Science.gov

Sample records for acceleration measurements life

  1. Space acceleration measurement system description and operations on the First Spacelab Life Sciences Mission

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; Finley, Brian D.

    1991-01-01

    The Space Acceleration Measurement System (SAMS) project and flight units are briefly described. The SAMS operations during the STS-40 mission are summarized, and a preliminary look at some of the acceleration data from that mission are provided. The background and rationale for the SAMS project is described to better illustrate its goals. The functions and capabilities of each SAMS flight unit are first explained, then the STS-40 mission, the SAMS's function for that mission, and the preparation of the SAMS are described. Observations about the SAMS operations during the first SAMS mission are then discussed. Some sample data are presented illustrating several aspects of the mission's microgravity environment.

  2. Measurement of the 135Cs half-life with accelerator mass spectrometry and inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    MacDonald, C. M.; Cornett, R. J.; Charles, C. R. J.; Zhao, X. L.; Kieser, W. E.

    2016-01-01

    The isotope 135Cs is quoted as having a half-life of 2.3 Myr. However, there are three published values ranging from 1.8 to 3 Myr. This research reviews previous measurements and reports a new measurement of the half-life using newly developed accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICPMS) techniques along with β and γ radiometric analysis. The half-life was determined to be (1.6 ±0.6 ) ×106 yr by AMS and (1.3 ±0.2 ) ×106 yr by ICPMS with 95% confidence. The two values agree with each other but differ from the accepted value by ˜40 % .

  3. Measuring Model Rocket Acceleration.

    ERIC Educational Resources Information Center

    Jenkins, Randy A.

    1993-01-01

    Presents an experiment that measures the acceleration and velocity of a model rocket. Lift-off information is transmitted to a computer that creates a graph of the velocity. Discusses the analysis of the computer-generated data and differences between calculated and experimental velocity and acceleration of several rocket types. (MDH)

  4. Microgravity Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Microgravity Acceleration Measurement System (MAMS) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  5. Accelerating the life of transistors

    NASA Astrophysics Data System (ADS)

    Haochun, Qi; Changzhi, Lü; Xiaoling, Zhang; Xuesong, Xie

    2013-06-01

    Choosing small and medium power switching transistors of the NPN type in a 3DK set as the study object, the test of accelerating life is conducted in constant temperature and humidity, and then the data are statistically analyzed with software developed by ourselves. According to degradations of such sensitive parameters as the reverse leakage current of transistors, the lifetime order of transistors is about more than 104 at 100 °C and 100% relative humidity (RH) conditions. By corrosion fracture of transistor outer leads and other failure modes, with the failure truncated testing, the average lifetime rank of transistors in different distributions is extrapolated about 103. Failure mechanism analyses of degradation of electrical parameters, outer lead fracture and other reasons that affect transistor lifetime are conducted. The findings show that the impact of external stress of outer leads on transistor reliability is more serious than that of parameter degradation.

  6. SAMS Acceleration Measurements on MIR

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Kenneth; Finkelstein, Robert; Reckart, Timothy

    1997-01-01

    During NASA Increment 3 (September 1996 to January 1997), about 5 gigabytes of acceleration data were collected by the Space Acceleration Measurement System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 11 optical disks and were returned to Earth on STS-81. During this time, SAMS data were collected in the Priroda module to support the following experiments: the Mir Structural Dynamics Experiment (MiSDE) and Binary Colloidal Alloy Tests (BCAT). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-81 operations, a Progress engine burn, attitude control thruster operation, and crew exercise. Also included are a description of the Mir module orientations, and the panel notations within the modules. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. Variations in the acceleration environment caused by unique activities such as crew exercise and life-support fans are presented. The analyses included herein complement those presented in previous mission summary reports published by the Principal Investigator Microgravity Services (PIMS) group.

  7. Accelerated life testing of solar absorber coatings

    NASA Astrophysics Data System (ADS)

    Carlsson, Bo; Moeller, K.; Frei, Ulrich; Koehl, Michael

    1994-09-01

    Results from a comprehensive case study on accelerated life testing of some selective solar collector absorber coatings for DHW systems are reviewed. The study was conducted within Task X `Solar Materials Research and Development' of the IEA Solar Heating and Cooling Program from 1987 to 1992 and is unique due to its quantitative and systematic approach for durability assessment. The work of case study involved the development of both experimental and theoretical tools to aid the assessment of service life or absorber coatings. This entailed performance analysis, failure analysis, microclimate characterization, environmental resistance testing and life date analysis. Predicted in-service degradation of coatings from accelerated life testing was found to be in fairly good agreement both qualitatively and quantitatively with what was actually observed on coatings installed and tested for three years in solar collectors working under typical DHW conditions.

  8. Investigation of Accelerated Life Prediction Techniques

    DTIC Science & Technology

    1975-10-01

    1974, AD 784 188. 2. Rabinowicz , E., McEntire, R. H., and Shwalkar, B., A TECHNIQUE FOR ACCELERATED LIFE TESTING, Trans. ASME, August 1970, pp...706-710. 3. Rabinowicz , E., FRICTION AND WEAR OF MATERIALS, New York, John Wiley and Sons, 1966. 4. MacGregor, C. W. (ed), HANDBOOK OF

  9. Earth Scanner Bearing Accelerated Life Test

    NASA Technical Reports Server (NTRS)

    Dietz, Brian J.; VanDyk, Steven G.; Predmore, Roamer E.

    2000-01-01

    The Moderate Resolution Imaging Spectrometer (MODIS) optical instrument for NASA Goddard will measure biological and physical processes on the Earth's surface and in the lower atmosphere. A key component of the instrument is an extremely accurate scan mirror motor/encoder assembly. Of prime concern in the performance and reliability of the scan motor/encoder is bearing selection and lubrication. This paper describes life testing of the bearings and lubrication selected for the program.

  10. Space Acceleration Measurement System for Free Flyers

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.

    1999-01-01

    Experimenters from the fluids, combustion, materials, and life science disciplines all use the microgravity environment of space to enhance their understanding of fundamental physical phenomena caused by disturbances from events such as spacecraft maneuvers, equipment operations, atmospheric drag, and (for manned flights) crew movement. Space conditions reduce gravity but do not eliminate it. To quantify the level of these disturbances, NASA developed the Space Acceleration Measurement System (SAMS) series to collect data characterizing the acceleration environment on the space shuttles. This information is provided to investigators so that they can evaluate how the microgravity environment affects their experiments. Knowledge of the microgravity environment also helps investigators to plan future experiments. The original SAMS system flew 20 missions on the shuttle as well as on the Russian space station Mir. Presently, Lewis is developing SAMS-II for the International Space Station; it will be a distributed system using digital output sensor heads. The latest operational version of SAMS, SAMS-FF, was originally designed for free flyer spacecraft and unmanned areas. SAMS-FF is a flexible, modular system, housed in a lightweight package, and it uses advances in technology to improve performance. The hardware package consists of a control and data acquisition module, three different types of sensors, data storage devices, and ground support equipment interfaces. Three different types of sensors are incorporated to measure both high- and low-frequency accelerations and the roll rate velocity. Small, low-power triaxial sensor heads (TSH's) offer high resolution and selectable bandwidth, and a special low-frequency accelerometer is available for high-resolution, low-frequency applications. A state-of-the-art, triaxial fiberoptic gyroscope that measures extremely low roll rates is housed in a compact package. The versatility of the SAMS-FF system is shown in the three

  11. Measurement of Coriolis Acceleration with a Smartphone

    ERIC Educational Resources Information Center

    Shaku, Asif; Kraft, Jakob

    2016-01-01

    Undergraduate physics laboratories seldom have experiments that measure the Coriolis acceleration. This has traditionally been the case owing to the inherent complexities of making such measurements. Articles on the experimental determination of the Coriolis acceleration are few and far between in the physics literature. However, because modern…

  12. A Microcomputer-Controlled Measurement of Acceleration.

    ERIC Educational Resources Information Center

    Crandall, A. Jared; Stoner, Ronald

    1982-01-01

    Describes apparatus and method used to allow rapid and repeated measurement of acceleration of a ball rolling down an inclined plane. Acceleration measurements can be performed in an hour with the apparatus interfaced to a Commodore PET microcomputer. A copy of the BASIC program is available from the authors. (Author/JN)

  13. Advanced Microgravity Acceleration Measurement Systems (AMAMS) Being Developed

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Kacpura, Thomas J.

    2003-01-01

    The Advanced Microgravity Acceleration Measurement Systems (AMAMS) project is part of NASA s Instrument Technology Development program to develop advanced sensor systems. The primary focus of the AMAMS project is to develop microelectromechanical systems (MEMS) for acceleration sensor systems to replace existing electromechanical sensor systems presently used to assess relative gravity levels aboard spacecraft. These systems are used to characterize both vehicle and payload responses to low-gravity vibroacoustic environments. The collection of microgravity acceleration data is useful to the microgravity life sciences, microgravity physical sciences, and structural dynamics communities. The inherent advantages of semiconductor-based systems are reduced size, mass, and power consumption, with enhanced long-term calibration stability.

  14. PRECISE CHARGE MEASUREMENT FOR LASER PLASMA ACCELERATORS

    SciTech Connect

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Sokollik, Thomas; Shiraishi, Satomi; Tilborg, Jeroen van; Osterhoff, Jens; Donahue, Rich; Rodgers, David; Smith, Alan; Byrne, Warren; Leemans, Wim

    2011-07-19

    Cross-calibrations of charge diagnostics are conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). Employed diagnostics are a scintillating screen, activation based measurement, and integrating current transformer. The diagnostics agreed within {+-}8 %, showing that they can provide accurate charge measurements for LPAs provided they are used properly.

  15. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The 250 C, 200C and 125C accelerated tests are described. The wear-out distributions from the 250 and 200 C tests were used to estimate the activation energy between the two test temperatures. The duration of the 125 C test was not sufficient to bring the test devices into the wear-out region. It was estimated that, for the most complex of the three devices types, the activation energy between 200 C and 125 C should be at least as high as that between 250 C and 200 C. The practicality of the use of high temperature for the accelerated life tests from the point of view of durability of equipment is assessed. Guidlines for the development of accelerated life-test conditions are proposed. The use of the silicon nitride overcoat to improve the high temperature accelerated life-test characteristics of CMOS microcircuits is described.

  16. Measurement of Coriolis Acceleration with a Smartphone

    NASA Astrophysics Data System (ADS)

    Shakur, Asif; Kraft, Jakob

    2016-05-01

    Undergraduate physics laboratories seldom have experiments that measure the Coriolis acceleration. This has traditionally been the case owing to the inherent complexities of making such measurements. Articles on the experimental determination of the Coriolis acceleration are few and far between in the physics literature. However, because modern smartphones come with a raft of built-in sensors, we have a unique opportunity to experimentally determine the Coriolis acceleration conveniently in a pedagogically enlightening environment at modest cost by using student-owned smartphones. Here we employ the gyroscope and accelerometer in a smartphone to verify the dependence of Coriolis acceleration on the angular velocity of a rotatingtrack and the speed of the sliding smartphone.

  17. Space Acceleration Measurement System-II

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Space Acceleration Measurement System (SAMS-II) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  18. Gravity Acceleration Measurements Using a Soundcard

    ERIC Educational Resources Information Center

    Abellan-Garcia, Francisco J.; Garcia-Gamuz, Jose Antonio; Valerdi-Perez, Ramon P.; Ibanez-Mengual, Jose A.

    2012-01-01

    The aim of this paper is to determine the acceleration due to gravity "g", using a simple and low-cost experimental device. The time taken for a metallic ball to travel a predetermined distance is measured and recorded by a series of optical sensors. Four pairs of sensors are placed along the external surface of a vertical methacrylate tube at…

  19. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Accelerated life tests were performed on CMOS microcircuits to predict their long term reliability. The consistency of the CMOS microcircuit activation energy between the range of 125 C to 200 C and the range 200 C to 250 C was determined. Results indicate CMOS complexity and the amount of moisture detected inside the devices after testing influences time to failure of tested CMOS devices.

  20. Atomic References for Measuring Small Accelerations

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Yu, Nan

    2009-01-01

    Accelerometer systems that would combine the best features of both conventional (e.g., mechanical) accelerometers and atom interferometer accelerometers (AIAs) have been proposed. These systems are intended mainly for use in scientific research aboard spacecraft but may also be useful on Earth in special military, geological, and civil-engineering applications. Conventional accelerometers can be sensitive, can have high dynamic range, and can have high frequency response, but they lack accuracy and long-term stability. AIAs have low frequency response, but they offer high sensitivity, and high accuracy for measuring small accelerations. In a system according to the proposal, a conventional accelerometer would be used to perform short-term measurements of higher-frequency components of acceleration, while an AIA would be used to provide consistent calibration of, and correction of errors in, the measurements of the conventional accelerometer in the lower-frequency range over the long term. A brief description of an AIA is prerequisite to a meaningful description of a system according to the proposal. An AIA includes a retroreflector next to one end of a cell that contains a cold cloud of atoms in an ultrahigh vacuum. The atoms in the cloud are in free fall. The retroreflector is mounted on the object, the acceleration of which is to be measured. Raman laser beams are directed through the cell from the end opposite the retroreflector, then pass back through the cell after striking the retroreflector. The Raman laser beams together with the cold atoms measure the relative acceleration, through the readout of the AIA, between the cold atoms and the retroreflector.

  1. Interferometric Measurement of Acceleration at Relativistic Speeds

    NASA Astrophysics Data System (ADS)

    Christian, Pierre; Loeb, Abraham

    2017-01-01

    We show that an interferometer moving at a relativistic speed relative to a point source of light offers a sensitive probe of acceleration. Such an accelerometer contains no moving parts, and is thus more robust than conventional “mass-on-a-spring” accelerometers. In an interstellar mission to Alpha Centauri, such an accelerometer could be used to measure the masses of exoplanets and their host stars as well as test theories of modified gravity.

  2. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This report covers the time period from May 1976 to December 1979 and encompasses the three phases of accelerated testing: Phase 1, the 250 C testing; Phase 2, the 200 C testing; and Phase 3, the 125 C testing. The duration of the test in Phase 1 and Phase 2 was sufficient to take the devices into the wear out region. The wear out distributions were used to estimate the activation energy between the 250 C and the 200 C test temperatures. The duration of the 125 C test, 20,000 hours, was not sufficient to bring the test devices into the wear out region; consequently the third data point at 125 C for determining the consistency of activation energy could not be obtained. It was estimated that, for the most complex of the three device types, the activation energy between 200 C and 125 C should be at least as high as that between 250 C and 200 C. The practicality of the use of high temperature for the accelerated life tests from the point of view of durability of equipment was assessed. Guidelines for the development of accelerated life test conditions were proposed. The use of the silicon nitride overcoat to improve the high temperature accelerated life test characteristics of CMOS microcircuits was explored in Phase 4 of this study and is attached as an appendix to this report.

  3. Measurement of absolute gravity acceleration in Firenze

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  4. Space Acceleration Measurement System (SAMS)/Orbital Acceleration Research Experiment (OARE)

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak

    1998-01-01

    The Life and Microgravity Spacelab (LMS) payload flew on the Orbiter Columbia on mission STS-78 from June 20th to July 7th, 1996. The LMS payload on STS-78 was dedicated to life sciences and microgravity experiments. Two accelerometer systems managed by the NASA Lewis Research Center (LERC) flew to support these experiments, namely the Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurements System (SAMS). In addition, the Microgravity Measurement Assembly (NOAA), managed by the European Space Research and Technology Center (ESA/ESTEC), and sponsored by NASA, collected acceleration data in support of the experiments on-board the LMS mission. OARE downlinked real-time quasi-steady acceleration data, which was provided to the investigators. The SAMS recorded higher frequency data on-board for post-mission analysis. The MMA downlinked real-time quasi-steady as well as higher frequency acceleration data, which was provided to the investigators. The Principal Investigator Microgravity Services (PIMS) project at NASA LERC supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. A summary report was prepared by PIMS to furnish interested experiment investigators with a guide to evaluate the acceleration environment during STS-78, and as a means of identifying areas which require further study. The summary report provides an overview of the STS-78 mission, describes the accelerometer systems flown on this mission, discusses some specific analyses of the accelerometer data in relation to the various activities which occurred during the mission, and presents plots resulting from these analyses as a snapshot of the environment during the mission. Numerous activities occurred during the STS-78 mission that are of interest to the low-gravity community. Specific activities of interest during this mission were crew exercise, radiator deployment, Vernier Reaction

  5. Microgravity acceleration measurement and environment characterization science (17-IML-1)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Acceleration Measurement System (SAMS) is a general purpose instrumentation system designed to measure the accelerations onboard the Shuttle Orbiter and Shuttle/Spacelab vehicles. These measurements are used to support microgravity experiments and investigation into the microgravity environment of the vehicle. Acceleration measurements can be made at locations remote from the SAMS main instrumentation unit by the use of up to three remote triaxial sensor heads. The prime objective for SAMS on the International Microgravity Lab (IML-1) mission will be to measure the accelerations experienced by the Fluid Experiment System (FES). The SAMS acceleration measurements for FES will be complemented by low level, low frequency acceleration measurements made by the Orbital Acceleration Research Experiment (OARE) installed on the shuttle. Secondary objectives for SAMS will be to measure accelerations at several specific locations to enable the acceleration transfer function of the Spacelab module to be analyzed. This analysis effort will be in conjunction with similar measurements analyses on other Spacelab missions.

  6. Accelerated life testing effects on CMOS microcircuit characteristics, phase 1

    NASA Technical Reports Server (NTRS)

    Maximow, B.

    1976-01-01

    An accelerated life test of sufficient duration to generate a minimum of 50% cumulative failures in lots of CMOS devices was conducted to provide a basis for determining the consistency of activation energy at 250 C. An investigation was made to determine whether any thresholds were exceeded during the high temperature testing, which could trigger failure mechanisms unique to that temperature. The usefulness of the 250 C temperature test as a predictor of long term reliability was evaluated.

  7. Subjective acceleration of time experience in everyday life across adulthood.

    PubMed

    John, Dennis; Lang, Frieder R

    2015-12-01

    Most people believe that time seems to pass more quickly as they age. Building on assumptions of socioemotional selectivity theory, we investigated whether awareness that one's future lifetime is limited is associated with one's experience of time during everyday activities across adulthood in 3 studies. In the first 2 studies (Study 1: N = 608; Study 2: N = 398), participants completed a web-based version of the day reconstruction method. In Study 3 (N = 392) participants took part in a newly developed tomorrow construction method, a web-based experimental method for assessing everyday life plans. Results confirmed that older adults' subjective interpretation of everyday episodes is that these episodes pass more quickly compared with younger adults. The subjective acceleration of time experience in old age was more pronounced during productive activities than during regenerative-consumptive activities. The age differences were partly related to limited time remaining in life. In addition, subjective acceleration of time experience was associated with positive evaluations of everyday activities. Findings suggest that subjective acceleration of time in older adults' daily lives reflects an adaptation to limitations in time remaining in life. (PsycINFO Database Record

  8. Polarization measurement of laser-accelerated protons

    SciTech Connect

    Raab, Natascha; Engels, Ralf; Engin, Ilhan; Greven, Patrick; Holler, Astrid; Lehrach, Andreas; Maier, Rudolf; Büscher, Markus; Cerchez, Mirela; Swantusch, Marco; Toncian, Monika; Toncian, Toma; Willi, Oswald; Gibbon, Paul; Karmakar, Anupam

    2014-02-15

    We report on the successful use of a laser-driven few-MeV proton source to measure the differential cross section of a hadronic scattering reaction as well as on the measurement and simulation study of polarization observables of the laser-accelerated charged particle beams. These investigations were carried out with thin foil targets, illuminated by 100 TW laser pulses at the Arcturus laser facility; the polarization measurement is based on the spin dependence of hadronic proton scattering off nuclei in a Silicon target. We find proton beam polarizations consistent with zero magnitude which indicates that for these particular laser-target parameters the particle spins are not aligned by the strong magnetic fields inside the laser-generated plasmas.

  9. SAMS Acceleration Measurement on Mir From March to September 1996

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Ken; Truong, Duc; Reckart, Timothy

    1997-01-01

    During NASA Increment 2 (March to September 1996), over 15 gigabytes of acceleration data were collected by the Space Acceleration Measurement System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 55 optical disks and were returned to Earth on STS-79. During this time, SAMS data were collected in the Kristall and Kvant modules, and in the Priroda module to support the following experiments: the Queen's University Experiments in Liquid Diffusion (QUELD), the Technological Evaluation of the MIM (TEM), the Forced Flow Flame Spreading Test (FFFT), and Candle Flames in Microgravity (CFM). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-76 operations, an extravehicular activity (EVA) to install and deploy solar panels on the Kvant module, a Progress engine burn to raise Mir's altitude, and an on-orbit SAMS calibration procedure. Also included are a description of the Mir module orientations, and the panel notations within the modules. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. Variations in the acceleration environment caused by unique activities such as crew exercise and life-support fans are presented. The analyses included herein complement those presented in previous mission summary reports published by the Principal Investigator Microgravity Services (PIMS) group.

  10. Energy Measurement in a Plasma Wakefield Accelerator

    SciTech Connect

    Ischebeck, R

    2007-07-06

    In the E-167 plasma wakefield acceleration experiment, electrons with an initial energy of 42GeV are accelerated in a meter-scale lithium plasma. Particles are leaving plasma with a large energy spread. To determine the spectrum of the accelerated particles, a two-plane spectrometer has been set up.

  11. Don't Use Airtracks to Measure Gravity Acceleration.

    ERIC Educational Resources Information Center

    Kluk, Edward; Lopez, John L.

    1992-01-01

    Presents one way, using simple materials available in hardware stores, to obtain accurate measurements of gravity acceleration in student laboratories. Analyzes a time-of-flight measuring scheme and discusses the experimental arrangements to make the measurements. (MDH)

  12. Accelerated life time testing of fused silica for DUV laser applications revised

    NASA Astrophysics Data System (ADS)

    Mühlig, Christian; Bublitz, Simon

    2013-11-01

    We report on the continuation of a comparative study of different fused silica materials for ArF laser applications. After selecting potentially suited fused silica materials from their laser induced absorption and compaction obtained by a short time testing procedure, accelerated life time tests have been undertaken by sample irradiating at liquid nitrogen temperature and subsequent direct absorption measurements using the laser induced deflection (LID) technique. The obtained degradation acceleration strongly differs between fused silica materials showing high and low OH contents, respectively. As a result, a difference in the absorption degradation mechanism between high and low OH containing fused silica is proposed. Consequently two different scenarios for an acceleration of the absorption degradation are derived.

  13. Improvement of Space Shuttle Main Engine Low Frequency Acceleration Measurements

    NASA Technical Reports Server (NTRS)

    Stec, Robert C.

    1999-01-01

    The noise floor of low frequency acceleration data acquired on the Space Shuttle Main Engines is higher than desirable. Difficulties of acquiring high quality acceleration data on this engine are discussed. The approach presented in this paper for reducing the acceleration noise floor focuses on a search for an accelerometer more capable of measuring low frequency accelerations. An overview is given of the current measurement system used to acquire engine vibratory data. The severity of vibration, temperature, and moisture environments are considered. Vibratory measurements from both laboratory and rocket engine tests are presented.

  14. Summary Report of Mission Acceleration Measurements for STS-78. Launched June 20, 1996

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Hrovat, Kenneth; McPherson, Kevin M.; Moskowitz, Milton E.; Rogers, Melissa J. B.

    1997-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-78 mission using accelerometers from three different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System and the Microgravity Measurement Assembly. The quasi-steady environment was also calculated in near real-time during the mission by the Microgravity Analysis Workstation. The Orbital Acceleration Research Experiment provided investigators with real-time quasi-steady acceleration measurements. The Space Acceleration Measurement System recorded higher frequency data on-board for post-mission analysis. The Microgravity Measurement Assembly provided investigators with real-time quasi-steady and higher frequency acceleration measurements. The Microgravity Analysis Workstation provided calculation of the quasi-steady environment. This calculation was presented to the science teams in real-time during the mission. The microgravity environment related to several different Orbiter, crew and experiment operations is presented and interpreted in this report. A radiator deploy, the Flight Control System checkout, and a vernier reaction control system reboost demonstration had minimal effects on the acceleration environment, with excitation of frequencies in the 0.01 to 10 Hz range. Flash Evaporator System venting had no noticeable effect on the environment while supply and waste water dumps caused excursions of 2 x lO(exp -6) to 4 x 10(exp -6) g in the Y(sub b) and Z(sub b) directions. Crew sleep and ergometer exercise periods can be clearly seen in the acceleration data, as expected. Accelerations related to the two Life Science Laboratory Equipment Refrigerator/Freezers were apparent in the data as are accelerations caused by the Johnson Space Center Projects Centrifuge. As on previous microgravity missions, several signals are present in the acceleration data for which a source has not been identified. The causes of these accelerations

  15. Acceleration and Velocity Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truax, Roger

    2016-01-01

    A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an Autoregressive Moving Average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. shape sensing, fiber optic strain sensor, system equivalent reduction and expansion process.

  16. Acceleration and Velocity Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truax, Roger

    2015-01-01

    A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an autoregressive moving average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. Simple harmonic motion is assumed for the acceleration computations, and the central difference equation with a linear autoregressive model is used for the computations of velocity. A cantilevered rectangular wing model is used to validate the simple approach. Quality of the computed deflection, acceleration, and velocity values are independent of the number of fibers. The central difference equation with a linear autoregressive model proposed in this study follows the target response with reasonable accuracy. Therefore, the handicap of the backward difference equation, phase shift, is successfully overcome.

  17. Gait analysis using gravitational acceleration measured by wearable sensors.

    PubMed

    Takeda, Ryo; Tadano, Shigeru; Todoh, Masahiro; Morikawa, Manabu; Nakayasu, Minoru; Yoshinari, Satoshi

    2009-02-09

    A novel method for measuring human gait posture using wearable sensor units is proposed. The sensor units consist of a tri-axial acceleration sensor and three gyro sensors aligned on three axes. The acceleration and angular velocity during walking were measured with seven sensor units worn on the abdomen and the lower limb segments (both thighs, shanks and feet). The three-dimensional positions of each joint are calculated from each segment length and joint angle. Joint angle can be estimated mechanically from the gravitational acceleration along the anterior axis of the segment. However, the acceleration data during walking includes three major components; translational acceleration, gravitational acceleration and external noise. Therefore, an optimization analysis was represented to separate only the gravitational acceleration from the acceleration data. Because the cyclic patterns of acceleration data can be found during constant walking, a FFT analysis was applied to obtain some characteristic frequencies in it. A pattern of gravitational acceleration was assumed using some parts of these characteristic frequencies. Every joint position was calculated from the pattern under the condition of physiological motion range of each joint. An optimized pattern of the gravitational acceleration was selected as a solution of an inverse problem. Gaits of three healthy volunteers were measured by walking for 20s on a flat floor. As a result, the acceleration data of every segment was measured simultaneously. The characteristic three-dimensional walking could be shown by the expression using a stick figure model. In addition, the trajectories of the knee joint in the horizontal plane could be checked by visual imaging on a PC. Therefore, this method provides important quantitive information for gait diagnosis.

  18. Mir Cooperative Solar Array Project Accelerated Life Thermal Cycling Test

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Scheiman, David A.

    1996-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint U.S./Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA will be used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station. The MCSA was brought to Mir by space shuttle Atlantis in November 1995. This report describes an accelerated thermal life cycle test which was performed on two samples of the MCSA. In eight months time, two MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles. There was no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early and removed from consideration. The nature of the performance degradation caused by this one cell is briefly discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the U.S. solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit). This was considered a successful development test.

  19. Voltage stress effects on microcircuit accelerated life test failure rates

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1976-01-01

    The applicability of Arrhenius and Eyring reaction rate models for describing microcircuit aging characteristics as a function of junction temperature and applied voltage was evaluated. The results of a matrix of accelerated life tests with a single metal oxide semiconductor microcircuit operated at six different combinations of temperature and voltage were used to evaluate the models. A total of 450 devices from two different lots were tested at ambient temperatures between 200 C and 250 C and applied voltages between 5 Vdc and 15 Vdc. A statistical analysis of the surface related failure data resulted in bimodal failure distributions comprising two lognormal distributions; a 'freak' distribution observed early in time, and a 'main' distribution observed later in time. The Arrhenius model was shown to provide a good description of device aging as a function of temperature at a fixed voltage. The Eyring model also appeared to provide a reasonable description of main distribution device aging as a function of temperature and voltage. Circuit diagrams are shown.

  20. Andy Sessler: The Full Life of an Accelerator Physicist

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Je; Budnitz, Robert J.; Winick, Herman

    This article describes the distinguished career of Andrew M. Sessler, the visionary former director of the Lawrence Berkeley National Laboratory (LBNL), one of the most influential accelerator physicists, and a strong, dedicated human-rights activist. Andy died on 17 April 2014 from cancer at age 85. He grew up in New York City, and attended Harvard (BA in Mathematics, 1949) and then Columbia (PhD in Physics, 1953.) After an NSF postdoc at Cornell with Hans Bethe and a stint on the faculty at the Ohio State University in 1954-59, he joined the Lawrence Radiation Laboratory (now LBNL) in 1959, and spent the remainder of his career there. Although Andy left his mark on several areas of physics, including nuclear structure theory, elementary-particle physics, and many-body problems, his lasting and most important contributions came from his efforts in accelerator physics and engineering, to which he devoted most of his life's work. In collaboration with his colleagues of the legendary Midwestern Universities Research Association, he developed theories for the RF acceleration process and the collective instability phenomena, helping to realize the colliding-beam accelerators with which most of the high-energy-physics discoveries of the last few decades have been made. His work in connection with the free-electron-laser (FEL) amplifier for high-power microwave generation constructed at the Lawrence Livermore National Laboratory anticipated the optical-guiding and the self-amplified spontaneous-emission principles, upon which the success of the X-ray FELs as the fourth-generation light sources is based. Throughout his career Andy made major contributions to issues related to the impact of science and technology on society. He helped usher in a new era of research on energy efficiency and sustainable-energy technology and was instrumental in building the research agendas in those areas for the Atomic Energy Commission (AEC) and later the Department of Energy. With a

  1. Andy Sessler: The Full Life of an Accelerator Physicist

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Je; Budnitz, Robert J.; Winick, Herman

    2015-02-01

    This article describes the distinguished career of Andrew M. Sessler, the visionary former director of the Lawrence Berkeley National Laboratory (LBNL), one of the most influential accelerator physicists, and a strong, dedicated human-rights activist. Andy died on 17 April 2014 from cancer at age 85. He grew up in New York City, and attended Harvard (BA in Mathematics, 1949) and then Columbia (PhD in Physics, 1953.) After an NSF postdoc at Cornell with Hans Bethe and a stint on the faculty at the Ohio State University in 1954-59, he joined the Lawrence Radiation Laboratory (now LBNL) in 1959, and spent the remainder of his career there. Although Andy l his mark on several areas of physics, including nuclear structure theory, elementary-particle physics, and many-body problems, his lasting and most important contributions came from his efforts in accelerator physics and engineering, to which he devoted most of his life's work. In collaboration with his colleagues of the legendary Midwestern Universities Research Association, he developed theories for the RF acceleration process and the collective instability phenomena, helping to realize the colliding-beam accelerators with which most of the high-energy-physics discoveries of the last few decades have been made. His work in connection with the free-electron-laser (FEL) amplifier for high-power microwave generation constructed at the Lawrence Livermore National Laboratory anticipated the optical-guiding and the self-amplified spontaneous-emission principles, upon which the success of the X-ray FELs as the fourth-generation light sources is based. Throughout his career Andy made major contributions to issues related to the impact of science and technology on society. He helped usher in a new era of research on energy efficiency and sustainable-energy technology and was instrumental in building the research agendas in those areas for the Atomic Energy Commission (AEC) and later the Department of Energy. With a lifelong

  2. Andy Sessler: The Full Life of an Accelerator Physicist

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Je; Budnitz, Robert J.; Winick, Herman

    2014-04-01

    This article describes the distinguished career of Andrew M. Sessler, the visionary former director of the Lawrence Berkeley National Laboratory (LBNL), one of the most influential accelerator physicists, and a strong, dedicated human-rights activist. Andy died on 17 April 2014 from cancer at age 85. He grew up in New York City, and attended Harvard (BA in Mathematics, 1949) and then Columbia (PhD in Physics, 1953.) After an NSF postdoc at Cornell with Hans Bethe and a stint on the faculty at the Ohio State University in 1954-59, he joined the Lawrence Radiation Laboratory (now LBNL) in 1959, and spent the remainder of his career there. Although Andy l his mark on several areas of physics, including nuclear structure theory, elementary-particle physics, and many-body problems, his lasting and most important contributions came from his efforts in accelerator physics and engineering, to which he devoted most of his life's work. In collaboration with his colleagues of the legendary Midwestern Universities Research Association, he developed theories for the RF acceleration process and the collective instability phenomena, helping to realize the colliding-beam accelerators with which most of the high-energy-physics discoveries of the last few decades have been made. His work in connection with the free-electron-laser (FEL) amplifier for high-power microwave generation constructed at the Lawrence Livermore National Laboratory anticipated the optical-guiding and the self-amplified spontaneous-emission principles, upon which the success of the X-ray FELs as the fourth-generation light sources is based. Throughout his career Andy made major contributions to issues related to the impact of science and technology on society. He helped usher in a new era of research on energy efficiency and sustainable-energy technology and was instrumental in building the research agendas in those areas for the Atomic Energy Commission (AEC) and later the Department of Energy. With a lifelong

  3. An experimental demonstration that early-life competitive disadvantage accelerates telomere loss.

    PubMed

    Nettle, Daniel; Monaghan, Pat; Gillespie, Robert; Brilot, Ben; Bedford, Thomas; Bateson, Melissa

    2015-01-07

    Adverse experiences in early life can exert powerful delayed effects on adult survival and health. Telomere attrition is a potentially important mechanism in such effects. One source of early-life adversity is the stress caused by competitive disadvantage. Although previous avian experiments suggest that competitive disadvantage may accelerate telomere attrition, they do not clearly isolate the effects of competitive disadvantage from other sources of variation. Here, we present data from an experiment in European starlings (Sturnus vulgaris) that used cross-fostering to expose siblings to divergent early experience. Birds were assigned either to competitive advantage (being larger than their brood competitors) or competitive disadvantage (being smaller than their brood competitors) between days 3 and 12 post-hatching. Disadvantage did not affect weight gain, but it increased telomere attrition, leading to shorter telomere length in disadvantaged birds by day 12. There were no effects of disadvantage on oxidative damage as measured by plasma lipid peroxidation. We thus found strong evidence that early-life competitive disadvantage can accelerate telomere loss. This could lead to faster age-related deterioration and poorer health in later life.

  4. [Tomodensitometry measurements of proximal tibia and acceleration in marathon athletes].

    PubMed

    Gremion, Gérald; Cordey, Jacques; Leyvraz, Pierre-François; Rizzoli, René; Crettenand, Antoinette; Gobelet, Charles; Dériaz, Olivier; Crettenand, Andre

    2004-02-01

    We evaluated bone adaptation of the tibia to mechanical stresses in male marathon runners and in sedentary controls in function of the ground impact measured by accelerometry and of the bone mineral density assessed by peripheral quantitative computed tomography (QCT). Sixty-three subjects (51 runners and 12 controls) were enrolled. All had measurements of bone mineral density of the proximal tibia and of acceleration at the same site during a jogging at 9 km/hour. The results show a significant higher cortical BMD in runners with the higher value of late accelerations (at 50 ms after the contact with the ground). The late acceleration might be related to muscle contraction.

  5. Measurement of Electron Clouds in Large Accelerators by Microwave Dispersion

    SciTech Connect

    De Santis, S.; Byrd, J.M.; Caspers, F.; Krasnykh, A.; Kroyer, T.; Pivi, M.T.F.; Sonnad, K.G.; /LBL, Berkeley

    2008-03-19

    Clouds of low energy electrons in the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation at high currents. Furthermore, it is difficult to probe their density over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave transmitted over a section of the accelerator and used it to measure the average electron cloud density over a 50 m section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center.

  6. Measurement of electron clouds in large accelerators by microwave dispersion.

    PubMed

    De Santis, S; Byrd, J M; Caspers, F; Krasnykh, A; Kroyer, T; Pivi, M T F; Sonnad, K G

    2008-03-07

    Clouds of low energy electrons in the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation at high currents. Furthermore, it is difficult to probe their density over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave transmitted over a section of the accelerator and used it to measure the average electron cloud density over a 50 m section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center.

  7. Early life stress accelerates behavioral and neural maturation of the hippocampus in male mice

    PubMed Central

    Bath, K.G.; Manzano-Nieves, G.; Goodwill, H.

    2017-01-01

    Early life stress (ELS) increases the risk for later cognitive and emotional dysfunction. ELS is known to truncate neural development through effects on suppressing cell birth, increasing cell death, and altering neuronal morphology, effects that have been associated with behavioral profiles indicative of precocious maturation. However, how earlier silencing of growth drives accelerated behavioral maturation has remained puzzling. Here, we test the novel hypothesis that, ELS drives a switch from growth to maturation to accelerate neural and behavioral development. To test this, we used a mouse model of ELS, fragmented maternal care, and a cross-sectional dense sampling approach focusing on hippocampus and measured effects of ELS on the ontogeny of behavioral development and biomarkers of neural maturation. Consistent with previous work, ELS was associated with an earlier developmental decline in expression of markers of cell proliferation (Ki-67) and differentiation (doublecortin). However, ELS also led to a precocious arrival of Parvalbumin-positive cells, led to an earlier switch in NMDA receptor subunit expression (marker of synaptic maturity), and was associated with an earlier rise in myelin basic protein expression (key component of the myelin sheath). In addition, in a contextual fear-conditioning task, ELS accelerated the timed developmental suppression of contextual fear. Together, these data provide support for the hypothesis that ELS serves to switch neurodevelopment from processes of growth to maturation and promotes accelerated development of some forms of emotional learning. PMID:27155103

  8. Early life stress accelerates behavioral and neural maturation of the hippocampus in male mice.

    PubMed

    Bath, K; Manzano-Nieves, G; Goodwill, H

    2016-06-01

    Early life stress (ELS) increases the risk for later cognitive and emotional dysfunction. ELS is known to truncate neural development through effects on suppressing cell birth, increasing cell death, and altering neuronal morphology, effects that have been associated with behavioral profiles indicative of precocious maturation. However, how earlier silencing of growth drives accelerated behavioral maturation has remained puzzling. Here, we test the novel hypothesis that, ELS drives a switch from growth to maturation to accelerate neural and behavioral development. To test this, we used a mouse model of ELS, fragmented maternal care, and a cross-sectional dense sampling approach focusing on hippocampus and measured effects of ELS on the ontogeny of behavioral development and biomarkers of neural maturation. Consistent with previous work, ELS was associated with an earlier developmental decline in expression of markers of cell proliferation (Ki-67) and differentiation (doublecortin). However, ELS also led to a precocious arrival of Parvalbumin-positive cells, led to an earlier switch in NMDA receptor subunit expression (marker of synaptic maturity), and was associated with an earlier rise in myelin basic protein expression (key component of the myelin sheath). In addition, in a contextual fear-conditioning task, ELS accelerated the timed developmental suppression of contextual fear. Together, these data provide support for the hypothesis that ELS serves to switch neurodevelopment from processes of growth to maturation and promotes accelerated development of some forms of emotional learning.

  9. Measurements of Acceleration Due to Gravity.

    ERIC Educational Resources Information Center

    Crummett, Bill

    1990-01-01

    The principle means by which g has been measured are summarized. Discussed are "Kater's Reversible Pendulum," falling rules, and interferometry methods. Types of corrections and various sources of uncertainty are considered. (CW)

  10. COAXIAL WIRE MEASUREMENTS IN NLC ACCELERATING STRUCTURES

    SciTech Connect

    Jones, Roger M

    2002-06-20

    The coaxial wire method provides an experimental way of measuring wake fields without the need for a particle beam. A special setup has been designed and is in the process of being fabricated at SLAC to measure the loss factors and synchronous frequencies of dipole modes in both traveling and standing wave structures for the Next Linear Collider (NLC). The method is described and predictions based on electromagnetic field simulations are discussed.

  11. Importance, reliability and usefulness of acceleration measures in team sports.

    PubMed

    Delaney, Jace A; Cummins, Cloe J; Thornton, Heidi R; Duthie, Grant M

    2017-02-08

    The ability to accelerate, decelerate and change direction efficiently is imperative to successful team-sports performance. Traditional intensity-based thresholds for acceleration and deceleration may be inappropriate for time-series data, and have been shown to exhibit poor reliability, suggesting other techniques may be preferable. This study assessed movement data from one professional rugby league team throughout two full seasons and one pre-season period. Using both 5 Hz and 10 Hz global positioning systems (GPS) units, a range of acceleration-based variables were evaluated for their inter-unit reliability, ability to discriminate between positions, and associations with perceived muscle soreness. The reliability of 5 Hz GPS for measuring acceleration and deceleration ranged from good to poor (CV = 3.7-27.1%), with the exception of high-intensity deceleration efforts (CV = 11.1-11.8%), the 10 Hz units exhibited moderate to good inter-unit reliability (CV = 1.2-6.9%). Reliability of average metrics (average acceleration/deceleration, average acceleration and average deceleration) ranged from good to moderate (CV = 1.2-6.5%). Substantial differences were detected between positions using time spent accelerating and decelerating for all magnitudes, but these differences were less clear when considering the count or distance above acceleration/deceleration thresholds. All average metrics detected substantial differences between positions. All measures were similarly related to perceived muscle soreness, with the exception of high-intensity acceleration and deceleration counts. This study has proposed that averaging the acceleration/deceleration demands over an activity may be a more appropriate method compared to threshold-based methods, due to a greater reliability between units, whilst not sacrificing sensitivity to within and between-subject changes.

  12. Kr II laser-induced fluorescence for measuring plasma acceleration.

    PubMed

    Hargus, W A; Azarnia, G M; Nakles, M R

    2012-10-01

    We present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator also known as a Hall effect thruster, which has heritage as spacecraft propulsion. The 728.98 nm Kr II transition from the metastable 5d(4)D(7/2) to the 5p(4)P(5/2)(∘) state was used for the measurement of laser-induced fluorescence within the plasma discharge. From these measurements, it is possible to measure velocity as krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions may also be extracted from the fluorescence data since available hyperfine splitting data allow for the Kr II 5d(4)D(7/2)-5p(4)P(5/2)(∘) transition lineshape to be modeled. From the analysis, the fluorescence lineshape appears to be a reasonable estimate for the relatively broad ion velocity distributions. However, due to an apparent overlap of the ion creation and acceleration regions within the discharge, the distributed velocity distributions increase ion temperature determination uncertainty significantly. Using the most probable ion velocity as a representative, or characteristic, measure of the ion acceleration, overall propellant energy deposition, and effective electric fields may be calculated. With this diagnostic technique, it is possible to nonintrusively characterize the ion acceleration both within the discharge and in the plume.

  13. Kr II laser-induced fluorescence for measuring plasma acceleration

    NASA Astrophysics Data System (ADS)

    Hargus, W. A.; Azarnia, G. M.; Nakles, M. R.

    2012-10-01

    We present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator also known as a Hall effect thruster, which has heritage as spacecraft propulsion. The 728.98 nm Kr II transition from the metastable 5d4D7/2 to the 5p ^4P^circ _{5/2} state was used for the measurement of laser-induced fluorescence within the plasma discharge. From these measurements, it is possible to measure velocity as krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions may also be extracted from the fluorescence data since available hyperfine splitting data allow for the Kr II 5d4D7/2-5p ^4P^circ _{5/2} transition lineshape to be modeled. From the analysis, the fluorescence lineshape appears to be a reasonable estimate for the relatively broad ion velocity distributions. However, due to an apparent overlap of the ion creation and acceleration regions within the discharge, the distributed velocity distributions increase ion temperature determination uncertainty significantly. Using the most probable ion velocity as a representative, or characteristic, measure of the ion acceleration, overall propellant energy deposition, and effective electric fields may be calculated. With this diagnostic technique, it is possible to nonintrusively characterize the ion acceleration both within the discharge and in the plume.

  14. Model measurements for new accelerating techniques

    SciTech Connect

    Aronson, S.; Haseroth, H.; Knott, J.; Willis, W.

    1988-06-01

    We summarize the work carried out for the past two years, concerning some different ways for achieving high-field gradients, particularly in view of future linear lepton colliders. These studies and measurements on low power models concern the switched power principle and multifrequency excitation of resonant cavities. 15 refs., 12 figs.

  15. Summary Report of Mission Acceleration Measurements for STS-89

    NASA Technical Reports Server (NTRS)

    Hrovat, Kenneth; McPherson, Kevin

    1999-01-01

    Support of microgravity research on the 89th flight of the Space Transportation System (STS-89) and a continued effort to characterize the acceleration environment of the Space Shuttle Orbiter and the Mir Space Station form the basis for this report. For the STS-89 mission, the Space Shuttle Endeavour was equipped with a Space Acceleration Measurement System (SAMS) unit, which collected more than a week's worth of data. During docked operations with Mir, a second SAMS unit collected approximately a day's worth of data yielding the only set of acceleration measurements recorded simultaneously on the two spacecraft. Based on the data acquired by these SAMS units, this report serves to characterize a number of acceleration events and quantify their impact on the local nature of the accelerations experienced at the Mechanics of Granular Materials (MGM) experiment location. Crew activity was shown to nearly double the median root-mean-square (RMS) acceleration level calculated below 10 Hz, while the Enhanced Orbiter Refrigerator/Freezer operating at about 22 Hz was a strong acceleration source in the vicinity of the MGM location. The MGM science requirement that the acceleration not exceed plus or minus 1 mg was violated numerous times during their experiment runs; however, no correlation with sample instability has been found to this point. Synchronization between the SAMS data from Endeavour and from Mir was shown to be close much of the time, but caution with respect to exact timing should be exercised when comparing these data. When orbiting as a separate vehicle prior to docking, Endeavour had prominent structural modes above 3 Hz, while Mir exhibited a cluster of modes around 1 Hz. When mated, a transition to common modes was apparent in the two SAMS data sets. This report is not a comprehensive analysis of the acceleration data, so those interested in further details should contact the Principal Investigator Microgravity Services team at the National Aeronautics

  16. Measurement of Impact Acceleration: Mouthpiece Accelerometer Versus Helmet Accelerometer

    PubMed Central

    Higgins, Michael; Halstead, P. David; Snyder-Mackler, Lynn; Barlow, David

    2007-01-01

    Context: Instrumented helmets have been used to estimate impact acceleration imparted to the head during helmet impacts. These instrumented helmets may not accurately measure the actual amount of acceleration experienced by the head due to factors such as helmet-to-head fit. Objective: To determine if an accelerometer attached to a mouthpiece (MP) provides a more accurate representation of headform center of gravity (HFCOG) acceleration during impact than does an accelerometer attached to a helmet fitted on the headform. Design: Single-factor research design in which the independent variable was accelerometer position (HFCOG, helmet, MP) and the dependent variables were g and Severity Index (SI). Setting: Independent impact research laboratory. Intervention(s): The helmeted headform was dropped (n = 168) using a National Operating Committee on Standards for Athletic Equipment (NOCSAE) drop system from the standard heights and impact sites according to NOCSAE test standards. Peak g and SI were measured for each accelerometer position during impact. Main Outcome Measures: Upon impact, the peak g and SI were recorded for each accelerometer location. Results: Strong relationships were noted for HFCOG and MP measures, and significant differences were seen between HFCOG and helmet g measures and HFCOG and helmet SI measures. No statistically significant differences were noted between HFCOG and MP g and SI measures. Regression analyses showed a significant relationship between HFCOG and MP measures but not between HFCOG and helmet measures. Conclusions: Upon impact, MP acceleration (g) and SI measurements were closely related to and more accurate in measuring HFCOG g and SI than helmet measurements. The MP accelerometer is a valid method for measuring head acceleration. PMID:17597937

  17. Accelerated life testing and temperature dependence of device characteristics in GaAs CHFET devices

    NASA Technical Reports Server (NTRS)

    Gallegos, M.; Leon, R.; Vu, D. T.; Okuno, J.; Johnson, A. S.

    2002-01-01

    Accelerated life testing of GaAs complementary heterojunction field effect transistors (CHFET) was carried out. Temperature dependence of single and synchronous rectifier CHFET device characteristics were also obtained.

  18. Development of a Wireless Displacement Measurement System Using Acceleration Responses

    PubMed Central

    Park, Jong-Woong; Sim, Sung-Han; Jung, Hyung-Jo; Spencer, Billie F.

    2013-01-01

    Displacement measurements are useful information for various engineering applications such as structural health monitoring (SHM), earthquake engineering and system identification. Most existing displacement measurement methods are costly, labor-intensive, and have difficulties particularly when applying to full-scale civil structures because the methods require stationary reference points. Indirect estimation methods converting acceleration to displacement can be a good alternative as acceleration transducers are generally cost-effective, easy to install, and have low noise. However, the application of acceleration-based methods to full-scale civil structures such as long span bridges is challenging due to the need to install cables to connect the sensors to a base station. This article proposes a low-cost wireless displacement measurement system using acceleration. Developed with smart sensors that are low-cost, wireless, and capable of on-board computation, the wireless displacement measurement system has significant potential to impact many applications that need displacement information at multiple locations of a structure. The system implements an FIR-filter type displacement estimation algorithm that can remove low frequency drifts typically caused by numerical integration of discrete acceleration signals. To verify the accuracy and feasibility of the proposed system, laboratory tests are carried out using a shaking table and on a three storey shear building model, experimentally confirming the effectiveness of the proposed system. PMID:23881123

  19. Development of an Accelerated Test Design for Predicting the Service Life of the Solar Array at Mead, Nebraska

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Thomas, R. E.; Noel, G. T.; Shilliday, T. S.; Wood, V. E.; Carmichael, D. C.

    1979-01-01

    An accelerated life test is described which was developed to predict the life of the 25 kW photovoltaic array installed near Mead, Nebraska. A quantitative model for accelerating testing using multiple environmental stresses was used to develop the test design. The model accounts for the effects of thermal stress by a relation of the Arrhenius form. This relation was then corrected for the effects of nonthermal environmental stresses, such as relative humidity, atmospheric pollutants, and ultraviolet radiation. The correction factors for the nonthermal stresses included temperature-dependent exponents to account for the effects of interactions between thermal and nonthermal stresses on the rate of degradation of power output. The test conditions, measurements, and data analyses for the accelerated tests are presented. Constant-temperature, cyclic-temperature, and UV types of tests are specified, incorporating selected levels of relative humidity and chemical contamination and an imposed forward-bias current and static electric field.

  20. Design of the fiber optic support system and fiber bundle accelerated life test for VIRUS

    NASA Astrophysics Data System (ADS)

    Soukup, Ian M.; Beno, Joseph H.; Hayes, Richard J.; Heisler, James T.; Mock, Jason R.; Mollison, Nicholas T.; Good, John M.; Hill, Gary J.; Vattiat, Brian L.; Murphy, Jeremy D.; Anderson, Seth C.; Bauer, Svend M.; Kelz, Andreas; Roth, Martin M.; Fahrenthold, Eric P.

    2010-07-01

    The quantity and length of optical fibers required for the Hobby-Eberly Telescope* Dark Energy eXperiment (HETDEX) create unique fiber handling challenges. For HETDEX‡, at least 33,600 fibers will transmit light from the focal surface of the telescope to an array of spectrographs making up the Visible Integral-Field Replicable Unit Spectrograph (VIRUS). Up to 96 Integral Field Unit (IFU) bundles, each containing 448 fibers, hang suspended from the telescope's moving tracker located more than 15 meters above the VIRUS instruments. A specialized mechanical system is being developed to support fiber optic assemblies onboard the telescope. The discrete behavior of 448 fibers within a conduit is also of primary concern. A life cycle test must be conducted to study fiber behavior and measure Focal Ratio Degradation (FRD) as a function of time. This paper focuses on the technical requirements and design of the HETDEX fiber optic support system, the electro-mechanical test apparatus for accelerated life testing of optical fiber assemblies. Results generated from the test will be of great interest to designers of robotic fiber handling systems for major telescopes. There is concern that friction, localized contact, entanglement, and excessive tension will be present within each IFU conduit and contribute to FRD. The test apparatus design utilizes six linear actuators to replicate the movement of the telescope over 65,000 accelerated cycles, simulating five years of actual operation.

  1. Kr II laser-induced fluorescence for measuring plasma acceleration

    SciTech Connect

    Hargus, W. A. Jr.

    2012-10-15

    We present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator also known as a Hall effect thruster, which has heritage as spacecraft propulsion. The 728.98 nm Kr II transition from the metastable 5d{sup 4}D{sub 7/2} to the 5p{sup 4}P{sub 5/2}{sup Ring-Operator} state was used for the measurement of laser-induced fluorescence within the plasma discharge. From these measurements, it is possible to measure velocity as krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions may also be extracted from the fluorescence data since available hyperfine splitting data allow for the Kr II 5d{sup 4}D{sub 7/2}-5p{sup 4}P{sub 5/2}{sup Ring-Operator} transition lineshape to be modeled. From the analysis, the fluorescence lineshape appears to be a reasonable estimate for the relatively broad ion velocity distributions. However, due to an apparent overlap of the ion creation and acceleration regions within the discharge, the distributed velocity distributions increase ion temperature determination uncertainty significantly. Using the most probable ion velocity as a representative, or characteristic, measure of the ion acceleration, overall propellant energy deposition, and effective electric fields may be calculated. With this diagnostic technique, it is possible to nonintrusively characterize the ion acceleration both within the discharge and in the plume.

  2. Shortening tobacco life cycle accelerates functional gene identification in genomic research.

    PubMed

    Ning, G; Xiao, X; Lv, H; Li, X; Zuo, Y; Bao, M

    2012-11-01

    Definitive allocation of function requires the introduction of genetic mutations and analysis of their phenotypic consequences. Novel, rapid and convenient techniques or materials are very important and useful to accelerate gene identification in functional genomics research. Here, over-expression of PmFT (Prunus mume), a novel FT orthologue, and PtFT (Populus tremula) lead to shortening of the tobacco life cycle. A series of novel short life cycle stable tobacco lines (30-50 days) were developed through repeated self-crossing selection breeding. Based on the second transformation via a gusA reporter gene, the promoter from BpFULL1 in silver birch (Betula pendula) and the gene (CPC) from Arabidopsis thaliana were effectively tested using short life cycle tobacco lines. Comparative analysis among wild type, short life cycle tobacco and Arabidopsis transformation system verified that it is optional to accelerate functional gene studies by shortening host plant material life cycle, at least in these short life cycle tobacco lines. The results verified that the novel short life cycle transgenic tobacco lines not only combine the advantages of economic nursery requirements and a simple transformation system, but also provide a robust, effective and stable host system to accelerate gene analysis. Thus, shortening tobacco life cycle strategy is feasible to accelerate heterologous or homologous functional gene identification in genomic research.

  3. Accelerator Mass Spectrometry for Measurement of Long-Lived Radioisotopes

    NASA Astrophysics Data System (ADS)

    Elmore, David; Phillips, Fred M.

    1987-05-01

    Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes 10Be, 14C, 26Al, 36Cl, and 129I can now be measured in small natural samples having isotopic abundances in the range 10-12 to 10-15 and as few as 105 atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of half-lives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences.

  4. Accelerator mass spectrometry for measurement of long-lived radioisotopes.

    PubMed

    Elmore, D; Phillips, F M

    1987-05-01

    Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes (10)Be, (14)C,(26)A1, 36Cl, and (129)1 can now be measured in small natural samples having isotopic abundances in the range 10(-12) to 10(- 5) and as few as 10(5) atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of halflives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences.

  5. Preliminary OARE absolute acceleration measurements on STS-50

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James

    1993-01-01

    On-orbit Orbital Acceleration Research Experiment (OARE) data on STS-50 was examined in detail during a 2-day time period. Absolute acceleration levels were derived at the OARE location, the orbiter center-of-gravity, and at the STS-50 spacelab Crystal Growth Facility. The tri-axial OARE raw acceleration measurements (i.e., telemetered data) during the interval were filtered using a sliding trimmed mean filter in order to remove large acceleration spikes (e.g., thrusters) and reduce the noise. Twelve OARE measured biases in each acceleration channel during the 2-day interval were analyzed and applied to the filtered data. Similarly, the in situ measured x-axis scale factors in the sensor's most sensitive range were also analyzed and applied to the data. Due to equipment problem(s) on this flight, both y- and z- axis sensitive range scale factors were determined in a separate process (using the OARE maneuver data) and subsequently applied to the data. All known significant low-frequency corrections at the OARE location (i.e., both vertical and horizontal gravity-gradient, and rotational effects) were removed from the filtered data in order to produce the acceleration components at the orbiter's center-of-gravity, which are the aerodynamic signals along each body axes. Results indicate that there is a force of unknown origin being applied to the Orbiter in addition to the aerodynamic forces. The OARE instrument and all known gravitational and electromagnetic forces were reexamined, but none produce the observed effect. Thus, it is tentatively concluded that the Orbiter is creating the environment observed.

  6. Study on constant-step stress accelerated life tests in white organic light-emitting diodes.

    PubMed

    Zhang, J P; Liu, C; Chen, X; Cheng, G L; Zhou, A X

    2014-11-01

    In order to obtain reliability information for a white organic light-emitting diode (OLED), two constant and one step stress tests were conducted with its working current increased. The Weibull function was applied to describe the OLED life distribution, and the maximum likelihood estimation (MLE) and its iterative flow chart were used to calculate shape and scale parameters. Furthermore, the accelerated life equation was determined using the least squares method, a Kolmogorov-Smirnov test was performed to assess if the white OLED life follows a Weibull distribution, and self-developed software was used to predict the average and the median lifetimes of the OLED. The numerical results indicate that white OLED life conforms to a Weibull distribution, and that the accelerated life equation completely satisfies the inverse power law. The estimated life of a white OLED may provide significant guidelines for its manufacturers and customers.

  7. Tooth loss early in life accelerates age-related bone deterioration in mice.

    PubMed

    Kurahashi, Minori; Kondo, Hiroko; Iinuma, Mitsuo; Tamura, Yasuo; Chen, Huayue; Kubo, Kin-ya

    2015-01-01

    Both osteoporosis and tooth loss are health concerns that affect many older people. Osteoporosis is a common skeletal disease of the elderly, characterized by low bone mass and microstructural deterioration of bone tissue. Chronic mild stress is a risk factor for osteoporosis. Many studies showed that tooth loss induced neurological alterations through activation of a stress hormone, corticosterone, in mice. In this study, we tested the hypothesis that tooth loss early in life may accelerate age-related bone deterioration using a mouse model. Male senescence-accelerated mouse strain P8 (SAMP8) mice were randomly divided into control and toothless groups. Removal of the upper molar teeth was performed at one month of age. Bone response was evaluated at 2, 5 and 9 months of age. Tooth loss early in life caused a significant increase in circulating corticosterone level with age. Osteoblast bone formation was suppressed and osteoclast bone resorption was activated in the toothless mice. Trabecular bone volume fraction of the vertebra and femur was decreased in the toothless mice with age. The bone quality was reduced in the toothless mice at 5 and 9 months of age, compared with the age-matched control mice. These findings indicate that tooth loss early in life impairs the dynamic homeostasis of the bone formation and bone resorption, leading to reduced bone strength with age. Long-term tooth loss may have a cumulative detrimental effect on bone health. It is important to take appropriate measures to treat tooth loss in older people for preventing and/or treating senile osteoporosis.

  8. Instrumentation for accelerated life tests of concentrator solar cells.

    PubMed

    Núñez, N; Vázquez, M; González, J R; Jiménez, F J; Bautista, J

    2011-02-01

    Concentrator photovoltaic is an emergent technology that may be a good economical and efficient alternative for the generation of electricity at a competitive cost. However, the reliability of these new solar cells and systems is still an open issue due to the high-irradiation level they are subjected to as well as the electrical and thermal stresses that they are expected to endure. To evaluate the reliability in a short period of time, accelerated aging tests are essential. Thermal aging tests for concentrator photovoltaic solar cells and systems under illumination are not available because no technical solution to the problem of reaching the working concentration inside a climatic chamber has been available. This work presents an automatic instrumentation system that overcomes the aforementioned limitation. Working conditions have been simulated by forward biasing the solar cells to the current they would handle at the working concentration (in this case, 700 and 1050 times the irradiance at one standard sun). The instrumentation system has been deployed for more than 10 000 h in a thermal aging test for III-V concentrator solar cells, in which the generated power evolution at different temperatures has been monitored. As a result of this test, the acceleration factor has been calculated, thus allowing for the degradation evolution at any temperature in addition to normal working conditions to be obtained.

  9. Instrumentation for accelerated life tests of concentrator solar cells

    NASA Astrophysics Data System (ADS)

    Núñez, N.; Vázquez, M.; González, J. R.; Jiménez, F. J.; Bautista, J.

    2011-02-01

    Concentrator photovoltaic is an emergent technology that may be a good economical and efficient alternative for the generation of electricity at a competitive cost. However, the reliability of these new solar cells and systems is still an open issue due to the high-irradiation level they are subjected to as well as the electrical and thermal stresses that they are expected to endure. To evaluate the reliability in a short period of time, accelerated aging tests are essential. Thermal aging tests for concentrator photovoltaic solar cells and systems under illumination are not available because no technical solution to the problem of reaching the working concentration inside a climatic chamber has been available. This work presents an automatic instrumentation system that overcomes the aforementioned limitation. Working conditions have been simulated by forward biasing the solar cells to the current they would handle at the working concentration (in this case, 700 and 1050 times the irradiance at one standard sun). The instrumentation system has been deployed for more than 10 000 h in a thermal aging test for III-V concentrator solar cells, in which the generated power evolution at different temperatures has been monitored. As a result of this test, the acceleration factor has been calculated, thus allowing for the degradation evolution at any temperature in addition to normal working conditions to be obtained.

  10. Measuring the quality of later life.

    PubMed Central

    O'Boyle, C A

    1997-01-01

    This paper examines quality of life as a scientific construct with a wide range of applications. The assessment of patients' quality of life is assuming increasing importance in medicine and health care. Illnesses, diseases and their treatments can have significant impacts on such areas of functioning as mobility, mood, life satisfaction, sexuality, cognition and ability to fulfil occupational, social and family roles. The emerging quality of life construct may be viewed as a paradigm shift in outcome measurement since it shifts the focus of attention from symptoms to functioning. This holistic approach more clearly establishes the patient as the centre of attention and subsumes many of the traditional measures of outcome. Quality of life assessment is particularly relevant to ageing populations both for healthy elderly and for those who develop chronic diseases where maintenance of quality of life rather than cure may be the primary goal of treatment. This paper introduces the concept of quality of life and describes the significant difficulties in definition, measurement and interpretation that must be addressed before such measures can be used as reliable and valid indicators of disease impact and treatment outcomes. It is argued that approaches to quality of life assessment in the elderly should incorporate advances in knowledge about the psychological adaptation to ageing. Consequently, the unique perspective of the individual on his or her own quality of life must be incorporated into outcome assessments aimed at improving the quality of health care. Incorporating measures of subjective outcome such as quality of life into policy decisions on resource allocation in health care will prove one of the major challenges for health services over the next decade. PMID:9460072

  11. Space acceleration measurement system triaxial sensor head error budget

    NASA Technical Reports Server (NTRS)

    Thomas, John E.; Peters, Rex B.; Finley, Brian D.

    1992-01-01

    The objective of the Space Acceleration Measurement System (SAMS) is to measure and record the microgravity environment for a given experiment aboard the Space Shuttle. To accomplish this, SAMS uses remote triaxial sensor heads (TSH) that can be mounted directly on or near an experiment. The errors of the TSH are reduced by calibrating it before and after each flight. The associated error budget for the calibration procedure is discussed here.

  12. Measurement of acceleration: a new method of monitoring neuromuscular function.

    PubMed

    Viby-Mogensen, J; Jensen, E; Werner, M; Nielsen, H K

    1988-01-01

    A new method for monitoring neuromuscular function based on measurement of acceleration is presented. The rationale behind the method is Newton's second law, stating that the acceleration is directly proportional to the force. For measurement of acceleration, a piezo-electric ceramic wafer was used. When this piezo electrode was fixed to the thumb, an electrical signal proportional to the acceleration was produced whenever the thumb moved in response to nerve stimulation. The electrical signal was registered and analysed in a Myograph 2000 neuromuscular transmission monitor. In 35 patients anaesthetized with halothane, train-of-four ratios measured with the accelerometer (ACT-TOF) were compared with simultaneous mechanical train-of-four ratios (FDT-TOF). Control ACT-TOF ratios were significantly higher than control FDT-TOF ratios: 116 +/- 12 and 98 +/- 4 (mean +/- s.d.), respectively. In five patients not given any relaxant during the anaesthetic procedure (20-60 min), both responses were remarkably constant. In 30 patients given vecuronium, a close linear relationship was found during recovery between ACT-TOF and FDT-TOF ratios. It is concluded that the method fulfils the basic requirements for a simple and reliable clinical monitoring tool.

  13. Shelf life determination of an epoxy resin by accelerated aging

    SciTech Connect

    Smith, H.M.

    1983-11-01

    The objectives of the study reported were to first define the rate and mode of degradation of an epoxy resin at two storage conditions, 4.4/sup 0/C and 25/sup 0/C, by means of a thermally accelerated aging experiment. Then, samples which had been aged the equivalent of at least 10 years at each storage condition would be tested for conformance to the material specifications. The study's results demonstrate that the commercial resin could be acquired and stored for the required 10 to 11 years without concern over degradation. The expected changes at the two storage temperatures have been defined. Aged resin samples are shown to yield an acceptable product. Sufficient data exist to predict the changes in viscosity and epoxide equivalent of the resin at any other storage temperature of interest. (LEW)

  14. Measuring the acceleration due to gravity using an IR transceiver

    NASA Astrophysics Data System (ADS)

    AbdElazem, Sohaib; Al-Basheer, Watheq

    2015-07-01

    In this paper, we present a new technique to study the dynamics of a free-falling object in a lab setting and to measure the acceleration due to gravity g using a simple and economic setup. The precise measurement of time taken for an object to fall freely passing an infrared (IR) transceiver is utilized to deduce the acceleration due to gravity. The reflected IR intensity from a free-falling 0.19 m rod of equally spaced white stripes of 0.01 m is detected and sent to a digital oscilloscope to observe and record the falling time period of each stripe. By fitting recorded elapsed falling times to the well-known quadratic equation of motion under constant acceleration, an accurate value of the acceleration due to gravity of g = 9.8092 ± 0.0384 m s-2 is obtained. In addition to its accuracy, the proposed technique is safer and more economic than most of the other currently used setups to determine g in undergraduate teaching labs. This study may provide undergraduate lab instructors with an efficient teaching technique for a traditional classroom experiment.

  15. Summary Status of the Space Acceleration Measurement System (SAMS), September 1993

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1994-01-01

    The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the First Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered eighteen gigabytes of data representing sixty-eight days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and the Microgravity Measurement and Analysis project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.

  16. Metabolic acceleration and the evolution of human brain size and life history.

    PubMed

    Pontzer, Herman; Brown, Mary H; Raichlen, David A; Dunsworth, Holly; Hare, Brian; Walker, Kara; Luke, Amy; Dugas, Lara R; Durazo-Arvizu, Ramon; Schoeller, Dale; Plange-Rhule, Jacob; Bovet, Pascal; Forrester, Terrence E; Lambert, Estelle V; Thompson, Melissa Emery; Shumaker, Robert W; Ross, Stephen R

    2016-05-19

    Humans are distinguished from the other living apes in having larger brains and an unusual life history that combines high reproductive output with slow childhood growth and exceptional longevity. This suite of derived traits suggests major changes in energy expenditure and allocation in the human lineage, but direct measures of human and ape metabolism are needed to compare evolved energy strategies among hominoids. Here we used doubly labelled water measurements of total energy expenditure (TEE; kcal day(-1)) in humans, chimpanzees, bonobos, gorillas and orangutans to test the hypothesis that the human lineage has experienced an acceleration in metabolic rate, providing energy for larger brains and faster reproduction without sacrificing maintenance and longevity. In multivariate regressions including body size and physical activity, human TEE exceeded that of chimpanzees and bonobos, gorillas and orangutans by approximately 400, 635 and 820 kcal day(-1), respectively, readily accommodating the cost of humans' greater brain size and reproductive output. Much of the increase in TEE is attributable to humans' greater basal metabolic rate (kcal day(-1)), indicating increased organ metabolic activity. Humans also had the greatest body fat percentage. An increased metabolic rate, along with changes in energy allocation, was crucial in the evolution of human brain size and life history.

  17. Metabolic acceleration and the evolution of human brain size and life history

    PubMed Central

    Pontzer, Herman; Brown, Mary H.; Raichlen, David A.; Dunsworth, Holly; Hare, Brian; Walker, Kara; Luke, Amy; Dugas, Lara R.; Durazo-Arvizu, Ramon; Schoeller, Dale; Plange-Rhule, Jacob; Bovet, Pascal; Forrester, Terrence E.; Lambert, Estelle V.; Thompson, Melissa Emery; Shumaker, Robert W.; Ross, Stephen R.

    2016-01-01

    Humans are distinguished from the other living apes in having larger brains and an unusual life history that combines high reproductive output with slow childhood growth and exceptional longevity1. This suite of derived traits suggests major changes in energy expenditure and allocation in the human lineage, but direct measures of human and ape metabolism are needed to compare evolved energy strategies among hominoids. Here we used doubly labelled water measurements of total energy expenditure (TEE; kcal day−1) in humans, chimpanzees, bonobos, gorillas and orangutans to test the hypothesis that the human lineage has experienced an acceleration in metabolic rate, providing energy for larger brains and faster reproduction without sacrificing maintenance and longevity. In multivariate regressions including body size and physical activity, human TEE exceeded that of chimpanzees and bonobos, gorillas and orangutans by approximately 400, 635 and 820 kcal day−1, respectively, readily accommodating the cost of humans' greater brain size and reproductive output. Much of the increase in TEE is attributable to humans' greater basal metabolic rate (kcal day−1), indicating increased organ metabolic activity. Humans also had the greatest body fat percentage. An increased metabolic rate, along with changes in energy allocation, was crucial in the evolution of human brain size and life history. PMID:27144364

  18. Absolute gravity acceleration measurement in atomic sensor laboratories

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2012-03-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the Florence University (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the measurement of forces with high spatial resolution are in progress. Both experiments require an independent knowledge on the local value of g. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are ( 980 492 160.6 ± 4.0) μGal and ( 980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  19. Microgravity Acceleration Measurement System (MAMS) Flight Configuration Verification and Status

    NASA Technical Reports Server (NTRS)

    Wagar, William

    2000-01-01

    The Microgravity Acceleration Measurement System (MAMS) is a precision spaceflight instrument designed to measure and characterize the microgravity environment existing in the US Lab Module of the International Space Station. Both vibratory and quasi-steady triaxial acceleration data are acquired and provided to an Ethernet data link. The MAMS Double Mid-Deck Locker (DMDL) EXPRESS Rack payload meets all the ISS IDD and ICD interface requirements as discussed in the paper which also presents flight configuration illustrations. The overall MAMS sensor and data acquisition performance and verification data are presented in addition to a discussion of the Command and Data Handling features implemented via the ISS, downlink and the GRC Telescience Center displays.

  20. Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab

    SciTech Connect

    McGee, M.W.; Leibfritz, J.; Martinez, A.; Pischalnikov, Y.; Schappert, W.; /Fermilab

    2011-03-01

    The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule No.1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

  1. Measurement of acceleration in femtosecond laser-plasmas

    SciTech Connect

    Haessner, R.; Theobald, W.; Niedermeier, S.; Michelmann, K.; Feurer, T.; Schillinger, H.; Sauerbrey, R.

    1998-02-20

    Accelerations up to 4x10{sup 19} m/s{sup 2} are measured in femtosecond laser-produced plasmas at intensities of 10{sup 18} W/cm{sup 2} using the Frequency Resolved Optical Gating (FROG) technique. A high density plasma is formed by focusing an ultrashort unchirped laser pulse on a plane carbon target and part of the reflected pulse is eventually detected by a FROG autocorrelator. Radiation pressure and thermal pressure accelerate the plasma which causes a chirp in the reflected laser pulse. The retrieved phase and amplitude information reveal that the plasma motion is dominated by the large light pressure which pushes the plasma into the target. This is supported by theoretical estimates and by the results of independently measured time integrated spectra of the reflected pulse.

  2. Summary of SLAC's SEY Measurement On Flat Accelerator Wall Materials

    SciTech Connect

    Le Pimpec, F.; /PSI, Villigen /SLAC

    2007-06-08

    The electron cloud effect (ECE) causes beam instabilities in accelerator structures with intense positively charged bunched beams. Reduction of the secondary electron yield (SEY) of the beam pipe inner wall is effective in controlling cloud formation. We summarize SEY results obtained from flat TiN, TiZrV and Al surfaces carried out in a laboratory environment. SEY was measured after thermal conditioning, as well as after low energy, less than 300 eV, particle exposure.

  3. Measurement of the Decelerating Wake in a Plasma Wakefield Accelerator

    SciTech Connect

    Blumenfeld, I.; Decker, F. J.; Hogan, M. J.; Ischebeck, R.; Iverson, R. H.; Kirby, N.; Siemann, R. H.; Walz, D. R.; Clayton, C. E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W. B.; Zhou, M.; Katsouleas, T.; Muggli, P.; Oz, E.

    2009-01-22

    Recent experiments at SLAC have shown that high gradient acceleration of electrons is achievable in meter scale plasmas. Results from these experiments show that the wakefield is sensitive to parameters in the electron beam which drives it. In the experiment the bunch lengths were varied systematically at constant charge. The effort to extract a measurement of the decelerating wake from the maximum energy loss of the electron beam is discussed.

  4. Prediction of reliability on thermoelectric module through accelerated life test and Physics-of-failure

    NASA Astrophysics Data System (ADS)

    Choi, Hyoung-Seuk; Seo, Won-Seon; Choi, Duck-Kyun

    2011-09-01

    Thermoelectric cooling module (TEM) which is electric device has a mechanical stress because of temperature gradient in itself. It means that structure of TEM is vulnerable in an aspect of reliability but research on reliability of TEM was not performed a lot. Recently, the more the utilization of thermoelectric cooling devices grows, the more the needs for life prediction and improvement are increasing. In this paper, we investigated life distribution, shape parameter of the TEM through accelerated life test (ALT). And we discussed about how to enhance life of TEM through the Physics-of-failure. Experimental results of ALT showed that the thermoelectric cooling module follows the Weibull distribution, shape parameter of which is 3.6. The acceleration model is coffin Coffin-Manson and material constant is 1.8.

  5. Radionuclide measurements by accelerator mass spectrometry at Arizona

    NASA Technical Reports Server (NTRS)

    Jull, A. J. T.; Donahue, D. J.; Zabel, T. H.

    1986-01-01

    Over the past years, Tandem Accelerator Mass Spectrometry (TAMS) has become established as an important method for radionuclide analysis. In the Arizona system the accelerator is operated at a thermal voltage of 1.8MV for C-14 analysis, and 1.6 to 2MV for Be-10. Samples are inserted into a cesium sputter ion source in solid form. Negative ions sputtered from the target are accelerated to about 25kV, and the injection magnet selects ions of a particular mass. Ions of the 3+ charge state, having an energy of about 9MeV are selected by an electrostatic deflector, surviving ions pass through two magnets, where only ions of the desired mass-energy product are selected. The final detector is a combination ionization chamber to measure energy loss (and hence, Z), and a silicon surface-barrier detector which measures residual energy. After counting the trace iosotope for a fixed time, the injected ions are switched to the major isotope used for normalization. These ions are deflected into a Faraday cup after the first high-energy magnet. Repeated measurements of the isotope ratio of both sample and standards results in a measurement of the concentration of the radionuclide. Recent improvements in sample preparation for C-14 make preparation of high-beam current graphite targets directly from CO2 feasible. Except for some measurements of standards and backgrounds for Be-10 measurements to date have been on C-14. Although most results have been in archaeology and quaternary geology, studies have been expanded to include cosmogenic C-14 in meteorites. The data obtained so far tend to confirm the antiquity of Antarctic meteorites from the Allan Hills site. Data on three samples of Yamato meteorites gave terrestrial ages of between about 3 and 22 thousand years.

  6. Half-life of Si-32 from tandem-accelerator mass spectrometry

    NASA Technical Reports Server (NTRS)

    Elmore, D.; Anantaraman, N.; Fulbright, H. W.; Gove, H. E.; Nishiizumi, K.; Murrell, M. T.; Honda, M.; Hans, H. S.

    1980-01-01

    A newly developed mass-spectrometry technique employing a tandem Van de Graaff accelerator together with a special beam-transport system and heavy-ion detector has been used to determine the half-life of Si-32. The result obtained, 108 plus or minus 18 yr, disagrees with the accepted value of 330 plus or minus 40 yr. The implications of the new half-life of Si-32, which is used for dating studies, are discussed.

  7. Sonic boom measurements from accelerating supersonic tracked sleds

    NASA Technical Reports Server (NTRS)

    Reed, J. W.

    1974-01-01

    Supersonic sled tests on the Sandia 1524-m (5000-ft) track generate sonic booms of sufficient intensity to allow some airblast measurements at distance scales not obtained from wind tunnel or flight tests. During acceleration, an emitted curved boom wave propagates to a caustic, or focus. Detailed measurements around these caustics may help to clarify the overpressure magnification which can occur from real aircraft operations. Six fixed pressure gages have been operated to document the general noise field, and a mobile array of twelve gages.

  8. Satellite Gravity Measurements Confirm Accelerated Melting of Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Chen, J. L.; Wilson, C. R.; Tapley, B. D.

    2006-09-01

    Using time-variable gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, we estimate ice mass changes over Greenland during the period April 2002 to November 2005. After correcting for the effects of spatial filtering and limited resolution of GRACE data, the estimated total ice melting rate over Greenland is -239 +/- 23 cubic kilometers per year, mostly from East Greenland. This estimate agrees remarkably well with a recent assessment of -224 +/- 41 cubic kilometers per year, based on satellite radar interferometry data. GRACE estimates in southeast Greenland suggest accelerated melting since the summer of 2004, consistent with the latest remote sensing measurements.

  9. SAMS Acceleration Measurements on Mir (NASA Increment 4)

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1998-01-01

    During NASA Increment 4 (January to May 1997), about 5 gigabytes of acceleration data were collected by the Space Acceleration Measurements System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 28 optical disks which were returned to Earth on STS-84. During this increment, SAMS data were collected in the Priroda module to support the Mir Structural Dynamics Experiment (MiSDE), the Binary Colloidal Alloy Tests (BCAT), Angular Liquid Bridge (ALB), Candle Flames in Microgravity (CFM), Diffusion Controlled Apparatus Module (DCAM), Enhanced Dynamic Load Sensors (EDLS), Forced Flow Flame Spreading Test (FFFr), Liquid Metal Diffusion (LMD), Protein Crystal Growth in Dewar (PCG/Dewar), Queen's University Experiments in Liquid Diffusion (QUELD), and Technical Evaluation of MIM (TEM). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-84 operations, a Progress engine bum, Soyuz vehicle docking and undocking, and Progress vehicle docking. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. The analyses included herein complement those presented in previous summary reports prepared by the Principal Investigator Microgravity Services (PIMS) group.

  10. Aluminum Hugoniot Measurement on the Sandia Z Accelerator

    SciTech Connect

    Asay, J.R.; Bernard, M.A.; Clark, B.F.; Fleming, K.J.; Hall, C.A.; Hauer, A.; Knudson, M.; Kyrala, G.; Trott, W.M.

    1999-06-23

    Aluminum has been investigated at multi-Mbar pressures through planar impacts generated by guns and explosives, and ablatively driven shocks from high energy lasers. Because it is well characterized, it is often used as a reference in relative Hugoniot measurements. To determine equation of state measure- ment capabilities on the Sandia Z accelerator, Hugoniot states of type 1100 aluminum were determined in the 1.8 to 4.5 Mbar range for comparisons to published data. Ablatively driven shocks on 6.5mm diameter samples were measured using velocity interferometry and laser based shock arrival sensors. In each ex- periment, both shock and particle velocities were independently measured to determine Hugoniot states. Many of the experiments performed had multiple measurements of these two parameters for redundancy and diagnostic validation. Results indicate agreement with the extrapolation of a previously established, lower pressure, Hugoniot within error bounds representing the experimental uncertainties.

  11. Three Component Velocity and Acceleration Measurement Using FLEET

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett F.; Calvert, Nathan; Dogariu, Arthur; Miles, Richard P.

    2014-01-01

    The femtosecond laser electronic excitation and tagging (FLEET) method has been used to measure three components of velocity and acceleration for the first time. A jet of pure N2 issuing into atmospheric pressure air was probed by the FLEET system. The femtosecond laser was focused down to a point to create a small measurement volume in the flow. The long-lived lifetime of this fluorescence was used to measure the location of the tagged particles at different times. Simultaneous images of the flow were taken from two orthogonal views using a mirror assembly and a single intensified CCD camera, allowing two components of velocity to be measured in each view. These different velocity components were combined to determine three orthogonal velocity components. The differences between subsequent velocity components could be used to measure the acceleration. Velocity accuracy and precision were roughly estimated to be +/-4 m/s and +/-10 m/s respectively. These errors were small compared to the approx. 100 m/s velocity of the subsonic jet studied.

  12. Linear and angular head acceleration measurements in collegiate football.

    PubMed

    Rowson, Steven; Brolinson, Gunnar; Goforth, Mike; Dietter, Dave; Duma, Stefan

    2009-06-01

    Each year, between 1.6x10(6) and 3.8x10(6) concussions are sustained by athletes playing sports, with football having the highest incidence. The high number of concussions in football provides a unique opportunity to collect biomechanical data to characterize mild traumatic brain injury. Human head acceleration data for a range of impact severities were collected by instrumenting the helmets of collegiate football players with accelerometers. The helmets of ten Virginia Tech football players were instrumented with measurement devices for every game and practice for the 2007 football season. The measurement devices recorded linear and angular accelerations about each of the three axes of the head. Data for each impact were downloaded wirelessly to a sideline data collection system shortly after each impact occurred. Data were collected for 1712 impacts, creating a large and unbiased data set. While a majority of the impacts were of relatively low severity (<30 g and <2000 rad/s2), 172 impacts were greater than 40 g and 143 impacts were greater than 3000 rad/s2. No instrumented player sustained a clinically diagnosed concussion during the 2007 season. A large and unbiased data set was compiled by instrumenting the helmets of collegiate football players. Football provides a unique opportunity to collect head acceleration data of varying severity from human volunteers. The addition of concurrent concussive data may advance the understanding of the mechanics of mild traumatic brain injury. With an increased understanding of the biomechanics of head impacts in collegiate football and human tolerance to head acceleration, better equipment can be designed to prevent head injuries.

  13. The Awful Truth About Zero-Gravity: Space Acceleration Measurement System; Orbital Acceleration Research Experiment

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Earth's gravity holds the Shuttle in orbit, as it does satellites and the Moon. The apparent weightlessness experienced by astronauts and experiments on the Shuttle is a balancing act, the result of free-fall, or continuously falling around Earth. An easy way to visualize what is happening is with a thought experiment that Sir Isaac Newton did in 1686. Newton envisioned a mountain extending above Earth's atmosphere so that friction with the air would be eliminated. He imagined a cannon atop the mountain and aimed parallel to the ground. Firing the cannon propels the cannonball forward. At the same time, Earth's gravity pulls the cannonball down to the surface and eventual impact. Newton visualized using enough powder to just balance gravity so the cannonball would circle the Earth. Like the cannonball, objects orbiting Earth are in continuous free-fall, and it appears that gravity has been eliminated. Yet, that appearance is deceiving. Activities aboard the Shuttle generate a range of accelerations that have effects similar to those of gravity. The crew works and exercises. The main data relay antenna quivers 17 times per second to prevent 'stiction,' where parts stick then release with a jerk. Cooling pumps, air fans, and other systems add vibration. And traces of Earth's atmosphere, even 200 miles up, drag on the Shuttle. While imperceptible to us, these vibrations can have a profound impact on the commercial research and scientific experiments aboard the Shuttle. Measuring these forces is necessary so that researchers and scientists can see what may have affected their experiments when analyzing data. On STS-107 this service is provided by the Space Acceleration Measurement System for Free Flyers (SAMS-FF) and the Orbital Acceleration Research Experiment (OARE). Precision data from these two instruments will help scientists analyze data from their experiments and eliminate outside influences from the phenomena they are studying during the mission.

  14. Speed Kills, Speed Thrills: Constraining and Enabling Accelerations in Academic Work-Life

    ERIC Educational Resources Information Center

    Vostal, Filip

    2015-01-01

    Intensification, speed of change and faster pace of life have recently emerged as significant issues in studies analysing the current academic climate. This article takes up the "social acceleration thesis" as a conceptual resource for capturing the relationship between the individual experience of time and the changing structure and…

  15. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator

    SciTech Connect

    Hiratsuka, Junichi Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki; Miyamoto, Kenji

    2016-02-15

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  16. Summary Report of Mission Acceleration Measurements for STS-95

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Hrovat, Kenneth

    2000-01-01

    John H. Glenn's historic return to space was a primary focus of the STS-95 mission. The Hubble Space Telescope (HST) Orbital Systems Test (HOST). an STS-95 payload, was an in-flight demonstration of HST components to be installed during the next HST servicing mission. One of the components under evaluation was the cryocooler for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Based on concerns about vibrations from the operation of the NICMOS cryocooler affecting the overall HST line-of-sight requirements, the Space Acceleration Measurement System for Free-Flyers (SAMS-FF) was employed to measure the vibratory environment of the STS-95 mission, including any effects introduced by the NICMOS cryocooler. The STS-95 mission represents the first STS mission supported by SAMS-FF. Utilizing a Control and Data Acquisition Unit (CDU) and two triaxial sensor heads (TSH) mounted on the HOST support structure in Discovery's cargo bay, the SAMS-FF and the HOST project were able to make vibratory measurements both on-board the vibration-isolated NICMOS cryocooler and off-board the cryocooler mounting plate. By comparing the SAMS-FF measured vibrations on-board and off-board the NICMOS cryocooler, HST engineers could assess the cryocooler g-jitter effects on the HST line-of-sight requirements. The acceleration records from both SAMS-FF accelerometers were analyzed and significant features of the microgravity environment are detailed in this report.

  17. Reliability Evaluation of Bga Solder Joints during Accelerated Life Test

    NASA Astrophysics Data System (ADS)

    Lee, Ouk Sub; Myoung, No Hoon; Kim, Dong Hyeok; Hur, Man Jae; Hwang, Si Woon

    The use of BGA (Ball Grid Array) interconnects utilizing the lead-free solder joint has grown rapidly because of its small volume and diversity of application. Thus, it requires the continuous quantification and refinement of lead-free solder joint reliability. The lead-free solder creep and cyclically applied mechanical loads cause metal fatigue on the lead-free solder joint which inevitably leads to an electrical discontinuity. In the field application, BGA solder joints experience mechanical loads during temperature changes caused by power up/down events as the result of the CTE (Coefficient of Thermal Expansion) mismatch between the substrate and the Si die. In this paper, extremely small resistance changes at joint area corresponding to through-cracks generated by thermal fatigue were measured. In this way, the failure was defined in terms of anomalous changes in electrical resistance of the joint. Furthermore the reliability of BGA solder joints in thermal cycling is evaluated by using the modified coffin-Manson criterion which may define and distinguish failure. Any change in circuit resistance according to the accumulated damage induced by the thermal cycling in the joint was recorded and evaluated in order to quantitate reliability of solder joint.

  18. Summary report of mission acceleration measurements for Spacehab-01, STS-57 launched 21 June 1993

    NASA Technical Reports Server (NTRS)

    Finley, Brian; Grodsinsky, Carlos; Delombard, Richard

    1994-01-01

    The maiden voyage of the commercial Spacehab laboratory module onboard the STS-57 mission was integrated with several accelerometer packages, one of which was the Space Acceleration Measurement System (SAMS). The June 21st 1993, launch was the seventh successful mission for the Office of Life and Microgravity Sciences and Application's (OLMSA) SAMS unit. This flight was also complemented by a second accelerometer system. The Three Dimensional Microgravity Accelerometer (3-DMA), a Code C funded acceleration measurement system, offering an on-orbit residual calibration as a reference for the unit's four triaxial accelerometers. The SAMS accelerometer unit utilized three remote triaxial sensor heads mounted on the forward Spacehab module bulkhead and on one centrally located experiment locker door. These triaxial heads had filter cut-offs set to 5, 50, and 1000 Hz. The mission also included other experiment specific accelerometer packages in various locations.

  19. High spatial resolution measurements in a single stage ram accelerator

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented in this paper. The ram accelerator is a ramjet-in-tube device which operates in a manner similar to that of a conventional ramjet. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Utilization of special highly instrumented sections of tube has allowed the recording of gas dynamic phenomena with high resolution. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) in a single stage gas mixture are presented and reveal the three-dimensional character of the flow field induced by projectile fins and the canting of the fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, three-dimensional CFD code. The knowledge gained from these experiments and simulations is useful in understanding the underlying nature of ram accelerator propulsive regimes, as well as assisting in the validation of three-dimensional CFD coded which model unsteady, chemically reactive flows.

  20. TOWARD A DIRECT MEASUREMENT OF THE COSMIC ACCELERATION

    SciTech Connect

    Darling, Jeremy

    2012-12-20

    We present precise H I 21 cm absorption line redshifts observed in multiple epochs to directly constrain the secular redshift drift z-dot or the cosmic acceleration, {Delta}v/{Delta}t{sub circle}. A comparison of literature analog spectra to contemporary digital spectra shows significant acceleration likely attributable to systematic instrumental errors. However, we obtain robust constraints using primarily Green Bank Telescope digital data. Ten objects spanning z = 0.09-0.69 observed over 13.5 years show z-dot = (-2.3 {+-} 0.8) Multiplication-Sign 10{sup -8} yr{sup -1} or {Delta}v/{Delta}t{sub circle} = -5.5 {+-} 2.2 m s{sup -1} yr{sup -1}. The best constraint from a single object, 3C 286 at (z) = 0.692153275(85), is z-dot = (1.6 {+-} 4.7) Multiplication-Sign 10{sup -8} yr{sup -1} or {Delta}v/{Delta}t{sub circle} = 2.8 {+-} 8.4 m s{sup -1} yr{sup -1}. These measurements are three orders of magnitude larger than the theoretically expected acceleration at z = 0.5, z-dot = 2 Multiplication-Sign 10{sup -11} yr{sup -1} or {Delta}v/{Delta}t{sub circle} = 0.3 cm s{sup -1} yr{sup -1}, but they demonstrate the lack of peculiar acceleration in absorption line systems and the long-term frequency stability of modern radio telescopes. A comparison of UV metal absorption lines to the 21 cm line improves constraints on the cosmic variation of physical constants: {Delta}({alpha}{sup 2} g{sub p} {mu})/{alpha}{sup 2} g{sub p} {mu} = (- 1.2 {+-} 1.4) Multiplication-Sign 10{sup -6} in the redshift range z = 0.24-2.04. The linear evolution over the last 10.4 Gyr is (- 0.2 {+-} 2.7) Multiplication-Sign 10{sup -16} yr{sup -1}, consistent with no variation. The cosmic acceleration could be directly measured in {approx}125 years using current telescopes or in {approx}5 years using a Square Kilometer Array, but systematic effects will arise at the 1 cm s{sup -1} yr{sup -1} level.

  1. SAMS Acceleration Measurements on Mir from June to November 1995

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Hrovat, Ken; Moskowitz, Milton; McPherson, Kevin

    1996-01-01

    The NASA Microgravity Science and Applications Division (MSAD) sponsors science experiments on a variety of microgravity carriers, including sounding rockets, drop towers, parabolic aircraft, and Orbiter missions. The MSAD sponsors the Space Acceleration Measurement System (SAMS) to support microgravity science experiments with acceleration measurements to characterize the microgravity environment to which the experiments were exposed. The Principal Investigator Microgravity Services project at the NASA Lewis Research Center supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. In 1993, a cooperative effort was started between the United States and Russia involving science utilization of the Russian Mir space station by scientists from the United States and Russia. MSAD is currently sponsoring science experiments participating in the Shuttle-Mir Science Program in cooperation with the Russians on the Mir space station. Included in the complement of MSAD experiments and equipment is a SAMS unit In a manner similar to Orbiter mission support, the SAMS unit supports science experiments from the U.S. and Russia by measuring the microgravity environment during experiment operations. The initial SAMS supported experiment was a Protein Crystal Growth (PCG) experiment from June to November 1995. SAMS data were obtained during the PCG operations on Mir in accordance with the PCG Principal Investigator's requirements. This report presents an overview of the SAMS data recorded to support this PCG experiment. The report contains plots of the SAMS 100 Hz sensor head data as an overview of the microgravity environment, including the STS-74 Shuttle-Mir docking.

  2. Evolution of dispersal and life history interact to drive accelerating spread of an invasive species.

    PubMed

    Perkins, T Alex; Phillips, Benjamin L; Baskett, Marissa L; Hastings, Alan

    2013-08-01

    Populations on the edge of an expanding range are subject to unique evolutionary pressures acting on their life-history and dispersal traits. Empirical evidence and theory suggest that traits there can evolve rapidly enough to interact with ecological dynamics, potentially giving rise to accelerating spread. Nevertheless, which of several evolutionary mechanisms drive this interaction between evolution and spread remains an open question. We propose an integrated theoretical framework for partitioning the contributions of different evolutionary mechanisms to accelerating spread, and we apply this model to invasive cane toads in northern Australia. In doing so, we identify a previously unrecognised evolutionary process that involves an interaction between life-history and dispersal evolution during range shift. In roughly equal parts, life-history evolution, dispersal evolution and their interaction led to a doubling of distance spread by cane toads in our model, highlighting the potential importance of multiple evolutionary processes in the dynamics of range expansion.

  3. Tracking accelerated aging of composites with ultrasonic attenuation measurements

    SciTech Connect

    Chinn, D.J.; Durbin, P.F.; Thomas, G.H.; Groves, S.E.

    1996-10-01

    Composite materials are steadily replacing traditional materials in many industries. For many carbon composite materials, particularly in aerospace applications, durability is a critical design parameter which must be accurately characterized. Lawrence Livermore National Laboratory (LLNL) and Boeing Commercial Airplane Group have established a cooperative research and development agreement (CRADA) to assist in the high speed research program at Boeing. LLNL`s expertise in fiber composites, computer modeling, mechanical testing, chemical analysis and nondestructive evaluation (ND) will contribute to the study of advanced composite materials in commercial aerospace applications. Through thermo-mechanical experiments with periodic chemical analysis and nondestructive evaluation, the aging mechanisms in several continuous fiber polymer composites will be studied. Several measurement techniques are being studied for their correlation with aging. This paper describes through-transmission ultrasonic attenuation measurements of isothermally aged composite materials and their use as a tracking parameter for accelerated aging.

  4. Hadron production measurements to constrain accelerator neutrino beams

    SciTech Connect

    Korzenev, Alexander

    2015-07-15

    A precise prediction of expected neutrino fluxes is required for a long-baseline accelerator neutrino experiment. The flux is used to measure neutrino cross sections at the near detector, while at the far detector it provides an estimate of the expected signal for the study of neutrino oscillations. In the talk several approaches to constrain the ν flux are presented. The first is the traditional one when an interaction chain for the neutrino parent hadrons is stored to be weighted later with real measurements. In this approach differential hadron cross sections are used which, in turn, are measured in ancillary hadron production experiments. The approach is certainly model dependent because it requires an extrapolation to different incident nucleon momenta assuming x{sub F} scaling as well as extrapolation between materials having different atomic numbers. In the second approach one uses a hadron production yields off a real target exploited in the neutrino beamline. Yields of neutrino parent hadrons are parametrized at the surface of the target, thus one avoids to trace the particle interaction history inside the target. As in the case of the first approach, a dedicated ancillary experiment is mandatory. Recent results from the hadron production experiments – NA61/SHINE at CERN (measurements for T2K) and MIPP at Fermilab (measurements for NuMI) – are reviewed.

  5. Hadron production measurements to constrain accelerator neutrino beams

    NASA Astrophysics Data System (ADS)

    Korzenev, Alexander

    2015-07-01

    A precise prediction of expected neutrino fluxes is required for a long-baseline accelerator neutrino experiment. The flux is used to measure neutrino cross sections at the near detector, while at the far detector it provides an estimate of the expected signal for the study of neutrino oscillations. In the talk several approaches to constrain the ν flux are presented. The first is the traditional one when an interaction chain for the neutrino parent hadrons is stored to be weighted later with real measurements. In this approach differential hadron cross sections are used which, in turn, are measured in ancillary hadron production experiments. The approach is certainly model dependent because it requires an extrapolation to different incident nucleon momenta assuming xF scaling as well as extrapolation between materials having different atomic numbers. In the second approach one uses a hadron production yields off a real target exploited in the neutrino beamline. Yields of neutrino parent hadrons are parametrized at the surface of the target, thus one avoids to trace the particle interaction history inside the target. As in the case of the first approach, a dedicated ancillary experiment is mandatory. Recent results from the hadron production experiments - NA61/SHINE at CERN (measurements for T2K) and MIPP at Fermilab (measurements for NuMI) - are reviewed.

  6. Charged-Particle Acceleration and Energy Loss Measurements on OMEGA

    NASA Astrophysics Data System (ADS)

    Hicks, D. G.; Li, C. K.; Séguin, F. H.; Ram, A. K.; Frenje, J. A.; Petrasso, R. D.; Soures, J. M.; Glebov, V. Yu.; Meyerhofer, D. D.; Roberts, S.; Sorce, C.; Stoeckl, C.; Sangster, T. C.; Phillips, T. W.

    2000-10-01

    Measurements have been made of charged fusion products produced in D ^3He-filled targets irradiated on OMEGA. Comparing the energy shifts of four particle types has probed two distinct physical processes: electrostatic acceleration in the low-density corona and energy loss in the high-density target. When the burn occurred during the laser pulse, particle energy shifts were dominated by acceleration effects. Using a simple mode, the time history of the target's electrostatic potential was found and shown to decay to zero soon after laser irradiation was complete. When the burn occurred after the pulse, particle energy shifts were dominated by energy losses in the target, allowing charged-particle stopping-power predictions to be tested. The results provide the first verification of the general form of stopping power theories over a wide velocity range. This work was supported by the U.S. DOE Office of ICF under Coop. Agreem. No. DE-FC03-92SF19460.

  7. Bayesian Analysis of Step-Stress Accelerated Life Test with Exponential Distribution

    SciTech Connect

    Lee, J.; Pan, R.

    2012-04-01

    In this article, we propose a general Bayesian inference approach to the step-stress accelerated life test with type II censoring. We assume that the failure times at each stress level are exponentially distributed and the test units are tested in an increasing order of stress levels. We formulate the prior distribution of the parameters of life-stress function and integrate the engineering knowledge of product failure rate and acceleration factor into the prior. The posterior distribution and the point estimates for the parameters of interest are provided. Through the Markov chain Monte Carlo technique, we demonstrate a nonconjugate prior case using an industrial example. It is shown that with the Bayesian approach, the statistical precision of parameter estimation is improved and, consequently, the required number of failures could be reduced.

  8. Effects of changing from non-accelerated to accelerated MRI for follow-up in brain atrophy measurement.

    PubMed

    Leung, Kelvin K; Malone, Ian M; Ourselin, Sebastien; Gunter, Jeffrey L; Bernstein, Matt A; Thompson, Paul M; Jack, Clifford R; Weiner, Michael W; Fox, Nick C

    2015-02-15

    Stable MR acquisition is essential for reliable measurement of brain atrophy in longitudinal studies. One attractive recent advance in MRI is to speed up acquisition using parallel imaging (e.g. reducing volumetric T1-weighted acquisition scan times from around 9 to 5 min). In some studies, a decision to change to an accelerated acquisition may have been deliberately taken, while in others repeat scans may occasionally be accidentally acquired with an accelerated acquisition. In ADNI, non-accelerated and accelerated scans were acquired in the same scanning session on each individual. We investigated the impact on brain atrophy as measured by k-means normalized boundary shift integral (KN-BSI) and deformation-based morphometry when changing from non-accelerated to accelerated MRI acquisitions over a 12-month interval using scans of 422 subjects from ADNI. KN-BSIs were calculated using both a non-accelerated baseline scan and non-accelerated 12-month scans (i.e. consistent acquisition), and a non-accelerated baseline scan and an accelerated 12-month scan (i.e. changed acquisition). Fluid-based non-rigid registration was also performed on those scans to estimate the brain atrophy rate. We found that the effect on KN-BSI and fluid-based non-rigid registration depended on the scanner manufacturer. For KN-BSI, in Philips and Siemens scanners, the change had very little impact on the measured atrophy rate (increase of 0.051% in Philips and -0.035% in Siemens from consistent acquisition to changed acquisition), whereas, in GE, the change caused a mean reduction of 0.65% in the brain atrophy rate. This is likely due to the difference in tissue contrast between gray matter and cerebrospinal fluid in the non-accelerated and accelerated scans in GE, which uses IR-FSPGR instead of MP-RAGE. For fluid-based non-rigid registration, the change caused a mean increase of 0.29% in the brain atrophy rate in the changed acquisition compared with consistent acquisition in Philips

  9. Measurement of the magnetic field coefficients of particle accelerator magnets

    SciTech Connect

    Herrera, J.; Ganetis, G.; Hogue, R.; Rogers, E.; Wanderer, P.; Willen, E.

    1989-01-01

    An important aspect in the development of magnets to be used in particle accelerators is the measurement of the magnetic field in the beam aperture. In general it is necessary to measure the harmonic multipoles in the dipole, quadrupole, and sextupole magnets for a series of stationary currents (plateaus). This is the case for the Superconducting Super Collider (SSC) which will be ramped to high field over a long period (/approximately/1000 sec.) and then remain on the flat top for the duration of the particle collision phase. In contrast to this mode of operation, the Booster ring being constructed for the Brookhaven AGS, will have a fast ramp rate of approximately 10 Hz. The multipole fields for these Booster magnets must therefore be determined ''on the ramp.'' In this way the effect of eddy currents will be taken into account. The measurement system which we will describe in this paper is an outgrowth of that used for the SSC dipoles. It has the capability of measuring the field multipoles on both a plateau or during a fast ramp. In addition, the same basic coil assembly is used to obtain the magnetic multipoles in dipole, quadrupole, and sextupole magnets. 2 refs., 3 figs., 1 tab.

  10. Precision Magnet Measurements for X-Band Accelerator Quadrupole Triplets

    SciTech Connect

    Marsh, R A; Anderson, S G; Armstrong, J P

    2012-05-16

    An X-band test station is being developed at LLNL to investigate accelerator optimization for future upgrades to mono-energetic gamma-ray (MEGa-Ray) technology at LLNL. Beamline magnets will include an emittance compensation solenoid, windowpane steering dipoles, and quadrupole magnets. Demanding tolerances have been placed on the alignment of these magnets, which directly affects the electron bunch beam quality. A magnet mapping system has been established at LLNL in order to ensure the delivered magnets match their field specification, and the mountings are aligned and capable of reaching the specified alignment tolerances. The magnet measurement system will be described which uses a 3-axis Lakeshore gauss probe mounted on a 3-axis translation stage. Alignment accuracy and precision will be discussed, as well as centering measurements and analysis. The dependence on data analysis over direct multi-pole measurement allows a significant improvement in useful alignment information. Detailed analysis of measurements on the beamline quadrupoles will be discussed, including multi-pole content both from alignment of the magnets, and the intrinsic level of multi-pole magnetic field.

  11. High spatial resolution measurements of ram accelerator gas dynamic phenomena

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Data obtained by using a special highly instrumented section of tube has allowed the recording of gas dynamic phenomena with a spatial resolution on the order of one tenth the projectile length. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) are presented and reveal the 3D character of the flowfield induced by projectile fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, 3D CFD code.

  12. Non-Destructive Damping Measurement for Wafer-Level Packaged Microelectromechanical System (MEMS) Acceleration Switches

    DTIC Science & Technology

    2014-09-01

    Non-destructive Damping Measurement for Wafer-level Packaged Microelectromechanical System (MEMS) Acceleration Switches by Ryan Knight and...Microelectromechanical System (MEMS) Acceleration Switches Ryan Knight and Evan Cheng Sensors and Electron Devices Directorate, ARL...Damping Measurement for Wafer-level Packaged Microelectromechanical System (MEMS) Acceleration Switches 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  13. Early-life adversity accelerates cellular ageing and affects adult inflammation: Experimental evidence from the European starling

    PubMed Central

    Nettle, Daniel; Andrews, Clare; Reichert, Sophie; Bedford, Tom; Kolenda, Claire; Parker, Craig; Martin-Ruiz, Carmen; Monaghan, Pat; Bateson, Melissa

    2017-01-01

    Early-life adversity is associated with accelerated cellular ageing during development and increased inflammation during adulthood. However, human studies can only establish correlation, not causation, and existing experimental animal approaches alter multiple components of early-life adversity simultaneously. We developed a novel hand-rearing paradigm in European starling nestlings (Sturnus vulgaris), in which we separately manipulated nutritional shortfall and begging effort for a period of 10 days. The experimental treatments accelerated erythrocyte telomere attrition and increased DNA damage measured in the juvenile period. For telomere attrition, amount of food and begging effort exerted additive effects. Only the combination of low food amount and high begging effort increased DNA damage. We then measured two markers of inflammation, high-sensitivity C-reactive protein and interleukin-6, when the birds were adults. The experimental treatments affected both inflammatory markers, though the patterns were complex and different for each marker. The effect of the experimental treatments on adult interleukin-6 was partially mediated by increased juvenile DNA damage. Our results show that both nutritional input and begging effort in the nestling period affect cellular ageing and adult inflammation in the starling. However, the pattern of effects is different for different biomarkers measured at different time points. PMID:28094324

  14. Measurements of high-energy radiation generation from laser-wakefield accelerated electron beams

    SciTech Connect

    Schumaker, W. Vargas, M.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Maksimchuk, A.; Nees, J.; Yanovsky, V.; Thomas, A. G. R.; Krushelnick, K.; Sarri, G.; Dromey, B.; Zepf, M.

    2014-05-15

    Using high-energy (∼0.5 GeV) electron beams generated by laser wakefield acceleration (LWFA), bremsstrahlung radiation was created by interacting these beams with various solid targets. Secondary processes generate high-energy electrons, positrons, and neutrons, which can be measured shot-to-shot using magnetic spectrometers, short half-life activation, and Compton scattering. Presented here are proof-of-principle results from a high-resolution, high-energy gamma-ray spectrometer capable of single-shot operation, and high repetition rate activation diagnostics. We describe the techniques used in these measurements and their potential applications in diagnosing LWFA electron beams and measuring high-energy radiation from laser-plasma interactions.

  15. Accelerator room photoneutron and photon background measurements using thermoluminescent dosimeters.

    PubMed

    Anderson, D W; Hwang, C C

    1983-02-01

    Photoneutron dose equivalents and photon doses in the treatment room of a clinical linear accelerator were measured with sets of isotopically enriched LiF thermoluminescent dosimeters and a moderating sphere. Dosimeter neutron calibrations with 252Cf sources were repeated many times during the extended series of measurements because the 6LiF dosimeter sensitivity increased with successive neutron irradiations. Expressed as a fraction of the primary bremsstrahlung beam dose at maximum, the photoneutron background was 2.04 +/- 0.05 mrem/rad (10(-3) Sv/Gy) at 1 m lateral to beam center in the patient midplane at 25 MV. The fraction of this result due to thermal neutrons was found to be only about 2%. The photon background dose was 2.98 +/- 0.04 mrad/rad (10(-3) Gy/Gy). The photoneutron dose equivalent per unit primary dose was found to be nearly independent of the collimator size used but increased by 40% when the bremsstrahlung endpoint energy was increased from 20 to 35 MeV with no change in flattening filters.

  16. FemtoMolar measurements using accelerator mass spectrometry.

    PubMed

    Salehpour, Mehran; Forsgard, Niklas; Possnert, Göran

    2009-03-01

    Accelerator mass spectrometry (AMS) is an ultra-sensitive analytical method suitable for the detection of sub-nM concentrations of labeled biological substances such as pharmaceutical drugs in body fluids. A limiting factor in extending the concentration measurements to the sub-pM range is the natural (14)C content in living tissues. This was circumvented by separating the labeled drug from the tissue matrix, using standard high-performance liquid chromatography (HPLC) procedures. As the separated total drug amount is in the few fg range, it is not possible to use a standard AMS sample preparation method, where mg sizes are required. We have utilized a sensitive carbon carrier method where a (14)C-deficient compound is added to the HPLC fractions and the composite sample is prepared and analyzed by AMS. Using 50 microL human blood plasma aliquots, we have demonstrated concentration measurements below 20 fM, containing sub-amol amounts of the labeled drug. The method has the immediate potential of operating in the sub-fM region.

  17. Accelerated cycle-life testing of small sealed lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Kim, I.; Oh, S. H.; Kang, H. Y.

    An attempt has been made to devise methods for reducing the cycle-testing time of long-life sealed lead/acid batteries. In order for the accelerated test results to equate to the actual field operations, it is assumed that the failure modes under both normal and accelerated conditions must be the same. As a first step in the search for a reliable accelerated test, observations of the battery ageing process have been made under different daily duty cycles, viz., 1 (normal), 8 and 16 cycles/day at ambient temperature and 80% depth-of-discharge. It has been found that the main cause of failure is different for a given duty cycle. This complicates the task of applying accelerated test results to field operations. For the 8 cycles/day schedule, the main cause of failure is degradation of the positive active material. Positive grid corrosion is the main factor in the 16 cycles/day case. Under normal conditions, both grid corrosion and PbO 2 degradation appear to be equally significant.

  18. Cycle life estimation of lithium secondary battery by extrapolation method and accelerated aging test

    NASA Astrophysics Data System (ADS)

    Takei, K.; Kumai, K.; Kobayashi, Y.; Miyashiro, H.; Terada, N.; Iwahori, T.; Tanaka, T.

    The testing methods to estimate the life cycles of lithium ion batteries for a short period, have been developed using a commercialized cell with LiCoO 2/hard carbon cell system. The degradation reactions with increasing cycles were suggested to occur predominantly above 4 V from the results of operating voltage range divided tests. In the case of the extrapolation method using limited cycle data, the straight line approximation was useful as the cycle performance has the linearity, but the error is at most 40% in using the initial short cycle data. In the case of the accelerated aging tests using the following stress factors, the charge and/or discharge rate, large accelerated coefficients were obtained in the high charge rate and the high temperature thermal stress.

  19. Plume properties measurement of an Electron Cyclotron Resonance Accelerator

    NASA Astrophysics Data System (ADS)

    Correyero, Sara; Vialis, Theo; Jarrige, Julien; Packan, Denis

    2016-09-01

    Some emergent technologies for Electric Propulsion, such as the Electron Cyclotron Resonance Accelerator (ECRA), include magnetic nozzles to guide and expand the plasma. The advantages of this concept are well known: wall-plasma contact is avoided, it provides a current-free plume, it can allow to control thrust by modifying the magnetic field geometry, etc. However, their industrial application requires the understanding of the physical mechanisms involved, such as the electron thermodynamics at the plasma plume expansion, which is crucial to determine propulsive performances. This work presents a detailed characterization of the plasma plume axial profile in an ECR plasma thruster developed at ONERA. Langmuir, emissive, Faraday and ion energy probes are used to measure the electric potential space evolution, the current and electron energy distribution function in the plume, from the near field to the far field. The experimental results are compared with a quasi-1D (paraxial) steady-state kinetic model of a quasineutral collisionless magnetized plasma which is able to determine consistently the axial evolution of the electric potential and the electron and ion distribution functions with their associated properties.

  20. Accelerated life tests of specimen heat pipe from Communication Technology Satellite (CTS) project

    NASA Technical Reports Server (NTRS)

    Tower, L. K.; Kaufman, W. B.

    1977-01-01

    A gas-loaded variable conductance heat pipe of stainless steel with methanol working fluid identical to one now on the CTS satellite was life tested in the laboratory at accelerated conditions for 14 200 hours, equivalent to about 70 000 hours at flight conditions. The noncondensible gas inventory increased about 20 percent over the original charge. The observed gas increase is estimated to increase operating temperature by about 2.2 C, insufficient to harm the electronic gear cooled by the heat pipes in the satellite. Tests of maximum heat input against evaporator elevation agree well with the manufacturer's predictions.

  1. Accelerated cycle life performance for ovonic nickel-metal hydride cells

    NASA Technical Reports Server (NTRS)

    Otzinger, Burton M.

    1991-01-01

    Nickel-Metal Hydride (Ni-MH) rechargeable batteries have emerged as the leading candidate for commercial replacement of nickel-cadmium (Ni-Cd) batteries. An important incentive is that the Ni-MH cell provides approximately twice the capacity of a Ni-Cd cell for a given size. A six-cell battery was committed to an accelerated cycle life test to determine the effect of separation type on performance. Results of the test may also show the Ni-MH battery to be a replacement candidate for the aerospace Ni-Cd battery.

  2. a Development of Accelerated Life Test Method for Blower Motor for Automobile Using Inverse Power Law Model

    NASA Astrophysics Data System (ADS)

    Shin, Wae-Gyeong; Lee, Soo-Hong

    Reliability of automotive parts has been one of the most interesting fields in the automotive industry. Especially small DC motor was issued because of the increasing adoption for passengers' safety and convenience. This study was performed to develop the accelerated life test method using Inverse power law model for small DC motors. The failure mode of small DC motor includes brush wear-out. Inverse power law model is applied effectively the electronic components to reduce the testing time and to achieve the accelerating test conditions. Accelerated life testing method was induced to bring on the brush wear-out as increasing voltage of motor. Life distribution of the small DC motor was supposed to follow Weibull distribution and life test time was calculated under the conditions of B10 life and 90% confidence level.

  3. Stressful Life Events: Measurement, Moderators, and Adaptation.

    DTIC Science & Technology

    1980-10-10

    tolerance for stimulation, sensation seeking as a personality attribute may well serve as an important moderator of life stress. High sensation seekers...experiencing stressful life events and psychological well -being. A helping spouse seems to be particularly valuable in contributing to self- confidence...7. Crnic, K. A., Greenberg, M. T., Ragozin, A. S., & Robinson, N. M. The effects of life stress and social support on the life satisfaction and

  4. Optical system for measurement of pyrotechnic test accelerations

    NASA Astrophysics Data System (ADS)

    Lieberman, Paul; Czajkowski, John; Rehard, John

    1992-12-01

    This effort was directed at comparing the response of several different accelerometer and amplifier combinations to the pyrotechnic pulse simulating the ordnance separation of stages of multistage missiles. These pyrotechnic events can contain peak accelerations in excess of 100,000 G and a frequency content exceeding 100,000 Hz. The main thrust of this work was to compare the several accelerometer systems with each other and with a very accurate laser Doppler displacement meter in order to establish the frequency bands and acceleration amplitudes where the accelerometer systems are in error. The comparisons were made in simple sine-wave and low-acceleration amplitude environments, as well as in very severe pyroshock environments. An optical laser Doppler displacement meter (LDDM) was used to obtain the displacement velocity and acceleration histories, as well as the corresponding shock spectrum.

  5. Autonomous dynamic displacement estimation from data fusion of acceleration and intermittent displacement measurements

    NASA Astrophysics Data System (ADS)

    Kim, Junhee; Kim, Kiyoung; Sohn, Hoon

    2014-01-01

    Addressing the importance of displacement measurement of structural responses in the field of structural health monitoring, this paper presents an autonomous algorithm for dynamic displacement estimation from acceleration integration fused with displacement data intermittently measured. The presented acceleration integration algorithm of multi-rate Kalman filtering distinguishes itself from the past study in the literature by explicitly considering acceleration measurement bias. Furthermore, the algorithm is formulated by unique state definition of integration errors and error dynamics system modeling. To showcase performance of the algorithm, a series of laboratory dynamic experiments for measuring structural responses of acceleration and displacement are conducted. Improved results are demonstrated through comparison between the proposed and past study.

  6. Magnetic Shielding of the Acceleration Channel Walls in a Long-Life Hall Thruster

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.; de Grys, Kristi; Mathers, Alex

    2010-01-01

    In a Qualification Life Test (QLT) of the BPT-4000 Hall thruster that recently accumulated greater than 10,000 h it was found that the erosion of the acceleration channel practically stopped after approximately 5,600 h. Numerical simulations of this thruster using a 2-D axisymmetric, magnetic field-aligned-mesh (MFAM) plasma solver reveal that the process that led to this significant reduction of the erosion was multifaceted. It is found that when the channel receded from its early-in-life geometry to its steady-state configuration several changes in the near-wall plasma and sheath were induced by the magnetic field that, collectively, constituted an effective shielding of the walls from any significant ion bombardment. Because all such changes in the behavior of the ionized gas near the eroding surfaces were caused by the topology of the magnetic field there, we term this process "magnetic shielding."

  7. Effects of acceleration on gait measures in three horse gaits.

    PubMed

    Nauwelaerts, Sandra; Zarski, Lila; Aerts, Peter; Clayton, Hilary

    2015-05-01

    Animals switch gaits according to locomotor speed. In terrestrial locomotion, gaits have been defined according to footfall patterns or differences in center of mass (COM) motion, which characterizes mechanisms that are more general and more predictive than footfall patterns. This has generated different variables designed primarily to evaluate steady-speed locomotion, which is easier to standardize in laboratory conditions. However, in the ecology of an animal, steady-state conditions are rare and the ability to accelerate, decelerate and turn is essential. Currently, there are no data available that have tested whether COM variables can be used in accelerative or decelerative conditions. This study used a data set of kinematics and kinetics of horses using three gaits (walk, trot, canter) to evaluate the effects of acceleration (both positive and negative) on commonly used gait descriptors. The goal was to identify variables that distinguish between gaits both at steady state and during acceleration/deceleration. These variables will either be unaffected by acceleration or affected by it in a predictable way. Congruity, phase shift and COM velocity angle did not distinguish between gaits when the dataset included trials in unsteady conditions. Work (positive and negative) and energy recovery distinguished between gaits and showed a clear relationship with acceleration. Hodographs are interesting graphical representations to study COM mechanics, but they are descriptive rather than quantitative. Force angle, collision angle and collision fraction showed a U-shaped relationship with acceleration and seem promising tools for future research in unsteady conditions.

  8. Closeout Report for the Refractory Metal Accelerated Heat Pipe Life Test Activity

    NASA Technical Reports Server (NTRS)

    Martin, J.; Reid, R.; Stewart, E.; Hickman, R.; Mireles, O.

    2013-01-01

    With the selection of a gas-cooled reactor, this heat pipe accelerated life test activity was closed out and its resources redirected. The scope of this project was to establish the long-term aging effects on Mo-44.5%Re sodium heat pipes when subjected to space reactor temperature and mass fluences. To date, investigators have demonstrated heat pipe life tests of alkali metal systems up to .50,000 hours. Unfortunately, resources have not been available to examine the effect of temperature, mass fluence, or impurity level on corrosion or to conduct post-test forensic examination of heat pipes. The key objective of this effort was to establish a cost/time effective method to systematically test alkali metal heat pipes with both practical and theoretical benefits. During execution of the project, a heat pipe design was established, a majority of the laboratory test equipment systems specified, and operating and test procedures developed. Procurements for the heat pipe units and all major test components were underway at the time the stop work order was issued. An extremely important outcome was the successful fabrication of an annular wick from Mo-5%Re screen (the single, most difficult component to manufacture) using a hot isostatic pressing technique. This Technical Publication (TP) includes specifics regarding the heat pipe calorimeter water-cooling system, vendor design for the radio frequency heating system, possible alternative calorimeter designs, and progress on the vanadium equilibration technique. The methods provided in this TP and preceding project documentation would serve as a good starting point to rapidly implement an accelerated life test. Relevant test data can become available within months, not years, and destructive examination of the first life test heat pipe might begin within 6 months of test initiation. Final conclusions could be drawn in less than a quarter of the mission duration for a long-lived, fission-powered, deep space probe.

  9. Accelerated cable life testing of EPR-insulated medium voltage distribution cables

    SciTech Connect

    Walton, M.D. ); Bernstein, B.S. ); Smith, J.T. III ); Thue, W.A. , Stuart, FL ); Groeger, J.H. )

    1994-07-01

    This paper presents results aimed at developing a reliable accelerated aging tank test for EPR-insulated cables. Aging was performed at 2 to 4 times rated voltage on load cycling to temperatures of 45 C, 60 C, 75 C, and 90 C at the conductor with water in the conductor strands and outside the cable. Results show that cable failure is more rapid at the highest electrical stress and lowest conductor load cycle temperature. Cables aged at higher temperatures and various levels of electrical stress rarely failed and retained in excess of 40% of their original breakdown strength after 1,500+ days of aging. Aging performed at 90 C load cycle temperature and 4 times rated voltage with air on the outside and water at the conductor of the cable showed more rapid loss of life than with water outside. Results indicate the optimum aging conditions for EPR-insulated cables in the accelerated cable life test (ACLT) differ significantly from those previously observed for XLPE-insulated cables, and that the appropriate test methodology for EPR-insulated cables requires additional study.

  10. Quality of Life Measurement and Analysis (QUAILMAN).

    DTIC Science & Technology

    1996-03-01

    satisfaction for the total Army popalation in the area of government housing quality over 2-1/2 years. 14. SUBJECT TERMS 15. NUMBER OF PAGES quality of life ...Army may have declined recently, while the quality of life cost per soldier has increased. (2) There is about a 10 percent drop in the satisfaction of...selected for this study which seemed to relate to quality of life issues. Items selected either (1) expressed satisfaction or dissatisfaction with a

  11. Accelerated test methods for life prediction of hermetic motor insulation systems exposed to alternative refrigerant/lubricant mixtures

    NASA Astrophysics Data System (ADS)

    Ellis, P. F., II; Ferguson, A. F.

    1995-04-01

    In 1992, the Air-Conditioning and Refrigeration Technology Institute, Inc. (ARTI) contracted Radian Corporation to ascertain whether an improved accelerated test method or procedure could be developed that would allow prediction of the life of motor insulation materials used in hermetic motors for air-conditioning and refrigeration equipment operated with alternative refrigerant/lubricant mixtures. Phase 1 of the project, Conceptual Design of an accelerated test method and apparatus, was successfully completed in June 1993. The culmination of that effort was the concept of the Simulated Stator Unit (SSU) test. The objective of the Phase 2 limited proof-of-concept demonstration was to: answer specific engineering/design questions; design and construct an analog control sequencer and supporting apparatus; and conduct limited tests to determine the viability of the SSU test concept. This report reviews the SSU test concept, and describes the results through the conclusion of the proof-of-concept prototype tests in March 1995. The technical design issues inherent in transforming any conceptual design to working equipment have been resolved, and two test systems and controllers have been constructed. Pilot tests and three prototype tests have been completed, concluding the current phase of work. One prototype unit was tested without thermal stress loads. Twice daily insulation property measurements (IPM's) on this unit demonstrated that the insulation property measurements themselves did not degrade the SSU.

  12. Accelerated test methods for life prediction of hermetic motor insulation systems exposed to alternative refrigerant/lubricant mixtures. Final report

    SciTech Connect

    Ellis, II, P F; Ferguson, A F

    1995-04-19

    In 1992, the Air-Conditioning and Refrigeration Technology Institute, Inc. (ARTI) contracted Radian Corporation to ascertain whether an improved accelerated test method or procedure could be developed that would allow prediction of the life of motor insulation materials used in hermetic motors for air-conditioning and refrigeration equipment operated with alternative refrigerant/lubricant mixtures. Phase 1 of the project, Conceptual Design of an accelerated test method and apparatus, was successfully completed in June 1993. The culmination of that effort was the concept of the Simulated Stator Unit (SSU) test. The objective of the Phase 2 limited proof-of-concept demonstration was to: answer specific engineering/design questions; design and construct an analog control sequencer and supporting apparatus; and conduct limited tests to determine the viability of the SSU test concept. This report reviews the SSU test concept, and describes the results through the conclusion of the proof-of-concept prototype tests in March 1995. The technical design issues inherent in transforming any conceptual design to working equipment have been resolved, and two test systems and controllers have been constructed. Pilot tests and three prototype tests have been completed, concluding the current phase of work. One prototype unit was tested without thermal stress loads. Twice daily insulation property measurements (IPMs) on this unit demonstrated that the insulation property measurements themselves did not degrade the SSU.

  13. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom.

    PubMed

    Barker, J; Garner, R C

    1999-01-01

    Accelerator mass spectrometry (AMS) is a nuclear physics technique developed about twenty years ago, that uses the high energy (several MeV) of a tandem Van de Graaff accelerator to measure very small quantities of rare and long-lived isotopes. Elements that are of interest in biomedicine and environmental sciences can be measured, often to parts per quadrillion sensitivity, i.e. zeptomole to attomole levels (10(-21)-10(-18) mole) from milligram samples. This is several orders of magnitude lower than that achievable by conventional decay counting techniques, such as liquid scintillation counting (LSC). AMS was first applied to geochemical, climatological and archaeological areas, such as for radiocarbon dating (Shroud of Turin), but more recently this technology has been used for bioanalytical applications. In this sphere, most work has been conducted using aluminium, calcium and carbon isotopes. The latter is of special interest in drug metabolism studies, where a Phase 1 adsorption, distribution, metabolism and excretion (ADME) study can be conducted using only 10 nanoCurie (37 Bq or ca. 0.9 microSv) amounts or less of 14C-labelled drugs. In the UK, these amounts of radioactivity are below those necessary to request specific regulatory approval from the Department of Health's Administration of Radioactive Substances Advisory Committee (ARSAC), thus saving on valuable development time and resources. In addition, the disposal of these amounts is much less an environmental issue than that associated with microCurie quantities, which are currently used. Also, AMS should bring an opportunity to conduct "first into man" studies without the need for widespread use of animals. Centre for Biomedical Accelerator Mass Spectrometry (CBAMS) Ltd. is the first fully commercial company in the world to offer analytical services using AMS. With its high throughput and relatively low costs per sample analysis, AMS should be of great benefit to the pharmaceutical and biotechnology

  14. Measurements of Cl-36 in Antarctic meteorites and Antarctic ice using a Van de Graaff accelerator

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Arnold, J. R.; Finkel, R. C.; Elmore, D.; Ferraro, R. D.; Gove, H. E.; Beukens, R. P.; Chang, K. H.; Kilius, L. R.

    1979-01-01

    The paper presents measurements of cosmic-ray produced (Cl-36) in Antarctic meteorites and ice using a Van de Graaff accelerator as an ultrasensitive mass spectrometer. Results from this ion counting technique are used to support a two-stage irradiation model for the Yamato-7301 and Allan Hills-76008 meteorites and to show a long terrestrial age for Allan Hills-77002. Yamato-7304 has a terrestrial age of less than 0.1 m.y., and the (Cl-36) content of the Antarctic ice sample from the Yamato mountain is consistent with levels expected in currently depositing snow implying that the age of the ice cap at this site is less than on (Cl-36) half-life.

  15. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.

    2016-09-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  16. A Fine-Tooth Comb to Measure the Accelerating Universe

    NASA Astrophysics Data System (ADS)

    2008-09-01

    worth recalling that the kind of precision required, 1 cm/s, corresponds, on the focal plane of a typical high-resolution spectrograph, to a shift of a few tenths of a nanometre, that is, the size of some molecules," explains PhD student and team member Constanza Araujo-Hauck from ESO. The new calibration technique comes from the combination of astronomy and quantum optics, in a collaboration between researchers at ESO and the Max Planck Institute for Quantum Optics. It uses ultra-short pulses of laser light to create a 'frequency comb' - light at many frequencies separated by a constant interval - to create just the kind of precise 'ruler' needed to calibrate a spectrograph. After successful tests in the MPQ laboratory in 2007, the team have successfully tested a prototype device using the laser comb at the VTT (Vacuum Tower Telescope) solar telescope in Tenerife, on 8 March 2008, measuring the spectrum of the Sun in infrared light. The results are already impressive, and the technique promises to achieve the accuracy needed to study these big astronomical questions. "In our tests in Tenerife, we have already achieved beyond state-of-the-art accuracy. Now we are going to make the system more versatile, and develop it even further," says team member Tilo Steinmetz, from Menlo Systems GmbH, a spin-off company from the Max Planck Institute, which was founded to commercialise the frequency comb technique. Having tested the technique on a solar telescope, a new version of the system is now being built for the HARPS planet-finder instrument on ESO's 3.6-metre telescope at La Silla in Chile, before being considered for future generations of instruments. One of the ambitious project to be realised with the E-ELT, called CODEX, aims to measure the recently discovered acceleration of the universe directly, by following the velocities of distant galaxies and quasars over a 20-year period. This would let astronomers test Einstein's general relativity and the nature of the recently

  17. Accelerated calendar and pulse life analysis of lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Jungst, Rudolph G.; Nagasubramanian, Ganesan; Case, Herbert L.; Liaw, Bor Yann; Urbina, Angel; Paez, Thomas L.; Doughty, Daniel H.

    Sandia National Laboratories has been studying calendar and pulse discharge life of prototype high-power lithium-ion cells as part of the Advanced Technology Development (ATD) Program. One of the goals of ATD is to establish validated accelerated life test protocols for lithium-ion cells in the hybrid electric vehicle application. In order to accomplish this, aging experiments have been conducted on 18650-size cells containing a chemistry representative of these high-power designs. Loss of power and capacity are accompanied by increasing interfacial impedance at the cathode. These relationships are consistent within a given state-of-charge (SOC) over the range of storage temperatures and times. Inductive models have been used to construct detailed descriptions of the relationships between power fade and aging time and to relate power fade, capacity loss and impedance rise. These models can interpolate among the different experimental conditions and can also describe the error surface when fitting life prediction models to the data.

  18. Failure modes and effects criticality analysis and accelerated life testing of LEDs for medical applications

    NASA Astrophysics Data System (ADS)

    Sawant, M.; Christou, A.

    2012-12-01

    While use of LEDs in Fiber Optics and lighting applications is common, their use in medical diagnostic applications is not very extensive. Since the precise value of light intensity will be used to interpret patient results, understanding failure modes [1-4] is very important. We used the Failure Modes and Effects Criticality Analysis (FMECA) tool to identify the critical failure modes of the LEDs. FMECA involves identification of various failure modes, their effects on the system (LED optical output in this context), their frequency of occurrence, severity and the criticality of the failure modes. The competing failure modes/mechanisms were degradation of: active layer (where electron-hole recombination occurs to emit light), electrodes (provides electrical contact to the semiconductor chip), Indium Tin Oxide (ITO) surface layer (used to improve current spreading and light extraction), plastic encapsulation (protective polymer layer) and packaging failures (bond wires, heat sink separation). A FMECA table is constructed and the criticality is calculated by estimating the failure effect probability (β), failure mode ratio (α), failure rate (λ) and the operating time. Once the critical failure modes were identified, the next steps were generation of prior time to failure distribution and comparing with our accelerated life test data. To generate the prior distributions, data and results from previous investigations were utilized [5-33] where reliability test results of similar LEDs were reported. From the graphs or tabular data, we extracted the time required for the optical power output to reach 80% of its initial value. This is our failure criterion for the medical diagnostic application. Analysis of published data for different LED materials (AlGaInP, GaN, AlGaAs), the Semiconductor Structures (DH, MQW) and the mode of testing (DC, Pulsed) was carried out. The data was categorized according to the materials system and LED structure such as AlGaInP-DH-DC, Al

  19. Quality of life: its definition and measurement.

    PubMed

    Felce, D; Perry, J

    1995-01-01

    A model of quality of life is proposed that integrates objective and subjective indicators, a broad range of life domains, and individual values. It takes account of concerns that externally derived norms should not be applied without reference to individual differences. It also allows for objective comparisons to be made between the situations of particular groups and what is normative. Considerable agreement exists that quality of life is multidimensional. Coverage may be categorised within five dimensions: physical wellbeing, material wellbeing, social wellbeing, emotional wellbeing, and development and activity. A research agenda is discussed as are the particular problems caused by difficulties in understanding and communicating.

  20. Precision measurement of the half-life and the decay branches of 62Ga

    NASA Astrophysics Data System (ADS)

    Canchel, G.; Blank, B.; Chartier, M.; Delalee, F.; Dendooven, P.; Dossat, C.; Giovinazzo, J.; Huikari, J.; Lalleman, A. S.; Lopez Jiménez, M. J.; Madec, V.; Pedroza, J. L.; Penttilä, H.; Thomas, J. C.

    2005-03-01

    In an experiment performed at the Accelerator Laboratory of the University of Jyväskylä, the β-decay half-life of 62Ga has been studied with high precision using the IGISOL technique. A half-life of T1/2 = 116.09(17) ms was measured. Using β-γ coincidences, the γ intensity of the 954 keV transition and an upper limit of the β-decay feeding of the 0+2 state have been extracted. The present experimental results are compared to previous measurements and their impact on our understanding of the weak interaction is discussed.

  1. Energy Measurements of Trapped Electrons from a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, Neil; Berry, Melissa; Blumenfeld, Ian; Decker, Franz-Josef; Hogan, Mark J.; Ischebeck, Rasmus; Iverson, Richard; Siemann, Robert H.; Walz, Dieter; Auerbach, David; Clayton, Christopher E.; Huang, Chengkun; Johnson, Devon; Joshi, Chandrashekhar; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Zhou, Miaomiao; Katsouleas, Thomas; Muggli, Patric

    2006-11-27

    Recent electron beam driven plasma wakefield accelerator experiments carried out at SLAC indicate trapping of plasma electrons. More charge came out of than went into the plasma. Most of this extra charge had energies at or below the 10 MeV level. In addition, there were trapped electron streaks that extended from a few GeV to tens of GeV, and there were mono-energetic trapped electron bunches with tens of GeV in energy.

  2. Energy Measurements of Trapped Electrons from a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, Neal; Auerbach, David; Berry, Melissa; Blumenfeld, Ian; Clayton, Christopher E.; Decer, Franz-Josef; Hogan, Mark J.; Huang, Chengkun; Ischebeck, Rasmus; Iverson, Richard; Johnson, Devon; Joshi, Chadrashekhar; Katsouleas, Thomas; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Muggli, Patric; Oz, Erdem; Siemann, Robert H.; Walz, Dieter; Zhou, Miaomiao; /SLAC /UCLA /Southern California U.

    2007-01-03

    Recent electron beam driven plasma wakefield accelerator experiments carried out at SLAC indicate trapping of plasma electrons. More charge came out of than went into the plasma. Most of this extra charge had energies at or below the 10 MeV level. In addition, there were trapped electron streaks that extended from a few GeV to tens of GeV, and there were mono-energetic trapped electron bunches with tens of GeV in energy.

  3. A PVDF transducer for low-frequency acceleration measurements.

    PubMed

    Daku, Brian L F; Mohamed, Enas M A; Prugger, Arnfinn F

    2004-07-01

    A unique acceleration transducer, using piezoelectric PVDF, has been developed for low-frequency vibration monitoring. The paper develops the theoretical model for this low-cost, robust sensor. The theoretical model is validated using experimental results from laboratory tests. The sensor was also installed in an underground potash mine alongside a commercial geophone for a three-month in-mine test producing results that show a close correspondence between the two transducers.

  4. Methodology to improve design of accelerated life tests in civil engineering projects.

    PubMed

    Lin, Jing; Yuan, Yongbo; Zhou, Jilai; Gao, Jie

    2014-01-01

    For reliability testing an Energy Expansion Tree (EET) and a companion Energy Function Model (EFM) are proposed and described in this paper. Different from conventional approaches, the EET provides a more comprehensive and objective way to systematically identify external energy factors affecting reliability. The EFM introduces energy loss into a traditional Function Model to identify internal energy sources affecting reliability. The combination creates a sound way to enumerate the energies to which a system may be exposed during its lifetime. We input these energies into planning an accelerated life test, a Multi Environment Over Stress Test. The test objective is to discover weak links and interactions among the system and the energies to which it is exposed, and design them out. As an example, the methods are applied to the pipe in subsea pipeline. However, they can be widely used in other civil engineering industries as well. The proposed method is compared with current methods.

  5. Accelerated life test of sputtering and anode deposit spalling in a small mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1975-01-01

    Tantalum and molybdenum sputtered from discharge chamber components during operation of a 5 centimeter diameter mercury ion thruster adhered much more strongly to coarsely grit blasted anode surfaces than to standard surfaces. Spalling of the sputtered coating did occur from a coarse screen anode surface but only in flakes less than a mesh unit long. The results were obtained in a 200 hour accelerated life test conducted at an elevated discharge potential of 64.6 volts. The test approximately reproduced the major sputter erosion and deposition effects that occur under normal operation but at approximately 75 times the normal rate. No discharge chamber component suffered sufficient erosion in the test to threaten its structural integrity or further serviceability. The test indicated that the use of tantalum-surfaced discharge chamber components in conjunction with a fine wire screen anode surface should cure the problems of sputter erosion and sputtered deposits spalling in long term operation of small mercury ion thrusters.

  6. Geometry of the q-exponential distribution with dependent competing risks and accelerated life testing

    NASA Astrophysics Data System (ADS)

    Zhang, Fode; Shi, Yimin; Wang, Ruibing

    2017-02-01

    In the information geometry suggested by Amari (1985) and Amari et al. (1987), a parametric statistical model can be regarded as a differentiable manifold with the parameter space as a coordinate system. Note that the q-exponential distribution plays an important role in Tsallis statistics (see Tsallis, 2009), this paper investigates the geometry of the q-exponential distribution with dependent competing risks and accelerated life testing (ALT). A copula function based on the q-exponential function, which can be considered as the generalized Gumbel copula, is discussed to illustrate the structure of the dependent random variable. Employing two iterative algorithms, simulation results are given to compare the performance of estimations and levels of association under different hybrid progressively censoring schemes (HPCSs).

  7. Methodology to Improve Design of Accelerated Life Tests in Civil Engineering Projects

    PubMed Central

    Lin, Jing; Yuan, Yongbo; Zhou, Jilai; Gao, Jie

    2014-01-01

    For reliability testing an Energy Expansion Tree (EET) and a companion Energy Function Model (EFM) are proposed and described in this paper. Different from conventional approaches, the EET provides a more comprehensive and objective way to systematically identify external energy factors affecting reliability. The EFM introduces energy loss into a traditional Function Model to identify internal energy sources affecting reliability. The combination creates a sound way to enumerate the energies to which a system may be exposed during its lifetime. We input these energies into planning an accelerated life test, a Multi Environment Over Stress Test. The test objective is to discover weak links and interactions among the system and the energies to which it is exposed, and design them out. As an example, the methods are applied to the pipe in subsea pipeline. However, they can be widely used in other civil engineering industries as well. The proposed method is compared with current methods. PMID:25111800

  8. Thrust Stand Measurements of the Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Emsellem, Gregory D.

    2011-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. This type of pulsed thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Dis- charge Inductive Plasma Accelerator (MAD-IPA), shown in Fig. 1, is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil before the main current pulse via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and a static magnetic field from a set of permanent magnets arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the theta-pinch coil is high. The use of a conical theta-pinch coil also serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [1, 2]. In this paper, we describe thrust stand measurements performed to characterize the performance (specific impulse, thrust efficiency) of the MAD-IPA thruster. Impulse data are obtained at various pulse energies, mass flow rates and inductive coil geometries. Dependencies on these experimental parameters are discussed in the context of the current sheet formation and electromagnetic plasma

  9. Measurement and Data Distribution for Microgravity Accelerations on the International Space Station

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Hrovat, Kenneth

    1999-01-01

    Two accelerometer systems will be available on the International Space Station to support microgravity payloads with information about the quasi-steady and vibratory acceleration environment of the research facilities. The Microgravity Acceleration Measurement System will record contributions to the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. The Space Acceleration Measurement System-II will measure vibratory disturbances on-board due to vehicle, crew, and equipment disturbances. Due to the dynamic nature of the microgravity environment and its potential to influence sensitive experiments, NASA's Principal Investigator Microgravity Services project has initiated a plan through which the data from these instruments will be distributed to researchers in a timely and meaningful fashion. Beyond the obvious benefit of correlation between accelerations and the scientific phenomena being studied, such information is also useful for hardware developers who can gain qualitative and quantitative feedback about their facility acceleration output to station.

  10. ASSESSMENT OF THE PCFBC-EXPOSED AND ACCELERATED LIFE-TESTED CANDLE FILTERS

    SciTech Connect

    M.A. Alvin

    1999-09-30

    Development of the hot gas filtration technology has been the focus of DOE/FETC and Siemens Westinghouse Power Corporation during the past twenty years. Systems development during this time has successfully lead to the generation and implementation of high temperature Siemens Westinghouse particulate filtration systems that are currently installed and are operational at Demonstration Plant sites, and which are ready for installation at commercial plant sites. Concurrently, materials development has advanced the use of commercially available oxide- and nonoxide-based monoliths, and has fostered the manufacture and use of second generation, oxide-based, continuous fiber reinforced ceramic composites and filament wound materials. This report summarizes the material characterization results for commercially available and second generation filter materials tested in Siemens Westinghouse's advanced, high temperature, particulate removal system at the Foster Wheeler, pressurized circulating fluidized-bed combustion, pilot-scale test facility in Karhula, Finland, and subsequent extended accelerated life testing of aged elements in Siemens Westinghouse pressurized fluidized-bed combustion simulator test facility in Pittsburgh, PA. The viability of operating candle filters successfully for over 1 year of service life has been shown in these efforts. Continued testing to demonstrate the feasibility of acquiring three years of service operation on aged filter elements is recommended.

  11. Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer

    SciTech Connect

    Sorrentino, F.; Lien, Y.-H.; Rosi, G.; Tino, G. M.; Bertoldi, A.; Bodart, Q.; Cacciapuoti, L.; Angelis, M. de; Prevedelli, M.

    2012-09-10

    We demonstrate a method to measure the gravitational acceleration with a dual cloud atom interferometer; the use of simultaneous atom interferometers reduces the effect of seismic noise on the gravity measurement. At the same time, the apparatus is capable of accurate measurements of the vertical gravity gradient. The ability to determine the gravity acceleration and gravity gradient simultaneously and with the same instrument opens interesting perspectives in geophysical applications.

  12. Fluence and dose measurements for an accelerator neutron beam

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Byun, S. H.; McNeill, F. E.; Mothersill, C. E.; Seymour, C. B.; Prestwich, W. V.

    2007-10-01

    The 3 MV Van de Graaff accelerator at McMaster University accelerator laboratory is extended to a neutron irradiation facility for low-dose bystander effects research. A long counter and an Anderson-Braun type neutron monitor have been used as monitors for the determination of the total fluence. Activation foils were used to determine the thermal neutron fluence rate (around 106 neutrons s-1). Meanwhile, the interactions of neutrons with the monitors have been simulated using a Monte Carlo N Particle (MCNP) code. Bystander effects, i.e. damage occurring in cells that were not traversed by radiation but were in the same radiation environment, have been well observed following both alpha and gamma irradiation of many cell lines. Since neutron radiation involves mixed field (including gamma and neutron radiations), we need to differentiate the doses for the bystander effects from the two radiations. A tissue equivalent proportional counter (TEPC) filled with propane based tissue equivalent gas simulating a 2 μm diameter tissue sphere has been investigated to estimate the neutron and gamma absorbed doses. A photon dose contamination of the neutron beam is less than 3%. The axial dose distribution follows the inverse square law and lateral and vertical dose distributions are relatively uniform over the irradiation area required by the biological study.

  13. Validity of a Wearable Accelerometer Device to Measure Average Acceleration Values During High-Speed Running.

    PubMed

    Alexander, Jeremy P; Hopkinson, Trent L; Wundersitz, Daniel W T; Serpell, Benjamin G; Mara, Jocelyn K; Ball, Nick B

    2016-11-01

    Alexander, JP, Hopkinson, TL, Wundersitz, DWT, Serpell, BG, Mara, JK, and Ball, NB. Validity of a wearable accelerometer device to measure average acceleration values during high-speed running. J Strength Cond Res 30(11): 3007-3013, 2016-The aim of this study was to determine the validity of an accelerometer to measure average acceleration values during high-speed running. Thirteen subjects performed three sprint efforts over a 40-m distance (n = 39). Acceleration was measured using a 100-Hz triaxial accelerometer integrated within a wearable tracking device (SPI-HPU; GPSports). To provide a concurrent measure of acceleration, timing gates were positioned at 10-m intervals (0-40 m). Accelerometer data collected during 0-10 m and 10-20 m provided a measure of average acceleration values. Accelerometer data was recorded as the raw output and filtered by applying a 3-point moving average and a 10-point moving average. The accelerometer could not measure average acceleration values during high-speed running. The accelerometer significantly overestimated average acceleration values during both 0-10 m and 10-20 m, regardless of the data filtering technique (p < 0.001). Body mass significantly affected all accelerometer variables (p < 0.10, partial η = 0.091-0.219). Body mass and the absence of a gravity compensation formula affect the accuracy and practicality of accelerometers. Until GPSports-integrated accelerometers incorporate a gravity compensation formula, the usefulness of any accelerometer-derived algorithms is questionable.

  14. A measure of satisfaction with food-related life.

    PubMed

    Grunert, Klaus G; Dean, Moira; Raats, Monique M; Nielsen, Niels Asger; Lumbers, Margaret

    2007-09-01

    A measure of satisfaction with food-related life is developed and tested in three studies in eight European countries. Five items are retained from an original pool of seven; these items exhibit good reliability as measured by Cronbach's alpha, good temporal stability, convergent validity with two related measures, and construct validity as indicated by relationships with other indicators of quality of life, including the Satisfaction With Life and the SF-8 scales. It is concluded that this scale will be useful in studies trying to identify factors contributing to satisfaction with food-related life.

  15. MEASUREMENTS OF THE CORONAL ACCELERATION REGION OF A SOLAR FLARE

    SciTech Connect

    Krucker, Saem; Hudson, H. S.; Glesener, L.; Lin, R. P.; White, S. M.; Masuda, S.; Wuelser, J.-P.

    2010-05-10

    The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Nobeyama Radioheliograph (NoRH) are used to investigate coronal hard X-ray and microwave emissions in the partially disk-occulted solar flare of 2007 December 31. The STEREO mission provides EUV images of the flare site at different viewing angles, establishing a two-ribbon flare geometry and occultation heights of the RHESSI and NoRH observations of {approx}16 Mm and {approx}25 Mm, respectively. Despite the occultation, intense hard X-ray emission up to {approx}80 keV occurs during the impulsive phase from a coronal source that is also seen in microwaves. The hard X-ray and microwave source during the impulsive phase is located {approx}6 Mm above thermal flare loops seen later at the soft X-ray peak time, similar in location to the above-the-loop-top source in the Masuda flare. A single non-thermal electron population with a power-law distribution (with spectral index of {approx}3.7 from {approx}16 keV up to the MeV range) radiating in both bremsstrahlung and gyrosynchrotron emission can explain the observed hard X-ray and microwave spectrum, respectively. This clearly establishes the non-thermal nature of the above-the-loop-top source. The large hard X-ray intensity requires a very large number (>5 x 10{sup 35} above 16 keV for the derived upper limit of the ambient density of {approx}8 x 10{sup 9} cm{sup -3}) of suprathermal electrons to be present in this above-the-loop-top source. This is of the same order of magnitude as the number of ambient thermal electrons. We show that collisional losses of these accelerated electrons would heat all ambient electrons to superhot temperatures (tens of keV) within seconds. Hence, the standard scenario, with hard X-rays produced by a beam comprising the tail of a dominant thermal core plasma, does not work. Instead, all electrons in the above-the-loop-top source seem to be accelerated, suggesting that the above-the-loop-top source is itself the

  16. A Self-Report Measure of Life Satisfaction in Retirement.

    ERIC Educational Resources Information Center

    Heflin, Thomas L.

    This research report had as its main purpose the derivation of a self-report measure of life satisfaction in retirement through the use of a mathematical technique known as factor analysis. Data on questions which have been used to measure moral, life satisfaction, and preretirement attitudes were collected from 123 retired male workers from a…

  17. First measurements of laser-accelerated proton induced luminescence

    SciTech Connect

    Floquet, V.; Ceccotti, T.; Dobosz Dufrenoy, S.; Bonnaud, G.; Monot, P.; Martin, Ph.; Gremillet, L.

    2012-09-15

    We present our first results about laser-accelerated proton induced luminescence in solids. In the first part, we describe the optimization of the proton source as a function of the target thickness as well as the laser pulse duration and energy. Due to the ultra high contrast ratio of our laser beam, we succeeded in using targets ranging from the micron scale down to nanometers thickness. The two optimal thicknesses we put in evidence are in good agreement with numerical simulations. Laser pulse duration shows a small influence on proton maximum energy, whereas the latter turns out to vary almost linearly as a function of laser energy. Thanks to this optimisation work, we have been able to acquire images of the proton energy deposition in a solid scintillator.

  18. Longitudinal impedance measurement of an RK-TBA induction accelerating gap

    SciTech Connect

    Eylon, S.; Henestroza, E.; Kim, J.-S.; Houck, T.L.; Westenskow, G.A.; Yu, S.S.

    1997-05-01

    Induction accelerating gap designs are being studied for Relativistic Klystron Two-Beam Accelerator (RK-TBA) applications. The accelerating gap has to satisfy the following major requirements: hold-off of the applied accelerating voltage pulse, low transverse impedance to limit beam breakup, low longitudinal impedance at the beam-modulation frequency to minimize power loss. Various gap geometries, materials and novel insulating techniques were explored to optimize the gap design. We report on the experimental effort to evaluate the rf properties of the accelerating gaps in a simple pillbox cavity structure. The experimental cavity setup was designed using the AMOS, MAFIA and URMEL numerical codes. Longitudinal impedance measurements above beam-tube cut-off frequency using a single-wire measuring system are presented.

  19. Method for direct measurement of cosmic acceleration by 21-cm absorption systems.

    PubMed

    Yu, Hao-Ran; Zhang, Tong-Jie; Pen, Ue-Li

    2014-07-25

    So far there is only indirect evidence that the Universe is undergoing an accelerated expansion. The evidence for cosmic acceleration is based on the observation of different objects at different distances and requires invoking the Copernican cosmological principle and Einstein's equations of motion. We examine the direct observability using recession velocity drifts (Sandage-Loeb effect) of 21-cm hydrogen absorption systems in upcoming radio surveys. This measures the change in velocity of the same objects separated by a time interval and is a model-independent measure of acceleration. We forecast that for a CHIME-like survey with a decade time span, we can detect the acceleration of a ΛCDM universe with 5σ confidence. This acceleration test requires modest data analysis and storage changes from the normal processing and cannot be recovered retroactively.

  20. Method for Direct Measurement of Cosmic Acceleration by 21-cm Absorption Systems

    NASA Astrophysics Data System (ADS)

    Yu, Hao-Ran; Zhang, Tong-Jie; Pen, Ue-Li

    2014-07-01

    So far there is only indirect evidence that the Universe is undergoing an accelerated expansion. The evidence for cosmic acceleration is based on the observation of different objects at different distances and requires invoking the Copernican cosmological principle and Einstein's equations of motion. We examine the direct observability using recession velocity drifts (Sandage-Loeb effect) of 21-cm hydrogen absorption systems in upcoming radio surveys. This measures the change in velocity of the same objects separated by a time interval and is a model-independent measure of acceleration. We forecast that for a CHIME-like survey with a decade time span, we can detect the acceleration of a ΛCDM universe with 5σ confidence. This acceleration test requires modest data analysis and storage changes from the normal processing and cannot be recovered retroactively.

  1. A Comparison of Accelerated and Non-accelerated MRI Scans for Brain Volume and Boundary Shift Integral Measures of Volume Change: Evidence from the ADNI Dataset.

    PubMed

    Manning, Emily N; Leung, Kelvin K; Nicholas, Jennifer M; Malone, Ian B; Cardoso, M Jorge; Schott, Jonathan M; Fox, Nick C; Barnes, Josephine

    2017-03-18

    The aim of this study was to assess whether the use of accelerated MRI scans in place of non-accelerated scans influenced brain volume and atrophy rate measures in controls and subjects with mild cognitive impairment and Alzheimer's disease. We used data from 861 subjects at baseline, 573 subjects at 6 months and 384 subjects at 12 months from the Alzheimer's Disease Neuroimaging Initiative (ADNI). We calculated whole-brain, ventricular and hippocampal atrophy rates using the k-means boundary shift integral (BSI). Scan quality was visually assessed and the proportion of good quality accelerated and non-accelerated scans compared. We also compared MMSE scores, vascular burden and age between subjects with poor quality scans with those with good quality scans. Finally, we estimated sample size requirements for a hypothetical clinical trial when using atrophy rates from accelerated scans and non-accelerated scans. No significant differences in whole-brain, ventricular and hippocampal volumes and atrophy rates were found between accelerated and non-accelerated scans. Twice as many non-accelerated scan pairs suffered from at least some motion artefacts compared with accelerated scan pairs (p ≤ 0.001), which may influence the BSI. Subjects whose accelerated scans had significant motion had a higher mean vascular burden and age (p ≤ 0.05) whilst subjects whose non-accelerated scans had significant motion had poorer MMSE scores (p ≤ 0.05). No difference in estimated sample size requirements was found when using accelerated vs. non-accelerated scans. Accelerated scans reduce scan time and are better tolerated. Therefore it may be advantageous to use accelerated over non-accelerated scans in clinical trials that use ADNI-type protocols, especially in more cognitively impaired subjects.

  2. Neutron source strength measurements for Varian, Siemens, Elekta, and General Electric linear accelerators.

    PubMed

    Followill, David S; Stovall, Marilyn S; Kry, Stephen F; Ibbott, Geoffrey S

    2003-01-01

    The shielding calculations for high energy (>10 MV) linear accelerators must include the photoneutron production within the head of the accelerator. Procedures have been described to calculate the treatment room door shielding based on the neutron source strength (Q value) for a specific accelerator and energy combination. Unfortunately, there is currently little data in the literature stating the neutron source strengths for the most widely used linear accelerators. In this study, the neutron fluence for 36 linear accelerators, including models from Varian, Siemens, Elekta/Philips, and General Electric, was measured using gold-foil activation. Several of the models and energy combinations had multiple measurements. The neutron fluence measured in the patient plane was independent of the surface area of the room, suggesting that neutron fluence is more dependent on the direct neutron fluence from the head of the accelerator than from room scatter. Neutron source strength, Q, was determined from the measured neutron fluences. As expected, Q increased with increasing photon energy. The Q values ranged from 0.02 for a 10 MV beam to 1.44(x10(12)) neutrons per photon Gy for a 25 MV beam. The most comprehensive set of neutron source strength values, Q, for the current accelerators in clinical use are presented for use in calculating room shielding.

  3. Intense and exciting: current and future accelerator-based measurements of neutrino oscillation

    NASA Astrophysics Data System (ADS)

    Whitehead, Lisa

    2017-01-01

    Accelerator-based experiments have been crucial in our understanding of neutrino oscillations. In this talk, I will give an overview of current accelerator-based neutrino oscillation experiments, which have observed electron neutrino appearance and made precision measurements of the parameters governing muon neutrino disappearance. I will discuss what the current set of experiments can contribute to the remaining questions in neutrino oscillation physics, including measuring the CP violating phase, determining the mass hierarchy, resolving the θ23 octant, and searching for sterile neutrinos. Finally, I will describe the plans and physics goals for future accelerator-based neutrino experiments.

  4. The Adaptive Basis of Psychosocial Acceleration: Comment on beyond Mental Health, Life History Strategies Articles

    ERIC Educational Resources Information Center

    Nettle, Daniel; Frankenhuis, Willem E.; Rickard, Ian J.

    2012-01-01

    Four of the articles published in this special section of "Developmental Psychology" build on and refine psychosocial acceleration theory. In this short commentary, we discuss some of the adaptive assumptions of psychosocial acceleration theory that have not received much attention. Psychosocial acceleration theory relies on the behavior of…

  5. Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head

    NASA Astrophysics Data System (ADS)

    Krause, David L.; Kantzos, Pete T.

    2006-01-01

    For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110-watt Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.

  6. Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Kantzos, Pete T.

    2006-01-01

    For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110 W Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.

  7. Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head

    SciTech Connect

    Krause, David L.; Kantzos, Pete T.

    2006-01-20

    For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110-watt Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.

  8. Gadolinium-148 and other spallation production cross section measurements for accelerator target facilities

    NASA Astrophysics Data System (ADS)

    Kelley, Karen Corzine

    At the Los Alamos Neutron Science Center accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research facility and the 1L target at the Lujan Center. The Department of Energy requires hazard classification analyses to be performed on these targets and places limits on certain radionuclide inventories in the targets to avoid characterizing the facilities as "nuclear facilities." Gadolinium-148 is a radionuclide created from the spallation of tungsten. Allowed isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of Gadolinium-148 is low, but it encompasses almost two-thirds of the total dose burden for the two tungsten targets based on present yield estimates. From a hazard classification standpoint, this severely limits the lifetime of these tungsten targets. The cross section is not well-established experimentally and this is the motivation for measuring the Gadolinium-148 production cross section from tungsten. In a series of experiments at the Weapons Neutron Research facility, Gadolinium-148 production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold. These experiments used 3 mum thin tungsten, tantalum, and gold foils and 10 mum thin aluminum activation foils. In addition, spallation yields were determined for many short-lived and long-lived spallation products with these foils using gamma and alpha spectroscopy and compared with predictions of the Los Alamos National Laboratory codes CEM2k+GEM2 and MCNPX. The cumulative Gadolinium-148 production cross section measured from tantalum, tungsten, and gold for incident 600-MeV protons were 15.2 +/- 4.0, 8.31 +/- 0.92, and 0.591 +/- 0.155, respectively. The average production cross sections measured at 800 MeV were 28.6 +/- 3.5, 19.4 +/- 1.8, and 3.69 +/- 0.50 for tantalum, tungsten, and gold, respectively. These cumulative

  9. Studies of acceleration processes in the corona using ion measurements on the solar probe mission

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.

    1978-01-01

    The energy spectra and composition of particles escaping from the Sun provide essential information on mechanisms responsible for their acceleration, and may also be used to characterize the regions where they are accelerated and confined and through which they propagate. The suprathermal energy range, which extends from solar wind energies (approximately 1 KeV) to about 1 MeV/nucleon, is of special interest to studies of nonthermal acceleration processes because a large fraction of particles is likely to be accelerated into this energy range. Data obtained from near earth observations of particles in the suprathermal energy range are reviewed. The necessary capabilities of an a ion composition experiment in the solar probe mission and the required ion measurements are discussed. A possible configuration of an instrument consisting of an electrostatic deflection system, modest post acceleration, and a time of flight versus energy system is described as well as its possible location on the spacecraft.

  10. ACCELERATORS: A GUI tool for beta function measurement using MATLAB

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Ling; Tian, Shun-Qiang; Jiang, Bo-Cheng; Liu, Gui-Min

    2009-04-01

    The beta function measurement is used to detect the shift in the betatron tune as the strength of an individual quadrupole magnet is varied. A GUI (graphic user interface) tool for the beta function measurement is developed using the MATLAB program language in the Linux environment, which facilitates the commissioning of the Shanghai Synchrotron Radiation Facility (SSRF) storage ring. In this paper, we describe the design of the application and give some measuring results and discussions about the definition of the measurement. The program has been optimized to solve some restrictions of the AT tracking code. After the correction with LOCO (linear optics from closed orbits), the horizontal and the vertical root mean square values (rms values) can be reduced to 0.12 and 0.10.

  11. Laser measurements for experiments on the TROLL accelerator

    NASA Astrophysics Data System (ADS)

    Hogeland, S.

    1992-06-01

    Propagation of an electron beam over long distances can be accomplished by using a laser produced plasma channel. In experiments at the EPOCH Laboratory, a krypton/fluoride laser, lasing at 248 nm, is used to ionize trimethylamine gas to create a 91 m long channel. The laser radius was measured as 2.4 cm. Laser energy was measured and ranged from 0.5 to 6 J.

  12. Measuring the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator

    SciTech Connect

    Albert, F.; Pollock, B. B.; Shaw, J. L.; Marsh, K. A.; Ralph, J. E.; Chen, Y. -H.; Alessi, D.; Pak, A.; Clayton, C. E.; Glenzer, S. H.; Joshi, C.

    2014-07-22

    This paper presents a new technique to measure the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator. Measurements are performed with a stacked image plates spectrometer, capable of detecting broadband x-ray radiation up to 1 MeV. It can provide measurements of the betatron x-ray spectrum at any angle of observation (within a 40 mrad cone) and of the beam profile. A detailed description of our data analysis is given, along with comparison for several shots. As a result, these measurements provide useful information on the dynamics of the electrons are they are accelerated and wiggled by the wakefield.

  13. Life Cycle Thinking, Measurement and Management for Food System Sustainability.

    PubMed

    Pelletier, Nathan

    2015-07-07

    Food systems critically contribute to our collective sustainability outcomes. Improving food system sustainability requires life cycle thinking, measurement and management strategies. This article reviews the status quo and future prospects for bringing life cycle approaches to food system sustainability to the fore.

  14. Accelerator mass spectrometry measurements of natural and anthropogenic Cl-36

    SciTech Connect

    Sharma, P.; Gove, H.E.; Fehn, U.

    1993-04-01

    Radioactive chlorine-36 (half-life = 301,000 years) is produced by cosmic-ray induced spallation reactions in the Earth`s atmosphere and in surface rocks and through thermal neutron activation of stable chlorine-35 in the Earth`s crust. A large amount of chlorine-36 was introduced into the atmosphere and hydrosphere during nuclear weapon tests in the 1950`s and 1960`s (the so called {open_quotes}bomb pulse{close_quotes}). Additional sources of anthropogenic Cl-36 in the environment are activities associated with the nuclear power cycle. Results of three recent applications of chlorine-36 will be presented and discussed: (1) study of the dynamics of water movement and radioactive contaminants from nuclear fuel reprocessing plants at Savannah River Site, South Carolina and Idaho National Engineering Laboratory, Idaho Falls, Idaho, (2) investigation of potential water movement through the unsaturated zone at Yucca Mountain (a possible site for high level radioactive waste disposal), and (3) deciphering past variations in cosmic radiation using ancient packrat urine from Nevada.

  15. Measurement of Gravitational Acceleration Using a Computer Microphone Port

    ERIC Educational Resources Information Center

    Khairurrijal; Eko Widiatmoko; Srigutomo, Wahyu; Kurniasih, Neny

    2012-01-01

    A method has been developed to measure the swing period of a simple pendulum automatically. The pendulum position is converted into a signal frequency by employing a simple electronic circuit that detects the intensity of infrared light reflected by the pendulum. The signal produced by the electronic circuit is sent to the microphone port and…

  16. Thrust Stand Measurements Using Alternative Propellants in the Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2011-01-01

    Storable propellants (for example water, ammonia, and hydrazine) are attractive for deep space propulsion due to their naturally high density at ambient interplanetary conditions, which obviates the need for a cryogenic/venting system. Water in particular is attractive due to its ease of handling and availability both terrestrially and extra-terrestrially. While many storable propellants are reactive and corrosive, a propulsion scheme where the propellant is insulated from vulnerable (e.g. metallic) sections of the assembly would be well-suited to process these otherwise incompatible propellants. Pulsed inductive plasma thrusters meet this criterion because they can be operated without direct propellant-electrode interaction. During operation of these devices, electrical energy is capacitively stored and then discharged through an inductive coil creating a time-varying current in the coil that interacts with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, many pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil before the main current pulse via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and a static magnetic field from a set of permanent magnets arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the theta

  17. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  18. Dynamics of laser-driven proton acceleration exhibited by measured laser absorptivity and reflectivity

    PubMed Central

    Bin, J. H.; Allinger, K.; Khrennikov, K.; Karsch, S.; Bolton, P. R.; Schreiber, J.

    2017-01-01

    Proton acceleration from nanometer thin foils with intense laser pulses is investigated experimentally. We analyzed the laser absorptivity by parallel monitoring of laser transmissivity and reflectivity with different laser intensities when moving the targets along the laser axis. A direct correlation between laser absorptivity and maximum proton energy is observed. Experimental results are interpreted in analytical estimation, exhibiting a coexistence of plasma expansion and light-sail form of radiation pressure acceleration (RPA-LS) mechanisms during the entire proton acceleration process based on the measured laser absorptivity and reflectivity. PMID:28272471

  19. Optics measurement and correction during acceleration with beta-squeeze in RHIC

    SciTech Connect

    Liu, C.; Marusic, A.; Minty, M.

    2015-05-03

    In the past, beam optics correction at RHIC has only taken place at injection and at final energy, with interpolation of corrections partially into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats that, if corrected, could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoiding the high-order multipole fields sampled by particles within the bunch. We recently demonstrated successful beam optics corrections during acceleration at RHIC. We verified conclusively the superior control of the beam realized via these corrections

  20. Dynamics of laser-driven proton acceleration exhibited by measured laser absorptivity and reflectivity

    NASA Astrophysics Data System (ADS)

    Bin, J. H.; Allinger, K.; Khrennikov, K.; Karsch, S.; Bolton, P. R.; Schreiber, J.

    2017-03-01

    Proton acceleration from nanometer thin foils with intense laser pulses is investigated experimentally. We analyzed the laser absorptivity by parallel monitoring of laser transmissivity and reflectivity with different laser intensities when moving the targets along the laser axis. A direct correlation between laser absorptivity and maximum proton energy is observed. Experimental results are interpreted in analytical estimation, exhibiting a coexistence of plasma expansion and light-sail form of radiation pressure acceleration (RPA-LS) mechanisms during the entire proton acceleration process based on the measured laser absorptivity and reflectivity.

  1. Climate-driven vertical acceleration of Icelandic crust measured by continuous GPS geodesy

    NASA Astrophysics Data System (ADS)

    Compton, Kathleen; Bennett, Richard A.; Hreinsdóttir, Sigrún

    2015-02-01

    Earth's present-day response to enhanced glacial melting resulting from climate change can be measured using Global Positioning System (GPS) technology. We present data from 62 continuously operating GPS instruments in Iceland. Statistically significant upward velocity and accelerations are recorded at 27 GPS stations, predominantly located in the Central Highlands region of Iceland, where present-day thinning of the Iceland ice caps results in velocities of more than 30 mm/yr and uplift accelerations of 1-2 mm/yr2. We use our acceleration estimates to back calculate to a time of zero velocity, which coincides with the initiation of ice loss in Iceland from ice mass balance calculations and Arctic warming trends. We show, through a simple inversion, a direct relationship between ice mass balance measurements and vertical position and show that accelerated unloading is required to reproduce uplift observations for a simple elastic layer over viscoelastic half-space model.

  2. Numerical design and model measurements for a 1.3 GHz microtron accelerating cavity

    NASA Astrophysics Data System (ADS)

    Kleeven, W. J. G. M.; Theeuwen, M. E. H. J.; Knoben, M. H. M.; Moerdijk, A. J.; Botman, J. I. M.; van der Heide, J. A.; Timmermans, C. J.; Hagedoorn, H. L.

    1992-05-01

    As part of the free electron laser project TEUFEL, a 25 MeV racetrack microtron is under construction at the Eindhoven University. The accelerating cavity of this microtron is a standing wave on axis coupled structure. It consists of three accelerating cells and two coupling cells. Numerical field calculations for this cavity were done with the computer codes SUPERFISH, URMEL-T and MAFIA. Not only the accelerating modes but also the dangerous beam breakup modes were calculated with MAFIA. An aluminium, scale 1:1 model of the structure was made in order to measure various cavity properties. Field profiles were measured with the perturbation ball method. An equivalent LC-circuit simulation of the accelerating structure was made, which serves as a model for the interpretation of the results.

  3. Thermal reliability analysis of a BLDC motor in a high-speed axial fan by the accelerated-life test and numerical methods

    NASA Astrophysics Data System (ADS)

    Hur, Jin-Huek; Lee, Tae-Gu; Moon, Sun-Ae; Lee, Sang-Jae; Yoo, Hoseon; Moon, Seung-Jae; Lee, Jae-Heon

    2008-09-01

    The thermal reliability of a closed-type BLDC motor for a high-speed fan is analyzed by an accelerated-life testing and numerical methods in this paper. Since a module and a motor part are integrated in a closed case, heat generated from a rotor in a motor and electronic components in the PCB module cannot be effectively removed to the outside. Therefore, the module will easily fail due to high temperature. The experiment for measuring the temperature and the surface heat flux of the electronic components is carried out to predict their surface temperature distributions and main heat sources. The accelerated-life test is accomplished to formulate the life equation depending on the environmental temperature. Moreover, the temperature of the PCB module is different from the environmental temperature since the heat generated from the motor cannot be effectively dissipated owing to the motor’s structure. Therefore a numerical method is used to predict the temperature of the PCB module, which is one of the life equation parameter, according to the environment. By numerically obtaining the maxima of the thermal stress and strain of the electronic components according to the operation environments with the temperature results, the fatigue cycle can be estimated.

  4. Acceleration of matrix element computations for precision measurements

    SciTech Connect

    Brandt, Oleg; Gutierrez, Gaston; Wang, M. H.L.S.; Ye, Zhenyu

    2014-11-25

    The matrix element technique provides a superior statistical sensitivity for precision measurements of important parameters at hadron colliders, such as the mass of the top quark or the cross-section for the production of Higgs bosons. The main practical limitation of the technique is its high computational demand. Using the example of the top quark mass, we present two approaches to reduce the computation time of the technique by a factor of 90. First, we utilize low-discrepancy sequences for numerical Monte Carlo integration in conjunction with a dedicated estimator of numerical uncertainty, a novelty in the context of the matrix element technique. We then utilize a new approach that factorizes the overall jet energy scale from the matrix element computation, a novelty in the context of top quark mass measurements. The utilization of low-discrepancy sequences is of particular general interest, as it is universally applicable to Monte Carlo integration, and independent of the computing environment.

  5. PRECISION MEASUREMENT OF MUON G-2 AND ACCELERATOR RELATED ISSUES

    SciTech Connect

    BROWN,H.N.; BUNCE,G.; CAREY,R.M.; CUSHMAN,P.; DANBY,G.T.; DEBEVEC,P.T.; DEILE,M.; DENG,H.; DENINGER,W.; DHAWAN,S.K.; ET AL; MENG,W.

    2001-09-21

    A precision measurement of the anomalous g value, a{sub {mu}}=(g-2)/2, for the positive muon has been made using high intensity protons available at the Brookhaven AGS. The result based on the 1999 data a{sub {mu}}=11659202(14)(6) x 10{sup 10} (1.3ppm) is in good agreement with previous measurements and has an error one third that of the combined previous data. The current theoretical value from the standard model is a{sub {mu}} (SM)=11659159.6(6.7) x 10{sup 10} (0.57 ppm) and differ by over 2.5 standard deviation with experiment. Issues with reducing systematic errors and enhancing the injection and storage efficiencies are discussed.

  6. Summary Report of Mission Acceleration Measurements for STS-73, Launched October 20, 1995

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; DeLombard, Richard

    1996-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-73 mission using accelerometers from five different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System, the Three-dimensional Microgravity Accelerometer, the Microgravity Measuring Device, and Suppression of Transient Accelerations by Levitation Evaluation System. The Microgravity Analysis Workstation quasi-steady environment calculation and comparison of this calculation with Orbital Acceleration Research Experiment data was used to assess how appropriate a planned attitude was expected to be for one Crystal Growth Facility experiment sample. The microgravity environment related to several different Orbiter, crew, and experiment operations is presented and interpreted in this report. Data are examined to show the effects of vernier reaction control system jet firings for Orbiter attitude control. This is compared to examples of data when no thrusters were firing, when the primary reaction control system jets were used for attitude control, and when single vernier jets were fired for test purposes. In general, vernier jets, when used for attitude control, cause accelerations in the 3 x 10(exp -4) g to 7 x 10(exp -4) g range. Primary jets used in this manner cause accelerations in the 0.01 to 0.025 g range. Other significant disturbance sources characterized are water dump operations, with Y(sub b) axis acceleration deviations of about 1 x 10(exp -6) g; payload bay door opening motion, with Y(sub o) and Z(sub o) axis accelerations of frequency 0.4 Hz; and probable Glovebox fan operations with notable frequency components at 20, 38, 43, 48, and 53 Hz. The STS-73 microgravity environment is comparable to the environments measured on earlier microgravity science missions.

  7. Summary Report of Mission Acceleration Measurements for STS-89: Launched January 22, 1998

    NASA Technical Reports Server (NTRS)

    Hrovat, Kenneth; McPherson, Kevin

    1999-01-01

    Support of microgravity research on the 89th flight of the Space Transportation System (STS-89) and a continued effort to characterize the acceleration environment of the Space Shuttle Orbiter and the Mir Space Station form the basis for this report. For the STS-89 mission, the Space Shuttle Endeavour was equipped with a Space Acceleration Measurement System (SAMS) unit, which collected more than a week's worth of data. During docked operations with Mir, a second SAMS unit collected approximately a day's worth of data yielding the only set of acceleration measurements recorded simultaneously on the two spacecraft. Based on the data acquired by these SAMS units, this report serves to characterize a number of acceleration events and quantify their impact on the local nature of the accelerations experienced at the Mechanics of Granular Materials (MGM) experiment location. Crew activity was shown to nearly double the median root-mean-square (RMS) acceleration level calculated below 10 Hz, while the Enhanced Orbiter Refrigerator/Freezer operating at about 22 Hz was a strong acceleration source in the vicinity of the MGM location. The MGM science requirement that the acceleration not exceed q I mg was violated numerous times during their experiment runs; however, no correlation with sample instability has been found to this point. Synchronization between the SAMS data from Endeavour and from Mir was shown to be close much of the time, but caution with respect to exact timing should be exercised when comparing these data. When orbiting as a separate vehicle prior to docking, Endeavour had prominent structural modes above 3 Hz, while Mir exhibited a cluster of modes around 1 Hz. When mated, a transition to common modes was apparent in the two SAMS data sets. This report is not a comprehensive analysis of the acceleration data, so those interested in further details should contact the Principal Investigator Microgravity Services team at the National Aeronautics and Space

  8. Orbiter Aerodynamic Acceleration Flight Measurements in the Rarefied-Flow Transition Regime

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Wilmoth, Richard G.; LeBeau, Gerald J.

    1996-01-01

    Acceleration data taken from the Orbital Acceleration Research Experiment (OARE) during reentry on STS-62 have been analyzed using calibration factors taken on orbit. This is the first Orbiter mission which collected OARE data during the Orbiter reentry phase. The data examined include the flight regime from orbital altitudes down to about 90 km which covers the free-molecule-flow regime and the upper altitude fringes of the rarefied-flow transition into the hypersonic continuum. Ancillary flight data on Orbiter position, orientation, velocity, and rotation rates have been used in models to transform the measured accelerations to the Orbiter center-of-gravity, from which aerodynamic accelerations along the Orbiter body axes have been calculated. Residual offsets introduced in the measurements by unmodeled Orbiter forces are identified and discussed. Direct comparisons are made between the OARE flight data and an independent micro-gravity accelerometer experiment, the High Resolution Accelerometer Package (HiRAP), which also obtained flight data on reentry during the mission down to about 95 km. The resulting OARE aerodynamic acceleration measurements along the Orbiter's body axis, aid the normal to axial acceleration ratio in the free-molecule-flow and transition-flow regimes are presented and compared with numerical simulations from three direct simulation Monte Carlo codes.

  9. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider

    SciTech Connect

    Liu, C.; Marusic, A.; Minty, M.

    2014-09-09

    To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.

  10. Acceleration of matrix element computations for precision measurements

    DOE PAGES

    Brandt, Oleg; Gutierrez, Gaston; Wang, M. H.L.S.; ...

    2014-11-25

    The matrix element technique provides a superior statistical sensitivity for precision measurements of important parameters at hadron colliders, such as the mass of the top quark or the cross-section for the production of Higgs bosons. The main practical limitation of the technique is its high computational demand. Using the example of the top quark mass, we present two approaches to reduce the computation time of the technique by a factor of 90. First, we utilize low-discrepancy sequences for numerical Monte Carlo integration in conjunction with a dedicated estimator of numerical uncertainty, a novelty in the context of the matrix elementmore » technique. We then utilize a new approach that factorizes the overall jet energy scale from the matrix element computation, a novelty in the context of top quark mass measurements. The utilization of low-discrepancy sequences is of particular general interest, as it is universally applicable to Monte Carlo integration, and independent of the computing environment.« less

  11. Wavefront-sensor-based electron density measurements for laser-plasma accelerators

    SciTech Connect

    Plateau, Guillaume; Matlis, Nicholas; Geddes, Cameron; Gonsalves, Anthony; Shiraishi, Satomi; Lin, Chen; van Mourik, Reinier; Leemans, Wim

    2010-02-20

    Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength, hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, have greater phase sensitivity, straightforward analysis, improving shot-to-shot plasma-density diagnostics.

  12. Measurement of Head Scatter Factor for Linear Accelerators using Indigenously Designed Columnar Mini Phantom

    NASA Astrophysics Data System (ADS)

    Appasamy, Murugan; Xavier, Sidonia; Kuppusamy, Thayalan; Velayudham, Ramasubramanian

    2011-01-01

    A columnar mini phantom is designed as recommended by ESTRO to measure the Head Scatter Factor (Sc) for 6 MV beam of two linear accelerators. The measurement of Sc at different orientations of the chamber, parallel and perpendicular at 1.5 cm depth predicts the deviation of 2.05% and 1.9% for Elekta and Siemens linear accelerators respectively. The measurement of Sc at 1.5 cm is higher compared to 10 cm depth for both the linear accelerators suggesting the electron contamination at 1.5 cm depth. The effect of wedges on Sc yields a significant contribution of 3.5% and 5% for Siemens and Elekta linear accelerators respectively. The collimator exchange effect reveals the opening of upper jaw increases the Sc irrespective of the linear accelerator. The result emphasizes the need of Sc measurement at 10 cm. The presence of wedge influences the Sc value and the SSD has no influence on Sc. The measured Sc values are in good agreement with the published data.

  13. Cross-Section Measurements with the Radioactive Isotope Accelerator (RIA)

    SciTech Connect

    Stoyer, M A; Moody, K J; Wild, J F; Patin, J B; Shaughnessy, D A; Stoyer, N J; Harris, L J

    2002-11-19

    RIA will produce beams of exotic nuclei of unprecedented luminosity. Preliminary studies of the feasibility of measuring cross-sections of interest to the science based stockpile stewardship (SBSS) program will be presented, and several experimental techniques will be discussed. Cross-section modeling attempts for the A = 95 mass region will be shown. In addition, several radioactive isotopes could be collected for target production or medical isotope purposes while the main in-beam experiments are running. The inclusion of a broad range mass analyzer (BRAMA) capability at RIA will enable more effective utilization of the facility, enabling the performance of multiple experiments at the same time. This option will be briefly discussed.

  14. Measuring the Acceleration Due to Gravity: An Experiment Galileo Could Have Run.

    ERIC Educational Resources Information Center

    Mentzer, Robert G.

    1984-01-01

    Today students routinely measure the acceleration due to gravity (g) with strobes and high-speed photography. However, it is possible to measure g using equipment and reasoning available to Galileo. Such an experiment (and the equipment needed) is described. (JN)

  15. Fast-acting calorimeter measures heat output of plasma gun accelerator

    NASA Technical Reports Server (NTRS)

    Dethlefson, R.; Larson, A. V.; Liebing, L.

    1967-01-01

    Calorimeter measures the exhaust energy from a shot of a pulsed plasma gun accelerator. It has a fast response time and requires only one measurement to determine the total energy. It uses a long ribbon of copper foil wound around a glass frame to form a reentrant cavity.

  16. Summary Report of Mission Acceleration Measurement for STS-87, Launched November 19, 1997

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; DeLombard, Richard; Reckart, Timothy

    1999-01-01

    Two accelerometer systems, the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System, were used to measure and record the microgravity environment of the Orbiter Columbia during the STS-87 mission in November-December 1997. Data from two separate Space Acceleration Measurement System units were telemetered to the ground during the mission and data plots were displayed for investigators of the Fourth United States Microgravity Payload experiments in near real-time using the World Wide Web. Plots generated using Orbital Acceleration Research Experiment data (telemetered to the ground using a tape delay) were provided to the investigators using the World Wide Web approximately twelve hours after data recording. Disturbances in the microgravity environment as recorded by these instruments are grouped by source type: Orbiter systems, on-board activities, payload operations, and unknown sources. The environment related to the Ku-band antenna dither, Orbiter structural modes, attitude deadband collapses, water dump operations, crew sleep, and crew exercise was comparable to the effects of these sources on previous Orbiter missions. Disturbances related to operations of the Isothermal Dendritic Growth Experiment and Space Acceleration Measurement Systems that were not observed on previous missions are detailed. The effects of Orbiter cabin and airlock depressurization and extravehicular activities are also reported for the first time. A set of data plots representing the entire mission is included in the CD-ROM version of this report.

  17. Summary Report of Mission Acceleration Measurement for STS-87: Launched November 19, 1997

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; DeLombard, Richard; Reckart, Timothy

    1999-01-01

    Two accelerometer systems, the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System, were used to measure and record the microgravity environment of the Orbiter Columbia during the STS-87 mission in November-December 1997. Data from two separate Space Acceleration Measurement System units were telemetered to the ground during the mission and data plots were displayed for investigators of the Fourth United States Microgravity Payload experiments in near real-time using the World Wide Web. Plots generated using Orbital Acceleration Research Experiment data (telemetered to the ground using a tape delay) were provided to the investigators using the World Wide Web approximately twelve hours after data recording. Disturbances in the microgravity environment as recorded by these instruments are grouped by source type: Orbiter systems, on-board activities, payload operations, and unknown sources. The environment related to the Ku-band antenna dither, Orbiter structural modes, attitude deadband collapses, water dump operations, crew sleep, and crew exercise was comparable to the effects of these sources on previous Orbiter missions. Disturbances related to operations of the Isothermal Dendritic Growth Experiment and Space Acceleration Measurement Systems that were not observed on previous missions are detailed. The effects of Orbiter cabin and airlock depressurization and extravehicular activities are also reported for the first time. A set of data plots representing the entire mission is included in the CD-ROM version of this report.

  18. Summary Report of Mission Acceleration Measurements for STS-65, Launched 8 July 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1995-01-01

    The second flight of the International Microgravity Laboratory (IML-2) payload on board the STS-65 mission was supported by three accelerometer instruments: The Orbital Acceleration Research Experiment (OARE) located close to the orbiter center of mass; the Quasi-Steady Acceleration Measurement experiment, and the Space Acceleration Measurement System (SAMS), both in the Spacelab module. A fourth accelerometer, the Microgravity Measuring Device recorded data in the middeck in support of exercise isolation tests.Data collected by OARE and SAMS during IML-2 are displayed in this report. The OARE data represent the microgravity environment below 1 Hz. The SAMS data represent the environment in the 0.01 Hz to 100 Hz range. Variations in the environment caused by unique activities are presented. Specific events addressed are: crew activity, crew exercise, experiment component mixing activities, experiment centrifuge operations, refrigerator/freezer operations and circulation pump operations. The analyses included in this report complement analyses presented in other mission summary reports.

  19. Measuring End-of-Life Care Processes in Nursing Homes

    ERIC Educational Resources Information Center

    Temkin-Greener, Helena; Zheng, Nan; Norton, Sally A.; Quill, Timothy; Ladwig, Susan; Veazie, Peter

    2009-01-01

    Purpose: The objectives of this study were to develop measures of end-of-life (EOL) care processes in nursing homes and to validate the instrument for measuring them. Design and Methods: A survey of directors of nursing was conducted in 608 eligible nursing homes in New York State. Responses were obtained from 313 (51.5% response rate) facilities.…

  20. Precise measurement of the {sup 19}Ne half-life

    SciTech Connect

    Triambak, S.

    2011-11-30

    We describe a high-precision measurement of the half-life of the T = 1/2 nucleus {sup 19}Ne, performed at TRIUMF, Canada's National Laboratory for Nuclear and Particle Physics, Vancouver, Canada. Some implications of this measurement related to tests of the Standard Model are discussed.

  1. Issues in Evaluating Importance Weighting in Quality of Life Measures

    ERIC Educational Resources Information Center

    Hsieh, Chang-ming

    2013-01-01

    For most empirical research investigating the topic of importance weighting in quality of life (QoL) measures, the prevailing approach has been to use (1) a limited choice of global QoL measures as criterion variables (often a single one) to determine the performance of importance weighting, (2) a limited option of weighting methods to develop…

  2. Electric field simulation and measurement of a pulse line ion accelerator

    NASA Astrophysics Data System (ADS)

    Shen, Xiao-Kang; Zhang, Zi-Min; Cao, Shu-Chun; Zhao, Hong-Wei; Wang, Bo; Shen, Xiao-Li; Zhao, Quan-Tang; Liu, Ming; Jing, Yi

    2012-07-01

    An oil dielectric helical pulse line to demonstrate the principles of a Pulse Line Ion Accelerator (PLIA) has been designed and fabricated. The simulation of the axial electric field of an accelerator with CST code has been completed and the simulation results show complete agreement with the theoretical calculations. To fully understand the real value of the electric field excited from the helical line in PLIA, an optical electric integrated electric field measurement system was adopted. The measurement result shows that the real magnitude of axial electric field is smaller than that calculated, probably due to the actual pitch of the resister column which is much less than that of helix.

  3. Radionuclides in man and his environment measured by accelerator mass spectrometry

    SciTech Connect

    Hellborg, Ragnar; Erlandsson, Bengt; Kiisk, Madis; Persson, Per; Skog, Goeran; Stenstroem, Kristina; Mattsson, Soeren; Leide-Svegborn, Sigrid; Olofsson, Mikael

    1999-06-10

    Accelerator mass spectrometry (AMS) is a highly sensitive analytical method for measuring very low concentrations of both radionuclides and stable nuclides. For radioanalytical purposes, the main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg size) and shorter measuring times (less than one hour). In this report some current applications of the AMS technique at the Lund Pelletron accelerator are presented, in particular studies of {sup 14}C-labeled pharmaceuticals used in clinical nuclear medicine and biomedical research.

  4. Accelerated testing of space batteries

    NASA Technical Reports Server (NTRS)

    Mccallum, J.; Thomas, R. E.; Waite, J. H.

    1973-01-01

    An accelerated life test program for space batteries is presented that fully satisfies empirical, statistical, and physical criteria for validity. The program includes thermal and other nonmechanical stress analyses as well as mechanical stress, strain, and rate of strain measurements.

  5. A critical point of male gonad development: neuroendocrine correlates of accelerated testicular growth in rats during early life.

    PubMed

    Dygalo, Nikolay N; Shemenkova, Tatjana V; Kalinina, Tatjana S; Shishkina, Galina T

    2014-01-01

    Testis growth during early life is important for future male fertility and shows acceleration during the first months of life in humans. This acceleration coincides with the peak in gonadotropic hormones in the blood, while the role of hypothalamic factors remains vague. Using neonatal rats to assess this issue, we found that day 9 of life is likely critical for testis development in rats. Before this day, testicular growth was proportional to body weight gain, but after that the testes showed accelerated growth. Hypothalamic kisspeptin and its receptor mRNA levels begin to elevate 2 days later, at day 11. A significant increase in the mRNA levels for gonadotropin-releasing hormone (GnRH) receptors in the hypothalamus between days 5 and 7 was followed by a 3-fold decrease in GnRH mRNA levels in this brain region during the next 2 days. Starting from day 9, hypothalamic GnRH mRNA levels increased significantly and positively correlated with accelerated testicular growth. Triptorelin, an agonist of GnRH, at a dose that had no effect on testicular growth during "proportional" period, increased testis weights during the period of accelerated growth. The insensitivity of testicular growth to GnRH during "proportional" period was supported by inability of a 2.5-fold siRNA knockdown of GnRH expression in the hypothalamus of the 7-day-old animals to produce any effect on their testis weights. GnRH receptor blockade with cetrorelix was also without effect on testis weights during "proportional" period but the same doses of this GnRH antagonist significantly inhibited "accelerated" testicular growth. GnRH receptor mRNA levels in the pituitary as well as plasma LH concentrations were higher during "accelerated" period of testicular growth than during "proportional" period. In general, our data defined two distinct periods in rat testicular development that are primarily characterized by different responses to GnRH signaling.

  6. Optimizing scan parameters for antibody microarray experiments: accelerating robust systems diagnostics for life sciences.

    PubMed

    Gu, Qiang; Sivanandam, Thamil Mani

    2014-06-01

    Microarray experiments are a centerpiece of postgenomics life sciences and the current efforts to develop systems diagnostics for personalized medicine. The majority of antibody microarray experiments are fluorescence-based, which utilizes a scanner to convert target signals into image files for subsequent quantification. Certain scan parameters such as the laser power and photomultiplier tube gain (PMT) can influence the readout of fluorescent intensities and thus may affect data quantitation. To date, however, there is no consensus of how to determine the optimal settings of microarray scanners. Here we show that different settings of the laser power and PMT not only affect the signal intensities but also the accuracy of antibody microarray experiments. More importantly, we demonstrate an experimental approach using two fluorescent dyes to determine optimal settings of scan parameters for microarray experiments. These measures provide added quality control of microarray experiments, and thus help to improve the accuracy of quantitative outcome in microarray experiments in the above contexts.

  7. Theoretical analysis of acceleration measurements in a model of an operating wind turbine

    NASA Astrophysics Data System (ADS)

    White, Jonathan R.; Adams, Douglas E.; Rumsey, Mark A.

    2010-04-01

    Wind loading from turbulence and gusts can cause damage in horizontal axis wind turbines. These unsteady loads and the resulting damage initiation and propagation are difficult to predict. Unsteady loads enter at the rotor and are transmitted to the drivetrain. The current generation of wind turbine has drivetrain-mounted vibration and bearing temperature sensors, a nacelle-mounted inertial measurement unit, and a nacelle-mounted anemometer and wind vane. Some advanced wind turbines are also equipped with strain measurements at the root of the rotor. This paper analyzes additional measurements in a rotor blade to investigate the complexity of these unsteady loads. By identifying the spatial distribution, amplitude, and frequency bandwidth of these loads, design improvements could be facilitated to reduce uncertainties in reliability predictions. In addition, dynamic load estimates could be used in the future to control high-bandwidth aerodynamic actuators distributed along the rotor blade to reduce the saturation of slower pitch actuators currently used for wind turbine blades. Local acceleration measurements are made along a rotor blade to infer operational rotor states including deflection and dynamic modal contributions. Previous work has demonstrated that acceleration measurements can be experimentally acquired on an operating wind turbine. Simulations on simplified rotor blades have also been used to demonstrate that mean blade loading can be estimated based on deflection estimates. To successfully apply accelerometers in wind turbine applications for load identification, the spectral and spatial characteristics of each excitation source must be understood so that the total acceleration measurement can be decomposed into contributions from each source. To demonstrate the decomposition of acceleration measurements in conjunction with load estimation methods, a flexible body model has been created with MSC.ADAMSThe benefit of using a simulation model as opposed

  8. Theoretical analysis of acceleration measurements in a model of an operating wind turbine.

    SciTech Connect

    Adams, Douglas E.; Rumsey, Mark Allen; White, Jonathan Randall

    2010-04-01

    Wind loading from turbulence and gusts can cause damage in horizontal axis wind turbines. These unsteady loads and the resulting damage initiation and propagation are difficult to predict. Unsteady loads enter at the rotor and are transmitted to the drivetrain. The current generation of wind turbine has drivetrain-mounted vibration and bearing temperature sensors, a nacelle-mounted inertial measurement unit, and a nacelle-mounted anemometer and wind vane. Some advanced wind turbines are also equipped with strain measurements at the root of the rotor. This paper analyzes additional measurements in a rotor blade to investigate the complexity of these unsteady loads. By identifying the spatial distribution, amplitude, and frequency bandwidth of these loads, design improvements could be facilitated to reduce uncertainties in reliability predictions. In addition, dynamic load estimates could be used in the future to control high-bandwidth aerodynamic actuators distributed along the rotor blade to reduce the saturation of slower pitch actuators currently used for wind turbine blades. Local acceleration measurements are made along a rotor blade to infer operational rotor states including deflection and dynamic modal contributions. Previous work has demonstrated that acceleration measurements can be experimentally acquired on an operating wind turbine. Simulations on simplified rotor blades have also been used to demonstrate that mean blade loading can be estimated based on deflection estimates. To successfully apply accelerometers in wind turbine applications for load identification, the spectral and spatial characteristics of each excitation source must be understood so that the total acceleration measurement can be decomposed into contributions from each source. To demonstrate the decomposition of acceleration measurements in conjunction with load estimation methods, a flexible body model has been created with MSC.ADAMS{copyright} The benefit of using a simulation model

  9. Measurement Techniques and Instruments Suitable for Life-prediction Testing of Photovoltaic Arrays

    NASA Technical Reports Server (NTRS)

    Noel, G. T.; Wood, V. E.; Mcginniss, V. D.; Hassell, J. A.; Richard, N. A.; Gaines, G. B.; Carmichael, D. C.

    1979-01-01

    The validation of a 20-year service life for low-cost photovoltaic arrays is a critical requirement in the Low-Cost Solar Array (LSA) Project. The validation is accomplished through accelerated life-prediction tests. A two-phase study was conducted to address the needs before such tests are carried out. The results and recommended techniques from the Phase 1 investigation are summarized in the appendix. Phase 2 of the study is covered in this report and consisted of experimental evaluations of three techniques selected from these recommended as a results of the Phase 1 findings. The three techniques evaluated were specular and nonspecular optical reflectometry, chemiluminescence measurements, and electric current noise measurements.

  10. Measuring test mass acceleration noise in space-based gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Congedo, Giuseppe

    2015-03-01

    The basic constituent of interferometric gravitational wave detectors—the test-mass-to-test-mass interferometric link—behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as nongravitational spurious forces. This last contribution is going to be characterized by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system's free evolution dominating the slow displacement dynamics of low-frequency detectors. Working with acceleration also provides an effective way to subtract measured signals acting as systematics, including the actuation forces. Because of the strong similarity with the equations of motion, the optimal subtraction of systematic signals, known within some amplitude and time shift, with the focus on measuring the noise provides an effective way to solve the problem and marginalize over nuisance parameters. The F statistic, in widespread use throughout the gravitation waves community, is included in the method and suitably generalized to marginalize over linear parameters and noise at the same time. The method is applied to LPF simulator data and, thanks to its generality, can also be applied to the data reduction and analysis of future gravitational wave detectors.

  11. Measurement of acceleration while walking as an automated method for gait assessment in dairy cattle.

    PubMed

    Chapinal, N; de Passillé, A M; Pastell, M; Hänninen, L; Munksgaard, L; Rushen, J

    2011-06-01

    The aims were to determine whether measures of acceleration of the legs and back of dairy cows while they walk could help detect changes in gait or locomotion associated with lameness and differences in the walking surface. In 2 experiments, 12 or 24 multiparous dairy cows were fitted with five 3-dimensional accelerometers, 1 attached to each leg and 1 to the back, and acceleration data were collected while cows walked in a straight line on concrete (experiment 1) or on both concrete and rubber (experiment 2). Cows were video-recorded while walking to assess overall gait, asymmetry of the steps, and walking speed. In experiment 1, cows were selected to maximize the range of gait scores, whereas no clinically lame cows were enrolled in experiment 2. For each accelerometer location, overall acceleration was calculated as the magnitude of the 3-dimensional acceleration vector and the variance of overall acceleration, as well as the asymmetry of variance of acceleration within the front and rear pair of legs. In experiment 1, the asymmetry of variance of acceleration in the front and rear legs was positively correlated with overall gait and the visually assessed asymmetry of the steps (r ≥ 0.6). Walking speed was negatively correlated with the asymmetry of variance of the rear legs (r=-0.8) and positively correlated with the acceleration and the variance of acceleration of each leg and back (r ≥ 0.7). In experiment 2, cows had lower gait scores [2.3 vs. 2.6; standard error of the difference (SED)=0.1, measured on a 5-point scale] and lower scores for asymmetry of the steps (18.0 vs. 23.1; SED=2.2, measured on a continuous 100-unit scale) when they walked on rubber compared with concrete, and their walking speed increased (1.28 vs. 1.22 m/s; SED=0.02). The acceleration of the front (1.67 vs. 1.72 g; SED=0.02) and rear (1.62 vs. 1.67 g; SED=0.02) legs and the variance of acceleration of the rear legs (0.88 vs. 0.94 g; SED=0.03) were lower when cows walked on rubber

  12. Acceleration and Rotation in a Pendulum Ride, Measured Using an iPhone 4

    ERIC Educational Resources Information Center

    Pendrill, Ann-Marie; Rohlen, Johan

    2011-01-01

    Many modern cell phones have built-in sensors that may be used as a resource for physics education. Amusement rides offer examples of many different types of motion, where the acceleration leads to forces experienced throughout the body. A comoving 3D-accelerometer gives an electronic measurement of the varying forces acting on the rider, but a…

  13. Development and Use of Life-Cycle Analysis Capabilites To Evaluate, Select, and Implement Plans to Accelerate Hanford Site Cleanup

    SciTech Connect

    Shay, Michael R.; Johnson, Wayne L.; Frey, Jeffrey A.

    2004-02-28

    Over the past year the U.S. Department of Energy (DOE) has made significant progress in developing and executing plans to transform and accelerate cleanup of the Hanford Site. Notable progress has been in the cleanup of the River Corridor, including the relocation of spent nuclear fuel to the Central Plateau, and the stabilization of plutonium materials. However, difficult work still remains. DOE has already accelerated the completion of the Environmental Management (EM) cleanup mission from 2070 to 2035 and believes its completion can be achieved even sooner by reducing excess conservatism, substantively changing technical strategy and management approach, and making new front-end investments. Work is well under way in the detailed planning, analyses and decision making required to implement and support the execution of the accelerated cleanup program at Hanford. Various cleanup, contract, and regulatory approaches are being explored. DOE has instituted a process that allows DOE to efficiently explore and test alternative cleanup approaches using a life-cycle model. This paper provides a means to share the planning approach and the life-cycle modeling and analysis tools used with other sites and interested parties. This paper will be of particular interest to analysts performing similar planning and evaluations at other sites as well as provide insight into the current status of Hanford’s cleanup program and DOE’s plans for the future.

  14. SU-E-T-543: Measurement of Neutron Activation From Different High Energy Varian Linear Accelerators

    SciTech Connect

    Thatcher, T; Madsen, S; Sudowe, R; Meigooni, A Soleimani

    2015-06-15

    Purpose: Linear accelerators producing photons above 10 MeV may induce photonuclear reactions in high Z components of the accelerator. These liberated neutrons can then activate the structural components of the accelerator and other materials in the beam path through neutron capture reactions. The induced activity within the accelerator may contribute to additional dose to both patients and personnel. This project seeks to determine the total activity and activity per activated isotope following irradiation in different Varian accelerators at energies above 10 MeV. Methods: A Varian 21IX accelerator was used to irradiate a 30 cm × 30 cm × 20 cm solid water phantom with 15 MV x-rays. The phantom was placed at an SSD of 100 cm and at the center of a 20 cm × 20 cm field. Activation induced gamma spectra were acquired over a 5 minute interval after 1 and 15 minutes from completion of the irradiation. All measurements were made using a CANBERRA Falcon 5000 Portable HPGe detector. The majority of measurements were made in scattering geometry with the detector situated at 90° to the incident beam, 30 cm from the side of the phantom and approximately 10 cm from the top. A 5 minute background count was acquired and automatically subtracted from all subsequent measurements. Photon spectra were acquired for both open and MLC fields. Results: Based on spectral signatures, nuclides have been identified and their activities calculated for both open and MLC fields. Preliminary analyses suggest that activities from the activation products in the microcurie range. Conclusion: Activation isotopes have been identified and their relative activities determined. These activities are only gross estimates since efficiencies have not been determined for this source-detector geometry. Current efforts are focused on accurate determination of detector efficiencies using Monte Carlo calculations.

  15. Hypersonic rarefied-flow aerodynamics inferred from Shuttle Orbiter acceleration measurements

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Hinson, E. W.

    1989-01-01

    Data obtained from multiple flights of sensitive accelerometers on the Space Shuttle Orbiter during reentry have been used to develop an improved aerodynamic model for the Orbiter normal- and axial-force coefficients in hypersonic rarefied flow. The lack of simultaneous atmospheric density measurements was overcome in part by using the ratio of normal-to-axial acceleration, in which density cancels, as a constraint. Differences between the preflight model and the flight-acceleration-derived model in the continuum regime are attributed primarily to real gas effects. New insights are gained into the variation of the force coefficients in the transition between the continuum regime and free molecule flow.

  16. Wire Measurement of Impedance of an X-Band Accelerating Structure

    SciTech Connect

    Baboi, N

    2004-09-02

    Several tens of thousands of accelerator structures will be needed for the next generation of normal conducting linear colliders known as the GLC/NLC (Global Linear Collider/Next Linear Collider). To prevent the beam being driven into a disruptive BBU (Beam Break-Up) mode or at the very least, the emittance being significantly diluted, it is important to damp down the wakefield left by driving bunches to a manageable level. Manufacturing errors and errors in design need to be measured and compared with prediction. In this paper a bench-top method of measuring transverse impedances in X-band accelerating structures is described. Utilizing an off-axis wire the S parameters are measured and converted to impedance. Measurements in a damped and detuned structure built for GLC/NLC are presented and the results are discussed.

  17. Precision half-life measurement of 17F

    NASA Astrophysics Data System (ADS)

    Brodeur, M.; Nicoloff, C.; Ahn, T.; Allen, J.; Bardayan, D. W.; Becchetti, F. D.; Gupta, Y. K.; Hall, M. R.; Hall, O.; Hu, J.; Kelly, J. M.; Kolata, J. J.; Long, J.; O'Malley, P.; Schultz, B. E.

    2016-02-01

    Background: The precise determination of f t values for superallowed mixed transitions between mirror nuclide are gaining attention as they could provide an avenue to test the theoretical corrections used to extract the Vu d matrix element from superallowed pure Fermi transitions. The 17F decay is particularly interesting as it proceeds completely to the ground state of 17O, removing the need for branching ratio measurements. The dominant uncertainty on the f t value of the 17F mirror transition stems from a number of conflicting half-life measurements. Purpose: A precision half-life measurement of 17F was performed and compared to previous results. Methods: The life-time was determined from the β counting of implanted 17F on a Ta foil that was removed from the beam for counting. The 17F beam was produced by transfers reaction and separated by the TwinSol facility of the Nuclear Science Laboratory of the University of Notre Dame. Results: The measured value of t1/2 new=64.402 (42) s is in agreement with several past measurements and represents one of the most precise measurements to date. In anticipation of future measurements of the correlation parameters for the decay and using the new world average t1/2 world=64.398 (61) s, we present a new estimate of the mixing ratio ρ for the mixed transition as well as the correlation parameters based on assuming Standard Model validity. Conclusions: The relative uncertainty on the new world average for the half-life is dominated by the large χ2=31 of the existing measurements. More precision measurements with different systematics are needed to remedy to the situation.

  18. ACCELERATORS: Preliminary result of bunch length measurement using a modified Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Lin, Xu-Ling; Zhang, Jian-Bing; Luo, Feng; Bei, Hua; Lu, Shan-Liang; Yu, Tie-Min; Dai, Zhi-Min

    2009-10-01

    Based on the femtosecond accelerator device which was built at the Shanghai Institute of Applied Physics (SINAP), recently a modified far infrared Michelson interferometer has been developed to measure the length of electron bunches via the optical autocorrelation method. Compared with our former normal Michelson interferometer, we use a hollow retroreflector instead of a flat mirror as the reflective mirror. The experimental setup and results of the bunch length measurement will be described in this paper.

  19. Non-destructive sub-picocoulomb charge measurement for laser-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Mittelberger, D. E.; Gonsalves, A. J.; Daniels, J.; Mao, H.-S.; Stulle, F.; Bergoz, J.; Leemans, W. P.

    2017-03-01

    Precise diagnostics of sub-picocoulomb level particle bunches produced by laser-plasma accelerators (LPAs) can be a significant challenge. We report here on charge measurements using the newly developed Turbo-ICT for LPAs. A comparison of the Turbo-ICT, a conventional integrating current transformer (ICT), and a scintillating screen (Lanex) was carried out. Results show that the Turbo-ICT can measure sub-picocoulomb charge accurately and has significantly improved noise immunity compared to the ICT.

  20. Projected Life of the SLAC Linac Braze Joints: Braze integrity and corrosion of cooling water hardware on accelerator sections

    SciTech Connect

    Glesener, W.F.; Garwin, E.L.; /SLAC

    2006-07-17

    The objective of this study was to ascertain the condition of braze joints and cooling water hardware from an accelerator section after prolonged use. Metallographic analysis was used to examine critical sites on an accelerator section that had been in use for more than 30 years. The end flange assembly showed no internal operational damage or external environmental effects. The cavity cylinder stack showed no internal operational damage however the internal surface was highly oxidized. The internal surface of the cooling water tubing was uniformly corroding at a rate of about 1 mil per year and showed no evidence of pitting. Tee fitting internal surfaces are corroding at non-uniform rates due to general corrosion and pitting. Remaining service life of the cooling water jacket is estimated to be about 20 years or year 2027. At this time, water supply pressure will exceed allowable fitting pressure due to corrosion of tubing walls.

  1. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited)

    SciTech Connect

    Kitagawa, A.; Drentje, A. G.; Fujita, T.; Muramatsu, M.; Fukushima, K.; Shiraishi, N.; Suzuki, T.; Takahashi, K.; Takasugi, W.; Biri, S.; Rácz, R.; Uchida, T.; Yoshida, Y.

    2016-02-15

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-science studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex.

  2. Measuring the returns to NASA life sciences research and development

    NASA Astrophysics Data System (ADS)

    Hertzfeld, Henry R.

    1998-01-01

    The National Aeronautics and Space Administration has invested in R&D in the life sciences for forty years. The thrust of this investment has been directed toward the support of human beings in space flight and in space activities. There are many documented examples of beneficial services and products now used in everyday life and medical practice that can be traced to origins in the R&D of the space program. However, a framework for quantitatively documenting, characterizing, and analyzing these public benefits has eluded researchers. This paper will present the results of a pilot project that includes the development of a methodology for assessing the economic benefits from NASA life sciences R&D and for realistically evaluating the financial leverage that private companies which are either involved in NASA R&D or which have ``bootstrapped'' NASA R&D into commercial products have realized. The results will show that the NASA life sciences investments are more engineering oriented, and more typically show results in the fields of instrumentation and medical devices. This is substantially different in nature from the focus of the National Institutes of Health, which is organized around the diagnosis and treatment of diseases. The appropriate measures of benefits for engineering-oriented products are economic parameters that focus on capital equipment. NIH benefits are more typically measured by human labor parameters, including the much more difficult to quantify measures of the quality and delivery of medical services. Although there is tremendous overlap in the goals and outputs of NASA life sciences and NIH investments, and NASA R&D is also very concerned with human beings and the quality of life, NIH is the overwhelming large source of life sciences R&D funds in the US. NASA has a special niche in life sciences R&D that supports the NASA mission as well as overall research issues in the life sciences. This paper evaluates the economic benefits of NASA's life

  3. Quality of Life and its Measurement: Important Principles and Guidelines

    ERIC Educational Resources Information Center

    Verdugo, M. A.; Schalock, R. L.; Keith, K. D.; Stancliffe, R. J.

    2005-01-01

    Background: The importance of the valid assessment of quality of life (QOL) is heightened with the increased use of the QOL construct as a basis for policies and practices in the field of intellectual disability (ID). Method: This article discusses the principles that should guide the measurement process, the major interrogatories (i.e. who, what,…

  4. Measuring Students' Metacognition in Real-Life Situations

    ERIC Educational Resources Information Center

    Al-Hilawani, Yasser A.

    2003-01-01

    Metacognitive Performance of four groups of students (hearing high-achieving, hearing average-achieving, hearing underachieving, and deaf and hard of hearing) in first through third grade in the United Arab Emirates was examined and compared. Metacognition was measured using analyses of pictures depicting real-life problematic events, situations,…

  5. Summary Report of Mission Acceleration Measurements for STS-75, Launched February 22, 1996

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; Moskowitz, Milton E.; McPherson, Kevin M.; DeLombard, Richard

    1996-01-01

    Two accelerometers provided acceleration data during the STS-75 mission in support of the third United States Microgravity Payload (USMP-3) experiments. The Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurement System (SAMS) provided a measure of the microgravity environment of the Space Shuttle Columbia. The OARE provided investigators with quasi-steady acceleration measurements after about a six hour time lag dictated by downlink constraints. SAMS data were downlinked in near-real-time and recorded on-board for post-mission analysis. An overview of the mission is provided as are brief discussions of these two accelerometer systems. Data analysis techniques used to process SAMS and OARE data are discussed Using a combination of these techniques, the microgravity environment related to several different Orbiter, crew, and experiment operations is presented and interpreted. The microgravity environment represented by SAMS and OARE data is comparable to the environments measured by the instruments on earlier microgravity science missions. The OARE data compared well with predictions of the quasi-steady environment. The SAMS data show the influence of thruster firings and crew motion (transient events) and of crew exercise, Orbiter systems, and experiment operations (oscillatory events). Thruster activity on this mission appears to be somewhat more frequent than on other microgravity missions with the combined firings of the F5L and F5R jets producing significant acceleration transients. The specific crew activities performed in the middeck and flight deck, the SPREE table rotations, the waste collection system compaction, and the fuel cell purge had negligible effects on the microgravity environment of the USMP-3 carriers. The Ku band antenna repositioning activity resulted in a brief interruption of the ubiquitous 17 Hz signal in the SAMS data. In addition, the auxiliary power unit operations during the Flight Control System checkout

  6. Life in the Fast Lane: Effects of Early Grade Acceleration on High School and College Outcomes

    ERIC Educational Resources Information Center

    McClarty, Katie Larsen

    2015-01-01

    Research has repeatedly demonstrated the positive effects of acceleration for gifted and talented students. This study expands the literature by not only evaluating the impact of early grade skipping on high school and college outcomes but also examining the role of postacceleration opportunities on subsequent performance. Using a representative…

  7. Buildup region and skin-dose measurements for the Therac 6 linear accelerator for radiation therapy.

    PubMed

    Tannous, N B; Gagnon, W F; Almond, P R

    1981-01-01

    Buildup and surface-dose measurements were taken for the 6 MV photon beam from a Therac 6 linear accelerator manufactured by Atomic Energy of Canada Limited (AECL) with and without a lucite blocking tray in place. Further measurements were made with a copper filter designed to reduce secondary electrons emitted by photon interactions with the Lucite tray. The results are discussed in relation to skin-sparing for radiation therapy patients. The measurements were made with a fixed volume PTW parallel-plate ionization chamber and corrected to zero-chamber volume. The results were found to be consistent with similar measurements taken with a variable volume extrapolation chamber.

  8. Buildup region and skin-dose measurements for the Therac 6 Linear Accelerator for radiation therapy

    SciTech Connect

    Tannous, N.B.J.; Gagnon, W.F.; Almond, P.R.

    1981-05-01

    Buildup and surface-dose measurements were taken for the 6 MV photon beam from a Therac 6 linear accelerator manufactured by Atomic Energy of Canada Limited (AECL) with and without a lucite blocking tray in place. Further measurements were made with a copper filter designed to reduce secondary electrons emitted by photon interactions with the Lucite tray. The results are discussed in relation to skin-sparing for radiation therapy patients. The measurements were made with a fixed volume PTW parallel-plate ionization chamber and corrected to zero-chamber volume. The results were found to be consistent with similar measurements taken with a variable volume extrapolation chamber.

  9. Measurement of 151Sm with the HI-13 accelerator mass spectrometry system

    NASA Astrophysics Data System (ADS)

    Yin, Xinyi; He, Ming; Dong, Kejun; Wu, Shaoyong; Zhang, Jinsong; Zhang, Jilong; Wang, Tongxin; Cui, Anzhi; Ouyang, Yinggen; Zhang, Zhiyong; Yuan, Jian; Jiang, Shan

    2010-05-01

    151Sm is an interesting nuclide in many research fields. Measurement methods of the long-lived 151Sm with accelerator mass spectrometry have been developed at China Institute of Atomic Energy. The chemical form of samples was Sm 2O 3 and the extracted ion was SmO -. To date, the sensitivity, that is, the isotopic ratio, of 151Sm measured using accelerator mass spectrometry is about 10 -8. This method was also used to measure the concentration of tracer 151Sm in biological samples for clarifying whether the rare earth elements can enter into the brain. It is not possible at present to determine whether the tracer has penetrated the blood-brain barrier into the brain.

  10. HUBBLE PARAMETER MEASUREMENT CONSTRAINTS ON THE COSMOLOGICAL DECELERATION-ACCELERATION TRANSITION REDSHIFT

    SciTech Connect

    Farooq, Omer; Ratra, Bharat E-mail: ratra@phys.ksu.edu

    2013-03-20

    We compile a list of 28 independent measurements of the Hubble parameter between redshifts 0.07 {<=} z {<=} 2.3 and use this to place constraints on model parameters of constant and time-evolving dark energy cosmologies. These H(z) measurements by themselves require a currently accelerating cosmological expansion at about, or better than, 3{sigma} confidence. The mean and standard deviation of the six best-fit model deceleration-acceleration transition redshifts (for the three cosmological models and two Hubble constant priors we consider) are z{sub da} = 0.74 {+-} 0.05, in good agreement with the recent Busca et al. determination of z{sub da} = 0.82 {+-} 0.08 based on 11 H(z) measurements between redshifts 0.2 {<=} z {<=} 2.3, almost entirely from baryon-acoustic-oscillation-like data.

  11. Automatic Control System of Ion Electrostatic Accelerator and Anti-Interference Measures

    NASA Astrophysics Data System (ADS)

    Sun, Zhenwu; Huo, Yuping; Liu, Gencheng; Li, Yuxiao; Li, Tao

    2007-02-01

    An automatic control system for the electrostatic accelerator has been developed by adopting the PLC (Programmable Logic Controller) control technique, infrared and optical-fibre transmission technique and network communication with the purpose to improve the intelligence level of the accelerator and to enhance the ability of monitoring, collecting and recording parameters. In view of the control system' structure, some anti-interference measures have been adopted after analyzing the interference sources. The measures in hardware include controlling the position of the corona needle, using surge arresters, shielding, ground connection and stabilizing the voltage. The measures in terms of software involve inter-blocking protection, soft-spacing, time delay, and diagnostic and protective programs. The electromagnetic compatible ability of the control system has thus been effectively improved.

  12. Application of real-time digitization techniques in beam measurement for accelerators

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Zhan, Lin-Song; Gao, Xing-Shun; Liu, Shu-Bin; An, Qi

    2016-04-01

    Beam measurement is very important for accelerators. In this paper, modern digital beam measurement techniques based on IQ (In-phase & Quadrature-phase) analysis are discussed. Based on this method and high-speed high-resolution analog-to-digital conversion, we have completed three beam measurement electronics systems designed for the China Spallation Neutron Source (CSNS), Shanghai Synchrotron Radiation Facility (SSRF), and Accelerator Driven Sub-critical system (ADS). Core techniques of hardware design and real-time system calibration are discussed, and performance test results of these three instruments are also presented. Supported by National Natural Science Foundation of China (11205153, 10875119), Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N27), and the Fundamental Research Funds for the Central Universities (WK2030040029),and the CAS Center for Excellence in Particle Physics (CCEPP).

  13. C-14 content of ten meteorites measured by tandem accelerator mass spectrometry

    NASA Technical Reports Server (NTRS)

    Brown, R. M.; Andrews, H. R.; Ball, G. C.; Burn, N.; Imahori, Y.; Milton, J. C. D.; Fireman, E. L.

    1984-01-01

    Measurements of C-14 in three North American and seven Antarctic meteorites show in most cases that this cosmogenic isotope, which is tightly bound, was separated from absorbed atmospheric radiocarbon by stepwise heating extractions. The present upper limit to age determination by the accelerator method varies from 50,000 to 70,000 years, depending on the mass and carbon content of the sample. The natural limit caused by cosmic ray production of C-14 in silicate rocks at 2000 m elevation is estimated to be 55,000 + or - 5000 years. An estimation is also made of the 'weathering ages' of the Antarctic meteorites from the specific activity of loosely bound CO2 which is thought to be absorbed from the terrestrial atmosphere. Accelerator measurements are found to agree with previous low level counting measurements, but are more sensitive and precise.

  14. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

    DOE PAGES

    Golovin, G.; Banerjee, S.; Liu, C.; ...

    2016-04-19

    Here, the recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense lasermore » probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.« less

  15. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

    SciTech Connect

    Golovin, G.; Banerjee, S.; Liu, C.; Chen, S.; Zhang, J.; Zhao, B.; Zhang, P.; Veale, M.; Wilson, M.; Seller, P.; Umstadter, D.

    2016-04-19

    Here, the recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.

  16. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging.

    PubMed

    Golovin, G; Banerjee, S; Liu, C; Chen, S; Zhang, J; Zhao, B; Zhang, P; Veale, M; Wilson, M; Seller, P; Umstadter, D

    2016-04-19

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.

  17. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

    PubMed Central

    Golovin, G.; Banerjee, S.; Liu, C.; Chen, S.; Zhang, J.; Zhao, B.; Zhang, P.; Veale, M.; Wilson, M.; Seller, P.; Umstadter, D.

    2016-01-01

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays. PMID:27090440

  18. Automatic detection of lameness in gestating group-housed sows using positioning and acceleration measurements.

    PubMed

    Traulsen, I; Breitenberger, S; Auer, W; Stamer, E; Müller, K; Krieter, J

    2016-06-01

    Lameness is an important issue in group-housed sows. Automatic detection systems are a beneficial diagnostic tool to support management. The aim of the present study was to evaluate data of a positioning system including acceleration measurements to detect lameness in group-housed sows. Data were acquired at the Futterkamp research farm from May 2012 until April 2013. In the gestation unit, 212 group-housed sows were equipped with an ear sensor to sample position and acceleration per sow and second. Three activity indices were calculated per sow and day: path length walked by a sow during the day (Path), number of squares (25×25 cm) visited during the day (Square) and variance of the acceleration measurement during the day (Acc). In addition, data on lameness treatments of the sows and a weekly lameness score were used as reference systems. To determine the influence of a lameness event, all indices were analysed in a linear random regression model. Test day, parity class and day before treatment had a significant influence on all activity indices (P<0.05). In healthy sows, indices Path and Square increased with increasing parity, whereas variance slightly decreased. The indices Path and Square showed a decreasing trend in a 14-day period before a lameness treatment and to a smaller extent before a lameness score of 2 (severe lameness). For the index acceleration, there was no obvious difference between the lame and non-lame periods. In conclusion, positioning and acceleration measurements with ear sensors can be used to describe the activity pattern of sows. However, improvements in sampling rate and analysis techniques should be made for a practical application as an automatic lameness detection system.

  19. New Measurement of the {sup 60}Fe Half-Life

    SciTech Connect

    Rugel, G.; Faestermann, T.; Knie, K.; Korschinek, G.; Poutivtsev, M.; Schumann, D.; Kivel, N.; Guenther-Leopold, I.; Weinreich, R.; Wohlmuther, M.

    2009-08-14

    We have made a new determination of the half-life of the radioactive isotope {sup 60}Fe using high precision measurements of the number of {sup 60}Fe atoms and their activity in a sample containing over 10{sup 15} {sup 60}Fe atoms. Our new value for the half-life of {sup 60}Fe is (2.62+-0.04)x10{sup 6} yr, significantly above the previously reported value of (1.49+-0.27)x10{sup 6} yr. Our new measurement for the lifetime of {sup 60}Fe has significant implications for interpretations of galactic nucleosynthesis, for determinations of formation time scales of solids in the early Solar System, and for the interpretation of live {sup 60}Fe measurements from supernova-ejecta deposits on Earth.

  20. New Measurement of the 60Fe Half-Life.

    PubMed

    Rugel, G; Faestermann, T; Knie, K; Korschinek, G; Poutivtsev, M; Schumann, D; Kivel, N; Günther-Leopold, I; Weinreich, R; Wohlmuther, M

    2009-08-14

    We have made a new determination of the half-life of the radioactive isotope 60Fe using high precision measurements of the number of 60Fe atoms and their activity in a sample containing over 10(15) 60Fe atoms. Our new value for the half-life of 60Fe is (2.62+/-0.04) x 10(6) yr, significantly above the previously reported value of (1.49+/-0.27) x 10(6) yr. Our new measurement for the lifetime of 60Fe has significant implications for interpretations of galactic nucleosynthesis, for determinations of formation time scales of solids in the early Solar System, and for the interpretation of live 60Fe measurements from supernova-ejecta deposits on Earth.

  1. Phenomenological approach to precise creep life prediction by means of quantitative evaluation of strain rate acceleration in secondary creep

    NASA Astrophysics Data System (ADS)

    Sato, Hiroyuki; Miyano, Takaya

    2010-07-01

    A method of creep life prediction by means of Strain-Acceleration-Parameter (SAP), α, is presented. The authors show that the shape of creep curve can be characterized by SAP that reflects magnitude of strain-rate change in secondary creep. The SAP-values, α are evaluated on magnesium-aluminium solution hardened alloys. Reconstruction of creep curves by combinations of SAP and minimum-creep rates are successfully performed, and the curves reasonably agree with experiments. The advantage of the proposed method is that the required parameters evaluated from individual creep curves are directly connected with the minimum creep rate. The predicted times-to-failure agree well with that obtained by experiments, and possibility of precise life time prediction by SAP is pronounced.

  2. Commissioning measurements for photon beam data on three TrueBeam linear accelerators, and comparison with Trilogy and Clinac 2100 linear accelerators.

    PubMed

    Beyer, Gloria P

    2013-01-07

    This study presents the beam data measurement results from the commissioning of three TrueBeam linear accelerators. An additional evaluation of the measured beam data within the TrueBeam linear accelerators contrasted with two other linear accelerators from the same manufacturer (i.e., Clinac and Trilogy) was performed to identify and evaluate any differences in the beam characteristics between the machines and to evaluate the possibility of beam matching for standard photon energies. We performed a comparison of commissioned photon beam data for two standard photon energies (6 MV and 15 MV) and one flattening filter-free ("FFF") photon energy (10 FFF) between three different TrueBeam linear accelerators. An analysis of the beam data was then performed to evaluate the reproducibility of the results and the possibility of "beam matching" between the TrueBeam linear accelerators. Additionally, the data from the TrueBeam linear accelerator was compared with comparable data obtained from one Clinac and one Trilogy linear accelerator models produced by the same manufacturer to evaluate the possibility of "beam matching" between the TrueBeam linear accelerators and the previous models. The energies evaluated between the linear accelerator models are the 6 MV for low energy and the 15 MV for high energy. PDD and output factor data showed less than 1% variation and profile data showed variations within 1% or 2 mm between the three TrueBeam linear accelerators. PDD and profile data between the TrueBeam, the Clinac, and Trilogy linear accelerators were almost identical (less than 1% variation). Small variations were observed in the shape of the profile for 15 MV at shallow depths (< 5 cm) probably due to the differences in the flattening filter design. A difference in the penumbra shape was observed between the TrueBeam and the other linear accelerators; the TrueBeam data resulted in a slightly greater penumbra width. The diagonal scans demonstrated significant differences

  3. Towards a measurement of the half-life of 60Fe for stellar and early Solar System models

    NASA Astrophysics Data System (ADS)

    Ostdiek, K.; Anderson, T.; Bauder, W.; Bowers, M.; Collon, P.; Dressler, R.; Greene, J.; Kutschera, W.; Lu, W.; Paul, M.; Robertson, D.; Schumann, D.; Skulski, M.; Wallner, A.

    2015-10-01

    Radioisotopes, produced in stars and ejected into the Interstellar Medium, are important for constraining stellar and early Solar System (ESS) models. In particular, the half-life of the radioisotope, 60Fe, can have an impact on calculations for the timing for ESS events, the distance to nearby Supernovae, and the brightness of individual, non-steady-state 60Fe gamma ray sources in the Galaxy. A half-life measurement has been undertaken at the University of Notre Dame and measurements of the 60Fe/56Fe concentration of our samples using Accelerator Mass Spectrometry has begun. This result will be coupled with an activity measurement of the isomeric decay in 60Co, which is the decay product of 60Fe. Preliminary half-life estimates of (2.53 ± 0.24) × 106 years seem to confirm the recent measurement by Rugel et al. (2009).

  4. Towards a Measurement of the Half-Life of {sup 60}Fe for Stellar and Early Solar System Models

    SciTech Connect

    Ostdiek, K.; Anderson, T.; Bauder, W.; Bowers, M.; Collon, P.; Dressler, R.; Greene, J.; Kutschera, W.; Lu, W.; Paul, M.

    2015-10-15

    Radioisotopes, produced in stars and ejected into the Interstellar Medium, are important for constraining stellar and early Solar System (ESS) models. In particular, the half-life of the radioisotope, Fe-60, can have an impact on calculations for the timing for ESS events, the distance to nearby Supernovae, and the brightness of individual, non-steady-state Fe gamma ray sources in the Galaxy. A half-life measurement has been undertaken at the University of Notre Dame and measurements of the Fe-60/Fe-56 concentration of our samples using Accelerator Mass Spectrometry has begun. This result will be coupled with an activity measurement of the isomeric decay in Co-60, which is the decay product of Fe. Preliminary half-life estimates of (2.53 +/- 0.24) x 10(6) years seem to confirm the recent measurement by Rugel et al. (2009). (C) 2015 Elsevier B.V. All rights reserved.

  5. Measurement of Neutrons Produced by Beam-Target Interactions via a Coaxial Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Cauble, Scott; Poehlmann, Flavio; Rieker, Gregory; Cappelli, Mark

    2011-10-01

    This poster presents a method to measure neutron yield from a coaxial plasma accelerator. Stored electrical energies between 1 and 19 kJ are discharged within a few microseconds across the electrodes of the coaxial gun, accelerating deuterium gas samples to plasma beam energies well beyond the keV energy range. The focus of this study is to examine the interaction of the plasma beam with a deuterated target by designing and fabricating a detector to measure neutron yield. Given the strong electromagnetic pulse associated with our accelerator, indirect measurement of neutrons via threshold-dependent nuclear activation serves as both a reliable and definitive indicator of high-energy particles for our application. Upon bombardment with neutrons, discs or stacks of metal foils placed near the deuterated target undergo nuclear activation reactions, yielding gamma-emitting isotopes whose decay is measured by a scintillation detector system. By collecting gamma ray spectra over time and considering nuclear cross sections, the magnitude of the original neutron pulse is inferred.

  6. Requirements and Development of an Acceleration Measurement System for International Space Station Microgravity Science Payloads

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    1997-01-01

    The International Space Station is being developed by NASA and international partners as a versatile user platform to allow long term on-orbit investigations of a variety of scientific and technology arenas. In particular, scientific studies are planned within a research class known as microgravity science in areas such as biotechnology, combustion, fluid physics, and materials sciences. An acceleration measurement system is in development to aid such research conducted in the on-orbit conditions of apparent weightlessness. This system provides a general purpose acceleration measurement capability in support of these payloads and investigators. Such capability allows for systematic study of scientific phenomena by obtaining information regarding the local accelerations present during experiment operations. Preparations for implementing this flight measurement system involves two distinct stages: requirements development prior to initiating the design activity, and the design activity itself. This paper defines the requirements definition approach taken, provides an overview of the results of the requirements phase, and outlines the initial design considerations being addressed for this measurement system. Some preliminary engineering approaches are also described.

  7. Neutron dose measurements with the GSI ball at high-energy accelerators.

    PubMed

    Fehrenbacher, G; Gutermuth, F; Kozlova, E; Radon, T; Schuetz, R

    2007-01-01

    A moderator-type neutron monitor containing pairs of TLD 600/700 elements (Harshaw) modified with the addition of a lead layer (GSI ball) for the measurement of the ambient dose equivalent from neutrons at medium- and high-energy accelerators, is introduced in this work. Measurements were performed with the Gesellschaft für Schwerionenforschung (GSI) ball as well as with conventional polyethylene (PE) spheres at the high-energy accelerator SPS at European Organization for Nuclear Research [CERN (CERF)] and in Cave A of the heavy-ion synchrotron SIS at GSI. The measured dose values are compared with dose values derived from calculated neutron spectra folded with dose conversion coefficients. The estimated reading of the spheres calculated by means of the response functions and the neutron spectra is also included in the comparison. The analysis of the measurements shows that the PE/Pb sphere gives an improved estimate on the ambient dose equivalent of the neutron radiation transmitted through shielding of medium- and high-energy accelerators.

  8. Space Acceleration Measurement System-II: Microgravity Instrumentation for the International Space Station Research Community

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    1999-01-01

    The International Space Station opens for business in the year 2000, and with the opening, science investigations will take advantage of the unique conditions it provides as an on-orbit laboratory for research. With initiation of scientific studies comes a need to understand the environment present during research. The Space Acceleration Measurement System-II provides researchers a consistent means to understand the vibratory conditions present during experimentation on the International Space Station. The Space Acceleration Measurement System-II, or SAMS-II, detects vibrations present while the space station is operating. SAMS-II on-orbit hardware is comprised of two basic building block elements: a centralized control unit and multiple Remote Triaxial Sensors deployed to measure the acceleration environment at the point of scientific research, generally within a research rack. Ground Operations Equipment is deployed to complete the command, control and data telemetry elements of the SAMS-II implementation. Initially, operations consist of user requirements development, measurement sensor deployment and use, and data recovery on the ground. Future system enhancements will provide additional user functionality and support more simultaneous users.

  9. Accelerated multiscale space-time finite element simulation and application to high cycle fatigue life prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Wen, Lihua; Naboulsi, Sam; Eason, Thomas; Vasudevan, Vijay K.; Qian, Dong

    2016-08-01

    A multiscale space-time finite element method based on time-discontinuous Galerkin and enrichment approach is presented in this work with a focus on improving the computational efficiencies for high cycle fatigue simulations. While the robustness of the TDG-based space-time method has been extensively demonstrated, a critical barrier for the extensive application is the large computational cost due to the additional temporal dimension and enrichment that are introduced. The present implementation focuses on two aspects: firstly, a preconditioned iterative solver is developed along with techniques for optimizing the matrix storage and operations. Secondly, parallel algorithms based on multi-core graphics processing unit are established to accelerate the progressive damage model implementation. It is shown that the computing time and memory from the accelerated space-time implementation scale with the number of degree of freedom N through ˜ O(N^{1.6}) and ˜ O(N), respectively. Finally, we demonstrate the accelerated space-time FEM simulation through benchmark problems.

  10. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    NASA Astrophysics Data System (ADS)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  11. Equation of State Measurements of Dense Plasmas Heated by Laser Accelerated MeV Protons

    NASA Astrophysics Data System (ADS)

    Dyer, Gilliss; Bernstein, Aaron; Cho, Byoung-Ick; Grigsby, Will; Dalton, Allen; Shepherd, Ronnie; Ping, Yuan; Chen, Hui; Widmann, Klaus; Ozterhoz, Jens; Ditmire, Todd

    2008-04-01

    Using a fast proton beam generated with an ultra intense laser we have generated and measured the equation of state of solid density plasma at temperatures near 20 eV, a regime in which there have been few previous experimental measurements. The laser accelerated a directional, short pulse of MeV protons, which isochorically heated a solid slab of aluminum. Using two simultaneous, temporally resolved measurements we observed the thermal emission and expansion of the heated foil with picosecond time resolution. With these data we were able to confirm, to within 10%, the SESAME equation-of-state table in this dense plasma region.

  12. Summary Report of Mission Acceleration Measurements for STS-62, Launched 4 March 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1994-01-01

    The second mission of the United States Microgravity Payload on-board the STS-62 mission was supported with three accelerometer instruments: the Orbital Acceleration Research Experiment (OARE) and two units of the Space Acceleration Measurements System (SAMS). The March 4, 1994 launch was the fourth successful mission for OARE and the ninth successful mission for SAMS. The OARE instrument utilizes a sensor for very low frequency measurements below one Hertz. The accelerations in this frequency range are typically referred to as quasisteady accelerations. One of the SAMS units had two remote triaxial sensor heads mounted on the forward MPESS structure between two furnance experiments, MEPHISTO and AADSF. These triaxial heads had low-pass filter cut-off frequencies at 10 and 25 Hz. The other SAMS unit utilized three remote triaxial sensor heads. Two of the sensor heads were mounted on the aft MPESS structure between the two experiments IDGE and ZENO. These triaxial heads had low-pass filter cut-off frequencies at 10 and 25 Hz. The third sensor head was mounted on the thermostat housing inside the IDGE experiment container. This triaxial head had a low-pass filter cut-off frequency at 5 Hz. This report is prepared to furnish interested experiment investigators with a guide to evaluating the acceleration environment during STS-62 and as a means of identifying areas which require further study. To achieve this purpose, various pieces of information are included, such as an overview of the STS-62 mission, a description of the accelerometer system flown on STS-62, some specific analysis of the accelerometer data in relation to the various mission activities, and an overview of the low-gravity environment during the entire mission. An evaluation form is included at the end of the report to solicit users' comments about the usefulness of this series of reports.

  13. Measuring the cosmic-ray acceleration efficiency of a supernova remnant.

    PubMed

    Helder, E A; Vink, J; Bassa, C G; Bamba, A; Bleeker, J A M; Funk, S; Ghavamian, P; van der Heyden, K J; Verbunt, F; Yamazaki, R

    2009-08-07

    Cosmic rays are the most energetic particles arriving at Earth. Although most of them are thought to be accelerated by supernova remnants, the details of the acceleration process and its efficiency are not well determined. Here we show that the pressure induced by cosmic rays exceeds the thermal pressure behind the northeast shock of the supernova remnant RCW 86, where the x-ray emission is dominated by synchrotron radiation from ultrarelativistic electrons. We determined the cosmic-ray content from the thermal Doppler broadening measured with optical spectroscopy, combined with a proper-motion study in x-rays. The measured postshock proton temperature, in combination with the shock velocity, does not agree with standard shock heating, implying that >50% of the postshock pressure is produced by cosmic rays.

  14. A fiber optic strain measurement and quench localization system for use in superconducting accelerator dipole magnets

    SciTech Connect

    van Oort, J.M.; Scanlan, R.M.; ten Kate, H.H.J.

    1994-10-17

    A novel fiber-optic measurement system for superconducting accelerator magnets is described. The principal component is an extrinsic Fabry-Perot Interferometer to determine localized strain and stress in coil windings. The system can be used either as a sensitive relative strain measurement system or as an absolute strain detector. Combined, one can monitor the mechanical behaviour of the magnet system over time during construction, long time storage and operation. The sensing mechanism is described, together with various tests in laboratory environments. The test results of a multichannel test matrix to be incorporated first in the dummy coils and then in the final version of a 13T Nb{sub 3}Sn accelerator dipole magnet are presented. Finally, the possible use of this system as a quench localization system is proposed.

  15. Method and apparatus for measuring gravitational acceleration utilizing a high temperature superconducting bearing

    DOEpatents

    Hull, John R.

    2000-01-01

    Gravitational acceleration is measured in all spatial dimensions with improved sensitivity by utilizing a high temperature superconducting (HTS) gravimeter. The HTS gravimeter is comprised of a permanent magnet suspended in a spaced relationship from a high temperature superconductor, and a cantilever having a mass at its free end is connected to the permanent magnet at its fixed end. The permanent magnet and superconductor combine to form a bearing platform with extremely low frictional losses, and the rotational displacement of the mass is measured to determine gravitational acceleration. Employing a high temperature superconductor component has the significant advantage of having an operating temperature at or below 77K, whereby cooling may be accomplished with liquid nitrogen.

  16. Feedback control of torsion balance in measurement of gravitational constant G with angular acceleration method.

    PubMed

    Quan, Li-Di; Xue, Chao; Shao, Cheng-Gang; Yang, Shan-Qing; Tu, Liang-Cheng; Wang, Yong-Ji; Luo, Jun

    2014-01-01

    The performance of the feedback control system is of central importance in the measurement of the Newton's gravitational constant G with angular acceleration method. In this paper, a PID (Proportion-Integration-Differentiation) feedback loop is discussed in detail. Experimental results show that, with the feedback control activated, the twist angle of the torsion balance is limited to [Formula: see text] at the signal frequency of 2 mHz, which contributes a [Formula: see text] uncertainty to the G value.

  17. Measurement and Characterization of the Acceleration Environment on Board the Space Station

    NASA Technical Reports Server (NTRS)

    Baugher, Charles R. (Editor)

    1990-01-01

    This workshop provides a comprehensive overview of the work and status of each of these areas to provide a basis for establishing a systematic approach to the challenge of avoiding these difficulties during the Space Station era of materials experimentation. The discussions were arranged in the order of: the scientific understanding of the requirements for a micro-gravity environment, a history of acceleration measurements on spacecraft, the state of accelerometer technology, and the current understanding of the predicted Space Station environment.

  18. A six degree of freedom head acceleration measurement device for use in football.

    PubMed

    Rowson, Steven; Beckwith, Jonathan G; Chu, Jeffrey J; Leonard, Daniel S; Greenwald, Richard M; Duma, Stefan M

    2011-02-01

    The high incidence rate of concussions in football provides a unique opportunity to collect biomechanical data to characterize mild traumatic brain injury. The goal of this study was to validate a six degree of freedom (6DOF) measurement device with 12 single-axis accelerometers that uses a novel algorithm to compute linear and angular head accelerations for each axis of the head. The 6DOF device can be integrated into existing football helmets and is capable of wireless data transmission. A football helmet equipped with the 6DOF device was fitted to a Hybrid III head instrumented with a 9 accelerometer array. The helmet was impacted using a pneumatic linear impactor. Hybrid III head accelerations were compared with that of the 6DOF device. For all impacts, peak Hybrid III head accelerations ranged from 24 g to 176 g and 1,506 rad/s(2) to 14,431 rad/s(2). Average errors for peak linear and angular head acceleration were 1% ± 18% and 3% ± 24%, respectively. The average RMS error of the temporal response for each impact was 12.5 g and 907 rad/s(2).

  19. Thermal performance analysis and measurements of the prototype cryomodules of European XFEL accelerator - part I

    NASA Astrophysics Data System (ADS)

    Wang, X. L.; Barbanotti, S.; Eschke, J.; Jensch, K.; Klos, R.; Maschmann, W.; Petersen, B.; Sawlanski, O.

    2014-11-01

    The European X-Ray Free Electron Laser (XFEL), the research facility currently under construction in the Hamburg area, Germany, is based on a superconducting linear accelerator that brings electrons to almost the speed of light. The linear accelerator consists of 100 accelerating cryomodules (CMs) operating at the temperature of 2 K. The thermal performances of the accelerator CMs are a key element to determine the heat load budget, the required capacity and the cost of the XFEL refrigerating system and to guarantee its efficient operation. The measurement of the thermal performances of the CMs is also an important step in the qualification of the CMs during the series production. This paper describes the thermal performance analysis of the European XFEL prototype cryomodules. The analysis takes into account all the main contributors (multilayer insulation, current leads, power couplers, support posts, and cavities) to the static and dynamic heat loads at various cryogenic temperature levels. Existing empirical databases are reviewed and used to evaluate the heat transfer through the multilayer insulation and numerical simulations are developed to investigate the heat loads generated from the different CM components.

  20. Summary report of mission acceleration measurements for STS-60, SPACEHAB2, launched 11 February 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1994-01-01

    The STS-60 mission, which launched on 11 February 1994, carried seven accelerometer systems. This report describes the configuration of each of these systems, where they were located on the Orbiter and the name of a contact person for each system. The Space Acceleration Measurement System (SAMS) was one of the accelerometer systems on-board and this mission marked its eighth successful flight. Acceleration data are provided here for SAMS which flew under an agreement between the NASA Microgravity Science and Applications division and the NASA office of Advanced Concepts and Technology. Acceleration data for the other accelerometer systems are not presented here. SAMS was located in the commercial SPACEHAB laboratory, on its second flight. The SAMS system was configured with three triaxial sensor heads with filter cut-offs of 5, 10, and 50 Hz. The acceleration environment related to an experiment centrifuge, an experiment refrigerator freezer unit, a SAMS sensor head rotation, an Orbiter shudder, and payload deploy activities are discussed. In the Appendices, all of the data from SAMS Head B (10 Hz) are plotted to provide an overview of the environment during the majority of the STS-60 mission. An evaluation form is included at the end of the report to solicit users' comments about the usefulness of this series of reports.

  1. Measuring students' metacognition in real-life situations.

    PubMed

    al-Hilawani, Yasser A

    2003-01-01

    Metacognitive performance of four groups of students (hearing high-achieving, hearing average-achieving, hearing under achieving, and deaf and hard of hearing) in first through third grade in the United Arab Emirates was examined and compared. Metacognition was measured using analyses of pictures depicting real-life problematic events, situations, and behaviors. Participants drew on their ability to apply problem solving and logical reasoning through visual analysis and discrimination of test materials rather than through verbal analysis. Results revealed that metacognition is influenced by students' age. Older students scored significantly higher on the metacognitive measure than younger students. Further analysis indicated that hearing high-achieving students scored significantly higher on the test than the other three groups when the age variable was controlled for. Deaf and hard of hearing students performed similarly to age-matched hearing students in applying reasoning skills to real-life situations.

  2. Ambient dose and dose rate measurements in the vicinity of Elekta Precise accelerators for radiation therapy.

    PubMed

    Zutz, H; Hupe, O

    2014-12-01

    In radiation therapy, commercially available medical linear accelerators (LINACs) are used. At high primary beam energies in the 10-MeV range, the leakage dose of the accelerator head and the backscatter from the room walls, the air and the patient become more important. Therefore, radiation protection measurements of photon dose rates in the treatment room and in the maze are performed to quantify the radiation field. Since the radiation of the LINACs is usually pulsed with short radiation pulse durations in the microsecond range, there are problems with electronic dose (rate) meters commonly used in radiation protection. In this paper measurements with ionisation chambers are presented and electronic dosemeters are used for testing at selected positions. The measured time-averaged dose rate ranges from a few microsieverts per hour in the maze to some millisieverts per hour in the vicinity of the accelerator head and up to some sieverts per hour in the blanked primary beam and several hundred sieverts per hour in the direct primary beam.

  3. SAMS Acceleration Measurements on Mir from November 1995 to March 1996

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1997-01-01

    The NASA Microgravity Science and Applications Division (MSAD) sponsors science experiments on a variety of microgravity carriers, including Orbiter missions and Russia's Mir space station. The MSAD sponsors the Space Acceleration Measurement System (SAMS) at the NASA Lewis Research Center (LERC) to support these science experiments by providing acceleration measurements to characterize the microgravity environment to which the experiments were exposed. The LeRC Principal Investigator Microgravity Services (PIMS) project supports principal investigations of microgravity science experiments as they evaluate the effects of varying acceleration levels on their experiments. In 1994, a SAMS unit was installed on the Mir space station. In a manner similar to Orbiter mission support, the SAMS unit supports science experiments from the U.S. and Russia by measuring the microgravity environment during experiment operations. Previous reports have summarized the SAMS data acquired during the period from September 1994 to November 1995. During the time period from November 1995 to March 1996, the primary SAMS-supported experiment was a Protein Crystal Growth (PCG) experiment. SAMS data were obtained during the PCG operations on Mir in accordance with the requirements specified by the PCG Principal Investigator. Also included in this data are mission events of interest, such as the undocking of STS-74 from Mir (November 1995) and the docking of Atlantis (STS-76) to Mir in March 1996. This report presents an overview of the SAMS data recorded in the interval from November 1995 to March 1996.

  4. Detection measures in real-life criminal guilty knowledge tests.

    PubMed

    Elaad, E; Ginton, A; Jungman, N

    1992-10-01

    The present study provides a first attempt to compare the validity of the respiration line length (RLL) and skin resistance response (SRR) amplitude in real-life criminal guilty knowledge tests (GKTs). GKT records of 40 innocent and 40 guilty Ss, for whom actual truth was established by confession, were assessed for their accuracy. When a predefined decision rule was used and inconclusive decisions were excluded, 97.4% of the innocent Ss and 53.3% of the guilty Ss were correctly classified with the SRR measure. For the RLL measure, the respective results were 97.2% and 53.1%. The combination of both measures improved detection of guilty Ss to 75.8% and decreased detection of innocent Ss to 94.1%. The combined measure seems to be a more useful means of identifying guilty suspects than each physiological measure alone. The results elaborate and extend those obtained in a previous field study conducted by Elaad (1990).

  5. Remaining Life Expectancy Measurement and PSA Screening of Older Men.

    PubMed

    Kotwal, Ashwin A; Mohile, Supriya G; Dale, William

    2012-07-01

    BACKGROUND: Guidelines recommend informed decision-making regarding prostate specific antigen (PSA) screening for men with at least 10 years of remaining life expectancy (RLE). Comorbidity measures have been used to judge RLE in previous studies, but assessments based on other common RLE measures are unknown. We assessed whether screening rates varied based on four clinically relevant RLE measures, including comorbidities, in a nationally-representative, community-based sample. METHODS: Using the National Social Life, Health and Aging Project (NSHAP), we selected men over 65 without prostate cancer (n=709). They were stratified into three RLE categories (0-7 years, 8-12 years, and 13+ years) based on validated measures of comorbidities, self-rated health status, functional status, and physical performance. The independent relationship of each RLE measure and a combined measure to screening was determined using multivariable logistic regressions. RESULTS: Self-rated health (OR = 6.82; p < 0.01) most closely correlated with RLE-based screening, while the comorbidity index correlated the least (OR = 1.50; p = 0.09). The relationship of RLE to PSA screening significantly strengthened when controlling for the number of doctor visits, particularly for comorbidities (OR= 43.6; p < 0.001). Men who had consistent estimates of less than 7 years RLE by all four measures had an adjusted PSA screening rate of 43.3%. CONCLUSIONS: Regardless of the RLE measure used, men who were estimated to have limited RLE had significant PSA screening rates. However, different RLE measures have different correlations with PSA screening. Specific estimates of over-screening should therefore carefully consider the RLE measure used.

  6. Measurement of the 225Ac half-life.

    PubMed

    Pommé, S; Marouli, M; Suliman, G; Dikmen, H; Van Ammel, R; Jobbágy, V; Dirican, A; Stroh, H; Paepen, J; Bruchertseifer, F; Apostolidis, C; Morgenstern, A

    2012-11-01

    The (225)Ac half-life was determined by measuring the activity of (225)Ac sources as a function of time, using various detection techniques: α-particle counting with a planar silicon detector at a defined small solid angle and in a nearly-2π geometry, 4πα+β counting with a windowless CsI sandwich spectrometer and with a pressurised proportional counter, gamma-ray spectrometry with a HPGe detector and with a NaI(Tl) well detector. Depending on the technique, the decay was followed for 59-141 d, which is about 6-14 times the (225)Ac half-life. The six measurement results were in good mutual agreement and their mean value is T(1/2)((225)Ac)=9.920 (3)d. This half-life value is more precise and better documented than the currently recommended value of 10.0 d, based on two old measurements lacking uncertainty evaluations.

  7. Properties of accelerated particles at the Sun from gamma-ray and neutron measurements

    NASA Astrophysics Data System (ADS)

    Share, Gerald; Murphy, Ronald

    The properties of accelerated ions and electrons that interact in the solar atmosphere and photosphere can be revealed through measurements of the resulting hard X-ray and gamma-ray emissions. These properties provide information on the acceleration processes and particle transport. Comparison of these properties with those measured in solar energetic particles in space indicates whether the two particle populations have a common origin. These studies require both good spectral measurements and a sound theoretical basis for understanding the processes related to gamma-ray production. We discuss advances in the calculation of gamma-ray spectra from proton, alpha-particle and heavy-ion interactions that are used in determining the spectra and composition of the accelerated particles. We focus on intense flares observed by the Solar Maximum Mission gamma-ray spectrometer and on the remarkable 2005 January 20 flare and Ground Level Event observed by RHESSI and Coronas. Our studies suggest that in most of the flares the heavy interacting particles at the Sun have a composition that is similar to gradual SEP events (i.e. a coronal composition) but that in at least one flare they have a composition close to that observed in impulsive SEP events. We are also finding evidence that the interacting particles may be enhanced in alpha particles and heavier nuclei relative to protons. We discuss details of the 2005 January 20 flare in which we find clear evidence for two distinct acceleration processes occurring within two minutes that produce significantly different particle spectra. Gamma-ray emission from this event was evident up to 4 hours after flare onset. We discuss the implications of these observations. This work was supported by NASA under grants to the University of Maryland and DPRs to NRL.

  8. Properties of Accelerated Particles at the Sun from Gamma-Ray and Neutron Measurements

    NASA Astrophysics Data System (ADS)

    Murphy, Ronald; Share, G.; Kozlovsky, B.

    2010-05-01

    The properties of accelerated ions and electrons that interact in the solar atmosphere and photosphere can be revealed through measurements of the resulting hard X-ray and gamma-ray emissions. These properties provide information on the acceleration processes and particle transport. Comparison of these properties with those measured for solar energetic particles in space indicates whether the two particle populations have a common origin. These studies require both good spectral measurements and a sound theoretical basis for understanding the processes related to gamma-ray production. We discuss advances in the calculation of gamma-ray spectra from proton, alpha-particle and heavy-ion interactions that are used to determine the spectra and composition of the accelerated particles. We focus on intense flares observed by the Solar Maximum Mission gamma-ray spectrometer and on the remarkable 2005 January 20 flare and Ground Level Event observed by RHESSI and Coronas. Our studies suggest that in most of these flares the heavy interacting particles at the Sun have a composition that is similar to gradual SEP events (i.e. a coronal composition), but that in at least one flare they have a composition close to that observed in impulsive SEP events. We are also finding evidence that the interacting particles may be enhanced in alpha particles and heavier nuclei relative to protons. We discuss details of the 2005 January 20 flare in which we find clear evidence for two distinct acceleration processes occurring within two minutes that produce significantly different particle spectra. Gamma-ray emission from this event was evident for up to 4 hours after flare onset. We discuss the implications of these observations. This work was supported by NASA under DPRs to NRL and grants to the University of Maryland.

  9. Comparison of measured Varian Clinac 21EX and TrueBeam accelerator electron field characteristics.

    PubMed

    Lloyd, Samantha A M; Zavgorodni, Sergei; Gagne, Isabelle M

    2015-07-08

    Dosimetric comparisons of radiation fields produced by Varian's newest linear accelerator, the TrueBeam, with those produced by older Varian accelerators are of interest from both practical and research standpoints. While photon fields have been compared in the literature, similar comparisons of electron fields have not yet been reported. In this work, electron fields produced by the TrueBeam are compared with those produced by Varian's Clinac 21EX accelerator. Diode measurements were taken of fields shaped with electron applicators and delivered at 100 cm SSD, as well as those shaped with photon MLCs without applicators and delivered at 70 cm SSD for field sizes ranging from 5 × 5 to 25 × 25 cm² at energies between 6 and 20 MeV. Additionally, EBT2 and EBT3 radio-chromic film measurements were taken of an MLC-shaped aperture with closed leaf pairs delivered at 70 cm SSD using 6 and 20 MeV electrons. The 6 MeV fields produced by the TrueBeam and Clinac 21EX were found to be almost indistinguishable. At higher energies, TrueBeam fields shaped by electron applicators were generally flatter and had less photon contamination compared to the Clinac 21EX. Differences in PDDs and profiles fell within 3% and 3 mm for the majority of measurements. The most notable differences for open fields occurred in the profile shoulders for the largest applicator field sizes. In these cases, the TrueBeam and Clinac 21EX data differed by as much as 8%. Our data indicate that an accurate electron beam model of the Clinac 21EX could be used as a starting point to simulate electron fields that are dosimetrically equivalent to those produced by the TrueBeam. Given that the Clinac 21EX shares head geometry with Varian's iX, Trilogy, and Novalis TX accelerators, our findings should also be applicable to these machines.

  10. Measurements of the Influence of Acceleration and Temperature of Bodies on their Weight

    SciTech Connect

    Dmitriev, Alexander L.

    2008-01-21

    A brief review of experimental research of the influence of acceleration and temperatures of test mass upon gravitation force, executed between the 1990s and the beginning of 2000 at the St.-Petersburg State University of Information Technologies, Mechanics and Optics in cooperation with D. I. Mendeleev's Institute of Metrology is provided. According to a phenomenological notion, the acceleration of a test mass caused by external action, for example electromagnetic forces, results in changes of the gravitational properties of this mass. Consequences are a dependence upon gravity on the size and sign of test mass acceleration, and also on its absolute temperature. Results of weighing a rotor of a mechanical gyroscope with a horizontal axis, an anisotropic crystal with the big difference of the speed of longitudinal acoustic waves, measurements of temperature dependence of weight of metal bars of nonmagnetic materials, and also measurement of restitution coefficients at quasi-elastic impact of a steel ball about a massive plate are given. In particular, a reduction of apparent mass of a horizontal rotor with relative size 3.10{sup -6} at a speed of rotation of 18.6 thousand rev/min was observed. A negative temperature dependence of the weight of a brass core with relative size near 5.10{sup -4} K{sup -1} at room temperature was measured; this temperature factor was found to be a maximum for light and elastic metals. All observably experimental effects, have probably a general physical reason connected with the weight change dependent upon acceleration of a body or at thermal movement of its microparticles. The reduction of mass at high temperatures is of particular interest for propulsion applications.

  11. Earth's gravity field modelling based on satellite accelerations derived from onboard GPS phase measurements

    NASA Astrophysics Data System (ADS)

    Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H. H.

    2017-02-01

    GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth's gravity field. We propose a new data processing method which makes use of the `average acceleration' approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.

  12. Summary Report of Mission Acceleration Measurements for STS-79. Launched 16 Sep. 1996

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Moskowitz, Milton E.; Hrovat, Kenneth; Reckart, Timothy A.

    1997-01-01

    The Space Acceleration Measurement System (SAMS) collected acceleration data in support of the Mechanics of Granular Materials experiment during the STS-79 Mir docking mission, September 1996. STS-79 was the first opportunity to record SAMS data on an Orbiter while it was docked to Mir. Crew exercise activities in the Atlantis middeck and the Mir base module are apparent in the data. The acceleration signals related to the Enhanced Orbiter Refrigerator Freezer had different characteristics when comparing the data recorded on Atlantis on STS-79 with the data recorded on Mir during STS-74. This is probably due, at least in part, to different transmission paths and SAMS sensor head mounting mechanisms. Data collected on Atlantis during the STS-79 docking indicate that accelerations due to vehicle and solar array structural modes from Mir transfer to Atlantis and that the structural modes of the Atlantis-Mir complex are different from those of either vehicle independently. A 0.18 Hz component of the SAMS data, present while the two vehicles were docked, was probably caused by the Mir solar arrays. Compared to Atlantis structural modes of about 3.9 and 4.9 Hz, the Atlantis-Mir complex has structural components of about 4.5 and 5.1 Hz. After docking, apparent structural modes appeared in the data at about 0.8 and 1.8 Hz. The appearance, disappearance, and change in the structural modes during the docking and undocking phases of the joint Atlantis-Mir operations indicates that the structural modes of the two spacecraft have an effect on the microgravity environment of each other. The transfer of structural and equipment related accelerations between vehicles is something that should be considered in the International Space Station era.

  13. Methodology for designing accelerated aging tests for predicting life of photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Thomas, R. E.; Derringer, G. C.; Kistler, C. W.; Bigg, D. M.; Carmichael, D. C.

    1977-01-01

    A methodology for designing aging tests in which life prediction was paramount was developed. The methodology builds upon experience with regard to aging behavior in those material classes which are expected to be utilized as encapsulant elements, viz., glasses and polymers, and upon experience with the design of aging tests. The experiences were reviewed, and results are discussed in detail.

  14. Measurements of Neutron Induced Cross Sections at the Oak Ridge Electron Linear Accelerator

    SciTech Connect

    Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.

    1999-09-20

    We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and the fission cross sections of 233U in the energy range from 0.36 eV to ~700 keV. We report average fission and total cross sections. Also, we measured the neutron total cross sections of 27Al and Natural chlorine as well as the capture cross section of Al over an energy range from 100 eV up to about 400 keV.

  15. Measurements and simulations of wakefields at the Accelerator Test Facility 2

    NASA Astrophysics Data System (ADS)

    Snuverink, J.; Ainsworth, R.; Boogert, S. T.; Cullinan, F. J.; Lyapin, A.; Kim, Y. I.; Kubo, K.; Kuroda, S.; Okugi, T.; Tauchi, T.; Terunuma, N.; Urakawa, J.; White, G. R.

    2016-09-01

    Wakefields are an important factor in accelerator design, and are a real concern when preserving the low beam emittance in modern machines. Charge dependent beam size growth has been observed at the Accelerator Test Facility (ATF2), a test accelerator for future linear collider beam delivery systems. Part of the explanation of this beam size growth is wakefields. In this paper we present numerical calculations of the wakefields produced by several types of geometrical discontinuities in the beam line as well as tracking simulations to estimate the induced effects. We also discuss precision beam kick measurements performed with the ATF2 cavity beam position monitor system for a test wakefield source in a movable section of the vacuum chamber. Using an improved model independent method we measured a wakefield kick for this movable section of about 0.49 V /pC /mm , which, compared to the calculated value from electromagnetic simulations of 0.41 V /pC /mm , is within the systematic error.

  16. SAMS Acceleration Measurements on Mir From January to May 1997 (NASA Increment 4)

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1998-01-01

    During NASA Increment 4 (January to May 1997), about 5 gigabytes of acceleration data were collected by the Space Acceleration Measurements System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 28 optical disks which were returned to Earth on STS-84. During this increment, SAMS data were collected in the Priroda module to support the Mir Structural Dynamics Experiment (MiSDE), the Binary Colloidal Alloy Tests (BCAT), Angular Liquid Bridge (ALB), Candle Flames in Microgravity (CFM), Diffusion Controlled Apparatus Module (DCAM), Enhanced Dynamic Load Sensors (EDLS), Forced Flow Flame Spreading Test (FFFT), Liquid Metal Diffusion (LMD), Protein Crystal Growth in Dewar (PCG/Dewar), Queen's University Experiments in Liquid Diffusion (QUELD), and Technical Evaluation of MIM (TEM). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-84 operations, a Progress engine burn, Soyuz vehicle docking and undocking, and Progress vehicle docking. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. The analyses included herein complement those presented in previous summary reports prepared by the Principal Investigator Microgravity Services (PIMS) group.

  17. Using Solar Gamma Rays to Measure Heavy Accelerated Particles at the Sun

    NASA Astrophysics Data System (ADS)

    Share, G. H.; Murphy, R. J.

    2008-05-01

    Solar flare gamma-ray spectra contain information on heavy (>He) accelerated particle spectra and composition through measurement of highly Doppler broadened (~10%) lines. These gamma-rays are emitted when the nuclei de-excite following their interaction with chromospheric H and He; these are called inverse reactions in contrast to the direct reactions from accelerated p and α-particles that produce narrower lines. The ability to distinguish and measure the broadened features is complicated by their large number, the narrow lines, the presence of strong solar bremsstrahlung and nuclear continua, as well as by instrumental effects. The instrumental continuum from Compton scattering is minimized when the gamma-ray detector has a high photopeak efficiency and is relatively well shielded, as was the case for the Solar Maximum Mission spectrometer (GRS). It is also important that the detector response be well determined. We have constructed a new GRS response matrix based on a Monte Carlo calculation and apply it to spectra from strong nuclear-line flares. We use new theoretical gamma-ray templates derived from nuclear physics calculations for elements such as C, O, Ne, Mg, Si, and Fe to fit the spectra and derive information on the heavy-accelerated ions. This technique can also be applied to data from the RHESSI spectrometer, with its larger Compton continuum, if the instrument response is well determined. This work was supported under NASA Grants NNX07AH81G, NNX07AO74G, and NNG06GG14G.

  18. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    NASA Astrophysics Data System (ADS)

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Cooper, G. W.; Gomez, M. R.; Slutz, S.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Torres, J. A.; Bur, J. A.; Cuneo, M. E.; Glebov, V. Yu; Harvey-Thompson, A. J.; Herrman, M. C.; Hess, M. H.; Johns, O.; Jones, B.; Lamppa, D. C.; Lash, J. S.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Reneker, J.; Robertson, G. K.; Rochau, G. A.; Savage, M. E.; Smith, I. C.; Styron, J. D.; Vesey, R. A.

    2016-05-01

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ∼2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner∼1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.

  19. Measurements of the Argonne Wakefield Accelerator's low charge, 4 MeV RF photocathode witness beam.

    SciTech Connect

    Power, J.

    1998-04-01

    The Argonne Wakefield Accelerator's (AWA) witness RF photocathode gun produced its first electron beam in April of 1996. We have characterized the charge, energy, emittance and bunch length of the witness beam over the last several months. The emittance Was measured by both a quad scan that fitted for space charge using an in house developed Mathematica routine and a pepper pot technique. The bunch length was measured by imaging Cherenkov light from a quartz plate to a Hamamatsu streak camera with 2 psec resolution. A beam energy of 3.9 Mev was measured with a 6 inch round pole spectrometer while a beam charge was measured with both an ICT and a Faraday Cup. Although the gun will normally be run at 100 pC it has produced charges from 10 pC to 4 nc. All results of the measurements to date are presented here.

  20. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    SciTech Connect

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Cooper, G. W.; Gomez, M. R.; Slutz, S.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Torres, J. A.; Bur, J. A.; Cuneo, M. E.; Glebov, V. Yu; Harvey-Thompson, A. J.; Herrman, M. C.; Hess, M. H.; Johns, O.; Jones, B.; Lamppa, D. C.; Lash, J. S.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Reneker, J.; Robertson, G. K.; Rochau, G. A.; Savage, M. E.; Smith, I. C.; Styron, J. D.; Vesey, R. A.

    2016-05-26

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ~2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner ~ 1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Furthermore, plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.

  1. Neutron field measurements for alara purposes around a Van de Graaff accelerator building.

    PubMed

    Kockerols, P; Lebacq, A L; Gasparro, J; Hult, M; Janssens, H; Lövestam, G; Vanhavere, F

    2004-01-01

    The Institute for Reference Materials and Measurements operates a 7.0 MV Van de Graaff accelerator to generate monoenergetic neutron radiation for experimental applications. Owing to increased intensities of generated neutron fields and the more stringent regulation related to the maximum dose for the public, a concrete shielding wall surrounding the experimental building was constructed. This paper presents a study aiming at evaluating the effect of the shielding on the neutron field outside the wall. For this purpose, the following measurements were carried out around the building: (1) cartography of the neutron field for different experimental conditions; (2) measurement of neutron spectra using multiple Bonner spheres; (3) activation measurements using gold discs followed by low-level gamma spectrometry. From the measurements, it can be concluded that the wall fulfils its purpose to reduce the neutron dose rate to the surrounding area to an acceptable level.

  2. Influence of tungsten fiber's slow drift on the measurement of G with angular acceleration method.

    PubMed

    Luo, Jie; Wu, Wei-Huang; Xue, Chao; Shao, Cheng-Gang; Zhan, Wen-Ze; Wu, Jun-Fei; Milyukov, Vadim

    2016-08-01

    In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.

  3. Comparison of the damping effect of different shoeing by the measurement of hoof acceleration.

    PubMed

    Benoit, P; Barrey, E; Regnault, J C; Brochet, J L

    1993-01-01

    The purpose of this study was to compare the damping effect of 16 types of shoeing by measuring hoof acceleration parameters on two trotting horses. At impact, maximal deceleration had extreme values such as 188 m/s2 (+/- 55) for the most damping combination (p < 0.01) and 746 m/s2 (+/- 14) for the steel shoe (mean = 551 m/s2 +/- 125). After the shock, the hoof was exposed to a mean vibrating acceleration at 418 Hz (+/- 84) which was progressively damped in 37.3 ms (+/- 10.5). According to these results, the damping ability of different farriery products significantly reduces (p < 0.05) shocks and vibrations at hoof impact in the athletic horse caused by runs on asphalt or similar surfaces. In practice, the use of the most efficient shoeing should help to reduce the incidence of the over-used joint diseases in the athletic horse caused by runs on hard surfaces.

  4. Raman distributed temperature measurement at CERN high energy accelerator mixed field radiation test facility (CHARM)

    NASA Astrophysics Data System (ADS)

    Toccafondo, Iacopo; Nannipieri, Tiziano; Signorini, Alessandro; Guillermain, Elisa; Kuhnhenn, Jochen; Brugger, Markus; Di Pasquale, Fabrizio

    2015-09-01

    In this paper we present a validation of distributed Raman temperature sensing (RDTS) at the CERN high energy accelerator mixed field radiation test facility (CHARM), newly developed in order to qualify electronics for the challenging radiation environment of accelerators and connected high energy physics experiments. By investigating the effect of wavelength dependent radiation induced absorption (RIA) on the Raman Stokes and anti-Stokes light components in radiation tolerant Ge-doped multi-mode (MM) graded-index optical fibers, we demonstrate that Raman DTS used in loop configuration is robust to harsh environments in which the fiber is exposed to a mixed radiation field. The temperature profiles measured on commercial Ge-doped optical fibers is fully reliable and therefore, can be used to correct the RIA temperature dependence in distributed radiation sensing systems based on P-doped optical fibers.

  5. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    NASA Astrophysics Data System (ADS)

    Rodi, A. R.; Leon, D. C.

    2012-11-01

    A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns - angle of attack, angle of sideslip, dynamic pressure and the error in static pressure - if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft - a trailing cone - and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.

  6. A procedure for combining rotating-coil measurements of large-aperture accelerator magnets

    NASA Astrophysics Data System (ADS)

    Köster, Oliver; Fiscarelli, Lucio; Russenschuck, Stephan

    2016-05-01

    The rotating search coil is a precise and widely used tool for measuring the magnetic field harmonics of accelerator magnets. This paper deals with combining several such multipole measurements, in order to cover magnet apertures largely exceeding the diameter of the available search coil. The method relies on the scaling laws for multipole coefficients and on the method of analytic continuation along zero-homotopic paths. By acquiring several measurements of the integrated magnetic flux density at different transverse positions within the bore of the accelerator magnet, the uncertainty on the field harmonics can be reduced at the expense of tight tolerances on the positioning. These positioning tolerances can be kept under control by mounting the rotating coil and its motor-drive unit on precision alignment stages. Therefore, the proposed technique is able to yield even more precise results for the higher-order field components than a dedicated rotating search coil of larger diameter. Moreover, the versatility of the measurement bench is enhanced by avoiding the construction of rotating search coils of different measurement radii.

  7. Asexual Queen Succession mediates an accelerated colony life cycle in the termite Silvestritermes minutus.

    PubMed

    Fougeyrollas, R; Křivánek, J; Roy, V; Dolejšová, K; Frechault, S; Roisin, Y; Hanus, R; Sillam-Dussès, D

    2017-03-09

    Mixed modes of reproduction, combining sexual processes with thelytokous parthenogenesis, occur in all major clades of social insects. In several species of termites, queens maximize their genetic input into non-dispersing replacement queens through parthenogenesis, while maintaining genetically diverse sterile offspring and dispersing reproductives via sexual reproduction. This so-called Asexual Queen Succession (AQS) has multiple independent origins and its presumed advantages are diverse as well, ranging from multiplication of colony reproductive potential to extension of its lifespan beyond that of the foundress. However, how AQS shapes colony life cycles under natural conditions remains poorly known. The neotropical termite Silvestritermes minutus inhabits small but conspicuous nests, offering a unique opportunity to investigate the impact of AQS on life history. We report on its breeding system, life cycle and sex allocation using social structure census in 137 nests and genotyping of 12 colonies at 12 microsatellite loci. We show that colonies are established by an outbred pair of primary reproductives. In less than two years, the foundress is replaced by multiple neotenic queens, arising mostly through automixis with central fusion. Sterile castes, male and most (93%) female dispersers are produced sexually. Colony reproduction is usually restricted to a single dispersal of alates with unbiased sex ratio, taking place after three years. We conclude that S. minutus benefits from AQS to maximize colony growth rate and alate production within a very short life cycle rather than to extend colony lifespan. This highlights the versatile role of AQS in different cases of its polyphyletic origin. This article is protected by copyright. All rights reserved.

  8. Surface composition and barium evaporation rate of ``pedigreed'' impregnated tungsten dispenser cathodes during accelerated life testing

    NASA Astrophysics Data System (ADS)

    Tomich, D. H.; Mescher, J. A.; Grant, J. T.

    1987-03-01

    A study has been made of the surface composition and barium evaporation rate of "pedigreed" impregnated tungsten dispenser cathodes. The effect of air exposure on coated cathodes was examined and was found to have no significant effect on barium evaporation rate although in some cases longer reactivation times were required. No changes in surface topography were apparent following air exposure and reactivation. Life testing was done at 100°C above the typical operating temperature for the cathode, where the typical operating temperature was taken to be 950°C for coated cathodes and 1050°C for uncoated cathodes. The cathodes were examined at different stages of life testing, up to 1200 h. Significant decreases in barium evaporation rates were found after as few as 500 h of life testing. After 1000 h the evaporation rate had decreased more than an order of magnitude. Changes in surface composition were also found. The effects of tungsten particle size, used in manufacture of the billet, on barium evaporation rate were also studied but no correlation was found.

  9. Neural Network Models of Simple Mechanical Systems Illustrating the Feasibility of Accelerated Life Testing

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.; Jones, Steven P.; Jansen, Ralph

    1996-01-01

    A complete evaluation of the tribological characteristics of a given material/mechanical system is a time-consuming operation since the friction and wear process is extremely systems sensitive. As a result, experimental designs (i.e., Latin Square, Taguchi) have been implemented in an attempt to not only reduce the total number of experimental combinations needed to fully characterize a material/mechanical system, but also to acquire life data for a system without having to perform an actual life test. Unfortunately, these experimental designs still require a great deal of experimental testing and the output does not always produce meaningful information. In order to further reduce the amount of experimental testing required, this study employs a computer neural network model to investigate different material/mechanical systems. The work focuses on the modeling of the wear behavior, while showing the feasibility of using neural networks to predict life data. The model is capable of defining which input variables will influence the tribological behavior of the particular material/mechanical system being studied based on the specifications of the overall system.

  10. Accurate Measurement of Velocity and Acceleration of Seismic Vibrations near Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Arif, Syed Javed; Imdadullah; Asghar, Mohammad Syed Jamil

    In spite of all prerequisite geological study based precautions, the sites of nuclear power plants are also susceptible to seismic vibrations and their consequent effects. The effect of the ongoing nuclear tragedy in Japan caused by an earthquake and its consequent tsunami on March 11, 2011 is currently beyond contemplations. It has led to a rethinking on nuclear power stations by various governments around the world. Therefore, the prediction of location and time of large earthquakes has regained a great importance. The earth crust is made up of several wide, thin and rigid plates like blocks which are in constant motion with respect to each other. A series of vibrations on the earth surface are produced by the generation of elastic seismic waves due to sudden rupture within the plates during the release of accumulated strain energy. The range of frequency of seismic vibrations is from 0 to 10 Hz. However, there appears a large variation in magnitude, velocity and acceleration of these vibrations. The response of existing or conventional methods of measurement of seismic vibrations is very slow, which is of the order of tens of seconds. A systematic and high resolution measurement of velocity and acceleration of these vibrations are useful to interpret the pattern of waves and their anomalies more accurately, which are useful for the prediction of an earthquake. In the proposed work, a fast rotating magnetic field (RMF) is used to measure the velocity and acceleration of seismic vibrations in the millisecond range. The broad spectrum of pulses within one second range, measured by proposed method, gives all possible values of instantaneous velocity and instantaneous acceleration of the seismic vibrations. The spectrum of pulses in millisecond range becomes available which is useful to measure the pattern of fore shocks to predict the time and location of large earthquakes more accurately. Moreover, instead of average, the peak values of these quantities are helpful

  11. Measurement of depth distributions of (3)H and (14)C induced in concrete shielding of an electron accelerator facility.

    PubMed

    Endo, Akira; Harada, Yasunori; Kawasaki, Katsuya; Kikuchi, Masamitsu

    2004-06-01

    The estimation of radioactivity induced in concrete shielding is important for the decommissioning of accelerator facilities. Concentrations of (3)H and (14)C in the concrete shielding of an electron linear accelerator were measured, and the depth distributions of (3)H and (14)C and gamma-ray emitters were discussed in relation to their formation reactions.

  12. On the effect of accelerated winds on the wave growth through detailed laboratory measurements.

    NASA Astrophysics Data System (ADS)

    Ocampo-Torres, Francisco J.; Branger, Hubert; Osuna, Pedro; Hernández, Aldo

    2013-04-01

    The possible influence of accelerated winds on air-water momentum fluxes is being studied through detailed laboratory measurements in a large wind-wave flume. Wind stress over the water surface, waves and surface drift are measured in the 40m long wind-wave tank at IRPHE, Marseille. While momentum fluxes are estimated directly through the eddy correlation method in a station about the middle of the tank, they provide information corresponding to rather short non-dimensional fetch not previously reported. Wave evolution along the tank is determined through a series of wave gauges, and the wind-induced surface drift is obtained at one of the first measuring stations at the beginning of the tank. At each experimental run very low wind was on (about 1m/s) for a certain period and suddenly it was constantly accelerated to reach about 13 m/s (as well as 8 and 5 m/s during different runs) in about 15 sec to as long as 600 sec. The wind was kept constant at that high speed for 2 to 10 min, and then suddenly and constantly decelerate to 0. Data from the constant high winds provided us with reference equilibrium conditions for at least 3 different wind speed. We, nevertheless, focus in the recordings while wind was being constantly accelerated expecting some contribution to the understanding of gustiness, the implied wind wave growth and the onset of surface drift. Wind-wave growth is observed to lag behind the wind stress signal, and furthermore, a two regime wind stress is noticed, apparently well correlated with a) the incipient growth and appearance of the first waves and b) the arrival of waves from the up-wind section of the tank. Results of non-dimensional wave energy as a function of non-dimensional fetch represent an extension of at least 2 decades shorter non-dimensional fetch to the wave growth curves typically found in the literature. The linear tendency of wave growth compares very well only when wind is reaching its maximum, while during the accelerated wind

  13. Laboratory Measurements of Linear Electron Acceleration by Inertial Alfvén Waves

    NASA Astrophysics Data System (ADS)

    Schroeder, J. W. R.

    2015-11-01

    Alfvén waves occur in conjunction with a significant fraction of auroral electron acceleration. Inertial mode Alfvén waves (vA >vte) in the auroral magnetosphere (2 - 4RE) with perpendicular scales on the order of the electron skin depth (c /ωpe) have a parallel electric field that, according to theory, is capable of nonlinearly accelerating suprathermal electrons to auroral energies. Unfortunately, due to space-time ambiguities of rocket and satellite measurements, it has not yet been possible to fully verify how Alfvén waves contribute to the production of accelerated electrons. To overcome the limitations of in situ spacecraft data, laboratory experiments have been carried out using the Large Plasma Device (LaPD), an NSF/DOE user facility at UCLA. An Electron Cyclotron Absorption (ECA) diagnostic has been developed to record the suprathermal parallel electron distribution function with 0.1% precision. The diagnostic records the electron distribution while inertial Alfvén waves simultaneously propagate through the plasma. Recent measurements have isolated oscillations of suprathermal electrons at the Alfvén wave frequency. Despite complications from boundary effects and the finite size of the experiment, a linear kinetic model has been produced that describes the experimental results. To our knowledge this is the first quantitative agreement between the measured and modeled linear response of suprathermal electrons to an inertial Alfvén wave. This verification of the linear physics is a necessary step before the nonlinear acceleration process can be isolated in future experiments. Presently, nonlinear effects cannot be detected because of limited Alfvén wave amplitudes. Ongoing work is focused on designing a higher-power antenna capable of efficiently launching larger-amplitude Alfvén waves with tunable perpendicular wavenumber and developing a theoretical understanding of the nonlinear acceleration process in LaPD plasma conditions. This material is

  14. A hybrid data acquisition system for magnetic measurements of accelerator magnets

    SciTech Connect

    Wang, X.; Hafalia, R.; Joseph, J.; Lizarazo, J.; Martchevsky, M.; Sabbi, G. L.

    2011-06-03

    A hybrid data acquisition system was developed for magnetic measurement of superconducting accelerator magnets at LBNL. It consists of a National Instruments dynamic signal acquisition (DSA) card and two Metrolab fast digital integrator (FDI) cards. The DSA card records the induced voltage signals from the rotating probe while the FDI cards records the flux increment integrated over a certain angular step. This allows the comparison of the measurements performed with two cards. In this note, the setup and test of the system is summarized. With a probe rotating at a speed of 0.5 Hz, the multipole coefficients of two magnets were measured with the hybrid system. The coefficients from the DSA and FDI cards agree with each other, indicating that the numerical integration of the raw voltage acquired by the DSA card is comparable to the performance of the FDI card in the current measurement setup.

  15. Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center

    SciTech Connect

    S. Setiniyaz, T.A. Forest, K. Chouffani, Y. Kim, A. Freyberger

    2012-07-01

    A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.

  16. Summary Report of Mission Acceleration Measurements for STS-95: Launched October 19, 1998

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Hrovat, Kevin

    2000-01-01

    John H. Glenn's historic return to space was a primary focus of the STS-95 mission. The Hubble Space Telescope (HST) orbital Systems Test (HOST), an STS-95 payload, was an in-flight demonstration of HST components to be installed during the next HST servicing mission. One of the components under evaluation was the cryocooler for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Based on concerns about vibrations from the operation of the NICMOS cryocooler affecting the overall HST line-of-sight requirements, the Space Acceleration Measurement System for Free-Flyers (SAMS-FF) was employed to measure the vibratory environment of the STS-95 mission, including any effects introduced by the NICMOS cryocooler. The STS-95 mission represents the first STS mission supported by SAMS-FF. Utilizing a Control and Data Acquisition Unit (CDU) and two triaxial sensor heads (TSH) mounted on the HOST support structure in Discovery's cargo bay, the SAMS-FF and the HOST project were able to make vibratory measurements both on-board the vibration-isolated NICMOS cryocooler and off-board the cryocooler mounting plate. By comparing the SAMS-FF measured vibrations on-board and off-board the NICMOS cryocooler, HST engineers could assess the cryocooler g-jitter effects on the HST line-of-sight requirements. The acceleration records from both SAMS-FF accelerometers were analyzed and significant features of the microgravity environment are detailed in this report.

  17. Waveband Analysis of Track Irregularities in High-Speed Railway from On-Board Acceleration Measurement

    NASA Astrophysics Data System (ADS)

    Lee, Jun Seok; Choi, Sunghoon; Kim, Sang-Soo; Kim, Young Guk; Kim, Seog Won; Park, Choonsoo

    This paper is focused on waveband analysis of the lateral and vertical track irregularities from the on-board acceleration measurement of in-service high-speed trains. The track irregularities play important roles to determine dynamic stability of vehicles and ride quality of passengers, so that their amplitude and wavelength should be monitored continuously and carefully. Measuring acceleration at the axle-box or bogie of the trains has been under consideration for low-cost implementation and robust to a harsh railway environment. To estimate the track irregularities, lateral and vertical vibration caused by the wheel/track interaction is measured by the axle-box and bogie mounted accelerometers of an in-service high-speed train. A Kalman filter is used to prevent unrealistic drifts in the estimation. By applying the waveband-pass and compensation filters to the estimated displacement, it is possible to estimate the track irregularities. A distance-wavelength representation is used to identify their waveband in an intuitive way. It is verified by comparing with a commercial track geometry measurement system. From their comparison, it confirms that the representation can produce a satisfactory result.

  18. Results of Measurements of Accelerations of Technological Devices onboard the FotonSpacecraft

    NASA Astrophysics Data System (ADS)

    Barmin, I. V.; Volkov, M. V.; Egorov, A. V.; Reut, E. F.; Senchenkov, A. S.

    2001-07-01

    This paper generalizes the results of measuring the residual accelerations arising when investigations in space materials science are carried out onboard the unmanned Fotonspacecraft. The levels of vibroaccelerations are analyzed in the frequency band of 1 500 Hz for the technological devices UZ01, UZ04, and POLIZON, developed by the Federal Unitary State Enterprise “Barmin Design Bureau of General Machine Building” (V.P. Barmin KBOM). The levels of accelerations are estimated in the frequency band of 0 1 Hz in the zone of technological operations of these facilities. The basic sources of vibroaccelerations acting upon the frames of devices are determined in the capsule zone, where technological processes of producing new materials take place. In the frequency band of 1 500 Hz the vibroaccelerations are shown to be generated by the operation of Fotonspacecraft units and a drive of capsule translation during the technological process. On the capsule frame they reach the values of (1 3) × 10 3 g. The level of linear accelerations in the infralow-frequency band is determined by rotational motions of the Fotonspacecraft. It depends on the device location with respect to the spacecraft center of mass and does not exceed (1 7) × 10 6 gin the steady-state regime in the zone of technological activity.

  19. Continuous wavelet transform analysis of acceleration signals measured from a wave buoy.

    PubMed

    Chuang, Laurence Zsu-Hsin; Wu, Li-Chung; Wang, Jong-Hao

    2013-08-19

    Accelerometers, which can be installed inside a floating platform on the sea, are among the most commonly used sensors for operational ocean wave measurements. To examine the non-stationary features of ocean waves, this study was conducted to derive a wavelet spectrum of ocean waves and to synthesize sea surface elevations from vertical acceleration signals of a wave buoy through the continuous wavelet transform theory. The short-time wave features can be revealed by simultaneously examining the wavelet spectrum and the synthetic sea surface elevations. The in situ wave signals were applied to verify the practicality of the wavelet-based algorithm. We confirm that the spectral leakage and the noise at very-low-frequency bins influenced the accuracies of the estimated wavelet spectrum and the synthetic sea surface elevations. The appropriate thresholds of these two factors were explored. To study the short-time wave features from the wave records, the acceleration signals recorded from an accelerometer inside a discus wave buoy are analysed. The results from the wavelet spectrum show the evidence of short-time nonlinear wave events. Our study also reveals that more surface profiles with higher vertical asymmetry can be found from short-time nonlinear wave with stronger harmonic spectral peak. Finally, we conclude that the algorithms of continuous wavelet transform are practical for revealing the short-time wave features of the buoy acceleration signals.

  20. Measurement of performance using acceleration control and pulse control in simulated spacecraft docking operations

    NASA Technical Reports Server (NTRS)

    Brody, Adam R.; Ellis, Stephen R.

    1992-01-01

    Nine commercial airline pilots served as test subjects in a study to compare acceleration control with pulse control in simulated spacecraft maneuvers. Simulated remote dockings of an orbital maneuvering vehicle (OMV) to a space station were initiated from 50, 100, and 150 meters along the station's -V-bar (minus velocity vector). All unsuccessful missions were reflown. Five way mixed analysis of variance (ANOVA) with one between factor, first mode, and four within factors (mode, bloch, range, and trial) were performed on the data. Recorded performance measures included mission duration and fuel consumption along each of the three coordinate axes. Mission duration was lower with pulse mode, while delta V (fuel consumption) was lower with acceleration mode. Subjects used more fuel to travel faster with pulse mode than with acceleration mode. Mission duration, delta V, X delta V, Y delta V., and Z delta V all increased with range. Subjects commanded the OMV to 'fly' at faster rates from further distances. These higher average velocities were paid for with increased fuel consumption. Asymmetrical transfer was found in that the mode transitions could not be predicted solely from the mission duration main effect. More testing is advised to understand the manual control aspects of spaceflight maneuvers better.

  1. In vitro evaluation of the bonding durability of self-adhesive resin cement to titanium using highly accelerated life test.

    PubMed

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Matinlinna, Jukka Pekka; Shinya, Akiyoshi

    2011-01-01

    The purpose of this in vitro study was to evaluate the bonding durability of three self-adhesive resin cements to titanium using the Highly Accelerated Life Test (HALT). The following self-adhesive resin cements were used to bond pairs of titanium blocks together according to manufacturers' instructions: RelyX Unicem, Breeze, and Clearfil SA Luting. After storage in water at 37°C for 24 h, bonded specimens (n=15) immersed in 37°C water were subjected to cyclic shear load testing regimes of 20, 30, or 40 kg using a fatigue testing machine. Cyclic loading continued until failure occurred, and the number of cycles taken to reach failure was recorded. The bonding durability of a self-adhesive resin cement to titanium was largely influenced by the weight of impact load. HALT showed that Clearfil SA Luting, which contained MDP monomer, yielded the highest median bonding lifetime to titanium.

  2. Measuring the Resilience of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Bell, Ann Maria; Dearden, Richard; Levri, Julie A.

    2002-01-01

    Despite the central importance of crew safety in designing and operating a life support system, the metric commonly used to evaluate alternative Advanced Life Support (ALS) technologies does not currently provide explicit techniques for measuring safety. The resilience of a system, or the system s ability to meet performance requirements and recover from component-level faults, is fundamentally a dynamic property. This paper motivates the use of computer models as a tool to understand and improve system resilience throughout the design process. Extensive simulation of a hybrid computational model of a water revitalization subsystem (WRS) with probabilistic, component-level faults provides data about off-nominal behavior of the system. The data can then be used to test alternative measures of resilience as predictors of the system s ability to recover from component-level faults. A novel approach to measuring system resilience using a Markov chain model of performance data is also developed. Results emphasize that resilience depends on the complex interaction of faults, controls, and system dynamics, rather than on simple fault probabilities.

  3. Measuring quality of life: a new and practical survey instrument.

    PubMed

    Greenley, J R; Greenberg, J S; Brown, R

    1997-05-01

    Despite increasing recognition of the importance of measuring the quality of life (QOL) of people with severe mental illness, such assessments are seldom carried out because of the lack of an efficient, easy-to-use, and valid measurement instrument. To facilitate the gathering of QOL information from clients in evaluation, program improvement, or other efforts, the authors present a new short (24-item) self-administered questionnaire called the Quality of Life Questionnaire (QLQ). The questionnaire assesses subjective QOL in seven areas. Evidence for the reliability and validity of the QLQ is based on data gathered from 971 clients with serious mental illness who were receiving publicly funded mental health services at the time of the study. The results of a confirmatory factor analysis using a random split-half procedure indicated that a seven-factor solution fit the data well. Scores on the QLQ also correlated significantly with the client's functioning and satisfaction with services, providing support for the validity of the QLQ. The advantages of the QLQ over existing measures include low-cost administration and some superior psychometric properties.

  4. Life Satisfaction in Persons with Lacunar Infarction--A Comparative Analysis of Two Measures of Life Satisfaction.

    ERIC Educational Resources Information Center

    Olsson, G-B.; And Others

    1996-01-01

    A study of 76 Swedish patients (ages 40-86) with lacunar infarctions used a life satisfaction questionnaire to investigate whether the patients were satisfied and how their life situation was affected by the infarction. Results found that the questionnaire was not an effective instrument for measuring life satisfaction in this population. (CR)

  5. A new method of accelerated life testing based on the Grey System Theory for a model-based lithium-ion battery life evaluation system

    NASA Astrophysics Data System (ADS)

    Gu, Weijun; Sun, Zechang; Wei, Xuezhe; Dai, Haifeng

    2014-12-01

    The lack of data samples is the main difficulty for the lifetime study of a lithium-ion battery, especially for a model-based evaluation system. To determine the mapping relationship between the battery fading law and the different external factors, the testing of batteries should be implemented to the greatest extent possible. As a result, performing a battery lifetime study has become a notably time-consuming undertaking. Without reducing the number of testing items pre-specified within the test matrices of an accelerated life testing schedule, a grey model that can be used to predict the cycle numbers that result in the specific life ending index is established in this paper. No aging mechanism is required for this model, which is exclusively a data-driven method obtained from a small quantity of actual testing data. For higher accuracy, a specific smoothing method is introduced, and the error between the predicted value and the actual value is also modeled using the same method. By the verification of a phosphate iron lithium-ion battery and a manganese oxide lithium-ion battery, this grey model demonstrated its ability to reduce the required number of cycles for the operational mode of various electric vehicles.

  6. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    SciTech Connect

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg

  7. Time-resolved energy spectrum measurement of a linear induction accelerator with the magnetic analyzer

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Jiang, Xiao-Guo; Yang, Guo-Jun; Chen, Si-Fu; Zhang, Zhuo; Wei, Tao; Li, Jin

    2015-01-01

    We recently set up a time-resolved optical beam diagnostic system. Using this system, we measured the high current electron beam energy in the accelerator under construction. This paper introduces the principle of the diagnostic system, describes the setup, and shows the results. A bending beam line was designed using an existing magnetic analyzer with a 300 mm-bending radius and a 60° bending angle at hard-edge approximation. Calculations show that the magnitude of the beam energy is about 18 MeV, and the energy spread is within 2%. Our results agree well with the initial estimates deduced from the diode voltage approach.

  8. The use of radiochromic films to measure and analyze the beam profile of charged particle accelerators.

    PubMed

    Avila-Rodriguez, M A; Wilson, J S; McQuarrie, S A

    2009-11-01

    The use of radiochromic films as a simple and inexpensive tool to accurately measure and analyze the beam profile of charged particle accelerators is described. In this study, metallic foils of different materials and thicknesses were irradiated with 17.8MeV protons and autoradiographic images of the beam strike were acquired by exposing pieces of RCF in direct contact with the irradiated foils. The films were digitalized using a conventional scanner and images were analyzed using DoseLab. Beam intensity distributions, isodose curves and linear beam profiles of the digitalized images were acquired.

  9. Lessons from two field tests on pipeline damage detection using acceleration measurement

    NASA Astrophysics Data System (ADS)

    Shinozuka, Masanobu; Lee, Sungchil; Kim, Sehwan; Chou, Pai H.

    2011-04-01

    Early detection of pipeline damages has been highlighted in water supply industry. Water pressure change in pipeline due to a sudden rupture causes pipe to vibrate and the pressure change propagates through the pipeline. From the measurement of pipe vibration the rupture can be detected. In this paper, the field test results and observations are provided for implementing next generation of SCADA system for pipeline rupture detection. Two field tests were performed on real buried plastic and metal pipelines for rupture detection. The rupture was simulated by introducing sudden water pressure drop caused by water blow-off and valve control. The measured acceleration data at the pipe surfaces were analyzed in both time and frequency domain. In time domain, the sudden narrow increase of acceleration amplitude was used as an indication of rupture event. For the frequency domain analysis, correlation function and the short time Fourier Transform technique were adopted to trace the dominant frequency shift. The success of rupture detection was found to be dependent on several factors. From the frequency analysis, the dominant frequency of metal water pipe was shifted by the water pressure drop, however, it was hard to identify from the plastic pipeline. Also the influence of existing facility such as airvac on pipe vibrations was observed. Finally, several critical lessons learned in the viewpoint of field measurement are discussed in this paper.

  10. Experimental measurement of unsteady drag on shock accelerated micro-particles

    NASA Astrophysics Data System (ADS)

    Bordoloi, Ankur; Martinez, Adam; Prestridge, Katherine

    2016-11-01

    The unsteady drag history of shock accelerated micro-particles in air is investigated in the Horizontal Shock Tube (HST) facility at Los Alamos National laboratory. Drag forces are estimated based on particle size, particle density, and instantaneous velocity and acceleration measured on hundreds of post-shock particle tracks. We use previously implemented 8-frame Particle Tracking Velocimetry/Anemometry (PTVA) diagnostics to analyze particles in high spatiotemporal resolution from individual particle trajectories. We use a simultaneous LED based shadowgraph to register shock location with respect to a moving particle in each frame. To measure particle size accurately, we implement a Phase Doppler Particle Analyzer (PDPA) in synchronization with the PTVA. In this presentation, we will corroborate with more accuracy our earlier observation that post-shock unsteady drag coefficients (CD(t)) are manifold times higher than those predicted by theoretical models. Our results will also show that all CD(t) measurements collapse on a master-curve for a range of particle size, density, Mach number and Reynolds number when time is normalized by a shear velocity based time scale, t* = d/(uf-up) , where d is particle diameter, and uf and up are post-shock fluid and particle velocities.

  11. The microphysics of particle acceleration in the auroral ionosphere: Why sounding rocket measurements are essential

    NASA Technical Reports Server (NTRS)

    Arnoldy, Roger L.

    1994-01-01

    Through the combination of attitude controlled, high altitude rockets (altitudes greater than 600 km), high telemetry rates (several megabits/sec), pitch angle imaging particle sensors and interferometric wave measurements giving wavelength in addition to frequency data, the series of TOPAZ flights have uncovered a low altitude acceleration mechanism by which ionospheric ions receive their initial energy transverse to B in order to leave the ionosphere and populate the trapped radiation. The transverse acceleration of oxygen and hydrogen ionospheric ions is the result of Landau resonance of these ions with intense (up to 400 mv/m) lower hybrid waves on the resonance cone within caviton structures. Future work is directed toward trying to measure the size of the solitary wave structures. From a statistical argument, they appear to be the order of 100 m across B and much longer in dimension along B. Important questions remain: are there other low altitude heating mechanisms acting as well; is the dayside ion outflow driven differently. To answer these questions, it is intended to make sounding rocket measurements in the cusp/cleft region. The proposed Norwegian rocket launch facility at Svalbard could play a very important role by providing easy access to the cusp/cleft region.

  12. Accelerated test design

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1980-01-01

    The design of an accelerated life test program for electric batteries is discussed. A number of observations and suggestions on the procedures and objectives for conducting an accelerated life test program are presented. Equations based on nonlinear regression analysis for predicting the accelerated life test parameters are discussed.

  13. Measurement of 59Ni and 63Ni by accelerator mass spectrometry at CIAE

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; He, Ming; Ruan, Xiangdong; Xu, Yongning; Shen, Hongtao; Du, Liang; Xiao, Caijin; Dong, Kejun; Jiang, Shan; Yang, Xuran; Lan, Xiaoxi; Wu, Shaoyong; Zhao, Qingzhang; Cai, Li; Pang, Fangfang

    2015-10-01

    The long lived isotopes 59Ni and 63Ni can be used in many areas such as radioactive waste management, neutron dosimetry, cosmic radiation study, and so on. Based on the large accelerator and a big Q3D magnetic spectrometer, the measurement method for 59Ni and 63Ni is under development at the AMS facility at China Institute of Atomic Energy (CIAE). By using the ΔE-Q3D technique with the Q3D magnetic spectrometer, the isobaric interferences were greatly reduced in the measurements of 59Ni and 63Ni. A four anode gas ionization chamber was then used to further identify isobars. With these techniques, the abundance sensitivities of 59Ni and 63Ni measurements are determined as 59Ni/Ni = 1 × 10-13 and 63Ni/Ni = 2 × 10-12, respectively.

  14. Feasibility of miniaturized instrumentation of the inflatable sphere for temperature, pressure and acceleration measurement

    NASA Technical Reports Server (NTRS)

    Luers, J. K.

    1975-01-01

    The feasibility of instrumenting the inflatable passive sphere (presently used to provide upper atmosphere density measurements) with miniaturized thermistors, pressure transducers, and accelerometers was analyzed. Data from the sensors must be transmitted by an onboard telemetry system to a ground receiving station. To assure a sufficiently slow fall velocity for the sphere the additional mass of the sensor and telemetry hardware must be less than 100 grams. Other constraints that must be satisfied by the sensor and telemetry systems include the ability to withstand a 150 g launch acceleration, the ability to function in both high and low temperature and pressure environments and be sufficiently small to be packaged within the body of a 3.81 cm diameter dart. A differential transducer that will measure the difference between ambient and internal sphere pressures is recommended. The application of each type of measurement relative to its ability to monitor sphere malfunction and to provide additional meteorological data is considered.

  15. Anode power deposition in quasi-steady MPD arcs. [accelerator anode heat flux measurement

    NASA Technical Reports Server (NTRS)

    Saber, A. J.; Jahn, R. G.

    1973-01-01

    The power deposited in the anode of a quasi-steady MPD accelerator has been measured directly by thermocouples attached to the inside surface of a shell anode which provide a local measurement of anode heat flux. The results over a range of arc currents from 5.5 to 44 kiloamperes and argon mass flows from 1 g/sec to 48 g/sec show that the fraction of the total input power deposited in the anode decreases drastically from 50% at an arc power of 200 kW to 10% at 20 MW, and that anode power is not uniformly deposited in the anode. A theoretical model of the anode heat transfer, including effects of anode work function, electron thermal energy, and anode sheath, can be brought into reasonable agreement with the measurements, provided the effective range of the conduction electrons from within the discharge plasma to the anode surface is properly acknowledged.

  16. Beam property measurement of a 300-kV ion source test stand for a 1-MV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Park, Sae-Hoon; Kim, Dae-Il; Kim, Yu-Seok

    2016-09-01

    The KOMAC (Korea Multi-purpose Accelerator Complex) has been developing a 300-kV ion source test stand for a 1-MV electrostatic accelerator for industrial purposes. A RF ion source was operated at 200 MHz with its matching circuit. The beam profile and emittance were measured behind an accelerating column to confirm the beam property from the RF ion source. The beam profile was measured at the end of the accelerating tube and at the beam dump by using a beam profile monitor (BPM) and wire scanner. An Allison-type emittance scanner was installed behind the beam profile monitor (BPM) to measure the beam density in phase space. The measurement results for the beam profile and emittance are presented in this paper.

  17. In Situ, Time-Resolved Accelerator Grid Erosion Measurements in the NSTAR 8000 Hour Ion Engine Wear Test

    NASA Technical Reports Server (NTRS)

    Sovey, J.

    1997-01-01

    Time-resolved, in situ measurements of the charge exchange ion erosion pattern on the downstream face of the accelerator grid have been made during an ongoin wear test of the NSTAR 30 cm ion thruster.

  18. Scientific life should be measured in seven year units.

    PubMed

    Charlton, Bruce G

    2006-01-01

    Traditional wisdom and empirical observation unite in recommending a 7 year unit for measuring human life - including individual and institutional science. But, because of astronomy and the decimal system, things tend to be measured either in years, five years or in decades. A year is too short while a decade is too long to measure the trends and transitions of individual or institutional life. And the half decade, such as the 'five year plan' beloved by politicians and bureaucrats seems too short. Therefore, seven years should become the standard unit for tracking trends and measuring attainment. Precedents for using a seven year unit include the notorious Jesuit saying: 'Give me the child until he is seven, and I will show you the man'; and the 'ninth commandment' of Leo Szilard: 'Do your work for six years; but in the seventh, go into solitude or among strangers, so that the memory of your friends does not prevent you from being what you have become'. In a scientific career, seven years is approximately the time spent at high school, the time taken for a traditional basic scientific training of first degree and doctorate, and the period after the doctorate building the knowledge to become an expert specialist. There seems to be enough anecdotal evidence to support the idea that we should reconsider the universal but un-reflective use of decimal units in planning and evaluation. For instance, seven year fellowships and program grants might replace the current five year versions. A new - and previously unconsidered - field of research beckons.

  19. Active control of an innovative seat suspension system with acceleration measurement based friction estimation

    NASA Astrophysics Data System (ADS)

    Ning, Donghong; Sun, Shuaishuai; Li, Hongyi; Du, Haiping; Li, Weihua

    2016-12-01

    In this paper, an innovative active seat suspension system for vehicles is presented. This seat suspension prototype is built with two low cost actuators each of which has one rotary motor and one gear reducer. A H∞ controller with friction compensation is designed for the seat suspension control system where the friction is estimated and compensated based on the measurement of seat acceleration. This principal aim of this research was to control the low frequency vibration transferred or amplified by the vehicle (chassis) suspension, and to maintain the passivity of the seat suspension at high frequency (isolation vibration) while taking into consideration the trade-off between the active seat suspension cost and its high frequency performance. Sinusoidal excitations of 1-4.5 Hz were applied to test the active seat suspension both when controlled and when uncontrolled and this is compared with a well-tuned passive heavy duty vehicle seat suspension. The results indicate the effectiveness of the proposed control algorithm within the tested frequencies. Further tests were conducted using the excitations generated from a quarter-car model under bump and random road profiles. The bump road tests indicate the controlled active seat suspension has good transient response performance. The Power Spectral Density (PSD) method and ISO 2631-1 standards were applied to analyse the seat suspension's acceleration under random road conditions. Although some low magnitude and high frequency noise will inevitably be introduced by the active system, the weighted-frequency Root Mean Square (RMS) acceleration shows that this may not have a large effect on ride comfort. In fact, the ride comfort is improved from being an 'a little uncomfortable' to a 'not uncomfortable' level when compared with the well-tuned passive seat suspension. This low cost active seat suspension design and the proposed controller with the easily measured feedback signals are very practical for real

  20. Life Assessment for Cr-Mo Steel Dissimilar Joints by Various Filler Metals Using Accelerated Creep Testing

    NASA Astrophysics Data System (ADS)

    Petchsang, S.; Phung-on, I.; Poopat, B.

    2016-12-01

    Accelerated creep rupture tests were performed on T22/T91 dissimilar metal joints to determine the fracture location and rupture time of different weldments. Four configurations of deposited filler metal were tested using gas tungsten arc welding to estimate the service life for Cr-Mo steel dissimilar joints at elevated temperatures in power plants. Results indicated that failure in all configurations occurred in the tempered original microstructure and tempered austenite transformation products (martensite or bainite structure) as type IV cracking at the intercritical area of the heat-affected zone (ICHAZ) for both T22 and T91 sides rather than as a consequence of the different filler metals. Creep damage occurred with the formation of precipitations and microvoids. The correlation between applied stress and the Larson-Miller parameter (PLM) was determined to predict the service life of each material configuration. Calculated time-to-failure based on the PLM and test results for both temperature and applied stress parameters gave a reasonable fit. The dissimilar joints exhibited lower creep rupture compared to the base material indicating creep degradation of the weldment.

  1. Thin Foil Acceleration Method for Measuring the Unloading Isentropes of Shock-Compressed Matter

    SciTech Connect

    Asay, J.R.; Chhabildas, L.C.; Fortov, V.E.; Kanel, G.I.; Khishchenko, K.V.; Lomonosov, I.V.; Mehlhorn, T.; Razorenov, S.V.; Utkin, A.V.

    1999-07-21

    This work has been performed as part of the search for possible ways to utilize the capabilities of laser and particle beams techniques in shock wave and equation of state physics. The peculiarity of these techniques is that we have to deal with micron-thick targets and not well reproducible incident shock wave parameters, so all measurements should be of a high resolution and be done in one shot. Besides the Hugoniots, the experimental basis for creating the equations of state includes isentropes corresponding to unloading of shock-compressed matter. Experimental isentrope data are most important in the region of vaporization. With guns or explosive facilities, the unloading isentrope is recovered from a series of experiments where the shock wave parameters in plates of standard low-impedance materials placed behind the sample are measured [1,2]. The specific internal energy and specific volume are calculated from the measured p(u) release curve which corresponds to the Riemann integral. This way is not quite suitable for experiments with beam techniques where the incident shock waves are not well reproducible. The thick foil method [3] provides a few experimental points on the isentrope in one shot. When a higher shock impedance foil is placed on the surface of the material studied, the release phase occurs by steps, whose durations correspond to that for the shock wave to go back and forth in the foil. The velocity during the different steps, connected with the knowledge of the Hugoniot of the foil, allows us to determine a few points on the isentropic unloading curve. However, the method becomes insensitive when the low pressure range of vaporization is reached in the course of the unloading. The isentrope in this region can be measured by recording the smooth acceleration of a thin witness plate foil. With the mass of the foil known, measurements of the foil acceleration will give us the vapor pressure.

  2. Counting calories in cormorants: dynamic body acceleration predicts daily energy expenditure measured in pelagic cormorants.

    PubMed

    Stothart, Mason R; Elliott, Kyle H; Wood, Thomas; Hatch, Scott A; Speakman, John R

    2016-07-15

    The integral of the dynamic component of acceleration over time has been proposed as a measure of energy expenditure in wild animals. We tested that idea by attaching accelerometers to the tails of free-ranging pelagic cormorants (Phalacrocorax pelagicus) and simultaneously estimating energy expenditure using doubly labelled water. Two different formulations of dynamic body acceleration, [vectorial and overall DBA (VeDBA and ODBA)], correlated with mass-specific energy expenditure (both R(2)=0.91). VeDBA models combining and separately parameterizing flying, diving, activity on land and surface swimming were consistently considered more parsimonious than time budget models and showed less variability in model fit. Additionally, we observed evidence for the presence of hypometabolic processes (i.e. reduced heart rate and body temperature; shunting of blood away from non-essential organs) that suppressed metabolism in cormorants while diving, which was the most metabolically important activity. We concluded that a combination of VeDBA and physiological processes accurately measured energy expenditure for cormorants.

  3. Actinide Measurements by Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory

    SciTech Connect

    Brown, T A; Marchetti, A A; Martinelli, R E; Cox, C C; Knezovich, J P; Hamilton, T F

    2003-09-25

    We report on the development of an accelerator mass spectrometry (AMS) system for the measurement of actinides at Lawrence Livermore National Laboratory. This AMS system is centered on a recently completed heavy isotope beam line that was designed particularly for high sensitivity, robust, high-throughput measurements of actinide concentrations and isotopic ratios. A fast isotope switching capability has been incorporated in the system, allowing flexibility in isotope selection and for the quasi-continuous normalization to a reference isotope spike. Initially, our utilization of the heavy isotope system has concentrated on the measurement of Pu isotopes. Under current operating conditions, background levels equivalent to {approx}1 x 10{sup 5} atoms are observed during routine {sup 239}Pu and {sup 240}Pu measurements. Measurements of samples containing {approx}10{sup 13} {sup 238}U atoms demonstrate that the system provides a {sup 238}U rejection factor during {sup 239}Pu measurements of {approx}10{sup 7}. Measurements of known materials, combined with results from an externally organized inter-comparison program, indicate that our {sup 239}Pu measurements are accurate and precise down to the {micro}Bq level ({approx}10{sup 6} atoms). Recently, we have investigated the performance of our heavy isotope AMS system in measurements of {sup 237}Np and {sup 236}U. Results of these investigations are discussed. The sensitivity shown by our Pu measurements, combined with the high throughput and interference rejection capabilities of our AMS system, demonstrate that AMS can provide a rapid and cost-effective measurement technique for actinides in a wide variety of studies.

  4. Electron cloud density measurements in accelerator beam-pipe using resonant microwave excitation

    NASA Astrophysics Data System (ADS)

    Sikora, John P.; Carlson, Benjamin T.; Duggins, Danielle O.; Hammond, Kenneth C.; De Santis, Stefano; Tencate, Alister J.

    2014-08-01

    An accelerator beam can generate low energy electrons in the beam-pipe, generally called electron cloud, that can produce instabilities in a positively charged beam. One method of measuring the electron cloud density is by coupling microwaves into and out of the beam-pipe and observing the response of the microwaves to the presence of the electron cloud. In the original technique, microwaves are transmitted through a section of beam-pipe and a change in EC density produces a change in the phase of the transmitted signal. This paper describes a variation on this technique in which the beam-pipe is resonantly excited with microwaves and the electron cloud density calculated from the change that it produces in the resonant frequency of the beam-pipe. The resonant technique has the advantage that measurements can be localized to sections of beam-pipe that are a meter or less in length with a greatly improved signal to noise ratio.

  5. Accidental beam loss in superconducting accelerators: Simulations, consequences of accidents and protective measures

    SciTech Connect

    Drozhdin, A.; Mokhov, N.; Parker, B.

    1994-02-01

    The consequences of an accidental beam loss in superconducting accelerators and colliders of the next generation range from the mundane to rather dramatic, i.e., from superconducting magnet quench, to overheating of critical components, to a total destruction of some units via explosion. Specific measures are required to minimize and eliminate such events as much as practical. In this paper we study such accidents taking the Superconducting Supercollider complex as an example. Particle tracking, beam loss and energy deposition calculations were done using the realistic machine simulation with the Monte-Carlo codes MARS 12 and STRUCT. Protective measures for minimizing the damaging effects of prefire and misfire of injection and extraction kicker magnets are proposed here.

  6. Generation and measurement of ultrashort pulses from the Stanford Superconducting Accelerator free-electron laser

    SciTech Connect

    Richman, B.A.; DeLong, K.W.; Trebino, R.

    1995-11-01

    The authors present results of frequency resolved optical gating (FROG) measurements on the Superconducting Accelerator (SCA) mid-IR free-electron laser (FEL) at Stanford. FROG retrieves complete amplitude and phase content of an optical pulse. First, they review the properties of FELs including the ability to tune wavelength and pulse length. In addition, the electron beam driving the FEL often affects the optical pulse shape. The SCA mid-IR FEL currently operates at wavelengths between 4 {micro}m and 10 {micro}m and its pulse length can be varied from 700 fs to 2 ps. They then describe details of the experimental layout and procedures particular to FELs and to the mid-IR. Finally, they show FROG measurements on the FEL including examples of nearly transform limited pulses, frequency chirped pulses, and pulses distorted by atmospheric water vapor absorption.

  7. The radiation field measurement and analysis outside the shielding of A 10 MeV electron irradiation accelerator

    NASA Astrophysics Data System (ADS)

    Shang, Jing; Li, Juexin; Xu, Bing; Li, Yuxiong

    2011-10-01

    Electron accelerators are employed widely for diverse purposes in the irradiation-processing industry, from sterilizing medical products to treating gemstones. Because accelerators offer high efficiency, high power, and require little preventative maintenance, they are becoming more and more popular than using the 60Co isotope approach. However, the electron accelerator exposes potential radiation hazards. To protect workers and the public from exposure to radiation, the radiation field around the electronic accelerator must be assessed, especially that outside the shielding. Thus, we measured the radiation dose at different positions outside the shielding of a 10-MeV electron accelerator using a new data-acquisition unit named Mini-DDL (Mini-Digital Data Logging). The measurements accurately reflect the accelerator's radiation status. In this paper, we present our findings, results and compare them with our theoretical calculations. We conclude that the measurements taken outside the irradiation hall are consistent with the findings from our calculations, except in the maze outside the door of the accelerator room. We discuss the reason for this discrepancy.

  8. Valuing vaccines using value of statistical life measures.

    PubMed

    Laxminarayan, Ramanan; Jamison, Dean T; Krupnick, Alan J; Norheim, Ole F

    2014-09-03

    Vaccines are effective tools to improve human health, but resources to pursue all vaccine-related investments are lacking. Benefit-cost and cost-effectiveness analysis are the two major methodological approaches used to assess the impact, efficiency, and distributional consequences of disease interventions, including those related to vaccinations. Childhood vaccinations can have important non-health consequences for productivity and economic well-being through multiple channels, including school attendance, physical growth, and cognitive ability. Benefit-cost analysis would capture such non-health benefits; cost-effectiveness analysis does not. Standard cost-effectiveness analysis may grossly underestimate the benefits of vaccines. A specific willingness-to-pay measure is based on the notion of the value of a statistical life (VSL), derived from trade-offs people are willing to make between fatality risk and wealth. Such methods have been used widely in the environmental and health literature to capture the broader economic benefits of improving health, but reservations remain about their acceptability. These reservations remain mainly because the methods may reflect ability to pay, and hence be discriminatory against the poor. However, willingness-to-pay methods can be made sensitive to income distribution by using appropriate income-sensitive distributional weights. Here, we describe the pros and cons of these methods and how they compare against standard cost-effectiveness analysis using pure health metrics, such as quality-adjusted life years (QALYs) and disability-adjusted life years (DALYs), in the context of vaccine priorities. We conclude that if appropriately used, willingness-to-pay methods will not discriminate against the poor, and they can capture important non-health benefits such as financial risk protection, productivity gains, and economic wellbeing.

  9. Yeast dynamic metabolic flux measurement in nutrient-rich media by HPLC and accelerator mass spectrometry.

    PubMed

    Stewart, Benjamin J; Navid, Ali; Turteltaub, Kenneth W; Bench, Graham

    2010-12-01

    Metabolic flux, the flow of metabolites through networks of enzymes, represents the dynamic productive output of cells. Improved understanding of intracellular metabolic fluxes will enable targeted manipulation of metabolic pathways of medical and industrial importance to a greater degree than is currently possible. Flux balance analysis (FBA) is a constraint-based approach to modeling metabolic fluxes, but its utility is limited by a lack of experimental measurements. Incorporation of experimentally measured fluxes as system constraints will significantly improve the overall accuracy of FBA. We applied a novel, two-tiered approach in the yeast Saccharomyces cerevisiae to measure nutrient consumption rates (extracellular fluxes) and a targeted intracellular flux using a (14)C-labeled precursor with HPLC separation and flux quantitation by accelerator mass spectrometry (AMS). The use of AMS to trace the intracellular fate of (14)C-glutamine allowed the calculation of intracellular metabolic flux through this pathway, with glutathione as the metabolic end point. Measured flux values provided global constraints for the yeast FBA model which reduced model uncertainty by more than 20%, proving the importance of additional constraints in improving the accuracy of model predictions and demonstrating the use of AMS to measure intracellular metabolic fluxes. Our results highlight the need to use intracellular fluxes to constrain the models. We show that inclusion of just one such measurement alone can reduce the average variability of model predicted fluxes by 10%.

  10. Early exposure to agricultural soil accelerates the maturation of the early-life pig gut microbiota.

    PubMed

    Vo, Nguyen; Tsai, Tsung Cheng; Maxwell, Charles; Carbonero, Franck

    2017-02-27

    potentially harmful taxa, as well as improved growth performance between weaning and the end of nursery phase. Our findings suggest that early exposure to soil strongly influences the maturation of the early-life piglets, probably allows for a better adaptation to the plant-based diet, and possibly improves overall health.

  11. Output trends, characteristics, and measurements of three megavoltage radiotherapy linear accelerators.

    PubMed

    Hossain, Murshed

    2014-07-08

    The purpose of this study is to characterize and understand the long-term behavior of the output from megavoltage radiotherapy linear accelerators. Output trends of nine beams from three linear accelerators over a period of more than three years are reported and analyzed. Output, taken during daily warm-up, forms the basis of this study. The output is measured using devices having ion chambers. These are not calibrated by accredited dosimetry laboratory, but are baseline-compared against monthly output which is measured using calibrated ion chambers. We consider the output from the daily check devices as it is, and sometimes normalized it by the actual output measured during the monthly calibration of the linacs. The data show noisy quasi-periodic behavior. The output variation, if normalized by monthly measured "real' output, is bounded between ± 3%. Beams of different energies from the same linac are correlated with a correlation coefficient as high as 0.97, for one particular linac, and as low as 0.44 for another. These maximum and minimum correlations drop to 0.78 and 0.25 when daily output is normalized by the monthly measurements. These results suggest that the origin of these correlations is both the linacs and the daily output check devices. Beams from different linacs, independent of their energies, have lower correlation coefficient, with a maximum of about 0.50 and a minimum of almost zero. The maximum correlation drops to almost zero if the output is normalized by the monthly measured output. Some scatter plots of pairs of beam output from the same linac show band-like structures. These structures are blurred when the output is normalized by the monthly calibrated output. Fourier decomposition of the quasi-periodic output is consistent with a 1/f power law. The output variation appears to come from a distorted normal distribution with a mean of slightly greater than unity. The quasi-periodic behavior is manifested in the seasonally averaged output

  12. Measuring asthma-specific quality of life: structured review.

    PubMed

    Apfelbacher, C J; Hankins, M; Stenner, P; Frew, A J; Smith, H E

    2011-04-01

    Measuring quality of life (QoL) has become an increasingly important dimension of assessing patient well-being and drug efficacy. As there are now several asthma QoL questionnaires to choose from, it is important to appreciate their strengths and weaknesses. To assist in this choice, we have reviewed the existing questionnaires in a structured way. Information relating to the conceptual and measurement model, reliability, validity, interpretability, burden, administration format and translations was extracted from the published literature. The instruments differ in almost all criteria considered, and therefore it cannot be assumed that they measure the same thing. We recommend the selection of questionnaires that are designed only for asthma and that do not assess symptoms as part of QoL. Only two of the questionnaires reviewed fulfill these requirements: the Sydney Asthma QoL Questionnaire (AQLQ-S) and the Living with Asthma Questionnaire (LWAQ). However, for multinational studies, it may be convenient or practical to use questionnaires that have been linguistically validated in many languages (AQLQ-J, SGRQ). It remains unclear which of these questionnaires best reflects patient perceptions of QoL. Our review did not involve patients, so for the time being choosing from existing questionnaires requires a compromise based on the rigor of the development process and the target patient group.

  13. Radiation protection measurements around a 12 MeV mobile dedicated IORT accelerator

    SciTech Connect

    Soriani, Antonella; Felici, Giuseppe; Fantini, Mario; Paolucci, Massimiliano; Borla, Oscar; Evangelisti, Giovanna; Benassi, Marcello; Strigari, Lidia

    2010-03-15

    Purpose: The aim of this study is to investigate radioprotection issues that must be addressed when dedicated accelerators for intraoperative radiotherapy (IORT) are used in operating rooms. Recently, a new version of a mobile IORT accelerator (LIAC Sordina SpA, Italy) with 12 MeV electron beam has been implemented. This energy is necessary in some specific pathology treatments to allow a better coverage of thick lesions. At an electron energy of 10 MeV, leakage and scattered x-ray radiation (stray radiation) coming from the accelerator device and patient must be considered. If the energy is greater than 10 MeV, the x-ray component will increase; however, the most meaningful change should be the addition of neutron background. Therefore, radiation exposure of personnel during the IORT procedure needs to be carefully evaluated. Methods: In this study, stray x-ray radiation was measured and characterized in a series of spherical projections by means of an ion chamber survey meter. To simulate the patient during all measurements, a polymethylmethacrylate (PMMA) slab phantom with volume 30x30x15 cm{sup 3} and density 1.19 g/cm{sup 3} was used. The PMMA phantom was placed along the central axis of the beam in order to absorb the electron beams and the tenth value layer (TVL) and half value layer (HVL) of scattered radiation (at 0 deg., 90 deg., and 180 deg. scattering angles) were also measured at 1 m of distance from the phantom center. Neutron measurements were performed using passive bubble dosimeters and a neutron probe, specially designed to evaluate ambient dose equivalent H{sup *}(10). Results: The x-ray equivalent dose measured at 1 m along the beam axis at 12 MeV was 260 {mu}Sv/Gy. The value measured at 1 m at 90 deg. scattering angle was 25 {mu}Sv/Gy. The HVL and TVL values were 1.1 and 3.5 cm of lead at 0 deg., and 0.4 and 1 cm at 90 deg., respectively. The highest equivalent dose of fast neutrons was found to be at the surface of the phantom on the central

  14. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    DOE PAGES

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; ...

    2016-05-26

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ~2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner ~ 1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Furthermore, plans to improve and expandmore » the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.« less

  15. A Monte Carlo study of a flattening filter-free linear accelerator verified with measurements

    NASA Astrophysics Data System (ADS)

    Dalaryd, Mårten; Kragl, Gabriele; Ceberg, Crister; Georg, Dietmar; McClean, Brendan; Wetterstedt, Sacha af; Wieslander, Elinore; Knöös, Tommy

    2010-12-01

    A Monte Carlo model of an Elekta Precise linear accelerator has been built and verified by measured data for a 6 and 10 MV photon beam running with and without a flattening filter in the beam line. In this study the flattening filter was replaced with a 6 mm thick copper plate, provided by the linac vendor, in order to stabilize the beam. Several studies have shown that removal of the filter improves some properties of the photon beam, which could be beneficial for radiotherapy treatments. The investigated characteristics of this new beam included output, spectra, mean energy, half value layer and the origin of scattered photons. The results showed an increased dose output per initial electron at the central axis of 1.76 and 2.66 for the 6 and 10 MV beams, respectively. The number of scattered photons from the accelerator head was reduced by (31.7 ± 0.03)% (1 SD) for the 6 MV beam and (47.6 ± 0.02)% for the 10 MV beam. The photon energy spectrum of the unflattened beam was softer compared to a conventional beam and did not vary significantly with the off-axis distance, even for the largest field size (0-20 cm off-axis).

  16. Acceleration Measurement and Characterization in Support of the USMP-4 Payloads

    NASA Technical Reports Server (NTRS)

    Rogers, M. J. B.; Hrovat, K.; McPherson, K.; DeLombard, R.; Reckart, T.

    1999-01-01

    One common characteristic of the USMP-4 experiments is that various effects of gravity make it difficult, if not impossible, to achieve usable results when performing the experiments on Earth's surface. Therefore, the investigators took advantage of the microgravity environment afforded by being in low-Earth orbit to perform their research. Interpretation of the experiment results both during the mission and upon post-mission analyses of data and samples required an understanding of the microgravity environment in which the experiments were conducted. To achieve that understanding, data were collected using the Orbital Acceleration Research Experiment (OARE) and two Space Acceleration Measurement Systems (SAMS). Data from those systems, combined with an assessment of mission and experiment activities, were used to characterize the microgravity environment that existed on Columbia during the mission. The text herein gives details about some characteristics of the environment that were noted during the mission and during post-mission data analysis. The disturbances studied include the Ku-band antenna 17 Hz dither; the effect of changing the Orbiter attitude deadband limits; the effects of different bicycle ergometer configurations; and the effect of IDGE (Isothermal Dendritic Growth Experiment) experiment fans and SAMS computer hard drives. Additional information about the microgravity environment is provided. Supplementary data plots representing the environment throughout the majority of the mission are available at the Uniform Resource Locator (URL). Data files for both SAMS and OARE are accessible via anonymous file transfer protocol from the file server.

  17. Improved measurement of brain deformation during mild head acceleration using a novel tagged MRI sequence.

    PubMed

    Knutsen, Andrew K; Magrath, Elizabeth; McEntee, Julie E; Xing, Fangxu; Prince, Jerry L; Bayly, Philip V; Butman, John A; Pham, Dzung L

    2014-11-07

    In vivo measurements of human brain deformation during mild acceleration are needed to help validate computational models of traumatic brain injury and to understand the factors that govern the mechanical response of the brain. Tagged magnetic resonance imaging is a powerful, noninvasive technique to track tissue motion in vivo which has been used to quantify brain deformation in live human subjects. However, these prior studies required from 72 to 144 head rotations to generate deformation data for a single image slice, precluding its use to investigate the entire brain in a single subject. Here, a novel method is introduced that significantly reduces temporal variability in the acquisition and improves the accuracy of displacement estimates. Optimization of the acquisition parameters in a gelatin phantom and three human subjects leads to a reduction in the number of rotations from 72 to 144 to as few as 8 for a single image slice. The ability to estimate accurate, well-resolved, fields of displacement and strain in far fewer repetitions will enable comprehensive studies of acceleration-induced deformation throughout the human brain in vivo.

  18. Use of simple x-ray measurement in the performance analysis of cryogenic RF accelerator cavities

    SciTech Connect

    D. Dotson; M. Drury; R. May; C. Reece

    1996-10-01

    X-ray emission by radiofrequency (RF) resonant cavities has long been known to accelerator health physicists as a potentially serious source of radiation exposure. The authors points out the danger of klystrons and microwave cavities by stating that the radiation source term is erratic and may be unpredictable depending on microscopic surface conditions which change with time. He also states the x-ray output is a rapidly increasing function of RF input power. At Jefferson Lab, the RF cavities used to accelerate the electron beam employ superconducting technology. X-rays are emitted at high cavity gradients, and measurements of cavity x-rays are valuable for health physics purposes and provide a useful diagnostic tool for assessing cavity performance. The quality factor (Q) for superconducting RF resonant cavities used at Jefferson Lab, is typically 5 x 10{sup 9} for the nominal design gradient of 5 MVm{sup {minus}1}. This large value for Q follows from the small resistive loss in superconducting technology. The operating frequency is 1,497 MHz. In the absence of beam, the input power for a cavity is typically 750 W and the corresponding dissipated power is 2.6 W. At 5 MWm{sup {minus}1}, the input power is 3 kW fully beam loaded. At higher gradients, performance degradation tends to occur due to the onset of electron field emission from defects in the cavity.

  19. Kr II Laser-Induced Fluorescence for Measuring Plasma Acceleration (Preprint)

    DTIC Science & Technology

    2012-02-01

    krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator...velocity as the krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions...present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration

  20. Chemical and Sensory Characterization of Oxidative Changes in Roasted Almonds Undergoing Accelerated Shelf-life.

    PubMed

    Franklin, Lillian May; Chapman, Dawn; King, Ellie; Mau, Mallory; Huang, Guangwei; Mitchell, Alyson Elayne

    2017-03-11

    Peroxide values [PV], free fatty acid values [FFAs], conjugated dienes [CD], tocopherols, headspace volatiles and consumer hedonic response were measured in light roast [LR] and dark roast [DR] almonds stored under conditions that promote rancidity development over 12 months. Results demonstrate that although rancidity develops at different rates in LR and DR almonds, consumer liking was not significantly different between these almonds. Average hedonic ratings fell below 5 ("neither like nor dislike") by 6 months of storage. This did not correspond with recommended industry rejection standards of PV <5 mEq and FFA <1.5 % oleic. FFAs remain well below <1.5% oleic during storage indicating that FFAs are not a good marker of rancidity in roasted almonds stored in low humidity environments. Regression of consumer liking to rancidity indicators revealed that select headspace volatiles including: heptanal, octanal, nonanal, 2-octenal, 2-heptanone, 2-pentylfuran, hexanal, and pentanal, correlate better with liking than non-volatile indicators.

  1. SAMS Acceleration Measurements on Mir from May 1997 to June 1998 (NASA Increments 5, 6, and 7)

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1999-01-01

    During NASA Increments 5, 6, and 7 (May 1997 to June 1998), about eight gigabytes of acceleration data were collected by the Space Acceleration Measurement System (SAMS) onboard the Russian Space Station Mir. The data were recorded on twenty-seven optical disks which were returned to Earth on Orbiter missions STS-86, STS-89, and STS-91. During these increments, SAMS data were collected in the Priroda module to support various microgravity experiments. This report points out some of the salient features of the microgravity acceleration environment to which the experiments were exposed. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. The analyses included herein complement those presented in previous Mir increment summary reports prepared by the Principal Investigator Microgravity Services project.

  2. Light scattering microscopy measurements of single nuclei compared with GPU-accelerated FDTD simulations.

    PubMed

    Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin

    2016-04-07

    Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.

  3. Summary Report of mission acceleration measurements for STS-66. Launched November 3, 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1995-01-01

    Experiments flown in the middeck of Atlantis during the STS-66 mission were supported by the Space Acceleration Measurement System (SAMS). In particular, the three triaxial SAMS sensor heads collected data in support of protein crystal growth experiments. Data collected during STS-66 are reviewed in this report. The STS-66 SAMS data represent the microgravity environment in the 0.01 Hz to 10 Hz range. Variations in the environment related to differing levels of crew activity are discussed in the report. A comparison is made among times when the crew was quiet during a public affairs conference, working quietly, and exercising. These levels of activity are also compared to levels recorded by a SAMS unit in the Spacelab on Columbia during the STS-65 mission.

  4. E-beam dynamics calculations and comparison with measurements of a high duty accelerator at Boeing

    SciTech Connect

    Parazzoli, C.G.; Dowell, D.H.

    1995-12-31

    The electron dynamics in the photoinjector cavities and through the beamline for a high duty factor electron accelerator are computed. The particle in a cell code ARGUS, is first used in the low energy (< 2 MeV) region of the photoinjector, then the ARGUS-generated phase space at the photoinjector exit is used as input in the standard particle pusher code PARMELA, and the electron beam properties at the end of the beamline computed. Comparisons between the calculated and measured electron bea mradial profiles and emittances are presented for different values of the electron pulse charge. A discussion of the methodology used and on the accuracy of PARMELA in the low energy region of the photoinjector is given.

  5. Low-noise pulsed current source for magnetic-field measurements of magnets for accelerators

    NASA Astrophysics Data System (ADS)

    Omelyanenko, M. M.; Borisov, V. V.; Donyagin, A. M.; Khodzhibagiyan, H. G.; Kostromin, S. A.; Makarov, A. A.; Shemchuk, A. V.

    2017-01-01

    The schematic diagram, design, and technical characteristics of the pulsed current source developed and produced for the magnetic-field measurement system of superconducting magnets for accelerators are described. The current source is based on the current regulator with pass transistor bank in the linear mode. Output current pulses (0-100 A) are produced by utilizing the energy of the preliminarily charged capacitor bank (5-40 V), which is additionally charged between pulses. The output current does not have the mains frequency and harmonics ripple. The relative noise level is less than-100 dB (or 10-5) of RMS value (it is defined as the ratio of output RMS noise current to a maximal output current of 100 A within the operating bandwidth, expressed in dB). The work was performed at the Veksler and Baldin Laboratory of High Energy Physics, Joint Institute for Nuclear Research (JINR).

  6. Light scattering microscopy measurements of single nuclei compared with GPU-accelerated FDTD simulations

    NASA Astrophysics Data System (ADS)

    Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin

    2016-04-01

    Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.

  7. Quality of life measurement in gastrointestinal and liver disorders

    PubMed Central

    BORGAONKAR, M; IRVINE, E

    2000-01-01

    Modern medicine has had a considerable impact on mortality rates for serious illness. Many chronic diseases which have previously been associated with an increased mortality now have survival rates approaching those of the background population. However, chronic diseases such as cancer, chronic pain syndromes, and chronic inflammatory conditions impose a considerable burden on families, the health care system, and society. Health related quality of life (HRQOL) is a concept that has developed from the need to estimate the impact of such chronic diseases. HRQOL measurement is a conceptual framework which attempts to predict daily function and well being based on subjective attitudes and experiences of physical, social, and emotional health. It has been evaluated predominantly from the patient's viewpoint as proxy respondents appear to underestimate the full effect of chronic illness on functional status. Measuring HRQOL in clinical research is most frequently undertaken using multi-item questionnaires to estimate daily function. Factors which affect HRQOL can be broadly classed as disease related and disease independent. The use of different assessment techniques permits comparisons between and within disorders. Generic and disease specific instruments used together enhance the ability to direct treatment for individuals and patient populations. Psychometrically sound questionnaires must be used. However, the type of instrument and research methods adopted depend on the question of interest. We have attempted to catalogue and critically assess the disease specific instruments used in the assessment of chronic gastrointestinal disease.

 PMID:10940286

  8. Measurements of accelerator-produced leakage neutron and photon transmission through concrete.

    PubMed

    Kase, K R; Nelson, W R; Fasso, A; Liu, J C; Mao, X; Jenkins, T M; Kleck, J H

    2003-02-01

    Optimum shielding of the radiation from particle accelerators requires knowledge of the attenuation characteristics of the shielding material. The most common material for shielding this radiation is concrete, which can be made using various materials of different densities as aggregates. These different concrete mixes can have very different attenuation characteristics. Information about the attenuation of leakage photons and neutrons in ordinary and heavy concrete is, however, very limited. To increase our knowledge and understanding of the radiation attenuation in concrete of various compositions, we have performed measurements of the transmission of leakage radiation, photons and neutrons, from a Varian Clinac 2100C medical linear accelerator operating at maximum electron energies of 6 and 18 MeV. We have also calculated, using Monte Carlo techniques, the leakage neutron spectra and its transmission through concrete. The results of these measurements and calculations extend the information currently available for designing shielding for medical electron accelerators. Photon transmission characteristics depend more on the manufacturer of the concrete than on the atomic composition. A possible cause for this effect is a non-uniform distribution of the high-density aggregate, typically iron, in the concrete matrix. Errors in estimated transmission of photons can exceed a factor of three, depending on barrier thickness, if attenuation in high-density concrete is simply scaled from that of normal density concrete. We found that neutron transmission through the high-density concretes can be estimated most reasonably and conservatively by using the linear tenth-value layer of normal concrete if specific values of the tenth-value layer of the high-density concrete are not known. The reason for this is that the neutron transmission depends primarily on the hydrogen content of the concrete, which does not significantly depend on concrete density. Errors of factors of two

  9. Use of accelerator mass spectrometry to measure the pharmacokinetics and peripheral blood mononuclear cell concentrations of zidovudine.

    PubMed

    Vuong, Le T; Ruckle, Jon L; Blood, Arlin B; Reid, Michael J; Wasnich, Richard D; Synal, Hans-Arno; Dueker, Stephen R

    2008-07-01

    The remarkable sensitivity of accelerator mass spectrometry (AMS) is finding many new applications in pharmacology. In this study AMS was used to measure [(14)C]-Zidovudine (ZDV) concentrations at the drug's site of action (peripheral blood mononuclear cells, PBMCs) following a dose of 520 ng (less than one-millionth of the standard daily dose) to a healthy volunteer. In addition, the pharmacokinetics of this microdose were determined and compared to previously published parameters for therapeutic doses. Microdose ZDV pharmacokinetic parameters fell within reported 95% confidence intervals or standard deviations of most previously published values for therapeutic doses. Blood, urine, stool, saliva, and isolated PBMCs were collected periodically through 96 h postdose and analyzed for ZDV and metabolite concentrations. The results showed that ZDV is rapidly absorbed and eliminated, has one major metabolite, and is sequestered in PBMCs. (14)C mass balance assessments indicated a significant portion of ZDV remained after 96 h with a much prolonged elimination half-life. Results of this study demonstrate the usefulness of microdosing and AMS as a tool for studying the pharmacokinetic characteristics, including PBMC concentrations, of ZDV and underscore the value of AMS as a tool with which to perform pharmacokinetic and mass balance studies using trace amounts of radiolabeled compound.

  10. General measures and quality of life issues in psoriasis

    PubMed Central

    Sarkar, Rashmi; Chugh, Shikha; Bansal, Shivani

    2016-01-01

    Psoriasis generally does not affect survival but has significant detrimental effect on quality of life (QOL), which may be comparable to that of ischemic heart disease, diabetes, depression, and cancer. The foremost important thing in the management of psoriasis is counseling of the patient. The clinician needs to be empathetic and spend adequate time with the patient and educating the patient about psoriasis. Clinicians should make it clear to the patient that the primary goal of treatment is control of the disease rather than cure. Eating a balanced and low glycemic diet could be an important adjuvant factor in the prevention and treatment of moderate nonpustular psoriasis. Obese people are more likely to have severe psoriasis and psoriatic arthritis than people with an average body mass index. Dietary supplementation with oily fish, rich in n-3 fatty acids, in psoriasis had shown mixed results in trials. Promising results have been documented for parenteral application of n-3 fatty acid, but not with oral supplementation. Increased smoking or alcohol abuse increases the risk of developing psoriasis and may influence disease severity, and hence must be avoided. Soaking in warm water with bath oil can be done in extensive psoriasis for hydration and emollient effect, and bland soaps or soap substitutes should be used; antiseptics should be avoided as they may irritate the skin. Relatively small, localized patches of psoriasis may improve with occlusion, i.e., waterproof adhesive dressings. The use of emollients is an internationally accepted standard adjunctive to the treatment of psoriasis. Dermatology Life Quality Index is a psychometrically sound and responsive measure of psoriasis-specific outcomes and most comprehensively captures the impact of clinical signs and symptoms on patient's well-being. PMID:27990382

  11. Shelf-life and colour change kinetics of Aloe vera gel powder under accelerated storage in three different packaging materials.

    PubMed

    Ramachandra, C T; Rao, P Srinivasa

    2013-08-01

    Aloe vera gel powder was produced through dehumidified air drying of Aloe vere gel at optimized conditions of temperature, relative humidity and air velocity of 64 °C, 18% and 0.8 m.s(-1), respectively. The powder was packed in three different packaging materials viz., laminated aluminum foil (AF), biaxially oriented polypropylene (BOPP) and polypropylene (PP). The shelf-life of the powder was predicted on the basis of free flowness of product under accelerated storage condition (38 ± 1 °C, 90 ± 1% relative humidity) and was calculated to be 33.87, 42.58 and 51.05 days in BOPP, PP and AF, respectively. The storage stability of powder in terms of colour change was studied. The magnitude of colour change of Aloe vera gel powder during storage suggests that AF was better than BOPP and PP. The colour change of powder during storage followed first order reaction kinetics with a rate constant of 0.0444 per day for AF, 0.075 per day for BOPP and 0.0498 per day for PP.

  12. Accelerator Mass Spectrometry Measurements of Plutonium in Sediment and Seawater from the Marshall Islands

    SciTech Connect

    Leisvik, Mathias

    2001-08-01

    During the summer 2000, I was given the opportunity to work for about three months as a technical trainee at Lawrence Livermore National Laboratory, or LLNL as I will refer to it hereafter. University of California runs this Department of Energy laboratory, which is located 70 km east of San Francisco, in the small city of Livermore. This master thesis in Radioecology is based on the work I did here. LLNL, as a second U.S.-facility for development of nuclear weapons, was built in Livermore in the beginning of the 1950's (Los Alamos in New Mexico was the other one). It has since then also become a 'science center' for a number of areas like magnetic and laser fusion energy, non-nuclear energy, biomedicine, and environmental science. The Laboratory's mission has changed over the years to meet new national needs. The following two statements were found on the homepage of LLNL (http://www.llnl.gov), at 2001-03-05, where also information about the laboratory and the scientific projects that takes place there, can be found. 'Our primary mission is to ensure that the nation's nuclear weapons remain safe, secure, and reliable and to prevent the spread and use of nuclear weapons worldwide'. 'Our goal is to apply the best science and technology to enhance the security and well-being of the nation and to make the world a safer place.' The Marshall Islands Dose Assessment and Radioecology group at the Health and Ecological Assessments division employed me, and I also worked to some extent with the Centre for Accelerator Mass Spectrometry (CAMS) group. The work I did at LLNL can be divided into two parts. In the first part Plutonium (Pu) measurements in sediments from the Rongelap atoll in Marshall Islands, using Accelerator Mass Spectrometry (AMS) were done. The method for measuring these kinds of samples is well understood at LLNL since soil samples have been measured with AMS for Pu in the past. Therefore it was the results that were of main interest and not the technique

  13. Quality of Life Assessment for Physical Activity and Health Promotion: Further Psychometrics and Comparison of Measures

    ERIC Educational Resources Information Center

    Gill, Diane L.; Reifsteck, Erin J.; Adams, Melanie M.; Shang, Ya-Ting

    2015-01-01

    Despite the clear relationship between physical activity and quality of life, few sound, relevant quality of life measures exist. Gill and colleagues developed a 32-item quality of life survey, and provided initial psychometric evidence. This study further examined that quality of life survey in comparison with the widely used short form (SF-36)…

  14. Development and Validation of the Life Sciences Assessment: A Measure of Preschool Children's Conceptions of Basic Life Sciences

    ERIC Educational Resources Information Center

    Maherally, Uzma Nooreen

    2014-01-01

    The purpose of this study was to develop and validate a science assessment tool termed the Life Sciences Assessment (LSA) in order to assess preschool children's conceptions of basic life sciences. The hypothesis was that the four sub-constructs, each of which can be measured through a series of questions on the LSA, will make a significant…

  15. Measurements in Transitional Boundary Layers Under High Free-Stream Turbulence and Strong Acceleration Conditions

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Simon, Terrence W.

    1995-01-01

    Measurements from transitional, heated boundary layers along a concave-curved test wall are presented and discussed. A boundary layer subject to low free-stream turbulence intensity (FSTI), which contains stationary streamwise (Gortler) vortices, is documented. The low FSTI measurements are followed by measurements in boundary layers subject to high (initially 8%) free-stream turbulence intensity and moderate to strong streamwise acceleration. Conditions were chosen to simulate those present on the downstream half of the pressure side of a gas turbine airfoil. Mean flow characteristics as well as turbulence statistics, including the turbulent shear stress, turbulent heat flux, and turbulent Prandtl number, are documented. A technique called "octant analysis" is introduced and applied to several cases from the literature as well as to data from the present study. Spectral analysis was applied to describe the effects of turbulence scales of different sizes during transition. To the authors'knowledge, this is the first detailed documentation of boundary layer transition under such high free-stream turbulence conditions.

  16. Measurement of the equation of state of solid-density copper heated with laser-accelerated protons

    NASA Astrophysics Data System (ADS)

    Feldman, S.; Dyer, G.; Kuk, D.; Ditmire, T.

    2017-03-01

    We present equation of state (EOS) measurements of solid-density copper heated to 5-10 eV. A copper sample was heated isochorically by hydrogen ions accelerated from an adjacent foil by a high intensity pulsed laser, and probed optically. The measured temperature and expansion are compared against simulations using the most up-to-date wide range EOS tables available.

  17. Voltage measurements at the vacuum post-hole convolute of the Z pulsed-power accelerator

    DOE PAGES

    Waisman, E. M.; McBride, R. D.; Cuneo, M. E.; ...

    2014-12-08

    Presented are voltage measurements taken near the load region on the Z pulsed-power accelerator using an inductive voltage monitor (IVM). Specifically, the IVM was connected to, and thus monitored the voltage at, the bottom level of the accelerator’s vacuum double post-hole convolute. Additional voltage and current measurements were taken at the accelerator’s vacuum-insulator stack (at a radius of 1.6 m) by using standard D-dot and B-dot probes, respectively. During postprocessing, the measurements taken at the stack were translated to the location of the IVM measurements by using a lossless propagation model of the Z accelerator’s magnetically insulated transmission lines (MITLs)more » and a lumped inductor model of the vacuum post-hole convolute. Across a wide variety of experiments conducted on the Z accelerator, the voltage histories obtained from the IVM and the lossless propagation technique agree well in overall shape and magnitude. However, large-amplitude, high-frequency oscillations are more pronounced in the IVM records. It is unclear whether these larger oscillations represent true voltage oscillations at the convolute or if they are due to noise pickup and/or transit-time effects and other resonant modes in the IVM. Results using a transit-time-correction technique and Fourier analysis support the latter. Regardless of which interpretation is correct, both true voltage oscillations and the excitement of resonant modes could be the result of transient electrical breakdowns in the post-hole convolute, though more information is required to determine definitively if such breakdowns occurred. Despite the larger oscillations in the IVM records, the general agreement found between the lossless propagation results and the results of the IVM shows that large voltages are transmitted efficiently through the MITLs on Z. These results are complementary to previous studies [R. D. McBride et al., Phys. Rev. ST Accel. Beams 13, 120401 (2010)] that showed

  18. APT: An Autonomous Tool for Measuring Acceleration, Pressure, and Temperature with Large Dynamic Range and Bandwidth

    NASA Astrophysics Data System (ADS)

    Heesemann, M.; Davis, E. E.

    2015-12-01

    We describe a new tool developed to facilitate the study of inter-related geodetic, geodynamic, seismic, and oceanographic phenomena. It incorporates a novel tri-axial accelerometer developed by Quartz Seismic Sensors, Inc, a pressure sensor developed by Paroscientific Inc., and a low-power, high-precision frequency counter and data logger built by RBR, Ltd. The sensors, counters, and loggers are housed in a 7 cm o.d., 70 cm long pressure case designed for use in up to 12 km of water. Sampling intervals are programmable from 0.1 s to 1 hr; standard memory can store up to 30 million samples; total power consumption is roughly 115 mW when operating continuously (1 s.p.s. or higher) and proportionately lower when operating intermittently (e.g., 2 mW at 1 sample per min.). Serial and USB communications protocols allow a variety of download and cable-connection options. Measurement precision of the order of 10-8 of full scale (e.g., 4000 m water depth, 1 g) allows observations of pressure and acceleration variations of 0.4 Pa and 0.1 μm s-2. Long-term variations in vertical acceleration are sensitive to displacement through the gravity gradient at a level of roughly 2 cm; long-term variations in horizontal acceleration are sensitive to tilt at a level of 0.01 μRad. With these sensitivities and the broad bandwidth (5 Hz to DC), ground motion associated with microseisms and seismic waves, tidal loading, and slow and rapid geodynamic deformation normally studied by disparate instruments can be observed with a single tool. The first c. 1-year deployment with the instrument connected to the Ocean Networks Canada NEPTUNE observatory cable is underway to study interseismic deformation of the Cascadia subduction zone. It will then be deployed at the Hikurangi subduction zone to study episodic slow slip. Deployment of the tool for the initial test was accomplished by pushing the tool vertically below the seafloor with the remotely operated vehicle Jason, with no profile

  19. Quality of life measurement in patients with oesophageal cancer.

    PubMed Central

    Blazeby, J M; Williams, M H; Brookes, S T; Alderson, D; Farndon, J R

    1995-01-01

    Quality of life (QOL) measurement may aid decision making in the treatment of patients with oesophageal cancer but must be clinically valid to be useful. This study considered if the European Organisation for Research and Treatment of Cancer QOL questionnaire, the QLQ-C30, showed differing results in two clinically distinct groups of patients with oesophageal cancer and also investigated the correlation between dysphagia grade and various scales of QOL. Patients treated by oesophagectomy reported significantly better physical, emotional, cognitive, and global health scores than those in the palliative treatment group. Patients who received palliative treatment had significantly worse pain, fatigue, appetite loss, constipation, and dysphagia. The correlations between dysphagia grade and each of the QOL scales and items in both groups of patients were poor. This questionnaire differentiates clearly between the two clinically distinct groups of patients, but to be an entirely appropriate indicator of QOL in patients with oesophageal cancer, an additional specific oesophageal module including a dysphagia scale is required. PMID:7489936

  20. Concurrent validity of accelerations measured using a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces.

    PubMed

    Cole, Michael H; van den Hoorn, Wolbert; Kavanagh, Justin K; Morrison, Steven; Hodges, Paul W; Smeathers, James E; Kerr, Graham K

    2014-01-01

    Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations; i) subtraction of the best linear fit from the data (detrending); and ii) use of orientation information (quaternions) from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12) using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences <0.16 m.s(-2)). Detrending produced slightly better agreement between the inertial measurement unit and Vicon system on firm surfaces (delta range: -0.05 to 0.06 vs. 0.00 to 0.14 m.s(-2)), whereas the quaternion method performed better when walking on compliant and uneven walkways (delta range: -0.16 to -0.02 vs. -0.07 to 0.07 m.s(-2)). The technique used to compensate for gravitational accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments.

  1. Single-shot betatron source size measurement from a laser-wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Köhler, A.; Couperus, J. P.; Zarini, O.; Jochmann, A.; Irman, A.; Schramm, U.

    2016-09-01

    Betatron radiation emitted by accelerated electrons in laser-wakefield accelerators can be used as a diagnostic tool to investigate electron dynamics during the acceleration process. We analyze the spectral characteristics of the emitted Betatron pattern utilizing a 2D x-ray imaging spectroscopy technique. Together with simultaneously recorded electron spectra and x-ray images, the betatron source size, thus the electron beam radius, can be deduced at every shot.

  2. Schooling in Times of Acceleration

    ERIC Educational Resources Information Center

    Buddeberg, Magdalena; Hornberg, Sabine

    2017-01-01

    Modern societies are characterised by forms of acceleration, which influence social processes. Sociologist Hartmut Rosa has systematised temporal structures by focusing on three categories of social acceleration: technical acceleration, acceleration of social change, and acceleration of the pace of life. All three processes of acceleration are…

  3. Measurement of activity distribution using photostimulable phosphor imaging plates in decommissioned 10 MV medical linear accelerator.

    PubMed

    Fujibuchi, Toshioh; Yonai, Shunsuke; Yoshida, Masahiro; Sakae, Takeji; Watanabe, Hiroshi; Abe, Yoshihisa; Itami, Jun

    2014-08-01

    Photonuclear reactions generate neutrons in the head of the linear accelerator. Therefore, some parts of the linear accelerator can become activated. Such activated materials must be handled as radioactive waste. The authors attempted to investigate the distribution of induced radioactivity using photostimulable phosphor imaging plates. Autoradiographs were produced from some parts of the linear accelerator (the target, upper jaw, multileaf collimator and shielding). The levels of induced radioactivity were confirmed to be non-uniform within each part from the autoradiographs. The method was a simple and highly sensitive approach to evaluating the relative degree of activation of the linear accelerators, so that appropriate materials management procedures can be carried out.

  4. Low Frequency Vibration Characteristics of the Space Acceleration Measurement System 2 Tape Drive Assembly

    NASA Technical Reports Server (NTRS)

    Javeed, Mehzad; Russell, James W.

    1996-01-01

    This report summarizes results of force and moment measurements of the Space Acceleration Measurement System 2 (SAMS 2) Tape Drive Assembly (TDA) over the frequency range from 0.35 Hz to 256 Hz for steady state operations including write, read, rewind, and fast forward. Time domain force results are presented for transient TDA operations that include software eject, manual eject, and manual load. Three different mounting configurations were employed for attaching the inner box with the tape drive unit to the outer box. Two configurations employed grommet sets with spring rates of 42 and 62 pounds per inch respectively. The third configuration employed a set of metallic washers. For all four steady state operations the largest average forces were on the Y axis with the metallic washers and were less than 0.005 pounds. The largest average moments were on the X axes with the washers and were less than 0.030 pound inches. At the third octave centerband frequency of 31.5 Hz, the 42 pound per inch grommets showed the greatest forces and moments for read and write operations. At the third octave centerband frequency of 49.6 Hz, the 62 pound per inch grommets showed the greatest forces and moments for rewind operation. Transient operation forces ranged from 0.75 pounds for the software eject to greater than 1 pound for manual load and eject.

  5. RF impedance measurements on the DARHT-II accelerator intercell assembly

    SciTech Connect

    Fawley, William M.; Eylon, Shmuel; Briggs, Richard

    2003-05-05

    We report upon recent experimental measurements made of RF properties of the intercell assembly of the second axis accelerator[1] of Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at LANL. The intercells provide both pumping and diagnostic access to the main DARHT-II beamline. Their design includes a pumping plenum separated from the main beam pipe by return current rods together with RF shielding provided by a copper-coated stainless steel mesh. Measurements using the twin lead technique (see Ref. [2]) at low frequencies (f < 200 MHz) suggest a constant value for the ratio h of the radial and azimuthal magnetic field components to which the transverse impedance is linearly related. We find that these results compare favorably to predictions from a simple analytic, lumped circuit model which includes the effects of the mesh and return current rods. We also present RF loop-to-loop frequency scans above beam pipe cutoff ({approx}600 MHz) showing the existence of many RF modes with relatively high Q's.

  6. Transvers Impedance Measurements of the Modified DARHT-2Accelerator Cell Design

    SciTech Connect

    Briggs, Dick; Waldron, Will

    2005-11-30

    The DARHT-2 accelerator cells have been redesigned to make their high voltage performance more robust. At the outset of the DARHT-2 development program about 8 years ago, an extensive campaign was mounted to minimize the transverse impedance of the original cell design. Since the initial spec on the machine was a beam current of 4 kA, the control of beam-breakup (BBU) amplification with a 2 microsecond pulse length was considered to be one the most critical issues in the design. Even after advances in detector technology allowed the beam current requirement to be lowered to 2 kA, the goal for the standard cell impedance was kept at {approx}300 ohms/meter to allow for the possibility of future beam current upgrades to 4 kA without any modifications in the cells. The results of this campaign to minimize the transverse impedance are described in detail in Reference 1. After several iterations in the design of ferrite dampers and the anode finger stock shape, the measured (peak) impedance of the original standard cell was determined to be about 280 ohms/meter. (As a reference point, the measured impedance of the DARHT-1 cell is about 880 ohms/meter). This impedance provided such a wide safety margin against BBU amplification at 2 kA that it was felt that the cell redesign could focus on voltage holding without any detailed considerations of impacts on the transverse impedance. Now that a baseline design for the DARHT-2 cell has been established and tested, however, it was felt that a measurement of its impedance would be prudent. The results of these impedance measurements are presented in this note. The objective was mainly to do a ''quick check'' to ensure that there were no surprises, and to provide an estimate of the BBU frequencies and growth rates to the experimental test program.

  7. Estimation of Attitude and External Acceleration Using Inertial Sensor Measurement During Various Dynamic Conditions

    PubMed Central

    Lee, Jung Keun; Park, Edward J.; Robinovitch, Stephen N.

    2012-01-01

    This paper proposes a Kalman filter-based attitude (i.e., roll and pitch) estimation algorithm using an inertial sensor composed of a triaxial accelerometer and a triaxial gyroscope. In particular, the proposed algorithm has been developed for accurate attitude estimation during dynamic conditions, in which external acceleration is present. Although external acceleration is the main source of the attitude estimation error and despite the need for its accurate estimation in many applications, this problem that can be critical for the attitude estimation has not been addressed explicitly in the literature. Accordingly, this paper addresses the combined estimation problem of the attitude and external acceleration. Experimental tests were conducted to verify the performance of the proposed algorithm in various dynamic condition settings and to provide further insight into the variations in the estimation accuracy. Furthermore, two different approaches for dealing with the estimation problem during dynamic conditions were compared, i.e., threshold-based switching approach versus acceleration model-based approach. Based on an external acceleration model, the proposed algorithm was capable of estimating accurate attitudes and external accelerations for short accelerated periods, showing its high effectiveness during short-term fast dynamic conditions. Contrariwise, when the testing condition involved prolonged high external accelerations, the proposed algorithm exhibited gradually increasing errors. However, as soon as the condition returned to static or quasi-static conditions, the algorithm was able to stabilize the estimation error, regaining its high estimation accuracy. PMID:22977288

  8. Measurement of Beryllium in Biological Samples by Accelerator Mass Spectrometry: Applications for Studying Chronic Beryllium Disease

    SciTech Connect

    Chiarappa-Zucca, M L; Finkel, R C; Martinelli, R E; McAninch, J E; Nelson, D O; Turtletaub, K W

    2004-04-15

    A method using accelerator mass spectrometry (AMS) has been developed for quantifying attomoles of beryllium (Be) in biological samples. This method provides the sensitivity to trace Be in biological samples at very low doses with the purpose of identifying the molecular targets involved in chronic beryllium disease. Proof of the method was tested by administering 0.001, 0.05, 0.5 and 5.0 {micro}g {sup 9}Be and {sup 10}Be by intraperitoneal injection to male mice and removing spleen, liver, femurs, blood, lung, and kidneys after 24 h exposure. These samples were prepared for AMS analysis by tissue digestion in nitric acid, followed by further organic oxidation with hydrogen peroxide and ammonium persulfate and lastly, precipitation of Be with ammonium hydroxide, and conversion to beryllium oxide at 800 C. The {sup 10}Be/{sup 9}Be ratio of the extracted beryllium oxide was measured by AMS and Be in the original sample was calculated. Results indicate that Be levels were dose-dependent in all tissues and the highest levels were measured in the spleen and liver. The measured {sup 10}Be/{sup 9}Be ratios spanned 4 orders of magnitude, from 10{sup -10} to 10{sup -14}, with a detection limit of 3.0 x 10{sup -14}, which is equivalent to 0.8 attomoles of {sup 10}Be. These results show that routine quantification of nanogram levels of Be in tissues is possible and that AMS is a sensitive method that can be used in biological studies to understand the molecular dosimetry of Be and mechanisms of toxicity.

  9. Relative measurements of fast neutron contamination in 18-MV photon beams from two linear accelerators and a betatron.

    PubMed

    Gur, D; Bukovitz, G; Rosen, J C; Holmes, B G

    1979-01-01

    Fast neutron contamination in photon beams in the 20 MV range have been reported in recent years. In order to determine if the variations were due mainly to differences in measurement procedures, or inherent in the design of the accelerators, three different 18-MV (BJR) photon beams were compared using identical analytical techniques. The units studied were a Philips SL/75-20 and a Siemens Mevatron-20 linear accelerators and a Schimadzu betatron. Gamma spectroscopy of an activated aluminum foil was the method used. By comparing the relative amounts of neutron contamination, errors associated with absolute measurements such as detector efficiency and differences in activation foils were eliminated. Fast neutron contaminations per rad of x rays in a ratio of 6.7:3.7:1 were found for the Philips, Schimadzu and Siemens accelerators, respectively.

  10. Fusion-neutron-yield, activation measurements at the Z accelerator: design, analysis, and sensitivity.

    PubMed

    Hahn, K D; Cooper, G W; Ruiz, C L; Fehl, D L; Chandler, G A; Knapp, P F; Leeper, R J; Nelson, A J; Smelser, R M; Torres, J A

    2014-04-01

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r(2) decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm(2) and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

  11. Accelerated test methods for life prediction of hermetic motor insulation systems exposed to alternative refrigerant/lubricant mixtures. Phase 3: Reproducibility and discrimination testing. Final report

    SciTech Connect

    Ellis, P.F. II; Ferguson, A.F.; Fuentes, K.T.

    1996-05-06

    In 1992, the Air-Conditioning and Refrigeration Technology Institute, Inc. (ARTI) contracted Radian Corporation to ascertain whether an improved accelerated test method or procedure could be developed that would allow prediction of the life of motor insulation materials used in hermetic motors for air-conditioning and refrigeration equipment operated with alternative refrigerant/lubricant mixtures. This report presents the results of phase three concerning the reproducibility and discrimination testing.

  12. Traceable charge measurement of the pulses of a 27 MeV electron beam from a linear accelerator

    NASA Astrophysics Data System (ADS)

    Schüller, A.; Illemann, J.; Renner, F.; Makowski, C.; Kapsch, R.-P.

    2017-03-01

    This work presents a detailed description of measuring devices and calibration procedures which enable the nondestructive (non-intercepting) absolute measurement of the charge of individual beam pulses (macro-pulses) from an electron linear accelerator traceable to primary standards with high accuracy, i.e. with an expanded measurement uncertainty < 0.1%. In particular, we demonstrate the readout and calibration of a Bergoz integrating current transformer which is frequently applied at many different types of accelerators as a beam intensity monitor. The current transformer signal is calibrated against the absolute charge measurement by means of a custom-made compact Faraday cup with a high degree of collection efficiency for electron beams in the energy range of 6 MeV to 50 MeV (99.2% at 27 MeV), which is well known from measurements and consistently described by Monte Carlo calculations.

  13. Investigation on target normal sheath acceleration through measurements of ions energy distribution

    SciTech Connect

    Tudisco, S. Cirrone, G. A. P.; Mascali, D.; Schillaci, F.; Altana, C.; Lanzalone, G.; Muoio, A.; Brandi, F.; Cristoforetti, G.; Ferrara, P.; Fulgentini, L.; Koester, P.; Labate, L.; Gizzi, L. A.; and others

    2016-02-15

    An experimental campaign aiming at investigating the ion acceleration mechanisms through laser-matter interaction in femtosecond domain has been carried out at the Intense Laser Irradiation Laboratory facility with a laser intensity of up to 2 × 10{sup 19} W/cm{sup 2}. A Thomson parabola spectrometer was used to obtain the spectra of the ions of the different species accelerated. Here, we show the energy spectra of light-ions and we discuss their dependence on structural characteristics of the target and the role of surface and target bulk in the acceleration process.

  14. Damage identification in plates using vibratory power estimated from measured accelerations

    NASA Astrophysics Data System (ADS)

    Huh, Young Cheol; Chung, Tae Young; Lee, Jong Won; Kim, Jae Kwan

    2015-02-01

    Vibratory power is defined as the rate of energy transmitted through a cross section of unit width in a vibrating structure. It is known that the vibratory power is a function of the source and travel path. Therefore the spatial distribution of the vibratory power may contain information on the state of a structure. Vibratory power can be estimated experimentally by measuring accelerations. By combining numerical predictions with experimental measurements the location and severity of damage can be identified. This method has been successfully applied to prismatic beam problems. In the present work, the idea is extended to identifying damage in thin plate problems. To identify damage in thin plates by the proposed vibratory power method, the two-dimensional damage index and damage index ratio are newly introduced. The plate is assumed to be of uniform thickness and damaged in the form of a crack simulated as a straight cut of finite length. The vibratory power of the plate is estimated from frequency response functions to random excitations. First, the proposed method is applied numerically and then verified experimentally. Both numerical and experimental results show the present method can identify not only the location of damage but also its direction. The location and direction can be identified by investigating the damage index, the damage index ratio, and local principal axes of the index peak in the vicinity of the damage. The spatial distribution of the damage index, newly introduced in beam problems, can be considered as a scalar field in plate problems. In the neighborhood of the damage, the damage index has the shape of a semi-ellipsoid or a semi-ovoid, and it is found that the major principal axis corresponds to the direction of the crack. It enables us to identify the damage direction correctly without ambiguity.

  15. Calculating Nozzle Side Loads using Acceleration Measurements of Test-Based Models

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Ruf, Joe

    2007-01-01

    As part of a NASA/MSFC research program to evaluate the effect of different nozzle contours on the well-known but poorly characterized "side load" phenomena, we attempt to back out the net force on a sub-scale nozzle during cold-flow testing using acceleration measurements. Because modeling the test facility dynamics is problematic, new techniques for creating a "pseudo-model" of the facility and nozzle directly from modal test results are applied. Extensive verification procedures were undertaken, resulting in a loading scale factor necessary for agreement between test and model based frequency response functions. Side loads are then obtained by applying a wide-band random load onto the system model, obtaining nozzle response PSD's, and iterating both the amplitude and frequency of the input until a good comparison of the response with the measured response PSD for a specific time point is obtained. The final calculated loading can be used to compare different nozzle profiles for assessment during rocket engine nozzle development and as a basis for accurate design of the nozzle and engine structure to withstand these loads. The techniques applied within this procedure have extensive applicability to timely and accurate characterization of all test fixtures used for modal test.A viewgraph presentation on a model-test based pseudo-model used to calculate side loads on rocket engine nozzles is included. The topics include: 1) Side Loads in Rocket Nozzles; 2) Present Side Loads Research at NASA/MSFC; 3) Structural Dynamic Model Generation; 4) Pseudo-Model Generation; 5) Implementation; 6) Calibration of Pseudo-Model Response; 7) Pseudo-Model Response Verification; 8) Inverse Force Determination; 9) Results; and 10) Recent Work.

  16. Neutron Capture and Neutron Total Cross Sections Measurements for {sup 27}Al at the Oak Ridge Electron Linear Accelerator

    SciTech Connect

    Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.; Wright, R.Q.

    1999-08-30

    We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and capture cross sections of {sup 27}Al in the energy range from 100 eV to {approximately}400 keV. We report the resonance parameters as well as the Maxwellian average capture cross sections.

  17. World Pendulum--A Distributed Remotely Controlled Laboratory (RCL) to Measure the Earth's Gravitational Acceleration Depending on Geographical Latitude

    ERIC Educational Resources Information Center

    Grober, S.; Vetter, M.; Eckert, B.; Jodl, H.-J.

    2007-01-01

    We suggest that different string pendulums are positioned at different locations on Earth and measure at each place the gravitational acceleration (accuracy [delta]g is approximately equal to 0.01 m s[superscript -2]). Each pendulum can be remotely controlled via the internet by a computer located somewhere on Earth. The theoretical part describes…

  18. Assessing College Student-Athletes' Life Stress: Initial Measurement Development and Validation

    ERIC Educational Resources Information Center

    Lu, Frank Jing-Horng; Hsu, Ya-Wen; Chan, Yuan-Shuo; Cheen, Jang-Rong; Kao, Kuei-Tsu

    2012-01-01

    College student-athletes have unique life stress that warrants close attention. The purpose of this study was to develop a reliable and valid measurement assessing college student-athletes' life stress. In Study 1, a focus group discussion and Delphi method produced a questionnaire draft, termed the College Student-Athletes' Life Stress Scale. In…

  19. Accelerator mass spectrometry best practices for accuracy and precision in bioanalytical (14)C measurements.

    PubMed

    Vogel, John S; Giacomo, Jason A; Schulze-König, Tim; Keck, Bradly D; Lohstroh, Peter; Dueker, Stephen

    2010-03-01

    Accelerator mass spectrometers have an energy acceleration and charge exchange between mass definition stages to destroy molecular isobars and allow single ion counting of long-lived isotopes such as (14)C (t½=5370 years.). 'Low' voltage accelerations to 200 kV allow laboratory-sized accelerator mass spectrometers instruments for bioanalytical quantitation of (14)C to 2-3% precision and accuracy in isolated biochemical fractions. After demonstrating this accuracy and precision for our new accelerator mass spectrometer, we discuss the critical aspects of maintaining quantitative accuracy from the defined biological fraction to the accelerator mass spectrometry quantitation. These aspects include sufficient sample mass for routine rapid sample preparation, isotope dilution to assure this mass, isolation of the carbon from other sample combustion gasses and use of high-efficiency biochemical separations. This review seeks to address a bioanalytical audience, who should know that high accuracy data of physiochemical processes within living human subjects are available, as long as a (14)C quantitation can be made indicative of the physiochemistry of interest.

  20. Evaluation of the electrode performance for PAFC by using acid absorption, acceleration and ac-impedance measurement

    SciTech Connect

    Kim, Chang-Soo; Song, Rak-Hyun; Choi, Byung-Woo

    1996-12-31

    In PAFC, the degradation on cathode electrode caused by carbon corrosion, platinum dissolution and growth is especially severe. An acceleration test is a good technique for evaluating the degradation of electrode performance, because it does not need long time. Coleman et al used thermal cycling and on-off cycling as an acceleration test. Song et al showed that hydrogen shortage decreased the electrode performance more rapidly than that of air shortage in gas shortage test. Honji et al reported that the rate of coarsening of Pt particle is rapid in open circuit potential and this is one of major causes on the performance degradation of electrode. The cathode performance has been studied by using acid absorption, acceleration and ac-impedance measurements as functions of the polytetrafluoroethylene (PTFE) contents and sintering temperatures of the electrode.

  1. IMPEDANCE MEASUREMENT SETUP FOR HIGHER-ORDER MODE STUDIES IN NLC ACCELERATING STRUCTURES WITH THE WIRE METHOD

    SciTech Connect

    Baboi, Nicoleta

    2002-09-19

    Dipole modes are the main cause of transverse emittance dilution in the Japanese Linear Collider/Next Linear Collider (JLC/NLC). A diagnostic setup has been built in order to investigate them. The method is based on using a coaxial wire to excite and measure electromagnetic modes of accelerating structures. This method can offer a more efficient and less expensive procedure than the ASSET facility. Initial measurements have been made and are presented in this paper.

  2. Life Change Measurement: Scoring, Reliability, and Subjective Estimates of Adjustment.

    ERIC Educational Resources Information Center

    Pearson, Judith E.; Long, Thomas J.

    1985-01-01

    Reports the test-retest reliabilities for the Schedule of Recent Experiences (item counts) and the Recent Life Changes Questionnaire and compares the two scales. Subjects (N=109) were men and women enlisted in the US military reserves. Results indicated the two questionnaires demonstrate acceptable test-retest reliability. (BH)

  3. Family Quality of Life: Moving from Measurement to Application

    ERIC Educational Resources Information Center

    Zuna, Nina I.; Turnbull, Ann; Summers, Jean Ann

    2009-01-01

    Noting the absence of sound theoretical underpinnings for family quality of life (FQoL) research and work, the authors note that, to guide FQoL practice, research findings must be schematically organized so as to enable practitioners to implement empirical findings effectively. One way to meet this goal is to introduce a theoretical model that…

  4. Measuring Quality of Life in Informal Settlements in South Africa

    ERIC Educational Resources Information Center

    Richards, Robin; O'Leary, Brian; Mutsonziwa, Kingstone

    2007-01-01

    South African cities attract thousands of new residents every year in search of work and a better life. The housing backlog coupled with a shortage of housing subsidies means that for many South Africans there is no alternative but to live in informal housing and shack settlements. Informal settlements are therefore here to stay for the next…

  5. Aerospace System Unified Life Cycle Engineering Producibility Measurement Issues

    DTIC Science & Technology

    1989-05-01

    system to a heterogeneous environment with exterior large independent programs, such a Finite Element Model (FEM) or a Computational Fluid Dynamics ...presents a plan for the develop- ment of a design environment of an aerospace design synthesis model with a producibility module. Included is a description...and Tools .......................................... ES-6 E. Producibility Synthesis Model Development Plan .............................. ES-7 1. Life

  6. Measuring Quality of Life: A New and Practical Survey Instrument.

    ERIC Educational Resources Information Center

    Greenley, James R.; Greenberg, Jan Steven; Brown, Roger

    1997-01-01

    Presents a new, short, self-administered questionnaire that assesses the quality of life in seven areas. Evidence for the reliability and validity of the questionnaire was based on data gathered from 971 clients; results indicate instrument reliability. The questionnaire features low-cost administration and valid psychometric properties. (RJM)

  7. Evo-SETI SCALE to measure Life on Exoplanets

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2016-04-01

    that the GBM exponential may be regarded as the geometric locus of all the peaks of a one-parameter (i.e. the peak time p) family of b-lognormals. Since b-lognormals are pdf-s, the area under each of them always equals 1 (normalization condition) and so, going from left to right on the time axis, the b-lognormals become more and more ;peaky;, and so they last less and less in time. This is precisely what happened in human history: civilizations that lasted millennia (like Ancient Greece and Rome) lasted just centuries (like the Italian Renaissance and Portuguese, Spanish, French, British and USA Empires) but they were more and more advanced in the ;level of civilization;. This ;level of civilization; is what physicists call ENTROPY. Also, in refs. Maccone [3] and [4], this author proved that, for all GBMs, the (Shannon) Entropy of the b-lognormals in his Peak-Locus Theorem grows LINEARLY in time. The Molecular Clock, well known to geneticists since 50 years, shows that the DNA base-substitutions occur LINEARLY in time since they are neutral with respect to Darwinian selection. In simple words: DNA evolved by obeying the laws of quantum physics only (microscopic laws) and not by obeying assumed ;Darwinian selection laws; (macroscopic laws). This is Kimura's neutral theory of molecular evolution. The conclusion is that the Molecular Clock and the b-lognormal Entropy are the same thing. At last, we reach the new, original result justifying the publication of this paper. On exoplanets, molecular evolution is proceeding at about the same rate as it did proceed on Earth: rather independently of the physical conditions of the exoplanet, if the DNA had the possibility to evolve in water initially. Thus, Evo-Entropy, i.e. the (Shannon) Entropy of the generic b-lognormal of the Peak-Locus Theorem, provides the Evo-SETI SCALE to measure the evolution of life on exoplanets.

  8. Measurement of the stellar 58Ni(n ,γ )59Ni cross section with accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ludwig, Peter; Rugel, Georg; Dillmann, Iris; Faestermann, Thomas; Fimiani, Leticia; Hain, Karin; Korschinek, Gunther; Lachner, Johannes; Poutivtsev, Mikhail; Knie, Klaus; Heil, Michael; Käppeler, Franz; Wallner, Anton

    2017-03-01

    The 58Ni(n ,γ )59Ni cross section was measured with a combination of the activation technique and accelerator mass spectrometry (AMS). The neutron activations were performed at the Karlsruhe 3.7 MV Van de Graaff accelerator using the quasistellar neutron spectrum at k T =25 keV produced by the 7Li(p ,n )7Be reaction. The subsequent AMS measurements were carried out at the 14 MV tandem accelerator of the Maier-Leibnitz Laboratory in Garching using the gas-filled analyzing magnet system (GAMS). Three individual samples were measured, yielding a Maxwellian-averaged cross section at k T =30 keV of <σ> 30 keV = 30.4 (23)syst(9)stat mbarn. This value is slightly lower than two recently published measurements using the time-of-flight (TOF) method, but agrees within the uncertainties. Our new results also resolve the large discrepancy between older TOF measurements and our previous value.

  9. The measurement of tremor using a velocity transducer: comparison to simultaneous recordings using transducers of displacement, acceleration and muscle activity.

    PubMed

    Norman, K E; Edwards, R; Beuter, A

    1999-10-15

    Precise kinematic measurements of tremor have historically been obtained using accelerometers. However, current technology permits precise measurements in velocity and displacement. The primary advantage of velocity recording is that only one step of integration or differentiation is required for either displacement or acceleration. A method is presented of measuring finger tremor using a laser system that transduces velocity precisely. Measurements of postural finger tremor thus obtained were compared to those simultaneously obtained from a laser system that transduces displacement, from an accelerometer and from surface electromyography (EMG) of the extensor digitorum communis. A range of amplitude and frequency content was obtained by testing control subjects and subjects with Parkinson's disease. The velocity transducer showed excellent correspondence of amplitude and frequency measurement with the displacement transducer. Measures of absolute and relative amplitude correlated well (r > or = 0.96 in amplitude measures in displacement, velocity and acceleration), and high coherence was found throughout the frequency range of interest. Measurements by the accelerometer generally showed poorer correspondence with those of the other instruments. EMG measurements showed good correspondence in some trials but poorer correspondence in others, attributed to the low level of muscle activity required in the task. Precise kinematic measurements appear to be highly sensitive to neuromotor impairment.

  10. From "Work-Family" to "Work-Life": Broadening Our Conceptualization and Measurement

    ERIC Educational Resources Information Center

    Keeney, Jessica; Boyd, Elizabeth M.; Sinha, Ruchi; Westring, Alyssa F.; Ryan, Ann Marie

    2013-01-01

    Despite frequent reference to "work-life" issues in the organizational literature, little theoretical or empirical attention has been paid to nonwork areas beyond family. The purpose of the research described here is to move beyond work-family conflict to a broader conceptualization and measurement of work interference with life. A measure of work…

  11. The association between objectively measured physical activity and life-space mobility among older people.

    PubMed

    Tsai, L-T; Portegijs, E; Rantakokko, M; Viljanen, A; Saajanaho, M; Eronen, J; Rantanen, T

    2015-08-01

    The purpose of this cross-sectional study was to investigate the association between objectively measured physical activity and life-space mobility in community-dwelling older people. Life-space refers to the spatial area a person purposefully moves through in daily life (bedroom, home, yard, neighborhood, town, and beyond) and life-space mobility to the frequency of travel and the help needed when moving through different life-space areas. The study population comprised community-living 75- to 90-year-old people {n = 174; median age 79.7 [interquartile range (IQR) 7.1]}, participating in the accelerometer substudy of Life-Space Mobility in Old Age (LISPE) project. Step counts and activity time were measured by an accelerometer (Hookie "AM20 Activity Meter") for 7 days. Life-space mobility was assessed with Life-Space Assessment (LSA) questionnaire. Altogether, 16% had a life-space area restricted to the neighborhood when moving independently. Participants with a restricted life space were less physically active and about 70% of them had exceptionally low values in daily step counts (≤ 615 steps) and moderate activity time (≤ 6.8 min). Higher step counts and activity time correlated positively with life-space mobility. Prospective studies are needed to clarify the temporal order of low physical activity level and restriction in life-space mobility.

  12. Purpose in life is associated with physical activity measured by accelerometer.

    PubMed

    Hooker, Stephanie A; Masters, Kevin S

    2016-06-01

    Previous research has shown that purpose in life, the belief that one's life is meaningful and goal-directed, is associated with greater engagement in self-reported physical activity. The purpose of this study was to examine the relationship between purpose in life and accelerometer-measured physical activity. Community volunteers (N = 104) completed measures of purpose in life and potential confounds and wore accelerometers for three consecutive days. Purpose in life was positively associated with objectively measured movement, moderate to vigorous physical activity, and with self-reported activity. These relationships were largely unchanged after controlling for potential confounds. These results suggest that purpose in life is a reliable correlate of physical activity.

  13. Measurements of I-129 in meteorites and lunar rock by tandem accelerator mass spectrometry

    NASA Technical Reports Server (NTRS)

    Nizhiizumi, K.; Arnold, J. R.; Elmore, D.; Gove, H. E.; Honda, M.

    1983-01-01

    Precise measurements of the half-life of I-129 in three different meteorites and one lunar surface rock are reported. The meteorite source of I-129 was produced by cosmic ray secondary neutron reactions on Te, while the source in lunar materials in spallation on barium and rare earth elements. The Abee, Allende, and Dhajala meteorites were examined, together with the lunar rock 14310. Details of the process used to extract the iodine are provided. The Abee and Allende samples exhibited a production of 0.5 atom/min per gm of Te from the (n,2n) reaction and 0.05 atom/min/gm for the (n,gamma) reaction. The I-129 is concluded to be a viable tool for long-lived cosmogenic nuclide studies. Further work to extend the data to include the constancy of the cosmic ray flux, the meteorite bombardment history, and the cosmic exposure age dating by means of the I-129 and Xe-129 method is indicated.

  14. Going nuts: Measuring free-fall acceleration by analyzing the sound of falling metal pieces

    NASA Astrophysics Data System (ADS)

    Kuhn, Jochen; Vogt, Patrik; Theilmann, Florian

    2016-03-01

    Galilei presented the kinematics of a one-dimensional accelerated motion with ease and in terms of elegant geometry. Moreover, he believed, "Philosophy [i.e. physics] is written in this grand book—I mean the universe—which stands continually open to our gaze, but it cannot be understood unless one first learns to comprehend the language and interpret the characters in which it is written. It is written in the language of mathematics, and its characters are triangles, circles, and other geometrical figures, without which it is humanly impossible to understand a single word of it." In classroom practice, however, it can be difficult to reveal this mathematical heart of nature; free fall and other accelerated motions often get obscured by friction or other sources of errors. In this paper, we introduce a method of analyzing free-fall motion indirectly by evaluating the noise of freely falling metal pieces. The method connects a deeper understanding of the mathematical structure of accelerated motion with the possibility to derive a numerical value for the free-fall acceleration g.

  15. Quality of life measures in health care. I: Applications and issues in assessment.

    PubMed Central

    Fitzpatrick, R.; Fletcher, A.; Gore, S.; Jones, D.; Spiegelhalter, D.; Cox, D.

    1992-01-01

    Many clinicians remain unsure of the relevance of measuring quality of life to their clinical practice. In health economics quality of life measures have become the standard means of assessing the results of health care interventions and, more controversially, the means of prioritising funding; but they have many other applications. This article--the first of three on measuring quality of life--reviews the instruments available and their application in screening programmes, audit, health care research, and clinical trials. Using the appropriate instrument is essential if outcome measures are to be valid and clinically meaningful. Images p1076-a PMID:1467690

  16. Multiple Metazoan Life-span Interventions Exhibit a Sex-specific Strehler-Mildvan Inverse Relationship Between Initial Mortality Rate and Age-dependent Mortality Rate Acceleration.

    PubMed

    Shen, Jie; Landis, Gary N; Tower, John

    2017-01-01

    The Gompertz equation describes survival in terms of initial mortality rate (parameter a), indicative of health, and age-dependent acceleration in mortality rate (parameter b), indicative of aging. Gompertz parameters were analyzed for several published studies. In Drosophila females, mating increases egg production and decreases median life span, consistent with a trade-off between reproduction and longevity. Mating increased parameter a, causing decreased median life span, whereas time parameter b was decreased. The inverse correlation between parameters indicates the Strehler-Mildvan (S-M) relationship, where loss of low-vitality individuals yields a cohort with slower age-dependent mortality acceleration. The steroid hormone antagonist mifepristone/RU486 reversed these effects. Mating and mifepristone showed robust S-M relationships across genotypes, and dietary restriction showed robust S-M relationship across diets. Because nutrient optima differed between females and males, the same manipulation caused opposite effects on mortality rates in females versus males across a range of nutrient concentrations. Similarly, p53 mutation in Drosophila and mTOR mutation in mice caused increased median life span associated with opposite direction changes in mortality rate parameters in females versus males. The data demonstrate that dietary and genetic interventions have sex-specific and sometimes sexually opposite effects on mortality rates consistent with sexual antagonistic pleiotropy.

  17. A Simple but Powerful Heuristic Method for Accelerating k-Means Clustering of Large-Scale Data in Life Science.

    PubMed

    Ichikawa, Kazuki; Morishita, Shinichi

    2014-01-01

    K-means clustering has been widely used to gain insight into biological systems from large-scale life science data. To quantify the similarities among biological data sets, Pearson correlation distance and standardized Euclidean distance are used most frequently; however, optimization methods have been largely unexplored. These two distance measurements are equivalent in the sense that they yield the same k-means clustering result for identical sets of k initial centroids. Thus, an efficient algorithm used for one is applicable to the other. Several optimization methods are available for the Euclidean distance and can be used for processing the standardized Euclidean distance; however, they are not customized for this context. We instead approached the problem by studying the properties of the Pearson correlation distance, and we invented a simple but powerful heuristic method for markedly pruning unnecessary computation while retaining the final solution. Tests using real biological data sets with 50-60K vectors of dimensions 10-2001 (~400 MB in size) demonstrated marked reduction in computation time for k = 10-500 in comparison with other state-of-the-art pruning methods such as Elkan's and Hamerly's algorithms. The BoostKCP software is available at http://mlab.cb.k.u-tokyo.ac.jp/~ichikawa/boostKCP/.

  18. Acute Exposure to Di(2-Ethylhexyl) Phthalate in Adulthood Causes Adverse Reproductive Outcomes Later in Life and Accelerates Reproductive Aging in Female Mice

    PubMed Central

    Hannon, Patrick R.; Niermann, Sarah; Flaws, Jodi A.

    2016-01-01

    Humans are ubiquitously exposed to di(2-ethylhexyl) phthalate (DEHP), which is an environmental toxicant incorporated in consumer products. Studies have shown that DEHP targets the ovary to disrupt essential processes required for reproductive and nonreproductive health. Specifically, 10-day exposure to DEHP accelerates primordial follicle recruitment and disrupts estrous cyclicity in adult mice. However, it is unknown if these effects on folliculogenesis and cyclicity following acute DEHP exposure can have permanent effects on reproductive outcomes. Further, the premature depletion of primordial follicles can cause early reproductive senescence, and it is unknown if acute DEHP exposure accelerates reproductive aging. This study tested the hypothesis that acute DEHP exposure causes infertility, disrupts estrous cyclicity, alters hormone levels, and depletes follicle numbers by inducing atresia later in life, leading to accelerated reproductive aging. Adult CD-1 mice were orally dosed with vehicle or DEHP (20 μg/kg/day–500 mg/kg/day) daily for 10 days, and reproductive outcomes were assessed at 6 and 9 months postdosing. Acute DEHP exposure significantly altered estrous cyclicity compared to controls at 6 and 9 months postdosing by increasing the percentage of days the mice were in estrus and metestrus/diestrus, respectively. DEHP also significantly decreased inhibin B levels compared to controls at 9 months postdosing. Further, DEHP significantly increased the BAX/BCL2 ratio in primordial follicles leading to a significant decrease in primordial and total follicle numbers compared to controls at 9 months postdosing. Collectively, the adverse effects present following acute DEHP exposure persist later in life and are consistent with accelerated reproductive aging. PMID:26678702

  19. Flow accelerated corrosion and its control measures for the secondary circuit pipelines in Indian nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kain, Vivekanand; Roychowdhury, S.; Mathew, Thomas; Bhandakkar, Atul

    2008-12-01

    A plain carbon steel feeder pipeline in the secondary circuit failed downstream of a flow measurement device (orifice meter) during operation at nuclear power plant. A detailed failure analysis done on the failed pipeline is described in this paper. The results established the fine surface pattern of 'Horseshoe pits' at the affected regions. X-ray diffraction analysis on the samples far from the failed regions showed presence of magnetite but on the sample from the failed region showed peaks due to base metal only, indicating dissolution of the oxide. Thickness profiling of the pipeline indicated reduction of thickness from the design 7.62 mm to a minimum of 0.4-1.4 mm at the location of the failure. These observations are characteristic of single phase flow accelerated corrosion. This paper details the extent of flow accelerated corrosion in various Indian power plants and the remedial measures for replacement and possible design and water chemistry changes to combat it.

  20. Methodology for the calibration of and data acquisition with a six-degree-of-freedom acceleration measurement device

    NASA Astrophysics Data System (ADS)

    Lee, Harvey; Plank, Gordon; Weinstock, Herbert; Coltman, Michael

    1989-06-01

    Described here is a methodology for calibrating and gathering data with a six-degree-of-freedom acceleration measurement device that is intended to measure head acceleration of anthropomorphic dummies and human volunteers in automotive crash testing and head impact trauma studies. Error models (system equations) were developed for systems using six accelerometers in a coplanar (3-2-1) configuration, nine accelerometers in a coplanar (3-3-3) configuration and nine accelerometers in a non-coplanar (3-2-2-2) configuration and the accuracy and stability of these systems were compared. The model was verified under various input and computational conditions. Results of parametric sensitivity analyses which included parameters such as system geometry, coordinate system location, data sample rate and accelerometer cross axis sensitivities are presented. Recommendations to optimize data collection and reduction are given. Complete source listings of all of the software developed are presented.

  1. An Wearable Energy Expenditure Analysis System based on the 15-channel Whole-body Segment Acceleration Measurement.

    PubMed

    Jang, Yongwon; Jung, M; Kang, Jaemin; Chan Kim, Hee

    2005-01-01

    The measurement of the amount of energy utilized during physical activity has generated considerable interests from various groups ranging from exercise physiologists to nutritionists and fitness center workers. To date, however, the existing energy expenditure estimation methods are not so reliable and compact. In this paper, we propose a new method for accurately and easily estimating energy expenditure during physical activity with a novel algorithm. This method involves acquiring acceleration signals through a 15-channel whole-body segment acceleration measurement system and then estimating the calories expended using a newly developed algorithm. The results of 3 subjects' experiments were compared with a commercially available mask type indirect calorimeter and a 9-axis accelerometry-based calorimeter. The results demonstrate that the proposed method provides a new and reliable way to estimate human energy expenditure during physical activity.

  2. The impact of nausea and vomiting upon quality of life measures.

    PubMed Central

    Bliss, J. M.; Robertson, B.; Selby, P. J.

    1992-01-01

    The measurement of quality of life in cancer patients has achieved prominence in recent years. This results from recognition of the limitations of available therapies and a clearer view of the goals of treatment in patients whose diseases may not be curable. Many different approaches to the measurement of quality of life have been proposed and these will be reviewed. In a recent survey of available methods, the Medical Research Council's Working Party on Quality of Life Measurement systematically analysed available instruments for measuring quality of life specifically in cancer patients and commented on a number of instruments of general purpose that may be used in oncology. It was concluded that no instrument is entirely satisfactory for all purposes and that available instruments have to be selected carefully for a particular study or a particular aspect of clinical practice. However, among the existing instruments, the Rotterdam Symptom Checklist for a general assessment of many facets of quality of life and the Hospital Anxiety and Depression Scale, for detecting psychosocial morbidity quickly and easily, were useful. In our own studies we have used a multiple linear analogue scale system to measure aspects of quality of life in breast cancer patients and have recently addressed the determinants of overall quality of life. Our studies identify the importance of evaluating the psychometric properties of measurement instruments in quality of life. Reliability and validity and the ability to discriminate changes with time and between clinically distinct groups have to be carefully assessed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1467195

  3. Pulmonary Function Measures before and after Exposure of Human Subjects to +G(z) and +G(x) Acceleration Loads.

    DTIC Science & Technology

    1981-09-28

    trained for several weeks to perform tracking and response time tasks in the upright and supinated body positions; they received both static and...dynamic training sessions in the OFS. All of the subjects had previous experience riding the DFS, including high G exposures during which they wore...primarily on their familiarity with the acceleration environment and training on the two tasks designed to measure performance. All of the subjects had

  4. A New Ground Motion Intensity Measure, Peak Filtered Acceleration (PFA), to Estimate Collapse Vulnerability of Buildings in Earthquakes

    NASA Astrophysics Data System (ADS)

    Song, Shiyan

    In this thesis, we develop an efficient collapse prediction model, the PFA (Peak Filtered Acceleration) model, for buildings subjected to different types of ground motions. For the structural system, the PFA model covers modern steel and reinforced concrete moment-resisting frame buildings (potentially reinforced concrete shear wall buildings). For ground motions, the PFA model covers ramp-pulse-like ground motions, long-period ground motions, and short-period ground motions. To predict whether a building will collapse in response to a given ground motion, we first extract long-period components from the ground motion using a Butterworth low-pass filter with suggested order and cutoff frequency. The order depends on the type of ground motion, and the cutoff frequency depends on the building's natural frequency and ductility. We then compare the filtered acceleration time history with the capacity of the building. The capacity of the building is a constant for 2-dimentional buildings and a limit domain for 3-dimentional buildings. If the filtered acceleration exceeds the building's capacity, the building is predicted to collapse. Otherwise, it is expected to survive the ground motion. The parameters used in PFA model, which include fundamental period, global ductility and lateral capacity, can be obtained either from numerical analysis or interpolation based on the reference building system proposed in this thesis. The PFA collapse prediction model greatly reduces computational complexity while archiving good accuracy. It is verified by FEM simulations of 13 frame building models and 150 ground motion records. Based on the developed collapse prediction model, we propose to use PFA (Peak Filtered Acceleration) as a new ground motion intensity measure for collapse prediction. We compare PFA with traditional intensity measures PGA, PGV, PGD, and Sa in collapse prediction and find that PFA has the best performance among all the intensity measures. We also provide a

  5. Theory and practice of self-lubricated, oscillatory bearings for high-vacuum applications. II - Accelerated life tests and analysis of bearings

    NASA Astrophysics Data System (ADS)

    Meeks, C. R.

    1980-08-01

    Accelerated vacuum life tests of dry self-lubricating bearings were carried out by monitoring of friction torque and evaluation of the effects of thermal cycling and radial temperature gradients. Twenty-two bearings were tested for periods up to 15,000 hr in high vacuum and operated to 31 x 10 to the 9th degrees of oscillatory travel. A theoretical model of wear was constructed on the basis of friction, wear, and bearing torque test results, along with optical-scanning electron microscope and X-ray energy dispersive spectroscopic examination of bearing components.

  6. The feasibility of isobaric suppression of 26Mg via post-accelerator foil stripping for the measurement of 26Al [The feasibility of isobaric suppression of 26Mg via post-accelerator foil stripping for the measurement of 26Al.

    DOE PAGES

    Tumey, Scott J.; Brown, Thomas A.; Finkel, Robert C.; ...

    2012-09-13

    Most accelerator mass spectrometry measurements of 26Al utilize the Al- ion despite lower source currents compared with AlO- since the stable isobar 26Mg does not form elemental negative ions. A gas-filled magnet allows sufficient suppression of 26Mg thus enabling the use of the more intense 26AlO- ion. However, most AMS systems do not include a gas-filled magnet. We therefore explored the feasibility of suppressing 26Mg by using a post-accelerator stripping foil. With this approach, combined with the use of alternative cathode matrices, we were able to suppress 26Mg by a factor of twenty. This suppression was insufficient to enable themore » use of 26AlO-, however further refinement of our system may permit its use in the future.« less

  7. Summary Report of Mission Acceleration Measurements for MSL-1: STS-83, Launched April 14, 1997; STS-94, Launched July 1, 1997

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Kenneth; Tschen, Peter; McPherson, Kevin; Nati, Maurizio; Reckart, Timothy A.

    1998-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-83 and STS-94 flights of the Microgravity Science Laboratory (MSL-1) mission using four different accelerometer systems: the Orbital Acceleration Research Experiment (OARE), the Space Acceleration Measurement System (SAMS), the Microgravity Measurement Assembly (MMA), and the Quasi-Steady Acceleration Measurement (QSAM) system. All four accelerometer systems provided investigators with acceleration measurements downlinked in near-real-time. Data from each system was recorded for post-mission analysis. The OARE measured the Shuttle's acceleration with high resolution in the quasi-steady frequency regime below about 0.1 Hz. The SAMS provided investigators with higher frequency acceleration measurements up to 25 Hz. The QSAM and MMA systems provided investigators with quasi-steady and higher frequency (up to 100 Hz) acceleration measurements, respectively. The microgravity environment related to various Orbiter maneuvers, crew activities, and experiment operations as measured by the OARE and MMA is presented and interpreted in section 8 of this report.

  8. Measurements of ultimate accelerating gradients in the SLAC disk-loaded structure

    SciTech Connect

    Wang, J.W.; Loew, G.A.

    1985-03-01

    This paper is a status report on an on-going program at SLAC to study accelerator structures under high-gradient electric field conditions. The study is a part of a much broader program dealing with future linear colliders. The accelerating gradient that might be achievable in such machines is a crucial parameter because once the beam energy is selected, the gradient determines the length of the linac and directly or indirectly affects the choice of many other parameters. To reach 100 MV/m in a conventional 3 m constant-gradient section without SLED, one would need a klystron with a peak power output of 900 MW. Since such a tube is not available, we decided to use a short standing-wave section in which the resonant fields can build up. The design criteria for this section, the fabrication, matching and tuning, the experimental set-up and the results are described. 6 refs., 5 figs., 1 tab.

  9. Simulation and analysis of TE wave propagation for measurement of electron cloud densities in particle accelerators

    NASA Astrophysics Data System (ADS)

    Sonnad, Kiran G.; Hammond, Kenneth C.; Schwartz, Robert M.; Veitzer, Seth A.

    2014-08-01

    The use of transverse electric (TE) waves has proved to be a powerful, noninvasive method for estimating the densities of electron clouds formed in particle accelerators. Results from the plasma simulation program VSim have served as a useful guide for experimental studies related to this method, which have been performed at various accelerator facilities. This paper provides results of the simulation and modeling work done in conjunction with experimental efforts carried out at the Cornell electron storage ring “Test Accelerator” (CESRTA). This paper begins with a discussion of the phase shift induced by electron clouds in the transmission of RF waves, followed by the effect of reflections along the beam pipe, simulation of the resonant standing wave frequency shifts and finally the effects of external magnetic fields, namely dipoles and wigglers. A derivation of the dispersion relationship of wave propagation for arbitrary geometries in field free regions with a cold, uniform cloud density is also provided.

  10. [The first linear electron accelerator Therac 15-Saturne in clinical service. 2. Measurement of electron radiation].

    PubMed

    Strauch, B

    1985-09-01

    Therac 15-Saturne is a linear accelerator for photon and electron radiation with a double scattering screen system. It has proved its worth during more than three years of clinical use. The dosimetric data of both kinds of radiation correspond to the international requirements for modern therapy units. The trimmer system for electron radiation is equipped with a continuous field size adjustment device for the whole range of field sizes. Thus a fast and precise adjustment is possible without any changing of tubes.

  11. Acceleration performance of individual European sea bass Dicentrarchus labrax measured with a sprint performance chamber: comparison with high-speed cinematography and correlates with ecological performance.

    PubMed

    Vandamm, Joshua P; Marras, Stefano; Claireaux, Guy; Handelsman, Corey A; Nelson, Jay A

    2012-01-01

    Locomotor performance can influence the ecological and evolutionary success of a species. For fish, favorable outcomes of predator-prey encounters are often presumably due to robust acceleration ability. Although escape-response or "fast-start" studies utilizing high-speed cinematography are prevalent, little is known about the contribution of relative acceleration performance to ecological or evolutionary success in a species. This dearth of knowledge may be due to the time-consuming nature of analyzing film, which imposes a practical limit on sample sizes. Herein, we present a high-throughput potential alternative for measuring fish acceleration performance using a sprint performance chamber (SPC). The acceleration performance of a large number of juvenile European sea bass (Dicentrarchus labrax) from two populations was analyzed. Animals from both hatchery and natural ontogenies were assessed, and animals of known acceleration ability had their ecological performance measured in a mesocosm environment. Individuals from one population also had their acceleration performance assessed by both high-speed cinematography and an SPC. Acceleration performance measured in an SPC was lower than that measured by classical high-speed video techniques. However, short-term repeatability and interindividual variation of acceleration performance were similar between the two techniques, and the SPC recorded higher sprint swimming velocities. Wild fish were quicker to accelerate in an SPC and had significantly greater accelerations than all groups of hatchery-raised fish. Acceleration performance had no significant effect on ecological performance (as assessed through animal growth and survival in the mesocosms). However, it is worth noting that wild animals did survive predation in the mesocosm better than farmed ones. Moreover, the hatchery-originated fish that survived the mesocosm experiment, when no predators were present, displayed significantly increased acceleration

  12. Accelerated life test of the USDOE OC-OTEC experimental system refurbished with magnetic bearings for the 3rd stage vacuum compressor. Final report

    SciTech Connect

    Vega, L.A.

    1997-04-01

    This report documents the accelerated life test (time-to-failure) performed, at the request of DOE, to evaluate the viability of the magnetic bearing system installed in the stage 3 vacuum pump. To this effect the plant was successfully operated for over 500 hours during the period September-November 1996. The first part of this report discusses system performance by deriving subsystem and system performance parameters from a typical record. This is followed by the discussion of the life tests. The instrumentation used to estimate the performance parameters given here is depicted. The third stage pump was operated for 535 hours without incident. It is concluded that magnetic bearings are the preferable choice for the OC-OTEC centrifugal vacuum pumps.

  13. MULTI-BAND DIPOLE AND MULTIPOLE WAKEFIELDS IN NLC TRAVELING WAVE ACCELERATORS USING A WIRE MEASUREMENT TECHNIQUE

    SciTech Connect

    Jones, Roger M

    2002-06-20

    Dipole wakefields in NLC (Next Linear Collider) structures have been measured with ASSET [1] and well predicted by a circuit model [2]. However, the experimental technique is both time-consuming and expensive. Here, we report on kick factor and synchronous frequency determination for 1st and higher order dipole bands for TW (Traveling Wave) accelerators via a wire measurement technique. This stand-alone technique is relatively inexpensive and may lead to an efficient determination of wakefield parameters. The perturbative effect of the wire on the dipole band is pointed out and a two-wire scheme with a limited perturbative effect is also discussed.

  14. A resonant sensor composed of quartz double ended tuning fork and silicon substrate for digital acceleration measurement

    SciTech Connect

    Li, Cun; Zhao, Yulong Cheng, Rongjun; Yu, Zhongliang; Liu, Yan

    2014-03-15

    Presented in this paper is a micro-resonant acceleration sensor based on the frequency shift of quartz double ended tuning fork (DETF). The structure is silicon substrate having a proof mass supported by two parallel flexure hinges as doubly sustained cantilever, with a resonating DETF located between the hinges. The acceleration normal to the chip plane induces an axial stress in the DETF beam and, in turn, a proportional shift in the beam resonant frequency. Substrate is manufactured by single-crystal silicon for stable mechanical properties and batch-fabrication processes. Electrodes on the four surfaces of DETF beam excite anti-phase vibration model, to balance inner stress and torque and imply a high quality factor. The sensor is simply packaged and operates unsealed in atmosphere for measurements. The tested natural frequency is 36.9 kHz and the sensitivity is 21 Hz/g on a nominally ±100 g device, which is in good agreement with analytical calculation and finite element simulation. The output frequency drifting is less than 0.5 Hz (0.0014% of steady output) within 1 h. The nonlinearity is 0.0019%FS and hysteresis is 0.0026%FS. The testing results confirm the feasibility of combining quartz DETF and silicon substrate to achieve a micro-resonant sensor based on simple processing for digital acceleration measurements.

  15. Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change.

    PubMed

    Storsve, Andreas B; Fjell, Anders M; Tamnes, Christian K; Westlye, Lars T; Overbye, Knut; Aasland, Hilde W; Walhovd, Kristine B

    2014-06-18

    Human cortical thickness and surface area are genetically independent, emerge through different neurobiological events during development, and are sensitive to different clinical conditions. However, the relationship between changes in the two over time is unknown. Additionally, longitudinal studies have almost invariably been restricted to older adults, precluding the delineation of adult life span trajectories of change in cortical structure. In this longitudinal study, we investigated changes in cortical thickness, surface area, and volume after an average interval of 3.6 years in 207 well screened healthy adults aged 23-87 years. We hypothesized that the relationships among metrics are dynamic across the life span, that the primary contributor to cortical volume reductions in aging is cortical thinning, and that magnitude of change varies with age and region. Changes over time were seen in cortical area (mean annual percentage change [APC], -0.19), thickness (APC, -0.35), and volume (APC, -0.51) in most regions. Volume changes were primarily explained by changes in thickness rather than area. A negative relationship between change in thickness and surface area was found across several regions, where more thinning was associated with less decrease in area, and vice versa. Accelerating changes with increasing age was seen in temporal and occipital cortices. In contrast, decelerating changes were seen in prefrontal and anterior cingulate cortices. In conclusion, a dynamic relationship between cortical thickness and surface area changes exists throughout the adult life span. The mixture of accelerating and decelerating changes further demonstrates the importance of studying these metrics across the entire adult life span.

  16. Measuring Outcomes of Family-Centered Intervention: Development of the Life Participation for Parents (LPP)

    ERIC Educational Resources Information Center

    Fingerhut, Patricia E.

    2009-01-01

    Raising a child with disabilities impacts the ability of parents to participate in life situations. This paper describes the development of a new instrument, Life Participation for Parents, to measure outcomes of pediatric therapy on parental participation. Items were reviewed by six occupational therapists with experience in pediatrics and…

  17. Do We Need to Weight Satisfaction Scores with Importance Ratings in Measuring Quality of Life?

    ERIC Educational Resources Information Center

    Wu, Chia-Huei; Yao, Grace

    2006-01-01

    Trauer and Mackinnon (2001; Quality of life research 10, pp. 579-585) recently proposed that weighting satisfaction scores by importance ratings in measuring quality of life is undesirable and unnecessary. However, they didn't use empirical data to support their claim. In this study, different weighting algorithms developed by Cummins (1997;…

  18. Measuring Depression at the End of Life: Is the Hamilton Depression Rating Scale a Valid Instrument?

    ERIC Educational Resources Information Center

    Olden, Megan; Rosenfeld, Barry; Pessin, Hayley; Breitbart, William

    2009-01-01

    Depression at the end of life is a common mental health issue with serious implications for quality of life and decision making. This study investigated the reliability and validity of one of the most frequently used measures of depression, the Hamilton Depression Rating Scale (HAM-D) in 422 patients with terminal cancer admitted to a palliative…

  19. Measurement of the half-life of {sup 60}Fe for a Nearby Supernova Source

    SciTech Connect

    Takahisa, K.; Shima, T.; Nagai, Y.; Takahasi, N.

    2008-05-21

    A nearby supernova (SN) explosion in the past can be confirmed by the detection of radioisotopes on Earth. The largest error of this estimate is attributed to the half-life of {sup 60}Fe (18%). We thus propose a precise measurement of the half-life of {sup 60}Fe.

  20. Application of gamma-ray radiography and gravimetric measurements after accelerated corrosion tests of steel embedded in mortar

    SciTech Connect

    Duffó, Gustavo; Gaillard, Natalia; Mariscotti, Mario; Ruffolo, Marcelo

    2015-08-15

    The accelerated corrosion by the impressed current technique is widely used in studies of concrete durability since it has the advantage that tests can be carried out within reasonable periods of time. In the present work the relationship between the applied current density and the resulting damage on the reinforcing steel, by applying optical microscopy, scanning electron microscopy, gamma-ray radiography and gravimetric measurements, was studied by means of the implementation of accelerated corrosion tests on reinforced mortar. The results show that the efficiency of the applied current is between 1 and 77%, regardless of the applied current density, the water/cement ratio and the mortar cover depth of the specimens. The results show the applicability of the gamma-ray radiography technique to detect localized corrosion of steel rebars in laboratory specimens.

  1. Measuring quality of life impairment in skeletal muscle channelopathies

    PubMed Central

    Sansone, V A; Ricci, C; Montanari, M; Apolone, G; Rose, M; Meola, G

    2012-01-01

    Background and purpose Fatigue and pain have been previously shown to be important determinants for decreasing quality of life (QoL) in one report in patients with non-dystrophic myotonia. The aims of our study were to assess QoL in skeletal muscle channelopathies (SMC) using INQoL (individualized QoL) and SF-36 questionnaires. Methods We administered INQoL and SF-36 to 66 Italian patients with SMC (26: periodic paralysis, 36: myotonia congenita and 4: Andersen-Tawil) and compared the results in 422 patients with myotonic dystrophies (DM1: 382; and DM2: 40). Results (i) INQoL index in SMC is similar to that in DMs (P = 0.79). (ii) Patients with myotonia congenita have the worst perception of QoL. (iii) Myotonia has the most detrimental effect on patients with myotonia congenita, followed by patients with DM2 and then by patients with DM1 and hyperkalemic periodic paralysis. (iv) Pain is a significant complaint in patients with myotonia congenita, hypokalemic periodic paralysis and DM2 but not in DM1. (v) Fatigue has a similar detrimental effect on all patient groups except for patients with hyperkalemic periodic paralysis in whom muscle weakness and myotonia more than fatigue affect QoL perception. (vi) Muscle symptoms considered in INQoL correlate with physical symptoms assessed by SF-36 (R from −0.34 to −0.76). Conclusions QoL perception in patients with SMC is similar to that of patients with DMs, chronic multisystem disabling conditions. Our results provide information to target treatment and health care of these patients. The sensitivity of INQoL to changes in QoL in the SMC needs to be further explored in longitudinal studies. PMID:22607270

  2. The Fluid-Dynamic Disturbances Induced on the ISS, Based on the First Acceleration Measurements on Board the Space Station

    NASA Astrophysics Data System (ADS)

    Monti, R.

    2002-01-01

    The predictions provided by different Design Analysis Cycles (DAC s) are now converging and give the possibility to be correlated with experimental measurements. The most important utilization of the acceleration data refer to the possibility of validating numerical simulations that relate the acceleration sources to the real effects they produce, so that the Principal Investigator (PI) would be in a position to foresee the real conditions and to properly select suitable conditions for running the specific experiments. Previous numerical studies (Monti and Savino 2001, Savino and Monti 2001) had to rely only on the DAC's predictions (see e.g. Non Isolated Rack Assessment, NIRA) that, sometime, were contradictory and strongly dependent on the assumptions about the number, location and type of the sources of acceleration (with respect to the microgravity experiment position) and on the accuracy of numerical codes (not validated by flight experimental data). The experience build up so far has identified efficient numerical tools to quickly predict the overall disturbances induced by the Microgravity Environment of the ISS on specific fluid dynamic experiments. Extensive numerical simulations proved that the experiment sensitivity to g-jitter can be evaluated by the numerical solutions of the full Navier-Stokes equations with a time-dependent acceleration (direct formulation), taking into account the different accelerations at the different frequencies of the ISS spectrum, or simply computing the time-average velocity field by solving the time-average (thermovibrational) equations. In the latter case the disturbances of the thermofluidynamic field are easily evaluated assigning as input to the numerical code an overall "equivalent" vibrational Rayleigh number (corresponding to a single frequency g-jitter equivalent to the overall g-jitter spectrum). An analysis of the Navier-Stokes equation is performed to identify the terms in the momentum and vorticity equations that

  3. Using MMS measurements to validate models of reconnection-driven magnetotail reconfiguration and particle acceleration during substorms

    NASA Astrophysics Data System (ADS)

    Baker, Daniel N.

    2016-04-01

    New data from the Magnetospheric Multiscale (MMS) mission confirms and greatly extends the view that substorms are a configurational instability driven by magnetic reconnection. We have studied in detail a powerful storm period in June 2015 which shows that substorm events seen sequentially by the four MMS spacecraft subsequently feed the powerful enhancement of the radiation belts observed by the Van Allen Probes mission. Several sequences of significant southward IMF along with a period of high (VSW≥500 km/s) solar wind speed occurred following a strong interplanetary shock wave impact on the magnetosphere. We see that substorms provide a "seed" population, while high-speed solar wind drives the acceleration to relativistic energies in this two-step geomagnetic activity scenario. Thus, MMS data help validate models that invoke reconnection as a fundamental driver of magnetospheric particle acceleration. The data for several separate events on 22 June 2015 show that the magnetosphere progresses through a specific, well-observed sequence of energy-loading and stress-developing states until the entire system suddenly reconfigures. Energetic electron fluxes measured by the several MMS spacecraft reveal the clear temporal occurrence characteristics and the obvious relationships to concurrently measured solar wind drivers. This shows that enhancements in substorms are a key first step in the acceleration of radiation belt electrons to high energies as observed subsequently by the Van Allen Probes instrumentation. Thus, this high-resolution observational evidence along with the accompanying modeling has demonstrated that magnetospheric substorms are an important acceleration component within the coupled near-Earth system.

  4. Measuring the Impact of Diabetes on Life Expectancy and Disability-Free Life Expectancy Among Older Adults in Mexico

    PubMed Central

    2010-01-01

    Objectives. The aim of the present study is to investigate differences in total life expectancy (TLE), disability-free life expectancy (DFLE), disabled life expectancy (DLE), and personal care assistance between individuals with and without diabetes in Mexico. Methods. The sample was drawn from the nationally representative Mexican Health and Aging Study. Disability was assessed through a basic Activities of Daily Living (ADL) measure, the Instrumental Activities of Daily Living (IADL) scale, and the Nagi physical performance measure. The Interpolation of Markov Chains method was used to estimate the impact of diabetes on TLE and DFLE. Results. Results indicate that diabetes reduces TLE at ages 50 and 80 by about 10 and 4 years, respectively. Diabetes is also associated with fewer years in good health. DFLE (based on ADL measures) at age 50 is 20.8 years (95% confidence interval [CI]: 19.2–22.3) for those with diabetes, compared with 29.9 years (95% CI: 28.8–30.9) for those without diabetes. Regardless of diabetes status, Mexican women live longer but face a higher disability burden than men. Conclusion. Among older adults in Mexico, diabetes is associated with shorter TLE and DFLE. The negative effect of diabetes on the number of years lived, particularly in good health, creates significant economic, social, and individual costs for elderly Mexicans. PMID:20028950

  5. Accelerator mass spectrometry: from nuclear physics to dating

    SciTech Connect

    Kutschera, W.

    1983-01-01

    Several applications of accelerator-based mass spectroscopy are reviewed. Among these are the search for unknown species, determination of comogenic radioisotopes in natural materials and measurements of half-lifes, especially those of significance to dating. Accelerator parameters and techniques of importance for these applications are also considered.

  6. Measuring the Effect of Tourism Services on Travelers' Quality of Life: Further Validation.

    ERIC Educational Resources Information Center

    Neal, Janet D.; Sirgy, M. Joseph; Uysal, Muzaffer

    2004-01-01

    lication and extension study provided additional validational support of the original tourism services satisfaction measure in relation to QOL-related measures.Neal, Sirgy and Uysal (1999) developed a model and a measure to capture the effect of tourism services on travelers' quality of life (QOL). They hypothesized that travelers' overall life…

  7. Purpose in Life in Emerging Adulthood: Development and Validation of a New Brief Measure.

    PubMed

    Hill, Patrick L; Edmonds, Grant W; Peterson, Missy; Luyckx, Koen; Andrews, Judy A

    2016-05-01

    Accruing evidence points to the value of studying purpose in life across adolescence and emerging adulthood. Research though is needed to understand the unique role of purpose in life in predicting well-being and developmentally relevant outcomes during emerging adulthood. The current studies (total n = 669) found support for the development of a new brief measure of purpose in life using data from American and Canadian samples, while demonstrating evidence for two important findings. First, purpose in life predicted well-being during emerging adulthood, even when controlling for the Big Five personality traits. Second, purpose in life was positively associated with self-image and negatively associated with delinquency, again controlling for personality traits. Findings are discussed with respect to how studying purpose in life can help understand which individuals are more likely to experience positive transitions into adulthood.

  8. Stress Rupture Life Reliability Measures for Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Thesken, John C.; Phoenix, S. Leigh; Grimes-Ledesma, Lorie

    2007-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are often used for storing pressurant gases onboard spacecraft. Kevlar (DuPont), glass, carbon and other more recent fibers have all been used as overwraps. Due to the fact that overwraps are subjected to sustained loads for an extended period during a mission, stress rupture failure is a major concern. It is therefore important to ascertain the reliability of these vessels by analysis, since the testing of each flight design cannot be completed on a practical time scale. The present paper examines specifically a Weibull statistics based stress rupture model and considers the various uncertainties associated with the model parameters. The paper also examines several reliability estimate measures that would be of use for the purpose of recertification and for qualifying flight worthiness of these vessels. Specifically, deterministic values for a point estimate, mean estimate and 90/95 percent confidence estimates of the reliability are all examined for a typical flight quality vessel under constant stress. The mean and the 90/95 percent confidence estimates are computed using Monte-Carlo simulation techniques by assuming distribution statistics of model parameters based also on simulation and on the available data, especially the sample sizes represented in the data. The data for the stress rupture model are obtained from the Lawrence Livermore National Laboratories (LLNL) stress rupture testing program, carried out for the past 35 years. Deterministic as well as probabilistic sensitivities are examined.

  9. Grip pressure measurements during activities of daily life

    NASA Astrophysics Data System (ADS)

    Sanford, Joe; Young, Carolyn; Popa, Dan; Bugnariu, Nicoleta; Patterson, Rita

    2014-06-01

    Research has expanded human-machine communication methods past direct programming and standard hand- held joystick control. Individual force sensors have been used as a simple means of providing environmental information to a robot and research has shown that more advanced sensitive skins can be viable input devices. These touch sensitive surfaces allow for additional modes of interaction between machines in open, undefined environments. These interactions include object detection for navigation and safety but can also be used for recognition of users command gestures by their machine partner. Key to successful implementation of these gestures is the understanding of varied strategies used for communication and interaction and the development of performance limits. Data of dominant hand grip forces was collected using a Tekscan Grip VersaTek Pressure Measurement System during opening of a door. Analysis of data from 10 male and female subjects is presented. The results of qualitative and quantitative analysis of these data show variability in hand configurations between users. Average data over the cohort is reported. These data will be used in future work to provide human metrology constraints and limits for use in simulation and design of new, physical human-robot interaction systems.

  10. Disease-specific quality-of-life measurement tools for haemophilia patients.

    PubMed

    Remor, E; Young, N L; Von Mackensen, S; Lopatina, E G

    2004-10-01

    The purpose of this paper is to summarize the state of the art in measuring quality of life in haemophila populations. The paper reviews the measures recently included in haemophila trials in the published literature. It also summarizes the development of four new disease-specific measures of health-related quality of life. Two of these were developed for children (the Haemo-QoL and the CHO-KLAT), and two for adults (the Hemofilia-QoL and the Hemolatin-QoL). These new measures show promise for use in clinical trials. Further research is in progress to complete the psychometric testing and cross-cultural validation.

  11. Determination of the half-life of Ca-41 from measurements of Antarctic meteorites

    NASA Technical Reports Server (NTRS)

    Klein, Jeffrey; Fink, David; Middleton, Roy; Nishiizumi, Kunihiko; Arnold, James

    1991-01-01

    Accelerator mass spectrometry is utilized to determine the half-life of Ca-41 from the decrease of its concentration with terrestrial age in five Antarctic meteorites and a recent fall. The meteorites were selected on the basis of their Cl-36 concentrations, which showed a span of terrestrial ages of about 600 ka, and on the basis of other cosmogenic nuclide concentrations which indicated that the meteorites had small preatmospheric sizes, and sufficiently long irradiation times in space that the concentrations of Ca-41 and Cl-36 were in secular equilibrium prior to the meteorites' fall to earth. The half-life of Ca-41 is determined at 103 + or - 7 ka. Topics discussed include the effects of undersaturation (short exposure time in space), shielding (the samples are from the interior of a large meteorite), and weathering on the cosmogenic nuclide concentrations in meteorites.

  12. Cognitive, affective and eudemonic well-being in later life: Measurement equivalence over gender and life stage.

    PubMed

    Vanhoutte, Bram; Nazroo, James

    2014-05-31

    The hedonic view on well-being, consisting of both cognitive and affective aspects, assumes that through maximizing pleasurable experiences, and minimizing suffering, the highest levels of well-being can be achieved. The eudemonic approach departs from the concept of a good life that is not just about pleasure and happiness, but involves developing one-self, being autonomous and realizing one's potential. While these approaches are often positioned against each other on theoretical grounds, this paper investigates the empirical plausibility of this two dimensional view on subjective well-being. The interrelations between common measures such as the General Health Questionnaire, the CES-D inventory of depressive symptoms, the satisfaction with life scale and the eudemonic CASP scale are examined in a confirmatory factor analysis framework using the third wave of the English Longitudinal Study of Ageing (ELSA). A multidimensional structure of well-being, distinguishing cognitive, affective and eudemonic well-being, is shown to be the best fitting empirical solution. This three dimensional second order structure is neutral to gender in its measurement. A lower influence of feeling energetic on self-actualisation, and of somatic symptoms of depression on affective well-being was noted for respondents in the fourth age in comparison to respondents in the third age. These small measurement artefacts underline that somatic symptoms of later life depression should be distinguished from mood symptoms. Two main social facts are confirmed when we compare the different forms of well-being over gender and life stage: men tend to have a higher level of well-being than women, and well-being is lower in the fourth age than in the third age. Although the three measures are very closely related, with high correlations between .74 and .88, they each have their specific meaning. While affective and cognitive well-being emphasize the use of an internal yardstick to measure well

  13. Absolute Beam Energy Measurement using Elastic ep Scattering at Thomas Jefferson National Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Deur, Alexandre

    1999-10-01

    The Jefferson Lab beam energy measurement in Hall A using the elastic ep scattering will be described. This new, non-magnetic, energy measurement method allows a ( triangle E/E=10-4 ) precision. First-order corrections are canceled by the measurements of the electron and proton scattering angles for two symmetric kinematics. The measurement principle will be presented as well as the device and measurement results. Comparison with independent magnetic energy measurements of the same accuracy will be shown. This project is the result of a collaboration between the LPC: université Blaise Pascal/in2p3), Saclay and Jefferson Lab.

  14. Prediction of the self-accelerating decomposition temperature (SADT) for liquid organic peroxides from differential scanning calorimetry (DSC) measurements.

    PubMed

    Malow, M; Wehrstedt, K D

    2005-04-11

    We present a prediction (estimation, calculation, screening) method for the estimation of the self-accelerating decomposition temperature (SADT) for liquid organic peroxides from differential scanning calorimetry (DSC) measurements based on the concepts of thermal explosion theory originally introduced by Semonov which are adopted to our problem assuming nth-order reaction kinetics. For the peroxides under investigation, we demonstrate good agreement with the experimental SADT. This method can be used as a quick and easy applicable method for the estimation of the critical temperatures.

  15. Measurement of Ion Transverse Energy and the Electric Field in the Acceleration Gap of a Magnetically Insulated Diode

    DTIC Science & Technology

    1983-05-01

    practical diodes. The principles of the measurements in the present experiment are as follows. The accelerating ions, drawn from a surface - flashover ...magnetic field6 for magnetic insulation at the applied voltge of 400 kV is 5.7 kG. When the high voltage pulse was applied, a surface - flashover plasma ...the presence of multikilovolt Ba+ ions even ignor- ing the normal 10-15 ns turn-on time of the surface flashover anode plasma . 1 In Fig. 3, the total

  16. Measurements of the persistent current decay and snapback effect in Nb3Sn Fermilab-built accelerator prototype magnets

    SciTech Connect

    Velev, G.V.; Chlachidze, G.; DiMarco, J.; Kashikhin, V.V.; /Fermilab

    2012-05-01

    In recent years, Fermilab has been performing an intensive R an D program on Nb{sub 3}Sn accelerator magnets. This program has included dipole and quadrupole magnets for different programs and projects, including LARP and VLHC. A systematic study of the persistent current decay and snapback effect in the fields of these magnets was executed at the Fermilab Magnet Test Facility. The decay and snapback were measured under a range of conditions including variations of the current ramp parameters and flattop and injection plateau durations. This study has mostly focused on the dynamic behavior of the normal sextupole and dodecapole components in dipole and quadrupole magnets respectively. The paper summarizes the recent measurements and presents a comparison with previously measured NbTi magnets.

  17. Quality of life measurement in mental health. Introduction and overview of workshop findings.

    PubMed

    Holley, H

    1998-01-01

    The Quality of Life Measurement Workshop was designed to address a number of specific questions relating to measurement and use of quality of life indicators among persons with chronic and severe mental illnesses. The issues surrounding measurement of quality of life among severely and persistently mentally ill people proved to be considerably more complex than originally imagined. Workshop discussions concentrated on the clear elaboration of the scope and nature of these complexities rather than on their complete resolution. Important themes that emerged were: the importance of quality of life for consumers/survivors and their family members, and as a basis for evaluating program effectiveness and the progress of mental health reform; the fact that persons with mental illness experience lower life satisfaction than the population as a whole; the importance for consumers/survivors of having a sense of control, companionship, feelings of optimism, and a purposeful and meaningful life; the subjective and personal nature of quality of life perspective and the need for flexible measurement instruments that permit differential weighting of factors to take account of these different views; the lack of attention to social stigma and family or caregiver burden in current conceptualizations and measurement approaches and the importance of these factors to consumers/survivors and family members; the overt focus on psychiatric symptomatology and the relative neglect of key quality of life considerations that are important to consumers/survivors and their families; the need for more operational measures, such as those in the health-related quality of life field, to be used as a basis for evaluating the worth of new and alternate models of service delivery; the potential for competing interests with respect to program accountability to consumers/survivors and their families, on the one hand, and funders on the other, and the importance of striking a balance; the importance of

  18. Development of an Accelerated Test Design for Predicting the Service Life of the Solar Array at Mead, Nebraska

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Thomas, R. E.; Noel, G. T.; Shilliday, T. S.; Wood, V. E.; Carmichael, D. C.

    1979-01-01

    Potential long-term degradation modes for the two types of modules in the Mead array were determined and judgments were made as to those environmental stresses and combinations of stresses which accelerate the degradation of the power output. Hierarchical trees representing the severity of effects of stresses (test conditions) on eleven individual degradation modes were constructed and were pruned of tests judged to be nonessential. Composites of those trees were developed so that there is now one pruned tree covering eight degradation modes, another covering two degradation modes, and a third covering one degradation mode. These three composite trees form the basis for selection of test conditions in the final test plan which is now being prepared.

  19. The Life Cycle of an OpenStudio Measure: Development, Testing, Distribution, and Application

    SciTech Connect

    2016-08-12

    An OpenStudio Measure is a script that can manipulate an OpenStudio model and associated data to apply energy conservation measures (ECMs), run supplemental simulations, or visualize simulation results. The OpenStudio software development kit (SDK) and accessibility of the Ruby scripting language makes measure authorship accessible to both software developers and energy modelers. This paper discusses the life cycle of an OpenStudio Measure from development, testing, and distribution, to application.

  20. Application of an IRT Polytomous Model for Measuring Health Related Quality of Life

    ERIC Educational Resources Information Center

    Tejada, Antonio J. Rojas; Rojas, Oscar M. Lozano

    2005-01-01

    Background: The Item Response Theory (IRT) has advantages for measuring Health Related Quality of Life (HRQOL) as opposed to the Classical Tests Theory (CTT). Objectives: To present the results of the application of a polytomous model based on IRT, specifically, the Rating Scale Model (RSM), to measure HRQOL with the EORTC QLQ-C30. Methods: 103…

  1. To measure or not to measure? Reviewing the assessment of spirituality and religion in health-related quality of life.

    PubMed

    O'Connell, Kathryn A; Skevington, Suzanne M

    2007-03-01

    Measures of quality of life have not conventionally or routinely included concepts of spirituality, religion, or existential wellbeing. Although spirituality has been seen as irrelevant, or difficult to measure, a growing body of peer-reviewed articles point to a positive and important relationship between spiritual beliefs and other domains of quality of life in health. Following a discussion of current theoretical issues surrounding the inclusion of these generic concepts, we select and review seven quality-of-life assessments in health that provide a spiritual and/or religious dimension, and evaluate each in psychometric terms. Such information could be useful to clinicians working in chronic illness, surgery and terminal care, who seek concept clarification before using an assessment that includes a spiritual domain.

  2. Design and analysis of a piezoelectric material based touch screen with additional pressure and its acceleration measurement functions

    NASA Astrophysics Data System (ADS)

    Chu, Xiang-Cheng; Liu, Jia-Yi; Gao, Ren-Long; Chang, Jie; Li, Long-Tu

    2013-12-01

    Touch screens are becoming more and more prevalent in everyday environments due to their convenience and humanized operation. In this paper, a piezoelectric material based touch screen is developed and investigated. Piezoelectric ceramics arrayed under the touch panel at the edges or corners are used as tactile sensors to measure the touch positioning point similarly to conventional touch screens. However, additional touch pressure and its acceleration performance can also be obtained to obtain a higher-level human-machine interface. The piezoelectric ceramics can also be added to a traditional touch screen structure, or they can be used independently to construct a novel touch screen with a high light transmittance approach to a transparent glass. The piezoelectric ceramics were processed from PZT piezoelectric ceramic powder into a round or rectangular shape. According to the varied touch position and physical press strength of a finger, or even a gloved hand or fingernail, the piezoelectric tactile sensors will have different output voltage responses. By calculating the ratio of different piezoelectric tactile sensors’ responses and summing up all piezoelectric tactile sensors’ output voltages, the touch point position, touch pressure and touch force acceleration can be detected. A prototype of such a touch screen is manufactured and its position accuracy, touch pressure and response speed are measured in detail. The experimental results show that the prototype has many advantages such as high light transmittance, low energy cost and high durability.

  3. Direct measurement of the positive acceleration of the universe and testing inhomogeneous models under gravitational wave cosmology

    SciTech Connect

    Yagi, Kent; Nishizawa, Atsushi; Yoo, Chul-Moon E-mail: anishi@yukawa.kyoto-u.ac.jp

    2012-04-01

    One possibility for explaining the apparent accelerating expansion of the universe is that we live in the center of a spherically inhomogeneous universe. Although current observations cannot fully distinguish ΛCDM and these inhomogeneous models, direct measurement of the acceleration of the universe can be a powerful tool in probing them. We have shown that, if ΛCDM is the correct model, DECIGO/BBO would be able to detect the positive redshift drift (which is the time evolution of the source redshift z) in 3–5 year gravitational wave (GW) observations from neutron-star binaries, which enables us to rule out any Lemaître-Tolman-Bondi (LTB) void model with monotonically increasing density profile. We may even be able to rule out any LTB model unless we allow unrealistically steep density profile at z ∼ 0. This test can be performed with GW observations alone, without any reference to electromagnetic observations, and is more powerful than the redshift drift measurement using Lyman α forest.

  4. Measuring forgetting: a critical review of accelerated long-term forgetting studies.

    PubMed

    Elliott, Gemma; Isaac, Claire L; Muhlert, Nils

    2014-05-01

    Accelerated long-term forgetting (ALF) refers to abnormal forgetting over hours to weeks despite normal acquisition or initial consolidation. Since standardised assessments of memory typically only test at delays of up to 40-minutes, ALF may go undetected in clinical practice. The memory difficulties associated with ALF can however cause considerable distress to patients. It is important therefore that clinicians are aware that ALF may represent a distinct phenomenon that will require additional and careful assessment to aid patients' understanding of the condition and assist in developing strategies to address its effects. At the same time, ALF may also provide insight into long-term memory processes. Studies of ALF in patients with epilepsy have so far demonstrated mixed results, which may reflect differences in methodology. This review explores the methodological issues that can affect forgetting, such as the effects of age, general cognitive function, test sensitivity and initial learning. It then evaluates the extent to which existing studies have considered these key issues. We outline the points to consider when designing ALF studies that can be used to help improve their validity. These issues can also help to explain some of the mixed findings in studies of ALF and inform the design of standardised tests for assessing ALF in clinical practice.

  5. Wet and dry deposition of 129I in Seville (Spain) measured by accelerator mass spectrometry.

    PubMed

    López-Gutiérrez, J M; García-León, M; Schnabel, C; Suter, M; Synal, H A; Szidat, S

    2001-01-01

    Iodine-129 (T1/2 = 1.57 x 10(7) yr) concentrations have been determined by accelerator mass spectrometry in rainwater samples taken at Seville (southwestern Spain) in 1996 and 1997. This technique allows a reduction in the detection limits for this radionuclide in comparison to radiometric counting and other mass spectrometric methods such as ICP-MS. Typical 129I concentrations range from 4.7 x 10(7) 129I atoms/l (19.2%) to 4.97 x 10(9) 129I atoms/l (5.9%), while 129I depositions are normally in the order of 10(8)-10(10) atoms/m2d. These values agree well with other results obtained for recent rainwater samples collected in Europe. Apart from these, the relationship between 129I deposition and some atmospheric factors has been analyzed, showing the importance of the precipitation rate and the concentration of suspended matter in it.

  6. Measurements of the thermal neutron flux for an accelerator-based photoneutron source.

    PubMed

    Taheri, Ali; Pazirandeh, Ali

    2016-12-01

    To have access to an appropriate neutron source is one of the most demanding requirements for neutron studies. This is important specially in laboratory and clinical applications, which need more compact and accessible sources. The most known neutron sources are fission reactors and natural isotopes, but there is an increasing interest for using accelerator based neutron sources because of their advantages. In this paper, we shall present a photo-neutron source prototype which is designed and fabricated to be used for different neutron researches including in-laboratory neutron activation analysis and neutron imaging, and also preliminary studies in boron neutron capture therapy (BNCT). Series of experimental tests were conducted to examine the intensity and quality of the neutron field produced by this source. Monte-Carlo simulations were also utilized to provide more detailed evaluation of the neutron spectrum, and determine the accuracy of the experiments. The experiments demonstrated a thermal neutron flux in the order of 10(7) (n/cm(2).s), while simulations affirmed this flux and showed a neutron spectrum with a sharp peak at thermal energy region. According to the results, about 60 % of produced neutrons are in the range of thermal to epithermal neutrons.

  7. Anti-proton tune measurements for the Fall 1995 accelerator studies

    SciTech Connect

    Marriner, john; /Fermilab

    1996-04-01

    A system to measure the tunes of a single antiproton (or proton) bunch was built and has been commissioned. The system achieved high sensitivity with a novel closed-orbit suppression system. The use of high bandwidth directional pickpus and kickers in conjunction with precise timing gates enabled the measurement of the tune of a single bunch.

  8. Quadrupole lens-free multiple-profile diagnostics for emittance measurement of laser wakefield accelerated electron beams

    NASA Astrophysics Data System (ADS)

    Krůs, M.; Laštovička, T.; Levato, T.

    2016-02-01

    A quadrupole lens-free diagnostic is a simple single shot method which can be used to measure the electron beam transverse emittance. LANEX screens are used as profile monitors due to the high yield of visible photons which can be easily detected by standard camera sensors. This type of minimally destructive diagnostics is particularly suitable for electron beams accelerated by the laser wakefield mechanism where the basic parameters of such beams fluctuate shot-to-shot mainly during the beam optimizing process. It allows to simultaneously measure the beam divergence, position, profile, pointing, and charge. The numerical study of the diagnostics performance and applicability range is presented and its limits are discussed. The influence of the LANEX screen multiple Coulomb scattering is studied by means of GEANT4; the unfolding procedure for multiple scattering contribution is presented.

  9. Progress in AMS measurements at the LLNL spectrometer. [Accelerator Mass Spectroscopy (AMS)

    SciTech Connect

    Southon, J.R.; Vogel, J.S.; Trumbore, S.E.; Davis, J.C.; Roberts, M.L.; Caffee, M.; Finkel, R.; Proctor, I.D.; Heikkinen, D.W.; Berno, A.J.; Hornady, R.S.

    1991-06-01

    The AMS measurement program at LLNL began in earnest in late 1989, and has initially concentrated on {sup 14}C measurements for biomedical and geoscience applications. We have now begun measurements on {sup 10}Be and {sup 36}Cl, are presently testing the spectrometer performance for {sup 26}Al and {sup 3}H, and will begin tests on {sup 7}Be, {sup 41}Ca and {sup 129}I within the next few months. Our laboratory has a strong biomedical AMS program of {sup 14}C tracer measurements involving large numbers of samples (sometimes hundreds in a single experiment) at {sup 14}C concentrations which are typically .5--5 times Modern, but are occasionally highly enriched. The sample preparation techniques required for high throughput and low cross-contamination for this work are discussed elsewhere. Similar demands are placed on the AMS measurement system, and in particular on the ion source. Modifications to our GIC 846 ion source, described below, allow us to run biomedical and geoscience or archaeological samples in the same source wheel with no adverse effects. The source has a capacity for 60 samples (about 45 unknown) in a single wheel and provides currents of 30--60{mu}A of C{sup {minus}} from hydrogen-reduced graphite. These currents and sample capacity provide high throughput for both biomedical and other measurements: the AMS system can be started up, tuned, and a wheel of carbon samples measured to 1--1.5% in under a day; and 2 biomedical wheels can be measured per day without difficulty. We report on the present status of the Lawrence Livermore AMS spectrometer, including sample throughput and progress towards routine 1% measurement capability for {sup 14}C, first results on other isotopes, and experience with a multi-sample high intensity ion source. 5 refs.

  10. RBC-/Cr-51/ half-life and albumin turnover in growing Beagle dogs during chronic radial acceleration

    NASA Technical Reports Server (NTRS)

    Beckman, D. A.; Evans, J. W.; Oyama, J.

    1979-01-01

    The effects of chronic centrifugation on growing Beagle dogs exposed to -2 or -2.6 Gx on albumin and RBC turnover rates, albumin concentration and space, and total blood volume were determined and compared with caged and run control of animals. Albumin-(I-125) and autologous RBC-(Cr-51) preparations were injected into all dogs at day 82 of the centrifugation periods, and the disappearance curves were determined by successive bleedings of the animals over the next 35 d, during which the centrifugation was continued. There were no differences in albumin turnover rates or space. Two populations of RBCs were found in both centrifugated groups, one with a normal half-life of 27 + or - 1 S.E.M. d, and one with a significantly (p less than 0.01) shorter half-life of 15 + or - 2 S.E.M. d. An absolute polycythemia was also observed in both centrifuged groups. The results suggest that chronic centrifugation acts through some as-yet unknown mechanism to affect RBC population kinetics.

  11. Compensating sampling errors in stabilizing helmet-mounted displays using auxiliary acceleration measurements

    NASA Technical Reports Server (NTRS)

    Merhav, S.; Velger, M.

    1991-01-01

    A method based on complementary filtering is shown to be effective in compensating for the image stabilization error due to sampling delays of HMD position and orientation measurements. These delays would otherwise have prevented the stabilization of the image in HMDs. The method is also shown to improve the resolution of the head orientation measurement, particularly at low frequencies, thus providing smoother head control commands, which are essential for precise head pointing and teleoperation.

  12. Activation Measurements for Thermal Neutrons, U.S. Measurements of 36Cl in Mineral Samples from Hiroshima and Nagasaki; and Measurement of 63 Ni in Copper Samples From Hiroshima by Accelerator Mass Spectrometry

    SciTech Connect

    Tore Straume; Alfredo A. Marchetti; Stephen D. Egbert; James A. Roberts; Ping Men; Shoichiro Fujita; Kiyoshi Shizuma; Masaharu Hoshi; G. Rugel; W. Ruhm; G. Korschinek; J. E. McAninch; K. L. Carroll; T. Faestermann; K. Knie; R. E. Martinelli; A. Wallner; C. Wallner

    2005-01-14

    The present paper presents the {sup 36}Cl measurement effort in the US. A large number of {sup 36}Cl measurements have been made in both granite and concrete samples obtained from various locations and distances in Hiroshima and Nagasaki. These measurements employed accelerator mass spectrometry (AMS) to quantify the number of atoms of {sup 36}Cl per atom of total Cl in the sample. Results from these measurements are presented here and discussed in the context of the DS02 dosimetry reevaluation effort for Hiroshima and Nagasaki atomic-bomb survivors. The production of {sup 36}Cl by bomb neutrons in mineral samples from Hiroshima and Nagasaki was primarily via the reaction {sup 35}Cl(n,{gamma}){sup 36}Cl. This reaction has a substantial thermal neutron cross-section (43.6 b at 0.025 eV) and the product has a long half-life (301,000 y). hence, it is well suited for neutron-activation detection in Hiroshima and Nagasaki using AMS more than 50 years after the bombings. A less important reaction for bomb neutrons, {sup 39}K(n,{alpha}){sup 36}Cl, typically produces less than 10% of the {sup 36}Cl in mineral samples such as granite and concrete, which contain {approx} 2% potassium. In 1988, only a year after the publication of the DS86 final report (Roesch 1987), it was demonstrated experimentally that {sup 36}Cl measured using AMS should be able to detect the thermal neutron fluences at the large distances most relevant to the A-bomb survivor dosimetry. Subsequent measurements in mineral samples from both Hiroshima and Nagasaki validated the experimental findings. The potential utility of {sup 36}Cl as a thermal neutron detector in Hiroshima was first presented by Haberstock et al. who employed the Munich AMS facility to measure {sup 36}Cl/Cl ratios in a gravestone from near the hypocenter. That work subsequently resulted in an expanded {sup 36}Cl effort in Germany that paralleled the US work. More recently, there have also been {sup 36}Cl measurements made by a Japanese

  13. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  14. Methodology and measures for preventing unacceptable flow-accelerated corrosion thinning of pipelines and equipment of NPP power generating units

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Lovchev, V. N.; Gutsev, D. F.

    2016-10-01

    Problems of metal flow-accelerated corrosion (FAC) in the pipelines and equipment of the condensate- feeding and wet-steam paths of NPP power-generating units (PGU) are examined. Goals, objectives, and main principles of the methodology for the implementation of an integrated program of AO Concern Rosenergoatom for the prevention of unacceptable FAC thinning and for increasing operational flow-accelerated corrosion resistance of NPP EaP are worded (further the Program). A role is determined and potentialities are shown for the use of Russian software packages in the evaluation and prediction of FAC rate upon solving practical problems for the timely detection of unacceptable FAC thinning in the elements of pipelines and equipment (EaP) of the secondary circuit of NPP PGU. Information is given concerning the structure, properties, and functions of the software systems for plant personnel support in the monitoring and planning of the inservice inspection of FAC thinning elements of pipelines and equipment of the secondary circuit of NPP PGUs, which are created and implemented at some Russian NPPs equipped with VVER-1000, VVER-440, and BN-600 reactors. It is noted that one of the most important practical results of software packages for supporting NPP personnel concerning the issue of flow-accelerated corrosion consists in revealing elements under a hazard of intense local FAC thinning. Examples are given for successful practice at some Russian NPP concerning the use of software systems for supporting the personnel in early detection of secondary-circuit pipeline elements with FAC thinning close to an unacceptable level. Intermediate results of working on the Program are presented and new tasks set in 2012 as a part of the updated program are denoted. The prospects of the developed methods and tools in the scope of the Program measures at the stages of design and construction of NPP PGU are discussed. The main directions of the work on solving the problems of flow-accelerated

  15. Performance of a fast digital integrator in on-field magnetic measurements for particle accelerators.

    PubMed

    Arpaia, P; Bottura, L; Fiscarelli, L; Walckiers, L

    2012-02-01

    The fast digital integrator has been conceived to face most demanding magnet test requirements with a resolution of 10 ppm, a signal-to-noise ratio of 105 dB at 20 kHz, a time resolution of 50 ns, an offset of 10 ppm, and on-line processing. In this paper, the on-field achievements of the fast digital integrator are assessed by a specific measurement campaign at the European Organization for Nuclear Research (CERN). At first, the architecture and the metrological specifications of the instrument are reported. Then, the recent on-field achievements of (i) ±10 ppm of uncertainty in the measurement of the main field for superconducting magnets characterization, (ii) ±0.02 % of field uncertainty in quality assessment of small-aperture permanent magnets, and (iii) ±0.15 % of drift, in an excitation current measurement of 600 s under cryogenic conditions, are presented and discussed.

  16. Measurement of the {sup 214}Po half-life by the DEVIS track setup

    SciTech Connect

    Belov, V. A.; Brakhman, E. V.; Zeldovich, O. Ya.; Karelin, A. K.; Kirichenko, V. V.; Kobyakin, A. S. Kozodaeva, O. M.; Kuchenkov, A. V.; Tsvetkova, T. N.

    2013-04-15

    Measurement of the {sup 214}Po half-life with the DEVIS track setup at the Institute of Theoretical and Experimental Physics (ITEP, Moscow) by means of a procedure based on determining lifetimes of individual nuclei is described. The value obtained for the {sup 214}Po half-life is 163.8 {+-} 3.0 Micro-Sign s. The possibility of reaching the accuracy of the measurements that is required for testing the statement that the decay of some nuclei has a nonexponential character and the source intensity necessary for this are discussed.

  17. Half-life measurements of lutetium-176 using underground HPGe-detectors.

    PubMed

    Hult, Mikael; Vidmar, Tim; Rosengård, Ulf; Marissens, Gerd; Lutter, Guillaume; Sahin, Namik

    2014-05-01

    The half-life of (176)Lu was determined by measuring the (176)Lu activity in metallic lutetium foils. Three different HPGe-detectors located 225 m underground were employed for the study. Measurements using the sum-peak method were performed and resulted in an average massic activity of (52.61±0.36) Bq g(-1). The foils were of natural isotopic abundance so using the massic activity and the value of the natural isotopic abundance of (2.59±0.01)%, a half-life of (3.722±0.029)×10(10)a could be calculated.

  18. Measurement of the BB Decay Half-Life of 130Te with the NEMO-3 Detector

    SciTech Connect

    A. J. Caffrey

    2011-08-01

    We report results from the NEMO-3 experiment based on an exposure of 1275 days with 661 g of 130Te in the form of enriched and natural tellurium foils. The double B decay rate of 130Te is found to be greater than zero with a significance of 7.7 standard deviations and the half-life is measured to be T2v 1/2 = [7.0 +/- 0.9(stat) +/- 1.1 (syst)] x 10{sup 20} yr. This represents the most precise measurement of this half-life yet published and the first real-time observation of this decay.

  19. The use of aluminum nitride to improve Aluminum-26 Accelerator Mass Spectrometry measurements and production of Radioactive Ion Beams

    NASA Astrophysics Data System (ADS)

    Janzen, Meghan S.; Galindo-Uribarri, Alfredo; Liu, Yuan; Mills, Gerald D.; Romero-Romero, Elisa; Stracener, Daniel W.

    2015-10-01

    We present results and discuss the use of aluminum nitride as a promising source material for Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beams (RIBs) science applications of 26Al isotopes. The measurement of 26Al in geological samples by AMS is typically conducted on Al2O3 targets. However, Al2O3 is not an ideal source material because it does not form a prolific beam of Al- required for measuring low-levels of 26Al. Multiple samples of aluminum oxide (Al2O3), aluminum nitride (AlN), mixed Al2O3-AlN as well as aluminum fluoride (AlF3) were tested and compared using the ion source test facility and the stable ion beam (SIB) injector platform at the 25-MV tandem electrostatic accelerator at Oak Ridge National Laboratory. Negative ion currents of atomic and molecular aluminum were examined for each source material. It was found that pure AlN targets produced substantially higher beam currents than the other materials and that there was some dependence on the exposure of AlN to air. The applicability of using AlN as a source material for geological samples was explored by preparing quartz samples as Al2O3 and converting them to AlN using a carbothermal reduction technique, which involved reducing the Al2O3 with graphite powder at 1600 °C within a nitrogen atmosphere. The quartz material was successfully converted to AlN. Thus far, AlN proves to be a promising source material and could lead towards increasing the sensitivity of low-level 26Al AMS measurements. The potential of using AlN as a source material for nuclear physics is also very promising by placing 26AlN directly into a source to produce more intense radioactive beams of 26Al.

  20. Directly coupled high-performance liquid chromatography-accelerator mass spectrometry measurement of chemically modified protein and peptides.

    PubMed

    Thomas, Avi T; Stewart, Benjamin J; Ognibene, Ted J; Turteltaub, Kenneth W; Bench, Graham

    2013-04-02

    Quantitation of low-abundance protein modifications involves significant analytical challenges, especially in biologically important applications, such as studying the role of post-translational modifications in biology and measurement of the effects of reactive drug metabolites. (14)C labeling combined with accelerator mass spectrometry (AMS) provides exquisite sensitivity for such experiments. Here, we demonstrate real-time (14)C quantitation of high-performance liquid chromatography (HPLC) separations by liquid sample accelerator mass spectrometry (LS-AMS). By enabling direct HPLC-AMS coupling, LS-AMS overcomes several major limitations of conventional HPLC-AMS, where individual HPLC fractions must be collected and converted to graphite before measurement. To demonstrate LS-AMS and compare the new technology to traditional solid sample AMS (SS-AMS), reduced and native bovine serum albumin (BSA) was modified by (14)C-iodoacetamide, with and without glutathione present, producing adducts on the order of 1 modification in every 10(6) to 10(8) proteins. (14)C incorporated into modified BSA was measured by solid carbon AMS and LS-AMS. BSA peptides were generated by tryptic digestion. Analysis of HPLC-separated peptides was performed in parallel by LS-AMS, fraction collection combined with SS-AMS, and (for peptide identification) electrospray ionization and tandem mass spectrometry (ESI-MS/MS). LS-AMS enabled (14)C quantitation from ng sample sizes and was 100 times more sensitive to (14)C incorporated in HPLC-separated peptides than SS-AMS, resulting in a lower limit of quantitation of 50 zmol (14)C/peak. Additionally, LS-AMS turnaround times were minutes instead of days, and HPLC trace analyses required 1/6th the AMS instrument time required for analysis of graphite fractions by SS-AMS.

  1. The use of aluminum nitride to improve Aluminum-26 Accelerator Mass Spectrometry measurements and production of Radioactive Ion Beams

    DOE PAGES

    Janzen, Meghan S.; Galindo-Uribarri, Alfredo; Liu, Yuan; ...

    2015-06-29

    In this paper, we present results and discuss the use of aluminum nitride as a promising source material for Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beams (RIBs) science applications of 26Al isotopes. The measurement of 26Al in geological samples by AMS is typically conducted on Al2O3 targets. However, Al2O3 is not an ideal source material because it does not form a prolific beam of Al- required for measuring low-levels of 26Al. Multiple samples of aluminum oxide (Al2O3), aluminum nitride (AlN), mixed Al2O3–AlN as well as aluminum fluoride (AlF3) were tested and compared using the ion source test facility andmore » the stable ion beam (SIB) injector platform at the 25-MV tandem electrostatic accelerator at Oak Ridge National Laboratory. Negative ion currents of atomic and molecular aluminum were examined for each source material. It was found that pure AlN targets produced substantially higher beam currents than the other materials and that there was some dependence on the exposure of AlN to air. The applicability of using AlN as a source material for geological samples was explored by preparing quartz samples as Al2O3 and converting them to AlN using a carbothermal reduction technique, which involved reducing the Al2O3 with graphite powder at 1600°C within a nitrogen atmosphere. The quartz material was successfully converted to AlN. Thus far, AlN proves to be a promising source material and could lead towards increasing the sensitivity of low-level 26Al AMS measurements. In conclusion, the potential of using AlN as a source material for nuclear physics is also very promising by placing 26AlN directly into a source to produce more intense radioactive beams of 26Al.« less

  2. Assessment of Questionnaires Measuring Quality of Life in Infertile Couples: A Systematic Review

    PubMed Central

    Mousavi, Seyyed Abbas; Masoumi, Seyyedeh Zahra; Keramat, Afsaneh; Pooralajal, Jalal; Shobeiri, Fatemeh

    2013-01-01

    Background Infertility has potentially inappropriate effects on quality of life in infertile couples. Various general and specific questionnaires have been structured for assessing different aspects of quality of life in infertile men, women, or couples. The present systematic review was designed to assess these questionnaires and also identify different factors affecting infertile couples based on the aforesaid questionnaires. Methods The research strategy involved general and specific terms in relation to couples's infertility and their quality of life. A review was done for studies published from 1982 to 2012 that were indexed in Medline, ISI Web of Science and Scopus as well as abstract books on this subject. We also corresponded with the authors of the references in related studies for introducing more resources and references. Results In all reviewed studies, different aspects of the quality of life in couples were evaluated including sexual, psychological, social, communicational, environmental, occupational, medical, as well as economical ones. In total, after initial screening of all studies, 10 general and 2 specific questionnaires were retrieved. Although no meta-analysis was found in the review, infertility had a negative effect on quality of life in couples. Conclusion This study revealed that some general questionnaires such as SF-36 and WHO-QOL were mostly used for assessing quality of life in infertile couples and some specific questionnaires such as FERTI-QoL and Fertility Problem Inventory were rarely used. Thus, it seems that the evaluation of quality of life in infertile couples needs valid instruments for measurement. PMID:24163794

  3. Estimation of particle size based on LDV measurements in a de-accelerating flow field

    NASA Technical Reports Server (NTRS)

    Meyers, J. F.

    1985-01-01

    The accuracy of velocity measurements made with a laser velocimeter is strongly dependent upon the response of the seeding particles to the dynamics of the flow field. The smaller the particle the better the response to flow fluctuations and gradients and therefore the more accurate velocity measurement. In direct conflict is the requirement of light scattering efficiency to obtain signals with the laser velocimeter which, in general, is better as the particle size is increased. In low speed flow fields these two requirements on particle size overlap and accurate measurements may be obtained. However in high speed flows, where the velocity gradients may be severe, very small particles are required to maintain sufficient dynamic response characteristics to follow the flow. Therefore if velocity measurements are to be made in these flows, the laser velocimeter must be designed with sufficient sensitivity to obtain signals from these small particles. An insitu determination of the size distribution of kaolin particles (Al2O3, .2 + or - SiO2 . 2H2O) in the 16-foot Transonic Tunnel and the sensitivity characteristics of the laser velocimeter system is described.

  4. Development and characterization of an interferometer for calorimeter-based absorbed dose to water measurements in a medical linear accelerator

    NASA Astrophysics Data System (ADS)

    Flores-Martinez, Everardo; Malin, Martha J.; DeWerd, Larry A.

    2016-11-01

    The quantity of relevance for external beam radiotherapy is absorbed dose to water (ADW). An interferometer was built, characterized, and tested to measure ADW within the dose range of interest for external beam radiotherapy using the temperature dependence of the refractive index of water. The interferometer was used to measure radiation-induced phase shifts of a laser beam passing through a (10 × 10 × 10) cm3 water-filled glass phantom, irradiated with a 6 MV photon beam from a medical linear accelerator. The field size was (7 × 7) cm2 and the dose was measured at a depth of 5 cm in the water phantom. The intensity of the interference pattern was measured with a photodiode and was used to calculate the time-dependent phase shift curve. The system was thermally insulated to achieve temperature drifts of less than 1.5 mK/min. Data were acquired 60 s before and after the irradiation. The radiation-induced phase shifts were calculated by taking the difference in the pre- and post-irradiation drifts extrapolated to the midpoint of the irradiation. For 200, 300, and 400 monitor units, the measured doses were 1.6 ± 0.3, 2.6 ± 0.3, and 3.1 ± 0.3 Gy, respectively. Measurements agreed within the uncertainty with dose calculations performed with a treatment planning system. The estimated type-A, k = 1 uncertainty in the measured doses was 0.3 Gy which is an order of magnitude lower than previously published interferometer-based ADW measurements.

  5. Development and characterization of an interferometer for calorimeter-based absorbed dose to water measurements in a medical linear accelerator.

    PubMed

    Flores-Martinez, Everardo; Malin, Martha J; DeWerd, Larry A

    2016-11-01

    The quantity of relevance for external beam radiotherapy is absorbed dose to water (ADW). An interferometer was built, characterized, and tested to measure ADW within the dose range of interest for external beam radiotherapy using the temperature dependence of the refractive index of water. The interferometer was used to measure radiation-induced phase shifts of a laser beam passing through a (10 × 10 × 10) cm(3) water-filled glass phantom, irradiated with a 6 MV photon beam from a medical linear accelerator. The field size was (7 × 7) cm(2) and the dose was measured at a depth of 5 cm in the water phantom. The intensity of the interference pattern was measured with a photodiode and was used to calculate the time-dependent phase shift curve. The system was thermally insulated to achieve temperature drifts of less than 1.5 mK/min. Data were acquired 60 s before and after the irradiation. The radiation-induced phase shifts were calculated by taking the difference in the pre- and post-irradiation drifts extrapolated to the midpoint of the irradiation. For 200, 300, and 400 monitor units, the measured doses were 1.6 ± 0.3, 2.6 ± 0.3, and 3.1 ± 0.3 Gy, respectively. Measurements agreed within the uncertainty with dose calculations performed with a treatment planning system. The estimated type-A, k = 1 uncertainty in the measured doses was 0.3 Gy which is an order of magnitude lower than previously published interferometer-based ADW measurements.

  6. Accelerating flow propagator measurements for the investigation of reactive transport in porous media

    NASA Astrophysics Data System (ADS)

    Colbourne, A. A.; Sederman, A. J.; Mantle, M. D.; Gladden, L. F.

    2016-11-01

    NMR propagator measurements are widely used for identifying the distribution of molecular displacements over a given observation time, characterising a flowing system. However, where high q-space resolution is required, the experiments are time consuming and therefore unsuited to the study of dynamic systems. Here, it is shown that with an appropriately sampled subset of the q-space points in a high-resolution flow propagator measurement, one can quickly and robustly reconstruct the fully sampled propagator through interpolation of the acquired raw data. It was found that exponentially sampling ∼4% of the original data-points allowed a reconstruction with the deviation from the fully sampled propagator below the noise level, in this case reducing the required experimental time from ∼2.8 h to <7 min. As a demonstration, this approach is applied to observe the temporal evolution of the reactive flow of acid through an Estaillades rock core plug. It is shown that 'wormhole' formation in the rock core plug provides a channel for liquid flow such that the remaining pore space is by-passed, thereby causing the flow velocity of the liquid in the remaining part of the plug to become stagnant. The propagator measurements are supported by both 1D profiles and 2D imaging data. Such insights are of importance in understanding well acidisation and CO2 sequestration processes.

  7. Measurement of Muon Antineutrino Oscillations with an Accelerator-Produced Off-Axis Beam.

    PubMed

    Abe, K; Andreopoulos, C; Antonova, M; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bartet-Friburg, P; Batkiewicz, M; Bay, F; Berardi, V; Berkman, S; Bhadra, S; Blondel, A; Bolognesi, S; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buizza Avanzini, M; Calland, R G; Cao, S; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Chikuma, N; Christodoulou, G; Clifton, A; Coleman, J; Collazuol, G; Cremonesi, L; Dabrowska, A; De Rosa, G; Dealtry, T; Denner, P F; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Dolan, S; Drapier, O; Duffy, K E; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Feusels, T; Finch, A J; Fiorentini, G A; Friend, M; Fujii, Y; Fukuda, D; Fukuda, Y; Furmanski, A P; Galymov, V; Garcia, A; Giffin, S G; Giganti, C; Gizzarelli, F; Gonin, M; Grant, N; Hadley, D R; Haegel, L; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayashino, T; Hayato, Y; Helmer, R L; Hierholzer, M; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Hogan, M; Holeczek, J; Horikawa, S; Hosomi, F; Huang, K; Ichikawa, A K; Ieki, K; Ikeda, M; Imber, J; Insler, J; Intonti, R A; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Izmaylov, A; Jacob, A; Jamieson, B; Jiang, M; Johnson, S; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kim, H; Kim, J; King, S; Kisiel, J; Knight, A; Knox, A; Kobayashi, T; Koch, L; Koga, T; Konaka, A; Kondo, K; Kopylov, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Larkin, E; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Liptak, Z J; Litchfield, R P; Li, X; Longhin, A; Lopez, J P; Ludovici, L; Lu, X; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martins, P; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Ma, W Y; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Mefodiev, A; Mezzetto, M; Mijakowski, P; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K G; Nakamura, K; Nakamura, K D; Nakayama, S; Nakaya, T; Nakayoshi, K; Nantais, C; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; Nowak, J; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Ovsyannikova, T; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Patel, N D; Pavin, M; Payne, D; Perkin, J D; Petrov, Y; Pickard, L; Pickering, L; Pinzon Guerra, E S; Pistillo, C; Popov, B; Posiadala-Zezula, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reinherz-Aronis, E; Riccio, C; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Rychter, A; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shah, R; Shaikhiev, A; Shaker, F; Shaw, D; Shiozawa, M; Shirahige, T; Short, S; Smy, M; Sobczyk, J T; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Stewart, T; Suda, Y; Suvorov, S; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Terhorst, D; Terri, R; Thakore, T; Thompson, L F; Tobayama, S; Toki, W; Tomura, T; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vallari, Z; Vasseur, G; Wachala, T; Wakamatsu, K; Walter, C W; Wark, D; Warzycha, W; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Wilson, J R; Wilson, R J; Yamada, Y; Yamamoto, K; Yamamoto, M; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yoo, J; Yoshida, K; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2016-05-06

    T2K reports its first measurements of the parameters governing the disappearance of ν[over ¯]_{μ} in an off-axis beam due to flavor change induced by neutrino oscillations. The quasimonochromatic ν[over ¯]_{μ} beam, produced with a peak energy of 0.6 GeV at J-PARC, is observed at the far detector Super-Kamiokande, 295 km away, where the ν[over ¯]_{μ} survival probability is expected to be minimal. Using a data set corresponding to 4.01×10^{20} protons on target, 34 fully contained μ-like events were observed. The best-fit oscillation parameters are sin^{2}(θ[over ¯]_{23})=0.45 and |Δm[over ¯]_{32}^{2}|=2.51×10^{-3}  eV^{2} with 68% confidence intervals of 0.38-0.64 and 2.26-2.80×10^{-3}  eV^{2}, respectively. These results are in agreement with existing antineutrino parameter measurements and also with the ν_{μ} disappearance parameters measured by T2K.

  8. A method for measurement of ultratrace 79Se with accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Guan, Yongjing; He, Ming; Jiang, Shan; Wu, Shaoyong; Li, Chaoli

    2010-04-01

    79Se is a long-lived fission product with chemical and radiological toxicity. It is one of the radionuclides of interest in nuclear waste disposal due to its potential migration capacity to the surface environment. Furthermore, 79Se is an ideal tracer in biomedicine. One of the major obstacles in the measurement of ultratrace 79Se with AMS is the strong interference from the isobaric nuclide 79Br. This paper presents a new ultra-sensitive method for 79Se measurements with AMS. The novel aspects of our procedures include the extraction of SeO2- molecular ions, that results in a suppression of 79Br background by as much as about five orders of magnitude; the selection of Ag 2SeO 3 as the chemical form of Se in the target sample, that brings about a relatively large and stable SeO2- beam current; and the renovation of the multi-anode detector, that makes 79Se better identified from the interfering nuclide 79Br. By using these procedures, a sensitivity of better than 1.0 × 10 -12 has been achieved for 79Se/Se measurement with the CIAE-AMS system. It is then possible to quantify the tracer 79Se in biological samples. Recently, we are prepared to develop the 79Se-AMS biological tracer methodology.

  9. Measurement of Muon Antineutrino Oscillations with an Accelerator-Produced Off-Axis Beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berkman, S.; Bhadra, S.; Blondel, A.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buizza Avanzini, M.; Calland, R. G.; Cao, S.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Collazuol, G.; Cremonesi, L.; Dabrowska, A.; De Rosa, G.; Dealtry, T.; Denner, P. F.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duffy, K. E.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, D.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S. G.; Giganti, C.; Gizzarelli, F.; Gonin, M.; Grant, N.; Hadley, D. R.; Haegel, L.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Helmer, R. L.; Hierholzer, M.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Hogan, M.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ikeda, M.; Imber, J.; Insler, J.; Intonti, R. A.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, H.; Kim, J.; King, S.; Kisiel, J.; Knight, A.; Knox, A.; Kobayashi, T.; Koch, L.; Koga, T.; Konaka, A.; Kondo, K.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Liptak, Z. J.; Litchfield, R. P.; Li, X.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Lu, X.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Ma, W. Y.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Mezzetto, M.; Mijakowski, P.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakamura, K. D.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Patel, N. D.; Pavin, M.; Payne, D.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pickering, L.; Pinzon Guerra, E. S.; Pistillo, C.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reinherz-Aronis, E.; Riccio, C.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaw, D.; Shiozawa, M.; Shirahige, T.; Short, S.; Smy, M.; Sobczyk, J. T.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Stewart, T.; Suda, Y.; Suvorov, S.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Terhorst, D.; Terri, R.; Thakore, T.; Thompson, L. F.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vallari, Z.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Wilson, J. R.; Wilson, R. J.; Yamada, Y.; Yamamoto, K.; Yamamoto, M.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2016-05-01

    T2K reports its first measurements of the parameters governing the disappearance of ν¯ μ in an off-axis beam due to flavor change induced by neutrino oscillations. The quasimonochromatic ν¯μ beam, produced with a peak energy of 0.6 GeV at J-PARC, is observed at the far detector Super-Kamiokande, 295 km away, where the ν¯μ survival probability is expected to be minimal. Using a data set corresponding to 4.01 ×1020 protons on target, 34 fully contained μ -like events were observed. The best-fit oscillation parameters are sin2(θ¯ 23)=0.45 and |Δ m¯32 2|=2.51 ×10-3 eV2 with 68% confidence intervals of 0.38 - 0.64 and 2.26 - 2.80 ×10-3 eV2 , respectively. These results are in agreement with existing antineutrino parameter measurements and also with the νμ disappearance parameters measured by T2K.

  10. Direct measurement of magnetic flux compression on the Z pulsed-power accelerator

    NASA Astrophysics Data System (ADS)

    McBride, R. D.; Bliss, D. E.; Martin, M. R.; Jennings, C. A.; Lamppa, D. C.; Dolan, D. H.; Lemke, R. W.; Rovang, D. C.; Rochau, G. A.; Cuneo, M. E.; Sinars, D. B.; Intrator, T. P.; Weber, T. E.

    2016-10-01

    We report on the progress made to date for directly measuring magnetic flux compression on Z. Each experiment consisted of an initially solid aluminum liner (a cylindrical tube), which was imploded using Z's drive current (0-20 MA in 100 ns). The imploding liner compresses a 10-20-T axial seed field, Bz(0), supplied by an independently driven Helmholtz coil pair. Assuming perfect flux conservation, the axial field amplification should be well described by Bz(t) =Bz (0)×[R(0)/R(t)]2, where R is the liner's inner surface radius. With perfect flux conservation, Bz and dBz/dt values exceeding 104 T and 1012 T/s, respectively, are expected. These large values, the diminishing liner volume, and the harsh environment on Z, make it particularly challenging to measure these fields directly. We report on our latest efforts to do so using a fiber-optic-based Faraday rotation diagnostic, where the magneto-active portion of the sensor is made from terbium-doped optical fiber. We have now used this diagnostic to measure a flux-compressed magnetic field to over 600 T prior to the imploding liner hitting the on-axis fiber housing. This project was funded in part by Sandia's LDRD program and US DOE-NNSA contract DE-AC04-94AL85000.

  11. Hubble Parameter Measurement Constraints on the Redshift of the Deceleration–Acceleration Transition, Dynamical Dark Energy, and Space Curvature

    NASA Astrophysics Data System (ADS)

    Farooq, Omer; Ranjeet Madiyar, Foram; Crandall, Sara; Ratra, Bharat

    2017-01-01

    We compile an updated list of 38 measurements of the Hubble parameter H(z) between redshifts 0.07 ≤ z ≤ 2.36 and use them to place constraints on model parameters of constant and time-varying dark energy cosmological models, both spatially flat and curved. We use five models to measure the redshift of the cosmological deceleration–acceleration transition, zda, from these H(z) data. Within the error bars, the measured zda are insensitive to the model used, depending only on the value assumed for the Hubble constant H0. The weighted mean of our measurements is zda = 0.72 ± 0.05 (0.84 ± 0.03) for H0 = 68 ± 2.8 (73.24 ± 1.74) km s‑1 Mpc‑1 and should provide a reasonably model-independent estimate of this cosmological parameter. The H(z) data are consistent with the standard spatially flat ΛCDM cosmological model but do not rule out nonflat models or dynamical dark energy models.

  12. Summary of the Persistent Current Effect Measurements in Nb 3 Sn and NbTi Accelerator Magnets at Fermilab

    DOE PAGES

    Velev, G. V.; Chlachidze, G.; DiMarco, J.; ...

    2016-01-06

    In the past 10 years, Fermilab has been executing an intensive R&D program on accelerator magnets based on Nb3Sn superconductor technology. This R&D effort includes dipole and quadrupole models for different programs, such as LARP and 11 T dipoles for the LHC high-luminosity upgrade. Before the Nb3Sn R&D program, Fermilab was involved in the production of the low-beta quadrupole magnets for LHC based on the NbTi superconductor. Additionally, during the 2003-2005 campaign to optimize the operation of the Tevatron, a large number of Tevatron magnets were re-measured. As a result of this field analysis, a systematic study of the persistentmore » current decay and snapback effect in these magnets was performed. This paper summarizes the result of this study and presents a comparison between Nb3Sn and NbTi dipoles and quadrupoles.« less

  13. Accelerator mass spectrometry measurement of intracellular concentrations of active drug metabolites in human target cells in vivo.

    PubMed

    Chen, J; Garner, R C; Lee, L S; Seymour, M; Fuchs, E J; Hubbard, W C; Parsons, T L; Pakes, G E; Fletcher, C V; Flexner, C

    2010-12-01

    Accelerator mass spectrometry (AMS) is an ultrasensitive technique to detect radiolabeled compounds. We administered a microdose (100 µg) of (14)C-labeled zidovudine (ZDV) with or without a standard unlabeled dose (300 mg) to healthy volunteers. Intracellular ZDV-triphosphate (ZDV-TP) concentration was measured using AMS and liquid chromatography-tandem mass spectrometry (LC/MS/MS). AMS analysis yielded excellent concordance with LC/MS/MS and was 30,000-fold more sensitive. The kinetics of intracellular ZDV-TP formation changed several-fold over the dose range studied (100 µg-300 mg). AMS holds promise as a tool for quantifying intracellular drug metabolites and other biomediators in vivo.

  14. Measurement of the (211)Pb half-life using recoil atoms from (219)Rn decay.

    PubMed

    Aitken-Smith, P M; Collins, S M

    2016-04-01

    The radioactive half-life of (211)Pb was measured, by α-particle counting of samples of radiochemically pure (211)Pb in equilibrium with its α-emitting progeny, (211)Bi and (211)Po. The samples were prepared by the collection of (215)Po recoil atoms from the decay of the (219)Rn decay progeny produced from a (223)Ra sample onto stainless steel discs. The radioactive decay of the (211)Pb was measured utilising a 2π proportional counter operating on the α plateau. A half-life of 36.164 (13)min was determined, which is in agreement with currently available literature. A full uncertainty budget is presented. A recommended half-life of T1/2((211)Pb)=36.161 (17)min has been evaluated from the current literature values.

  15. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  16. POD improvements of GALILEO satellites through the measurement of their non-gravitational accelerations by means of an onboard accelerometer

    NASA Astrophysics Data System (ADS)

    Peron, Roberto; Lucchesi, David M.; Santoli, Francesco; Iafolla, Valerio; Fiorenza, Emiliano; Lefevre, Carlo; Lucente, Marco; Magnafico, Carmelo; Kalarus, Maciej; Zielinski, Janusz

    2016-04-01

    The Precise Orbit Determination (POD) of the satellites of the Global Navigation Satellite Systems (GNSS) represents the basic prerequisite in order to provide refined ephemerides for their orbit, aimed at providing a precise and accurate positioning on the Earth. An important factor that impacts negatively in the POD of these satellites is the limited modeling of the accelerations produced by the non-gravitational accelerations. These, indeed, are subtle and generally complex to model properly, especially in the case of a complex in shape spacecraft, with solar panels and antennae for microwave link and the mutual shadowing effects among the many surfaces involved. We have to notice that their modeling has an important impact in the determination of a number of geophysical parameters of interest, such as stations coordinates, Earth's geocenter and orientation parameters. In the case of GNSS satellites, the main NGP acceleration is the one produced by the direct solar radiation pressure, with non-negligible contributions due to Earth's albedo, thermal effects and power radiated by the antennae. The models developed so far for these perturbative effects have shown many limits, as pointed out in the literature. Currently, the models developed for the NGPs are mainly based on empirical blind models (with the goal of absorb unknowns quantities) and more recently with the use of wing-box models, that try to provide a finite-elements approach to the modeling. The European Space Agency (ESA) - in the context of the development of the GALILEO constellation, and especially in view of the next generation of GALILEO spacecraft - besides being interested in possible improvements of the NGPs models, is also envisaging the use of an onboard accelerometer to directly measure them in order to improve the POD of each spacecraft of the constellation. We have been involved in this study by means of a proposal to ESA denominated GALileo and ACcelerometry (GALAC) led by the Space

  17. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    PubMed

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-03-08

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance.

  18. VELOCITY-FIELD MEASUREMENTS OF A SHOCK-ACCELERATED FLUID INSTABILITY

    SciTech Connect

    K. PRESTRIDGE; C. ZOLID; ET AL

    2001-05-01

    A cylinder of heavy gas (SF{sub 6}) in air is hit by a Mach 1.2 shock. The resultant Richtmyer-Meshkov instability is observed as it propagates through the test section of the shock tube. Six images are taken after shock impact, and the velocity field at one time is measured using Particle Image Velocimetry (PIV). The images of the density field show the development of a secondary instability in the cylinder. The velocity field provides us with information about the magnitudes of the velocities as well as the magnitude of the vorticity in the flow.

  19. Life Span as the Measure of Performance and Learning in a Business Gaming Simulation

    ERIC Educational Resources Information Center

    Thavikulwat, Precha

    2012-01-01

    This study applies the learning curve method of measuring learning to participants of a computer-assisted business gaming simulation that includes a multiple-life-cycle feature. The study involved 249 participants. It verified the workability of the feature and estimated the participants' rate of learning at 17.4% for every doubling of experience.…

  20. Measuring the Quality of Life of University Students. Research Monograph Series. Volume 1.

    ERIC Educational Resources Information Center

    Roberts, Lance W.; Clifton, Rodney A.

    This study sought to develop a valid set of scales in the cognitive and affective domains for measuring the quality of life of university students. In addition the study attempted to illustrate the usefulness of Thomas Piazza's procedures for constructing valid scales in educational research. Piazza's method involves a multi-step construction of…

  1. Quality of College Life (QCL) of Students: Further Validation of a Measure of Well-Being

    ERIC Educational Resources Information Center

    Sirgy, M. Joseph; Lee, Dong-Jin; Grzeskowiak, Stephan; Yu, Grace B.; Webb, Dave; El-Hasan, Karma; Vega, Jose Jesus Garcia; Ekici, Ahmet; Johar, J. S.; Krishen, Anjala; Kangal, Ayca; Swoboda, Bernhard; Claiborne, C. B.; Maggino, Filomena; Rahtz, Don; Canton, Alicia; Kuruuzum, Ayse

    2010-01-01

    This paper reports a study designed to further validate a measure of quality of college life (QCL) of university students (Sirgy, Grzeskowiak, Rahtz, "Soc Indic Res" 80(2), 343-360, 2007). Two studies were conducted: a replication study and an extension study. The replication study involved surveys of 10 different college campuses in different…

  2. Measuring Longevity Achievements under Welfare Interdependencies: A Case for Joint Life Expectancy Indicators

    ERIC Educational Resources Information Center

    Ponthiere, Gregory

    2007-01-01

    Whereas period life expectancy constitutes an intuitive indicator of the survival conditions prevailing at a particular period, this paper argues that, given the existence of welfare interdependencies, that widespread indicator is nonetheless an incomplete measure of the longevity achievements relevant for human well-being. The central importance…

  3. Translating Oral Health-Related Quality of Life Measures: Are There Alternative Methodologies?

    ERIC Educational Resources Information Center

    Brondani, Mario; He, Sarah

    2013-01-01

    Translating existing sociodental indicators to another language involves a rigorous methodology, which can be costly. Free-of-charge online translator tools are available, but have not been evaluated in the context of research involving quality of life measures. To explore the value of using online translator tools to develop oral health-related…

  4. Measuring Personal Growth Attributed to a Semester of College Life Using the Posttraumatic Growth Inventory

    ERIC Educational Resources Information Center

    Anderson, Walter P., Jr.; Lopez-Baez, Sandra I.

    2011-01-01

    In this descriptive exploratory study, the Posttraumatic Growth Inventory (PTGI; Tedeschi & Calhoun, 1996) was used to measure levels of personal growth attributed by college students (N = 117) to a semester of university life in retrospective self-reports. Results reflect attributions of substantial total growth in the range reported in the…

  5. Quality of College Life (QCL) of Students: Developing and Validating a Measure of Well-Being

    ERIC Educational Resources Information Center

    Sirgy, M. Joseph; Grzeskowiak, Stephan; Rahtz, Don

    2007-01-01

    This paper reports a study designed to develop and validate a measure of quality of college life (QCL) of students. Using a theoretical model based on a build-up approach to QCL, the authors provide an empirical examination of various hierarchical components and their properties. The method is executed in two stages. The first stage is used to…

  6. Accelerator measurements of the Askaryan effect in rock salt: A roadmap toward teraton underground neutrino detectors

    SciTech Connect

    Gorham, P.W.; Guillian, E.; Milincic, R.; Miocinovic, P.; Saltzberg, D.; Williams, D.; Field, R.C.; Walz, D.

    2005-07-15

    We report on further SLAC measurements of the Askaryan effect: coherent radio emission from charge asymmetry in electromagnetic cascades. We used synthetic rock salt as the dielectric medium, with cascades produced by GeV bremsstrahlung photons at the Final Focus Test Beam. We extend our prior discovery measurements to a wider range of parameter space and explore the effect in a dielectric medium of great potential interest to large-scale ultra-high-energy neutrino detectors: rock salt (halite), which occurs naturally in high purity formations containing in many cases hundreds of km{sup 3} of water-equivalent mass. We observed strong coherent pulsed radio emission over a frequency band from 0.2-15 GHz. A grid of embedded dual-polarization antennas was used to confirm the high degree of linear polarization and track the change of direction of the electric-field vector with azimuth around the shower. Coherence was observed over 4 orders of magnitude of shower energy. The frequency dependence of the radiation was tested over 2 orders of magnitude of UHF and microwave frequencies. We have also made the first observations of coherent transition radiation from the Askaryan charge excess, and the result agrees well with theoretical predictions. Based on these results we have performed a detailed and conservative simulation of a realistic GZK neutrino telescope array within a salt dome, and we find it capable of detecting 10 or more contained events per year from even the most conservative GZK neutrino models.

  7. Flash X-Ray (FXR) Accelerator Optimization Electronic Time-Resolved Measurement of X-Ray Source Size

    SciTech Connect

    Jacob, J; Ong, M; Wargo, P

    2005-07-21

    Lawrence Livermore National Laboratory (LLNL) is currently investigating various approaches to minimize the x-ray source size on the Flash X-Ray (FXR) linear induction accelerator in order to improve x-ray flux and increase resolution for hydrodynamic radiography experiments. In order to effectively gauge improvements to final x-ray source size, a fast, robust, and accurate system for measuring the spot size is required. Timely feedback on x-ray source size allows new and improved accelerator tunes to be deployed and optimized within the limited run-time constraints of a production facility with a busy experimental schedule; in addition, time-resolved measurement capability allows the investigation of not only the time-averaged source size, but also the evolution of the source size, centroid position, and x-ray dose throughout the 70 ns beam pulse. Combined with time-resolved measurements of electron beam parameters such as emittance, energy, and current, key limiting factors can be identified, modeled, and optimized for the best possible spot size. Roll-bar techniques are a widely used method for x-ray source size measurement, and have been the method of choice at FXR for many years. A thick bar of tungsten or other dense metal with a sharp edge is inserted into the path of the x-ray beam so as to heavily attenuate the lower half of the beam, resulting in a half-light, half-dark image as seen downstream of the roll-bar; by measuring the width of the transition from light to dark across the edge of the roll-bar, the source size can be deduced. For many years, film has been the imaging medium of choice for roll-bar measurements thanks to its high resolution, linear response, and excellent contrast ratio. Film measurements, however, are fairly cumbersome and require considerable setup and analysis time; moreover, with the continuing trend towards all-electronic measurement systems, film is becoming increasingly difficult and expensive to procure. Here, we shall

  8. Measurement techniques and instruments suitable for life-prediction testing of photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Noel, G. T.; Sliemers, F. A.; Deringer, G. C.; Wood, V. E.; Wilkes, K. E.; Gaines, G. B.; Carmichael, D. C.

    1978-01-01

    Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Candidate techniques and instruments are identified on the basis of extensive reviews of published and unpublished information. These methods are organized in six measurement categories - chemical, electrical, optical, thermal, mechanical, and other physicals. Using specified evaluation criteria, the most promising techniques and instruments for use in life prediction tests of arrays were selected.

  9. Measuring Quality of Life in Pediatric Patients With Inflammatory Bowel Disease: Psychometric and Clinical Characteristics

    PubMed Central

    Perrin, James M.; Kuhlthau, Karen; Chughtai, Aziz; Romm, Diane; Kirschner, Barbara S.; Ferry, George D.; Cohen, Stanley A.; Gold, Benjamin D.; Heyman, Melvin B.; Baldassano, Robert N.; Winter, Harland S.

    2011-01-01

    Objective To extend development of a pediatric inflammatory bowel disease (IBD) health-related quality of life (HRQoL) measure by determining its factor structure and associations of factors with generic HRQoL measures and clinical variables. Patients and Methods Cross-sectional survey of children and adolescents ages 8 years to 18 years and their parents attending any of 6 US IBD centers, recruited from either existing registry of age-eligible subjects or visits to participating centers. The survey included generic (Pediatric Quality of Life Inventory) and IBD-specific (Impact Questionnaire) quality of life measures, disease activity, and other clinical indicators. We carried out factor analysis of Impact responses, comparing resulting factors with results on the generic HRQoL and the clinical measures. Results We included 220 subjects (161 with Crohn disease and 59 with ulcerative colitis). Initial confirmatory factor analysis did not support the 6 proposed Impact domains. Exploratory factor analysis indicated 4 factors with good to excellent reliability for IBD responses: general well-being and symptoms, emotional functioning, social interactions, and body image. Two items did not load well on any factor. The 4 factors correlated well with the Pediatric Quality of Life Inventory and subscales. Children with higher disease activity scores and other indicators of clinical activity reported lower HRQoL. Conclusions This study provides further characteristics of a HRQoL measure specific to pediatric IBD and indicates ways to score the measure based on the resulting factor structure. The measure correlates appropriately with generic HRQoL measures and clinical severity indicators. PMID:18223375

  10. An accelerated mass spectrometric method for measuring myo-inositol in phosphatidylinositol in rat brain

    NASA Astrophysics Data System (ADS)

    Deutsch, Joseph; Ma, Kaizung; Rapoport, Stanley I.

    2006-03-01

    A fast and efficient chemical ionization mass spectrometric (CI-GC-MS) method for measuring myo-inositol in phosphatidylinositol (PtdIns) in rat brain has been developed. Previously, quantitation of PtdIns involved the release of the myo-inositol by two enzymatic reactions using phospholipase C and alkaline phosphatase. The hydrolytic action of these enzymes was replaced by using commercially available 48% hydrofluoric acid (HF) at 80 °C for 30 min. The process can be carried out on the crude Folch extract of brain phospholipids without prior thin layer chromatography (TLC) purification, thereby significantly increasing the speed of analysis. For quantification, unlabeled myo-inositol, labeled myo- and neo-inositol (internal standard) were converted to acetate derivatives and analyzed by CI-GC-MS.

  11. Biobased carbon content of resin extracted from polyethylene composite by carbon-14 concentration measurements using accelerator mass spectrometry.

    PubMed

    Taguchi, Kazuhiro; Kunioka, Masao; Funabashi, Masahiro; Ninomiya, Fumi

    2014-01-01

    An estimation procedure for biobased carbon content of polyethylene composite was studied using carbon-14 ((14)C) concentration ratios as measured by accelerated mass spectrometry (AMS). Prior to the measurement, additives and fillers in composites should be removed because they often contain a large amount of biobased carbon and may shift the estimation. Samples of resin with purity suitable for measurement were isolated from composites with a Soxhlet extractor using heated cyclohexanone. After cooling of extraction solutions, the resin was recovered as a fine semi-crystalline precipitate, which was easily filtered. Recovery rates were almost identical (99%), even for low-density polyethylene and linear low-density polyethylene, which may have lower crystallinity. This procedure could provide a suitable approach for estimation of biobased carbon content by AMS on the basis of the standard ASTM D 6866. The biobased carbon content for resin extracted from polyethylene composites allow for the calculation of biosynthetic polymer content, which is an indicator of mass percentage of the biobased plastic resin in the composite.

  12. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  13. First half-life measurement of 60Fe using the direct decay of 60mCo and Acceleratory Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ostdiek, Karen; Anderson, Tyler; Bauder, William; Bowers, Matthew; Collon, Philippe; Lu, Wenting; Robertson, Daniel; Skulski, Michael; Dressler, Rugard; Schumann, Dorothea; Greene, John; Kutschera, Walter; Paul, Michael; Wallner, Anton

    2016-03-01

    Radioisotopes, produced in stars and ejected through core collapse supernovae (SNe), are important for constraining stellar and early Solar System (ESS) models. The presence of these isotopes, specifically 60Fe , can identify progenitors of SN types, give evidence for nearby SN, and can be a chronometer for ESS events. The 60Fe half-life, which has been in dispute, can have an impact on calculations for the timing for ESS events, the distance to nearby SN, and the brightness of 60Fe gamma ray sources in the Galaxy. To measure such a long half life, one needs to simultaneously determine the number of atoms in and the activity of an 60Fe sample. We have undertaken a half-life measurement at Notre Dame and have successfully measured the activity of our 60Fe sample using the isomeric decay in 60Co rather than the traditional 60Co grow-in decay. This will then be coupled with the results of the 60Fe concentration measurement of our sample using Accelerator Mass Spectrometry (AMS). The most recent results of both will be presented.

  14. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  15. Acceleration in Linear and Circular Motion

    ERIC Educational Resources Information Center

    Kellington, S. H.; Docherty, W.

    1975-01-01

    Describes the construction of a simple accelerometer and explains its use in demonstrating acceleration, deceleration, constant speed, measurement of acceleration, acceleration and the inclined plane and angular and radial acceleration. (GS)

  16. Systolic Peak Detection in Acceleration Photoplethysmograms Measured from Emergency Responders in Tropical Conditions

    PubMed Central

    Elgendi, Mohamed; Norton, Ian; Brearley, Matt; Abbott, Derek; Schuurmans, Dale

    2013-01-01

    Photoplethysmogram (PPG) monitoring is not only essential for critically ill patients in hospitals or at home, but also for those undergoing exercise testing. However, processing PPG signals measured after exercise is challenging, especially if the environment is hot and humid. In this paper, we propose a novel algorithm that can detect systolic peaks under challenging conditions, as in the case of emergency responders in tropical conditions. Accurate systolic-peak detection is an important first step for the analysis of heart rate variability. Algorithms based on local maxima-minima, first-derivative, and slope sum are evaluated, and a new algorithm is introduced to improve the detection rate. With 40 healthy subjects, the new algorithm demonstrates the highest overall detection accuracy (99.84% sensitivity, 99.89% positive predictivity). Existing algorithms, such as Billauer's, Li's and Zong's, have comparable although lower accuracy. However, the proposed algorithm presents an advantage for real-time applications by avoiding human intervention in threshold determination. For best performance, we show that a combination of two event-related moving averages with an offset threshold has an advantage in detecting systolic peaks, even in heat-stressed PPG signals. PMID:24167546

  17. Montblanc1: GPU accelerated radio interferometer measurement equations in support of Bayesian inference for radio observations

    NASA Astrophysics Data System (ADS)

    Perkins, S. J.; Marais, P. C.; Zwart, J. T. L.; Natarajan, I.; Tasse, C.; Smirnov, O.

    2015-09-01

    We present Montblanc, a GPU implementation of the Radio interferometer measurement equation (RIME) in support of the Bayesian inference for radio observations (BIRO) technique. BIRO uses Bayesian inference to select sky models that best match the visibilities observed by a radio interferometer. To accomplish this, BIRO evaluates the RIME multiple times, varying sky model parameters to produce multiple model visibilities. χ2 values computed from the model and observed visibilities are used as likelihood values to drive the Bayesian sampling process and select the best sky model. As most of the elements of the RIME and χ2 calculation are independent of one another, they are highly amenable to parallel computation. Additionally, Montblanc caters for iterative RIME evaluation to produce multiple χ2 values. Modified model parameters are transferred to the GPU between each iteration. We implemented Montblanc as a Python package based upon NVIDIA's CUDA architecture. As such, it is easy to extend and implement different pipelines. At present, Montblanc supports point and Gaussian morphologies, but is designed for easy addition of new source profiles. Montblanc's RIME implementation is performant: On an NVIDIA K40, it is approximately 250 times faster than MEQTREES on a dual hexacore Intel E5-2620v2 CPU. Compared to the OSKAR simulator's GPU-implemented RIME components it is 7.7 and 12 times faster on the same K40 for single and double-precision floating point respectively. However, OSKAR's RIME implementation is more general than Montblanc's BIRO-tailored RIME. Theoretical analysis of Montblanc's dominant CUDA kernel suggests that it is memory bound. In practice, profiling shows that is balanced between compute and memory, as much of the data required by the problem is retained in L1 and L2 caches.

  18. Review: the development of family quality of life concepts and measures.

    PubMed

    Samuel, P S; Rillotta, F; Brown, I

    2012-01-01

    Historically, intervention programmes in intellectual and developmental disabilities have targeted the individual's special needs independent of the family and environmental context. This trend has been changing over the past two decades. This paper presents a literature review on changing trends in family support and the development of family quality of life (FQOL) and intellectual disability from a construct to a theory. The evolution of research in quality of life from the perspective of the individual with the disability to the family is described. A description of the development of FQOL measures is included, specifically an introduction and comparison of the two leading comprehensive initiatives on measuring FQOL - international FQOL project and the FQOL initiative of the Beach Center on Disability, in the USA. This paper provides the conceptual background and context to the other papers presented in this special issue, which focus on FQOL measurement in specific contexts.

  19. The use of aluminum nitride to improve Aluminum-26 Accelerator Mass Spectrometry measurements and production of Radioactive Ion Beams

    SciTech Connect

    Janzen, Meghan S.; Galindo-Uribarri, Alfredo; Liu, Yuan; Mills, Gerald D.; Romero-Romero, Elisa; Stracener, Daniel W.

    2015-06-29

    In this paper, we present results and discuss the use of aluminum nitride as a promising source material for Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beams (RIBs) science applications of 26Al isotopes. The measurement of 26Al in geological samples by AMS is typically conducted on Al2O3 targets. However, Al2O3 is not an ideal source material because it does not form a prolific beam of Al- required for measuring low-levels of 26Al. Multiple samples of aluminum oxide (Al2O3), aluminum nitride (AlN), mixed Al2O3–AlN as well as aluminum fluoride (AlF3) were tested and compared using the ion source test facility and the stable ion beam (SIB) injector platform at the 25-MV tandem electrostatic accelerator at Oak Ridge National Laboratory. Negative ion currents of atomic and molecular aluminum were examined for each source material. It was found that pure AlN targets produced substantially higher beam currents than the other materials and that there was some dependence on the exposure of AlN to air. The applicability of using AlN as a source material for geological samples was explored by preparing quartz samples as Al2O3 and converting them to AlN using a carbothermal reduction technique, which involved reducing the Al2O3 with graphite powder at 1600°C within a nitrogen atmosphere. The quartz material was successfully converted to AlN. Thus far, AlN proves to be a promising source material and could lead towards increasing the sensitivity of low-level 26Al AMS measurements. In conclusion, the potential of using AlN as a source material for nuclear physics is also very promising by placing 26AlN directly into a source to produce more intense radioactive beams of 26Al.

  20. [The first linear electron accelerator, the Therac 15 Saturne, in clinical service. I. Technical data and measurements in photon radiation].

    PubMed

    Strauch, B

    1983-09-01

    A report is given about the linear electron accelerator operating at the Alfried Krupp Krankenhaus in Essen. This is the first accelerator of the type Therac Saturne supplied for 15 MeV. Besides a description of the most important technical data and the service instructions, dosimetric data for 12 MV photon radiation are presented. The authors communicate the clinical experiences gained hitherto with the accelerator and the patient-orientated verification and recording system which has still to be improved, especially as far as the recording part is concerned. The accelerator meets the requirements of radiologic oncology.