building: (1) cartography of the neutron field for different experimental conditions; (2) measurement of neutron spectra using multiple Bonner spheres; (3) activation measurements using gold discs followed by low-level gamma spectrometry. From the measurements, it can be concluded that the wall fulfils its purpose to reduce the neutron dose rate to the surrounding area to an acceptable level.

  12. An intracavitary cone system for electron beam therapy using a Therac 20 linear accelerator.

    PubMed

    Wilson, D L; Sharma, S C; Jose, B

    1986-06-01

    The Therac 20 is an AECL medical linear accelerator that produces electron and photon beams. Electron fields are produced by a scanned beam; collimation is provided by two sets of primary collimators and further collimated by external electron trimmers located 11 cm above the plane of isocenter (100 cm). These collimators are not suitable for intracavitary treatment. To overcome this limitation, we have designed an intracavitary cone system that attaches to the electron trimmers. Since the trimmers do not have to be removed while this system is in use, there is no need to bypass the associated interlock system. The apparatus consists of a platform which slides onto the lower set of trimmers, onto which a lead insert is attached. Dosimetry measurements for 9, 13, and 17 MeV electron beams are reported for three different treatment cones.

  13. Influence of tungsten fiber's slow drift on the measurement of G with angular acceleration method.

    PubMed

    Luo, Jie; Wu, Wei-Huang; Xue, Chao; Shao, Cheng-Gang; Zhan, Wen-Ze; Wu, Jun-Fei; Milyukov, Vadim

    2016-08-01

    In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.

  14. Comparison of the damping effect of different shoeing by the measurement of hoof acceleration.

    PubMed

    Benoit, P; Barrey, E; Regnault, J C; Brochet, J L

    1993-01-01

    The purpose of this study was to compare the damping effect of 16 types of shoeing by measuring hoof acceleration parameters on two trotting horses. At impact, maximal deceleration had extreme values such as 188 m/s2 (+/- 55) for the most damping combination (p < 0.01) and 746 m/s2 (+/- 14) for the steel shoe (mean = 551 m/s2 +/- 125). After the shock, the hoof was exposed to a mean vibrating acceleration at 418 Hz (+/- 84) which was progressively damped in 37.3 ms (+/- 10.5). According to these results, the damping ability of different farriery products significantly reduces (p < 0.05) shocks and vibrations at hoof impact in the athletic horse caused by runs on asphalt or similar surfaces. In practice, the use of the most efficient shoeing should help to reduce the incidence of the over-used joint diseases in the athletic horse caused by runs on hard surfaces.

  15. Measurement Systems Advisory Group

    DTIC Science & Technology

    1974-04-01

    noted with the aluminum wire used in the lacing. For these reasons the tests were concluded and deemed unsatisfactory. The second system tested was an...vehicle for "bringing many particulate pollutants into contact with the tape or magnetic heads, e.g., from deodorant spray powders, face powder and

  16. Spill-to-spill and daily proton energy consistency with a new accelerator control system.

    PubMed

    Moyers, M F; Ghebremedhin, A

    2008-05-01

    The Loma Linda University proton accelerator has had several upgrades installed including synchrotron dipole power supplies and a system for monitoring the beam energy. The consistency of the energy from spill-to-spill has been tested by measuring the depth ionization at the distal edge as a function of time. These measurements were made with a minimally equipped beamline to reduce interference from confounding factors. The consistency of the energy over several months was measured in a treatment room beamline using an ionization chamber based daily quality assurance device. The results showed that the energy of protons delivered from the accelerator (in terms of water equivalent range) was consistent from spill-to-spill to better than +/-0.03 mm at 70, 155, and 250 MeV and that the energy check performed each day in the treatment room over a several month period was within +/-0.11 mm (+/-0.06 MeV) at 149 MeV. These results are within the tolerances required for the energy stacking technique.

  17. A procedure for combining rotating-coil measurements of large-aperture accelerator magnets

    NASA Astrophysics Data System (ADS)

    Köster, Oliver; Fiscarelli, Lucio; Russenschuck, Stephan

    2016-05-01

    The rotating search coil is a precise and widely used tool for measuring the magnetic field harmonics of accelerator magnets. This paper deals with combining several such multipole measurements, in order to cover magnet apertures largely exceeding the diameter of the available search coil. The method relies on the scaling laws for multipole coefficients and on the method of analytic continuation along zero-homotopic paths. By acquiring several measurements of the integrated magnetic flux density at different transverse positions within the bore of the accelerator magnet, the uncertainty on the field harmonics can be reduced at the expense of tight tolerances on the positioning. These positioning tolerances can be kept under control by mounting the rotating coil and its motor-drive unit on precision alignment stages. Therefore, the proposed technique is able to yield even more precise results for the higher-order field components than a dedicated rotating search coil of larger diameter. Moreover, the versatility of the measurement bench is enhanced by avoiding the construction of rotating search coils of different measurement radii.

  18. Ozone measurement systems improvements studies

    NASA Technical Reports Server (NTRS)

    Thomas, R. W.; Guard, K.; Holland, A. C.; Spurling, J. F.

    1974-01-01

    Results are summarized of an initial study of techniques for measuring atmospheric ozone, carried out as the first phase of a program to improve ozone measurement techniques. The study concentrated on two measurement systems, the electro chemical cell (ECC) ozonesonde and the Dobson ozone spectrophotometer, and consisted of two tasks. The first task consisted of error modeling and system error analysis of the two measurement systems. Under the second task a Monte-Carlo model of the Dobson ozone measurement technique was developed and programmed for computer operation.

  19. Microbial ecology measurement system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The sensitivity and potential rapidity of the PIA test that was demonstrated during the feasibility study warranted continuing the effort to examine the possibility of adapting this test to an automated procedure that could be used during manned missions. The effort during this program has optimized the test conditions for two important respiratory pathogens, influenza virus and Mycoplasma pneumoniae, developed a laboratory model automated detection system, and investigated a group antigen concept for virus detection. Preliminary tests on the handling of oropharygeal clinical samples for PIA testing were performed using the adenovirus system. The results obtained indicated that the PIA signal is reduced in positive samples and is increased in negative samples. Treatment with cysteine appeared to reduce nonspecific agglutination in negative samples but did not maintain the signal in positive samples.

  20. AT2 DS II - Accelerator System Design (Part II) - CCC Video Conference

    SciTech Connect

    2010-12-17

    Discussion Session - Accelerator System Design (Part II) Tutors: C. Darve, J. Weisend II, Ph. Lebrun, A. Dabrowski, U. Raich Video Conference with the CERN Control Center. Experts in the field of Accelerator science will be available to answer the students questions. This session will link the CCC and SA (using Codec VC).

  1. AT2 DS II - Accelerator System Design (Part II) - CCC Video Conference

    ScienceCinema

    None

    2016-07-12

    Discussion Session - Accelerator System Design (Part II) Tutors: C. Darve, J. Weisend II, Ph. Lebrun, A. Dabrowski, U. Raich Video Conference with the CERN Control Center. Experts in the field of Accelerator science will be available to answer the students questions. This session will link the CCC and SA (using Codec VC).

  2. Purchasing Productivity Measurement Systems.

    DTIC Science & Technology

    1980-09-01

    Defense More Productive", Perspectives in Defense Management, Winter 1974-1975. 4. Encyclopaedia Britannica, Macropaedia, " Taylor , Frederick Winslow ", v...Some of the earliest successes in Productivity Systems and studies are attributed to Frederick W. Taylor and his concept of Scientific Management...sociological interactions. Taylorism , as it became known, provoked resentment and opposition from labor when it was carried to extremes. It was, however

  3. Design of the fiber optic support system and fiber bundle accelerated life test for VIRUS

    NASA Astrophysics Data System (ADS)

    Soukup, Ian M.; Beno, Joseph H.; Hayes, Richard J.; Heisler, James T.; Mock, Jason R.; Mollison, Nicholas T.; Good, John M.; Hill, Gary J.; Vattiat, Brian L.; Murphy, Jeremy D.; Anderson, Seth C.; Bauer, Svend M.; Kelz, Andreas; Roth, Martin M.; Fahrenthold, Eric P.

    2010-07-01

    The quantity and length of optical fibers required for the Hobby-Eberly Telescope* Dark Energy eXperiment (HETDEX) create unique fiber handling challenges. For HETDEX‡, at least 33,600 fibers will transmit light from the focal surface of the telescope to an array of spectrographs making up the Visible Integral-Field Replicable Unit Spectrograph (VIRUS). Up to 96 Integral Field Unit (IFU) bundles, each containing 448 fibers, hang suspended from the telescope's moving tracker located more than 15 meters above the VIRUS instruments. A specialized mechanical system is being developed to support fiber optic assemblies onboard the telescope. The discrete behavior of 448 fibers within a conduit is also of primary concern. A life cycle test must be conducted to study fiber behavior and measure Focal Ratio Degradation (FRD) as a function of time. This paper focuses on the technical requirements and design of the HETDEX fiber optic support system, the electro-mechanical test apparatus for accelerated life testing of optical fiber assemblies. Results generated from the test will be of great interest to designers of robotic fiber handling systems for major telescopes. There is concern that friction, localized contact, entanglement, and excessive tension will be present within each IFU conduit and contribute to FRD. The test apparatus design utilizes six linear actuators to replicate the movement of the telescope over 65,000 accelerated cycles, simulating five years of actual operation.

  4. Accurate Measurement of Velocity and Acceleration of Seismic Vibrations near Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Arif, Syed Javed; Imdadullah; Asghar, Mohammad Syed Jamil

    In spite of all prerequisite geological study based precautions, the sites of nuclear power plants are also susceptible to seismic vibrations and their consequent effects. The effect of the ongoing nuclear tragedy in Japan caused by an earthquake and its consequent tsunami on March 11, 2011 is currently beyond contemplations. It has led to a rethinking on nuclear power stations by various governments around the world. Therefore, the prediction of location and time of large earthquakes has regained a great importance. The earth crust is made up of several wide, thin and rigid plates like blocks which are in constant motion with respect to each other. A series of vibrations on the earth surface are produced by the generation of elastic seismic waves due to sudden rupture within the plates during the release of accumulated strain energy. The range of frequency of seismic vibrations is from 0 to 10 Hz. However, there appears a large variation in magnitude, velocity and acceleration of these vibrations. The response of existing or conventional methods of measurement of seismic vibrations is very slow, which is of the order of tens of seconds. A systematic and high resolution measurement of velocity and acceleration of these vibrations are useful to interpret the pattern of waves and their anomalies more accurately, which are useful for the prediction of an earthquake. In the proposed work, a fast rotating magnetic field (RMF) is used to measure the velocity and acceleration of seismic vibrations in the millisecond range. The broad spectrum of pulses within one second range, measured by proposed method, gives all possible values of instantaneous velocity and instantaneous acceleration of the seismic vibrations. The spectrum of pulses in millisecond range becomes available which is useful to measure the pattern of fore shocks to predict the time and location of large earthquakes more accurately. Moreover, instead of average, the peak values of these quantities are helpful

  5. Measurement of depth distributions of (3)H and (14)C induced in concrete shielding of an electron accelerator facility.

    PubMed

    Endo, Akira; Harada, Yasunori; Kawasaki, Katsuya; Kikuchi, Masamitsu

    2004-06-01

    The estimation of radioactivity induced in concrete shielding is important for the decommissioning of accelerator facilities. Concentrations of (3)H and (14)C in the concrete shielding of an electron linear accelerator were measured, and the depth distributions of (3)H and (14)C and gamma-ray emitters were discussed in relation to their formation reactions.

  6. On the effect of accelerated winds on the wave growth through detailed laboratory measurements.

    NASA Astrophysics Data System (ADS)

    Ocampo-Torres, Francisco J.; Branger, Hubert; Osuna, Pedro; Hernández, Aldo

    2013-04-01

    The possible influence of accelerated winds on air-water momentum fluxes is being studied through detailed laboratory measurements in a large wind-wave flume. Wind stress over the water surface, waves and surface drift are measured in the 40m long wind-wave tank at IRPHE, Marseille. While momentum fluxes are estimated directly through the eddy correlation method in a station about the middle of the tank, they provide information corresponding to rather short non-dimensional fetch not previously reported. Wave evolution along the tank is determined through a series of wave gauges, and the wind-induced surface drift is obtained at one of the first measuring stations at the beginning of the tank. At each experimental run very low wind was on (about 1m/s) for a certain period and suddenly it was constantly accelerated to reach about 13 m/s (as well as 8 and 5 m/s during different runs) in about 15 sec to as long as 600 sec. The wind was kept constant at that high speed for 2 to 10 min, and then suddenly and constantly decelerate to 0. Data from the constant high winds provided us with reference equilibrium conditions for at least 3 different wind speed. We, nevertheless, focus in the recordings while wind was being constantly accelerated expecting some contribution to the understanding of gustiness, the implied wind wave growth and the onset of surface drift. Wind-wave growth is observed to lag behind the wind stress signal, and furthermore, a two regime wind stress is noticed, apparently well correlated with a) the incipient growth and appearance of the first waves and b) the arrival of waves from the up-wind section of the tank. Results of non-dimensional wave energy as a function of non-dimensional fetch represent an extension of at least 2 decades shorter non-dimensional fetch to the wave growth curves typically found in the literature. The linear tendency of wave growth compares very well only when wind is reaching its maximum, while during the accelerated wind

  7. Laboratory Measurements of Linear Electron Acceleration by Inertial Alfvén Waves

    NASA Astrophysics Data System (ADS)

    Schroeder, J. W. R.

    2015-11-01

    Alfvén waves occur in conjunction with a significant fraction of auroral electron acceleration. Inertial mode Alfvén waves (vA >vte) in the auroral magnetosphere (2 - 4RE) with perpendicular scales on the order of the electron skin depth (c /ωpe) have a parallel electric field that, according to theory, is capable of nonlinearly accelerating suprathermal electrons to auroral energies. Unfortunately, due to space-time ambiguities of rocket and satellite measurements, it has not yet been possible to fully verify how Alfvén waves contribute to the production of accelerated electrons. To overcome the limitations of in situ spacecraft data, laboratory experiments have been carried out using the Large Plasma Device (LaPD), an NSF/DOE user facility at UCLA. An Electron Cyclotron Absorption (ECA) diagnostic has been developed to record the suprathermal parallel electron distribution function with 0.1% precision. The diagnostic records the electron distribution while inertial Alfvén waves simultaneously propagate through the plasma. Recent measurements have isolated oscillations of suprathermal electrons at the Alfvén wave frequency. Despite complications from boundary effects and the finite size of the experiment, a linear kinetic model has been produced that describes the experimental results. To our knowledge this is the first quantitative agreement between the measured and modeled linear response of suprathermal electrons to an inertial Alfvén wave. This verification of the linear physics is a necessary step before the nonlinear acceleration process can be isolated in future experiments. Presently, nonlinear effects cannot be detected because of limited Alfvén wave amplitudes. Ongoing work is focused on designing a higher-power antenna capable of efficiently launching larger-amplitude Alfvén waves with tunable perpendicular wavenumber and developing a theoretical understanding of the nonlinear acceleration process in LaPD plasma conditions. This material is

  8. Ram acceleration from a two phase detonative system

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc; Bogdanoff, David W.

    1993-01-01

    A concept for ram acceleration is presented here, which uses a combination of a gas core and a layer of solid explosive or propellant to generate high thrust densities. The concept can be either self-synchronized or externally synchronized, and may be reusable. It has the potential to achieve very high acceleration rates, higher exit velocities and to lower the tube length requirements. Preliminary numerical simulations are presented and discussed, which show the characteristics of the flow fields. Stable conditions can be achieved for low mass loadings of solid explosive, and relatively slow combustion. Accurate knowledge of the thermo-chemical properties and the equations of state of the gas and solid components is essential for further tuning of the concept.

  9. Developments and applications of accelerator system at the Wakasa Wan Energy Research Center

    NASA Astrophysics Data System (ADS)

    Hatori, S.; Kurita, T.; Hayashi, Y.; Yamada, M.; Yamada, H.; Mori, J.; Hamachi, H.; Kimura, S.; Shimoda, T.; Hiroto, M.; Hashimoto, T.; Shimada, M.; Yamamoto, H.; Ohtani, N.; Yasuda, K.; Ishigami, R.; Sasase, M.; Ito, Y.; Hatashita, M.; Takagi, K.; Kume, K.; Fukuda, S.; Yokohama, N.; Kagiya, G.; Fukumoto, S.; Kondo, M.

    2005-12-01

    At the Wakasa Wan Energy Research Center (WERC), an accelerator system with a 5 MV tandem accelerator and a 200 MeV proton synchrotron is used for ion beam analyses and irradiation experiments. The study of cancer therapy with a proton beam is also performed. Therefore, the stable operation and efficient sharing of beam time of the system are required, based on the treatment standard. Recent developments and the operation status of the system put stress on the tandem accelerator operation, magnifying the problems.

  10. Tissue oxygen measurement system

    NASA Technical Reports Server (NTRS)

    Soller, Babs R. (Inventor)

    2004-01-01

    A device and method in accordance with the invention for determining the oxygen partial pressure (PO.sub.2) of a tissue by irradiating the tissue with optical radiation such that the light is emitted from the tissue, and by collecting the reflected or transmitted light from the tissue to form an optical spectrum. A spectral processor determines the PO.sub.2 level in tissue by processing this spectrum with a previously-constructed spectral calibration model. The tissue may, for example, be disposed underneath a covering tissue, such as skin, of a patient, and the tissue illuminated and light collected through the skin. Alternatively, direct tissue illumination and collection may be effected with a hand-held or endoscopic probe. A preferred system also determines pH from the same spectrum, and the processor may determine critical conditions and issue warnings based on parameter values.

  11. Results of Measurements of Accelerations of Technological Devices onboard the FotonSpacecraft

    NASA Astrophysics Data System (ADS)

    Barmin, I. V.; Volkov, M. V.; Egorov, A. V.; Reut, E. F.; Senchenkov, A. S.

    2001-07-01

    This paper generalizes the results of measuring the residual accelerations arising when investigations in space materials science are carried out onboard the unmanned Fotonspacecraft. The levels of vibroaccelerations are analyzed in the frequency band of 1 500 Hz for the technological devices UZ01, UZ04, and POLIZON, developed by the Federal Unitary State Enterprise “Barmin Design Bureau of General Machine Building” (V.P. Barmin KBOM). The levels of accelerations are estimated in the frequency band of 0 1 Hz in the zone of technological operations of these facilities. The basic sources of vibroaccelerations acting upon the frames of devices are determined in the capsule zone, where technological processes of producing new materials take place. In the frequency band of 1 500 Hz the vibroaccelerations are shown to be generated by the operation of Fotonspacecraft units and a drive of capsule translation during the technological process. On the capsule frame they reach the values of (1 3) × 10 3 g. The level of linear accelerations in the infralow-frequency band is determined by rotational motions of the Fotonspacecraft. It depends on the device location with respect to the spacecraft center of mass and does not exceed (1 7) × 10 6 gin the steady-state regime in the zone of technological activity.

  12. Continuous wavelet transform analysis of acceleration signals measured from a wave buoy.

    PubMed

    Chuang, Laurence Zsu-Hsin; Wu, Li-Chung; Wang, Jong-Hao

    2013-08-19

    Accelerometers, which can be installed inside a floating platform on the sea, are among the most commonly used sensors for operational ocean wave measurements. To examine the non-stationary features of ocean waves, this study was conducted to derive a wavelet spectrum of ocean waves and to synthesize sea surface elevations from vertical acceleration signals of a wave buoy through the continuous wavelet transform theory. The short-time wave features can be revealed by simultaneously examining the wavelet spectrum and the synthetic sea surface elevations. The in situ wave signals were applied to verify the practicality of the wavelet-based algorithm. We confirm that the spectral leakage and the noise at very-low-frequency bins influenced the accuracies of the estimated wavelet spectrum and the synthetic sea surface elevations. The appropriate thresholds of these two factors were explored. To study the short-time wave features from the wave records, the acceleration signals recorded from an accelerometer inside a discus wave buoy are analysed. The results from the wavelet spectrum show the evidence of short-time nonlinear wave events. Our study also reveals that more surface profiles with higher vertical asymmetry can be found from short-time nonlinear wave with stronger harmonic spectral peak. Finally, we conclude that the algorithms of continuous wavelet transform are practical for revealing the short-time wave features of the buoy acceleration signals.

  13. Measurement of performance using acceleration control and pulse control in simulated spacecraft docking operations

    NASA Technical Reports Server (NTRS)

    Brody, Adam R.; Ellis, Stephen R.

    1992-01-01

    Nine commercial airline pilots served as test subjects in a study to compare acceleration control with pulse control in simulated spacecraft maneuvers. Simulated remote dockings of an orbital maneuvering vehicle (OMV) to a space station were initiated from 50, 100, and 150 meters along the station's -V-bar (minus velocity vector). All unsuccessful missions were reflown. Five way mixed analysis of variance (ANOVA) with one between factor, first mode, and four within factors (mode, bloch, range, and trial) were performed on the data. Recorded performance measures included mission duration and fuel consumption along each of the three coordinate axes. Mission duration was lower with pulse mode, while delta V (fuel consumption) was lower with acceleration mode. Subjects used more fuel to travel faster with pulse mode than with acceleration mode. Mission duration, delta V, X delta V, Y delta V., and Z delta V all increased with range. Subjects commanded the OMV to 'fly' at faster rates from further distances. These higher average velocities were paid for with increased fuel consumption. Asymmetrical transfer was found in that the mode transitions could not be predicted solely from the mission duration main effect. More testing is advised to understand the manual control aspects of spaceflight maneuvers better.

  14. Present Trends In The Configurations And Applications Of Electrostatic Accelerator Systems

    NASA Astrophysics Data System (ADS)

    Norton, Gregory A.; Klody, George M.

    2011-06-01

    Despite the worldwide economic meltdown during the past two years and preceding any stimulus program projects, the market for electrostatic accelerators has increased on three fronts: new applications developed in an expanding range of fields; technical enhancements that increase the range, precision, and sensitivity of existing systems; and new accelerator projects in a growing number of developing countries. From the single application of basic nuclear structure research from the 1930's into the 1970's, the continued expansion of new applications and the technical improvements in electrostatic accelerators have dramatically affected the configurations and capabilities of accelerator systems to meet new requirements. This paper describes examples of recent developments in cosmology, exotic materials, high resolution RBS, compact AMS, dust acceleration, ion implantation, etc.

  15. [The first linear electron accelerator, the Therac 15 Saturne, in clinical service. I. Technical data and measurements in photon radiation].

    PubMed

    Strauch, B

    1983-09-01

    A report is given about the linear electron accelerator operating at the Alfried Krupp Krankenhaus in Essen. This is the first accelerator of the type Therac Saturne supplied for 15 MeV. Besides a description of the most important technical data and the service instructions, dosimetric data for 12 MV photon radiation are presented. The authors communicate the clinical experiences gained hitherto with the accelerator and the patient-orientated verification and recording system which has still to be improved, especially as far as the recording part is concerned. The accelerator meets the requirements of radiologic oncology.

  16. Measures of Autonomic Nervous System

    DTIC Science & Technology

    2011-04-01

    Gastro- intestinal Pupillary Response Respiratory Salivary Amylase Vascular Manipulative Body-Based/ Tension-Release Practices Trauma...Physiological Activities ANS Physiological Activities Cardiac Pupillary Response Catecholamines Respiration Cortisol Salivary Amylase Galvanic Skin...Measures of Autonomic Nervous System Regulation Salivary Amylase Measurement Most measures of salivary amylase

  17. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    SciTech Connect

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg

  18. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    SciTech Connect

    Ganni, Venkatarao; Knudsen, Peter N.; Arenius, Dana M.; Casagrande, Fabio

    2014-01-01

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

  19. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    SciTech Connect

    Ganni, V.; Knudsen, P.; Arenius, D.; Casagrande, F.

    2014-01-29

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

  20. The use of radiochromic films to measure and analyze the beam profile of charged particle accelerators.

    PubMed

    Avila-Rodriguez, M A; Wilson, J S; McQuarrie, S A

    2009-11-01

    The use of radiochromic films as a simple and inexpensive tool to accurately measure and analyze the beam profile of charged particle accelerators is described. In this study, metallic foils of different materials and thicknesses were irradiated with 17.8MeV protons and autoradiographic images of the beam strike were acquired by exposing pieces of RCF in direct contact with the irradiated foils. The films were digitalized using a conventional scanner and images were analyzed using DoseLab. Beam intensity distributions, isodose curves and linear beam profiles of the digitalized images were acquired.

  1. Experimental measurement of unsteady drag on shock accelerated micro-particles

    NASA Astrophysics Data System (ADS)

    Bordoloi, Ankur; Martinez, Adam; Prestridge, Katherine

    2016-11-01

    The unsteady drag history of shock accelerated micro-particles in air is investigated in the Horizontal Shock Tube (HST) facility at Los Alamos National laboratory. Drag forces are estimated based on particle size, particle density, and instantaneous velocity and acceleration measured on hundreds of post-shock particle tracks. We use previously implemented 8-frame Particle Tracking Velocimetry/Anemometry (PTVA) diagnostics to analyze particles in high spatiotemporal resolution from individual particle trajectories. We use a simultaneous LED based shadowgraph to register shock location with respect to a moving particle in each frame. To measure particle size accurately, we implement a Phase Doppler Particle Analyzer (PDPA) in synchronization with the PTVA. In this presentation, we will corroborate with more accuracy our earlier observation that post-shock unsteady drag coefficients (CD(t)) are manifold times higher than those predicted by theoretical models. Our results will also show that all CD(t) measurements collapse on a master-curve for a range of particle size, density, Mach number and Reynolds number when time is normalized by a shear velocity based time scale, t* = d/(uf-up) , where d is particle diameter, and uf and up are post-shock fluid and particle velocities.

  2. The microphysics of particle acceleration in the auroral ionosphere: Why sounding rocket measurements are essential

    NASA Technical Reports Server (NTRS)

    Arnoldy, Roger L.

    1994-01-01

    Through the combination of attitude controlled, high altitude rockets (altitudes greater than 600 km), high telemetry rates (several megabits/sec), pitch angle imaging particle sensors and interferometric wave measurements giving wavelength in addition to frequency data, the series of TOPAZ flights have uncovered a low altitude acceleration mechanism by which ionospheric ions receive their initial energy transverse to B in order to leave the ionosphere and populate the trapped radiation. The transverse acceleration of oxygen and hydrogen ionospheric ions is the result of Landau resonance of these ions with intense (up to 400 mv/m) lower hybrid waves on the resonance cone within caviton structures. Future work is directed toward trying to measure the size of the solitary wave structures. From a statistical argument, they appear to be the order of 100 m across B and much longer in dimension along B. Important questions remain: are there other low altitude heating mechanisms acting as well; is the dayside ion outflow driven differently. To answer these questions, it is intended to make sounding rocket measurements in the cusp/cleft region. The proposed Norwegian rocket launch facility at Svalbard could play a very important role by providing easy access to the cusp/cleft region.

  3. Measurements of high-energy radiation generation from laser-wakefield accelerated electron beams

    SciTech Connect

    Schumaker, W. Vargas, M.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Maksimchuk, A.; Nees, J.; Yanovsky, V.; Thomas, A. G. R.; Krushelnick, K.; Sarri, G.; Dromey, B.; Zepf, M.

    2014-05-15

    Using high-energy (∼0.5 GeV) electron beams generated by laser wakefield acceleration (LWFA), bremsstrahlung radiation was created by interacting these beams with various solid targets. Secondary processes generate high-energy electrons, positrons, and neutrons, which can be measured shot-to-shot using magnetic spectrometers, short half-life activation, and Compton scattering. Presented here are proof-of-principle results from a high-resolution, high-energy gamma-ray spectrometer capable of single-shot operation, and high repetition rate activation diagnostics. We describe the techniques used in these measurements and their potential applications in diagnosing LWFA electron beams and measuring high-energy radiation from laser-plasma interactions.

  4. Measurement of 59Ni and 63Ni by accelerator mass spectrometry at CIAE

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; He, Ming; Ruan, Xiangdong; Xu, Yongning; Shen, Hongtao; Du, Liang; Xiao, Caijin; Dong, Kejun; Jiang, Shan; Yang, Xuran; Lan, Xiaoxi; Wu, Shaoyong; Zhao, Qingzhang; Cai, Li; Pang, Fangfang

    2015-10-01

    The long lived isotopes 59Ni and 63Ni can be used in many areas such as radioactive waste management, neutron dosimetry, cosmic radiation study, and so on. Based on the large accelerator and a big Q3D magnetic spectrometer, the measurement method for 59Ni and 63Ni is under development at the AMS facility at China Institute of Atomic Energy (CIAE). By using the ΔE-Q3D technique with the Q3D magnetic spectrometer, the isobaric interferences were greatly reduced in the measurements of 59Ni and 63Ni. A four anode gas ionization chamber was then used to further identify isobars. With these techniques, the abundance sensitivities of 59Ni and 63Ni measurements are determined as 59Ni/Ni = 1 × 10-13 and 63Ni/Ni = 2 × 10-12, respectively.

  5. Anode power deposition in quasi-steady MPD arcs. [accelerator anode heat flux measurement

    NASA Technical Reports Server (NTRS)

    Saber, A. J.; Jahn, R. G.

    1973-01-01

    The power deposited in the anode of a quasi-steady MPD accelerator has been measured directly by thermocouples attached to the inside surface of a shell anode which provide a local measurement of anode heat flux. The results over a range of arc currents from 5.5 to 44 kiloamperes and argon mass flows from 1 g/sec to 48 g/sec show that the fraction of the total input power deposited in the anode decreases drastically from 50% at an arc power of 200 kW to 10% at 20 MW, and that anode power is not uniformly deposited in the anode. A theoretical model of the anode heat transfer, including effects of anode work function, electron thermal energy, and anode sheath, can be brought into reasonable agreement with the measurements, provided the effective range of the conduction electrons from within the discharge plasma to the anode surface is properly acknowledged.

  6. 49 CFR 571.124 - Standard No. 124; Accelerator control systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... disconnection in the accelerator control system. S2. Purpose. The purpose of this standard is to reduce deaths.... S3. Application. This standard applies to passenger cars, multi-purpose passenger vehicles,...

  7. Optimization of accelerator system performance at the NSLS

    SciTech Connect

    Krinsky, S.

    1994-10-01

    There is an active program of accelerator development at the NSLS aimed at improving reliability, stability and brightness. Work is primarily focused on providing improved performance for the NSLS user community, however, important elements of our work have a generic character and should be of value to other synchrotron radiation facilities. In particular, we have successfully operated a small gap undulator with a full vertical beam aperture of only 3.8 mm, with no degradation of beam lifetime. This provides strong support for the belief that small gap, short period devices will play an important role in the future.

  8. Beam property measurement of a 300-kV ion source test stand for a 1-MV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Park, Sae-Hoon; Kim, Dae-Il; Kim, Yu-Seok

    2016-09-01

    The KOMAC (Korea Multi-purpose Accelerator Complex) has been developing a 300-kV ion source test stand for a 1-MV electrostatic accelerator for industrial purposes. A RF ion source was operated at 200 MHz with its matching circuit. The beam profile and emittance were measured behind an accelerating column to confirm the beam property from the RF ion source. The beam profile was measured at the end of the accelerating tube and at the beam dump by using a beam profile monitor (BPM) and wire scanner. An Allison-type emittance scanner was installed behind the beam profile monitor (BPM) to measure the beam density in phase space. The measurement results for the beam profile and emittance are presented in this paper.

  9. In Situ, Time-Resolved Accelerator Grid Erosion Measurements in the NSTAR 8000 Hour Ion Engine Wear Test

    NASA Technical Reports Server (NTRS)

    Sovey, J.

    1997-01-01

    Time-resolved, in situ measurements of the charge exchange ion erosion pattern on the downstream face of the accelerator grid have been made during an ongoin wear test of the NSTAR 30 cm ion thruster.

  10. SIRIUS - A new 6 MV accelerator system for IBA and AMS at ANSTO

    NASA Astrophysics Data System (ADS)

    Pastuovic, Zeljko; Button, David; Cohen, David; Fink, David; Garton, David; Hotchkis, Michael; Ionescu, Mihail; Long, Shane; Levchenko, Vladimir; Mann, Michael; Siegele, Rainer; Smith, Andrew; Wilcken, Klaus

    2016-03-01

    The Centre for Accelerator Science (CAS) facility at ANSTO has been expanded with a new 6 MV tandem accelerator system supplied by the National Electrostatic Corporation (NEC). The beamlines, end-stations and data acquisition software for the accelerator mass spectrometry (AMS) were custom built by NEC for rare isotope mass spectrometry, while the beamlines with end-stations for the ion beam analysis (IBA) are largely custom designed at ANSTO. An overview of the 6 MV system and its performance during testing and commissioning phase is given with emphasis on the IBA end-stations and their applications for materials modification and characterisation.

  11. BEAM TRANSPORT IN A COMPACT DIELECTRIC WALL INDUCTION ACCELERATOR SYSTEM FOR PULSED RADIOGRAPHY

    SciTech Connect

    McCarrick, J F; Caporaso, G J; Chen, Y

    2005-05-09

    Using dielectric wall accelerator technology, we are developing a compact induction accelerator system primarily intended for pulsed radiography. The accelerator would provide a 2-kA beam with an energy of 8 MeV, for a 20-30 ns flat-top. The design goal is to generate a 2-mm diameter, 10-rad x-ray source. We have a physics design of the system from injector to the x-ray converter. We present the results of injector modeling and PIC simulations of beam transport. We also discuss the predicted spot size and the on-axis x-ray dose.

  12. Anti-proton tune measurements for the Fall 1995 accelerator studies

    SciTech Connect

    Marriner, john; /Fermilab

    1996-04-01

    A system to measure the tunes of a single antiproton (or proton) bunch was built and has been commissioned. The system achieved high sensitivity with a novel closed-orbit suppression system. The use of high bandwidth directional pickpus and kickers in conjunction with precise timing gates enabled the measurement of the tune of a single bunch.

  13. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom.

    PubMed

    Barker, J; Garner, R C

    1999-01-01

    Accelerator mass spectrometry (AMS) is a nuclear physics technique developed about twenty years ago, that uses the high energy (several MeV) of a tandem Van de Graaff accelerator to measure very small quantities of rare and long-lived isotopes. Elements that are of interest in biomedicine and environmental sciences can be measured, often to parts per quadrillion sensitivity, i.e. zeptomole to attomole levels (10(-21)-10(-18) mole) from milligram samples. This is several orders of magnitude lower than that achievable by conventional decay counting techniques, such as liquid scintillation counting (LSC). AMS was first applied to geochemical, climatological and archaeological areas, such as for radiocarbon dating (Shroud of Turin), but more recently this technology has been used for bioanalytical applications. In this sphere, most work has been conducted using aluminium, calcium and carbon isotopes. The latter is of special interest in drug metabolism studies, where a Phase 1 adsorption, distribution, metabolism and excretion (ADME) study can be conducted using only 10 nanoCurie (37 Bq or ca. 0.9 microSv) amounts or less of 14C-labelled drugs. In the UK, these amounts of radioactivity are below those necessary to request specific regulatory approval from the Department of Health's Administration of Radioactive Substances Advisory Committee (ARSAC), thus saving on valuable development time and resources. In addition, the disposal of these amounts is much less an environmental issue than that associated with microCurie quantities, which are currently used. Also, AMS should bring an opportunity to conduct "first into man" studies without the need for widespread use of animals. Centre for Biomedical Accelerator Mass Spectrometry (CBAMS) Ltd. is the first fully commercial company in the world to offer analytical services using AMS. With its high throughput and relatively low costs per sample analysis, AMS should be of great benefit to the pharmaceutical and biotechnology

  14. Advanced Klystrons for High Efficiency Accelerator Systems - Final Report

    SciTech Connect

    Read, Michael; Ives, Robert Lawrence

    2014-03-26

    This program explored tailoring of RF pulses used to drive accelerator cavities. Simulations indicated that properly shaping the pulse risetime to match accelerator cavity characteristics reduced reflected power and increased total efficiency. Tailoring the pulse requires a high power, gridded, klystron to shape the risetime while also controlling the beam current. The Phase I program generated a preliminary design of a gridded electron gun for a klystron producing 5-10 MW of RF power. This required design of a segmented cathode using Controlled Porosity Reservoir cathodes to limit power deposition on the grid. The program was successful in computationally designing a gun producing a high quality electron beam with grid control. Additional analysis of pulse tailoring indicated that technique would only be useful for cavity drive pulses that were less than approximately 2-3 times the risetime. Otherwise, the efficiency gained during the risetime of the pulse became insignificant when considering the efficiency over the entire pulse. Consequently, it was determined that a Phase II program would not provide sufficient return to justify the cost. Never the less, other applications for a high power gridded gun are currently being pursued. This klystron, for example, would facilitate development inverse Comptom x-ray sources by providing a high repetition rate (10 -100 kHz) RF source.

  15. Power-conditioning system for the Advanced Test Accelerator

    SciTech Connect

    Newton, M.A.; Smith, M.E.; Birx, D.L.; Branum, D.R.; Cook, E.G.; Copp, R.L.; Lee, F.D.; Reginato, L.L.; Rogers, D.; Speckert, G.C.

    1982-06-01

    The Advanced Test Accelerator (ATA) is a pulsed, linear induction, electron accelerator currently under construction and nearing completion at Lawrence Livermore National Laboratory's Site 300 near Livermore, California. The ATA is a 50 MeV, 10 kA machine capable of generating electron beam pulses at a 1 kHz rate in a 10 pulse burst, 5 pps average, with a pulse width of 70 ns FWHM. Ten 18 kV power supplies are used to charge 25 capacitor banks with a total energy storage of 8 megajoules. Energy is transferred from the capacitor banks in 500 microsecond pulses through 25 Command Resonant Charge units (CRC) to 233 Thyratron Switch Chassis. Each Thyratron Switch Chassis contains a 2.5 microfarad capacitor and is charged to 25 kV (780 joules) with voltage regulation of +- .05%. These capacitors are switched into 10:1 step-up resonant transformers to charge 233 Blumleins to 250 kV in 20 microseconds. A magnetic modulator is used instead of a Blumlein to drive the grid of the injector.

  16. Disposition of nuclear waste using subcritical accelerator-driven systems

    SciTech Connect

    Venneri, F.; Li, N.; Williamson, M.; Houts, M.; Lawrence, G.

    1998-12-31

    Spent fuel from nuclear power plants contains large quantities of Pu, other actinides, and fission products (FP). This creates challenges for permanent disposal because of the long half-lives of some isotopes and the potential for diversion of the fissile material. Two issues of concern for the US repository concept are: (1) long-term radiological risk peaking tens-of-thousands of years in the future; and (2) short-term thermal loading (decay heat) that limits capacity. An accelerator-driven neutron source can destroy actinides through fission, and can convert long-lived fission products to shorter-lived or stable isotopes. Studies over the past decade have established that accelerator transmutation of waste (ATW) can have a major beneficial impact on the nuclear waste problem. Specifically, the ATW concept the authors are evaluating: (1) destroys over 99.9% of the actinides; (2) destroys over 99.9% of the Tc and I; (3) separates Sr-90 and Cs-137; (4) separates uranium from the spent fuel; (5) produces electric power.

  17. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    SciTech Connect

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also

  18. Thin Foil Acceleration Method for Measuring the Unloading Isentropes of Shock-Compressed Matter

    SciTech Connect

    Asay, J.R.; Chhabildas, L.C.; Fortov, V.E.; Kanel, G.I.; Khishchenko, K.V.; Lomonosov, I.V.; Mehlhorn, T.; Razorenov, S.V.; Utkin, A.V.

    1999-07-21

    This work has been performed as part of the search for possible ways to utilize the capabilities of laser and particle beams techniques in shock wave and equation of state physics. The peculiarity of these techniques is that we have to deal with micron-thick targets and not well reproducible incident shock wave parameters, so all measurements should be of a high resolution and be done in one shot. Besides the Hugoniots, the experimental basis for creating the equations of state includes isentropes corresponding to unloading of shock-compressed matter. Experimental isentrope data are most important in the region of vaporization. With guns or explosive facilities, the unloading isentrope is recovered from a series of experiments where the shock wave parameters in plates of standard low-impedance materials placed behind the sample are measured [1,2]. The specific internal energy and specific volume are calculated from the measured p(u) release curve which corresponds to the Riemann integral. This way is not quite suitable for experiments with beam techniques where the incident shock waves are not well reproducible. The thick foil method [3] provides a few experimental points on the isentrope in one shot. When a higher shock impedance foil is placed on the surface of the material studied, the release phase occurs by steps, whose durations correspond to that for the shock wave to go back and forth in the foil. The velocity during the different steps, connected with the knowledge of the Hugoniot of the foil, allows us to determine a few points on the isentropic unloading curve. However, the method becomes insensitive when the low pressure range of vaporization is reached in the course of the unloading. The isentrope in this region can be measured by recording the smooth acceleration of a thin witness plate foil. With the mass of the foil known, measurements of the foil acceleration will give us the vapor pressure.

  19. Counting calories in cormorants: dynamic body acceleration predicts daily energy expenditure measured in pelagic cormorants.

    PubMed

    Stothart, Mason R; Elliott, Kyle H; Wood, Thomas; Hatch, Scott A; Speakman, John R

    2016-07-15

    The integral of the dynamic component of acceleration over time has been proposed as a measure of energy expenditure in wild animals. We tested that idea by attaching accelerometers to the tails of free-ranging pelagic cormorants (Phalacrocorax pelagicus) and simultaneously estimating energy expenditure using doubly labelled water. Two different formulations of dynamic body acceleration, [vectorial and overall DBA (VeDBA and ODBA)], correlated with mass-specific energy expenditure (both R(2)=0.91). VeDBA models combining and separately parameterizing flying, diving, activity on land and surface swimming were consistently considered more parsimonious than time budget models and showed less variability in model fit. Additionally, we observed evidence for the presence of hypometabolic processes (i.e. reduced heart rate and body temperature; shunting of blood away from non-essential organs) that suppressed metabolism in cormorants while diving, which was the most metabolically important activity. We concluded that a combination of VeDBA and physiological processes accurately measured energy expenditure for cormorants.

  20. Extending PowerPack for Profiling and Analysis of High Performance Accelerator-Based Systems

    SciTech Connect

    Li, Bo; Chang, Hung-Ching; Song, Shuaiwen; Su, Chun-Yi; Meyer, Timmy; Mooring, John; Cameron, Kirk

    2014-12-01

    Accelerators offer a substantial increase in efficiency for high-performance systems offering speedups for computational applications that leverage hardware support for highly-parallel codes. However, the power use of some accelerators exceeds 200 watts at idle which means use at exascale comes at a significant increase in power at a time when we face a power ceiling of about 20 megawatts. Despite the growing domination of accelerator-based systems in the Top500 and Green500 lists of fastest and most efficient supercomputers, there are few detailed studies comparing the power and energy use of common accelerators. In this work, we conduct detailed experimental studies of the power usage and distribution of Xeon-Phi-based systems in comparison to the NVIDIA Tesla and at SandyBridge.

  1. About the scheme of the infrared FEL system for the accelerator based on HF wells

    SciTech Connect

    Kabanov, V.S.; Dzergach, A.I.

    1995-12-31

    Accelerators, based on localization of plasmoids in the HF wells (RF traps) of the axially-symmetric electromagnetic field E {sub omn} in an oversized (m,n>>1) resonant system, can give accelerating gradients {approximately}100 kV/{lambda}, e.g. 10 GV/m if {lambda}=10 {mu}m. One of possible variants of HF feeding for these accelerators is based on using the powerful infrared FEL System with 2 frequencies. The corresponding FEL`s may be similar to the Los Alamos compact Advanced FEL ({lambda}{sub 1,2}{approximately}10 pm, e-beam energy {approximately}15 MeV, e-beam current {approximately}100 A). Their power is defined mainly by the HF losses in the resonant system of the supposed accelerator.

  2. Electron cloud density measurements in accelerator beam-pipe using resonant microwave excitation

    NASA Astrophysics Data System (ADS)

    Sikora, John P.; Carlson, Benjamin T.; Duggins, Danielle O.; Hammond, Kenneth C.; De Santis, Stefano; Tencate, Alister J.

    2014-08-01

    An accelerator beam can generate low energy electrons in the beam-pipe, generally called electron cloud, that can produce instabilities in a positively charged beam. One method of measuring the electron cloud density is by coupling microwaves into and out of the beam-pipe and observing the response of the microwaves to the presence of the electron cloud. In the original technique, microwaves are transmitted through a section of beam-pipe and a change in EC density produces a change in the phase of the transmitted signal. This paper describes a variation on this technique in which the beam-pipe is resonantly excited with microwaves and the electron cloud density calculated from the change that it produces in the resonant frequency of the beam-pipe. The resonant technique has the advantage that measurements can be localized to sections of beam-pipe that are a meter or less in length with a greatly improved signal to noise ratio.

  3. Accidental beam loss in superconducting accelerators: Simulations, consequences of accidents and protective measures

    SciTech Connect

    Drozhdin, A.; Mokhov, N.; Parker, B.

    1994-02-01

    The consequences of an accidental beam loss in superconducting accelerators and colliders of the next generation range from the mundane to rather dramatic, i.e., from superconducting magnet quench, to overheating of critical components, to a total destruction of some units via explosion. Specific measures are required to minimize and eliminate such events as much as practical. In this paper we study such accidents taking the Superconducting Supercollider complex as an example. Particle tracking, beam loss and energy deposition calculations were done using the realistic machine simulation with the Monte-Carlo codes MARS 12 and STRUCT. Protective measures for minimizing the damaging effects of prefire and misfire of injection and extraction kicker magnets are proposed here.

  4. Generation and measurement of ultrashort pulses from the Stanford Superconducting Accelerator free-electron laser

    SciTech Connect

    Richman, B.A.; DeLong, K.W.; Trebino, R.

    1995-11-01

    The authors present results of frequency resolved optical gating (FROG) measurements on the Superconducting Accelerator (SCA) mid-IR free-electron laser (FEL) at Stanford. FROG retrieves complete amplitude and phase content of an optical pulse. First, they review the properties of FELs including the ability to tune wavelength and pulse length. In addition, the electron beam driving the FEL often affects the optical pulse shape. The SCA mid-IR FEL currently operates at wavelengths between 4 {micro}m and 10 {micro}m and its pulse length can be varied from 700 fs to 2 ps. They then describe details of the experimental layout and procedures particular to FELs and to the mid-IR. Finally, they show FROG measurements on the FEL including examples of nearly transform limited pulses, frequency chirped pulses, and pulses distorted by atmospheric water vapor absorption.

  5. The radiation field measurement and analysis outside the shielding of A 10 MeV electron irradiation accelerator

    NASA Astrophysics Data System (ADS)

    Shang, Jing; Li, Juexin; Xu, Bing; Li, Yuxiong

    2011-10-01

    Electron accelerators are employed widely for diverse purposes in the irradiation-processing industry, from sterilizing medical products to treating gemstones. Because accelerators offer high efficiency, high power, and require little preventative maintenance, they are becoming more and more popular than using the 60Co isotope approach. However, the electron accelerator exposes potential radiation hazards. To protect workers and the public from exposure to radiation, the radiation field around the electronic accelerator must be assessed, especially that outside the shielding. Thus, we measured the radiation dose at different positions outside the shielding of a 10-MeV electron accelerator using a new data-acquisition unit named Mini-DDL (Mini-Digital Data Logging). The measurements accurately reflect the accelerator's radiation status. In this paper, we present our findings, results and compare them with our theoretical calculations. We conclude that the measurements taken outside the irradiation hall are consistent with the findings from our calculations, except in the maze outside the door of the accelerator room. We discuss the reason for this discrepancy.

  6. Experimental Neutron Source Facility Based on Accelerator Driven System

    NASA Astrophysics Data System (ADS)

    Gohar, Yousry

    2010-06-01

    An experimental neutron source facility has been developed for producing medical isotopes, training young nuclear professionals, providing capability for performing reactor physics, material research, and basic science experiments. It uses a driven subcritical assembly with an electron accelerator. The neutrons driving the subcritical assembly were generated from the electron interactions with a target assembly. Tungsten or uranium target material is used for the neutron production through photonuclear reactions. The neutron source intensity, spectrum, and spatial distribution have been studied to maximize the neutron yield and satisfy different engineering requirements. The subcritical assembly is designed to obtain the highest possible neutron flux intensity with a subcriticality of 0.98. Low enrichment uranium is used for the fuel material because it enhances the neutron source performance. Safety, reliability, and environmental considerations are included in the facility conceptual design. Horizontal neutron channels are incorporated for performing basic research including cold neutron source. This paper describes the conceptual design and summarizes some of the related analyses.

  7. Achilles tendon reflex measuring system

    NASA Astrophysics Data System (ADS)

    Szebeszczyk, Janina; Straszecka, Joanna

    1995-06-01

    The examination of Achilles tendon reflex is widely used as a simple, noninvasive clinical test in diagnosis and pharmacological therapy monitoring in such diseases as: hypothyroidism, hyperthyroidism, diabetic neuropathy, the lower limbs obstructive angiopathies and intermittent claudication. Presented Achilles tendon reflect measuring system is based on the piezoresistive sensor connected with the cylinder-piston system. To determinate the moment of Achilles tendon stimulation a detecting circuit was used. The outputs of the measuring system are connected to the PC-based data acquisition board. Experimental results showed that the measurement accuracy and repeatability is good enough for diagnostics and therapy monitoring purposes. A user friendly, easy-to-operate measurement system fulfills all the requirements related to recording, presentation and storing of the patients' reflexograms.

  8. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect

    Batchelor, K.

    1992-01-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  9. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect

    Batchelor, K.

    1992-09-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  10. Thrust Stand Measurements of the Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Emsellem, Gregory D.

    2011-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. This type of pulsed thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Dis- charge Inductive Plasma Accelerator (MAD-IPA), shown in Fig. 1, is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil before the main current pulse via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and a static magnetic field from a set of permanent magnets arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the theta-pinch coil is high. The use of a conical theta-pinch coil also serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [1, 2]. In this paper, we describe thrust stand measurements performed to characterize the performance (specific impulse, thrust efficiency) of the MAD-IPA thruster. Impulse data are obtained at various pulse energies, mass flow rates and inductive coil geometries. Dependencies on these experimental parameters are discussed in the context of the current sheet formation and electromagnetic plasma

  11. Gas chromatograph-combustion system for 14C-accelerator mass spectrometry.

    PubMed

    McIntyre, Cameron P; Sylva, Sean P; Roberts, Mark L

    2009-08-01

    A gas chromatograph-combustion (GC-C) system is described for the introduction of samples as CO(2) gas into a (14)C accelerator mass spectrometry (AMS) system with a microwave-plasma gas ion source. Samples are injected into a gas chromatograph fitted with a megabore capillary column that uses H(2) as the carrier gas. The gas stream from the outlet of the column is mixed with O(2) and Ar gas and passed through a combustion furnace where the H(2) carrier gas and separated components are quantitatively oxidized to CO(2) and H(2)O. Water vapor is removed using a heated nafion dryer. The Ar carries the CO(2) to the ion source. The system is able to separate and oxidize up to 10 microg of compound and transfer the products from 7.6 mL/min of H(2) carrier gas into 0.2-1.0 mL/min of Ar carrier gas. Chromatographic performance and isotopic fidelity satisfy the requirements of the (14)C-AMS system for natural abundance measurements. The system is a significant technical advance for GC-AMS and may be capable of providing an increase in sensitivity for other analytical systems such as an isotope-ratio-monitoring GC/MS.

  12. Endovascular blood flow measurement system

    NASA Astrophysics Data System (ADS)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  13. Mass properties measurement system dynamics

    NASA Technical Reports Server (NTRS)

    Doty, Keith L.

    1993-01-01

    The MPMS mechanism possess two revolute degrees-of-freedom and allows the user to measure the mass, center of gravity, and the inertia tensor of an unknown mass. The dynamics of the Mass Properties Measurement System (MPMS) from the Lagrangian approach to illustrate the dependency of the motion on the unknown parameters.

  14. Output trends, characteristics, and measurements of three megavoltage radiotherapy linear accelerators.

    PubMed

    Hossain, Murshed

    2014-07-08

    The purpose of this study is to characterize and understand the long-term behavior of the output from megavoltage radiotherapy linear accelerators. Output trends of nine beams from three linear accelerators over a period of more than three years are reported and analyzed. Output, taken during daily warm-up, forms the basis of this study. The output is measured using devices having ion chambers. These are not calibrated by accredited dosimetry laboratory, but are baseline-compared against monthly output which is measured using calibrated ion chambers. We consider the output from the daily check devices as it is, and sometimes normalized it by the actual output measured during the monthly calibration of the linacs. The data show noisy quasi-periodic behavior. The output variation, if normalized by monthly measured "real' output, is bounded between ± 3%. Beams of different energies from the same linac are correlated with a correlation coefficient as high as 0.97, for one particular linac, and as low as 0.44 for another. These maximum and minimum correlations drop to 0.78 and 0.25 when daily output is normalized by the monthly measurements. These results suggest that the origin of these correlations is both the linacs and the daily output check devices. Beams from different linacs, independent of their energies, have lower correlation coefficient, with a maximum of about 0.50 and a minimum of almost zero. The maximum correlation drops to almost zero if the output is normalized by the monthly measured output. Some scatter plots of pairs of beam output from the same linac show band-like structures. These structures are blurred when the output is normalized by the monthly calibrated output. Fourier decomposition of the quasi-periodic output is consistent with a 1/f power law. The output variation appears to come from a distorted normal distribution with a mean of slightly greater than unity. The quasi-periodic behavior is manifested in the seasonally averaged output

  15. Radiation protection measurements around a 12 MeV mobile dedicated IORT accelerator

    SciTech Connect

    Soriani, Antonella; Felici, Giuseppe; Fantini, Mario; Paolucci, Massimiliano; Borla, Oscar; Evangelisti, Giovanna; Benassi, Marcello; Strigari, Lidia

    2010-03-15

    Purpose: The aim of this study is to investigate radioprotection issues that must be addressed when dedicated accelerators for intraoperative radiotherapy (IORT) are used in operating rooms. Recently, a new version of a mobile IORT accelerator (LIAC Sordina SpA, Italy) with 12 MeV electron beam has been implemented. This energy is necessary in some specific pathology treatments to allow a better coverage of thick lesions. At an electron energy of 10 MeV, leakage and scattered x-ray radiation (stray radiation) coming from the accelerator device and patient must be considered. If the energy is greater than 10 MeV, the x-ray component will increase; however, the most meaningful change should be the addition of neutron background. Therefore, radiation exposure of personnel during the IORT procedure needs to be carefully evaluated. Methods: In this study, stray x-ray radiation was measured and characterized in a series of spherical projections by means of an ion chamber survey meter. To simulate the patient during all measurements, a polymethylmethacrylate (PMMA) slab phantom with volume 30x30x15 cm{sup 3} and density 1.19 g/cm{sup 3} was used. The PMMA phantom was placed along the central axis of the beam in order to absorb the electron beams and the tenth value layer (TVL) and half value layer (HVL) of scattered radiation (at 0 deg., 90 deg., and 180 deg. scattering angles) were also measured at 1 m of distance from the phantom center. Neutron measurements were performed using passive bubble dosimeters and a neutron probe, specially designed to evaluate ambient dose equivalent H{sup *}(10). Results: The x-ray equivalent dose measured at 1 m along the beam axis at 12 MeV was 260 {mu}Sv/Gy. The value measured at 1 m at 90 deg. scattering angle was 25 {mu}Sv/Gy. The HVL and TVL values were 1.1 and 3.5 cm of lead at 0 deg., and 0.4 and 1 cm at 90 deg., respectively. The highest equivalent dose of fast neutrons was found to be at the surface of the phantom on the central

  16. Portable Positron Measurement System (PPMS)

    SciTech Connect

    2011-01-01

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  17. Portable Positron Measurement System (PPMS)

    ScienceCinema

    None

    2016-07-12

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  18. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    DOE PAGES

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; ...

    2016-05-26

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ~2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner ~ 1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Furthermore, plans to improve and expandmore » the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.« less

  19. A Monte Carlo study of a flattening filter-free linear accelerator verified with measurements

    NASA Astrophysics Data System (ADS)

    Dalaryd, Mårten; Kragl, Gabriele; Ceberg, Crister; Georg, Dietmar; McClean, Brendan; Wetterstedt, Sacha af; Wieslander, Elinore; Knöös, Tommy

    2010-12-01

    A Monte Carlo model of an Elekta Precise linear accelerator has been built and verified by measured data for a 6 and 10 MV photon beam running with and without a flattening filter in the beam line. In this study the flattening filter was replaced with a 6 mm thick copper plate, provided by the linac vendor, in order to stabilize the beam. Several studies have shown that removal of the filter improves some properties of the photon beam, which could be beneficial for radiotherapy treatments. The investigated characteristics of this new beam included output, spectra, mean energy, half value layer and the origin of scattered photons. The results showed an increased dose output per initial electron at the central axis of 1.76 and 2.66 for the 6 and 10 MV beams, respectively. The number of scattered photons from the accelerator head was reduced by (31.7 ± 0.03)% (1 SD) for the 6 MV beam and (47.6 ± 0.02)% for the 10 MV beam. The photon energy spectrum of the unflattened beam was softer compared to a conventional beam and did not vary significantly with the off-axis distance, even for the largest field size (0-20 cm off-axis).

  20. Improved measurement of brain deformation during mild head acceleration using a novel tagged MRI sequence.

    PubMed

    Knutsen, Andrew K; Magrath, Elizabeth; McEntee, Julie E; Xing, Fangxu; Prince, Jerry L; Bayly, Philip V; Butman, John A; Pham, Dzung L

    2014-11-07

    In vivo measurements of human brain deformation during mild acceleration are needed to help validate computational models of traumatic brain injury and to understand the factors that govern the mechanical response of the brain. Tagged magnetic resonance imaging is a powerful, noninvasive technique to track tissue motion in vivo which has been used to quantify brain deformation in live human subjects. However, these prior studies required from 72 to 144 head rotations to generate deformation data for a single image slice, precluding its use to investigate the entire brain in a single subject. Here, a novel method is introduced that significantly reduces temporal variability in the acquisition and improves the accuracy of displacement estimates. Optimization of the acquisition parameters in a gelatin phantom and three human subjects leads to a reduction in the number of rotations from 72 to 144 to as few as 8 for a single image slice. The ability to estimate accurate, well-resolved, fields of displacement and strain in far fewer repetitions will enable comprehensive studies of acceleration-induced deformation throughout the human brain in vivo.

  1. Use of simple x-ray measurement in the performance analysis of cryogenic RF accelerator cavities

    SciTech Connect

    D. Dotson; M. Drury; R. May; C. Reece

    1996-10-01

    X-ray emission by radiofrequency (RF) resonant cavities has long been known to accelerator health physicists as a potentially serious source of radiation exposure. The authors points out the danger of klystrons and microwave cavities by stating that the radiation source term is erratic and may be unpredictable depending on microscopic surface conditions which change with time. He also states the x-ray output is a rapidly increasing function of RF input power. At Jefferson Lab, the RF cavities used to accelerate the electron beam employ superconducting technology. X-rays are emitted at high cavity gradients, and measurements of cavity x-rays are valuable for health physics purposes and provide a useful diagnostic tool for assessing cavity performance. The quality factor (Q) for superconducting RF resonant cavities used at Jefferson Lab, is typically 5 x 10{sup 9} for the nominal design gradient of 5 MVm{sup {minus}1}. This large value for Q follows from the small resistive loss in superconducting technology. The operating frequency is 1,497 MHz. In the absence of beam, the input power for a cavity is typically 750 W and the corresponding dissipated power is 2.6 W. At 5 MWm{sup {minus}1}, the input power is 3 kW fully beam loaded. At higher gradients, performance degradation tends to occur due to the onset of electron field emission from defects in the cavity.

  2. Kr II Laser-Induced Fluorescence for Measuring Plasma Acceleration (Preprint)

    DTIC Science & Technology

    2012-02-01

    krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator...velocity as the krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions...present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration

  3. Airborne Atmospheric Aerosol Measurement System

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  4. Regional systems of care demonstration project: Mission: Lifeline STEMI Systems Accelerator: design and methodology.

    PubMed

    Bagai, Akshay; Al-Khalidi, Hussein R; Sherwood, Matthew W; Muñoz, Daniel; Roettig, Mayme L; Jollis, James G; Granger, Christopher B

    2014-01-01

    ST-segment elevation myocardial infarction (STEMI) systems of care have been associated with significant improvement in use and timeliness of reperfusion. Consequently, national guidelines recommend that each community should develop a regional STEMI care system. However, significant barriers continue to impede widespread establishment of regional STEMI care systems in the United States. We designed the Regional Systems of Care Demonstration Project: Mission: Lifeline STEMI Systems Accelerator, a national educational outcome research study in collaboration with the American Heart Association, to comprehensively accelerate the implementation of STEMI care systems in 17 major metropolitan regions encompassing >1,500 emergency medical service agencies and 450 hospitals across the United States. The goals of the program are to identify regional gaps, barriers, and inefficiencies in STEMI care and to devise strategies to implement proven recommendations to enhance the quality and consistency of care. The study interventions, facilitated by national faculty with expertise in regional STEMI system organization in partnership with American Heart Association representatives, draw upon specific resources with proven past effectiveness in augmenting regional organization. These include bringing together leading regional health care providers and institutions to establish common commitment to STEMI care improvement, developing consensus-based standardized protocols in accordance with national professional guidelines to address local needs, and collecting and regularly reviewing regional data to identify areas for improvement. Interventions focus on each component of the reperfusion process: the emergency medical service, the emergency department, the catheterization laboratory, and inter-hospital transfer. The impact of regionalization of STEMI care on clinical outcomes will be evaluated.

  5. Rotor component displacement measurement system

    DOEpatents

    Mercer, Gary D.; Li, Ming C.; Baum, Charles R.

    2003-05-27

    A measuring system for measuring axial displacement of a tube relative to an axially stationary component in a rotating rotor assembly includes at least one displacement sensor adapted to be located normal to a longitudinal axis of the tube; an insulated cable system adapted for passage through the rotor assembly; a rotatable proximitor module located axially beyond the rotor assembly to which the cables are connected; and a telemetry system operatively connected to the proximitor module for sampling signals from the proximitor module and forwarding data to a ground station.

  6. Engineered and Administrative Safety Systems for the Control of Prompt Radiation Hazards at Accelerator Facilities

    SciTech Connect

    Liu, James C.; Vylet, Vashek; Walker, Lawrence S.; /SLAC

    2007-12-17

    The ANSI N43.1 Standard, currently in revision (ANSI 2007), sets forth the requirements for accelerator facilities to provide adequate protection for the workers, the public and the environment from the hazards of ionizing radiation produced during and from accelerator operations. The Standard also recommends good practices that, when followed, provide a level of radiation protection consistent with those established for the accelerator communities. The N43.1 Standard is suitable for all accelerator facilities (using electron, positron, proton, or ion particle beams) capable of producing radiation, subject to federal or state regulations. The requirements (see word 'shall') and recommended practices (see word 'should') are prescribed in a graded approach that are commensurate with the complexity and hazard levels of the accelerator facility. Chapters 4, 5 and 6 of the N43.1 Standard address specially the Radiation Safety System (RSS), both engineered and administrative systems, to mitigate and control the prompt radiation hazards from accelerator operations. The RSS includes the Access Control System (ACS) and Radiation Control System (RCS). The main requirements and recommendations of the N43.1 Standard regarding the management, technical and operational aspects of the RSS are described and condensed in this report. Clearly some aspects of the RSS policies and practices at different facilities may differ in order to meet the practical needs for field implementation. A previous report (Liu et al. 2001a), which reviews and summarizes the RSS at five North American high-energy accelerator facilities, as well as the RSS references for the 5 labs (Drozdoff 2001; Gallegos 1996; Ipe and Liu 1992; Liu 1999; Liu 2001b; Rokni 1996; TJNAF 1994; Yotam et al. 1991), can be consulted for the actual RSS implementation at various laboratories. A comprehensive report describing the RSS at the Stanford Linear Accelerator Center (SLAC 2006) can also serve as a reference.

  7. Functional changes in systemic and regional (intracranial) circulation accompanying low accelerations

    NASA Technical Reports Server (NTRS)

    Usachev, V. V.; Shinkarevskaya, I. P.

    1973-01-01

    Functional changes in systemic and cerebral hemodynamics were studied with respect to vestibular stresses. The main types of responses, differing qualitatively with respect to the tolerance of test subjects to low accelerations (particularly to Coriolis accelerations), were established. This is of practical importance in the selection of aircraft and space pilots. The data presented sheds light on the physiological mechanisms of adaptation and disturbed compensation during vestibular stimulation. Further studies in this important field of aerospace medicine are outlined.

  8. Portable plant health measurement system

    NASA Astrophysics Data System (ADS)

    Aksoy, Nejat

    1999-01-01

    This system is designed to assist diagnosis of the plant health globally. The system is formed by portable plant health measurement devices connected to a diagnosis and analysis center through a flexible information network. A flexible network is formed so that users from the remote areas as well as internet are able to use the system. The hardware and software is designed in an open technology for easier upgrades. Portable plant health measurement instrument is a networkable leaf flash spectrophotometer capable of measuring Qa, Electrochromy, P700, Fluorescence, S Fluorescence, reflectance spectra, temperature, humidity and image of the leaf with GPS information. The network and intelligent user interface options of the system can be used by any commercially or user designed instrument.

  9. The vacuum system for the Munich fission fragment accelerator

    NASA Astrophysics Data System (ADS)

    Maier-Komor, P.; Faestermann, T.; Krücken, R.; Nebel, F.; Winkler, S.; Groß, M.; Habs, D.; Kester, O.; Szerypo, J.; Thirolf, P. G.

    2006-05-01

    The Munich Accelerator for Fission Fragments (MAFF) is a radioactive ion beam facility which will be installed at the new research reactor FRM-II. This new reactor became critical in Spring 2004. The heart of MAFF, the target-ion source unit will be placed in the through-going beam tube of the FRM-II. This beam tube has been installed, tested and filled with helium in 2001. The cogent authorization procedures and safety levels developed for nuclear power plants are applied for this research reactor also. Therefore, MAFF also has to obey these very strict rules, because the typical 1 g load of 235U in the MAFF source creates a fission product activity of several 10 14 Bq after one reactor cycle of 52 days. All vacuum components must withstand a pressure of 6×10 5 Pa in addition to their UHV acceptability. Even dynamic gaskets must be strictly metallic, because organic compounds would not withstand the radioactive irradiation during the design lifetime of 30 years. Only dry vacuum pumps are suitable: refrigerator cryopumps for the high-vacuum part and five stages of roots pumps for roughing and regeneration.

  10. Bioelectrochemical system accelerates microbial growth and degradation of filter paper.

    PubMed

    Sasaki, Kengo; Hirano, Shin-Ichi; Morita, Masahiko; Sasaki, Daisuke; Matsumoto, Norio; Ohmura, Naoya; Igarashi, Yasuo

    2011-01-01

    Bioelectrochemical reactors (BERs) with a cathodic working potential of -0.6 or -0.8 V more efficiently degraded cellulosic material, i.e., filter paper (57.4-74.1% in 3 days and 95.9-96.3% in 7 days) than did control reactors without giving exogenous potential (15.4% in 3 days and 64.2% in 7 days). At the same time, resultant conversions to methane and carbon dioxide in cathodic working chamber of BERs by application of electrochemical reduction in 3 days of operation were larger than control reactors. However, cumulative methane production in cathodic BERs was similar to those in control reactors after 7 days of operation. Microscopic observation and 16S rRNA gene analysis showed that microbial growth in the entire consortium was higher after 2 days of operation of cathodic BERs as compared with the control reactors. In addition, the number of methanogenic 16S rRNA gene copies in cathodic BERs was higher than in control reactors. Moreover, archaeal community structures constructed in cathodic BERs consisted of hydrogenotrophic methanogen-related organisms and differed from those in control reactors after 2 days of operation. Specifically, the amount of Methanothermobacter species in cathodic BERs was higher within archaeal communities than in those control reactors after 2 days of operation. Electrochemical reduction may be effective for accelerating microbial growth in the start-up period and thereby increasing microbial treatment of cellulosic waste and methane production.

  11. A version of the Trasco Intense Proton Source optimized for accelerator driven system purposes

    NASA Astrophysics Data System (ADS)

    Ciavola, G.; Celona, L.; Gammino, S.; Presti, M.; Andò, L.; Passarello, S.; Zhang, XZh.; Consoli, F.; Chines, F.; Percolla, C.; Calzona, V.; Winkler, M.

    2004-05-01

    A full set of measurements of the magnetic field has been carried out to define a different design of the TRASCO Intense Proton Source (TRIPS) magnetic system, based on permanent magnets, in order to increase the reliability of the source. The two coils of the source generate a maximum field of 150 mT and the optimum field was determined around 95 mT. The OPERA-3D package was used to simulate the magnetic field and a new magnetic system was designed as a combination of three rings of NdFeB magnets and soft iron. The high voltage insulation has been completely modified, in order to avoid any electronics at 80 kV voltage. The description of the magnetic measurements and the comparison with the simulations are presented, along with the mechanical design of the new version permanent magnet TRIPS (PM-TRIPS) and the new design of the extraction system. Finally the modification of the low energy beam transfer line (LEBT), which now includes a 30° bending magnet, will be outlined, with special regard to the accelerator availability improvement which can be obtained with the installation of two PM-TRIPS sources or more on the LEBT.

  12. Development and characterization of an interferometer for calorimeter-based absorbed dose to water measurements in a medical linear accelerator

    NASA Astrophysics Data System (ADS)

    Flores-Martinez, Everardo; Malin, Martha J.; DeWerd, Larry A.

    2016-11-01

    The quantity of relevance for external beam radiotherapy is absorbed dose to water (ADW). An interferometer was built, characterized, and tested to measure ADW within the dose range of interest for external beam radiotherapy using the temperature dependence of the refractive index of water. The interferometer was used to measure radiation-induced phase shifts of a laser beam passing through a (10 × 10 × 10) cm3 water-filled glass phantom, irradiated with a 6 MV photon beam from a medical linear accelerator. The field size was (7 × 7) cm2 and the dose was measured at a depth of 5 cm in the water phantom. The intensity of the interference pattern was measured with a photodiode and was used to calculate the time-dependent phase shift curve. The system was thermally insulated to achieve temperature drifts of less than 1.5 mK/min. Data were acquired 60 s before and after the irradiation. The radiation-induced phase shifts were calculated by taking the difference in the pre- and post-irradiation drifts extrapolated to the midpoint of the irradiation. For 200, 300, and 400 monitor units, the measured doses were 1.6 ± 0.3, 2.6 ± 0.3, and 3.1 ± 0.3 Gy, respectively. Measurements agreed within the uncertainty with dose calculations performed with a treatment planning system. The estimated type-A, k = 1 uncertainty in the measured doses was 0.3 Gy which is an order of magnitude lower than previously published interferometer-based ADW measurements.

  13. Development and characterization of an interferometer for calorimeter-based absorbed dose to water measurements in a medical linear accelerator.

    PubMed

    Flores-Martinez, Everardo; Malin, Martha J; DeWerd, Larry A

    2016-11-01

    The quantity of relevance for external beam radiotherapy is absorbed dose to water (ADW). An interferometer was built, characterized, and tested to measure ADW within the dose range of interest for external beam radiotherapy using the temperature dependence of the refractive index of water. The interferometer was used to measure radiation-induced phase shifts of a laser beam passing through a (10 × 10 × 10) cm(3) water-filled glass phantom, irradiated with a 6 MV photon beam from a medical linear accelerator. The field size was (7 × 7) cm(2) and the dose was measured at a depth of 5 cm in the water phantom. The intensity of the interference pattern was measured with a photodiode and was used to calculate the time-dependent phase shift curve. The system was thermally insulated to achieve temperature drifts of less than 1.5 mK/min. Data were acquired 60 s before and after the irradiation. The radiation-induced phase shifts were calculated by taking the difference in the pre- and post-irradiation drifts extrapolated to the midpoint of the irradiation. For 200, 300, and 400 monitor units, the measured doses were 1.6 ± 0.3, 2.6 ± 0.3, and 3.1 ± 0.3 Gy, respectively. Measurements agreed within the uncertainty with dose calculations performed with a treatment planning system. The estimated type-A, k = 1 uncertainty in the measured doses was 0.3 Gy which is an order of magnitude lower than previously published interferometer-based ADW measurements.

  14. The Machine Protection System for the Fermilab Accelerator Science and Technology Facility

    SciTech Connect

    Wu, Jinyuan; Warner, Arden; Liu, Ning; Neswold, Richard; Carmichael, Linden

    2015-11-15

    The Machine Protection System (MPS) for the Fermilab Accelerator Science and Technology Facility (FAST) has been implemented and tested. The system receives signals from several subsystems and devices which conveys the relevant status needed to the safely operate the accelerator. Logic decisions are made based on these inputs and some predefined user settings which in turn controls the gate signal to the laser of the photo injector. The inputs of the system have a wide variety of signal types, encoding methods and urgencies for which the system is designed to accommodate. The MPS receives fast shutdown (FSD) signals generated by the beam loss system and inhibits the beam or reduces the beam intensity within a macropulse when the beam losses at several places along the accelerator beam line are higher than acceptable values. TTL or relay contact signals from the vacuum system, toroids, magnet systems etc., are chosen with polarities that ensure safe operation of the accelerator from unintended events such as cable disconnection in the harsh industrial environment of the experimental hall. A RS422 serial communication scheme is used to interface the operation permit generator module and a large number of movable devices each reporting multi-bit status. The system also supports operations at user defined lower beam levels for system conunissioning. The machine protection system is implemented with two commercially available off-the-shelf VMEbus based modules with on board FPGA devices. The system is monitored and controlled via the VMEbus by a single board CPU

  15. Artificial intelligence research in particle accelerator control systems for beam line tuning

    SciTech Connect

    Pieck, Martin

    2008-01-01

    Tuning particle accelerators is time consuming and expensive, with a number of inherently non-linear interactions between system components. Conventional control methods have not been successful in this domain and the result is constant and expensive monitoring of the systems by human operators. This is particularly true for the start-up and conditioning phase after a maintenance period or an unexpected fault. In turn, this often requires a step-by-step restart of the accelerator. Surprisingly few attempts have been made to apply intelligent accelerator control techniques to help with beam tuning, fault detection, and fault recovery problems. The reason for that might be that accelerator facilities are rare and difficult to understand systems that require detailed expert knowledge about the underlying physics as well as months if not years of experience to understand the relationship between individual components, particularly if they are geographically disjoint. This paper will give an overview about the research effort in the accelerator community that has been dedicated to the use of artificial intelligence methods for accelerator beam line tuning.

  16. Methodology and measures for preventing unacceptable flow-accelerated corrosion thinning of pipelines and equipment of NPP power generating units

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Lovchev, V. N.; Gutsev, D. F.

    2016-10-01

    Problems of metal flow-accelerated corrosion (FAC) in the pipelines and equipment of the condensate- feeding and wet-steam paths of NPP power-generating units (PGU) are examined. Goals, objectives, and main principles of the methodology for the implementation of an integrated program of AO Concern Rosenergoatom for the prevention of unacceptable FAC thinning and for increasing operational flow-accelerated corrosion resistance of NPP EaP are worded (further the Program). A role is determined and potentialities are shown for the use of Russian software packages in the evaluation and prediction of FAC rate upon solving practical problems for the timely detection of unacceptable FAC thinning in the elements of pipelines and equipment (EaP) of the secondary circuit of NPP PGU. Information is given concerning the structure, properties, and functions of the software systems for plant personnel support in the monitoring and planning of the inservice inspection of FAC thinning elements of pipelines and equipment of the secondary circuit of NPP PGUs, which are created and implemented at some Russian NPPs equipped with VVER-1000, VVER-440, and BN-600 reactors. It is noted that one of the most important practical results of software packages for supporting NPP personnel concerning the issue of flow-accelerated corrosion consists in revealing elements under a hazard of intense local FAC thinning. Examples are given for successful practice at some Russian NPP concerning the use of software systems for supporting the personnel in early detection of secondary-circuit pipeline elements with FAC thinning close to an unacceptable level. Intermediate results of working on the Program are presented and new tasks set in 2012 as a part of the updated program are denoted. The prospects of the developed methods and tools in the scope of the Program measures at the stages of design and construction of NPP PGU are discussed. The main directions of the work on solving the problems of flow-accelerated

  17. Concept, implementation and commissioning of the automation system for the accelerator module test facility AMTF

    SciTech Connect

    Böckmann, Torsten A.; Korth, Olaf; Clausen, Matthias; Schoeneburg, Bernd

    2014-01-29

    The European XFEL project launched on June 5, 2007 will require about 103 accelerator modules as a main part of the XFEL linear accelerator. All superconducting components constituting the accelerator module like cavities and magnets have to be tested before the assembly. For the tests of the individual cavities and the complete modules an XFEL Accelerator Module Test Facility (AMTF) has been erected at DESY. The process control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the cryogenic plant and all its subcomponents. A complementary component of EPICS is the Open Source software suit CSS (Control System Studio). CSS is an integrated engineering, maintenance and operating tool for EPICS. CSS enables local and remote operating and monitoring of the complete system and thus represents the human machine interface. More than 250 PROFIBUS nodes work at the accelerator module test facility. DESY installed an extensive diagnostic and condition monitoring system. With these diagnostic tools it is possible to examine the correct installation and configuration of all PROFIBUS nodes in real time. The condition monitoring system based on FDT/DTM technology shows the state of the PROFIBUS devices at a glance. This information can be used for preventive maintenance which is mandatory for continuous operation of the AMTF facility. The poster will describe all steps form engineering to implementation and commissioning.

  18. Light scattering microscopy measurements of single nuclei compared with GPU-accelerated FDTD simulations.

    PubMed

    Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin

    2016-04-07

    Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.

  19. Measurements of Cl-36 in Antarctic meteorites and Antarctic ice using a Van de Graaff accelerator

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Arnold, J. R.; Finkel, R. C.; Elmore, D.; Ferraro, R. D.; Gove, H. E.; Beukens, R. P.; Chang, K. H.; Kilius, L. R.

    1979-01-01

    The paper presents measurements of cosmic-ray produced (Cl-36) in Antarctic meteorites and ice using a Van de Graaff accelerator as an ultrasensitive mass spectrometer. Results from this ion counting technique are used to support a two-stage irradiation model for the Yamato-7301 and Allan Hills-76008 meteorites and to show a long terrestrial age for Allan Hills-77002. Yamato-7304 has a terrestrial age of less than 0.1 m.y., and the (Cl-36) content of the Antarctic ice sample from the Yamato mountain is consistent with levels expected in currently depositing snow implying that the age of the ice cap at this site is less than on (Cl-36) half-life.

  20. E-beam dynamics calculations and comparison with measurements of a high duty accelerator at Boeing

    SciTech Connect

    Parazzoli, C.G.; Dowell, D.H.

    1995-12-31

    The electron dynamics in the photoinjector cavities and through the beamline for a high duty factor electron accelerator are computed. The particle in a cell code ARGUS, is first used in the low energy (< 2 MeV) region of the photoinjector, then the ARGUS-generated phase space at the photoinjector exit is used as input in the standard particle pusher code PARMELA, and the electron beam properties at the end of the beamline computed. Comparisons between the calculated and measured electron bea mradial profiles and emittances are presented for different values of the electron pulse charge. A discussion of the methodology used and on the accuracy of PARMELA in the low energy region of the photoinjector is given.

  1. Light scattering microscopy measurements of single nuclei compared with GPU-accelerated FDTD simulations

    NASA Astrophysics Data System (ADS)

    Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin

    2016-04-01

    Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.

  2. Measurements of accelerator-produced leakage neutron and photon transmission through concrete.

    PubMed

    Kase, K R; Nelson, W R; Fasso, A; Liu, J C; Mao, X; Jenkins, T M; Kleck, J H

    2003-02-01

    Optimum shielding of the radiation from particle accelerators requires knowledge of the attenuation characteristics of the shielding material. The most common material for shielding this radiation is concrete, which can be made using various materials of different densities as aggregates. These different concrete mixes can have very different attenuation characteristics. Information about the attenuation of leakage photons and neutrons in ordinary and heavy concrete is, however, very limited. To increase our knowledge and understanding of the radiation attenuation in concrete of various compositions, we have performed measurements of the transmission of leakage radiation, photons and neutrons, from a Varian Clinac 2100C medical linear accelerator operating at maximum electron energies of 6 and 18 MeV. We have also calculated, using Monte Carlo techniques, the leakage neutron spectra and its transmission through concrete. The results of these measurements and calculations extend the information currently available for designing shielding for medical electron accelerators. Photon transmission characteristics depend more on the manufacturer of the concrete than on the atomic composition. A possible cause for this effect is a non-uniform distribution of the high-density aggregate, typically iron, in the concrete matrix. Errors in estimated transmission of photons can exceed a factor of three, depending on barrier thickness, if attenuation in high-density concrete is simply scaled from that of normal density concrete. We found that neutron transmission through the high-density concretes can be estimated most reasonably and conservatively by using the linear tenth-value layer of normal concrete if specific values of the tenth-value layer of the high-density concrete are not known. The reason for this is that the neutron transmission depends primarily on the hydrogen content of the concrete, which does not significantly depend on concrete density. Errors of factors of two

  3. Simulator for an Accelerator-Driven Subcritical Fissile Solution System

    SciTech Connect

    Klein, Steven Karl; Day, Christy M.; Determan, John C.

    2015-09-14

    LANL has developed a process to generate a progressive family of system models for a fissile solution system. This family includes a dynamic system simulation comprised of coupled nonlinear differential equations describing the time evolution of the system. Neutron kinetics, radiolytic gas generation and transport, and core thermal hydraulics are included in the DSS. Extensions to explicit operation of cooling loops and radiolytic gas handling are embedded in these systems as is a stability model. The DSS may then be converted to an implementation in Visual Studio to provide a design team the ability to rapidly estimate system performance impacts from a variety of design decisions. This provides a method to assist in optimization of the system design. Once design has been generated in some detail the C++ version of the system model may then be implemented in a LabVIEW user interface to evaluate operator controls and instrumentation and operator recognition and response to off-normal events. Taken as a set of system models the DSS, Visual Studio, and LabVIEW progression provides a comprehensive set of design support tools.

  4. Inflight lightning characteristics measurement system

    NASA Technical Reports Server (NTRS)

    Pitts, F. L.; Thomas, M. E.; Campbell, R. E.; Thomas, R. M.; Zaepfel, K. P.

    1979-01-01

    A research data-gathering system being developed for inflight measurement of direct and nearby lightning strike characteristics is described. Wideband analog recorders used to record the lightning scenario are supplemented with high-sample-rate digital transient recorders with augmented memory capacity for increased time resolution of specific times of interest. The endless-loop data storage technique employed by the transient recorders circumvents problems associated with oscilloscopic techniques and allows unattended operation. System integrity and immunity from induced effects is accomplished by fiber-optics signal-transmission links, shielded system enclosures, and the use of a dynamotor for power system isolation.

  5. Accelerated testing of an optimized closing system for automotive fuel tank

    NASA Astrophysics Data System (ADS)

    Gligor, A.; Ilie, S.; Nicolae, V.; Mitran, G.

    2015-11-01

    Taking into account the legal prescriptions which are in force and the new regulatory requirements that will be mandatory to implement in the near future regarding testing characteristics of automotive fuel tanks, resulted the necessity to develop a new testing methodology which allows to estimate the behaviour of the closing system of automotive fuel tank over a long period of time (10-15 years). Thus, were designed and conducted accelerated tests under extreme assembling and testing conditions (high values for initial tightening torques, extreme values of temperature and pressure). In this paper are presented two of durability tests which were performed on an optimized closing system of fuel tank: (i) the test of exposure to temperature with cyclical variation and (ii) the test of continuous exposure to elevated temperature. In these experimental tests have been used main components of the closing system manufactured of two materials variants, both based on the polyoxymethylene, material that provides higher mechanical stiffness and strength in a wide temperature range, as well as showing increased resistance to the action of chemical agents and fuels. The tested sample included a total of 16 optimized locking systems, 8 of each of 2 versions of material. Over deploying the experiments were determined various parameters such as: the initial tightening torque, the tightening torque at different time points during measurements, the residual tightening torque, defects occurred in the system components (fissures, cracks, ruptures), the sealing conditions of system at the beginning and at the end of test. Based on obtained data were plotted the time evolution diagrams of considered parameter (the residual tightening torque of the system consisting of locking nut and threaded ring), in different temperature conditions, becoming possible to make pertinent assessments on the choice between the two types of materials. By conducting these tests and interpreting the

  6. Stabilization of an axially moving accelerated/decelerated system via an adaptive boundary control.

    PubMed

    Liu, Yu; Zhao, Zhijia; He, Wei

    2016-09-01

    In this study, an adaptive boundary control is developed for vibration suppression of an axially moving accelerated/decelerated belt system. The dynamic model of the belt system is represented by partial-ordinary differential equations with consideration of the high acceleration/deceleration and unknown distributed disturbance. By utilizing adaptive technique and Lyapunov-based back stepping method, an adaptive boundary control is proposed for vibration suppression of the belt system, a disturbance observer is introduced to attenuate the effects of unknown boundary disturbance, the adaptive law is developed to handle parametric uncertainties and the S-curve acceleration/deceleration method is adopted to plan the belt׳s speed. With the proposed control scheme, the well-posedness and stability of the closed-loop system are mathematically demonstrated. Simulations are displayed to illustrate the effectiveness of the proposed control.

  7. Gadolinium-148 and other spallation production cross section measurements for accelerator target facilities

    NASA Astrophysics Data System (ADS)

    Kelley, Karen Corzine

    At the Los Alamos Neutron Science Center accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research facility and the 1L target at the Lujan Center. The Department of Energy requires hazard classification analyses to be performed on these targets and places limits on certain radionuclide inventories in the targets to avoid characterizing the facilities as "nuclear facilities." Gadolinium-148 is a radionuclide created from the spallation of tungsten. Allowed isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of Gadolinium-148 is low, but it encompasses almost two-thirds of the total dose burden for the two tungsten targets based on present yield estimates. From a hazard classification standpoint, this severely limits the lifetime of these tungsten targets. The cross section is not well-established experimentally and this is the motivation for measuring the Gadolinium-148 production cross section from tungsten. In a series of experiments at the Weapons Neutron Research facility, Gadolinium-148 production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold. These experiments used 3 mum thin tungsten, tantalum, and gold foils and 10 mum thin aluminum activation foils. In addition, spallation yields were determined for many short-lived and long-lived spallation products with these foils using gamma and alpha spectroscopy and compared with predictions of the Los Alamos National Laboratory codes CEM2k+GEM2 and MCNPX. The cumulative Gadolinium-148 production cross section measured from tantalum, tungsten, and gold for incident 600-MeV protons were 15.2 +/- 4.0, 8.31 +/- 0.92, and 0.591 +/- 0.155, respectively. The average production cross sections measured at 800 MeV were 28.6 +/- 3.5, 19.4 +/- 1.8, and 3.69 +/- 0.50 for tantalum, tungsten, and gold, respectively. These cumulative

  8. Accelerator Mass Spectrometry Measurements of Plutonium in Sediment and Seawater from the Marshall Islands

    SciTech Connect

    Leisvik, Mathias

    2001-08-01

    During the summer 2000, I was given the opportunity to work for about three months as a technical trainee at Lawrence Livermore National Laboratory, or LLNL as I will refer to it hereafter. University of California runs this Department of Energy laboratory, which is located 70 km east of San Francisco, in the small city of Livermore. This master thesis in Radioecology is based on the work I did here. LLNL, as a second U.S.-facility for development of nuclear weapons, was built in Livermore in the beginning of the 1950's (Los Alamos in New Mexico was the other one). It has since then also become a 'science center' for a number of areas like magnetic and laser fusion energy, non-nuclear energy, biomedicine, and environmental science. The Laboratory's mission has changed over the years to meet new national needs. The following two statements were found on the homepage of LLNL (http://www.llnl.gov), at 2001-03-05, where also information about the laboratory and the scientific projects that takes place there, can be found. 'Our primary mission is to ensure that the nation's nuclear weapons remain safe, secure, and reliable and to prevent the spread and use of nuclear weapons worldwide'. 'Our goal is to apply the best science and technology to enhance the security and well-being of the nation and to make the world a safer place.' The Marshall Islands Dose Assessment and Radioecology group at the Health and Ecological Assessments division employed me, and I also worked to some extent with the Centre for Accelerator Mass Spectrometry (CAMS) group. The work I did at LLNL can be divided into two parts. In the first part Plutonium (Pu) measurements in sediments from the Rongelap atoll in Marshall Islands, using Accelerator Mass Spectrometry (AMS) were done. The method for measuring these kinds of samples is well understood at LLNL since soil samples have been measured with AMS for Pu in the past. Therefore it was the results that were of main interest and not the technique

  9. Biocellion: accelerating computer simulation of multicellular biological system models

    PubMed Central

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-01-01

    Motivation: Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. Results: We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Availability and implementation: Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. Contact: seunghwa.kang@pnnl.gov PMID:25064572

  10. A computer model of the energy-current loss instabilities in a recirculating accelerator system

    NASA Astrophysics Data System (ADS)

    Edighoffer, J. A.; Kim, K.-J.

    1995-04-01

    The computer program called ESRA (energy stability in a recirculating accelerator FELs) has been written to model bunches of particles in longitudinal phase space traversing a recirculating accelerator and the associated rf changes and aperture current losses. This code addresses stability issues and determines the transport, noise, feedback and other parameters for which these FEL systems are stable or unstable. A representative system is modeled, the Novosibirisk high power FEL race-track microtron for photochemical research. The system is stable with prudent choice of parameters.

  11. The electron-optical system of the LIU-2 induction accelerator

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. I.; Batazova, M. A.

    2014-09-01

    The electron-optical system (EOS) of an induction accelerator for generation of an electron beam with an energy of 2 MeV, a current of 2 kA, an impulse duration of 2 × 10-7 s, and a geometric output emittance not exceeding the thermal value of it is described. The EOS consists of two parts. The first part is a diode gun with a perveance of 2 × 10-6 A/B3/2 and a cathode-anode voltage of 1 MeV. The second part is an accelerating tube with uniform distribution of the same accelerating voltage. A beam is transported at a distance of about 4 m from the cathode and focused on a spot with a diameter of about 1 mm. The compliance tests results of the linear-induction accelerator precisely conform to the calculated design parameters.

  12. Near Field Antenna Measurement System.

    DTIC Science & Technology

    1982-03-01

    beam pointing accuracy and .6 dB gain accuracy. These antennas are both planar arrays with the X-band antenna scanning with ferrite phase shifters in...AD-A114 125 M[ES AIRCRAFT CO FULLERTON CA F/ 17/9 NEAR FIELD ANTENNA MEASUREMENT SYSTEM. (U) MAR 82 A E HOLLEY DAABO7-7?-C-1 87 UNCLASSIFIED NL...IllIHE El. onhEnoh IIIIhh --h h I~m I I Research and Development Technical Report I DAABO7-77-C-0587-F1 NEAR FIELD ANTENNA I MEASUREMENT SYSTEM I A.E

  13. System to measure heart performance

    NASA Astrophysics Data System (ADS)

    Andrade, Armando; Rios, Heriberto; Lizana, Pablo R.; Puente, Ernestina; Mendoza, Diego

    2002-11-01

    Systems to measure heart condition are applied to patients with early or chronic cardiac problems with the aim of diagnosing and exactly locat- ing the problem. Two very important factors exist that are taken into account in order to obtain a reliable diagnosis and to be able to give suitable medical treatment. One of them is the volume of blood that the heart pumps, the other is the temperature gradient. In our system we measure both parameters at the same time with the purpose of determining how the heart is working from the amount of blood pumped per unit time. (To be presented in Spanish.)

  14. Tracer airflow measurement system (TRAMS)

    DOEpatents

    Wang, Duo

    2007-04-24

    A method and apparatus for measuring fluid flow in a duct is disclosed. The invention uses a novel high velocity tracer injector system, an optional insertable folding mixing fan for homogenizing the tracer within the duct bulk fluid flow, and a perforated hose sampling system. A preferred embodiment uses CO.sub.2 as a tracer gas for measuring air flow in commercial and/or residential ducts. In extant commercial buildings, ducts not readily accessible by hanging ceilings may be drilled with readily plugged small diameter holes to allow for injection, optional mixing where desired using a novel insertable foldable mixing fan, and sampling hose.

  15. Measurements in Transitional Boundary Layers Under High Free-Stream Turbulence and Strong Acceleration Conditions

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Simon, Terrence W.

    1995-01-01

    Measurements from transitional, heated boundary layers along a concave-curved test wall are presented and discussed. A boundary layer subject to low free-stream turbulence intensity (FSTI), which contains stationary streamwise (Gortler) vortices, is documented. The low FSTI measurements are followed by measurements in boundary layers subject to high (initially 8%) free-stream turbulence intensity and moderate to strong streamwise acceleration. Conditions were chosen to simulate those present on the downstream half of the pressure side of a gas turbine airfoil. Mean flow characteristics as well as turbulence statistics, including the turbulent shear stress, turbulent heat flux, and turbulent Prandtl number, are documented. A technique called "octant analysis" is introduced and applied to several cases from the literature as well as to data from the present study. Spectral analysis was applied to describe the effects of turbulence scales of different sizes during transition. To the authors'knowledge, this is the first detailed documentation of boundary layer transition under such high free-stream turbulence conditions.

  16. Ground-truth measurement systems

    NASA Technical Reports Server (NTRS)

    Serafin, R.; Seliga, T. A.; Lhermitte, R. M.; Nystuen, J. A.; Cherry, S.; Bringi, V. N.; Blackmer, R.; Heymsfield, G. M.

    1981-01-01

    Ground-truth measurements of precipitation and related weather events are an essential component of any satellite system designed for monitoring rainfall from space. Such measurements are required for testing, evaluation, and operations; they provide detailed information on the actual weather events, which can then be compared with satellite observations intended to provide both quantitative and qualitative information about them. Also, very comprehensive ground-truth observations should lead to a better understanding of precipitation fields and their relationships to satellite data. This process serves two very important functions: (a) aiding in the development and interpretation of schemes of analyzing satellite data, and (b) providing a continuing method for verifying satellite measurements.

  17. Distributed UHV system for the folded tandem ion accelerator facility at BARC

    NASA Astrophysics Data System (ADS)

    Gupta, S. K.; Agarwal, A.; Singh, S. K.; Basu, A.; P, Sapna; Sarode, S. P.; Singh, V. P.; Subrahmanyam, N. B. V.; Bhatt, J. P.; Pol, S. S.; Raut, P. J.; Ware, S. V.; Singh, P.; Choudhury, R. K.; Kailas, S.

    2008-05-01

    The 6 MV Folded Tandem Ion Accelerator (FOTIA) Facility at the Nuclear Physics Division, BARC is operational and accelerated beams of both light and heavy ions are being used extensively for basic and applied research. An average vacuum of the order of 10-8-10-9 Torr is maintained for maximum beam transmission and minimum beam energy spreads. The FOTIA vacuum system comprises of about 55 meter long, 100 mm diameter beam lines including various diagnostic devices, two accelerating tubes and four narrow vacuum chambers. The cross sections of the vacuum chambers are 14mm × 24mm for 180°, 38mm × 60mm and 19 × 44 mm for the and 70° & 90° bending magnets and Switching chambers respectively. All the beam line components are UHV compatible, fabricated from stainless steel 304L grade material fitted with metal gaskets. The total volume ~5.8 × 105 cm3 and surface area of 4.6 × 104 cm2, interspersed with total 18 pumping stations. The accelerating tubes are subjected to very high voltage gradient, 20.4 kV/cm, which requires a hydrocarbon free and clean vacuum for smooth operation of the accelerator. Vacuum interlocks are provided to various devices for safe operation of the accelerator. Specially designed sputter ion pumps for higher environmental pressure of 8 atmospheres are used to pump the accelerating tubes and the vacuum chamber for the 180° bending magnet. Fast acting valves are provided for isolating main accelerator against accidental air rush from rest of the beam lines. All the vacuum readings are displayed locally and are also available remotely through computer interface to the Control Room. Vacuum system details are described in this paper.

  18. A urine volume measurement system

    NASA Technical Reports Server (NTRS)

    Poppendiek, H. F.; Mouritzen, G.; Sabin, C. M.

    1972-01-01

    An improved urine volume measurement system for use in the unusual environment of manned space flight is reported. The system utilizes a low time-constant thermal flowmeter. The time integral of the transient response of the flowmeter gives the urine volume during a void as it occurs. In addition, the two phase flows through the flowmeter present no problem. Developments of the thermal flowmeter and a verification of the predicted performance characteristics are summarized.

  19. Measurement of the equation of state of solid-density copper heated with laser-accelerated protons

    NASA Astrophysics Data System (ADS)

    Feldman, S.; Dyer, G.; Kuk, D.; Ditmire, T.

    2017-03-01

    We present equation of state (EOS) measurements of solid-density copper heated to 5-10 eV. A copper sample was heated isochorically by hydrogen ions accelerated from an adjacent foil by a high intensity pulsed laser, and probed optically. The measured temperature and expansion are compared against simulations using the most up-to-date wide range EOS tables available.

  20. Developing the Systems Engineering Experience Accelerator (SEEA) Prototype and Roadmap

    DTIC Science & Technology

    2012-10-24

    Figure 1: Notional Diagram of the SEEA Prototype Simulator .......................................... 1 Figure 2: A Day in the Life of a PSE ...and Program Systems Engineer ( PSE ) competency model, known as the SPRDE-SE/ PSE . 2. Developing and maturing systems thinking skills. 3. Developing...mental templates which can be applied to similar future situations Figure 2: A Day in the Life of a PSE UNCLASSIFIED Contract Number: H98230

  1. Voltage measurements at the vacuum post-hole convolute of the Z pulsed-power accelerator

    DOE PAGES

    Waisman, E. M.; McBride, R. D.; Cuneo, M. E.; ...

    2014-12-08

    Presented are voltage measurements taken near the load region on the Z pulsed-power accelerator using an inductive voltage monitor (IVM). Specifically, the IVM was connected to, and thus monitored the voltage at, the bottom level of the accelerator’s vacuum double post-hole convolute. Additional voltage and current measurements were taken at the accelerator’s vacuum-insulator stack (at a radius of 1.6 m) by using standard D-dot and B-dot probes, respectively. During postprocessing, the measurements taken at the stack were translated to the location of the IVM measurements by using a lossless propagation model of the Z accelerator’s magnetically insulated transmission lines (MITLs)more » and a lumped inductor model of the vacuum post-hole convolute. Across a wide variety of experiments conducted on the Z accelerator, the voltage histories obtained from the IVM and the lossless propagation technique agree well in overall shape and magnitude. However, large-amplitude, high-frequency oscillations are more pronounced in the IVM records. It is unclear whether these larger oscillations represent true voltage oscillations at the convolute or if they are due to noise pickup and/or transit-time effects and other resonant modes in the IVM. Results using a transit-time-correction technique and Fourier analysis support the latter. Regardless of which interpretation is correct, both true voltage oscillations and the excitement of resonant modes could be the result of transient electrical breakdowns in the post-hole convolute, though more information is required to determine definitively if such breakdowns occurred. Despite the larger oscillations in the IVM records, the general agreement found between the lossless propagation results and the results of the IVM shows that large voltages are transmitted efficiently through the MITLs on Z. These results are complementary to previous studies [R. D. McBride et al., Phys. Rev. ST Accel. Beams 13, 120401 (2010)] that showed

  2. APT: An Autonomous Tool for Measuring Acceleration, Pressure, and Temperature with Large Dynamic Range and Bandwidth

    NASA Astrophysics Data System (ADS)

    Heesemann, M.; Davis, E. E.

    2015-12-01

    We describe a new tool developed to facilitate the study of inter-related geodetic, geodynamic, seismic, and oceanographic phenomena. It incorporates a novel tri-axial accelerometer developed by Quartz Seismic Sensors, Inc, a pressure sensor developed by Paroscientific Inc., and a low-power, high-precision frequency counter and data logger built by RBR, Ltd. The sensors, counters, and loggers are housed in a 7 cm o.d., 70 cm long pressure case designed for use in up to 12 km of water. Sampling intervals are programmable from 0.1 s to 1 hr; standard memory can store up to 30 million samples; total power consumption is roughly 115 mW when operating continuously (1 s.p.s. or higher) and proportionately lower when operating intermittently (e.g., 2 mW at 1 sample per min.). Serial and USB communications protocols allow a variety of download and cable-connection options. Measurement precision of the order of 10-8 of full scale (e.g., 4000 m water depth, 1 g) allows observations of pressure and acceleration variations of 0.4 Pa and 0.1 μm s-2. Long-term variations in vertical acceleration are sensitive to displacement through the gravity gradient at a level of roughly 2 cm; long-term variations in horizontal acceleration are sensitive to tilt at a level of 0.01 μRad. With these sensitivities and the broad bandwidth (5 Hz to DC), ground motion associated with microseisms and seismic waves, tidal loading, and slow and rapid geodynamic deformation normally studied by disparate instruments can be observed with a single tool. The first c. 1-year deployment with the instrument connected to the Ocean Networks Canada NEPTUNE observatory cable is underway to study interseismic deformation of the Cascadia subduction zone. It will then be deployed at the Hikurangi subduction zone to study episodic slow slip. Deployment of the tool for the initial test was accomplished by pushing the tool vertically below the seafloor with the remotely operated vehicle Jason, with no profile

  3. Status of the Advanced Photon Source and its accelerator control system

    SciTech Connect

    McDowell, W.; Knott, M.; Kraimer, K.M.

    1993-11-01

    This paper presents the current status of the Advanced Photon Source (APS), its control system and the Experimental Physics and Industrial Control System (EPICS) tools being used to implement this control system. The status of the physical plant and each of the accelerators as well as detailed descriptions of the software tools used to build the accelerator control system are presented. The control system uses high-performance graphic workstations and the X-windows graphical user interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high-performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  4. Optical Strain Measurement System Development

    NASA Technical Reports Server (NTRS)

    Lant, C. T.

    1985-01-01

    Investigations of physical phenomena affecting the durability of SSME components require measurement systems operational in hostile environments. The need for such instrumentation caused the definition and operation of an optical strain measurement system. This optical strain measurement system based on the speckle shift method is being developed. This is a noncontact, automatic method of measuring surface strain in one dimension that corrects for error due to rigid body motion. It provides a gauge length of 1 to 2 mm and allows the region of interest on the test specimen to be mapped point by point. The output is a graphics map of the points inspected on the specimen; data points is stored in quasi-real time. This is the first phase of a multiphase effort in optical strain measurement. The speckle pattern created by the test specimen is interpreted as high order interference fringes resulting from a random diffraction grating, being the natural surface roughness of the specimen. Strain induced on the specimen causes a change in spacing of the surface roughness, which in turn shifts the position of the interference pattern (speckles).

  5. Measured performance of the GTA rf systems

    SciTech Connect

    Denney, P.M.; Jachim, S.P.

    1993-06-01

    This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation.

  6. Measured performance of the GTA rf systems

    SciTech Connect

    Denney, P.M.; Jachim, S.P.

    1993-01-01

    This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation.

  7. Single-shot betatron source size measurement from a laser-wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Köhler, A.; Couperus, J. P.; Zarini, O.; Jochmann, A.; Irman, A.; Schramm, U.

    2016-09-01

    Betatron radiation emitted by accelerated electrons in laser-wakefield accelerators can be used as a diagnostic tool to investigate electron dynamics during the acceleration process. We analyze the spectral characteristics of the emitted Betatron pattern utilizing a 2D x-ray imaging spectroscopy technique. Together with simultaneously recorded electron spectra and x-ray images, the betatron source size, thus the electron beam radius, can be deduced at every shot.

  8. Verification analysis of the toroidal accelerator rotor platform wind energy conversion system: Summary report

    SciTech Connect

    Duffy, R.E.

    1988-09-01

    This report describes research undertaken at Rensselaer Polytechnic Institute for the purpose of evaluating the performance, defining the structure and system configurations, and assessing the economic merit of the Toroidal Accelerator Rotor Platform (TARP) wind energy conversion system. The TARP wind energy system is a highly versatile system-design having broad-based application potential ranging from small-kilowatt capacity units to large-megawatt utility-scale power plants. 4 refs., 27 figs., 19 tabs.

  9. Cryogenic molecular separation system for radioactive (11)C ion acceleration.

    PubMed

    Katagiri, K; Noda, A; Suzuki, K; Nagatsu, K; Boytsov, A Yu; Donets, D E; Donets, E D; Donets, E E; Ramzdorf, A Yu; Nakao, M; Hojo, S; Wakui, T; Noda, K

    2015-12-01

    A (11)C molecular production/separation system (CMPS) has been developed as part of an isotope separation on line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive (11)C ion beams. In the ISOL system, (11)CH4 molecules will be produced by proton irradiation and separated from residual air impurities and impurities produced during the irradiation. The CMPS includes two cryogenic traps to separate specific molecules selectively from impurities by using vapor pressure differences among the molecular species. To investigate the fundamental performance of the CMPS, we performed separation experiments with non-radioactive (12)CH4 gases, which can simulate the chemical characteristics of (11)CH4 gases. We investigated the separation of CH4 molecules from impurities, which will be present as residual gases and are expected to be difficult to separate because the vapor pressure of air molecules is close to that of CH4. We determined the collection/separation efficiencies of the CMPS for various amounts of air impurities and found desirable operating conditions for the CMPS to be used as a molecular separation device in our ISOL system.

  10. Flash X-Ray (FXR) Accelerator Optimization Electronic Time-Resolved Measurement of X-Ray Source Size

    SciTech Connect

    Jacob, J; Ong, M; Wargo, P

    2005-07-21

    Lawrence Livermore National Laboratory (LLNL) is currently investigating various approaches to minimize the x-ray source size on the Flash X-Ray (FXR) linear induction accelerator in order to improve x-ray flux and increase resolution for hydrodynamic radiography experiments. In order to effectively gauge improvements to final x-ray source size, a fast, robust, and accurate system for measuring the spot size is required. Timely feedback on x-ray source size allows new and improved accelerator tunes to be deployed and optimized within the limited run-time constraints of a production facility with a busy experimental schedule; in addition, time-resolved measurement capability allows the investigation of not only the time-averaged source size, but also the evolution of the source size, centroid position, and x-ray dose throughout the 70 ns beam pulse. Combined with time-resolved measurements of electron beam parameters such as emittance, energy, and current, key limiting factors can be identified, modeled, and optimized for the best possible spot size. Roll-bar techniques are a widely used method for x-ray source size measurement, and have been the method of choice at FXR for many years. A thick bar of tungsten or other dense metal with a sharp edge is inserted into the path of the x-ray beam so as to heavily attenuate the lower half of the beam, resulting in a half-light, half-dark image as seen downstream of the roll-bar; by measuring the width of the transition from light to dark across the edge of the roll-bar, the source size can be deduced. For many years, film has been the imaging medium of choice for roll-bar measurements thanks to its high resolution, linear response, and excellent contrast ratio. Film measurements, however, are fairly cumbersome and require considerable setup and analysis time; moreover, with the continuing trend towards all-electronic measurement systems, film is becoming increasingly difficult and expensive to procure. Here, we shall

  11. Measurement of activity distribution using photostimulable phosphor imaging plates in decommissioned 10 MV medical linear accelerator.

    PubMed

    Fujibuchi, Toshioh; Yonai, Shunsuke; Yoshida, Masahiro; Sakae, Takeji; Watanabe, Hiroshi; Abe, Yoshihisa; Itami, Jun

    2014-08-01

    Photonuclear reactions generate neutrons in the head of the linear accelerator. Therefore, some parts of the linear accelerator can become activated. Such activated materials must be handled as radioactive waste. The authors attempted to investigate the distribution of induced radioactivity using photostimulable phosphor imaging plates. Autoradiographs were produced from some parts of the linear accelerator (the target, upper jaw, multileaf collimator and shielding). The levels of induced radioactivity were confirmed to be non-uniform within each part from the autoradiographs. The method was a simple and highly sensitive approach to evaluating the relative degree of activation of the linear accelerators, so that appropriate materials management procedures can be carried out.

  12. RF impedance measurements on the DARHT-II accelerator intercell assembly

    SciTech Connect

    Fawley, William M.; Eylon, Shmuel; Briggs, Richard

    2003-05-05

    We report upon recent experimental measurements made of RF properties of the intercell assembly of the second axis accelerator[1] of Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at LANL. The intercells provide both pumping and diagnostic access to the main DARHT-II beamline. Their design includes a pumping plenum separated from the main beam pipe by return current rods together with RF shielding provided by a copper-coated stainless steel mesh. Measurements using the twin lead technique (see Ref. [2]) at low frequencies (f < 200 MHz) suggest a constant value for the ratio h of the radial and azimuthal magnetic field components to which the transverse impedance is linearly related. We find that these results compare favorably to predictions from a simple analytic, lumped circuit model which includes the effects of the mesh and return current rods. We also present RF loop-to-loop frequency scans above beam pipe cutoff ({approx}600 MHz) showing the existence of many RF modes with relatively high Q's.

  13. Transvers Impedance Measurements of the Modified DARHT-2Accelerator Cell Design

    SciTech Connect

    Briggs, Dick; Waldron, Will

    2005-11-30

    The DARHT-2 accelerator cells have been redesigned to make their high voltage performance more robust. At the outset of the DARHT-2 development program about 8 years ago, an extensive campaign was mounted to minimize the transverse impedance of the original cell design. Since the initial spec on the machine was a beam current of 4 kA, the control of beam-breakup (BBU) amplification with a 2 microsecond pulse length was considered to be one the most critical issues in the design. Even after advances in detector technology allowed the beam current requirement to be lowered to 2 kA, the goal for the standard cell impedance was kept at {approx}300 ohms/meter to allow for the possibility of future beam current upgrades to 4 kA without any modifications in the cells. The results of this campaign to minimize the transverse impedance are described in detail in Reference 1. After several iterations in the design of ferrite dampers and the anode finger stock shape, the measured (peak) impedance of the original standard cell was determined to be about 280 ohms/meter. (As a reference point, the measured impedance of the DARHT-1 cell is about 880 ohms/meter). This impedance provided such a wide safety margin against BBU amplification at 2 kA that it was felt that the cell redesign could focus on voltage holding without any detailed considerations of impacts on the transverse impedance. Now that a baseline design for the DARHT-2 cell has been established and tested, however, it was felt that a measurement of its impedance would be prudent. The results of these impedance measurements are presented in this note. The objective was mainly to do a ''quick check'' to ensure that there were no surprises, and to provide an estimate of the BBU frequencies and growth rates to the experimental test program.

  14. FPGA-accelerated algorithm for the regular expression matching system

    NASA Astrophysics Data System (ADS)

    Russek, P.; Wiatr, K.

    2015-01-01

    This article describes an algorithm to support a regular expressions matching system. The goal was to achieve an attractive performance system with low energy consumption. The basic idea of the algorithm comes from a concept of the Bloom filter. It starts from the extraction of static sub-strings for strings of regular expressions. The algorithm is devised to gain from its decomposition into parts which are intended to be executed by custom hardware and the central processing unit (CPU). The pipelined custom processor architecture is proposed and a software algorithm explained accordingly. The software part of the algorithm was coded in C and runs on a processor from the ARM family. The hardware architecture was described in VHDL and implemented in field programmable gate array (FPGA). The performance results and required resources of the above experiments are given. An example of target application for the presented solution is computer and network security systems. The idea was tested on nearly 100,000 body-based viruses from the ClamAV virus database. The solution is intended for the emerging technology of clusters of low-energy computing nodes.

  15. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    SciTech Connect

    Petrecky, James; Ashley, Christopher

    2014-07-21

    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuel cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.

  16. Optimizing a mobile robot control system using GPU acceleration

    NASA Astrophysics Data System (ADS)

    Tuck, Nat; McGuinness, Michael; Martin, Fred

    2012-01-01

    This paper describes our attempt to optimize a robot control program for the Intelligent Ground Vehicle Competition (IGVC) by running computationally intensive portions of the system on a commodity graphics processing unit (GPU). The IGVC Autonomous Challenge requires a control program that performs a number of different computationally intensive tasks ranging from computer vision to path planning. For the 2011 competition our Robot Operating System (ROS) based control system would not run comfortably on the multicore CPU on our custom robot platform. The process of profiling the ROS control program and selecting appropriate modules for porting to run on a GPU is described. A GPU-targeting compiler, Bacon, is used to speed up development and help optimize the ported modules. The impact of the ported modules on overall performance is discussed. We conclude that GPU optimization can free a significant amount of CPU resources with minimal effort for expensive user-written code, but that replacing heavily-optimized library functions is more difficult, and a much less efficient use of time.

  17. Acceleration Environment of the International Space Station

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Kelly, Eric; Keller, Jennifer

    2009-01-01

    Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available

  18. Analysis of Monte Carlo accelerated iterative methods for sparse linear systems: Analysis of Monte Carlo accelerated iterative methods for sparse linear systems

    DOE PAGES

    Benzi, Michele; Evans, Thomas M.; Hamilton, Steven P.; ...

    2017-03-05

    Here, we consider hybrid deterministic-stochastic iterative algorithms for the solution of large, sparse linear systems. Starting from a convergent splitting of the coefficient matrix, we analyze various types of Monte Carlo acceleration schemes applied to the original preconditioned Richardson (stationary) iteration. We expect that these methods will have considerable potential for resiliency to faults when implemented on massively parallel machines. We also establish sufficient conditions for the convergence of the hybrid schemes, and we investigate different types of preconditioners including sparse approximate inverses. Numerical experiments on linear systems arising from the discretization of partial differential equations are presented.

  19. Development of an RF Conditioning System for Charged-Particle Accelerators

    SciTech Connect

    Kang, Yoon W; Howlader, Mostofa; Shajedul Hasan, Dr. S. M.

    2008-01-01

    Charged-particle accelerators use various vacuum windows on their accelerating radio-frequency (RF) cavities to throughput very high RF power. Before being placed on the cavities, the windows should be cleaned, baked, and fully RF conditioned to prevent a poor vacuum from outgassing, as well as other forms of contamination. An example is the coaxial fundamental power coupler (FPC) with an annular alumina ceramic window for each of the 81 superconducting RF cavities in the Spallation Neutron Source (SNS) linear accelerator. The FPCs needed to be tested up to 650-kW peak in a traveling wave and 2.6 MW with standing wave peaks in 1.3 and 60 pulses/s at 805 MHz. In this paper, an Experimental-Physics-and-Industrial-Control-System-based RF conditioning system for the SNS RF test facility is presented. This paper summarizes the hardware and software design strategies, provides the results obtained, and describes the future research scope.

  20. Beam transport channels and beam injection and extraction systems of the NICA accelerator complex

    NASA Astrophysics Data System (ADS)

    Butenko, A. V.; Volkov, V. I.; Kolesnikov, S. Yu.; Meshkov, I. N.; Mikhaylov, V. A.; Rabtsun, S. V.; Sidorin, A. O.; Sidorov, A. I.; Topilin, N. D.; Trubnikov, G. V.; Tuzikov, A. V.; Fateev, A. A.; Shvetsov, V. S.

    2016-12-01

    A new accelerator complex is being constructed at the Joint Institute for Nuclear Research as a part of the Nuclotron-based Ion Collider fAcility (NICA) project. The goal is to conduct experiments with colliding ion beams (at the first stage of the project) and colliding polarized proton/deuteron beams (at the second stage). Transport beam channels and the systems of beam injection and extraction for synchrotrons and collider rings are an important connecting link for the whole accelerator facility. The design of the primary beam-transport channels and injection/extraction systems are presented. Special attention is paid to various aspects of dynamics of beams in their transfer between the NICA accelerators.