Science.gov

Sample records for acceleration mechanism based

  1. Mechanical Component Lifetime Estimation Based on Accelerated Life Testing with Singularity Extrapolation

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Chuckpaiwong, I.; Liang, S. Y.; Seth, B. B.

    2002-07-01

    Life testing under nominal operating conditions of mechanical parts with high mean lifetime between failure (MTBF) often consumes a significant amount of time and resources, rendering such procedures expensive and impractical. As a result, the technology of accelerated life testing (ALT) has been developed for testing at high stress levels (e.g. temperature, voltage, pressure, corrosive media, load, vibration amplitude, etc.) so that it can be extrapolated—through a physically reasonable statistical model—to obtain estimations of life at lower, normal stress levels or even limit stress levels. However, the issue of prediction accuracy associated with extrapolating data outside the range of testing, or even to a singularity level (no stress), has not yet been fully addressed. In this research, an accelerator factor is introduced into an inverse power law model to estimate the life distribution in terms of time and stresses. Also, a generalized Eyring model is set up for singularity extrapolation in handling limit stress level conditions. The procedure to calibrate the associated shape factors based on the maximum likelihood principle is also formulated. The methodology implementation, based on a one-main-step, multiple-step-stress test scheme, is experimentally illustrated with tapered roller bearing under the stress of environmental corrosion as a case study. The experimental results show that the developed accelerated life test model can effectively evaluate the life probability of a bearing based on accelerated testing data when extrapolating to the stress levels within or outside the range of testing.

  2. Physico-Mechanical Characteristics of Freeze-Thaw Weathered Gneiss based on Accelerated Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Um, J. G.

    2014-12-01

    An experimental study of physical weathering was performed on fresh and slightly weathered gneiss samples from the Wonju area of South Korea. The study investigated changes in the physico-mechanical properties of these samples during accelerated laboratory-based weathering, including analyses of microfracture formation. The deteriorated samples used in the study were subjected to 100-150 freeze-thaw cycles, with index properties and microfracture geometries measured between each cycle. Each complete freeze-thaw cycle lasted 24 hours, and consisted of 2 hours of saturation in a vacuum chamber, 8 hours of freezing at -21°C ±1°C, and 14 hours of thawing at room temperature. Specific gravity and seismic velocity values were negatively correlated with the number of freeze-thaw cycles, whereas absorption values tended to increase. The amount of deterioration of the rock samples was dependent on the degree of weathering of the rock prior to the start of the analysis. Absorption, specific gravity, and seismic velocity values can be used to infer the amount of physical weathering experienced by a gneiss in the study area. The sizes and density of microfracture in the rock specimens varied with the number of freeze-thaw cycles. It was found that box fractal dimensions can be used to quantify the formation and propagation of microfracture in the samples. In addition, these box fractal dimensions can be used as a weathering index for the mid- and long-term prediction of rock weathering. The present results indicate that accelerated-weathering analysis can provide a detailed overview of the weathering characteristics of deteriorated rocks.

  3. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. PMID:24365468

  4. Degradation mechanism of LiCoO2/mesocarbon microbeads battery based on accelerated aging tests

    NASA Astrophysics Data System (ADS)

    Guan, Ting; Zuo, Pengjian; Sun, Shun; Du, Chunyu; Zhang, Lingling; Cui, Yingzhi; Yang, Lijie; Gao, Yunzhi; Yin, Geping; Wang, Fuping

    2014-12-01

    A series of LiCoO2/mesocarbon microbeads (MCMB) commercial cells cycled at different rates (0.6C, 1.2C, 1.5C, 1.8C, 2.4C and 3.0C) are disassembled and the capacity fade mechanism is proposed by analyzing the structure, morphology and electrochemical performance evolution at the capacity retention of 95%, 90%, 85%, 80%. The capacity deterioration of the commercial cell is mainly caused by the decay of the reversible capacity of LiCoO2 cathode, the irreversible loss of active lithium and the lithium remaining in anode. The proportions of effects by the above three factors are calculated accurately. The consumption of the active lithium leads to a cell imbalance between the anode and the cathode. The electrochemical test results indicate that the capacity fade of the active materials at the low rate is more obvious than that at the high rate. The influence of the active lithium is gradually increscent with the increasing rate. The rate of 1.5C is the optimal value to accelerate the aging of the full cell by comparing the testing results at different capacity retentions in the specific condition of low charge/discharge rate and shallow depth of discharge.

  5. Accelerated testing of space mechanisms

    NASA Technical Reports Server (NTRS)

    Murray, S. Frank; Heshmat, Hooshang

    1995-01-01

    This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.

  6. Fission-Fusion: A new reaction mechanism for nuclear astrophysics based on laser-ion acceleration

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.; Habs, D.; Gross, M.; Allinger, K.; Bin, J.; Henig, A.; Kiefer, D.; Ma, W.; Schreiber, J.

    2011-10-01

    We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N = 126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH2 layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the `hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of 232Th with solid-state density can be generated from a Th target and a deuterated CD2 foil, both forming the production target assembly. Laser-accelerated Th ions with about 7 MeV/u will pass through a thin CH2 layer placed in front of a thicker second Th foil (both forming the reaction target) closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD2 layer of the production target will be accelerated as well, inducing the fission process of 232Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 1014 times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. The high ion beam density may lead to a strong collective modification of the stopping power, leading to significant range and thus yield enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), order-of-magnitude estimates promise a fusion yield of about 103 ions per laser pulse in the mass range of A = 180-190, thus enabling to approach the r-process waiting point at N = 126.

  7. Plasma-based accelerator structures

    SciTech Connect

    Schroeder, Carl B.

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  8. Stereodivergent Synthesis of Functionalized Tetrahydropyrans Accelerated by Mechanism-Based Allylboration and Bioinspired Oxa-Michael Cyclization.

    PubMed

    Yang, Lin; Lin, Zuming; Huang, Sha-Hua; Hong, Ran

    2016-05-17

    A stereodivergent strategy enabled by bioinspired oxa-Michael cyclization was developed for the synthesis of functionalized tetrahydropyrans on the basis of the inherent symmetry in 1,3-diols, the symmetries of which were tunable by stereoselective hydroboration of an allene with a variety of alkylborane reagents and subsequent allylation of an aldehyde. The mechanism-based utilization of monoalkyl borane in the hydroboration and allylation cascade is unprecedented. PMID:27072483

  9. Stochastic shock response spectrum decomposition method based on probabilistic definitions of temporal peak acceleration, spectral energy, and phase lag distributions of mechanical impact pyrotechnic shock test data

    NASA Astrophysics Data System (ADS)

    Hwang, James Ho-Jin; Duran, Adam

    2016-08-01

    Most of the times pyrotechnic shock design and test requirements for space systems are provided in Shock Response Spectrum (SRS) without the input time history. Since the SRS does not describe the input or the environment, a decomposition method is used to obtain the source time history. The main objective of this paper is to develop a decomposition method producing input time histories that can satisfy the SRS requirement based on the pyrotechnic shock test data measured from a mechanical impact test apparatus. At the heart of this decomposition method is the statistical representation of the pyrotechnic shock test data measured from the MIT Lincoln Laboratory (LL) designed Universal Pyrotechnic Shock Simulator (UPSS). Each pyrotechnic shock test data measured at the interface of a test unit has been analyzed to produce the temporal peak acceleration, Root Mean Square (RMS) acceleration, and the phase lag at each band center frequency. Maximum SRS of each filtered time history has been calculated to produce a relationship between the input and the response. Two new definitions are proposed as a result. The Peak Ratio (PR) is defined as the ratio between the maximum SRS and the temporal peak acceleration at each band center frequency. The ratio between the maximum SRS and the RMS acceleration is defined as the Energy Ratio (ER) at each band center frequency. Phase lag is estimated based on the time delay between the temporal peak acceleration at each band center frequency and the peak acceleration at the lowest band center frequency. This stochastic process has been applied to more than one hundred pyrotechnic shock test data to produce probabilistic definitions of the PR, ER, and the phase lag. The SRS is decomposed at each band center frequency using damped sinusoids with the PR and the decays obtained by matching the ER of the damped sinusoids to the ER of the test data. The final step in this stochastic SRS decomposition process is the Monte Carlo (MC

  10. Degradation mechanisms and accelerated aging test design

    SciTech Connect

    Clough, R L; Gillen, K T

    1985-01-01

    The fundamental mechanisms underlying the chemical degradation of polymers can change as a function of environmental stress level. When this occurs, it greatly complicates any attempt to use accelerated tests for predicting long-term material degradation behaviors. Understanding how degradation mechanisms can change at different stress levels facilitates both the design and the interpretation of aging tests. Oxidative degradation is a predominant mechanism for many polymers exposed to a variety of different environments in the presence of air, and there are two mechanistic considerations which are widely applicable to material oxidation. One involves a physical process, oxygen diffusion, as a rate-limiting step. This mechanism can predominate at high stress levels. The second is a chemical process, the time-dependent decomposition of peroxide species. This leads to chain branching and can become a rate-controlling factor at lower stress levels involving time-scales applicable to use environments. The authors describe methods for identifying the operation of these mechanisms and illustrate the dramatic influence they can have on the degradation behaviors of a number of polymer types. Several commonly used approaches to accelerated aging tests are discussed in light of the behaviors which result from changes in degradation mechanisms. 9 references, 4 figures.

  11. Role of failure-mechanism identification in accelerated testing

    NASA Technical Reports Server (NTRS)

    Hu, J. M.; Barker, D.; Dasgupta, A.; Arora, A.

    1993-01-01

    Accelerated life testing techniques provide a short-cut method to investigate the reliability of electronic devices with respect to certain dominant failure mechanisms that occur under normal operating conditions. However, accelerated tests have often been conducted without knowledge of the failure mechanisms and without ensuring that the test accelerated the same mechanism as that observed under normal operating conditions. This paper summarizes common failure mechanisms in electronic devices and packages and investigates possible failure mechanism shifting during accelerated testing.

  12. Ferroelectric Based Technologies for Accelerators

    SciTech Connect

    Kanareykin, A.; Jing, C.; Nenasheva, E.; Kazakov, S.; Tagantsev, A.; Yakovlev, V.

    2009-01-22

    Ferroelectrics have unique intrinsic properties that make them extremely attractive for high-energy accelerator applications. Low loss ferroelectric materials can be used as key elements in RF tuning and phase shifting components to provide fast, electronic control. These devices are under development for different accelerator applications for the X, Ka and L-frequency bands. The exact design of these devices depends on the electrical parameters of the particular ferroelectric material to be used--its dielectric constant, loss tangent and tunability. BST based ferroelectric-oxide compounds have been found to be suitable materials for a fast electrically-controlled tuners. We present recent results on the development of BST based ferroelectric compositions synthesized for use in high power technology components. The BST(M) ferroelectrics have been tested using both transverse and parallel dc bias fields to control the permittivity. Fast switching of a newly developed material has been shown and the feasibility of using of ferroelectric-based accelerator components in vacuum and in air has been demonstrated.

  13. Acceleration of CMEs: A Diagnostic for Driving Mechanisms?

    NASA Astrophysics Data System (ADS)

    Chen, J.

    2003-12-01

    Typical coronal mass ejections (CMEs) undergo the bulk of their acceleration low in the corona. Theoretical analysis based on a three-dimensional flux-rope geometry [1] shows that CME acceleration profiles exhibit a universal scaling law characterized by the critical scale height Z* ≡ Sf/2, where Sf is the separation distance between the two stationary footpoints of the flux rope. Specifically, maximum acceleration is attained shortly after the apex of the flux rope reaches height Z* from the solar surface, and the acceleration is subsequently reduced to about 1/4 of the peak value when the apex reaches height Zm ˜= 3 Z*. This means that the observed acceleration profile in the low corona can directly yield information on the geometrical size of the flux rope, i.e., Sf. The Sf scaling is applicable regardless of the eruption speed so long as the pre-eruption structure is a flux rope or becomes one early enough in the eruption process. The scaling law has been tested against observed CMEs using TRACE, C1, C2, and C3 data, with good quantitative agreement, and is consistent with a recent simulation of a 3-D flux rope [2]. We discuss the observational implications of these results with respect to various proposed CME models and driving mechanisms. [1] Chen, J., and J. Krall, Acceleration of coronal mass ejections, J. Geophys. Res., in press, 2003 [2] Roussev, I. I., et al., Astrophys. J., 588, L45, 2003. Work supported by ONR and NASA

  14. AN OVERVIEW OF THE SNS ACCELERATOR MECHANICAL ENGINEERING.

    SciTech Connect

    HSEUH, H.; LUDWIG, H.; MAHLER, G.; PAI, C.; PEARSON, C.; RANK, J.; TUOZZOLO, J.; WEI, J.

    2006-06-23

    The Spallation Neutron Source (SNS*) is an accelerator-based neutron source currently nearing completion at Oak Ridge National Laboratory. When completed in 2006, the SNS will provide a 1 GeV, 1.44 MW proton beam to a liquid mercury target for neutron production. SNS is a collaborative effort between six U.S. Department of Energy national laboratories and offered a unique opportunity for the mechanical engineers to work with their peers from across the country. This paper presents an overview of the overall success of the collaboration concentrating on the accelerator ring mechanical engineering along with some discussion regarding the relative merits of such a collaborative approach. Also presented are a status of the mechanical engineering installation and a review of the associated installation costs.

  15. Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts

    SciTech Connect

    Shuets, G.

    2004-05-21

    Theoretical investigations of plasma-based accelerators and other advanced accelerator concepts. The focus of the work was on the development of plasma based and structure based accelerating concepts, including laser-plasma, plasma channel, and microwave driven plasma accelerators.

  16. EM Structure Based and Vacuum Acceleration

    SciTech Connect

    Colby, E.R.; /SLAC

    2005-09-27

    The importance of particle acceleration may be judged from the number of applications which require some sort of accelerated beam. In addition to accelerator-based high energy physics research, non-academic applications include medical imaging and treatment, structural biology by x-ray diffraction, pulse radiography, cargo inspection, material processing, food and medical instrument sterilization, and so on. Many of these applications are already well served by existing technologies and will profit only marginally from developments in accelerator technology. Other applications are poorly served, such as structural biology, which is conducted at synchrotron radiation facilities, and medical treatment using proton accelerators, the machines for which are rare because they are complex and costly. Developments in very compact, high brightness and high gradient accelerators will change how accelerators are used for such applications, and potentially enable new ones. Physical and technical issues governing structure-based and vacuum acceleration of charged particles are reviewed, with emphasis on practical aspects.

  17. Investigations of the plasma and structure based accelerators

    SciTech Connect

    Shvets, Gennady

    2012-08-30

    The objective of our research during the reported period was three-fold: (a) theoretical investigation of novel mechanisms of injection into laser wake field accelerators; (b) theoretical investigation of single-shot frequency domain diagnostics of relativistic plasma wakes, specifically in the context of spatio-temporal evolution of the plasma bubble;(c) experimental and theoretical investigation of laser-driven accelerating structure, specifically in the context of the Surface Wave Accelerator Based on SiC (SWABSIC).

  18. Accelerator based epithermal neutron source

    NASA Astrophysics Data System (ADS)

    Taskaev, S. Yu.

    2015-11-01

    We review the current status of the development of accelerator sources of epithermal neutrons for boron neutron capture therapy (BNCT), a promising method of malignant tumor treatment. Particular attention is given to the source of epithermal neutrons on the basis of a new type of charged particle accelerator: tandem accelerator with vacuum insulation and lithium neutron-producing target. It is also shown that the accelerator with specialized targets makes it possible to generate fast and monoenergetic neutrons, resonance and monoenergetic gamma-rays, alpha-particles, and positrons.

  19. Mechanisms of thrombolysis acceleration by cavitation

    NASA Astrophysics Data System (ADS)

    Weiss, Hope; Selvaraj, Prashanth; Ahadi, Golnaz; Voie, Arne; Hoelscher, Thilo; Okita, Kohei; Matsumoto, Yoichiro; Szeri, Andrew

    2012-11-01

    Recent studies, in vitro and in vivo, have shown that High Intensity Focused Ultrasound (HIFU) accelerates thrombolysis, the dissolution of blood clots, for ischemic stroke. Although the mechanisms are not fully understood, cavitation is thought to play an important role in sonothrombolysis. The damage to a blood clot's fibrin fiber network from cavitation in a HIFU field is studied using two independent approaches for an embedded bubble. One method is extended to the more important scenario of a bubble outside a blood clot that collapses asymmetrically creating a jet towards the clot. There is significantly more damage potential from a bubble undergoing cavitation collapse outside the clot compared to a rapidly expanding bubble embedded within the clot structure. Also, the effects of the physical properties of skull bone when a HIFU wave propagates through it are examined by use of computer simulation. The dynamics of a test bubble placed at the focus is used in understanding of the pressure field. All other things being equal, the analysis suggests that skull thickness can alter the wave at the focus, which in turn can change the nature of cavitation bubble dynamics and the amount of energy available for clot damage. Now at MSOE.

  20. The Hamiltonian Mechanics of Stochastic Acceleration

    SciTech Connect

    Burby, J. W.

    2013-07-17

    We show how to nd the physical Langevin equation describing the trajectories of particles un- dergoing collisionless stochastic acceleration. These stochastic di erential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.

  1. Plasma-based Accelerator with Magnetic Compression

    SciTech Connect

    Paul F. Schmit and Nathaniel J. Fisch

    2012-06-28

    Electron dephasing is a major gain-inhibiting effect in plasma-based accelerators. A novel method is proposed to overcome dephasing, in which the modulation of a modest (#24; O(10 kG)), axial, uniform magnetic field in the acceleration channel leads to densification of the plasma through magnetic compression, enabling direct, time-resolved control of the plasma wave properties. The methodology is broadly applicable and can be optimized to improve the leading acceleration approaches, including plasma beat-wave, plasma wakefield, and laser wakefield acceleration. The advantages of magnetic compression compared to other proposed schemes to overcome dephasing are identified.

  2. Plasma-based accelerator with magnetic compression.

    PubMed

    Schmit, P F; Fisch, N J

    2012-12-21

    Electron dephasing is a major gain-inhibiting effect in plasma-based accelerators. A novel method is proposed to overcome dephasing, in which the modulation of a modest [~O(10 kG)], axial, uniform magnetic field in the acceleration channel leads to densification of the plasma through magnetic compression, enabling direct, time-resolved control of the plasma wave properties. The methodology is broadly applicable and can be optimized to improve the leading acceleration approaches, including plasma beat wave, plasma wakefield, and laser wakefield acceleration. The advantages of magnetic compression are compared to other proposed techniques to overcome dephasing. PMID:23368475

  3. Plasma-Based Accelerator with Magnetic Compression

    NASA Astrophysics Data System (ADS)

    Schmit, P. F.; Fisch, N. J.

    2012-12-01

    Electron dephasing is a major gain-inhibiting effect in plasma-based accelerators. A novel method is proposed to overcome dephasing, in which the modulation of a modest [˜O(10kG)], axial, uniform magnetic field in the acceleration channel leads to densification of the plasma through magnetic compression, enabling direct, time-resolved control of the plasma wave properties. The methodology is broadly applicable and can be optimized to improve the leading acceleration approaches, including plasma beat wave, plasma wakefield, and laser wakefield acceleration. The advantages of magnetic compression are compared to other proposed techniques to overcome dephasing.

  4. Ion acceleration mechanism in electron beams

    SciTech Connect

    Popov, A.F.

    1982-07-01

    Analysis of experimental data reveals that several processes observed in diodes and during the transport of intense electron beams in a neutral gas result from polarization of a plasma in an electric field. Under certain conditions this effect gives rise to a high-field region at the boundary of a plasma column. The electron beam is strongly focused in this region. As a result, a two-dimensional potential well forms at the crossover point of a strongly focused beam. The electric field at this well can reach several megavolts per centimeter. The crossover point moves as a result of expansion of the plasma cloud. The ions trapped in the potential well are accelerated. There is effective acceleration over a distance of the order of a few times the beam radius. A new physical model gives a satisfactory explanation of the experimental results.

  5. RF-Based Accelerators for HEDP Research

    SciTech Connect

    Staples, John W.; Sessler, Andrew; Keller, Roderich; Ostroumov,Petr; Chou, Weiren

    2005-05-09

    Accelerator-driven High-Energy Density Physics (HEDP) experiments require typically 1 nanosecond, 1 microcoulomb pulses of mass 20 ions accelerated to several MeV to produce eV-level excitations in thin targets, the warm dense matter regime. Traditionally the province of induction linacs, RF-based acceleration may be a viable alternative with recent breakthroughs in accelerating structures and high-field compact superconducting solenoids. A reference design for an RF-based accelerator for HEDP research is presented using 15 T solenoids and multiple-gap RF structures configured with multiple parallel beams combined at the target. The beam is ballistically compressed with an induction linac core providing the necessary energy sweep and injected into a plasma-neutralized drift compression channel resulting in a 1 mm radius beam spot 1 nanosecond long at a thin foil or low-density target.

  6. Thermal mechanical analyses of large diameter ion accelerator systems

    SciTech Connect

    Brophy, J.R.; Aston, G.

    1989-01-01

    Thermal mechanical analyses of large diameter ion accelerator systems are performed using commercially available finite element software executed on a desktop computer. Finite element models of a 30-cm-diameter accelerator system formulated using plate/shell elements give calculated results which agree well with similar published obtained on a mainframe computer. Analyses of a 50-cm-diameter, three-grid accelerator system using measured grid temperatures (corresponding to discharge powers of 653 and 886 watts) indicate that thermally induced grid movements need not be the performance limiting phenomena for accelerator systems of this size. 8 refs.

  7. Thermal mechanical analyses of large diameter ion accelerator systems

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1989-01-01

    Thermal mechanical analyses of large diameter ion accelerator systems are performed using commercially available finite element software executed on a desktop computer. Finite element models of a 30-cm-diameter accelerator system formulated using plate/shell elements give calculated results which agree well with similar published obtained on a mainframe computer. Analyses of a 50-cm-diameter, three-grid accelerator system using measured grid temperatures (corresponding to discharge powers of 653 and 886 watts) indicate that thermally induced grid movements need not be the performance limiting phenomena for accelerator systems of this size.

  8. An Alternative Mechanism for Accelerated Carbon Sequestration in Concrete

    SciTech Connect

    Haselbach, Liv M.; Thomle, Jonathan N.

    2014-07-01

    The increased rate of carbon dioxide sequestration (carbonation) is desired in many primary and secondary life applications of concrete in order to make the life cycle of concrete structures more carbon neutral. Most carbonation rate studies have focused on concrete exposed to air under various conditions. An alternative mechanism for accelerated carbon sequestration in concrete was investigated in this research based on the pH change of waters in contact with pervious concrete which have been submerged in carbonate laden waters. The results indicate that the concrete exposed to high levels of carbonate species in water may carbonate faster than when exposed to ambient air, and that the rate is higher with higher concentrations. Validation of increased carbon dioxide sequestration was also performed via thermogravimetric analysis (TGA). It is theorized that the proposed alternative mechanism reduces a limiting rate effect of carbon dioxide dissolution in water in the micro pores of the concrete.

  9. ACCELERATOR BASED CONTINUOUS NEUTRON SOURCE.

    SciTech Connect

    SHAPIRO,S.M.; RUGGIERO,A.G.; LUDEWIG,H.

    2003-03-25

    Until the last decade, most neutron experiments have been performed at steady-state, reactor-based sources. Recently, however, pulsed spallation sources have been shown to be very useful in a wide range of neutron studies. A major review of neutron sources in the US was conducted by a committee chaired by Nobel laureate Prof. W. Kohn: ''Neutron Sources for America's Future-BESAC Panel on Neutron Sources 1/93''. This distinguished panel concluded that steady state and pulsed sources are complementary and that the nation has need for both to maintain a balanced neutron research program. The report recommended that both a new reactor and a spallation source be built. This complementarity is recognized worldwide. The conclusion of this report is that a new continuous neutron source is needed for the second decade of the 20 year plan to replace aging US research reactors and close the US neutron gap. it is based on spallation production of neutrons using a high power continuous superconducting linac to generate protons impinging on a heavy metal target. There do not appear to be any major technical challenges to the building of such a facility since a continuous spallation source has been operating in Switzerland for several years.

  10. Emulating constant acceleration locomotion mechanics on a treadmill.

    PubMed

    Farris, Dominic James

    2016-03-21

    Locomotion on an accelerating treadmill belt is not dynamically similar to overground acceleration. The purpose of this study was to test if providing an external force to compensate for inertial forces during locomotion on an accelerating treadmill belt could induce locomotor dynamics similar to real accelerations. Nine males (mean±sd age=26±4 years, mass=81±9kg, height=1.8±0.05m) began walking and transitioned to running on an accelerating instrumented treadmill belt at three accelerations (0.27ms(-2), 0.42ms(-2), 0.76ms(-2)). Half the trials were typical treadmill locomotion (TT) and half were emulated acceleration (EA), where elastic tubing harnessed to the participant provided a horizontal force equal to mass multiplied by acceleration. Net mechanical work (WCOM) and ground reaction force impulses (IGRF) were calculated for individual steps and a linear regression was performed with these experimental measures as independent variables and theoretically derived values of work and impulse as predictor variables. For EA, linear fits were significant for WCOM (y=1.19x+10.5, P<0.001, R(2)=0.41) and IGRF (y=0.95x+8.1, P<0.001, R(2)=0.3). For TT, linear fits were not significant and explained virtually no variance for WCOM (y=0.06x+1.6, P=0.29, R(2)<0.01) and IGRF (y=0.10x+0.4, P=0.06, R(2)=0.01). This suggested that the EA condition was a better representation of real acceleration dynamics than TT. Running steps from EA where work and impulse closely matched theoretical values showed similar adaptations to increasing acceleration as have been previously observed overground (forward reorientation of GRF vector without an increase in magnitude or change in spatio-temporal metrics). PMID:26897649

  11. Diagnostics for studies of novel laser ion acceleration mechanisms

    SciTech Connect

    Senje, Lovisa; Aurand, Bastian; Wahlström, Claes-Göran; Yeung, Mark; Kuschel, Stephan; Rödel, Christian; Wagner, Florian; Roth, Markus; Li, Kun; Neumayer, Paul; Dromey, Brendan; Jung, Daniel; Bagnoud, Vincent; Zepf, Matthew; Kuehl, Thomas

    2014-11-15

    Diagnostic for investigating and distinguishing different laser ion acceleration mechanisms has been developed and successfully tested. An ion separation wide angle spectrometer can simultaneously investigate three important aspects of the laser plasma interaction: (1) acquire angularly resolved energy spectra for two ion species, (2) obtain ion energy spectra for multiple species, separated according to their charge to mass ratio, along selected axes, and (3) collect laser radiation reflected from and transmitted through the target and propagating in the same direction as the ion beam. Thus, the presented diagnostic constitutes a highly adaptable tool for accurately studying novel acceleration mechanisms in terms of their angular energy distribution, conversion efficiency, and plasma density evolution.

  12. Beam Breakup Effects in Dielectric Based Accelerators

    SciTech Connect

    Schoessow, P.; Kanareykin, A.; Jing, C.; Kustov, A.; Altmark, A.; Power, J. G.; Gai, W.

    2009-01-22

    The dynamics of the beam in structure-based wakefield accelerators leads to beam stability issues not ordinarily found in other machines. In particular, the high current drive beam in an efficient wakefield accelerator loses a large fraction of its energy in the decelerator structure, resulting in physical emittance growth, increased energy spread, and the possibility of head-tail instability for an off axis beam, all of which can lead to severe reduction of beam intensity. Beam breakup (BBU) effects resulting from parasitic wakefields provide a potentially serious limitation to the performance of dielectric structure based wakefield accelerators as well. We report on experimental and numerical investigation of BBU and its mitigation. The experimental program focuses on BBU measurements at the AWA facility in a number of high gradient and high transformer ratio wakefield devices. New pickup-based beam diagnostics will provide methods for studying parasitic wakefields that are currently unavailable. The numerical part of this research is based on a particle-Green's function beam breakup code we are developing that allows rapid, efficient simulation of beam breakup effects in advanced linear accelerators. The goal of this work is to be able to compare the results of detailed experimental measurements with the accurate numerical results and to design an external FODO channel for the control of the beam in the presence of strong transverse wakefields.

  13. The SPARC linear accelerator based terahertz source

    SciTech Connect

    Chiadroni, E.; Bacci, A.; Bellaveglia, M.; Boscolo, M.; Castellano, M.; Cultrera, L.; Di Pirro, G.; Ferrario, M.; Ficcadenti, L.; Filippetto, D.; Gatti, G.; Pace, E.; Rossi, A. R.; Vaccarezza, C.; Catani, L.; Cianchi, A.; Marchetti, B.; Mostacci, A.; Palumbo, L.; Ronsivalle, C.; and others

    2013-03-04

    Ultra-short electron beams, produced through the velocity bunching compression technique, are used to drive the SPARC linear accelerator based source, which relies on the emission of coherent transition radiation in the terahertz range. This paper reports on the main features of this radiation, as terahertz source, with spectral coverage up to 5 THz and pulse duration down to 200 fs, with an energy per pulse of the order of several micro-joule, and as electron beam longitudinal diagnostics.

  14. On the mechanism of acceleration behavior of plasma bullet

    SciTech Connect

    Wu, S.; Lu, X. Pan, Y.

    2014-07-15

    Two special experiments are designed to study the mechanism of the acceleration behavior of a plasma bullet when it exits a nozzle. First, a T-shape device is used to simulate the air diffusion when a plasma plume exits the nozzle. It is found that adding just 1% of N{sub 2}, O{sub 2}, or air to the main working gas He results in the acceleration of the plasma bullet. Second, materials of different permittivity are added to the left part of the outside of the tube. The experimental results show that the plasma bullet accelerates at the moment when it enters into the right part of the tube where there is no extra material on the outside of the tube. These two experiments confirm that the acceleration behavior of the plasma bullet when it exits the nozzle is due to the air diffusion, hence Penning ionization, and the permittivity change when the bullet exits the nozzle, for example, from a tube with high permittivity to air with low permittivity. Besides, electric field measurements show that the electric field in the bullet head increases when the plasma bullet accelerates. This confirms the electric field driven nature of the plasma bullet propagation.

  15. Design Concepts for Muon-Based Accelerators

    SciTech Connect

    Ryne, R. D.; Berg, J. S.; Kirk, H. G.; Palmer, R. B.; Stratkis, D.; Alexahin, Y.; Bross, A.; Gollwitzer, K.; Mokhov, N. V.; Neuffer, D.; Palmer, M. A.; Yonehara, K.; Snopok, P.; Bogacz, A.; Roberts, T. J.; Delahaye, J. -P.

    2015-05-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced, thus enabling high-quality physics results. Thanks to these and other advances in design & simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider. This paper summarizes the current status of design concepts for muon-based accelerators for neutrino factories and a muon collider.

  16. Accelerator-based neutrino oscillation experiments

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2007-12-01

    Neutrino oscillations were first discovered by experiments looking at neutrinos coming from extra-terrestrial sources, namely the sun and the atmosphere, but we will be depending on earth-based sources to take many of the next steps in this field. This article describes what has been learned so far from accelerator-based neutrino oscillation experiments, and then describe very generally what the next accelerator-based steps are. In section 2 the article discusses how one uses an accelerator to make a neutrino beam, in particular, one made from decays in flight of charged pions. There are several different neutrino detection methods currently in use, or under development. In section 3 these are presented, with a description of the general concept, an example of such a detector, and then a brief discussion of the outstanding issues associated with this detection technique. Finally, section 4 describes how the measurements of oscillation probabilities are made. This includes a description of the near detector technique and how it can be used to make the most precise measurements of neutrino oscillations.

  17. Simultaneous observation of angularly separated laser-driven proton beams accelerated via two different mechanisms

    NASA Astrophysics Data System (ADS)

    Wagner, F.; Bedacht, S.; Bagnoud, V.; Deppert, O.; Geschwind, S.; Jaeger, R.; Ortner, A.; Tebartz, A.; Zielbauer, B.; Hoffmann, D. H. H.; Roth, M.

    2015-06-01

    We present experimental data showing an angular separation of laser accelerated proton beams. Using flat plastic targets with thicknesses ranging from 200 nm to 1200 nm, a laser intensity of 6 ×1020 W cm-2 incident with an angle of 10°, we observe accelerated protons in target normal direction with cutoff energies around 30 MeV independent from the target thickness. For the best match of laser and target conditions, an additional proton signature is detected along the laser axis with a maximum energy of 65 MeV. These different beams can be attributed to two acceleration mechanisms acting simultaneously, i.e., target normal sheath acceleration and acceleration based on relativistic transparency, e.g., laser breakout afterburner, respectively.

  18. Summary report: Working Group 2 on 'Plasma Based Acceleration Concepts'

    SciTech Connect

    Leemans, W. P.; Esarey, E.

    1999-07-12

    A summary of the talks, papers and discussion sessions presented in the Working Group on Plasma Based Acceleration Concepts is given within the context of the progress towards a 1 GeV laser driven accelerator module. The topics covered within the Working Group were self-modulated laser wakefield acceleration, standard laser wakefield acceleration, plasma beatwave acceleration, laser guiding and wake excitation in plasma channels, plasma wakefield acceleration, plasma lenses and optical injection techniques for laser wakefield accelerators. An overview will be given of the present status of experimental and theoretical progress as well as an outlook towards the future physics and technological challenges for the development of an optimized accelerator module.

  19. Efficient accelerator afterburner design based on plasma wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun; Blumenfeld, I.; Clayton, C. E.; Decker, F.-J.; Hogan, M. J.; Iverson, R.; Joshi, C.; Katsouleas, T.; Kirby, N.; Lu, W.; Marsh, K. A.; Mori, W. B.; Muggli, P.; Siemann, R.; Walz, D.; Ischebeck, R.; Tzoufras, M.

    2008-11-01

    Recent plasma wakefield acceleration (PWFA) experiment using short (˜100fs), high peak current (>10KA) electron beam as wakefield driver has demonstrated sustained acceleration gradient of ˜50GeV/m over 85 cm. The rapid progress of PWFA experiments has attracted interests regarding the possibility of making an ``afterburner'' for a linear collider. In the ``afterburner'' concept, electron acceleration is achieved by placing a trailing electron beam into the wakefield (either by beam splitting or external injection) to extract energy deposited in the plasma wave wake. Several important aspects of the ``afterburner'' design in the blow-out regime, such as wakefield generation, efficient beam loading and hosing instability have been investigated theoretically. These relevant physics will have great impact on the beam quality of a possible ``afterburner'' design. A multi-stage ``afterburner'' design with 25GeV energy gain in each stage is explored numerically with a 3D quasi-static code QuickPIC. Parameters are suggested for a 0.5 TeV PWFA afterburner with this design and simulation result will be presented.

  20. Accelerated Compressed Sensing Based CT Image Reconstruction

    PubMed Central

    Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R.; Paul, Narinder S.; Cobbold, Richard S. C.

    2015-01-01

    In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization. PMID:26167200

  1. BINP accelerator based epithermal neutron source.

    PubMed

    Aleynik, V; Burdakov, A; Davydenko, V; Ivanov, A; Kanygin, V; Kuznetsov, A; Makarov, A; Sorokin, I; Taskaev, S

    2011-12-01

    Innovative facility for neutron capture therapy has been built at BINP. This facility is based on compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915-2.5 MeV protons bombarding a lithium target using (7)Li(p,n)(7)Be threshold reaction. In the article, diagnostic techniques for proton beam and neutrons developed are described, results of experiments on proton beam transport and neutron generation are shown, discussed, and plans are presented. PMID:21439836

  2. Thermal effects in plasma-based accelerators

    SciTech Connect

    Esarey, E.; Leemans, W. P.; Schroeder, C. B.; Geddes, C. G. R.; Cormier-Michel, E.; Shadwick, B. A.

    2007-05-15

    Finite plasma temperature can modify the structure of the wake field, reduce the wave-breaking field, and lead to self-trapped electrons, which can degrade the electron bunch quality in a plasma-based accelerator. A relativistic warm fluid theory is used to describe the plasma temperature evolution and alterations to the structure of a nonlinear periodic wave exited in a warm plasma. The trapping threshold for a plasma electron and the fraction of electrons trapped from a thermal distribution are examined using a single-particle model. Numerical artifacts in particle-in-cell models that can mimic the physics associated with finite momentum spread are discussed.

  3. The mechanisms of electron heating and acceleration during magnetic reconnection

    SciTech Connect

    Dahlin, J. T. Swisdak, M.; Drake, J. F.

    2014-09-15

    The heating of electrons in collisionless magnetic reconnection is explored in particle-in-cell simulations with non-zero guide fields so that electrons remain magnetized. In this regime, electric fields parallel to B accelerate particles directly, while those perpendicular to B do so through gradient-B and curvature drifts. The curvature drift drives parallel heating through Fermi reflection, while the gradient B drift changes the perpendicular energy through betatron acceleration. We present simulations in which we evaluate each of these mechanisms in space and time in order to quantify their role in electron heating. For a case with a small guide field (20% of the magnitude of the reconnecting component), the curvature drift is the dominant source of electron heating. However, for a larger guide field (equal to the magnitude of the reconnecting component) electron acceleration by the curvature drift is comparable to that of the parallel electric field. In both cases, the heating by the gradient B drift is negligible in magnitude. It produces net cooling because the conservation of the magnetic moment and the drop of B during reconnection produce a decrease in the perpendicular electron energy. Heating by the curvature drift dominates in the outflow exhausts where bent field lines expand to relax their tension and is therefore distributed over a large area. In contrast, the parallel electric field is localized near X-lines. This suggests that acceleration by parallel electric fields may play a smaller role in large systems where the X-line occupies a vanishing fraction of the system. The curvature drift and the parallel electric field dominate the dynamics and drive parallel heating. A consequence is that the electron energy spectrum becomes extremely anisotropic at late time, which has important implications for quantifying the limits of electron acceleration due to synchrotron emission. An upper limit on electron energy gain that is substantially higher than

  4. Accelerated Testing of Polymeric Composites Using the Dynamic Mechanical Analyzer

    NASA Technical Reports Server (NTRS)

    Abdel-Magid, Becky M.; Gates, Thomas S.

    2000-01-01

    Creep properties of IM7/K3B composite material were obtained using three accelerated test methods at elevated temperatures. Results of flexural creep tests using the dynamic mechanical analyzer (DMA) were compared with results of conventional tensile and compression creep tests. The procedures of the three test methods are described and the results are presented. Despite minor differences in the time shift factor of the creep compliance curves, the DMA results compared favorably with the results from the tensile and compressive creep tests. Some insight is given into establishing correlations between creep compliance in flexure and creep compliance in tension and compression. It is shown that with careful consideration of the limitations of flexure creep, a viable and reliable accelerated test procedure can be developed using the DMA to obtain the viscoelastic properties of composites in extreme environments.

  5. Accelerated expansion of the universe à la the Stueckelberg mechanism

    SciTech Connect

    Akarsu, Özgür; Arık, Metin; Katırcı, Nihan; Kavuk, Mehmet E-mail: metin.arik@boun.edu.tr E-mail: mehmet.kavuk@boun.edu.tr

    2014-07-01

    We investigate a cosmological model in which the Stueckelberg fields are non-minimally coupled to the scalar curvature in a gauge invariant manner. We present not only a solution that can be considered in the context of the late time acceleration of the universe but also a solution compatible with the inflationary cosmology. Distinct behaviors of the scalar and vector fields together with the real valued mass gained by the Stueckelberg mechanism lead the universe to go through the two different accelerated expansion phases with a decelerated expansion phase between them. On the other hand, in the solutions we present, if the mass is null then the universe is either static or exhibits a simple power law expansion due to the vector field potential.

  6. Accelerated GPU based SPECT Monte Carlo simulations.

    PubMed

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-01

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational

  7. Accelerated GPU based SPECT Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-01

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: 99m Tc, 111In and 131I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency

  8. LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Toth, Cs.; Geddes, C. G. R.; Leemans, W. P.

    2009-05-04

    Design considerations for a next-generation linear collider based on laser-plasma-accelerators are discussed, and a laser-plasma-accelerator-based gamma-gamma collider is considered. An example of the parameters for a 0.5 TeV laser-plasma-accelerator gamma gamma collider is presented.

  9. A "slingshot" laser-driven acceleration mechanism of plasma electrons

    NASA Astrophysics Data System (ADS)

    Fiore, Gaetano; De Nicola, Sergio

    2016-09-01

    We briefly report on the recently proposed Fiore et al. [1] and Fiore and De Nicola [2] electron acceleration mechanism named "slingshot effect": under suitable conditions the impact of an ultra-short and ultra-intense laser pulse against the surface of a low-density plasma is expected to cause the expulsion of a bunch of superficial electrons with high energy in the direction opposite to that of the pulse propagation; this is due to the interplay of the huge ponderomotive force, huge longitudinal field arising from charge separation, and the finite size of the laser spot.

  10. Exploring the mechanical basis for acceleration: pelvic limb locomotor function during accelerations in racing greyhounds (Canis familiaris).

    PubMed

    Williams, S B; Usherwood, J R; Jespers, K; Channon, A J; Wilson, A M

    2009-02-01

    Animals in their natural environments are confronted with a regular need to perform rapid accelerations (for example when escaping from predators or chasing prey). Such acceleration requires net positive mechanical work to be performed on the centre of mass by skeletal muscle. Here we determined how pelvic limb joints contribute to the mechanical work and power that are required for acceleration in galloping quadrupeds. In addition, we considered what, if any, biomechanical strategies exist to enable effective acceleration to be achieved. Simultaneous kinematic and kinetic data were collected for racing greyhounds undergoing a range of low to high accelerations. From these data, joint moments and joint powers were calculated for individual hindlimb joints. In addition, the mean effective mechanical advantage (EMA) of the limb and the ;gear ratio' of each joint throughout stance were calculated. Greatest increases in joint work and power with acceleration appeared at the hip and hock joints, particularly in the lead limb. Largest increases in absolute positive joint work occurred at the hip, consistent with the hypothesis that quadrupeds power locomotion by torque about the hip. In addition, hindlimb EMA decreased substantially with increased acceleration - a potential strategy to increase stance time and thus ground impulses for a given peak force. This mechanism may also increase the mechanical advantage for applying the horizontal forces necessary for acceleration. PMID:19181903

  11. Low frequency mechanical actuation accelerates reperfusion in-vitro

    PubMed Central

    2013-01-01

    Background Rapid restoration of vessel patency after acute myocardial infarction is key to reducing myocardial muscle death and increases survival rates. Standard therapies include thrombolysis and direct PTCA. Alternative or adjunctive emergency therapies that could be initiated by minimally trained personnel in the field are of potential clinical benefit. This paper evaluates a method of accelerating reperfusion through application of low frequency mechanical stimulus to the blood carrying vessels. Materials and method We consider a stenosed, heparinized flow system with aortic-like pressure variations subject to direct vessel vibration at the occlusion site or vessel deformation proximal and distal to the occlusion site, versus a reference system lacking any form of mechanical stimulus on the vessels. Results The experimental results show limited effectiveness of the direct mechanical vibration method and a drastic increase in the patency rate when vessel deformation is induced. For vessel deformation at occlusion site 95% of clots perfused within 11 minutes of application of mechanical stimulus, for vessel deformation 60 centimeters from the occlusion site 95% percent of clots perfused within 16 minutes of stimulus application, while only 2.3% of clots perfused within 20 minutes in the reference system. Conclusion The presented in-vitro results suggest that low frequency mechanical actuation applied during the pre-hospitalization phase in patients with acute myocardial infarction have potential of being a simple and efficient adjunct therapy. PMID:24257116

  12. Determination of acceleration mechanism characteristics directly and nonparametrically from observations: Application to supernova remnants

    NASA Astrophysics Data System (ADS)

    Petrosian, Vahé; Chen, Qingrong

    2014-05-01

    We have developed an inversion method for determination of the characteristics of the acceleration mechanism directly and nonparametrically from observations, in contrast to the usual forward fitting of parametric model variables to observations. In two recent papers [V. Petrosian and Q. Chen, Astrophys. J. 712, L131 (2010); Q. Chen and V. Petrosian, Astrophys. J. 777, 33 (2013)], we demonstrated the efficacy of this inversion method by its application to acceleration of electrons in solar flares based on stochastic acceleration by turbulence. Here we explore its application for determining the characteristics of shock acceleration in supernova remnants (SNRs) based on the electron spectra deduced from the observed nonthermal radiation from SNRs and the spectrum of the cosmic ray electrons observed near the Earth. These spectra are related by the process of escape of the electrons from SNRs and energy loss during their transport in the Galaxy. Thus, these observations allow us to determine spectral characteristics of the momentum and pitch angle diffusion coefficients, which play crucial roles in both direct acceleration by turbulence and in high Mach number shocks. Assuming that the average electron spectrum deduced from a few well-known SNRs is representative of those in the solar neighborhood, we find interesting discrepancies between our deduced forms for these coefficients and those expected from well-known wave-particle interactions. This may indicate that the standard assumptions made in the treatment of shock acceleration need revision. In particular, the escape of particles from SNRs may be more complex than generally assumed.

  13. Non-thermal electron acceleration in low Mach number collisionless shocks. I. Particle energy spectra and acceleration mechanism

    SciTech Connect

    Guo, Xinyi; Narayan, Ramesh; Sironi, Lorenzo

    2014-10-20

    Electron acceleration to non-thermal energies in low Mach number (M{sub s} ≲ 5) shocks is revealed by radio and X-ray observations of galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with M{sub s} = 3 and a quasi-perpendicular pre-shock magnetic field. We find that about 15% of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p ≅ 2.4. Initially, thermal electrons are energized at the shock front via shock drift acceleration (SDA). The accelerated electrons are then reflected back upstream where their interaction with the incoming flow generates magnetic waves. In turn, the waves scatter the electrons propagating upstream back toward the shock for further energization via SDA. In summary, the self-generated waves allow for repeated cycles of SDA, similarly to a sustained Fermi-like process. This mechanism offers a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  14. Advocating for Grade-Based Acceleration

    ERIC Educational Resources Information Center

    Guilbault, Keri M.

    2014-01-01

    Parents often struggle with the decision to accelerate their child and may worry about social and emotional issues, although research indicates positive effects on the social and emotional adjustment of carefully selected accelerants. As children's advocates, parents can work effectively with a school system to secure an appropriate academic…

  15. Resonance Line Pressure as Acceleration Mechanism of Atoms

    NASA Astrophysics Data System (ADS)

    Shestakova, L. I.

    2012-12-01

    Calculations of the solar radiation pressure on atoms and first ions are presented. It is shown that for some of them the light pressure exceeds the action of gravity. Comparison of the results with the values of the ionization potentials shows the coincidence of the maxima of the radiation pressure on neutral atoms and first ions with the minima of the first ionization potential (FIP) and second ionization potential (SIP) consequently. Minima of SIP indicate a number of ions, similar BeII, MgII, CaII and their neighboring elements of large numbers. Thus, a possible mechanism accelerating pickup ions and energetic neutral atoms (ENA) of solar wind, originating from inner sources (zodiacal dust and sungrazing comets) can be radiation pressure in resonance lines.

  16. Microcomputer-based Acceleration Sensor Device for Swimming Stroke Monitoring

    NASA Astrophysics Data System (ADS)

    Ohgi, Yuji; Ichikawa, Hiroshi; Miyaji, Chikara

    The purpose of this study was to develop a microcomputer-based acceleration logger device for the swimming stroke monitoring. The authors measured the swimmer's tri-axial wrist acceleration and applied this device for the fatigue evaluation of the swimmers. The experimental protocol led the swimmers exhausted after the crawl stroke interval training. Every single stroke was determined by the impact acceleration peak, which appeared on the x and z-axis acceleration. The change of the underwater stroke phases was identified by the characteristics of the acceleration peaks. In their exhaustion, the y-axis acceleration, which was longitudinal forearm acceleration decreased at the beginning of the upsweep phase. At that time, the swimmer could not extend his elbow joint. Since the developed acceleration data logger could provide us the information about the underwater stroke phases and it would be a helpful tool in the swimming training.

  17. Accelerator-based validation of shielding codes

    SciTech Connect

    Zeitlin, Cary; Heilbronn, Lawrence; Miller, Jack; Wilson, John W.

    2002-08-12

    The space radiation environment poses risks to astronaut health from a diverse set of sources, ranging from low-energy protons and electrons to highly-charged, high-energy atomic nuclei and their associated fragmentation products, including neutrons. The low-energy protons and electrons are the source of most of the radiation dose to Shuttle and ISS crews, while the more energetic particles that comprise the Galactic Cosmic Radiation (protons, He, and heavier nuclei up to Fe) will be the dominant source for crews on long-duration missions outside the earth's magnetic field. Because of this diversity of sources, a broad ground-based experimental effort is required to validate the transport and shielding calculations used to predict doses and dose-equivalents under various mission scenarios. The experimental program of the LBNL group, described here, focuses principally on measurements of charged particle and neutron production in high-energy heavy-ion fragmentation. Other aspects of the program include measurements of the shielding provided by candidate spacesuit materials against low-energy protons (particularly relevant to extra-vehicular activities in low-earth orbit), and the depth-dose relations in tissue for higher-energy protons. The heavy-ion experiments are performed at the Brookhaven National Laboratory's Alternating Gradient Synchrotron and the Heavy-Ion Medical Accelerator in Chiba in Japan. Proton experiments are performed at the Lawrence Berkeley National Laboratory's 88'' Cyclotron with a 55 MeV beam, and at the Loma Linda University Proton Facility with 100 to 250 MeV beam energies. The experimental results are an important component of the overall shielding program, as they allow for simple, well-controlled tests of the models developed to handle the more complex radiation environment in space.

  18. Degradation mechanisms and accelerated testing in PEM fuel cells

    SciTech Connect

    Borup, Rodney L; Mukundan, Rangachary

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise from component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To

  19. Prospects of Hybrid Plasma- and Radiofrequency-Based Electron Acceleration at DESY

    NASA Astrophysics Data System (ADS)

    Osterhoff, Jens; Gruener, Florian; Elsen, Eckhard; Floettmann, Klaus; Foster, Brian; Brinkmann, Reinhard; Schmidt, Bernhard; Schlarb, Holger; Stephan, Frank

    2012-10-01

    The field of particle acceleration in plasma wakes has seen remarkable progress in recent years. Accelerating gradients of more than 10 GV/m can now be readily achieved using either ultra-short intense laser pulses or particle beams as wake drivers. The demonstration of the first GeV electron beams and a general trend towards improved reproducibility, beam quality and control over the involved plasma processes has led to plasma-acceleration techniques beginning to draw considerable interest in the traditional accelerator community. As a consequence, DESY, Germany's leading accelerator center, has established a research program for plasma-based novel acceleration techniques with the goal of exploiting the synergetic combination of conventional and new accelerator technology. Such a concept offers an attractive pathway to study many mechanisms occurring in plasma-based accelerators, for example electron-beam-emittance evolution, extreme bunch compression, the controlled emission of betatron radiation, and staging of accelerating units. In addition, it is assumed that bypassing the difficult-to-master process of particle self-injection, which is utilized in all current laser-plasma acceleration schemes, will greatly enhance the reliability of such machines compared to the state-of-the-art.

  20. A New Accelerator-Based Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gove, H. E.

    1983-01-01

    Tandem electrostatic accelerators produce beams of positive ions which are used to penetrate atomic nuclei in a target, inducing nuclear reactions whose study elucidates varied properties of the nucleus. Uses of the system, which acts like a mass spectrometer, are discussed. These include radiocarbon dating measurements. (JN)

  1. Proton laser accelerator by means of the inverse free electron laser mechanism

    SciTech Connect

    Zakowicz, W.

    1984-07-01

    The inverse free electron laser accelerator is considered to be a potential high gradient electron accelerator. In this accelerator electrons oscillating in the magnetic field of a wiggler can gain energy from a strong laser beam propagating collinearly. The same mechanism of acceleration can work for protons and all other heavier particles. One can expect that the proton acceleration will be less effective, as it is more difficult to wiggle a heavier particle. It is indeed so, but this less efficient coupling of the proton and laser beam is partly compensated by the negligible radiative losses. These losses impose restrictions on the electron acceleration above 100 Gev. 6 references, 2 figures.

  2. Laboratory Simulation of Ion Acceleration Mechanisms in the Suprauroral Region.

    NASA Astrophysics Data System (ADS)

    Koslover, Robert Avner

    1987-09-01

    We report the results of a series of laboratory experiments intended to simulate particular aspects of ion acceleration processes that have been observed or are believed to occur in the suprauroral region of the Earth's magnetosphere. Beam-generated lower hybrid waves (LHW) and current-driven electrostatic ion cyclotron waves (EICW) have both been proposed as responsible for low-altitude perpendicular ion acceleration, leading to the formation of ion conics at higher altitudes (after mirroring in the geomagnetic field). We model, by experiments in the laboratory, the mechanisms generating the ion velocity distributions and radio frequency waves observed in the suprauroral region. Experiments were performed in two linear plasma devices: the UCI Q -machine and UCI Magnetic Mirror. RF waves were launched by antennas or excited by electron currents or beams. Laser induced fluorescence (LIF) provided a sensitive non-perturbing diagnostic for ion velocity distributions. RF and Langmuir probes were used for electrical measurements. Antenna launched LHW produced considerable perpendicular ion heating, generating 'tail' formation followed by a bulk 'maxwellian' heating. Both broadband and narrowband LHW produced similar effects. Frequency spectra displayed multiple harmonics of the input antenna signal and also signals of lower frequency, the latter identified as due to parametric decay. Operating the UCI Magnetic Mirror as a double plasma device, a low energy, low density electron beam was shown to generate very broadband noise above the LH resonance frequency. Two-probe correlation studies indicated the existence of a wide band of k values as well. The noise has been tentatively identified as beam-generated LHW. In order to study the formation of ion conics, a new diagnostic method making use of LIF and computed tomography was developed. A description is given of this new technique, which we call optical tomography. Using this approach, we successfully observed the

  3. Fifty years of accelerator based physics at Chalk River

    SciTech Connect

    McKay, John W.

    1999-04-26

    The Chalk River Laboratories of Atomic Energy of Canada Ltd. was a major centre for Accelerator based physics for the last fifty years. As early as 1946, nuclear structure studies were started on Cockroft-Walton accelerators. A series of accelerators followed, including the world's first Tandem, and the MP Tandem, Superconducting Cyclotron (TASCC) facility that was opened in 1986. The nuclear physics program was shut down in 1996. This paper will describe some of the highlights of the accelerators and the research of the laboratory.

  4. Intense coherent terahertz generation from accelerator-based sources

    NASA Astrophysics Data System (ADS)

    Hama, Hiroyuki; Yasuda, Mafuyu; Kawai, Masayuki; Hinode, Fujio; Nanbu, Kenichi; Miyahara, Fusashi

    2011-05-01

    The development of terahertz (THz) technology and science relevant to accelerator-based sources has been rapid, based on laser and semiconductor physics. To assure further progress of this scientific field, extremely intense radiation, involving gigawatt-class peak power, is needed. In addition to discussing the prospects for typical accelerator-based THz sources, such as coherent synchrotron radiation (CSR) and free electron lasers (FELs), novel, advanced THz sources employing isochronous-ring and bunched-FEL approaches are proposed.

  5. Acceleration Mechanism Of Pulsed Laser-Electromagnetic Hybrid Thruster

    SciTech Connect

    Horisawa, Hideyuki; Mashima, Yuki; Yamada, Osamu

    2011-11-10

    A fundamental study of a newly developed rectangular pulsed laser-electromagnetic hybrid thruster was conducted. Laser-ablation plasma in the thruster was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. The performance of the thrusters was evaluated by measuring the ablated mass per pulse and impulse bit. As results, significantly high specific impulses up to 7,200 s were obtained at charge energies of 8.6 J. Moreover, from the Faraday cup measurement, it was confirmed that the speed of ions was accelerated with addition of electric energy.

  6. The Evolution of the Acceleration Mechanisms of Cosmic Rays and Relativistic Electrons in Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Tsvyk, N.

    There are estimated an efficacy for different acceleration mechanisms of e- and p-cosmic rays (CRs) in radio galaxies, using an evolution model for jet gaps and shock fronts with a turbulence. It is shown that diffusion shock acceleration of the CRs is the most efficient mechanism in the FR II radio galaxies (RGs). At the same time, there are a break-pinch mechanism (for a short-term at a jet gap moment), and a stochastic turbulent mechanism (for an all time when RG exist), that to play a grate part in acceleration of the CRs (give to 10-50 % of the all acceleration efficiency). It is predicted what properties of radio emission spectra give us to recognize a type of acceleration mechanisms of e-CR in the RG.

  7. Theoretical and Observational Analysis of Particle Acceleration Mechanisms at Astrophysical Shocks

    NASA Astrophysics Data System (ADS)

    Lever, Edward Lawrence

    We analytically and numerically investigate the viability of Shock Surfing as a pre-injection mechanism for Diffusive Shock Acceleration, believed to be responsible for the production of Cosmic Rays. We demonstrate mathematically and from computer simulations that four critical conditions must be satisfied for Shock Surfing to function; the shock ramp must be narrow, the shock front must be smooth, the magnetic field angle must be very nearly perpendicular and, finally, these conditions must persist without interruption over substantial time periods and spatial scales. We quantify these necessary conditions, exhibit predictive functions for velocity maxima and accelerated ion fluxes based on observable shock parameters, and show unequivocally from current observational evidence that all of these necessary conditions are violated at shocks within the heliosphere, at the heliospheric Termination Shock, and also at Supernovae.

  8. Physics of Laser-driven plasma-based acceleration

    SciTech Connect

    Esarey, Eric; Schroeder, Carl B.

    2003-06-30

    The physics of plasma-based accelerators driven by short-pulse lasers is reviewed. This includes the laser wake-field accelerator, the plasma beat wave accelerator, the self-modulated laser wake-field accelerator, and plasma waves driven by multiple laser pulses. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse direction, electron dephasing, laser pulse energy depletion, as well as beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and plasmas with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Recent experimental results are summarized.

  9. Neural network-based sensor signal accelerator.

    SciTech Connect

    Vogt, M. C.

    2000-10-16

    A strategy has been developed to computationally accelerate the response time of a generic electronic sensor. The strategy can be deployed as an algorithm in a control system or as a physical interface (on an embedded microcontroller) between a slower responding external sensor and a higher-speed control system. Optional code implementations are available to adjust algorithm performance when computational capability is limited. In one option, the actual sensor signal can be sampled at the slower rate with adaptive linear neural networks predicting the sensor's future output and interpolating intermediate synthetic output values. In another option, a synchronized collection of predictors sequentially controls the corresponding synthetic output voltage. Error is adaptively corrected in both options. The core strategy has been demonstrated with automotive oxygen sensor data. A prototype interface device is under construction. The response speed increase afforded by this strategy could greatly offset the cost of developing a replacement sensor with a faster physical response time.

  10. Accelerator-based neutron radioscopic systems

    NASA Astrophysics Data System (ADS)

    Berger, Harold; Dance, William E.

    1999-06-01

    There is interest in non-reactor source, thermal neutron inspection systems for applications in aircraft maintenance, explosive devices, investment-cast turbine blades, etc. Accelerator sources, (d-T), RFQ accelerators and cyclotrons as examples, are available for either transportable or fixed neutron inspection systems. Sources are reviewed for neutron output, portability, ease of use and cost, and for use with an electronic neutron imaging camera (image intensifier or scintillator-camera system) to provide a prompt response, neutron inspection system. Particular emphasis is given to the current aircraft inspection problem to detect and characterize corrosion. Systems are analyzed to determine usefulness in providing an on-line inspection technique to detect corrosion in aluminum honeycomb aircraft components, either on-aircraft or in a shop environment. The neutron imaging sensitivity to hydrogenous aluminum corrosion product offers early detection advantages for aircraft corrosion, to levels of aluminum metal loss as small as 25 μm. The practical capability for a continuous scan thermal neutron radioscopic system to inspect up to 500 square feet of component surface per day is used as an evaluation criterion, with the system showing contrast sensitivity of at least 5% and image detail in the order of 4 mm for parts 10 cm thick. Under these practical conditions and 3-shift operation, the source must provide an incident thermal neutron flux of 5.6×104n cm-2 s-1 at an L/D of 30. A stop and go inspection approach, offering improved resolution, would require a source with similar characteristics.

  11. Mechanisms based on piezoactuators

    NASA Astrophysics Data System (ADS)

    Claeyssen, Frank; Le Letty, Ronan; Barillot, Francois; Lhermet, Nicolas; Fabbro, H.; Guay, Philippe; Yorck, Mickael; Bouchilloux, Philippe

    2001-06-01

    In several fields (optics, space, aircraft, fluid control, biomedical, and manufacturing) there is a strong need for compact, robust and efficient positioning mechanisms that also offer high precision, short response times, low power consumption, low electromagnetic interference and multiple degrees of freedom. Piezoelectric actuators are generally good candidates for building such mechanisms. The products manufactured by Cedrat Recherche SA are piezoelectric actuators offering compact size, high deformation (up to 1%) and high stiffness. These actuators have successfully passed different qualification tests (air and space qualification, lifetime tests). They can easily be integrated in applications, as shown by examples of mechanisms taken from various fields: a super amplified actuator for a MRI biomedical device, a tip-tilt for mirrors, a chopper for X-ray diffraction, a helicopter flap mechanism and an XYZ stage for the AFM microscope of the MIDAS instrument of the ESA ROSETTA space mission.

  12. Spatial Relations between Force and Acceleration in Relativistic Mechanics.

    ERIC Educational Resources Information Center

    Redding, J. L.

    1982-01-01

    The lack of parallelism between the force and acceleration vectors has several apparently paradoxical consequences that have been recently examined. This article uses a different and more general mode of analysis than previous authors to derive quite general, rather than particular, results. (Author/SK)

  13. NIOS II processor-based acceleration of motion compensation techniques

    NASA Astrophysics Data System (ADS)

    González, Diego; Botella, Guillermo; Mookherjee, Soumak; Meyer-Bäse, Uwe; Meyer-Bäse, Anke

    2011-06-01

    This paper focuses on the hardware acceleration of motion compensation techniques suitable for the MPEG video compression. A plethora of representative motion estimation search algorithms and the new perspectives are introduced. The methods and designs described here are qualified for medical imaging area where are involved larger images. The structure of the processing systems considered has a good fit for reconfigurable acceleration. The system is based in a platform like FPGA working with the Nios II Microprocessor platform applying C2H acceleration. The paper shows the results in terms of performance and resources needed.

  14. Laser wakefield accelerator based light sources: potential applications and requirements

    SciTech Connect

    Albert, F.; Thomas, A. G.; Mangles, S. P.D.; Banerjee, S.; Corde, S.; Flacco, A.; Litos, M.; Neely, D.; Viera, J.; Najmudin, Z.; Bingham, R.; Joshi, C.; Katsouleas, T.

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  15. Experimental demonstration of dielectric structure based two beam acceleration.

    SciTech Connect

    Gai, W.; Conde, M. E.; Konecny, R.; Power, J. G.; Schoessow, P.; Sun, X.; Zou, P.

    2000-11-28

    We report on the experimental results of the dielectric based two beam accelerator (step-up transformer). By using a single high charge beam, we have generated and extracted a high power RF pulse from a 7.8 GHz primary dielectric structure and then subsequently transferred to a second accelerating structure with higher dielectric constant and smaller transverse dimensions. We have measured the energy change of a second (witness) beam passing through the acceleration stage. The measured gradient is >4 times the deceleration gradient. The detailed experiment of set-up and results of the measurements are dimmed. Future plans for the development of a 100 MeV demonstration accelerator based on this technique is presented.

  16. Trapping and dark current in plasma-based accelerators

    SciTech Connect

    Schroder, C.B.; Esarey, E.; Shadwick, B.A.; Leemans, W.P.

    2004-06-01

    The trapping of thermal electrons in a nonlinear plasma wave of arbitrary phase velocity is investigated. The threshold plasma wave amplitude for trapping plasma electrons is calculated, thereby determining the fraction trapped and the expected dark current in a plasma-based accelerator. It is shown that the presence of a laser field (e.g., trapping in the self-modulated regime of the laser wakefield accelerator) increases the trapping threshold. Implications for experimental and numerical laser-plasma studies are discussed.

  17. A Massively Parallel Solver for the Mechanical Harmonic Analysis of Accelerator Cavities

    SciTech Connect

    O. Kononenko

    2015-02-17

    ACE3P is a 3D massively parallel simulation suite that developed at SLAC National Accelerator Laboratory that can perform coupled electromagnetic, thermal and mechanical study. Effectively utilizing supercomputer resources, ACE3P has become a key simulation tool for particle accelerator R and D. A new frequency domain solver to perform mechanical harmonic response analysis of accelerator components is developed within the existing parallel framework. This solver is designed to determine the frequency response of the mechanical system to external harmonic excitations for time-efficient accurate analysis of the large-scale problems. Coupled with the ACE3P electromagnetic modules, this capability complements a set of multi-physics tools for a comprehensive study of microphonics in superconducting accelerating cavities in order to understand the RF response and feedback requirements for the operational reliability of a particle accelerator. (auth)

  18. Origami based mechanical metamaterials.

    PubMed

    Lv, Cheng; Krishnaraju, Deepakshyam; Konjevod, Goran; Yu, Hongyu; Jiang, Hanqing

    2014-01-01

    We describe mechanical metamaterials created by folding flat sheets in the tradition of origami, the art of paper folding, and study them in terms of their basic geometric and stiffness properties, as well as load bearing capability. A periodic Miura-ori pattern and a non-periodic Ron Resch pattern were studied. Unexceptional coexistence of positive and negative Poisson's ratio was reported for Miura-ori pattern, which are consistent with the interesting shear behavior and infinity bulk modulus of the same pattern. Unusually strong load bearing capability of the Ron Resch pattern was found and attributed to the unique way of folding. This work paves the way to the study of intriguing properties of origami structures as mechanical metamaterials. PMID:25099402

  19. Origami based Mechanical Metamaterials

    PubMed Central

    Lv, Cheng; Krishnaraju, Deepakshyam; Konjevod, Goran; Yu, Hongyu; Jiang, Hanqing

    2014-01-01

    We describe mechanical metamaterials created by folding flat sheets in the tradition of origami, the art of paper folding, and study them in terms of their basic geometric and stiffness properties, as well as load bearing capability. A periodic Miura-ori pattern and a non-periodic Ron Resch pattern were studied. Unexceptional coexistence of positive and negative Poisson's ratio was reported for Miura-ori pattern, which are consistent with the interesting shear behavior and infinity bulk modulus of the same pattern. Unusually strong load bearing capability of the Ron Resch pattern was found and attributed to the unique way of folding. This work paves the way to the study of intriguing properties of origami structures as mechanical metamaterials. PMID:25099402

  20. Evaluation of a new IR-guided system for mechanical QA of linear accelerators

    SciTech Connect

    Lyatskaya, Yulia; Kadam, Dnyanesh; Levitsky, Gennady; Hacker, Fred; Chin, Lee

    2008-11-15

    The authors report the development of a new procedure for mechanical quality assurance of linear accelerators using an infrared-guided system. The system consists of an infrared (IR) camera and an IR-reflective marker that can be attached to a gantry, a collimator, or a treatment table. The trace of this marker can be obtained in three dimensions (3D) for a full or partial rotation of the mechanical devices. The software is written to localize rotational axes of the gantry, collimator, and the treatment table based on the marker traces. The separation of these axes characterizes the size of the sphere defining the mechanical isocenter. Additional information on anomalies in gantry movement such as degree of gantry sag and hysteresis can also be obtained. An intrinsic uncertainty of the system to localize rotational axis is 0.35 mm or less. Tests on a linear accelerator demonstrated the ability of this system to detect the separation between rotational axes of less than 1 mm and to confirm orthogonality of the planes of gantry, collimator, and table rotation.

  1. Drift mechanism of laser-induced electron acceleration in vacuum

    NASA Astrophysics Data System (ADS)

    Morgovsky, L.

    2015-12-01

    Laser-induced electron acceleration in vacuum is possible due to the ejection of electrons from the beam as a consequence of the transverse drift orthogonal to the propagation direction. The transverse drift is derived from the general solution of the equations of motion of the electrons in the field of a plane electromagnetic wave with arbitrary polarization. It is shown that the energy gain is proportional to the square of the field strength additionally modulated by the function of the injection and ejection phases. In particular, for a linearly polarized beam this function is reduced to the squared difference between the cosines of these phases. The finite laser pulse duration restricts the range of the field strength suitable for direct electron acceleration in vacuum within certain limits. It is demonstrated that the high efficiency of energy transfer from the laser wave into the kinetic energy of the accelerated electrons demands phase matching between the electron quiver phase at the exit point and the phase of the energy transfer.

  2. Mechanism of Isoflavone Aglycone's Effect on Cognitive Performance of Senescence-Accelerated Mice

    ERIC Educational Resources Information Center

    Yang, Hong; Jin, Guifang; Ren, Dongdong; Luo, Sijing; Zhou, Tianhong

    2011-01-01

    This study investigated the effect of isoflavone aglycone (IA) on the learning and memory performance of senescence-accelerated mice, and explored its neural protective mechanism. Results showed that SAM-P/8 senescence-accelerated mice treated with IA performed significantly better in the Y-maze cognitive test than the no treatment control (P less…

  3. A count rate based contamination control standard for electron accelerators

    SciTech Connect

    May, R.T.; Schwahn, S.O.

    1996-12-31

    Accelerators of sufficient energy and particle fluence can produce radioactivity as an unwanted byproduct. The radioactivity is typically imbedded in structural materials but may also be removable from surfaces. Many of these radionuclides decay by positron emission or electron capture; they often have long half lives and produce photons of low energy and yield making detection by standard devices difficult. The contamination control limit used throughout the US nuclear industry and the Department of Energy is 1,000 disintegrations per minute. This limit is based on the detection threshold of pancake type Geiger-Mueller probes for radionuclides of relatively high radiotoxicity, such as cobalt-60. Several radionuclides of concern at a high energy electron accelerator are compared in terms of radiotoxicity with radionuclides commonly found in the nuclear industry. Based on this comparison, a count-rate based contamination control limit and associated measurement strategy is proposed which provides adequate detection of contamination at accelerators without an increase in risk.

  4. Space Mechanisms Lessons Learned and Accelerated Testing Studies

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1997-01-01

    A number of mechanism (mechanical moving component) failures and anomalies have recently occurred on satellites. In addition, more demanding operating and life requirements have caused mechanism failures or anomalies to occur even before some satellites were launched (e.g., during the qualification testing of GOES-NEXT, CERES, and the Space Station Freedom Beta Joint Gimbal). For these reasons, it is imperative to determine which mechanisms worked in the past and which have failed so that the best selection of mechanically moving components can be made for future satellites. It is also important to know where the problem areas are so that timely decisions can be made on the initiation of research to develop future needed technology. To chronicle the life and performance characteristics of mechanisms operating in a space environment, a Space Mechanisms Lessons Learned Study was conducted. The work was conducted by the NASA Lewis Research Center and by Mechanical Technologies Inc. (MTI) under contract NAS3-27086. The expectation of the study was to capture and retrieve information relating to the life and performance of mechanisms operating in the space environment to determine what components had operated successfully and what components had produced anomalies.

  5. The Mechanisms of Electron Acceleration During Multiple X Line Magnetic Reconnection with a Guide Field

    NASA Astrophysics Data System (ADS)

    Wang, Huanyu; Lu, Quanming; Huang, Can; Wang, Shui

    2016-04-01

    The interactions between magnetic islands are considered to play an important role in electron acceleration during magnetic reconnection. In this paper, two-dimensional particle-in-cell simulations are performed to study electron acceleration during multiple X line reconnection with a guide field. Because the electrons remain almost magnetized, we can analyze the contributions of the parallel electric field, Fermi, and betatron mechanisms to electron acceleration during the evolution of magnetic reconnection through comparison with a guide-center theory. The results show that with the magnetic reconnection proceeding, two magnetic islands are formed in the simulation domain. Next, the electrons are accelerated by both the parallel electric field in the vicinity of the X lines and the Fermi mechanism due to the contraction of the two magnetic islands. Then, the two magnetic islands begin to merge into one, and, in such a process, the electrons can be accelerated by both the parallel electric field and betatron mechanisms. During the betatron acceleration, the electrons are locally accelerated in the regions where the magnetic field is piled up by the high-speed flow from the X line. At last, when the coalescence of the two islands into one big island finishes, the electrons can be further accelerated by the Fermi mechanism because of the contraction of the big island. With the increase of the guide field, the contributions of the Fermi and betatron mechanisms to electron acceleration become less and less important. When the guide field is sufficiently large, the contributions of the Fermi and betatron mechanisms are almost negligible.

  6. Mechanisms of aging in senescence-accelerated mice

    PubMed Central

    Carter, Todd A; Greenhall, Jennifer A; Yoshida, Shigeo; Fuchs, Sebastian; Helton, Robert; Swaroop, Anand; Lockhart, David J; Barlow, Carrolee

    2005-01-01

    Background Progressive neurological dysfunction is a key aspect of human aging. Because of underlying differences in the aging of mice and humans, useful mouse models have been difficult to obtain and study. We have used gene-expression analysis and polymorphism screening to study molecular senescence of the retina and hippocampus in two rare inbred mouse models of accelerated neurological senescence (SAMP8 and SAMP10) that closely mimic human neurological aging, and in a related normal strain (SAMR1) and an unrelated normal strain (C57BL/6J). Results The majority of age-related gene expression changes were strain-specific, with only a few common pathways found for normal and accelerated neurological aging. Polymorphism screening led to the identification of mutations that could have a direct impact on important disease processes, including a mutation in a fibroblast growth factor gene, Fgf1, and a mutation in and ectopic expression of the gene for the chemokine CCL19, which is involved in the inflammatory response. Conclusion We show that combining the study of inbred mouse strains with interesting traits and gene-expression profiling can lead to the discovery of genes important for complex phenotypes. Furthermore, full-genome polymorphism detection, sequencing and gene-expression profiling of inbred mouse strains with interesting phenotypic differences may provide unique insights into the molecular genetics of late-manifesting complex diseases. PMID:15960800

  7. An accelerator-based epithermal photoneutron source for BNCT

    SciTech Connect

    Nigg, D.W.; Mitchell, H.E.; Harker, Y.D.; Yoon, W.Y.

    1995-11-01

    Therapeutically-useful epithermal-neutron beams for BNCT are currently generated by nuclear reactors. Various accelerator-based neutron sources for BNCT have been proposed and some low intensity prototypes of such sources, generally featuring the use of proton beams and beryllium or lithium targets have been constructed. This paper describes an alternate approach to the realization of a clinically useful accelerator-based source of epithermal neutrons for BNCT that reconciles the often conflicting objectives of target cooling, neutron beam intensity, and neutron beam spectral purity via a two stage photoneutron production process.

  8. Neutron-proton-converter acceleration mechanism at subphotospheres of relativistic outflows.

    PubMed

    Kashiyama, Kazumi; Murase, Kohta; Mészáros, Peter

    2013-09-27

    We study a type of particle acceleration that operates via neutron-proton conversion in inelastic nuclear collisions. This mechanism can be expected for relativistic shocks at subphotospheres if relativistic outflows contain neutrons. Using a test-particle approximation, we numerically calculate the energy spectrum and the efficiency of accelerated particles, and show that a good energy fraction of the nucleons can be accelerated. This mechanism may be especially relevant if the shock is radiation mediated, and it would enhance the detectability of GeV-TeV neutrinos. PMID:24116765

  9. Constraints on Solar Wind Acceleration Mechanisms from Ulysses Plasma Observations: The First Polar Pass

    NASA Technical Reports Server (NTRS)

    Barnes, Aaron; Gazis, Paul R.; Phillips, John L.

    1995-01-01

    The mass flux density and velocity of the solar wind at polar latitudes can provide strong constraints on solar wind acceleration mechanisms. We use plasma observations from the first polar passage of the Ulysses spacecraft to investigate this question. We find that the mass flux density and velocity are too high to reconcile with acceleration of the solar wind by classical thermal conduction alone. Therefore acceleration of the high-speed must involve extended deposition of energy by some other mechanism, either as heat or as a direct effective pressure, due possibly to waves and/or turbulence, or completely non-classical heat transport.

  10. Facilitating an accelerated experience-based co-design project.

    PubMed

    Tollyfield, Ruth

    This article describes an accelerated experience-based co-design (AEBCD) quality improvement project that was undertaken in an adult critical care setting and the facilitation of that process. In doing so the aim is to encourage other clinical settings to engage with their patients, carers and staff alike and undertake their own quality improvement project. Patient, carer and staff experience and its place in the quality sphere is outlined and the importance of capturing patient, carer and staff feedback established. Experience-based co-design (EBCD) is described along with the recently tested accelerated version of the process. An overview of the project and outline of the organisational tasks and activities undertaken by the facilitator are given. The facilitation of the process and key outcomes are discussed and reflected on. Recommendations for future undertakings of the accelerated process are given and conclusions drawn. PMID:24526020

  11. Spring operated accelerator and constant force spring mechanism therefor

    NASA Technical Reports Server (NTRS)

    Shillinger, G. L., Jr. (Inventor)

    1977-01-01

    A spring assembly consisting of an elongate piece of flat spring material formed into a spiral configuration and a free running spool in circumscribing relation to which this spring is disposed was developed. The spring has a distal end that is externally accessible so that when the distal end is drawn along a path, the spring unwinds against a restoring force present in the portion of the spring that resides in a transition region between a relatively straight condition on the path and a fully wound condition on the spool. When the distal end is released, the distal end is accelerated toward the spool by the force existing at the transition region which force is proportional to the cross-sectional area of the spring.

  12. Ridge-based bias potentials to accelerate molecular dynamics.

    PubMed

    Xiao, Penghao; Duncan, Juliana; Zhang, Liang; Henkelman, Graeme

    2015-12-28

    An effective way to accelerate rare events in molecular dynamics simulations is to apply a bias potential which destabilizes minima without biasing the transitions between stable states. This approach, called hyperdynamics, is limited by our ability to construct general bias potentials without having to understand the reaction mechanisms available to the system, a priori. Current bias potentials are typically constructed in terms of a metric which quantifies the distance that a trajectory deviates from the reactant state minimum. Such metrics include detection of negative curvatures of the potential, an energy increase, or deviations in bond lengths from the minimum. When one of these properties exceeds a critical value, the bias potentials are constructed to approach zero. A problem common to each of these schemes is that their effectiveness decreases rapidly with system size. We attribute this problem to a diminishing volume defined by the metrics around a reactant minimum as compared to the total volume of the reactant state basin. In this work, we mitigate the dimensionality scaling problem by constructing bias potentials that are based upon the distance to the boundary of the reactant basin. This distance is quantified in two ways: (i) by following the minimum mode direction to the reactant boundary and (ii) by training a machine learning algorithm to give an analytic expression for the boundary to which the distance can be calculated. Both of these ridge-based bias potentials are demonstrated to scale qualitatively better with dimensionality than the existing methods. We attribute this improvement to a greater filling fraction of the reactant state using the ridge-based bias potentials as compared to the standard potentials. PMID:26723648

  13. Feature-based Analysis of Plasma-based Particle Acceleration Data

    SciTech Connect

    Ruebel, Oliver; Geddes, Cameron G.R.; Chen, Min; Cormier-Michel, Estelle; Bethel, E. Wes

    2013-07-05

    Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a novel approach for automatic detection and classification of particle beams and beam substructures due to temporal differences in the acceleration process, here called acceleration features. The automatic feature detection in combination with a novel visualization tool for fast, intuitive, query-based exploration of acceleration features enables an effective top-down data exploration process, starting from a high-level, feature-based view down to the level of individual particles. We describe the application of our analysis in practice to analyze simulations of single pulse and dual and triple colliding pulse accelerator designs, and to study the formation and evolution of particle beams, to compare substructures of a beam and to investigate transverse particle loss.

  14. Feature-based analysis of plasma-based particle acceleration data.

    PubMed

    Rübel, Oliver; Geddes, Cameron G R; Chen, Min; Cormier-Michel, Estelle; Bethel, E Wes

    2014-02-01

    Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a novel approach for automatic detection and classification of particle beams and beam substructures due to temporal differences in the acceleration process, here called acceleration features. The automatic feature detection in combination with a novel visualization tool for fast, intuitive, query-based exploration of acceleration features enables an effective top-down data exploration process, starting from a high-level, feature-based view down to the level of individual particles. We describe the application of our analysis in practice to analyze simulations of single pulse and dual and triple colliding pulse accelerator designs, and to study the formation and evolution of particle beams, to compare substructures of a beam, and to investigate transverse particle loss. PMID:24356363

  15. Klystron based high power rf system for proton accelerator

    SciTech Connect

    Pande, Manjiri; Shrotriya, Sandip; Sharma, Sonal; Patel, Niranjan; Handu, Verander E-mail: manjiri08@gmail.com

    2011-07-01

    As a part of ADS program a proton accelerator (20 MeV, 30 mA) and its high power RF systems (HPRF) are being developed in BARC. This paper explains design details of this klystron based HPRF system. (author)

  16. Accelerator-based Experiments For Introductory-level Undergraduates

    SciTech Connect

    Sanders, Justin M.

    2009-03-10

    Although accelerator based experiments for undergraduates are often considered only for junior or senior physics majors, introductory students can also benefit from them. Rutherford backscattering and a {sup 12}C(p,p){sup 12}C elastic scattering resonance can be presented in ways that are well-suited for students who have taken only an introductory physics course.

  17. A Contracting Island Mechanism for Electron Acceleration during Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Drake, James; Swisdak, M.; Che, H.; Shay, M. A.

    2007-05-01

    A Fermi-like model for energetic electron production during magnetic reconnection is described that explains key observations in the magnetosphere and solar corona [1]. Magnetic reconnection with a guide field leads to the growth and dynamics of multiple magnetic islands rather than a single large x-line. Above a critical energy electron acceleration is dominated by the Fermi-like reflection of electrons within the resulting magnetic islands rather than by the parallel electric fields associated with the x-line. Particles trapped within islands gain energy as they reflect from ends of contracting magnetic islands. The pressure from energetic electrons rises rapidly until the rate of electron energy gain balances the rate of magnetic energy release, establishing for the first time a link between the energy gain of electrons and the released magnetic energy. The energetic particle pressure therefore throttles the rate of reconnection. A transport equation for the distribution of energetic particles, including their feedback on island contraction, is obtained by averaging over the particle interaction with many islands. The steady state solutions in reconnection geometry result from convective losses balancing the Fermi drive. At high energy distribution functions take the form of a powerlaw whose spectral index depends only on the initial electron β, lower (higher) β producing harder (softer) spectra. The spectral index matches that seen in recent Wind spacecraft observations in the magnetotail. Harder spectra are predicted for the low β conditions of the solar corona. 1. Drake et al., Nature 443, 553, 2006.

  18. Transformer ratio improvement for beam based plasma accelerators

    SciTech Connect

    O'Shea, Brendan; Rosenzweig, James; Barber, Samuel; Fukasawa, Atsushi; Williams, Oliver; Muggli, Patric; Yakimenko, Vitaly; Kusche, Karl

    2012-12-21

    Increasing the transformer ratio of wakefield accelerating systems improves the viability of present novel accelerating schemes. The use of asymmetric bunches to improve the transformer ratio of beam based plasma systems has been proposed for some time[1, 2] but suffered from lack appropriate beam creation systems. Recently these impediments have been overcome [3, 4] and the ability now exists to create bunches with current profiles shaped to overcome the symmetric beam limit of R {<=} 2. We present here work towards experiments designed to measure the transformer ratio of such beams, including theoretical models and simulations using VORPAL (a 3D capable PIC code) [5]. Specifically we discuss projects to be carried out in the quasi-nonlinear regime [6] at the UCLA Neptune Laboratory and the Accelerator Test Facility at Brookhaven National Lab.

  19. Physics of laser-driven plasma-based electron accelerators

    SciTech Connect

    Esarey, E.; Schroeder, C. B.; Leemans, W. P.

    2009-07-15

    Laser-driven plasma-based accelerators, which are capable of supporting fields in excess of 100 GV/m, are reviewed. This includes the laser wakefield accelerator, the plasma beat wave accelerator, the self-modulated laser wakefield accelerator, plasma waves driven by multiple laser pulses, and highly nonlinear regimes. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse diffraction, electron dephasing, laser pulse energy depletion, and beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Experiments demonstrating key physics, such as the production of high-quality electron bunches at energies of 0.1-1 GeV, are summarized.

  20. Degradation Mechanisms and Accelerated Testing in PEM Fuel Cells

    SciTech Connect

    Borup, Rodney L.

    2011-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise from component optimization. Operational conditions (such as impurities in either the fuel or oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability.

  1. Mechanism-based Modeling of Long-term Degradation

    NASA Technical Reports Server (NTRS)

    McManus, H. L.; Foch, B. J.; Cunningham, R. A.

    1998-01-01

    The use of composites in high temperature, long lifetime applications requires a basic understanding of composite degradation mechanisms, advances in analytical capabilities, and accurate accelerated and scaled tests. To advance all of these goals, models are proposed based on a variety of fundamental material mechanisms. Thermal, oxygen, and moisture diffusion, chemical reactions, composite micromechanics; modified laminated plate theory, and future mechanics based damage models are used. All models attempt to stay as simple and fundamental as possible. All are coupled, so that interactions between various effects are modeled implicitly. Ongoing efforts at MIT are reviewed here, with some reference to other work, but no attempt is made to do a comprehensive review. Mechanism based models are yielding understanding of the mechanisms behind observed degradation phenomena, are helping to design accelerated tests, and are the first steps towards a predictive capability.

  2. Modal self-excitation by nonlinear acceleration feedback in a class of mechanical systems

    NASA Astrophysics Data System (ADS)

    Malas, Anindya; Chatterjee, S.

    2016-08-01

    The article proposes an acceleration feedback based technique for exciting modal self-oscillation in a class of multi degrees-of-freedom mechanical systems. The controller comprises a bank of second-order filters and the control law is formulated as the nonlinear function of the filter output. A design methodology is developed to excite self-oscillation in any desired mode or combination of modes (mixed-mode oscillation). The choice of control parameters takes into account the control cost and robustness of the controller. The effects of structural damping on the system performance are also studied. Analytical results are confirmed by numerical simulations. An adaptive control is proposed to maintain the oscillation amplitude at the desired level.

  3. The slingshot effect: A possible new laser-driven high energy acceleration mechanism for electrons

    SciTech Connect

    Fiore, Gaetano; Fedele, Renato; Angelis, Umberto de

    2014-11-15

    We show that under appropriate conditions the impact of a very short and intense laser pulse onto a plasma causes the expulsion of surface electrons with high energy in the direction opposite to the one of the propagations of the pulse. This is due to the combined effects of the ponderomotive force and the huge longitudinal field arising from charge separation (“slingshot effect”). The effect should also be present with other states of matter, provided the pulse is sufficiently intense to locally cause complete ionization. An experimental test seems to be feasible and, if confirmed, would provide a new extraction and acceleration mechanism for electrons, alternative to traditional radio-frequency-based or laser-wake-field ones.

  4. Mechanism of mark deformation in phase-change media tested in an accelerated environment

    NASA Astrophysics Data System (ADS)

    Hirotsune, Akemi; Terao, Motoyasu; Miyauchi, Yasushi; Tokushuku, Nobuhiro; Tamura, Reiji

    2007-04-01

    Increased jitter caused by recording marks becoming deformed in an accelerated environmental test was investigated and a model where the change in the speed of crystallization is affected by passive oxidation on the amorphous surface of the recording layer was devised. The model clarified the mechanism by which deformation in the marks caused increased jitter in the accelerated environmental test. Adding nitrogen into the gas when sputtering the protective layer adjacent to the recording film was investigated. It was confirmed that a prototype disk with this protective layer has decreased jitter after a 500 h accelerated test and superior power margins.

  5. Accelerator Based Neutron Beams for Neutron Capture Therapy

    SciTech Connect

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  6. Laser-Based Transient Surface Acceleration of Thermoelastic Layers

    NASA Astrophysics Data System (ADS)

    CETINKAYA, CETIN; WU, CUNLI; LI, CHEN

    2000-03-01

    The removal of particles from elastic substrates has been an important practical problem in the electronics industry especially as the sizes of electronic units shrink. In recent years, there has been an interest in removingsubmicron level particles from surfaces. The use of traditional surface cleaning methods, such as ultrasonically induced fluid flow, vibrational methods, centrifugal techniques, is limited to particles that require surface acceleration lower than 107m/s2. For the effective removal of submicron particles, a higher level surface acceleration is needed since the adhesion forces (mainly van der Waals force for dry surfaces) are related to the particle size and increase approximately linearly as the characteristic radius of small particles that are to be removed decreases. In current work, based on the generalized dynamic theory of thermoelasticity reported, a transfer matrix formulation including the second sound effect is developed for a thermoelastic layer. The transfer matrix for axisymmetric wave propagation in a thermoelastic layer is obtained by adopting a double integral transform approach. The second sound effect is included to eliminate the thermal wave travelling with infinite velocity as predicted by the diffusion heat transfer model, and, consequently, the immediate arrival of waves. Using the current formulation and the periodic systems framework, a transfer function formulation for calculating the accelerations is developed for transient analysis. A double integral transform inversion method is used for transient response calculations. Acceleration levels, sufficient for submicron particle removal, are reported. Various processes such as thermoelastic stresses, surface evaporation, and optical breakdown may be responsible for surface acceleration components and particle removal. In current work, only the surface acceleration due to transient thermoelastic wave propagation is under investigation.

  7. Mechanism of subclinical hypothyroidism accelerating endothelial dysfunction (Review).

    PubMed

    Lu, Ming; Yang, Chong-Bo; Gao, Ling; Zhao, Jia-Jun

    2015-01-01

    The association between subclinical hypothyroidism (SH) and cardiovascular disease has received increasing attention in recent years. The predisposition of patients with SH to endothelial dysfunction, an early sign of atherosclerosis, has been observed. This predisposition may be partially explained by the factors also found in patients with SH, including changes in lipid profile, low grade chronic inflammation, oxidative stress and insulin resistance. The proportional risks of endothelial dysfunction to thyroid stimulating hormone (TSH) also indicate that the action of TSH on extra thyroidal-stimulating hormone receptor (TSHR) is a possible mechanism underlying the correlation, which has later been supported by the associated basic studies. L-thyroxine replacement therapy appears to improve the aforementioned aspects, whereas there remain certain controversies, particularly for the elderly. Thus, more study data are required to confirm the benefit of L-thyroxine treatment for patients with SH. PMID:25452768

  8. Investigation of accelerated stress factors and failure/degradation mechanisms in terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1983-01-01

    Results of an ongoing research program into the reliability of terrestrial solar cells are presented. Laboratory accelerated testing procedures are used to identify failure/degradation modes which are then related to basic physical, chemical, and metallurgical phenomena. In the most recent tests, ten different types of production cells, both with and without encapsulation, from eight different manufacturers were subjected to a variety of accelerated tests. Results indicated the presence of a number of hitherto undetected failure mechanisms, including Schottky barrier formation at back contacts and loss of adhesion of grid metallization. The mechanism of Schottky barrier formation is explained by hydrogen, formed by the dissociation of water molecules at the contact surface, diffusing to the metal semiconductor interface. This same mechanism accounts for the surprising increase in sensitivity to accelerated stress conditions that was observed in some cells when encapsulated.

  9. A Model-based Prognostics Methodology for Electrolytic Capacitors Based on Electrical Overstress Accelerated Aging

    NASA Technical Reports Server (NTRS)

    Celaya, Jose; Kulkarni, Chetan; Biswas, Gautam; Saha, Sankalita; Goebel, Kai

    2011-01-01

    A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications.

  10. Wear mechanism based on adhesion

    NASA Technical Reports Server (NTRS)

    Yamamoto, T.; Buckley, D. H.

    1982-01-01

    Various concepts concerning wear mechanisms and deformation behavior observed in the sliding wear track are surveyed. The mechanisms for wear fragment formation is discussed on the basis of adhesion. The wear process under unlubricated sliding conditions is explained in relation to the concept of adhesion at the interface during the sliding process. The mechanism for tearing away the surface layer from the contact area and forming the sliding track contour is explained by assuming the simplified process of material removal based on the adhesion theory.

  11. Comparison of mice with accelerated aging caused by distinct mechanisms.

    PubMed

    Gurkar, Aditi U; Niedernhofer, Laura J

    2015-08-01

    Aging is the primary risk factor for numerous chronic, debilitating diseases. These diseases impact quality of life of the elderly and consume a large portion of health care costs. The cost of age-related diseases will only increase as the world's population continues to live longer. Thus it would be advantageous to consider aging itself as a therapeutic target, potentially stemming multiple age-related diseases simultaneously. While logical, this is extremely challenging as the molecular mechanisms that drive aging are still unknown. Furthermore, clinical trials to treat aging are impractical. Even in preclinical models, testing interventions to extend healthspan in old age are lengthy and therefore costly. One approach to expedite aging studies is to take advantage of mouse strains that are engineered to age rapidly. These strains are genetically and phenotypically quite diverse. This review aims to offer a comparison of several of these strains to highlight their relative strengths and weaknesses as models of mammalian and more specifically human aging. Additionally, careful identification of commonalities among the strains may lead to the identification of fundamental pathways of aging. PMID:25617508

  12. Accelerator physics in ERL based polarized electron ion collider

    SciTech Connect

    Hao, Yue

    2015-05-03

    This talk will present the current accelerator physics challenges and solutions in designing ERL-based polarized electron-hadron colliders, and illustrate them with examples from eRHIC and LHeC designs. These challenges include multi-pass ERL design, highly HOM-damped SRF linacs, cost effective FFAG arcs, suppression of kink instability due to beam-beam effect, and control of ion accumulation and fast ion instabilities.

  13. First neutron generation in the BINP accelerator based neutron source.

    PubMed

    Bayanov, B; Burdakov, A; Chudaev, V; Ivanov, A; Konstantinov, S; Kuznetsov, A; Makarov, A; Malyshkin, G; Mekler, K; Sorokin, I; Sulyaev, Yu; Taskaev, S

    2009-07-01

    Pilot innovative facility for neutron capture therapy was built at Budker Institute of Nuclear Physics, Novosibirsk. This facility is based on a compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915 MeV protons bombarding a lithium target using (7)Li(p,n)(7)Be threshold reaction. The results of the first experiments on neutron generation are reported and discussed. PMID:19375928

  14. On a theory of two-beam mechanisms of charged particle acceleration in electrodynamic structures

    SciTech Connect

    Ostrovsky, A.O.

    1993-09-01

    This work is devoted to the theoretical studies of two-beam mechanisms of charged particle acceleration in electronic structures. The first section continues the outline of results of theoretical studies commenced in the intermediate report and considers the two-beam scheme of acceleration in the plasma waveguide. According to this scheme the strong current relativistic electron beam (REB) excites the intensive plasma waves accelerating the electrons of the second beam. The driving beam is assumed to be density-modulated. The preliminary modulation of the driving REB is shown to enhance substantially the acceleration efficiency of relativistic electrons of the driven beam. The second section deals with the two-beam acceleration in the vacuum corrugated waveguide. According to this scheme the excitation of electromagnetic waves and acceleration of driven beam electrons by them is accomplished under different Cherenkov resonances between the particles of beams and the corrugated waveguide field. The electromagnetic field in the periodic structure is known to be the superposition of spatial harmonics. With the small depth of the periodic nonuniformity the amplitudes of these harmonics decrease fast with their number increasing. Therefore, if the driving beam is in the Cherenkov resonance with the first spatial harmonic and the driven beam is in resonance with the zero space harmonic then the force accelerating the driven beam would be considerably bigger than the force decelerating the driving beam electrons.

  15. Centripetal Acceleration Reaction: An Effective and Robust Mechanism for Flapping Flight in Insects

    PubMed Central

    Zhang, Chao; Hedrick, Tyson L.; Mittal, Rajat

    2015-01-01

    Despite intense study by physicists and biologists, we do not fully understand the unsteady aerodynamics that relate insect wing morphology and kinematics to lift generation. Here, we formulate a force partitioning method (FPM) and implement it within a computational fluid dynamic model to provide an unambiguous and physically insightful division of aerodynamic force into components associated with wing kinematics, vorticity, and viscosity. Application of the FPM to hawkmoth and fruit fly flight shows that the leading-edge vortex is the dominant mechanism for lift generation for both these insects and contributes between 72–85% of the net lift. However, there is another, previously unidentified mechanism, the centripetal acceleration reaction, which generates up to 17% of the net lift. The centripetal acceleration reaction is similar to the classical inviscid added-mass in that it depends only on the kinematics (i.e. accelerations) of the body, but is different in that it requires the satisfaction of the no-slip condition, and a combination of tangential motion and rotation of the wing surface. Furthermore, the classical added-mass force is identically zero for cyclic motion but this is not true of the centripetal acceleration reaction. Furthermore, unlike the lift due to vorticity, centripetal acceleration reaction lift is insensitive to Reynolds number and to environmental flow perturbations, making it an important contributor to insect flight stability and miniaturization. This force mechanism also has broad implications for flow-induced deformation and vibration, underwater locomotion and flows involving bubbles and droplets. PMID:26252016

  16. YOUNG SUPERNOVAE AS EXPERIMENTAL SITES FOR STUDYING THE ELECTRON ACCELERATION MECHANISM

    SciTech Connect

    Maeda, Keiichi

    2013-01-10

    Radio emissions from young supernovae ({approx}<1 year after the explosion) show a peculiar feature in the relativistic electron population at a shock wave, where their energy distribution is steeper than typically found in supernova remnants and than that predicted from the standard diffusive shock acceleration (DSA) mechanism. This has been especially established for the case for a class of stripped envelope supernovae (SNe IIb/Ib/Ic), where a combination of high shock velocity and low circumstellar material density makes it easier to derive the intrinsic energy distribution than in other classes of SNe. We suggest that this apparent discrepancy reflects a situation where the low energy electrons, before being accelerated by the DSA-like mechanism, are responsible for the radio synchrotron emission from young SNe, and that studying young SNe sheds light on the still-unresolved electron injection problem in the acceleration theory of cosmic rays. We suggest that the electron's energy distribution could be flattened toward high energy, most likely around 100 MeV, which marks a transition from inefficient to efficient acceleration. Identifying this feature will be a major advance in understanding the electron acceleration mechanism. We suggest two further probes: (1) millimeter/submillimeter observations in the first year after the explosion and (2) X-ray observations at about one year and thereafter. We show that these are reachable by ALMA and Chandra for nearby SNe.

  17. Centripetal Acceleration Reaction: An Effective and Robust Mechanism for Flapping Flight in Insects.

    PubMed

    Zhang, Chao; Hedrick, Tyson L; Mittal, Rajat

    2015-01-01

    Despite intense study by physicists and biologists, we do not fully understand the unsteady aerodynamics that relate insect wing morphology and kinematics to lift generation. Here, we formulate a force partitioning method (FPM) and implement it within a computational fluid dynamic model to provide an unambiguous and physically insightful division of aerodynamic force into components associated with wing kinematics, vorticity, and viscosity. Application of the FPM to hawkmoth and fruit fly flight shows that the leading-edge vortex is the dominant mechanism for lift generation for both these insects and contributes between 72-85% of the net lift. However, there is another, previously unidentified mechanism, the centripetal acceleration reaction, which generates up to 17% of the net lift. The centripetal acceleration reaction is similar to the classical inviscid added-mass in that it depends only on the kinematics (i.e. accelerations) of the body, but is different in that it requires the satisfaction of the no-slip condition, and a combination of tangential motion and rotation of the wing surface. Furthermore, the classical added-mass force is identically zero for cyclic motion but this is not true of the centripetal acceleration reaction. Furthermore, unlike the lift due to vorticity, centripetal acceleration reaction lift is insensitive to Reynolds number and to environmental flow perturbations, making it an important contributor to insect flight stability and miniaturization. This force mechanism also has broad implications for flow-induced deformation and vibration, underwater locomotion and flows involving bubbles and droplets. PMID:26252016

  18. A table-top x-ray FEL based on a laser wakefield accelerator-undulator system

    SciTech Connect

    Nakajima, K.; Kawakubo, T.; Nakanishi, H.

    1995-12-31

    Ultrahigh-gradient electron acceleration has been confirmed owing to the laser wakefield acceleration mechanism driven by an intense short laser wakefield acceleration mechanism driven by an intense short laser pulse in an underdense plasma. The laser wakefield acceleration makes it possible to build a compact electron linac capable of producing an ultra-short bunched electron beam. While the accelerator is attributed to longitudinal wakefields, transverse wakefields simultaneously generated by a short laser pulse can serve as a plasma undulator with a very short wavelength equal to a half of the plasma wavelength. We propose a new FEL concept for X-rays based on a laser wakefield accelerator-undulator system driven by intense short laser pulses delivered from table-top terawatt lasers. The system is composed of the accelerator stage and the undulator stage in a table-top size. A low energy electron beam is accelerated an bunched into microbunches due to laser wakefields in the accelerator stage. A micro-bunched beam travelling to the opposite direction of driving laser pulses produces coherent X-ray radiation in the undulator stage. A practical configuration and its analyses are presented.

  19. Summary report: working group 2 on 'Plasma Based AccelerationConcepts'

    SciTech Connect

    Esarey, E.; Leemans, Wim

    1998-09-01

    A summary of the talks, papers and discussion sessions presented in the Working Group on Plasma Based Acceleration Concepts is given within the context of the progress towards a 1 GeV laser driven accelerator module. The topics covered within the Working Group were self-modulated laser wakefield acceleration, standard laser wakefield acceleration, plasma beatwave acceleration, laser guiding and wake excitation in plasma channels, plasma wakefield acceleration, plasma lenses and optical injection techniques for laser wakefield accelerators. An overview will be given of the present status of experimental and theoretical progress as well as an outlook towards the future physics and technological challenges for the development of an optimized accelerator module.

  20. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    SciTech Connect

    Herrera, Maria S.; Gonzalez, Sara J.; Minsky, Daniel M.; Kreiner, Andres J.

    2010-08-04

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.

  1. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    PubMed Central

    Abdulameer, Mohammed Hasan; Othman, Zulaiha Ali

    2014-01-01

    Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584

  2. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Herrera, María S.; González, Sara J.; Minsky, Daniel M.; Kreiner, Andrés J.

    2010-08-01

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.

  3. Support vector machine based on adaptive acceleration particle swarm optimization.

    PubMed

    Abdulameer, Mohammed Hasan; Sheikh Abdullah, Siti Norul Huda; Othman, Zulaiha Ali

    2014-01-01

    Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584

  4. Developments in Laser and Plasma-Based Accelerators

    NASA Astrophysics Data System (ADS)

    Downer, Michael

    2001-04-01

    The explosive growth of multiterawatt laser technology combined with the increasing size and cost of conventional RF particle accelerators has driven intense research into more compact laser-driven and/or plasma based acceleration concepts. Although schemes for direct laser acceleration without plasmas or, conversely, plasma acceleration without lasers have been studied, the greatest recent progress has been made with concepts that combine lasers and plasmas [1]. Tajima and Dawson [2] proposed in 1979 that a sufficiently intense single laser pulse of duration t ω_p-1, or a pair of laser pulses with Δω ω_p, could be efficiently drive a longitudinal electron plasma wave with phase velocity approaching c via the ponderomotive force. Charged particles that "surf" such waves experience accelerating gradients (E 10^9 V/cm) as much as a thousand times greater than conventional RF accelerators. Numerous experiments have now demonstrated acceleration of up to 10^9 electrons per laser pulse to energies exceeding 100 MeV, with wide energy spread, but competitive beam emittance. Such sources have proven useful for nuclear activation analysis in their current form. However for such accelerators to be useful to a wider community, including high energy physics, key challenges must be addressed. These include: 1) Guiding terawatt laser pulses. Achieving useful laser intensities requires focusing, thus limiting interaction length to < 1 mm, whereas interaction lengths of several cm are needed to use laser energy efficiently and reach GeV acceleration in a single stage. Several groups are now developing high-throughput plasma "fibers" that have supported peak powers near a terawatt over > 1 cm without distortion [3]. 2) Phased injection. Since plasma waves with useful gradients have wavelengths of micron dimensions, charged particles must be injected with unprecedented spatial and temporal precision to achieve a monochromatic output beam. Several groups are developing new laser-based

  5. Mechanism of poly(acrylic acid) acceleration of antithrombin inhibition of thrombin: implications for the design of novel heparin mimics.

    PubMed

    Monien, Bernhard H; Cheang, Kai I; Desai, Umesh R

    2005-08-11

    The bridging mechanism of antithrombin inhibition of thrombin is a dominant mechanism contributing a massive approximately 2500-fold acceleration in the reaction rate and is also a key reason for the clinical usage of heparin. Our recent study of the antithrombin-activating properties of a carboxylic acid-based polymer, poly(acrylic acid) (PAA), demonstrated a surprisingly high acceleration in thrombin inhibition (Monien, B. H.; Desai, U. R. J. Med. Chem. 2005, 48, 1269). To better understand this interesting phenomenon, we have studied the mechanism of PAA-dependent acceleration in antithrombin inhibition of thrombin. Competitive binding studies with low-affinity heparin and a heparin tetrasaccharide suggest that PAA binds antithrombin in both the pentasaccharide- and the extended heparin-binding sites, and these results are corroborated by molecular modeling. The salt-dependence of the K(D) of the PAA-antithrombin interaction shows the formation of five ionic interactions. In contrast, the contribution of nonionic forces is miniscule, resulting in an interaction that is significantly weaker than that observed for heparins. A bell-shaped profile of the observed rate constant for antithrombin inhibition of thrombin as a function of PAA concentration was observed, suggesting that inhibition proceeds through the "bridging" mechanism. The knowledge gained in this mechanistic study highlights important rules for the rational design of orally available heparin mimics. PMID:16078853

  6. Accelerated UV weathering device based on integrating sphere technology

    SciTech Connect

    Chin, Joannie; Byrd, Eric; Embree, Ned; Garver, Jason; Dickens, Brian; Finn, Tom; Martin, Jonathan

    2004-11-01

    An ultraviolet (UV) weathering device based on integrating sphere technology has been designed, fabricated, and implemented for studying the accelerated weathering of polymers. This device has the capability of irradiating multiple test specimens with uniform, high intensity UV radiation while simultaneously subjecting them to a wide range of precisely and independently controlled temperature and relative humidity environments. This article describes the integrating sphere-based weathering system, its ability to precisely control temperature and relative humidity, and its ability to produce a highly uniform UV irradiance.

  7. Grating-based deflecting, focusing, and diagnostic dielectric laser accelerator structures

    SciTech Connect

    Soong, Ken; Byer, R. L.; Colby, E. R.; England, R. J.; Peralta, E. A.

    2012-12-21

    Recent technological advances has made possible the realization of the first laser-driven particle accelerator structure to be fabricated lithographically. However, a complete particle accelerator requires more than just accelerating elements. In this paper, we present a grating-based design for three other quintessential accelerator elements: the focusing structure, the deflecting structure, and the diagnostic structure.

  8. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  9. Investigation of ion acceleration mechanism through laser-matter interaction in femtosecond domain

    NASA Astrophysics Data System (ADS)

    Altana, C.; Muoio, A.; Lanzalone, G.; Tudisco, S.; Brandi, F.; Cirrone, G. A. P.; Cristoforetti, G.; Fazzi, A.; Ferrara, P.; Fulgentini, L.; Giove, D.; Koester, P.; Labate, L.; Mascali, D.; Palla, D.; Schillaci, F.; Gizzi, L. A.

    2016-09-01

    An experimental campaign aiming to investigate the ion acceleration mechanisms through laser-matter interaction in the femtosecond domain has been carried out at the ILIL facility at a laser intensity of up to 2×1019 W/cm2. A Thomson Parabola Spectrometer was used to identify different ion species and measure the energy spectra and the corresponding temperature parameters. We discuss the dependence of the protons spectra upon the structural characteristics of the targets (thickness and atomic mass) and the role of surface versus target bulk during acceleration process.

  10. Accelerator-based conversion (ABC) of reactor and weapons plutonium

    SciTech Connect

    Jensen, R.J.; Trapp, T.J.; Arthur, E.D.; Bowman, C.D.; Davidson, J.W.; Linford, R.K.

    1993-06-01

    An accelerator-based conversion (ABC) system is presented that is capable of rapidly burning plutonium in a low-inventory sub-critical system. The system also returns fission power to the grid and transmutes troublesome long-lived fission products to short lived or stable products. Higher actinides are totally fissioned. The system is suited not only to controlled, rapid burning of excess weapons plutonium, but to the long range application of eliminating or drastically reducing the world total inventory of plutonium. Deployment of the system will require the successful resolution of a broad range of technical issues introduced in the paper.

  11. Comparison of accelerator-based with reactor-based waste transmutation schemes

    SciTech Connect

    Sailor, W.C.; Beard, C.A.; Venneri, F.; Davidson, J.W.

    1993-12-01

    Accelerator-based transmutation of waste (ATW) systems for the destruction of commercial LWR spent fuel are compared with systems based on thermal reactors accomplish the same objectives. When the same technology is assumed for the actinide-burning aspect of the two systems, it is seen that the size of the accelerator is determined only by the choice of how many of the long-lived fission products to burn. if none are transmuted, then the accelerator is not necessary. This result is independent of the choice of fluid carrier, and whether the actinides are destroyed in an ATW system or in a separate reactor.

  12. Recursive least square vehicle mass estimation based on acceleration partition

    NASA Astrophysics Data System (ADS)

    Feng, Yuan; Xiong, Lu; Yu, Zhuoping; Qu, Tong

    2014-05-01

    Vehicle mass is an important parameter in vehicle dynamics control systems. Although many algorithms have been developed for the estimation of mass, none of them have yet taken into account the different types of resistance that occur under different conditions. This paper proposes a vehicle mass estimator. The estimator incorporates road gradient information in the longitudinal accelerometer signal, and it removes the road grade from the longitudinal dynamics of the vehicle. Then, two different recursive least square method (RLSM) schemes are proposed to estimate the driving resistance and the mass independently based on the acceleration partition under different conditions. A 6 DOF dynamic model of four In-wheel Motor Vehicle is built to assist in the design of the algorithm and in the setting of the parameters. The acceleration limits are determined to not only reduce the estimated error but also ensure enough data for the resistance estimation and mass estimation in some critical situations. The modification of the algorithm is also discussed to improve the result of the mass estimation. Experiment data on a sphalt road, plastic runway, and gravel road and on sloping roads are used to validate the estimation algorithm. The adaptability of the algorithm is improved by using data collected under several critical operating conditions. The experimental results show the error of the estimation process to be within 2.6%, which indicates that the algorithm can estimate mass with great accuracy regardless of the road surface and gradient changes and that it may be valuable in engineering applications. This paper proposes a recursive least square vehicle mass estimation method based on acceleration partition.

  13. Developing an Accelerator Driven System (ADS) based on electron accelerators and heavy water

    NASA Astrophysics Data System (ADS)

    Feizi, H.; Ranjbar, A. H.

    2016-02-01

    An ADS based on electron accelerators has been developed specifically for energy generation and medical applications. Monte Carlo simulations have been performed using FLUKA code to design a hybrid electron target and the core components. The composition, geometry of conversion targets and the coolant system have been optimized for electron beam energies of 20 to 100 MeV . Furthermore, the photon and photoneutron energy spectra, distribution and energy deposition for various incoming electron beam powers have been studied. Light-heavy water of various mixtures have been used as heat removal for the targets, as γ-n converters and as neutron moderators. We have shown that an electron LINAC, as a neutron production driver for ADSs, is capable of producing a neutron output of > 3.5 × 1014 (n/s/mA). Accordingly, the feasibility of an electron-based ADS employing the designed features is promising for energy generation and high intense neutron production which have various applications such as medical therapies.

  14. A New Mechanism of Magnetic Field Generation in Supernova Shock Waves and its Implication for Cosmic Ray Acceleration

    NASA Astrophysics Data System (ADS)

    Diamond, Patrick

    2005-10-01

    SNR shocks are the most probable source of galactic cosmic rays. We discuss the diffusive acceleration mechanism in terms of its potential to accelerate CRs to 10^18 eV, as observations imply. One possibility, currently discussed in the literature, is to resonantly generate a turbulent magnetic field via accelerated particles in excess of the background field. We indicate some difficulties of this scenario and suggest a different possibility, which is based on the generation of Alfven waves at the gyroradius scale at the background field level, with a subsequent transfer to longer scales via interaction with strong acoustic turbulence in the shock precursor. The acoustic turbulence in turn, may be generated by Drury instability or by parametric instability of the Alfven (A) waves. The essential idea is an A-->A+S decay instability process, where one of the interacting scatterers (i.e. the sound, or S-waves) are driven by the Drury instability process. This rapidly generates longer wavelength Alfven waves, which in turn resonate with high energy CRs thus binding them to the shock and enabling their further acceleration.

  15. Subpanel on accelerator-based neutrino oscillation experiments

    SciTech Connect

    1995-09-01

    Neutrinos are among nature`s fundamental constituents, and they are also the ones about which we know least. Their role in the universe is widespread, ranging from the radioactive decay of a single atom to the explosions of supernovae and the formation of ordinary matter. Neutrinos might exhibit a striking property that has not yet been observed. Like the back-and-forth swing of a pendulum, neutrinos can oscillate to-and-from among their three types (or flavors) if nature provides certain conditions. These conditions include neutrinos having mass and a property called {open_quotes}mixing.{close_quotes} The phenomenon is referred to as neutrino oscillations. The questions of the origin of neutrino mass and mixing among the neutrino flavors are unsolved problems for which the Standard Model of particle physics holds few clues. It is likely that the next critical step in answering these questions will result from the experimental observation of neutrino oscillations. The High Energy Physics Advisory Panel (HEPAP) Subpanel on Accelerator-Based Neutrino Oscillation Experiments was charged to review the status and discovery potential of ongoing and proposed accelerator experiments on neutrino oscillations, to evaluate the opportunities for the U.S. in this area of physics, and to recommend a cost-effective plan for pursuing this physics, as appropriate. The complete charge is provided in Appendix A. The Subpanel studied these issues over several months and reviewed all the relevant and available information on the subject. In particular, the Subpanel reviewed the two proposed neutrino oscillation programs at Fermi National Accelerator Laboratory (Fermilab) and at Brookhaven National Laboratory (BNL). The conclusions of this review are enumerated in detail in Chapter 7 of this report. The recommendations given in Chapter 7 are also reproduced in this summary.

  16. Accelerated Thermal Cycling and Failure Mechanisms for BGA and CSP Assemblies

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2000-01-01

    This paper reviews the accelerated thermal cycling test methods that are currently used by industry to characterize the interconnect reliability of commercial-off-the-shelf (COTS) ball grid array (BGA) and chip scale package (CSP) assemblies. Acceleration induced failure mechanisms varied from conventional surface mount (SM) failures for CSPs. Examples of unrealistic life projections for other CSPs are also presented. The cumulative cycles to failure for ceramic BGA assemblies performed under different conditions, including plots of their two Weibull parameters, are presented. The results are for cycles in the range of -30 C to 100 C, -55 C to 100 C, and -55 C to 125 C. Failure mechanisms as well as cycles to failure for thermal shock and thermal cycling conditions in the range of -55 C to 125 C were compared. Projection to other temperature cycling ranges using a modified Coffin-Manson relationship is also presented.

  17. Prediction of spectral acceleration response ordinates based on PGA attenuation

    USGS Publications Warehouse

    Graizer, V.; Kalkan, E.

    2009-01-01

    Developed herein is a new peak ground acceleration (PGA)-based predictive model for 5% damped pseudospectral acceleration (SA) ordinates of free-field horizontal component of ground motion from shallow-crustal earthquakes. The predictive model of ground motion spectral shape (i.e., normalized spectrum) is generated as a continuous function of few parameters. The proposed model eliminates the classical exhausted matrix of estimator coefficients, and provides significant ease in its implementation. It is structured on the Next Generation Attenuation (NGA) database with a number of additions from recent Californian events including 2003 San Simeon and 2004 Parkfield earthquakes. A unique feature of the model is its new functional form explicitly integrating PGA as a scaling factor. The spectral shape model is parameterized within an approximation function using moment magnitude, closest distance to the fault (fault distance) and VS30 (average shear-wave velocity in the upper 30 m) as independent variables. Mean values of its estimator coefficients were computed by fitting an approximation function to spectral shape of each record using robust nonlinear optimization. Proposed spectral shape model is independent of the PGA attenuation, allowing utilization of various PGA attenuation relations to estimate the response spectrum of earthquake recordings.

  18. Development of Dielectric-Based High Gradient Accelerating Structures

    SciTech Connect

    Jing, C.; Gai, W.; Konecny, R.; Power, J.; Liu, W.; Gold, S. H.; Kinkead, A. K.; Kanareykin, A.; Kazakov, S.

    2006-11-27

    High gradient accelerating structures using dielectric-lined circular waveguides have been developed for a number of years at Argonne National Laboratory. In this article, we first report the experimental results of high power rf testing on the quartz based Dielectric-Loaded Accelerating (DLA) structure carried out on Feb. 2006 at the Naval Research Laboratory. The motivation for this experiment is to test the multipactor effect on different materials under high power and high vacuum condition. Up to 12 MW pulsed rf went through the tube without breakdown. Multipactor appeared during the experiment but with different features compared to other materials like alumina. Photomultiplier Tube (PMT) measurements were introduced into the experiment for the first time to observe the light emission time and intensity. In the second part of this paper, ways to achieve higher gradient for DLA structures are proposed: 1) smaller ID and longitudinal gap free DLA structures to reduce multipactor and obtain higher gradient; 2) new coaxial type coupler to avoid dielectric gap and improve impedance matching; 3) double layered DLA structure to reduce rf loss and enhance shunt impedance as well.

  19. Turbulence Hazard Metric Based on Peak Accelerations for Jetliner Passengers

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    2005-01-01

    Calculations are made of the approximate hazard due to peak normal accelerations of an airplane flying through a simulated vertical wind field associated with a convective frontal system. The calculations are based on a hazard metric developed from a systematic application of a generic math model to 1-cosine discrete gusts of various amplitudes and gust lengths. The math model simulates the three degree-of- freedom longitudinal rigid body motion to vertical gusts and includes (1) fuselage flexibility, (2) the lag in the downwash from the wing to the tail, (3) gradual lift effects, (4) a simplified autopilot, and (5) motion of an unrestrained passenger in the rear cabin. Airplane and passenger response contours are calculated for a matrix of gust amplitudes and gust lengths. The airplane response contours are used to develop an approximate hazard metric of peak normal accelerations as a function of gust amplitude and gust length. The hazard metric is then applied to a two-dimensional simulated vertical wind field of a convective frontal system. The variations of the hazard metric with gust length and airplane heading are demonstrated.

  20. Parameterizations for shielding electron accelerators based on Monte Carlo studies

    SciTech Connect

    P. Degtyarenko; G. Stapleton

    1996-10-01

    Numerous recipes for designing lateral slab neutron shielding for electron accelerators are available and each generally produces rather similar results for shield thicknesses of about 2 m of concrete and for electron beams with energy in the 1 to 10 GeV region. For thinner or much thicker shielding the results tend to diverge and the standard recipes require modification. Likewise for geometries other than lateral to the beam direction further corrections are required so that calculated results are less reliable and hence additional and costly conservatism is needed. With the adoption of Monte Carlo (MC) methods of transporting particles a much more powerful way of calculating radiation dose rates outside shielding becomes available. This method is not constrained by geometry, although deep penetration problems need special statistical treatment, and is an excellent approach to solving any radiation transport problem providing the method has been properly checked against measurements and is free from the well known errors common to such computer methods. This present paper utilizes the results of MC calculations based on a nuclear fragmentation model named DINREG using the MC transport code GEANT and models them with the normal two parameter shielding expressions. Because the parameters can change with electron beam energy, angle to the electron beam direction and target material, the parameters are expressed as functions of some of these variables to provide a universal equations for shielding electron beams which can used rather simply for deep penetration problems in simple geometry without the time consuming computations needed in the original MC programs. A particular problem with using simple parameterizations based on the uncollided flux is that approximations based on spherical geometry might not apply to the more common cylindrical cases used for accelerator shielding. This source of error has been discussed at length by Stevenson and others. To study

  1. Quantitative Relationship between Axonal Injury and Mechanical Response in a Rodent Head Impact Acceleration Model

    PubMed Central

    Li, Yan; Kallakuri, Srinivasu; Zhou, Runzhou; Cavanaugh, John M.

    2011-01-01

    Abstract A modified Marmarou impact acceleration model was developed to study the mechanical responses induced by this model and their correlation to traumatic axonal injury (TAI). Traumatic brain injury (TBI) was induced in 31 anesthetized male Sprague-Dawley rats (392±13 g) by a custom-made 450-g impactor from heights of 1.25 m or 2.25 m. An accelerometer and angular rate sensor measured the linear and angular responses of the head, while the impact event was captured by a high-speed video camera. TAI distribution along the rostro-caudal direction, as well as across the left and right hemispheres, was determined using β-amyloid precursor protein (β-APP) immunocytochemistry, and detailed TAI injury maps were constructed for the entire corpus callosum. Peak linear acceleration 1.25 m and 2.25 m impacts were 666±165 g and 907±501 g, respectively. Peak angular velocities were 95±24 rad/sec and 124±48 rad/sec, respectively. Compared to the 2.25-m group, the observed TAI counts in the 1.25-m impact group were significantly lower. Average linear acceleration, peak angular velocity, average angular acceleration, and surface righting time were also significantly different between the two groups. A positive correlation was observed between normalized total TAI counts and average linear acceleration (R2=0.612, p<0.05), and time to surface right (R2=0.545, p<0.05). Our study suggested that a 2.25-m drop in the Marmarou model may not always result in a severe injury, and TAI level is related to the linear and angular acceleration response of the rat head during impact, not necessarily the drop height. PMID:21895482

  2. Accelerator development for a radioactive beam facility based on ATLAS.

    SciTech Connect

    Shepard, K. W.

    1998-01-08

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed.

  3. Summary report of working group 3: High gradient and laser-structure based acceleration

    SciTech Connect

    Solyak, N.; Cowan, B.M.; /Tech-X, Boulder

    2010-01-01

    The charge for the working group on high gradient and laser-structure based acceleration was to assess the current challenges involved in developing an advanced accelerator based on electromagnetic structures, and survey state-of-the-art methods to address those challenges. The topics of more than 50 presentations in the working group covered a very broad range of issues, from ideas, theoretical models and simulations, to design and manufacturing of accelerating structures and, finally, experimental results on obtaining extremely high accelerating gradients in structures from conventional microwave frequency range up to THz and laser frequencies. Workshop discussion topics included advances in the understanding of the physics of breakdown and other phenomena, limiting high gradient performance of accelerating structures. New results presented in this workshop demonstrated significant progress in the fields of conventional vacuum structure-based acceleration, dielectric wakefield acceleration, and laser-structure acceleration.

  4. Development of an Accelerator Mass Spectrometer based on a Cyclotron

    SciTech Connect

    Kim, Dogyun; Bhang, Hyeongchan; Kim, Jongwon

    2011-12-13

    An accelerator mass spectrometer based on a cyclotron has been developed, and a prototype of the injection beam line has been constructed. Mass resolution of the cyclotron is designed to be over 4000. A sawtooth RF buncher in the beam line and a flat-topping RF system for the cyclotron were utilized to enhance beam transmission efficiency, which is a primary factor for improvement compared to previous cyclotron mass spectrometers. The injection beam line comprises an ion source, Einzel lens, RF buncher, 90 deg. dipole magnet and a slit box containing beam diagnostic devices. A carbon beam was measured at the location of the slit box, and beam phase spaces will be measured. The design of a cyclotron magnet was done, and orbit tracking was carried out using cyclotron optics codes. A scheme of radial injection was chosen to place a beam on the equilibrium orbit of the cyclotron. The injection scheme will be optimized after the beam measurements are completed.

  5. Generating clock signals for a cycle accurate, cycle reproducible FPGA based hardware accelerator

    DOEpatents

    Asaad, Sameth W.; Kapur, Mohit

    2016-01-05

    A method, system and computer program product are disclosed for generating clock signals for a cycle accurate FPGA based hardware accelerator used to simulate operations of a device-under-test (DUT). In one embodiment, the DUT includes multiple device clocks generating multiple device clock signals at multiple frequencies and at a defined frequency ratio; and the FPG hardware accelerator includes multiple accelerator clocks generating multiple accelerator clock signals to operate the FPGA hardware accelerator to simulate the operations of the DUT. In one embodiment, operations of the DUT are mapped to the FPGA hardware accelerator, and the accelerator clock signals are generated at multiple frequencies and at the defined frequency ratio of the frequencies of the multiple device clocks, to maintain cycle accuracy between the DUT and the FPGA hardware accelerator. In an embodiment, the FPGA hardware accelerator may be used to control the frequencies of the multiple device clocks.

  6. Intra-pulse transition between ion acceleration mechanisms in intense laser-foil interactions

    NASA Astrophysics Data System (ADS)

    Padda, H.; King, M.; Gray, R. J.; Powell, H. W.; Gonzalez-Izquierdo, B.; Stockhausen, L. C.; Wilson, R.; Carroll, D. C.; Dance, R. J.; MacLellan, D. A.; Yuan, X. H.; Butler, N. M. H.; Capdessus, R.; Borghesi, M.; Neely, D.; McKenna, P.

    2016-06-01

    Multiple ion acceleration mechanisms can occur when an ultrathin foil is irradiated with an intense laser pulse, with the dominant mechanism changing over the course of the interaction. Measurement of the spatial-intensity distribution of the beam of energetic protons is used to investigate the transition from radiation pressure acceleration to transparency-driven processes. It is shown numerically that radiation pressure drives an increased expansion of the target ions within the spatial extent of the laser focal spot, which induces a radial deflection of relatively low energy sheath-accelerated protons to form an annular distribution. Through variation of the target foil thickness, the opening angle of the ring is shown to be correlated to the point in time transparency occurs during the interaction and is maximized when it occurs at the peak of the laser intensity profile. Corresponding experimental measurements of the ring size variation with target thickness exhibit the same trends and provide insight into the intra-pulse laser-plasma evolution.

  7. Torque-based optimal acceleration control for electric vehicle

    NASA Astrophysics Data System (ADS)

    Lu, Dongbin; Ouyang, Minggao

    2014-03-01

    The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control.

  8. FHAST: FPGA-Based Acceleration of Bowtie in Hardware.

    PubMed

    Fernandez, Edward B; Villarreal, Jason; Lonardi, Stefano; Najjar, Walid A

    2015-01-01

    While the sequencing capability of modern instruments continues to increase exponentially, the computational problem of mapping short sequenced reads to a reference genome still constitutes a bottleneck in the analysis pipeline. A variety of mapping tools (e.g., Bowtie, BWA) is available for general-purpose computer architectures. These tools can take many hours or even days to deliver mapping results, depending on the number of input reads, the size of the reference genome and the number of allowed mismatches or insertion/deletions, making the mapping problem an ideal candidate for hardware acceleration. In this paper, we present FHAST (FPGA hardware accelerated sequence-matching tool), a drop-in replacement for Bowtie that uses a hardware design based on field programmable gate arrays (FPGA). Our architecture masks memory latency by executing multiple concurrent hardware threads accessing memory simultaneously. FHAST is composed by multiple parallel engines to exploit the parallelism available to us on an FPGA. We have implemented and tested FHAST on the Convey HC-1 and later ported on the Convey HC-2ex, taking advantage of the large memory bandwidth available to these systems and the shared memory image between hardware and software. A preliminary version of FHAST running on the Convey HC-1 achieved up to 70x speedup compared to Bowtie (single-threaded). An improved version of FHAST running on the Convey HC-2ex FPGAs achieved up to 12x fold speed gain compared to Bowtie running eight threads on an eight-core conventional architecture, while maintaining almost identical mapping accuracy. FHAST is a drop-in replacement for Bowtie, so it can be incorporated in any analysis pipeline that uses Bowtie (e.g., TopHat). PMID:26451812

  9. Feasibility of Using Neural Network Models to Accelerate the Testing of Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1998-01-01

    Verification testing is an important aspect of the design process for mechanical mechanisms, and full-scale, full-length life testing is typically used to qualify any new component for use in space. However, as the required life specification is increased, full-length life tests become more costly and lengthen the development time. At the NASA Lewis Research Center, we theorized that neural network systems may be able to model the operation of a mechanical device. If so, the resulting neural network models could simulate long-term mechanical testing with data from a short-term test. This combination of computer modeling and short-term mechanical testing could then be used to verify the reliability of mechanical systems, thereby eliminating the costs associated with long-term testing. Neural network models could also enable designers to predict the performance of mechanisms at the conceptual design stage by entering the critical parameters as input and running the model to predict performance. The purpose of this study was to assess the potential of using neural networks to predict the performance and life of mechanical systems. To do this, we generated a neural network system to model wear obtained from three accelerated testing devices: 1) A pin-on-disk tribometer; 2) A line-contact rub-shoe tribometer; 3) A four-ball tribometer.

  10. Future directions of accelerator-based NP and HEP facilities

    SciTech Connect

    Roser, T.

    2011-07-24

    Progress in particle and nuclear physics has been closely connected to the progress in accelerator technologies - a connection that is highly beneficial to both fields. This paper presents a review of the present and future facilities and accelerator technologies that will push the frontiers of high-energy particle interactions and high intensity secondary particle beams.

  11. Future directions of accelerator-based NP and HEP facilities

    NASA Astrophysics Data System (ADS)

    Roser, Thomas

    2012-09-01

    Progress in particle and nuclear physics has been closely connected to the progress in accelerator technologies - a connection that is highly beneficial to both fields. This paper presents a review of the present and future facilities and accelerator technologies that will push the frontiers of high-energy particle interactions and high intensity secondary particle beams.

  12. Evaluation of Dynamic Mechanical Loading as an Accelerated Test Method for Ribbon Fatigue

    SciTech Connect

    Bosco, Nick; Silverman, Timothy J.; Wohlgemuth, John; Kurtz, Sarah; Inoue, Masanao; Sakurai, Keiichiro; Shioda, Tsuyoshi; Zenkoh, Hirofumi; Hirota, Kusato; Miyashita, Masanori; Tadanori, Tanahashi; Suzuki, Soh; Chen, Yifeng; Verlinden, Pierre J.

    2014-12-31

    Dynamic Mechanical Loading (DML) of photovoltaic modules is explored as a route to quickly fatigue copper interconnect ribbons. Results indicate that most of the interconnect ribbons may be strained through module mechanical loading to a level that will result in failure in a few hundred to thousands of cycles. Considering the speed at which DML may be applied, this translates into a few hours of testing. To evaluate the equivalence of DML to thermal cycling, parallel tests were conducted with thermal cycling. Preliminary analysis suggests that one +/-1 kPa DML cycle is roughly equivalent to one standard accelerated thermal cycle and approximately 175 of these cycles are equivalent to a 25-year exposure in Golden Colorado for the mechanism of module ribbon fatigue.

  13. Evaluation of Dynamic Mechanical Loading as an Accelerated Test Method for Ribbon Fatigue: Preprint

    SciTech Connect

    Bosco, N.; Silverman, T. J.; Wohlgemuth, J.; Kurtz, S.; Inoue, M.; Sakurai, K.; Shinoda, T.; Zenkoh, H.; Hirota, K.; Miyashita, M.; Tadanori, T.; Suzuki, S.

    2015-04-07

    Dynamic Mechanical Loading (DML) of photovoltaic modules is explored as a route to quickly fatigue copper interconnect ribbons. Results indicate that most of the interconnect ribbons may be strained through module mechanical loading to a level that will result in failure in a few hundred to thousands of cycles. Considering the speed at which DML may be applied, this translates into a few hours o testing. To evaluate the equivalence of DML to thermal cycling, parallel tests were conducted with thermal cycling. Preliminary analysis suggests that one +/-1 kPa DML cycle is roughly equivalent to one standard accelerated thermal cycle and approximately 175 of these cycles are equivalent to a 25-year exposure in Golden Colorado for the mechanism of module ribbon fatigue.

  14. Design of MEMS accelerometer based acceleration measurement system for automobiles

    NASA Astrophysics Data System (ADS)

    Venkatesh, K. Arun; Mathivanan, N.

    2012-10-01

    Design of an acceleration measurement system using a MEMS accelerometer to measure acceleration of automobiles in all the three axes is presented. Electronic stability control and anti-lock breaking systems in automobiles use the acceleration measurements to offer safety in driving. The system uses an ARM microcontroller to quantize the outputs of accelerometer and save the measurement data on a microSD card. A LabVIEW program has been developed to analyze the longitudinal acceleration measurement data and test the measurement system. Random noises generated and added with measurement data during measurement are filtered by a Kalman filter implemented in LabVIEW. Longitudinal velocity of the vehicle is computed from the measurement data and displayed on a graphical chart. Typical measurement of velocity of a vehicle at different accelerations and decelerations is presented.

  15. Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

    2011-07-15

    Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

  16. Summary report: Working Group 2 on {open_quotes}Plasma Based Acceleration Concepts{close_quotes}

    SciTech Connect

    Leemans, W.P.; Esarey, E.; Esarey, E.

    1999-07-01

    A summary of the talks, papers and discussion sessions presented in the Working Group on Plasma Based Acceleration Concepts is given within the context of the progress towards a 1 GeV laser driven accelerator module. The topics covered within the Working Group were self-modulated laser wakefield acceleration, standard laser wakefield acceleration, plasma beatwave acceleration, laser guiding and wake excitation in plasma channels, plasma wakefield acceleration, plasma lenses and optical injection techniques for laser wakefield accelerators. An overview will be given of the present status of experimental and theoretical progress as well as an outlook towards the future physics and technological challenges for the development of an optimized accelerator module. {copyright} {ital 1999 American Institute of Physics.}

  17. Irradiation imposed degradation of the mechanical and electrical properties of electrical insulation for future accelerator magnets

    SciTech Connect

    Polinski, J.; Chorowski, M.; Bogdan, P.; Strychalski, M.; Rijk, G. de

    2014-01-27

    Future accelerators will make extensive use of superconductors made of Nb{sub 3}Sn, which allows higher magnetic fields than NbTi. However, the wind-and-react technology of Nb{sub 3}Sn superconducting magnet production makes polyimide Kapton® non applicable for the coils' electrical insulation. A Nb{sub 3}Sn technology compatible insulation material should be characterized by high radiation resistivity, good thermal conductivity, and excellent mechanical properties. Candidate materials for the electrical insulation of future accelerator's magnet coils have to be radiation certified with respect to potential degradation of their electrical, thermal, and mechanical properties. This contribution presents procedures and results of tests of the electrical and mechanical properties of DGEBA epoxy + D400 hardener, which is one of the candidates for the electrical insulation of future magnets. Two test sample types have been used to determine the material degradation due to irradiation: a untreated one (unirradiated) and irradiated at 77 K with 11 kGy/min intense, 4MeV energy electrons beam to a total dose of 50 MGy.

  18. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    SciTech Connect

    Franklyn, C. B.

    2011-12-13

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  19. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    NASA Astrophysics Data System (ADS)

    Franklyn, C. B.

    2011-12-01

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >1011 nṡs-1. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  20. High-Current Experiments for Accelerator-Based Neutron Capture Therapy Applications

    SciTech Connect

    Gierga, D.P.; Klinkowstein, R.E.; Hughey, B.H.; Shefer, R.E.; Yanch, J.C.; Blackburn, B.W.

    1999-06-06

    Several accelerator-based neutron capture therapy applications are under development. These applications include boron neutron capture therapy for glioblastoma multiform and boron neutron capture synovectomy (BNCS) for rheumatoid arthritis. These modalities use accelerator-based charged-particle reactions to create a suitable neutron source. Neutrons are produced using a high-current, 2-MV terminal tandem accelerator. For these applications to be feasible, high accelerator beam currents must be routinely achievable. An effort was undertaken to explore the operating regime of the accelerator in the milliampere range. In preparation for high-current operation of the accelerator, computer simulations of charged-particle beam optics were performed to establish high-current operating conditions. Herein we describe high beam current simulations and high beam current operation of the accelerator.

  1. Pedestrian movement analysis in transfer station corridor: Velocity-based and acceleration-based

    NASA Astrophysics Data System (ADS)

    Ji, Xiangfeng; Zhang, Jian; Hu, Yongkai; Ran, Bin

    2016-05-01

    In this paper, pedestrians are classified into aggressive and conservative ones by their temper. Aggressive pedestrians' walking through crowd in transfer station corridor is analyzed. Treating pedestrians as particles, this paper uses the modified social force model (MSFM) as the building block, where forces involve self-driving force, repulsive force and friction force. The proposed model in this paper is a discrete model combining the MSFM and cellular automata (CA) model, where the updating rules of the CA are redefined with MSFM. Due to the continuity of values generated by the MSFM, we use the fuzzy logic to discretize the continuous values into cells pedestrians can move in one step. With the observation that stimulus around pedestrians influences their acceleration directly, an acceleration-based movement model is presented, compared to the generally reviewed velocity-based movement model. In the acceleration-based model, a discretized version of kinematic equation is presented based on the acceleration discretized with fuzzy logic. In real life, some pedestrians would rather keep their desired speed and this is also mimicked in this paper, which is called inertia. Compared to the simple triangular membership function, a trapezoidal membership function and a piecewise linear membership function are used to capture pedestrians' inertia. With the trapezoidal and the piecewise linear membership function, many overlapping scenarios should be carefully handled and Dubois and Prade's four-index method is used to completely describe the relative relationship of fuzzy quantities. Finally, a simulation is constructed to demonstrate the effect of our model.

  2. Dosimetric comparison of linear accelerator-based stereotactic radiosurgery systems

    PubMed Central

    Sharma, S. D.; Kumar, Sudhir; Dagaonkar, S. S.; Bisht, Geetika; Dayanand, S.; Devi, Reena; Deshpande, S. S.; Chaudhary, S.; Bhatt, B. C.; Kannan, S.

    2007-01-01

    Stereotactic radiosurgery (SRS) is a special radiotherapy technique used to irradiate intracranial lesions by 3-D arrangements of narrow photon beams eliminating the needs of invasive surgery. Three different tertiary collimators, namely BrainLab and Radionics circular cones and BrainLab micro multileaf collimator (mMLC), are used for linear accelerator-based SRS systems (X-Knife). Output factor (St), tissue maximum ratio (TMR) and off axis ratio (OAR) of these three SRS systems were measured using CC01 (Scanditronix/ Welhofer) and Pinpoint (PTW) cylindrical and Markus plane parallel ionization chambers as well as TLD and radiochromic film. Measurement results of CC01 and Pinpoint chambers were very close to each other which indicate that further reduction in volume and physical dimensions of cylindrical ionization chamber is not necessary for SRS/SRT dosimetry. Output factors of BrainLab and Radionics SRS cones were very close to each other while output factors of equivalent diameter mMLC field were different from SRS circular cones. TMR of the three SRS systems compared were very close to one another. OAR of Radionics cone and BrainLab mMLC were very close to each other, within 2%. However, OARs of BrainLab cone were found comparable to OARs of Radionics cone and BrainLab mMLC within maximum variation of 4%. In addition, user-measured similar data of other three mMLC X-Knives were compared with the mMLC X-Knife data measured in this work and found comparable. The concept of switching over to mMLC-based SRS/SRT is thus validated from dosimetric characteristics as well. PMID:21217914

  3. Materials considerations for molten salt accelerator-based plutonium conversion systems

    SciTech Connect

    DiStefano, J.R.; DeVan, J.H.; Keiser, J.R.; Klueh, R.L.; Eatherly, W.P.

    1995-03-01

    Accelerator-driven transmutation technology (ADTT) refers to a concept for a system that uses a blanket assembly driven by a source of neutrons produced when high-energy protons from an accelerator strike a heavy metal target. One application for such a system is called Accelerator-Based Plutonium Conversion, or ABC. Currently, the version of this concept being proposed by the Los Alamos National Laboratory features a liquid lead target material and a blanket fuel of molten fluorides that contain plutonium. Thus, the materials to be used in such a system must have, in addition to adequate mechanical strength, corrosion resistance to molten lead, corrosion resistance to molten fluoride salts, and resistance to radiation damage. In this report the corrosion properties of liquid lead and the LiF-BeF{sub 2} molten salt system are reviewed in the context of candidate materials for the above application. Background information has been drawn from extensive past studies. The system operating temperature, type of protective environment, and oxidation potential of the salt are shown to be critical design considerations. Factors such as the generation of fission products and transmutation of salt components also significantly affect corrosion behavior, and procedures for inhibiting their effects are discussed. In view of the potential for extreme conditions relative to neutron fluxes and energies that can occur in an ADTT, a knowledge of radiation effects is a most important factor. Present information for potential materials selections is summarized.

  4. Materials considerations for molten salt accelerator-based plutonium conversion systems

    SciTech Connect

    DiStefano, J.R.; DeVan, J.H.; Keiser, J.R.; Klueh, R.L.; Eatherly, W.P.

    1995-02-01

    Accelerator-driven transmutation technology (ADTT) refers to a concept for a system that uses a blanket assembly driven by a source of neutrons produced when high-energy protons from an accelerator strike a heavy metal target. One application for such a system is called Accelerator-Based Plutonium Conversion, or ABC. Currently, the version of this concept being proposed by the Los Alamos National Laboratory features a liquid lead target material and a blanket fuel of molten fluorides that contain plutonium. Thus, the materials to be used in such a system must have, in addition to adequate mechanical strength, corrosion resistance to molten lead, corrosion resistance to molten fluoride salts, and resistance to radiation damage. In this report the corrosion properties of liquid lead and the LiF-BeF{sub 2} molten salt system are reviewed in the context of candidate materials for the above application. Background information has been drawn from extensive past studies. The system operating temperature, type of protective environment, and oxidation potential of the salt are shown to be critical design considerations. Factors such as the generation of fission products and transmutation of salt components also significantly affect corrosion behavior, and procedures for inhibiting their effects are discussed. In view of the potential for extreme conditions relative to neutron fluxes and energies that can occur in an ADTT, a knowledge of radiation effects is a most important factor. Present information for potential materials selections is summarized.

  5. TBC-Domain GAPs for Rab GTPases Accelerate GTP Hydrolysis by a Dual-Finger Mechanism

    SciTech Connect

    Pan,X.; Eathiraj, S.; Lambright, D.

    2006-01-01

    Rab GTPases regulate membrane trafficking by cycling between inactive (GDP-bound) and active (GTP-bound) conformations. The duration of the active state is limited by GTPase-activating proteins (GAPs), which accelerate the slow intrinsic rate of GTP hydrolysis. Proteins containing TBC (Tre-2, Bub2 and Cdc16) domains are broadly conserved in eukaryotic organisms and function as GAPs for Rab GTPases as well as GTPases that control cytokinesis. An exposed arginine residue is a critical determinant of GAP activity in vitro and in vivo. It has been expected that the catalytic mechanism of TBC domains would parallel that of Ras and Rho family GAPs. Here we report crystallographic, mutational and functional analyses of complexes between Rab GTPases and the TBC domain of Gyp1p. In the crystal structure of a TBC-domain-Rab-GTPase-aluminium fluoride complex, which approximates the transition-state intermediate for GTP hydrolysis, the TBC domain supplies two catalytic residues in trans, an arginine finger analogous to Ras/Rho family GAPs and a glutamine finger that substitutes for the glutamine in the DxxGQ motif of the GTPase. The glutamine from the Rab GTPase does not stabilize the transition state as expected but instead interacts with the TBC domain. Strong conservation of both catalytic fingers indicates that most TBC-domain GAPs may accelerate GTP hydrolysis by a similar dual-finger mechanism.

  6. A Novel Angular Acceleration Sensor Based on the Electromagnetic Induction Principle and Investigation of Its Calibration Tests

    PubMed Central

    Zhao, Hao; Feng, Hao

    2013-01-01

    An angular acceleration sensor can be used for the dynamic analysis of human and joint motions. In this paper, an angular acceleration sensor with novel structure based on the principle of electromagnetic induction is designed. The method involves the construction of a constant magnetic field by the excitation windings of sensor, and the cup-shaped rotor that cut the magnetic field. The output windings of the sensor generate an electromotive force, which is directly proportional to the angular acceleration through the electromagnetic coupling when the rotor has rotational angular acceleration. The mechanical structure and the magnetic working circuit of the sensor are described. The output properties and the mathematical model including the transfer function and state-space model of the sensor are established. The asymptotical stability of the sensor when it is working is verified by the Lyapunov Theorem. An angular acceleration calibration device based on the torsional pendulum principle is designed. The method involves the coaxial connection of the angular acceleration sensor, torsion pendulum and a high-precision angle sensor, and then an initial external force is applied to the torsion pendulum to produce a periodic damping angle oscillation. The angular acceleration sensor and the angle sensor will generate two corresponding electrical signals. The sensitivity coefficient of the angular acceleration sensor can be obtained after processing these two-channel signals. The experiment results show that the sensitivity coefficient of the sensor is about 17.29 mv/Krad·s2. Finally, the errors existing in the practical applications of the sensor are discussed and the corresponding improvement measures are proposed to provide effective technical support for the practical promotion of the novel sensor. PMID:23941911

  7. A novel angular acceleration sensor based on the electromagnetic induction principle and investigation of its calibration tests.

    PubMed

    Zhao, Hao; Feng, Hao

    2013-01-01

    An angular acceleration sensor can be used for the dynamic analysis of human and joint motions. In this paper, an angular acceleration sensor with novel structure based on the principle of electromagnetic induction is designed. The method involves the construction of a constant magnetic field by the excitation windings of sensor, and the cup-shaped rotor that cut the magnetic field. The output windings of the sensor generate an electromotive force, which is directly proportional to the angular acceleration through the electromagnetic coupling when the rotor has rotational angular acceleration. The mechanical structure and the magnetic working circuit of the sensor are described. The output properties and the mathematical model including the transfer function and state-space model of the sensor are established. The asymptotical stability of the sensor when it is working is verified by the Lyapunov Theorem. An angular acceleration calibration device based on the torsional pendulum principle is designed. The method involves the coaxial connection of the angular acceleration sensor, torsion pendulum and a high-precision angle sensor, and then an initial external force is applied to the torsion pendulum to produce a periodic damping angle oscillation. The angular acceleration sensor and the angle sensor will generate two corresponding electrical signals. The sensitivity coefficient of the angular acceleration sensor can be obtained after processing these two-channel signals. The experiment results show that the sensitivity coefficient of the sensor is about 17.29 mv/Krad·s2. Finally, the errors existing in the practical applications of the sensor are discussed and the corresponding improvement measures are proposed to provide effective technical support for the practical promotion of the novel sensor. PMID:23941911

  8. Surface wave accelerator based on silicon carbide: theoretical study

    SciTech Connect

    Kalmykov, S.; Korobkin, D.; Neuner, B.; Shvets, G.

    2009-01-22

    Compact near-field solid-state accelerating structure powered by a carbon dioxide (CO{sub 2}) laser is considered. The accelerating luminous transverse magnetic mode is excited in a few-micron wide evacuated planar channel between two silicon carbide (SiC) films grown on silicon (Si) wafers. Laser coupling to this mode is accomplished through the properly designed Si gratings. Operating wavelength is dictated by the frequency-dependent dielectric permittivity of SiC and the channel width. The geometric loss factor {kappa} of the accelerating mode is computed. It is found that the unwanted excitation of the guided modes in Si wafers reduces the laser coupling efficiency and increases the fields inside the Si wafer.

  9. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD

    PubMed Central

    Ferenbach, David A.; Bonventre, Joseph V.

    2015-01-01

    Acute kidney injury is an increasingly common complication of hospital admission and is associated with high levels of morbidity and mortality. A hypotensive, septic, or toxic insult can initiate a cascade of events, resulting in impaired microcirculation, activation of inflammatory pathways and tubular cell injury or death. These processes ultimately result in acutely impaired kidney function and initiation of a repair response. This Review explores the various mechanisms responsible for the initiation and propagation of acute kidney injury, the prototypic mechanisms by which a substantially damaged kidney can regenerate its normal architecture, and how the adaptive processes of repair can become maladaptive. These mechanisms, which include G2/M cell-cycle arrest, cell senescence, profibrogenic cytokine production, and activation of pericytes and interstitial myofibroblasts, contribute to the development of progressive fibrotic kidney disease. The end result is a state that mimics accelerated kidney ageing. These mechanisms present important opportunities for the design of targeted therapeutic strategies to promote adaptive renal recovery and minimize progressive fibrosis and chronic kidney disease after acute insults. PMID:25643664

  10. Bioreactor Conditioning for Accelerated Remodeling of Fibrin-Based Tissue Engineered Heart Valves

    NASA Astrophysics Data System (ADS)

    Schmidt, Jillian Beth

    Fibrin is a promising scaffold material for tissue engineered heart valves, as it is completely biological, allows for engineered matrix alignment, and is able to be degraded and replaced with collagen by entrapped cells. However, the initial fibrin matrix is mechanically weak, and extensive in vitro culture is required to create valves with sufficient mechanical strength and stiffness for in vivo function. Culture in bioreactor systems, which provide cyclic stretching and enhance nutrient transport, has been shown to increase collagen production by cells entrapped in a fibrin scaffold, accelerating strengthening of the tissue and reducing the required culture time. In the present work, steps were taken to improve bioreactor culture conditions with the goal of accelerating collagen production in fibrin-based tissue engineered heart valves using two approaches: (i) optimizing the cyclic stretching protocol and (ii) developing a novel bioreactor system that permits transmural and lumenal flow of culture medium for improved nutrient transport. The results indicated that incrementally increasing strain amplitude cyclic stretching with small, frequent increments in strain amplitude was optimal for collagen production in our system. In addition, proof of concept studies were performed in the novel bioreactor system and increased cellularity and collagen deposition near the lumenal surface of the tissue were observed.

  11. Mechanism of Calcium Fluoride Acceleration for Vacuum Carbothermic Reduction of Magnesia

    NASA Astrophysics Data System (ADS)

    Jiang, Yun; Liu, Yu-qin; Ma, Hong-wen; Zhou, Wei-gong

    2016-04-01

    The use of a small amount of calcium fluoride as an additive greatly accelerated the reduction of magnesia during the preparation of magnesium from magnesia using the vacuum carbothermic reduction method. At 1573 K (1300 °C), the magnesia reaction rates of the samples with 1, 3, and 5 pct CaF2 were all approximately 26 pct, three times that of free CaF2, and they were arranged in order of the calcium fluoride weight percentages at 1673 K (1400 °C). The residues were analyzed using chemical analysis, XRD, SEM, EDS, and XRF. The possible acceleration mechanism was discussed. Calcium fluoride combined with magnesia and silicon dioxide to form a eutectic that melted as a channel to aid the solid-solid reaction between carbon and magnesia at approximately 1573 K (1300 °C). Calcium fluoride in the molten state offered free calcium ions and fluorine ions. Fluorine ions entered and distorted the magnesia crystal lattice. The structural strength and chemical stability of the magnesia crystal lattice decreased, which facilitated the magnesia reduction by carbon. Calcium ions were employed to generate the calcium and magnesium silicate. The easyly evaporating fluorides, including magnesium fluoride and silicon tetrafluoride, were regarded as the main reason for the loss of fluorine.

  12. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  13. Integration of a linear accelerator into a production line of mechanically deboned separated poultry meat

    NASA Astrophysics Data System (ADS)

    Sadat, Theo; Volle, Christophe

    2000-03-01

    Linear accelerators, commonly called Linacs, are being used for different industrial processes. This kind of machine produces high power electron beams and can treat many products with a high throughput. The main application of a Linac is the sterilization of medical disposable devices, polymerization and decontamination of food products. Salmonella commonly contaminates poultry. Thanks to E-beam treatment, it eradicates the pathogen quickly and permits the use of meat that should have been thrown away because of its infection. The world's first Linac dedicated to treat mechanically deboned poultry meat is located in Brittany at the Société des Protéines Industrielles. It is a Thomson CSF Linac product, the CIRCE II, with an energy of 10 MeV and a power of 10 kW. This Linac has been used for more than 8 years, and its technology is fully proven.

  14. Improvement of the Error-detection Mechanism in Adults with Dyslexia Following Reading Acceleration Training.

    PubMed

    Horowitz-Kraus, Tzipi

    2016-05-01

    The error-detection mechanism aids in preventing error repetition during a given task. Electroencephalography demonstrates that error detection involves two event-related potential components: error-related and correct-response negativities (ERN and CRN, respectively). Dyslexia is characterized by slow, inaccurate reading. In particular, individuals with dyslexia have a less active error-detection mechanism during reading than typical readers. In the current study, we examined whether a reading training programme could improve the ability to recognize words automatically (lexical representations) in adults with dyslexia, thereby resulting in more efficient error detection during reading. Behavioural and electrophysiological measures were obtained using a lexical decision task before and after participants trained with the reading acceleration programme. ERN amplitudes were smaller in individuals with dyslexia than in typical readers before training but increased following training, as did behavioural reading scores. Differences between the pre-training and post-training ERN and CRN components were larger in individuals with dyslexia than in typical readers. Also, the error-detection mechanism as represented by the ERN/CRN complex might serve as a biomarker for dyslexia and be used to evaluate the effectiveness of reading intervention programmes. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27072047

  15. Behavioral Outcomes Differ between Rotational Acceleration and Blast Mechanisms of Mild Traumatic Brain Injury

    PubMed Central

    Stemper, Brian D.; Shah, Alok S.; Budde, Matthew D.; Olsen, Christopher M.; Glavaski-Joksimovic, Aleksandra; Kurpad, Shekar N.; McCrea, Michael; Pintar, Frank A.

    2016-01-01

    Mild traumatic brain injury (mTBI) can result from a number of mechanisms, including blunt impact, head rotational acceleration, exposure to blast, and penetration of projectiles. Mechanism is likely to influence the type, severity, and chronicity of outcomes. The objective of this study was to determine differences in the severity and time course of behavioral outcomes following blast and rotational mTBI. The Medical College of Wisconsin (MCW) Rotational Injury model and a shock tube model of primary blast injury were used to induce mTBI in rats and behavioral assessments were conducted within the first week, as well as 30 and 60 days following injury. Acute recovery time demonstrated similar increases over protocol-matched shams, indicating acute injury severity equivalence between the two mechanisms. Post-injury behavior in the elevated plus maze demonstrated differing trends, with rotationally injured rats acutely demonstrating greater activity, whereas blast-injured rats had decreased activity that developed at chronic time points. Similarly, blast-injured rats demonstrated trends associated with cognitive deficits that were not apparent following rotational injuries. These findings demonstrate that rotational and blast injury result in behavioral changes with different qualitative and temporal manifestations. Whereas rotational injury was characterized by a rapidly emerging phenotype consistent with behavioral disinhibition, blast injury was associated with emotional and cognitive differences that were not evident acutely, but developed later, with an anxiety-like phenotype still present in injured animals at our most chronic measurements. PMID:27014184

  16. Design study of double-layer beam trajectory accelerator based on the Rhodotron structure

    NASA Astrophysics Data System (ADS)

    Jabbari, Iraj; Poursaleh, Ali Mohammad; Khalafi, Hossein

    2016-08-01

    In this paper, the conceptual design of a new structure of industrial electron accelerator based on the Rhodotron accelerator is presented and its properties are compared with those of Rhodotron-TT200 accelerator. The main goal of this study was to reduce the power of RF system of accelerator at the same output electron beam energy. The main difference between the new accelerator structure with the Rhodotron accelerator is the length of the coaxial cavity that is equal to the wavelength at the resonant frequency. Also two sets of bending magnets were used around the acceleration cavity in two layers. In the new structure, the beam crosses several times in the coaxial cavity by the bending magnets around the cavity at the first layer and then is transferred to the second layer using the central bending magnet. The acceleration process in the second layer is similar to the first layer. Hence, the energy of the electron beam will be doubled. The electrical power consumption of the RF system and magnet system were calculated and simulated for the new accelerator structure and TT200. Comparing the calculated and simulated results of the TT200 with those of experimental results revealed good agreement. The results showed that the overall electrical power consumption of the new accelerator structure was less than that of the TT200 at the same energy and power of the electron beam. As such, the electrical efficiency of the new structure was improved.

  17. Statistical mechanics based on fractional classical and quantum mechanics

    SciTech Connect

    Korichi, Z.; Meftah, M. T.

    2014-03-15

    The purpose of this work is to study some problems in statistical mechanics based on the fractional classical and quantum mechanics. At first stage we have presented the thermodynamical properties of the classical ideal gas and the system of N classical oscillators. In both cases, the Hamiltonian contains fractional exponents of the phase space (position and momentum). At the second stage, in the context of the fractional quantum mechanics, we have calculated the thermodynamical properties for the black body radiation, studied the Bose-Einstein statistics with the related problem of the condensation and the Fermi-Dirac statistics.

  18. Towards A Model-Based Prognostics Methodology for Electrolytic Capacitors: A Case Study Based on Electrical Overstress Accelerated Aging

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Kulkarni, Chetan S.; Biswas, Gautam; Goebel, Kai

    2012-01-01

    A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications.

  19. E-beam accelerator cavity development for the ground-based free electron laser

    NASA Astrophysics Data System (ADS)

    Bultman, N. K.; Spalek, G.

    Los Alamos National Laboratory is designing and developing four prototype accelerator cavities for high power testing on the Modular Component Technology Development (MCTD) test stand at Boeing. These cavities provide the basis for the e-beam accelerator hardware that will be used in the Ground Based Free Electron Laser (GBFEL) to be sited at the White Sands Missile Range (WSMR) in New Mexico.

  20. Reply to ``Comment on `Beamstrahlung considerations in laser-plasma-accelerator-based linear colliders' ''

    NASA Astrophysics Data System (ADS)

    Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-10-01

    We reply to Lebedev and Nagaitsev’s foregoing Comment [Phys. Rev. ST Accel. Beams 16, 108001 (2013)PRABFM1098-4402]. We disagree with the conclusion of the Comment that scattering imposes a fundamental limitation on plasma-based accelerator technology. Laser-plasma accelerators are compatible with high-luminosity collider concepts.

  1. Minimum time acceleration of aircraft turbofan engines by using an algorithm based on nonlinear programming

    NASA Technical Reports Server (NTRS)

    Teren, F.

    1977-01-01

    Minimum time accelerations of aircraft turbofan engines are presented. The calculation of these accelerations was made by using a piecewise linear engine model, and an algorithm based on nonlinear programming. Use of this model and algorithm allows such trajectories to be readily calculated on a digital computer with a minimal expenditure of computer time.

  2. Operational plasma density and laser parameters for future colliders based on laser-plasma accelerators

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-12-21

    The operational plasma density and laser parameters for future colliders based on laser-plasma accelerators are discussed. Beamstrahlung limits the charge per bunch at low plasma densities. Reduced laser intensity is examined to improve accelerator efficiency in the beamstrahlung-limited regime.

  3. Neural Network Based Representation of UH-60A Pilot and Hub Accelerations

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi

    2000-01-01

    Neural network relationships between the full-scale, experimental hub accelerations and the corresponding pilot floor vertical vibration are studied. The present physics-based, quantitative effort represents an initial systematic study on the UH-60A Black Hawk hub accelerations. The NASA/Army UH-60A Airloads Program flight test database was used. A 'maneuver-effect-factor (MEF)', derived using the roll-angle and the pitch-rate, was used. Three neural network based representation-cases were considered. The pilot floor vertical vibration was considered in the first case and the hub accelerations were separately considered in the second case. The third case considered both the hub accelerations and the pilot floor vertical vibration. Neither the advance ratio nor the gross weight alone could be used to predict the pilot floor vertical vibration. However, the advance ratio and the gross weight together could be used to predict the pilot floor vertical vibration over the entire flight envelope. The hub accelerations data were modeled and found to be of very acceptable quality. The hub accelerations alone could not be used to predict the pilot floor vertical vibration. Thus, the hub accelerations alone do not drive the pilot floor vertical vibration. However, the hub accelerations, along with either the advance ratio or the gross weight or both, could be used to satisfactorily predict the pilot floor vertical vibration. The hub accelerations are clearly a factor in determining the pilot floor vertical vibration.

  4. Mechanisms for similarity based cooperation

    NASA Astrophysics Data System (ADS)

    Traulsen, A.

    2008-06-01

    Cooperation based on similarity has been discussed since Richard Dawkins introduced the term “green beard” effect. In these models, individuals cooperate based on an aribtrary signal (or tag) such as the famous green beard. Here, two different models for such tag based cooperation are analysed. As neutral drift is important in both models, a finite population framework is applied. The first model, which we term “cooperative tags” considers a situation in which groups of cooperators are formed by some joint signal. Defectors adopting the signal and exploiting the group can lead to a breakdown of cooperation. In this case, conditions are derived under which the average abundance of the more cooperative strategy exceeds 50%. The second model considers a situation in which individuals start defecting towards others that are not similar to them. This situation is termed “defective tags”. It is shown that in this case, individuals using tags to cooperate exclusively with their own kind dominate over unconditional cooperators.

  5. Self-mode-transition from laser wakefield accelerator to plasma wakefield accelerator of laser-driven plasma-based electron acceleration

    SciTech Connect

    Pae, K. H.; Choi, I. W.; Lee, J.

    2010-12-15

    Via three-dimensional particle-in-cell simulations, the self-mode-transition of a laser-driven electron acceleration from laser wakefield to plasma-wakefield acceleration is studied. In laser wakefield accelerator (LWFA) mode, an intense laser pulse creates a large amplitude wakefield resulting in high-energy electrons. Along with the laser pulse depletion, the electron bunch accelerated in the LWFA mode drives a plasma wakefield. Then, after the plasma wakefield accelerator mode is established, electrons are trapped and accelerated in the plasma wakefield. The mode transition process and the characteristics of the accelerated electron beam are presented.

  6. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation

    SciTech Connect

    Bernal, Susan A.; Provis, John L.; Walkley, Brant; San Nicolas, Rackel; Gehman, John D.; Brice, David G.; Kilcullen, Adam R.; Duxson, Peter; Deventer, Jannie S.J. van

    2013-11-15

    Binders formed through alkali-activation of slags and fly ashes, including ‘fly ash geopolymers’, provide appealing properties as binders for low-emissions concrete production. However, the changes in pH and pore solution chemistry induced during accelerated carbonation testing provide unrealistically low predictions of in-service carbonation resistance. The aluminosilicate gel remaining in an alkali-activated slag system after accelerated carbonation is highly polymerised, consistent with a decalcification mechanism, while fly ash-based binders mainly carbonate through precipitation of alkali salts (bicarbonates at elevated CO{sub 2} concentrations, or carbonates under natural exposure) from the pore solution, with little change in the binder gel identifiable by nuclear magnetic resonance spectroscopy. In activated fly ash/slag blends, two distinct gels (C–A–S–H and N–A–S–H) are formed; under accelerated carbonation, the N–A–S–H gel behaves comparably to fly ash-based systems, while the C–A–S–H gel is decalcified similarly to alkali-activated slag. This provides new scope for durability optimisation, and for developing appropriate testing methodologies. -- Highlights: •C-A-S-H gel in alkali-activated slag decalcifies during accelerated carbonation. •Alkali-activated fly ash gel changes much less under CO{sub 2} exposure. •Blended slag-fly ash binder contains two coexisting gel types. •These two gels respond differently to carbonation. •Understanding of carbonation mechanisms is essential in developing test methods.

  7. Keratinocyte growth factor accelerates wound closure in airway epithelium during cyclic mechanical strain.

    PubMed

    Waters, C M; Savla, U

    1999-12-01

    The airway epithelium may be damaged by inhalation of noxious agents, in response to pathogens, or during endotracheal intubation and mechanical ventilation. Maintenance of an intact epithelium is important for lung fluid balance, and the loss of epithelium may stimulate inflammatory responses. Epithelial repair in the airways following injury must occur on a substrate that undergoes cyclic elongation and compression during respiration. We have previously shown that cyclic mechanical strain inhibits wound closure in the airway epithelium (Savla and Waters, 1998b). In this study, we investigated the stimulation of epithelial wound closure by keratinocyte growth factor (KGF) in vitro and the mechanisms by which KGF overcomes the inhibition due to mechanical strain. Primary cultures of normal human bronchial epithelial cells (NHBE) and a cell line of human airway epithelial cells, Calu 3, were grown on Silastic membranes, and a wound was scraped across the well. The wells were then exposed to cyclic strain using the Flexercell Strain Unit, and wound closure was measured. While cyclic elongation (20% maximum) and cyclic compression (approximately 2%) both inhibited wound closure in untreated wells, treatment with KGF (50 ng/ml) significantly accelerated wound closure and overcame the inhibition due to cyclic strain. Since wound closure involves cell spreading, migration, and proliferation, we investigated the effect of cyclic strain on cell area, cell-cell distance, and cell velocity at the wound edge. While the cell area increased in unstretched monolayers, the cell area of monolayers in compressed regions decreased significantly. Treatment with KGF increased the cell area in both cyclically elongated and compressed cells. Also, when cells were treated with KGF, cell velocity was significantly increased in both static and cyclically strained monolayers, and cyclic strain did not inhibit cell migration. These results suggest that KGF is an important factor in

  8. Recovery mechanisms in proton exchange membrane fuel cells after accelerated stress tests

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Guo, Liejin; Liu, Hongtan

    2015-11-01

    The mechanisms of performance recovery after accelerated stress test (AST) in proton exchange membrane fuel cells (PEMFCs) are systematically studied. Experiments are carried out by incorporating a well-designed performance recovery procedure right after the AST protocol. The experiment results show that the cell performance recovers significantly from the degraded state after the AST procedure. The results from cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements further show that the performance recovery can be divided into kinetic and mass transport recoveries. It is further determined that the kinetic recovery, i.e. the recovery of electrochemical active area (ECA), is due to two distinct mechanisms: the reduction of platinum oxide and the re-attachment of detached platinum nanoparticles onto the carbon surface. The mass transport resistance is probably due to reduction of hydrophilic oxide groups on the carbon surface and the microstructure change that alleviates flooding. Performance comparisons show that the recovery procedure is highly effective, indicating the results of AST significantly over-estimate the true degradation in a PEM fuel cell. Therefore, a recovery procedure is highly recommended when an AST protocol is used to evaluate cell degradations to avoid over-estimating true performance degradations in PEMFCs.

  9. Mechanism of self-reinforcing YORP acceleration for fast-rotating asteroids

    NASA Astrophysics Data System (ADS)

    Statler, T.; Richardson, D.; Walsh, K.; Yu, Y.; Michel, P.

    2014-07-01

    The YORP effect is an important process that directly alters the spin states, and indirectly alters the orbits, of small Solar System bodies. It has been suggested that YORP may be able simultaneously to account for the high fraction of binaries among the near-Earth-asteroid (NEA) population, the frequent radar detections of objects shaped like child's tops, and the abundance of top-shaped asteroids with binary companions. In a compelling demonstration, Walsh et al. (2008, Nature 454, 188) simulated the evolution of idealized, gravitationally bound rubble piles, to which they continually added angular momentum. The centrifugal force caused material to move from mid-latitudes toward the equator, generating the characteristic top shape. Continued spin-up caused the equatorial ridge to shed material, which reaccreted in orbit to form a binary companion. But this mechanism rests on the assumption that YORP will provide all the angular momentum needed to form axisymmetric tops, accelerate them to the mass-shedding limit, and drive enough mass into orbit to form an observable companion. This assumption is problematic, as a truly axisymmetic body would experience no YORP effect at all, and small surface changes on an object with approximate large-scale axisymmetry can easily change the sign of the torque and decelerate the spin (Statler 2009, Icarus 202, 502). So the search is on for a mechanism that can ensure a continual increase in angular momentum to overcome the stochastic effect of topographic changes. One intriguing suggestion is ''tangential YORP'' (Golubov and Krugly 2012, ApJL 752, L11), which arises from asymmetric east-west heat conduction across small exposed structures, and always produces an eastward torque. But tangential YORP relies on structures at a preferred size scale, which shrinks to millimeters as the rotation rate approaches periods of a few hours. How the effects generated at these tiny scales are diluted by the mesoscale (meters to hectometers

  10. The stability of mechanical calibration for a kV cone beam computed tomography system integrated with linear accelerator

    SciTech Connect

    Sharpe, Michael B.; Moseley, Douglas J.; Purdie, Thomas G.

    2006-01-15

    The geometric accuracy and precision of an image-guided treatment system were assessed. Image guidance is performed using an x-ray volume imaging (XVI) system integrated with a linear accelerator and treatment planning system. Using an amorphous silicon detector and x-ray tube, volumetric computed tomography images are reconstructed from kilovoltage radiographs by filtered backprojection. Image fusion and assessment of geometric targeting are supported by the treatment planning system. To assess the limiting accuracy and precision of image-guided treatment delivery, a rigid spherical target embedded in an opaque phantom was subjected to 21 treatment sessions over a three-month period. For each session, a volumetric data set was acquired and loaded directly into an active treatment planning session. Image fusion was used to ascertain the couch correction required to position the target at the prescribed iso-center. Corrections were validated independently using megavoltage electronic portal imaging to record the target position with respect to symmetric treatment beam apertures. An initial calibration cycle followed by repeated image-guidance sessions demonstrated the XVI system could be used to relocate an unambiguous object to within less than 1 mm of the prescribed location. Treatment could then proceed within the mechanical accuracy and precision of the delivery system. The calibration procedure maintained excellent spatial resolution and delivery precision over the duration of this study, while the linear accelerator was in routine clinical use. Based on these results, the mechanical accuracy and precision of the system are ideal for supporting high-precision localization and treatment of soft-tissue targets.

  11. The stability of mechanical calibration for a kV cone beam computed tomography system integrated with linear accelerator.

    PubMed

    Sharpe, Michael B; Moseley, Douglas J; Purdie, Thomas G; Islam, Mohammad; Siewerdsen, Jeffrey H; Jaffray, David A

    2006-01-01

    The geometric accuracy and precision of an image-guided treatment system were assessed. Image guidance is performed using an x-ray volume imaging (XVI) system integrated with a linear accelerator and treatment planning system. Using an amorphous silicon detector and x-ray tube, volumetric computed tomography images are reconstructed from kilovoltage radiographs by filtered backprojection. Image fusion and assessment of geometric targeting are supported by the treatment planning system. To assess the limiting accuracy and precision of image-guided treatment delivery, a rigid spherical target embedded in an opaque phantom was subjected to 21 treatment sessions over a three-month period. For each session, a volumetric data set was acquired and loaded directly into an active treatment planning session. Image fusion was used to ascertain the couch correction required to position the target at the prescribed iso-center. Corrections were validated independently using megavoltage electronic portal imaging to record the target position with respect to symmetric treatment beam apertures. An initial calibration cycle followed by repeated image-guidance sessions demonstrated the XVI system could be used to relocate an unambiguous object to within less than 1 mm of the prescribed location. Treatment could then proceed within the mechanical accuracy and precision of the delivery system. The calibration procedure maintained excellent spatial resolution and delivery precision over the duration of this study, while the linear accelerator was in routine clinical use. Based on these results, the mechanical accuracy and precision of the system are ideal for supporting high-precision localization and treatment of soft-tissue targets. PMID:16485420

  12. Pitfalls and outcomes from accelerated wear testing of mechanical heart valves.

    PubMed

    Campbell, A; Baldwin, T; Peterson, G; Bryant, J; Ryder, K

    1996-06-01

    In 1990 Sorin Biomedica introduced a new bileaflet heart valve called the Bicarbon valve. This design was reported to eliminate wear in the hinge mechanism. Clinical quality Sorin Bicarbon, CarboMedics, St. Jude Medical, Duromedics and Jyros valves were obtained to test this claim and to compare the wear in the pivot of this new valve to other available heart valves. The valves were visually inspected then subjected to 4,000 cycles at a physiological beat rate in vitro. The valves were re-inspected then subjected to 400 million cycles in a Reul type accelerated wear tester. Scanning electron microscope photographs were taken of all contact areas at 40, 80, 120, 160, 200, 240, 280 and 400 million cycles. Wear marks on the inflow side of the Sorin, CarboMedics and St. Jude leaflets were measured and compared. Orifice wear was not quantified because of difficulty with measuring inside complex depressions. After 4,000 cycles of testing at a physiological beat rate the CarboFilmTM coating on the Sorin orifice showed signs of erosion. The other valve components only exhibited minor burnishing after 4,000 cycles. Following completion of 400 million cycles in an accelerated wear tester, approximately ten years in vivo, all valves showed significant wear. The inflow face of the pivot on the Sorin Bicarbon leaflets exhibited the deepest wear marks. The CarboFilm coating on the Sorin Bicarbon orifices was removed from most areas of leaflet contact. The transition between the remaining coating and the eroded areas created a rough edge. The tips of the Sorin leaflets contacted the bottom of the orifice pivot, in contrast to the St. Jude Medical and CarboMedics designs, which had minimal contact between the leaflet and the orifice. PMID:8803765

  13. Acceleration of Semiempirical Quantum Mechanical Calculations by Extended Lagrangian Molecular Dynamics Approach.

    PubMed

    Nam, Kwangho

    2013-08-13

    The implementation and performance of the atom-centered density matrix propagation (ADMP) [J. Chem. Phys. 2001, 114, 9758] and the curvy-steps (CURV) methods [J. Chem. Phys. 2004, 121, 1152] are described. These methods solve the electronic Schrödinger equation approximately by propagating the electronic degrees of freedom using the extended Lagrangian molecular dynamics (ELMD) simulation approach. The ADMP and CURV methods are implemented and parallelized to accelerate semiempirical quantum mechanical (QM) methods (such as the MNDO, AM1, PM3, MNDO/d, and AM1/d methods). Test calculations show that both the ADMP and the CURV methods are 2∼4 times faster than the Born-Oppenheimer molecular dynamics (BOMD) method and conserve the total energy well. The accuracy of the ADMP and CURV simulations is comparable to the BOMD simulations. The parallel implementation accelerates the MD simulation by up to 28 fold for the ADMP method and 25 fold for the CURV method, respectively, relative to the speed of the single core BOMD. In addition, a multiple time scale (MTS) approach is introduced to further speed up the semiempirical QM and QM/MM ELMD simulations. Since a larger integration time step is used for the propagation of the nuclear coordinates than that for the electronic degrees of freedom, the MTS approach allows the ELMD simulation to be carried out with a time step that is larger than the time step accessible by the original ADMP and CURV methods. It renders MD simulation to be carried out about 20 times faster than the BOMD simulation, and yields results that are comparable to the single time scale simulation results. The use of the methods introduced in the present work provides an efficient way to extend the length of the QM and QM/MM molecular dynamics simulations beyond the length accessible by BOMD simulation. PMID:26584095

  14. Real-time orthorectification by FPGA-based hardware acceleration

    NASA Astrophysics Data System (ADS)

    Kuo, David; Gordon, Don

    2010-10-01

    Orthorectification that corrects the perspective distortion of remote sensing imagery, providing accurate geolocation and ease of correlation to other images is a valuable first-step in image processing for information extraction. However, the large amount of metadata and the floating-point matrix transformations required to operate on each pixel make this a computation and I/O (Input/Output) intensive process. As result much imagery is either left unprocessed or loses timesensitive value in the long processing cycle. However, the computation on each pixel can be reduced substantially by using computational results of the neighboring pixels and accelerated by special pipelined hardware architecture in one to two orders of magnitude. A specialized coprocessor that is implemented inside an FPGA (Field Programmable Gate Array) chip and surrounded by vendorsupported hardware IP (Intellectual Property) shares the computation workload with CPU through PCI-Express interface. The ultimate speed of one pixel per clock (125 MHz) is achieved by the pipelined systolic array architecture. The optimal partition between software and hardware, the timing profile among image I/O and computation, and the highly automated GUI (Graphical User Interface) that fully exploits this speed increase to maximize overall image production throughput will also be discussed. The software that runs on a workstation with the acceleration hardware orthorectifies 16 Megapixels per second, which is 16 times faster than without the hardware. It turns the production time from months to days. A real-life successful story of an imaging satellite company that adopted such workstations for their orthorectified imagery production will be presented. The potential candidacy of the image processing computation that can be accelerated more efficiently by the same approach will also be analyzed.

  15. Hybrid photoneutron source optimization for electron accelerator-based BNCT

    NASA Astrophysics Data System (ADS)

    Rahmani, F.; Shahriari, M.

    2010-06-01

    Boron Neutron Capture Therapy (BNCT) is being studied as a possible radiotherapic treatment for some cancer types. Neutron energy for penetrating into tissue should be in the epithermal range. Different methods are used for neutron production. Electron accelerators are an alternative way for producing neutrons in electron-photon-neutron processes. Optimization of electron/photon and photoneutron targets calculations with respect to electron energy, dimension (radius and thickness) and neutron yield were done by MCNPX Monte Carlo code. According to the results, a hybrid photoneutron source including BeD 2 and Tungsten has been introduced.

  16. Concentrated ion beam emitted from an enlarged cylindrical-anode-layer Hall plasma accelerator and mechanism

    SciTech Connect

    Geng, S. F.; Wang, C. X.; Tang, D. L.; Qiu, X. M.; Chu, Paul K.

    2013-01-28

    An enlarged cylindrical-anode-layer Hall plasma accelerator with an outlet diameter of 150 mm is experimentally demonstrated to produce a concentrated ion beam, especially at a high discharge voltage, with a high current utilization efficiency of up to {approx}0.9. Numerical investigation based on the three-dimensional particle-in-cell method is performed to study the ion dynamics and elucidate the origin of the ion beam characteristics. The simulation results reveal that the equipotential lines play an important role in the surface near the anode emitting the ions. The ion emitting surface is determined by the magnetic field lines near the anode and the magnetic mirror contributes to the concentrated beam significantly. The high current utilization efficiency results from the appropriate obliquity of the magnetic mirror.

  17. Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data

    SciTech Connect

    Patterson, Timothy; Motupally, Sathya

    2012-06-01

    UTC will led a top-tier team of industry and national laboratory participants to update and improve DOE’s Accelerated Stress Tests (AST’s) for hydrogen fuel cells. This in-depth investigation will focused on critical fuel cell components (e.g. membrane electrode assemblies - MEA) whose durability represented barriers for widespread commercialization of hydrogen fuel cell technology. UTC had access to MEA materials that had accrued significant load time under real-world conditions in PureMotion® 120 power plant used in transit buses. These materials are referred to as end-of-life (EOL) components in the rest of this document. Advanced characterization techniques were used to evaluate degradation mode progress using these critical cell components extracted from both bus power plants and corresponding materials tested using the DOE AST’s. These techniques were applied to samples at beginning-of-life (BOL) to serve as a baseline. These comparisons advised the progress of the various failure modes that these critical components were subjected to, such as membrane degradation, catalyst support corrosion, platinum group metal dissolution, and others. Gaps in the existing ASTs predicted the degradation observed in the field in terms of these modes were outlined. Using the gaps, new AST’s were recommended and tested to better reflect the degradation modes seen in field operation. Also, BOL components were degraded in a test vehicle at UTC designed to accelerate the bus field operation.

  18. One DOF mechanism for the mechanical harvest of vines in an arbor structure and the validation of the acceleration of grape berry harvesting

    NASA Astrophysics Data System (ADS)

    Penisi, Osvaldo; Bocca, José; Aguilar, Horacio; Bocca, Pedro

    2015-09-01

    In the mechanized harvest of vines, grape berries are detached through the vibration to the structure supporting the clusters. According to the kind of guide selected, the clusters require one or two vibration directions in the structure. For guiding in parral structures, vibration is necessary in two directions or planes: One perpendicular to the other. The guide branches producing the clusters develop in these planes, and the guiding is called H-guiding. Mechanism theory indicates that a mechanism has as many degrees of freedom as its actuators, and an actuator is needed to achieve a certain vibration. Having the smallest number of possible actuators is beneficial in reducing moving parts and achieving more compact and easily controllable mechanisms. In this case, a single degree-of-freedom mechanism is proposed. It is capable of generating vibrations on two planes: One perpendicular to the other. This mechanism is the sum of two link mechanisms on perpendicular planes with a common outlet located at the output rod of the mechanism where the actuator is found. As the distance between the soil and the elements containing the clusters is not constant, a system has been designed to measure the accelerations at the bars and the rocker to validate the acceleration values that detach the grape berries in a prototype in a lab experiment, to ensure that the acceleration needed for pulling the grape berries are produced at any contact point of the bar.

  19. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.

    PubMed

    Minsky, D M; Kreiner, A J

    2014-06-01

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the (7)Li(p,n)(7)Be neutron production reaction to obtain neutron beams to treat deep seated tumors. PMID:24345525

  20. From laser particle acceleration to the synthesis of extremely neutron rich isotopes via the novel fission-fusion mechanism

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.

    2015-02-01

    High-power, short pulse lasers have emerged in the last decade as attractive tools for accelerating charged particles (electrons, ions) to high energies over mm-scale acceleration lengths, thus promising to rival conventional acceleration techniques in the years ahead. In the first part of the article, the principles of laser-plasma interaction as well as the techniques and the current status of the acceleration of electron and ion beams will be briefly introduced. In particular with the upcoming next generation of multi-PW class laser systems, such as the one under construction for the ELI-Nuclear Physics project in Bucharest (ELI-NP), very efficient acceleration mechanisms for brilliant ion beams like radiation pressure acceleration (RPA) come into reach. Here, ultra-dense ion beams reaching solid-state density can be accelerated from thin target foils, exceeding the density of conventionally accelerated ion beams by about 14 orders of magnitude. This unique property of laser-accelerated ion beams can be exploited to explore the scenario of a new reaction mechanism called `fission-fusion', which will be introduced in the second part of the article. Accelerating fissile species (e.g. 232Th ) towards a second layer of the same material will lead to fission both of the beam-like and target-like particles. Due to the close to solid-state density of the accelerated ion bunches, fusion may occur between neutron-rich (light) fission products. This may open an access path towards extremely neutron-rich nuclides in the vicinity of the N=126 waiting point of the astrophysical r process. `Waiting points' at closed nucleon shells play a crucial role in controlling the reaction rates. However, since most of the pathway of heavy-element formation via the rapid-neutron capture process (r-process) runs in `terra incognita' of the nuclear landscape, in particular the waiting point at N=126 is yet unexplored and will remain largely inaccessible to conventional nuclear reaction

  1. From laser particle acceleration to the synthesis of extremely neutron rich isotopes via the novel fission-fusion mechanism

    SciTech Connect

    Thirolf, P. G.

    2015-02-24

    High-power, short pulse lasers have emerged in the last decade as attractive tools for accelerating charged particles (electrons, ions) to high energies over mm-scale acceleration lengths, thus promising to rival conventional acceleration techniques in the years ahead. In the first part of the article, the principles of laser-plasma interaction as well as the techniques and the current status of the acceleration of electron and ion beams will be briefly introduced. In particular with the upcoming next generation of multi-PW class laser systems, such as the one under construction for the ELI-Nuclear Physics project in Bucharest (ELI-NP), very efficient acceleration mechanisms for brilliant ion beams like radiation pressure acceleration (RPA) come into reach. Here, ultra-dense ion beams reaching solid-state density can be accelerated from thin target foils, exceeding the density of conventionally accelerated ion beams by about 14 orders of magnitude. This unique property of laser-accelerated ion beams can be exploited to explore the scenario of a new reaction mechanism called ‘fission-fusion’, which will be introduced in the second part of the article. Accelerating fissile species (e.g. {sup 232}Th) towards a second layer of the same material will lead to fission both of the beam-like and target-like particles. Due to the close to solid-state density of the accelerated ion bunches, fusion may occur between neutron-rich (light) fission products. This may open an access path towards extremely neutron-rich nuclides in the vicinity of the N=126 waiting point of the astrophysical r process. ‘Waiting points’ at closed nucleon shells play a crucial role in controlling the reaction rates. However, since most of the pathway of heavy-element formation via the rapid-neutron capture process (r-process) runs in ‘terra incognita’ of the nuclear landscape, in particular the waiting point at N=126 is yet unexplored and will remain largely inaccessible to conventional

  2. A DSP based data acquisition module for colliding beam accelerators

    SciTech Connect

    Mead, J.A.; Shea, T.J.

    1995-10-01

    In 1999, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory will accelerate and store two beams of gold ions. The ions will then collide head on at a total energy of nearly 40 trillion electron volts. Attaining these conditions necessitates real-time monitoring of beam parameters and for this purpose a flexible data acquisition platform has been developed. By incorporating a floating point digital signal processor (DSP) and standard input/output modules, this system can acquire and process data from a variety of beam diagnostic devices. The DSP performs real time corrections, filtering, and data buffering to greatly reduce control system computation and bandwidth requirements. We will describe the existing hardware and software while emphasizing the compromises required to achieve a flexible yet cost effective system. Applications in several instrumentation systems currently construction will also be presented.

  3. Accelerator based epithermal neutron source for neutron capture therapy

    SciTech Connect

    Brugger, R.; Kunze, J.

    1991-05-01

    Several investigators have suggested that a charged particle accelerator with light element reactions might be able to produce enough epithermal neutrons to be useful in Neutron Capture Therapy. The reaction choice so far has been the Li(p,n) reaction with protons up to 2.5 MeV. A moderator around the target would reduce the faster neutrons down to the epithermal energy region. The goals of the present research are: identify better reactions; improve the moderators; and find better combinations of 1 and 2. The target is to achieve, at the patient location, an epithermal neutron current of greater than 10{sup 9}n/cm{sup 2}sec, with a dose to tissue from the neutrons alone of less than 10{sup {minus}10} rads/n and a dose from the gamma rays in the beam of less than 10{sup {minus}10} rads/n.

  4. Development of accelerator mass spectrometer based on a compact cyclotron

    NASA Astrophysics Data System (ADS)

    Kim, J.-W.; Kim, D.-G.

    2011-07-01

    A small cyclotron has been designed for accelerator mass spectrometry, and the injection beam line is constructed as part of prototyping. Mass resolution of the cyclotron is estimated to be around 4000. The design of the cyclotron was performed with orbit-tracking computations using 3D magnetic and electric fields, and beam optics of the injection line was calculated using the codes such as IGUN and TRANSPORT. The radial injection scheme is chosen to place a beam on equilibrium orbit of the cyclotron. The injection line includes an ion source, Einzel lens, rf buncher, 90° dipole magnet, and quadrupole triplet magnet. A carbon beam was extracted from the front part of the injection line. An rf cavity system for the cyclotron was built and tested. A multi channel plates (MCP) detector to measure low-current ion beams was also tested. Design considerations are given to analyzing a few different radioisotopes in form of positive ions as well as negative ions.

  5. UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC

    SciTech Connect

    Bakeman, M.S.; Fawley, W.M.; Leemans, W. P.; Nakamura, K.; Robinson, K.E.; Schroeder, C.B.; Toth, C.

    2009-05-04

    to couple the THUNDER undulator to the LOASIS Lawrence Berkeley National Laboratory (LBNL) laser wakefield accelerator (LWFA). Currently the LWFA has achieved quasi-monoenergetic electron beams with energies up to 1 GeV. These ultra-short, high-peak-current, electron beams are ideal for driving a compact XUV free electron laser (FEL). Understanding the electron beam properties such as the energy spread and emittance is critical for achieving high quality light sources with high brightness. By using an insertion device such as an undulator and observing changes in the spontaneous emission spectrum, the electron beam energy spread and emittance can be measured with high precision. The initial experiments will use spontaneous emission from 1.5 m of undulator. Later experiments will use up to 5 m of undulator with a goal of a high gain, XUV FEL.

  6. Binomial distribution based τ-leap accelerated stochastic simulation

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhijit; Vlachos, Dionisios G.; Katsoulakis, Markos A.

    2005-01-01

    Recently, Gillespie introduced the τ-leap approximate, accelerated stochastic Monte Carlo method for well-mixed reacting systems [J. Chem. Phys. 115, 1716 (2001)]. In each time increment of that method, one executes a number of reaction events, selected randomly from a Poisson distribution, to enable simulation of long times. Here we introduce a binomial distribution τ-leap algorithm (abbreviated as BD-τ method). This method combines the bounded nature of the binomial distribution variable with the limiting reactant and constrained firing concepts to avoid negative populations encountered in the original τ-leap method of Gillespie for large time increments, and thus conserve mass. Simulations using prototype reaction networks show that the BD-τ method is more accurate than the original method for comparable coarse-graining in time.

  7. An active target for the accelerator-based transmutation system

    SciTech Connect

    Grebyonkin, K. F.

    1995-09-15

    Consideration is given to the possibility of radical reduction in power requirements to the proton accelerator of the electronuclear reactor due to neutron multiplication both in the blanket and the target of an active material. The target is supposed to have the fast-neutron spectrum, and the blanket--the thermal one. The blanket and the target are separated by the thermal neutrons absorber, which is responsible for the neutron decoupling of the active target and blanket. Also made are preliminary estimations which illustrate that the realization of the idea under consideration can lead to significant reduction in power requirements to the proton beam and, hence considerably improve economic characteristics of the electronuclear reactor.

  8. Operational experience from a large EPICS-based accelerator facility

    SciTech Connect

    Ciarlette, D.J.; Gerig, R.

    1995-12-31

    The Advanced Photon Source (APS) at Argonne National Laboratory is a third-generation x-ray light source which uses the Experimental Physics and Industrial Control System (EPICS) to operate its linear accelerator, positron accumulator ring, booster synchrotron, and storage ring equipment. EPICS has been used at the APS since the beginning of installation and commissioning. Currently, EPICS controls approximately 100 VME crates containing over 100,000 process variables. With this complexity, the APS has had to review some of the methods originally employed and make changes as necessary. In addition, due to commissioning and operational needs, higher-level operator software needed to be created. EPICS has been flexible enough to allow this.

  9. Impulse Generation Mechanisms in a Laser-Driven In-Tube Accelerator

    NASA Astrophysics Data System (ADS)

    Choi, Jeong-Yeol; Kang, Ki-Ha; Sasoh, Akihiro; Jeung, In-Seuck; Urabe, Naohide; Kleine, Harald

    To enhance laser-propulsion thrust performance, a unique Laser-driven In-Tube Accelerator (LITA) has been developed. This paper numerically analyzes the impulse generation mechanisms in LITA. For this purpose, a LITA performance experiment was conducted in atmospheric air with a projectile installed on a ballistic pendulum to calibrate the numerical approximations. We conducted experimental flow visualization by framing shadowgraph and computational fluid dynamics solving the axi-symmetric Euler equation applied to an ideal gas. The results show that a laser-driven blast wave is generated by a spherical hot gas core where the supplied laser energy is absorbed first. The effect of confinement by the tube or shroud wall is confirmed. The impulse production is established not only from the interaction between the incident blast wave and projectile, but also from the following repetitive pressure waves. Assuming that about 30% of the input laser energy is absorbed by the working air, both the impulse and peak pressure agrees quantitatively between the experiment and numerical simulation.

  10. IPS observations of the solar wind velocity and the acceleration mechanism

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Davila, J. M.; Coles, W. A.; Grall, R. R.; Klinglesmith, M. T.

    1997-01-01

    Coronal holes are well know sources of high speed solar wind, however, the exact acceleration mechanism of the wind is still unknown. Interplanetary scintillation (IPS) observations indicate that the fast solar wind reaches an average velocity of 800 km s(exp -1) within several solar radii with large velocity fluctuations. However, the origin of the IPS velocity spread below 10 solar radii is unclear. A previously developed coronal home model with a more realistic initial state is applied, and time-dependent, nonlinear, resistive 2.5-DMHD equations are numerically solved. It is found that nonlinear solitary-like waves with a supersonic phase speed are generated in coronal holes by torisonal Alfven waves in the radial flow velocity. The outward propagating nonlinear waves are similar in properties to sound solitons. When these waves are present, the solar wind speed and density fluctuate considerably on a time scale of an hour and on spatial scales of several solar radii in addition to the Alfvenic fluctuations. This is in qualitative agreement with the IPS velocity observations beyond 10 solar radii.

  11. Mechanisms of Hydrocarbon Based Polymer Etch

    NASA Astrophysics Data System (ADS)

    Lane, Barton; Ventzek, Peter; Matsukuma, Masaaki; Suzuki, Ayuta; Koshiishi, Akira

    2015-09-01

    Dry etch of hydrocarbon based polymers is important for semiconductor device manufacturing. The etch mechanisms for oxygen rich plasma etch of hydrocarbon based polymers has been studied but the mechanism for lean chemistries has received little attention. We report on an experimental and analytic study of the mechanism for etching of a hydrocarbon based polymer using an Ar/O2 chemistry in a single frequency 13.56 MHz test bed. The experimental study employs an analysis of transients from sequential oxidation and Ar sputtering steps using OES and surface analytics to constrain conceptual models for the etch mechanism. The conceptual model is consistent with observations from MD studies and surface analysis performed by Vegh et al. and Oehrlein et al. and other similar studies. Parameters of the model are fit using published data and the experimentally observed time scales.

  12. A co-design method for parallel image processing accelerator based on DSP and FPGA

    NASA Astrophysics Data System (ADS)

    Wang, Ze; Weng, Kaijian; Cheng, Zhao; Yan, Luxin; Guan, Jing

    2011-11-01

    In this paper, we present a co-design method for parallel image processing accelerator based on DSP and FPGA. DSP is used as application and operation subsystem to execute the complex operations, and in which the algorithms are resolving into commands. FPGA is used as co-processing subsystem for regular data-parallel processing, and operation commands and image data are transmitted to FPGA for processing acceleration. A series of experiments have been carried out, and up to a half or three quarter time is saved which supports that the proposed accelerator will consume less time and get better performance than the traditional systems.

  13. Studies of industrial emissions by accelerator-based techniques: A review of applications at CEDAD

    NASA Astrophysics Data System (ADS)

    Calcagnile, L.; Quarta, G.

    2012-04-01

    Different research activities are in progress at the Centre for Dating and Diagnostics (CEDAD), University of Salento, in the field of environmental monitoring by exploiting the potentialities given by the different experimental beam lines implemented on the 3 MV Tande-tron accelerator and dedicated to AMS (Accelerator Mass Spectrome-try) radiocarbon dating and IB A (Ion Beam Analysis). An overview of these activities is presented by showing how accelerator-based analytical techniques can be a powerful tool for monitoring the anthropogenic carbon dioxide emissions from industrial sources and for the assessment of the biogenic content in SRF (Solid Recovered Fuel) burned in WTE (Waste to Energy) plants.

  14. Issues for Simulation of Galactic Cosmic Ray Exposures for Radiobiological Research at Ground-Based Accelerators.

    PubMed

    Kim, Myung-Hee Y; Rusek, Adam; Cucinotta, Francis A

    2015-01-01

    For radiobiology research on the health risks of galactic cosmic rays (GCR) ground-based accelerators have been used with mono-energetic beams of single high charge, Z and energy, E (HZE) particles. In this paper, we consider the pros and cons of a GCR reference field at a particle accelerator. At the NASA Space Radiation Laboratory (NSRL), we have proposed a GCR simulator, which implements a new rapid switching mode and higher energy beam extraction to 1.5 GeV/u, in order to integrate multiple ions into a single simulation within hours or longer for chronic exposures. After considering the GCR environment and energy limitations of NSRL, we performed extensive simulation studies using the stochastic transport code, GERMcode (GCR Event Risk Model) to define a GCR reference field using 9 HZE particle beam-energy combinations each with a unique absorber thickness to provide fragmentation and 10 or more energies of proton and (4)He beams. The reference field is shown to well represent the charge dependence of GCR dose in several energy bins behind shielding compared to a simulated GCR environment. However, a more significant challenge for space radiobiology research is to consider chronic GCR exposure of up to 3 years in relation to simulations with animal models of human risks. We discuss issues in approaches to map important biological time scales in experimental models using ground-based simulation, with extended exposure of up to a few weeks using chronic or fractionation exposures. A kinetics model of HZE particle hit probabilities suggests that experimental simulations of several weeks will be needed to avoid high fluence rate artifacts, which places limitations on the experiments to be performed. Ultimately risk estimates are limited by theoretical understanding, and focus on improving knowledge of mechanisms and development of experimental models to improve this understanding should remain the highest priority for space radiobiology research. PMID:26090339

  15. Issues for Simulation of Galactic Cosmic Ray Exposures for Radiobiological Research at Ground-Based Accelerators

    PubMed Central

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis A.

    2015-01-01

    For radiobiology research on the health risks of galactic cosmic rays (GCR) ground-based accelerators have been used with mono-energetic beams of single high charge, Z and energy, E (HZE) particles. In this paper, we consider the pros and cons of a GCR reference field at a particle accelerator. At the NASA Space Radiation Laboratory (NSRL), we have proposed a GCR simulator, which implements a new rapid switching mode and higher energy beam extraction to 1.5 GeV/u, in order to integrate multiple ions into a single simulation within hours or longer for chronic exposures. After considering the GCR environment and energy limitations of NSRL, we performed extensive simulation studies using the stochastic transport code, GERMcode (GCR Event Risk Model) to define a GCR reference field using 9 HZE particle beam–energy combinations each with a unique absorber thickness to provide fragmentation and 10 or more energies of proton and 4He beams. The reference field is shown to well represent the charge dependence of GCR dose in several energy bins behind shielding compared to a simulated GCR environment. However, a more significant challenge for space radiobiology research is to consider chronic GCR exposure of up to 3 years in relation to simulations with animal models of human risks. We discuss issues in approaches to map important biological time scales in experimental models using ground-based simulation, with extended exposure of up to a few weeks using chronic or fractionation exposures. A kinetics model of HZE particle hit probabilities suggests that experimental simulations of several weeks will be needed to avoid high fluence rate artifacts, which places limitations on the experiments to be performed. Ultimately risk estimates are limited by theoretical understanding, and focus on improving knowledge of mechanisms and development of experimental models to improve this understanding should remain the highest priority for space radiobiology research. PMID:26090339

  16. Accelerator-based fusion with a low temperature target

    SciTech Connect

    Phillips, R. E.; Ordonez, C. A.

    2013-04-19

    Neutron generators are in use in a number of scientific and commercial endeavors. They function by triggering fusion reactions between accelerated ions (usually deuterons) and a stationary cold target (e.g., containing tritium). This setup has the potential to generate energy. It has been shown that if the energy transfer between injected ions and target electrons is sufficiently small, net energy gain can be achieved. Three possible avenues are: (a) a hot target with high electron temperature, (b) a cold non-neutral target with an electron deficiency, or (c) a cold target with a high Fermi energy. A study of the third possibility is reported in light of recent research that points to a new phase of hydrogen, which is hypothesized to be related to metallic hydrogen. As such, the target is considered to be composed of nuclei and delocalized electrons. The electrons are treated as conduction electrons, with the average minimum excitation energy being approximately equal to 40% of the Fermi energy. The Fermi energy is directly related to the electron density. Preliminary results indicate that if the claimed electron densities in the new phase of hydrogen were achieved in a target, the energy transfer to electrons would be small enough to allow net energy gain.

  17. Target studies for accelerator-based boron neutron capture therapy

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.

    1996-03-01

    Two new concepts, NIFTI and DISCOS, are described. These concepts enable the efficient production of epithermal neutrons for BNCT (Boron Neutron Capture Therapy) medical treatment, utilizing a low current, low energy proton beam impacting on a lithium target. The NIFTI concept uses an iron layer that strongly impedes the transmission of neutrons with energies above 24 KeV. Lower energy neutrons readily pass through this iron ``filter``, which has a deep ``window`` in its scattering cross section at 24 KeV. The DISCOS concept uses a rapidly rotating, high g disc to create a series of thin ({approximately} 1 micron thickness) liquid lithium targets in the form of continuous films through which the proton beam passes. The average energy lost by a proton as it passes through a single target is small, approximately 10 KeV. Between the targets, the proton beam is reaccelerated by an applied DC electric field. The DISCOS approach enables the accelerator -- target facility to operate with a beam energy only slightly above the threshold value for neutron production -- resulting in an output beam of low-energy epithermal neutrons -- while achieving a high yield of neutrons per milliamp of proton beam current.

  18. Accelerating and democratizing science through cloud-based services.

    SciTech Connect

    Foster, I.

    2011-05-01

    Many businesses today save time and money, and increase their agility, by outsourcing mundane IT tasks to cloud providers. The author argues that similar methods can be used to overcome the complexities inherent in increasingly data-intensive, computational, and collaborative scientific research. He describes Globus Online, a system that he and his colleagues are developing to realize this vision. he scientific community today has unprecedented opportunities to effect transformational change in how individuals and teams engage in discovery. The driving force is a set of interrelated new capabilities that, when harnessed, can enable dramatic acceleration in the discovery process: greater availability of massive data, exponentially faster computers, ultra-high-speed networks, and deep interdisciplinary collaboration. The opportunity - and challenge - is to make these capabilities accessible not just to a few 'big science' projects but to every researcher at every level. Here, I argue that the key to seizing this opportunity is embracing software delivery methods that haven't been widely adopted in research, notably software as a service (SaaS) - a technology that forms an important part of what people refer to as the cloud. I also describe projects in the Computation Institute at the University of Chicago and Argonne National Laboratory that aim to realize this vision, focusing initially on data movement and management.

  19. About the scheme of the infrared FEL system for the accelerator based on HF wells

    SciTech Connect

    Kabanov, V.S.; Dzergach, A.I.

    1995-12-31

    Accelerators, based on localization of plasmoids in the HF wells (RF traps) of the axially-symmetric electromagnetic field E {sub omn} in an oversized (m,n>>1) resonant system, can give accelerating gradients {approximately}100 kV/{lambda}, e.g. 10 GV/m if {lambda}=10 {mu}m. One of possible variants of HF feeding for these accelerators is based on using the powerful infrared FEL System with 2 frequencies. The corresponding FEL`s may be similar to the Los Alamos compact Advanced FEL ({lambda}{sub 1,2}{approximately}10 pm, e-beam energy {approximately}15 MeV, e-beam current {approximately}100 A). Their power is defined mainly by the HF losses in the resonant system of the supposed accelerator.

  20. Extending PowerPack for Profiling and Analysis of High Performance Accelerator-Based Systems

    SciTech Connect

    Li, Bo; Chang, Hung-Ching; Song, Shuaiwen; Su, Chun-Yi; Meyer, Timmy; Mooring, John; Cameron, Kirk

    2014-12-01

    Accelerators offer a substantial increase in efficiency for high-performance systems offering speedups for computational applications that leverage hardware support for highly-parallel codes. However, the power use of some accelerators exceeds 200 watts at idle which means use at exascale comes at a significant increase in power at a time when we face a power ceiling of about 20 megawatts. Despite the growing domination of accelerator-based systems in the Top500 and Green500 lists of fastest and most efficient supercomputers, there are few detailed studies comparing the power and energy use of common accelerators. In this work, we conduct detailed experimental studies of the power usage and distribution of Xeon-Phi-based systems in comparison to the NVIDIA Tesla and at SandyBridge.

  1. Accelerating rejection-based simulation of biochemical reactions with bounded acceptance probability.

    PubMed

    Thanh, Vo Hong; Priami, Corrado; Zunino, Roberto

    2016-06-14

    Stochastic simulation of large biochemical reaction networks is often computationally expensive due to the disparate reaction rates and high variability of population of chemical species. An approach to accelerate the simulation is to allow multiple reaction firings before performing update by assuming that reaction propensities are changing of a negligible amount during a time interval. Species with small population in the firings of fast reactions significantly affect both performance and accuracy of this simulation approach. It is even worse when these small population species are involved in a large number of reactions. We present in this paper a new approximate algorithm to cope with this problem. It is based on bounding the acceptance probability of a reaction selected by the exact rejection-based simulation algorithm, which employs propensity bounds of reactions and the rejection-based mechanism to select next reaction firings. The reaction is ensured to be selected to fire with an acceptance rate greater than a predefined probability in which the selection becomes exact if the probability is set to one. Our new algorithm improves the computational cost for selecting the next reaction firing and reduces the updating the propensities of reactions. PMID:27305997

  2. Accelerating rejection-based simulation of biochemical reactions with bounded acceptance probability

    NASA Astrophysics Data System (ADS)

    Thanh, Vo Hong; Priami, Corrado; Zunino, Roberto

    2016-06-01

    Stochastic simulation of large biochemical reaction networks is often computationally expensive due to the disparate reaction rates and high variability of population of chemical species. An approach to accelerate the simulation is to allow multiple reaction firings before performing update by assuming that reaction propensities are changing of a negligible amount during a time interval. Species with small population in the firings of fast reactions significantly affect both performance and accuracy of this simulation approach. It is even worse when these small population species are involved in a large number of reactions. We present in this paper a new approximate algorithm to cope with this problem. It is based on bounding the acceptance probability of a reaction selected by the exact rejection-based simulation algorithm, which employs propensity bounds of reactions and the rejection-based mechanism to select next reaction firings. The reaction is ensured to be selected to fire with an acceptance rate greater than a predefined probability in which the selection becomes exact if the probability is set to one. Our new algorithm improves the computational cost for selecting the next reaction firing and reduces the updating the propensities of reactions.

  3. Quantum Mechanics Based Multiscale Modeling of Materials

    NASA Astrophysics Data System (ADS)

    Lu, Gang

    2013-03-01

    We present two quantum mechanics based multiscale approaches that can simulate extended defects in metals accurately and efficiently. The first approach (QCDFT) can treat multimillion atoms effectively via density functional theory (DFT). The method is an extension of the original quasicontinuum approach with DFT as its sole energetic formulation. The second method (QM/MM) has to do with quantum mechanics/molecular mechanics coupling based on the constrained density functional theory, which provides an exact framework for a self-consistent quantum mechanical embedding. Several important materials problems will be addressed using the multiscale modeling approaches, including hydrogen-assisted cracking in Al, magnetism-controlled dislocation properties in Fe and Si pipe diffusion along Al dislocation core. We acknowledge the support from the Office of Navel Research and the Army Research Office.

  4. Acceleration modeling of moderate to large earthquakes based on realistic fault models

    NASA Astrophysics Data System (ADS)

    Arvidsson, R.; Toral, J.

    2003-04-01

    Strong motion is affected by distance to the earthquake, local crustal structure, focal mechanism, azimuth to the source. However, the faulting process is also of importance such as development of rupture, i.e., directivity, slip distribution on the fault, extent of fault, rupture velocity. We have modelled these parameters for earthquakes that occurred in three tectonic zones close to the Panama Canal. We included in the modeling directivity, distributed slip, discrete faulting, fault depth and expected focal mechanism. The distributed slip is based on previous fault models that we produced from the region of other earthquakes. Such previous examples show that maximum intensities in some cases coincides with areas of high slip on the fault. Our acceleration modeling also gives similar values to the few observations that have been made for moderate to small earthquakes in the range M=5-6.2. The modeling indicates that events located in the Caribbean might cause strong motion in the lower frequency spectra where high frequency Rayleigh waves dominates.

  5. Quantum mechanics in noninertial reference frames: Relativistic accelerations and fictitious forces

    NASA Astrophysics Data System (ADS)

    Klink, W. H.; Wickramasekara, S.

    2016-06-01

    One-particle systems in relativistically accelerating reference frames can be associated with a class of unitary representations of the group of arbitrary coordinate transformations, an extension of the Wigner-Bargmann definition of particles as the physical realization of unitary irreducible representations of the Poincaré group. Representations of the group of arbitrary coordinate transformations become necessary to define unitary operators implementing relativistic acceleration transformations in quantum theory because, unlike in the Galilean case, the relativistic acceleration transformations do not themselves form a group. The momentum operators that follow from these representations show how the fictitious forces in noninertial reference frames are generated in quantum theory.

  6. Selective sinoatrial node optical mapping to investigate the mechanism of sinus rate acceleration

    NASA Astrophysics Data System (ADS)

    Lin, Shien-Fong; Shinohara, Tetsuji; Joung, Boyoung; Chen, Peng-Sheng

    2011-03-01

    Studies using isolated sinoatrial node (SAN) cells indicate that rhythmic spontaneous sarcoplasmic reticulum Ca release (Ca clock) plays an important role in SAN automaticity. However, it is difficult to translate these findings into intact SAN because the SAN is embedded in the right atrium (RA). Cross contamination of the optical signals between SAN and RA prevented the definitive testing of Ca clock hypothesis in intact SAN. We use a novel approach to selectively map intact SAN to examine the Ca clock function in intact RA. We simultaneously mapped intracellular Ca (Cai) and membrane potential (Vm) in 7 isolated, Langendorff perfused normal canine RA. Electrical conduction from the SAN to RA was inhibited with high potassium (10 mmol/L) Tyrode's solution, allowing selective optical mapping of Vm and Cai of the SAN. Isoproterenol (ISO, 0.03 μmol/L) decreased cycle length of the sinus beats from 586+/-17 ms at baseline to 366+/-32 ms, and shifted the leading pacemaker site from the middle or inferior SAN to the superior SAN in all RAs. The Cai upstroke preceded the Vm in the leading pacemaker site by up to 18+/-2 ms. ISO-induced changes to SAN were inhibited by ryanodine (3 μmol/L), but not ZD7288 (3 μmol/L), a selective If blocker. We conclude that a high extracellular potassium concentration results in intermittent SAN-RA conduction block, allowing selective optical mapping of the intact SAN. Acceleration of Ca cycling in the superior SAN underlies the mechanism of sinus tachycardia during sympathetic stimulation.

  7. Enhanced long-term strength and durability of shotcrete with high-strength C{sub 12}A{sub 7} mineral-based accelerator

    SciTech Connect

    Won, Jong-Pil Hwang, Un-Jong; Lee, Su-Jin

    2015-10-15

    This study evaluated the performance of shotcrete using high strength C{sub 12}A{sub 7} mineral-based accelerator that has been developed to improve the durability and long-term strength. Rebound, compressive strength and flexural strength were tested in the field. Test result showed that existing C{sub 12}A{sub 7} mineral-based accelerator exhibits better early strength than the high-strength C{sub 12}A{sub 7} mineral-based accelerator until the early age, but high-strength C{sub 12}A{sub 7} mineral-based accelerator shows about 29% higher at the long-term age of 28 days. Microstructural analysis such as scanning electron microscope (SEM), X-ray diffraction (XRD) and nitrogen adsorption method was evaluated to analyze long-term strength development mechanism of high strength C{sub 12}A{sub 7} mineral-based accelerator. As analysis result, it had more dense structure due to the reaction product by adding material that used to enhanced strength. It had better resistance performance in chloride ion penetration, freezing–thawing and carbonation than shotcrete that used existing C{sub 12}A{sub 7} mineral-based accelerator.

  8. Trait-based tests of coexistence mechanisms.

    PubMed

    Adler, Peter B; Fajardo, Alex; Kleinhesselink, Andrew R; Kraft, Nathan J B

    2013-10-01

    Recent functional trait studies have shown that trait differences may favour certain species (environmental filtering) while simultaneously preventing competitive exclusion (niche partitioning). However, phenomenological trait-dispersion analyses do not identify the mechanisms that generate niche partitioning, preventing trait-based prediction of future changes in biodiversity. We argue that such predictions require linking functional traits with recognised coexistence mechanisms involving spatial or temporal environmental heterogeneity, resource partitioning and natural enemies. We first demonstrate the limitations of phenomenological approaches using simulations, and then (1) propose trait-based tests of coexistence, (2) generate hypotheses about which plant functional traits are likely to interact with particular mechanisms and (3) review the literature for evidence for these hypotheses. Theory and data suggest that all four classes of coexistence mechanisms could act on functional trait variation, but some mechanisms will be stronger and more widespread than others. The highest priority for future research is studies of interactions between environmental heterogeneity and trait variation that measure environmental variables at within-community scales and quantify species' responses to the environment in the absence of competition. Evidence that similar trait-based coexistence mechanisms operate in many ecosystems would simplify biodiversity forecasting and represent a rare victory for generality over contingency in community ecology. PMID:23910482

  9. Mechanisms of blood pressure regulation that differ in men repeatedly exposed to high-G acceleration.

    PubMed

    Convertino, V A

    2001-04-01

    The purpose of this study was to test the hypothesis that repeated exposure to high acceleration (G) would be associated with enhanced functions of specific mechanisms of blood pressure regulation. We measured heart rate (HR), stroke volume (SV), cardiac output (), mean arterial blood pressure, central venous pressure, forearm and leg vascular resistance, catecholamines, and changes in leg volume (%DeltaLV) during various protocols of lower body negative pressure (LBNP), carotid stimulation, and infusions of adrenoreceptor agonists in 10 males after three training sessions on different days over a period of 5-7 days using a human centrifuge (G trained). These responses were compared with the same measurements in 10 males who were matched for height, weight, and fitness but did not undergo G training (controls). Compared with the control group, G-trained subjects demonstrated greater R-R interval response to equal carotid baroreceptor stimulation (7.3 +/- 1.2 vs. 3.9 +/- 0.4 ms/mmHg, P = 0.02), less vasoconstriction to equal low-pressure baroreceptor stimulation (-1.4 +/- 0.2 vs. -2.6 +/- 0.3 U/mmHg, P = 0.01), and higher HR (-1.2 +/- 0.2 vs. -0.5 +/- 0.1 beats. min(-1). mmHg(-1), P = 0.01) and alpha-adrenoreceptor response (32.8 +/- 3.4 vs. 19.5 +/- 4.7 U/mmHg, P = 0.04) to equal dose of phenylephrine. During graded LBNP, G-trained subjects had less decline in and SV, %DeltaLV, and elevation in thoracic impedance. G-trained subjects also had greater total blood (6,497 +/- 496 vs. 5,438 +/- 228 ml, P = 0.07) and erythrocyte (3,110 +/- 364 vs. 2,310 +/- 96 ml, P = 0.06) volumes. These results support the hypothesis that exposure to repeated high G is associated with increased capacities of mechanisms that underlie blood pressure regulation. PMID:11247814

  10. Cocaine Reduces Thymic Endocrine Function: Another Mechanism for Accelerated HIV Disease Progression

    PubMed Central

    Campa, Adriana; Smith, Sylvia; Huffman, Fatma; Newman, Fred; Baum, Marianna K.

    2011-01-01

    Abstract Thymulin is a thymic peptide important for the maturation and differentiation of immature thymocytes, which have been found to be depressed in patients with low-level CD4+ cell recovery despite viral control. Substance use is associated with faster progression of HIV disease, which has been ascribed to poor adherence to antiretroviral medication. Recent findings of an association between cocaine use and decline in CD4+ cell counts independent of antiretroviral adherence indicate alternative mechanisms for disease progression. We evaluated the relationship between thymulin activity, CD4+ and CD8+ cell counts and the CD4+/CD8+ ratio, and the covariate effects of substance use cross-sectionally in 80 HIV+ active substance users and over 12 months in 40 participants. Thymulin activity was analyzed in plasma using a modification of the sheep rosette bioassay. Thymulin activity was negatively associated with cocaine use (β = −0.908,95% CI: −1.704, −0.112; p = 0.026). Compared to those who do not use cocaine, cocaine users were 37% less likely to have detectable thymulin activity (RR = 0.634, 95% CI: 0.406, 0.989 p = 0.045) and were 75 times more likely to show a decrease in thymulin activity (OR = 74.7, 95% CI: 1.59, 3519.74; p = 0.028) over time. CD4+ cell count was positively associated with thymulin activity (β = 0.127, 95% CI: 0.048,0.205; p = 0.002), detectable thymulin activity was 2.32 times more likely in those with a CD4 cell count ≥200 cells/μl (RR = 2.324, 95% CI: 1.196, 4.513, p = 0.013), and those with an increase in CD4 cell counts were more likely to show an increase in thymulin activity (OR = 1.02, 95% CI: 1.00, 1.034; p = 0.041) over time. Thymulin activity is predictive of HIV disease progression and is depressed in cocaine users independent of antiretroviral treatment (ART) and HIV viral load. Understanding the mechanisms for accelerated HIV disease progression provides

  11. Mechanisms of blood pressure regulation that differ in men repeatedly exposed to high-G acceleration

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    2001-01-01

    The purpose of this study was to test the hypothesis that repeated exposure to high acceleration (G) would be associated with enhanced functions of specific mechanisms of blood pressure regulation. We measured heart rate (HR), stroke volume (SV), cardiac output (), mean arterial blood pressure, central venous pressure, forearm and leg vascular resistance, catecholamines, and changes in leg volume (%DeltaLV) during various protocols of lower body negative pressure (LBNP), carotid stimulation, and infusions of adrenoreceptor agonists in 10 males after three training sessions on different days over a period of 5-7 days using a human centrifuge (G trained). These responses were compared with the same measurements in 10 males who were matched for height, weight, and fitness but did not undergo G training (controls). Compared with the control group, G-trained subjects demonstrated greater R-R interval response to equal carotid baroreceptor stimulation (7.3 +/- 1.2 vs. 3.9 +/- 0.4 ms/mmHg, P = 0.02), less vasoconstriction to equal low-pressure baroreceptor stimulation (-1.4 +/- 0.2 vs. -2.6 +/- 0.3 U/mmHg, P = 0.01), and higher HR (-1.2 +/- 0.2 vs. -0.5 +/- 0.1 beats. min(-1). mmHg(-1), P = 0.01) and alpha-adrenoreceptor response (32.8 +/- 3.4 vs. 19.5 +/- 4.7 U/mmHg, P = 0.04) to equal dose of phenylephrine. During graded LBNP, G-trained subjects had less decline in and SV, %DeltaLV, and elevation in thoracic impedance. G-trained subjects also had greater total blood (6,497 +/- 496 vs. 5,438 +/- 228 ml, P = 0.07) and erythrocyte (3,110 +/- 364 vs. 2,310 +/- 96 ml, P = 0.06) volumes. These results support the hypothesis that exposure to repeated high G is associated with increased capacities of mechanisms that underlie blood pressure regulation.

  12. DNA damage drives accelerated bone aging via an NF-κB-dependent mechanism

    PubMed Central

    Chen, Qian; Liu, Kai; Robinson, Andria R.; Clauson, Cheryl L.; Blair, Harry C.; Robbins, Paul D.; Niedernhofer, Laura J.; Ouyang, Hongjiao

    2013-01-01

    Advanced age is one of the most important risk factors for osteoporosis. Accumulation of oxidative DNA damage has been proposed to contribute to age-related deregulation of osteoblastic and osteoclastic cells. ERCC1 (Excision Repair Cross Complementary group 1)-XPF (Xeroderma Pigmentosum Group F) is an evolutionarily conserved structure-specific endonuclease that is required for multiple DNA repair pathways. Inherited mutations affecting expression of ERCC1-XPF cause a severe progeroid syndrome in humans, including early onset of osteopenia and osteoporosis, or anomalies in skeletal development. Herein, we used progeroid ERCC1-XPF deficient mice, including Ercc1-null (Ercc1−/−) and hypomorphic (Ercc1−/Δ) mice, to investigate the mechanism by which DNA damage leads to accelerated bone aging. Compared to their wild-type littermates, both Ercc1−/− and Ercc1−/Δ mice display severe, progressive osteoporosis caused by reduced bone formation and enhanced osteoclastogenesis. ERCC1 deficiency leads to atrophy of osteoblastic progenitors in the bone marrow stromal cell (BMSC) population. There is increased cellular senescence of BMSCs and osteoblastic cells, as characterized by reduced proliferation, accumulation of DNA damage and a senescence-associated secretory phenotype (SASP). This leads to enhanced secretion of inflammatory cytokines known to drive osteoclastogenesis, such as IL-6, TNFα, and RANKL and thereby induces an inflammatory bone microenvironment favoring osteoclastogenesis. Furthermore, we found that the transcription factor NF-κB is activated in osteoblastic and osteoclastic cells of the Ercc1 mutant mice. Importantly, we demonstrated that haploinsufficiency of the p65 NF-κB subunit partially rescued the osteoporosis phenotype of Ercc1−/Δ mice. Finally, pharmacological inhibition of the NF-κB signaling via an IKK inhibitor reversed cellular senescence and SASP in Ercc1−/Δ BMSCs. These results demonstrate that DNA damage drives

  13. Neural Network Models of Simple Mechanical Systems Illustrating the Feasibility of Accelerated Life Testing

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.; Jones, Steven P.; Jansen, Ralph

    1996-01-01

    A complete evaluation of the tribological characteristics of a given material/mechanical system is a time-consuming operation since the friction and wear process is extremely systems sensitive. As a result, experimental designs (i.e., Latin Square, Taguchi) have been implemented in an attempt to not only reduce the total number of experimental combinations needed to fully characterize a material/mechanical system, but also to acquire life data for a system without having to perform an actual life test. Unfortunately, these experimental designs still require a great deal of experimental testing and the output does not always produce meaningful information. In order to further reduce the amount of experimental testing required, this study employs a computer neural network model to investigate different material/mechanical systems. The work focuses on the modeling of the wear behavior, while showing the feasibility of using neural networks to predict life data. The model is capable of defining which input variables will influence the tribological behavior of the particular material/mechanical system being studied based on the specifications of the overall system.

  14. Berkeley Accelerator Space Effects (BASE) Light Ion FacilityUpgrade

    SciTech Connect

    Johnson, Michael B.; McMahan, Margaret A.; Gimpel, Thomas L.; Tiffany, William S.

    2006-07-07

    The BASE Light Ion Facility upgrades have been completed. All proton beams are now delivered to Cave 4A. New control software, a larger diameter beam window, and improved quality assurance measures have been added.

  15. A note on breast cancer trials with pCR-based accelerated approval.

    PubMed

    Xia, Yi; Cui, Lu; Yang, Bo

    2014-01-01

    Accelerated approval by the Food and Drug Administration (FDA), under the agency's Fast Track review designation, allows early approval of drugs to treat serious diseases and fill an unmet medical need based on a surrogate endpoint. In May 2012, FDA issued a draft Guidance for Industry on the accelerated approval of breast cancer drugs based on the surrogate endpoint "pathologic complete response" (pCR). The research reported in this article investigates potential issues in designing clinical studies for pCR-based accelerated approval. The correlation between pCR and long-term survival was investigated. Two sample comparisons based on a conditional survival model under different assumptions were performed and are discussed along with simulation results. The findings from this research may shed some light on the implementation of the FDA draft guidance. PMID:24926729

  16. Accelerated stress factors and failure/degradation mechanisms in terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1984-01-01

    Plans for the development of amorphous cell accelerated test measurement instrumentation are outlined. Diagrams for an 11-lamp ELH solar simulator and ac light source instrumentation are given. Examples of ac and dc analysis graphs are also provided.

  17. CFD based investigation on the impact acceleration when a gannet impacts with water during plunge diving.

    PubMed

    Wang, T M; Yang, X B; Liang, J H; Yao, G C; Zhao, W D

    2013-09-01

    Plunge diving is the most commonly used feeding method of a gannet, which can make the gannet transit from air to water rapidly and successfully. A large impact acceleration can be generated due to the air-to-water transition. However, the impact acceleration experienced by the gannet during plunge diving has not been studied. In this paper, this issue is investigated by using the CFD method. The effect of the dropping height and the water-entry inclination angle on the impact acceleration is considered. The results reveal that the impact acceleration along the longitudinal body axis increases with either of the two parameters. The peak time decreases with the dropping height. A quadratic relation is found between the peak impact acceleration and the initial water-entry velocity. According to the computation, when the dropping height is 30 m (most of gannets plunge from about this height), the peak impact acceleration can reach about 23 times the gravitational acceleration, which will exert a considerable force on the gannet body. Furthermore, the pressure distribution of different water-entry inclination angles indicates that the large pressure asymmetry caused by a small oblique angle may lead to a large impact acceleration in the direction perpendicular to the longitudinal body axis and cause damage to the neck of the gannet, which partly explains the reason why a gannet performing a high plunge diving in nature enters water with a large oblique angle from the perspective of impact mechanics. The investigation on the plunge-diving behavior in this paper will inspire and promote the development of a biomimetic amphibious robot that transits from air to water with the plunge-diving mode. PMID:23851321

  18. Subglottal Impedance-Based Inverse Filtering of Voiced Sounds Using Neck Surface Acceleration

    PubMed Central

    Zañartu, Matías; Ho, Julio C.; Mehta, Daryush D.; Hillman, Robert E.; Wodicka, George R.

    2014-01-01

    A model-based inverse filtering scheme is proposed for an accurate, non-invasive estimation of the aerodynamic source of voiced sounds at the glottis. The approach, referred to as subglottal impedance-based inverse filtering (IBIF), takes as input the signal from a lightweight accelerometer placed on the skin over the extrathoracic trachea and yields estimates of glottal airflow and its time derivative, offering important advantages over traditional methods that deal with the supraglottal vocal tract. The proposed scheme is based on mechano-acoustic impedance representations from a physiologically-based transmission line model and a lumped skin surface representation. A subject-specific calibration protocol is used to account for individual adjustments of subglottal impedance parameters and mechanical properties of the skin. Preliminary results for sustained vowels with various voice qualities show that the subglottal IBIF scheme yields comparable estimates with respect to current aerodynamics-based methods of clinical vocal assessment. A mean absolute error of less than 10% was observed for two glottal airflow measures –maximum flow declination rate and amplitude of the modulation component– that have been associated with the pathophysiology of some common voice disorders caused by faulty and/or abusive patterns of vocal behavior (i.e., vocal hyperfunction). The proposed method further advances the ambulatory assessment of vocal function based on the neck acceleration signal, that previously have been limited to the estimation of phonation duration, loudness, and pitch. Subglottal IBIF is also suitable for other ambulatory applications in speech communication, in which further evaluation is underway. PMID:25400531

  19. Vector Extrapolation-Based Acceleration of Regularized Richardson Lucy Image Deblurring

    NASA Astrophysics Data System (ADS)

    Remmele, Steffen; Hesser, Jürgen

    Confocal fluorescence microscopy has become an important tool in biological and medical sciences for imaging thin specimen, even living ones. Due to out-of-focus blurring and noise the acquired images are degraded and thus it is necessary to restore them. One of the most popular methods is an iterative Richardson-Lucy algorithm with total variation regularization. This algorithm while improving the image quality is converging slowly whereas with a constantly increasing amount of image data fast methods are required. In this paper, we present an accelerated version of the algorithm and investigate the achieved speed up. The acceleration method is based on a vector extrapolation technique and avoids a computational intensive evaluation of the underlying cost function. To evaluate the acceleration two synthetic test images are used. The accelerated algorithm reaches an acceptable result within 30% to 40% less computational time.

  20. Temperature-Insensitive Fibre-Optic Acceleration Sensor Based on Intensity-Referenced Fibre Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Sun, Li-Qun; Dong, Bo; Wang, Yong-Xin; Evan, LALLY; Wang, An-Bo

    2008-10-01

    A temperature-insensitive acceleration sensor using two fibre Bragg gratings (FBGs), based on reflection spectrum intensity modulation and optical power detection, is proposed and demonstrated. A cantilever beam is used to generate acceleration-induced axial strain along two sensing gratings, which are glued on the two opposite surfaces of the beam. Because the two gratings operate within the linear spectral range of a light source, formed by a thermally-tunable extrinsic Fabry-Perot optical filter, the intensity difference of the two reflections from the gratings is proportional to the acceleration applied. This eliminates the need for sophisticated wavelength interrogation of the gratings, and it also endows the sensor with immunity to temperature variation. Compared with a commercial micromachined accelerometer, the sensor is proven to be capable of accurately detecting acceleration.

  1. JAERI R and D on accelerator-based transmutation under OMEGA program

    SciTech Connect

    Takizuka, T.; Nishida, T.; Mizumoto, M.; Yoshida, H.

    1995-09-15

    The overview of the Japanese long-term research and development program on nuclide partitioning and transmutation, called ''OMEGA,'' is presented. Under this national program, major R and D activities are being carried out at JAERI, PNC, and CRIEPI. Accelerator-based transmutation study at JAERI is focused on a dedicated transmutor with a subcritical actinide-fueled subcritical core coupled with a spallation target driven by a high intensity proton accelerator. Two types of system concept, solid system and molten-salt system, are discussed. The solid system consists of sodium-cooled tungsten target and metallic actinide fuel. The molten-salt system is fueled with molten actinide chloride that acts also as a target material. The proposed plant transmutes about 250 kg of minor actinide per year, and generates enough electricity to power its own accelerator. JAERI is proposing the development of an intense proton linear accelerator ETA with 1.5 GeV-10 mA beam for engineering tests of accelerator-based transmutation. Recent achievements in the accelerator development are described.

  2. Solar radiation pressure as a mechanism of acceleration of atoms and first ions with low ionization potentials

    NASA Astrophysics Data System (ADS)

    Shestakova, L. I.

    2015-04-01

    Calculated results are presented for solar radiation pressure acting on atoms and first ions. For some of these particles, radiation pressure exceeds the gravitational attraction and can accelerate them to large velocities. A comparison of the results with ionization potentials shows that the maxima of radiation pressure on neutral atoms coincide with the minima of the first ionization potentials (FIPs). This relationship is even more apparent for first ions. The minima of the second ionization potentials (SIPs) coincide with the radiation pressure maxima for a number of ions such as Be II, Mg II, Ca II, and the neighboring elements. Thus, radiation pressure may serve as a possible mechanism of acceleration of pickup ions and energetic neutral atoms (ENA) coming from an inner source (zodiacal dust and sungrazing comets). These atoms and ions, which are not typical of the solar wind, are formed as a result of the disintegration of comets or meteor showers near the Sun and can accelerate and reach the Earth's orbit as part of the solar wind. Doubly ionized atoms have resonance lines in the UV range, where solar radiation pressure has no apparent impact on the particle dynamics; thus, the proposed acceleration mechanism can only be applied to neutral atoms and first ions with low potentials of the subsequent ionization.

  3. The effect of gravitational acceleration on cardiac diastolic function: a biofluid mechanical perspective with initial results.

    PubMed

    Pantalos, George M; Bennett, Thomas E; Sharp, M Keith; Woodruff, Stewart J; O'Leary, Sean D; Gillars, Kevin J; Schurfranz, Thomas; Everett, Scott D; Lemon, Mark; Schwartz, John

    2005-08-01

    Echocardiographic measurements of astronaut cardiac function have documented an initial increase, followed by a progressive reduction in both left ventricular end-diastolic volume index and stroke volume with entry into microgravity (micro-G). The investigators hypothesize that the observed reduction in cardiac filling may, in part, be due to the absence of a gravitational acceleration dependent, intraventricular hydrostatic pressure difference in micro-G that exists in the ventricle in normal gravity (1-G) due to its size and anatomic orientation. This acceleration-dependent pressure difference, DeltaP(LV), between the base and the apex of the heart for the upright posture can be estimated to be 6660 dynes/cm(2) ( approximately 5 mm Hg) on Earth. DeltaP(LV) promotes cardiac diastolic filling on Earth, but is absent in micro-G. If the proposed hypothesis is correct, cardiac pumping performance would be diminished in micro-G. To test this hypothesis, ventricular function experiments were conducted in the 1-G environment using an artificial ventricle pumping on a mock circulation system with the longitudinal axis anatomically oriented for the upright posture at 45 degrees to the horizon. Additional measurements were made with the ventricle horizontally oriented to null DeltaP(LV)along the apex-base axis of the heart as would be the case for the supine posture, but resulting in a lesser hydrostatic pressure difference along the minor (anterior-posterior) axis. Comparative experiments were also conducted in the micro-G environment of orbital space flight on board the Space Shuttle. This paper reviews the use of an automated cardiovascular simulator flown on STS-85 and STS-95 as a Get Away Special payload to test this hypothesis. The simulator consisted of a pneumatically actuated, artificial ventricle connected to a closed-loop, fluid circuit with adjustable compliance and resistance elements to create physiologic pressure and flow conditions. Ventricular

  4. Lithium target for accelerator based BNCT neutron source: Influence by the proton irradiation on lithium

    NASA Astrophysics Data System (ADS)

    Fujii, R.; Imahori, Y.; Nakakmura, M.; Takada, M.; Kamada, S.; Hamano, T.; Hoshi, M.; Sato, H.; Itami, J.; Abe, Y.; Fuse, M.

    2012-12-01

    The neutron source for Boron Neutron Capture Therapy (BNCT) is in the transition stage from nuclear reactor to accelerator based neutron source. Generation of low energy neutron can be achieved by 7Li (p, n) 7Be reaction using accelerator based neutron source. Development of small-scale and safe neutron source is within reach. The melting point of lithium that is used for the target is low, and durability is questioned for an extended use at a high current proton beam. In order to test its durability, we have irradiated lithium with proton beam at the same level as the actual current density, and found no deterioration after 3 hours of continuous irradiation. As a result, it is suggested that lithium target can withstand proton irradiation at high current, confirming suitability as accelerator based neutron source for BNCT.

  5. Calcium-Based Nanoparticles Accelerate Skin Wound Healing

    PubMed Central

    Ishise, Hisako; Carre, Antoine Lyonel; Nishimoto, Soh; Longaker, Michael; Lorenz, H. Peter

    2011-01-01

    Introduction Nanoparticles (NPs) are small entities that consist of a hydroxyapatite core, which can bind ions, proteins, and other organic molecules from the surrounding environment. These small conglomerations can influence environmental calcium levels and have the potential to modulate calcium homeostasis in vivo. Nanoparticles have been associated with various calcium-mediated disease processes, such as atherosclerosis and kidney stone formation. We hypothesized that nanoparticles could have an effect on other calcium-regulated processes, such as wound healing. In the present study, we synthesized pH-sensitive calcium-based nanoparticles and investigated their ability to enhance cutaneous wound repair. Methods Different populations of nanoparticles were synthesized on collagen-coated plates under various growth conditions. Bilateral dorsal cutaneous wounds were made on 8-week-old female Balb/c mice. Nanoparticles were then either administered intravenously or applied topically to the wound bed. The rate of wound closure was quantified. Intravenously injected nanoparticles were tracked using a FLAG detection system. The effect of nanoparticles on fibroblast contraction and proliferation was assessed. Results A population of pH-sensitive calcium-based nanoparticles was identified. When intravenously administered, these nanoparticles acutely increased the rate of wound healing. Intravenously administered nanoparticles were localized to the wound site, as evidenced by FLAG staining. Nanoparticles increased fibroblast calcium uptake in vitro and caused contracture of a fibroblast populated collagen lattice in a dose-dependent manner. Nanoparticles also increased the rate of fibroblast proliferation. Conclusion Intravenously administered, calcium-based nanoparticles can acutely decrease open wound size via contracture. We hypothesize that their contraction effect is mediated by the release of ionized calcium into the wound bed, which occurs when the p

  6. Reliability mechanisms in distributed data base systems

    SciTech Connect

    Son, S.H.

    1986-01-01

    Distributed database systems operate in computer networking environments where component failures are inevitable during normal operation. Failures not only threaten normal operation of the system, but they may destroy the correctness of the data base by direct damage to the storage subsystem. In order to cope with these failures, distributed data base systems must provide reliability mechanisms that maintain the system consistency. There are two major parts in this dissertation. In the first part, mechanisms are presented for recovery management in distributed data base system. The recovery management of a distributed data bases system consists of two parts: the preparation for the recovery by saving necessary information during normal operation of the data base system, and the coordination of the actual recovery in order to avoid the possible inconsistency after the recovery. The preparation for the recovery is done through the checkpointing and logging. A new scheme is proposed for reconstruction of the data base in distributed environments. In the second part, a token-based resiliency control scheme for replicated distributed data base systems. The proposed control scheme increases the reliability as well as the degree of concurrency while maintaining the consistency of the system.

  7. Mechanical quality assurance using light field for linear accelerators with camera calibration.

    PubMed

    Park, Kwangwoo; Choi, Wonhoon; Keum, Ki Chang; Lee, Ho; Yoon, Jeongmin; Lee, Chang Geol; Lee, Ik Jae; Cho, Jaeho

    2016-02-01

    Mechanical Quality Assurance (QA) is important to assure spatially precise delivery of external-beam radiation therapy. As an alternative to the conventional-film based method, we have developed a new tool for mechanical QA of LINACs which uses a light field rather than radiation. When light passes through the collimator, a shadow is projected onto a piece of translucent paper and the resulting image is captured by a digital camera via a mirror. With this method, we evaluated the position of the LINAC isocenter and the accuracy of the gantry, collimator, and couch rotation. We also evaluated the accuracy of the digital readouts of the gantry, collimator, and couch rotation. In addition, the treatment couch position indicator was tested. We performed camera calibration as an essential pre-requisite for quantitative measurements of the position of isocenter, the linear motion of the couch, and the rotation angles of the gantry and collimator. Camera calibration reduced the measurement error to submillimeter based on uncertainty in pixel size of the image, while, without calibration, the measurement error of up to 2 mm could occur for an object with a length of 5 cm. PMID:26833362

  8. Tandem-ESQ for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT)

    SciTech Connect

    Kreiner, A. J.; Kwan, J. W.; Henestroza, E.; Burlon, A. A.; Di Paolo, H.; Minsky, D.; Debray, M.; Valda, A.; Somacal, H. R.

    2007-02-12

    A folded tandem, with 1.25 MV terminal voltage, combined with an ElectroStatic Quadrupole (ESQ) chain is being proposed as a machine for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT). The machine is shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the on the 7Li(p,n)7Be reaction, to perform BNCT treatment for deep seated tumors in less than an hour.

  9. Setting accelerated dissolution test for PLGA microspheres containing peptide, investigation of critical parameters affecting drug release rate and mechanism.

    PubMed

    Tomic, I; Vidis-Millward, A; Mueller-Zsigmondy, M; Cardot, J-M

    2016-05-30

    The objective of this study was development of accelerated in vitro release method for peptide loaded PLGA microspheres using flow-through apparatus and assessment of the effect of dissolution parameters (pH, temperature, medium composition) on drug release rate and mechanism. Accelerated release conditions were set as pH 2 and 45°C, in phosphate buffer saline (PBS) 0.02M. When the pH was changed from 2 to 4, diffusion controlled phases (burst and lag) were not affected, while release rate during erosion phase decreased two-fold due to slower ester bonds hydrolyses. Decreasing temperature from 45°C to 40°C, release rate showed three-fold deceleration without significant change in release mechanism. Effect of medium composition on drug release was tested in PBS 0.01M (200 mOsm/kg) and PBS 0.01M with glucose (380 mOsm/kg). Buffer concentration significantly affected drug release rate and mechanism due to the change in osmotic pressure, while ionic strength did not have any effect on peptide release. Furthermore, dialysis sac and sample-and-separate techniques were used, in order to evaluate significance of dissolution technique choice on the release process. After fitting obtained data to different mathematical models, flow-through method was confirmed as the most appropriate for accelerated in vitro dissolution testing for a given formulation. PMID:27025293

  10. Piezoelectric compliant mechanism energy harvesters under large base excitations

    NASA Astrophysics Data System (ADS)

    Ma, Xiaokun; Trolier-McKinstry, Susan; Rahn, Christopher D.

    2016-09-01

    A piezoelectric compliant mechanism (PCM) energy harvester is designed, modeled, and analyzed that consists of a polyvinylidene diflouoride, PVDF unimorph clamped at its base and attached to a compliant mechanism at its tip. The compliant hinge stiffness is carefully tuned to approach a low frequency first mode with an efficient (nearly quadratic) shape that provides a uniform strain distribution. A nonlinear model of the PCM energy harvester under large base excitation is derived to determine the maximum power that can be generated by the device. Experiments with a fabricated PCM energy harvester prototype show that the compliant mechanism introduces a stiffening effect and a much wider bandwidth than a benchmark proof mass cantilever design. The PCM bridge structure self-limits the displacement and maximum strain at large excitations compared with the proof mass cantilever, improving the device robustness. The PCM outperforms the cantilever in both average power and power-strain sensitivity at high accelerations due to the PCM axial stretching effect and its more uniform strain distribution.

  11. Laser-based acceleration for nuclear physics experiments at ELI-NP

    NASA Astrophysics Data System (ADS)

    Tesileanu, O.; Asavei, Th.; Dancus, I.; Gales, S.; Negoita, F.; Turcu, I. C. E.; Ursescu, D.; Zamfir, N. V.

    2016-05-01

    As part of the Extreme Light pan-European research infrastructure, Extreme Light Infrastructure - Nuclear Physics (ELI-NP) in Romania will focus on topics in Nuclear Physics, fundamental Physics and applications, based on very intense photon beams. Laser-based acceleration of electrons, protons and heavy ions is a prerequisite for a multitude of laser-driven nuclear physics experiments already proposed by the international research community. A total of six outputs of the dual-amplification chain laser system, two of 100TW, two of 1PW and two of 10PW will be employed in 5 experimental areas, with the possibility to use long and short focal lengths, gas and solid targets, reaching the whole range of laser acceleration processes. We describe the main techniques and expectations regarding the acceleration of electrons, protons and heavy nuclei at ELI-NP, and some physics cases for which these techniques play an important role in the experiments.

  12. Acceleration techniques for reduced-order models based on proper orthogonal decomposition

    SciTech Connect

    Cizmas, P.; Richardson, B.; Brenner, T.; O'Brien, T.; Breault, R.

    2008-01-01

    This paper presents several acceleration techniques for reduced-order models based on the proper orthogonal decomposition (POD) method. The techniques proposed herein are: (i) an algorithm for splitting the database of snapshots generated by the full-order model; (ii) a method for solving quasi-symmetrical matrices; (iii) a strategy for reducing the frequency of the projection. The acceleration techniques were applied to a POD-based reduced-order model of the twophase flows in fluidized beds. This reduced-order model was developed using numerical results from a full-order computational fluid dynamics model of a two-dimensional fluidized bed. Using these acceleration techniques the computational time of the POD model was two orders of magnitude shorter than the full-order model.

  13. Beam manipulation for compact laser wakefield accelerator based free-electron lasers

    NASA Astrophysics Data System (ADS)

    Loulergue, A.; Labat, M.; Evain, C.; Benabderrahmane, C.; Malka, V.; Couprie, M. E.

    2015-02-01

    Free-electron lasers (FELs) are a unique source of light, particularly in the x-ray domain. After the success of FELs based on conventional acceleration using radio-frequency cavities, an important challenge is the development of FELs based on electron bunching accelerated by a laser wakefield accelerator (LWFA). However, the present LWFA electron bunch properties do not permit use directly for a significant FEL amplification. It is known that longitudinal decompression of electron beams delivered by state-of-the-art LWFA eases the FEL process. We propose here a second order transverse beam manipulation turning the large inherent transverse chromatic emittances of LWFA beams into direct FEL gain advantage. Numerical simulations are presented showing that this beam manipulation can further enhance by orders of magnitude the peak power of the radiation.

  14. Accelerated materials design of fast oxygen ionic conductors based on first principles calculations

    NASA Astrophysics Data System (ADS)

    He, Xingfeng; Mo, Yifei

    Over the past decades, significant research efforts have been dedicated to seeking fast oxygen ion conductor materials, which have important technological applications in electrochemical devices such as solid oxide fuel cells, oxygen separation membranes, and sensors. Recently, Na0.5Bi0.5TiO3 (NBT) was reported as a new family of fast oxygen ionic conductor. We will present our first principles computation study aims to understand the O diffusion mechanisms in the NBT material and to design this material with enhanced oxygen ionic conductivity. Using the NBT materials as an example, we demonstrate the computation capability to evaluate the phase stability, chemical stability, and ionic diffusion of the ionic conductor materials. We reveal the effects of local atomistic configurations and dopants on oxygen diffusion and identify the intrinsic limiting factors in increasing the ionic conductivity of the NBT materials. Novel doping strategies were predicted and demonstrated by the first principles calculations. In particular, the K doped NBT compound achieved good phase stability and an order of magnitude increase in oxygen ionic conductivity of up to 0.1 S cm-1 at 900 K compared to the experimental Mg doped compositions. Our results provide new avenues for the future design of the NBT materials and demonstrate the accelerated design of new ionic conductor materials based on first principles techniques. This computation methodology and workflow can be applied to the materials design of any (e.g. Li +, Na +) fast ion-conducting materials.

  15. Comparison of clinical explants and accelerated hydrolytic aging to improve biostability assessment of silicone-based polyurethanes.

    PubMed

    Cosgriff-Hernandez, Elizabeth; Tkatchouk, Ekaterina; Touchet, Tyler; Sears, Nick; Kishan, Alysha; Jenney, Christopher; Padsalgikar, Ajay D; Chen, Emily

    2016-07-01

    Although silicone-based polyurethanes have demonstrated increased oxidative stability, there have been conflicting reports of the long-term hydrolytic stability of Optim™ and PurSil(®) 35 based on recent temperature-accelerated hydrolysis studies. The goal of the current study was to identify in vitro-in vivo correlations to determine the relevance of this accelerated in vitro model for predicting clinical outcomes. Temperature-accelerated hydrolytic aging of three commonly used cardiac lead insulation materials, Optim™, Elasthane™ 55D, Elasthane™ 80A, and a related silicone-polyurethane, PurSil(®) 35, was performed. After 1 year at 85°C, similar losses in Mn and Mz were observed for the poly(ether urethanes), but an increase in Mz loss as compared to Mn loss was observed for the silicone-based polyurethanes. A similar trend of increased Mz loss as compared to Mn loss was observed in explanted Optim™ leads after 2-3 years; however, no statistically significant Mn loss was detected between 2-3 and 7-8 years of implantation. Given this preferential loss of high molecular weight chains, it was hypothesized that the observed differences between the polyurethanes were due to allophanate dissociation rather than backbone chain scission. Following full dissociation of the small percentage of allophanates in vivo, the observed molecular weight stability and proven clinical performance of Optim™ was attributed to the well-documented stability of the urethane bond under physiological conditions. This allophanate dissociation reaction is incompatible with the first order mechanism proposed in previous temperature-accelerated hydrolysis studies and may be the reason for the model's inaccurate prediction of significant and progressive molecular weight loss in vivo. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1805-1816, 2016. PMID:26990709

  16. Wide-bandwidth Tm-based amplifier for laser acceleration driver

    NASA Astrophysics Data System (ADS)

    Copeland, Drew A.; Vetrovec, John; Litt, Amardeep S.

    2016-03-01

    We report on an investigation of novel 2 μm thulium (Tm)-based laser accelerator driver (LAD) offering efficient generation of high-energy pulses with high-peak power at high pulse repetition rate (PRF), high efficiency, and with near-diffraction-limited beam quality (BQ). Laser acceleration of electrons by ultrashortpulse laser-generated plasmas offers accelerators of much reduced size and cost compared to conventional accelerators of the same energy, thus replacing the traditional mammoth-size and costly accelerator research facilities with room-size systems1. A LAD operating at 2 μm wavelength offers ponderomotive forces four times that of 1 μm wavelength and six times that of a traditional 0.8 μm wavelength LAD. In addition, the Tm bandwidth of nearly 400 nm offers > 15% tunability and generation of ultrashort pulses down to <30 fs. The "2-for- 1" pump quantum efficiency of the Tm ion enables > 20% wall-plug efficiency. This work presents a preliminary analysis of Tm-based LAD configurations.

  17. Extremely high paw accelerations during paw shake in the cat: A mechanism revealed by computer simulations

    NASA Astrophysics Data System (ADS)

    Klishko, Alexander; Cofer, David; Edwards, Donald; Prilutsky, Boris

    2008-03-01

    Paw shake response is a reflex aimed at removing an irritating stimulus from the paw by imparting to it high periodic accelerations (>10 g). These values seem too high to be produced by distal muscles exclusively. According to Prilutsky et al. (2005), resultant hip moments during paw shake are much greater than distal joint moments, whereas distal joint velocities and accelerations exceed those of the proximal joints. The goal of this study was to examine how proximal hip muscles could contribute to high paw accelerations. Using software AnimatLab, we developed a 2D model of the cat hindlimb consisting of 5 rigid segments with 4 hinge joints and 11 muscles spanning all joints. The muscles were assumed passive except for those crossing the hip. When in simulations the hip muscles were reciprocally activated to periodically flex and extend the hip joint with a typical paw shake frequency of 10 Hz, the hindlimb segments demonstrated motion resembling experimental observations: linear and angular velocities and accelerations of the distal segments exceeded several fold the values of the proximal segments. Simulated paw shake revealed features of a whip-like motion.

  18. Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition.

    PubMed

    Kuang, Gui-Chao; Guha, Pampa M; Brotherton, Wendy S; Simmons, J Tyler; Stankee, Lisa A; Nguyen, Brian T; Clark, Ronald J; Zhu, Lei

    2011-09-01

    A mechanistic model is formulated to account for the high reactivity of chelating azides (organic azides capable of chelation-assisted metal coordination at the alkylated azido nitrogen position) and copper(II) acetate (Cu(OAc)(2)) in copper(II)-mediated azide-alkyne cycloaddition (AAC) reactions. Fluorescence and (1)H NMR assays are developed for monitoring the reaction progress in two different solvents, methanol and acetonitrile. Solvent kinetic isotopic effect and premixing experiments give credence to the proposed different induction reactions for converting copper(II) to catalytic copper(I) species in methanol (methanol oxidation) and acetonitrile (alkyne oxidative homocoupling), respectively. The kinetic orders of individual components in a chelation-assisted, copper(II)-accelerated AAC reaction are determined in both methanol and acetonitrile. Key conclusions resulting from the kinetic studies include (1) the interaction between copper ion (either in +1 or +2 oxidation state) and a chelating azide occurs in a fast, pre-equilibrium step prior to the formation of the in-cycle copper(I)-acetylide, (2) alkyne deprotonation is involved in several kinetically significant steps, and (3) consistent with prior experimental and computational results by other groups, two copper centers are involved in the catalysis. The X-ray crystal structures of chelating azides with Cu(OAc)(2) suggest a mechanistic synergy between alkyne oxidative homocoupling and copper(II)-accelerated AAC reactions, in which both a bimetallic catalytic pathway and a base are involved. The different roles of the two copper centers (a Lewis acid to enhance the electrophilicity of the azido group and a two-electron reducing agent in oxidative metallacycle formation, respectively) in the proposed catalytic cycle suggest that a mixed valency (+2 and +1) dinuclear copper species be a highly efficient catalyst. This proposition is supported by the higher activity of the partially reduced Cu(OAc)(2) in

  19. Broadband Single-Shot Electron Spectrometer for GeV-Class Laser Plasma Based Accelerators

    SciTech Connect

    Nakamura, K.; Wan, W.; Ybarrolaza, N.; Syversrud, D.; Wallig, J.; Leemans, W.P.

    2008-05-01

    Laser-plasma-based accelerators can provide electrons over a broad energy range and/or with large momentum spread. The electron beam energy distribution can be controlled via accurate control of laser and plasma properties, and beams with energies ranging from'0.5 to 1000 MeV have been observed. Measuring these energy distributions in a single shot requires the use of a diagnostic with large momentum acceptance and, ideally, sufficient resolution to accurately measure energy spread in the case of narrow energy spread. Such a broadband single-shot electron magnetic spectrometer for GeV-class laser-plasma-based accelerators has been developed at Lawrence Berkeley National Laboratory. A detailed description of the hardware and the design concept is presented, as well as a performance evaluation of the spectrometer. The spectrometer covered electron beam energies raging from 0.01 to 1.1 GeV in a single shot, and enabled the simultaneous measurement of the laser properties at the exit of the accelerator through the use of a sufficiently large pole gap. Based on measured field maps and 3rd-order transport analysis, a few percent-level resolution and determination of the absolute energy were achieved over the entire energy range. Laser-plasma-based accelerator experiments demonstrated the capability of the spectrometer as a diagnostic and its suitability for such a broadband electron source.

  20. Navigating Uncharted Waters: An Accelerated Content-Based English for Academic Purposes Program

    ERIC Educational Resources Information Center

    Hernandez, Kelly; Thomas, Michelle; Schuemann, Cynthia

    2012-01-01

    In 2008, Miami Dade College received a $1.9 million Title V grant from the US Department of Education to develop an Accelerated Content-Based English for Academic Purposes (EAP) track called Project ACE for ESL students. The ACE curriculum is anchored by the principles of flexibility, contextualization, and faculty buy-in--critical matters given…

  1. First experiments on neutron detection on the accelerator-based source for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. S.; Malyshkin, G. N.; Makarov, A. N.; Sorokin, I. N.; Sulyaev, Yu. S.; Taskaev, S. Yu.

    2009-04-01

    A pilot accelerator-based source of epithermal neutrons, which is intended for wide application in clinics for boron neutron capture therapy, has been constructed at the Budker Institute of Nuclear Physics (Novosibirsk). A stationary proton beam has been obtained and near-threshold neutron generation regime has been realized. Results of the first experiments on neutron generation using the proposed source are described.

  2. Investigation of Microopto-eletromechanical Angular Velocity and Acceleration Transducers based on Optical Tunneling Effect

    NASA Astrophysics Data System (ADS)

    Busurin, V. I.; Lwin, Naing Htoo; Tuan, Pham Anh

    In this paper the possibility of microopto-electromechanical (MOEM) angular velocity and acceleration transducers based on optical tunneling effect (OTE) is considered. The generalized model of MOEM transducers with various types of sensing elements (SE) is developed, transfer functions are investigated, and the errors with various design parameters of transducers are estimated.

  3. Ensemble Manifold Rank Preserving for Acceleration-Based Human Activity Recognition.

    PubMed

    Tao, Dapeng; Jin, Lianwen; Yuan, Yuan; Xue, Yang

    2016-06-01

    With the rapid development of mobile devices and pervasive computing technologies, acceleration-based human activity recognition, a difficult yet essential problem in mobile apps, has received intensive attention recently. Different acceleration signals for representing different activities or even a same activity have different attributes, which causes troubles in normalizing the signals. We thus cannot directly compare these signals with each other, because they are embedded in a nonmetric space. Therefore, we present a nonmetric scheme that retains discriminative and robust frequency domain information by developing a novel ensemble manifold rank preserving (EMRP) algorithm. EMRP simultaneously considers three aspects: 1) it encodes the local geometry using the ranking order information of intraclass samples distributed on local patches; 2) it keeps the discriminative information by maximizing the margin between samples of different classes; and 3) it finds the optimal linear combination of the alignment matrices to approximate the intrinsic manifold lied in the data. Experiments are conducted on the South China University of Technology naturalistic 3-D acceleration-based activity dataset and the naturalistic mobile-devices based human activity dataset to demonstrate the robustness and effectiveness of the new nonmetric scheme for acceleration-based human activity recognition. PMID:25265635

  4. Panorama of new generation of accelerator based short wavelength coherent light sources

    NASA Astrophysics Data System (ADS)

    Couprie, M. E.

    2015-12-01

    The newly developed intense short wavelength light sources (from Extreme Ultra-Violet (EUV) to X-rays) have open the path to the exploration of matter for revealing structures and electronic processes and for following their evolution in time. After drawing the panorama of existing accelerator based short wavelength light sources, the new trends of evolution of short wavelengths FEL are described, with some illustrations with the example of the LUNEX5 (free electron Laser a New accelerator for the Exploitation of X-ray radiation of 5th generation) demonstrator project of advanced compact Free Electron Laser.

  5. Acceleration of dormant storage effects to address the reliability of silicon surface micromachined Micro-Electro-Mechanical Systems (MEMS).

    SciTech Connect

    Cox, James V.; Candelaria, Sam A.; Dugger, Michael Thomas; Duesterhaus, Michelle Ann; Tanner, Danelle Mary; Timpe, Shannon J.; Ohlhausen, James Anthony; Skousen, Troy J.; Jenkins, Mark W.; Jokiel, Bernhard, Jr.; Walraven, Jeremy Allen; Parson, Ted Blair

    2006-06-01

    Qualification of microsystems for weapon applications is critically dependent on our ability to build confidence in their performance, by predicting the evolution of their behavior over time in the stockpile. The objective of this work was to accelerate aging mechanisms operative in surface micromachined silicon microelectromechanical systems (MEMS) with contacting surfaces that are stored for many years prior to use, to determine the effects of aging on reliability, and relate those effects to changes in the behavior of interfaces. Hence the main focus was on 'dormant' storage effects on the reliability of devices having mechanical contacts, the first time they must move. A large number ({approx}1000) of modules containing prototype devices and diagnostic structures were packaged using the best available processes for simple electromechanical devices. The packaging processes evolved during the project to better protect surfaces from exposure to contaminants and water vapor. Packages were subjected to accelerated aging and stress tests to explore dormancy and operational environment effects on reliability and performance. Functional tests and quantitative measurements of adhesion and friction demonstrated that the main failure mechanism during dormant storage is change in adhesion and friction, precipitated by loss of the fluorinated monolayer applied after fabrication. The data indicate that damage to the monolayer can occur at water vapor concentrations as low as 500 ppm inside the package. The most common type of failure was attributed to surfaces that were in direct contact during aging. The application of quantitative methods for monolayer lubricant analysis showed that even though the coverage of vapor-deposited monolayers is generally very uniform, even on hidden surfaces, locations of intimate contact can be significantly depleted in initial concentration of lubricating molecules. These areas represent defects in the film prone to adsorption of water or

  6. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    SciTech Connect

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  7. Study of applied magnetic field magnetoplasmadynamic thrusters with particle-in-cell and Monte Carlo collision. II. Investigation of acceleration mechanisms

    NASA Astrophysics Data System (ADS)

    Tang, Hai-Bin; Cheng, Jiao; Liu, Chang; York, Thomas M.

    2012-07-01

    The particle-in-cell method previously described in paper (I) has been applied to the investigation of acceleration mechanisms in applied-field magnetoplasmadynamic thrusters. This new approach is an alternative to magnetohydrodynamics models and allows nonlocal dynamic effects of particles and improved transport properties. It was used to model a 100 kW, steady-state, applied-field, argon magnetoplasmadynamic thruster to study the physical acceleration processes with discharge currents of 1000-1500 A, mass flow rates of 0.025-0.1 g/s and applied magnetic field strengths of 0.034-0.102 T. The total thrust calculations were used to verify the theoretical approach by comparison with experimental data. Investigations of the acceleration model offer an underlying understanding of applied-field magnetoplasmadynamic thrusters, including the following conclusions: (1) swirl acceleration mechanism is the dominant contributor to the plasma acceleration, and self-magnetic, Hall, gas-dynamic, and swirl acceleration mechanisms are in an approximate ratio of 1:10:10:100; (2) the Hall acceleration produced mainly by electron swirl is insensitive to the change of externally applied magnetic field and shows only slight increases when the current is raised; (3) self-magnetic acceleration is normally negligible for all cases, while the gas-dynamic acceleration contribution increases with increasing applied magnetic field strength, discharge current, and mass flow rate.

  8. Study of applied magnetic field magnetoplasmadynamic thrusters with particle-in-cell and Monte Carlo collision. II. Investigation of acceleration mechanisms

    SciTech Connect

    Tang Haibin; Cheng Jiao; Liu Chang; York, Thomas M.

    2012-07-15

    The particle-in-cell method previously described in paper (I) has been applied to the investigation of acceleration mechanisms in applied-field magnetoplasmadynamic thrusters. This new approach is an alternative to magnetohydrodynamics models and allows nonlocal dynamic effects of particles and improved transport properties. It was used to model a 100 kW, steady-state, applied-field, argon magnetoplasmadynamic thruster to study the physical acceleration processes with discharge currents of 1000-1500 A, mass flow rates of 0.025-0.1 g/s and applied magnetic field strengths of 0.034-0.102 T. The total thrust calculations were used to verify the theoretical approach by comparison with experimental data. Investigations of the acceleration model offer an underlying understanding of applied-field magnetoplasmadynamic thrusters, including the following conclusions: (1) swirl acceleration mechanism is the dominant contributor to the plasma acceleration, and self-magnetic, Hall, gas-dynamic, and swirl acceleration mechanisms are in an approximate ratio of 1:10:10:100; (2) the Hall acceleration produced mainly by electron swirl is insensitive to the change of externally applied magnetic field and shows only slight increases when the current is raised; (3) self-magnetic acceleration is normally negligible for all cases, while the gas-dynamic acceleration contribution increases with increasing applied magnetic field strength, discharge current, and mass flow rate.

  9. A modified acceleration-based monthly gravity field solution from GRACE data

    NASA Astrophysics Data System (ADS)

    Chen, Qiujie; Shen, Yunzhong; Chen, Wu; Zhang, Xingfu; Hsu, Houze; Ju, Xiaolei

    2015-08-01

    This paper describes an alternative acceleration approach for determining GRACE monthly gravity field models. The main differences compared to the traditional acceleration approach can be summarized as: (1) The position errors of GRACE orbits in the functional model are taken into account; (2) The range ambiguity is eliminated via the difference of the range measurements and (3) The mean acceleration equation is formed based on Cowell integration. Using this developed approach, a new time-series of GRACE monthly solution spanning the period January 2003 to December 2010, called Tongji_Acc RL01, has been derived. The annual signals from the Tongji_Acc RL01 time-series agree well with those from the GLDAS model. The performance of Tongji_Acc RL01 shows that this new model is comparable with the RL05 models released by CSR and JPL as well as with the RL05a model released by GFZ.

  10. Shielding design of a treatment room for an accelerator-based neutron source for BNCT

    SciTech Connect

    Evans, J.F.; Blue, T.E.

    1995-12-31

    For several years, research has been ongoing in the Ohio State University (OSU) Nuclear Engineering Program toward the development of an accelerator-based irradiation facility (ANIF) neutron source for boron neutron capture therapy (BNCT). The ANIF, which is planned to be built in a hospital, has been conceptually designed and analyzed. After Qu, an OSU researcher, determined that the shielding design of a 6-MV X-ray treatment room was inadequate to protect personnel from an accelerator neutron source operating at 30 mA, we decided to analyze and determine the shielding requirements of a treatment room for an ANIF. We determined the amount of shielding that would be sufficient to protect facility personnel from excessive radiation exposure caused by operation of the accelerator at 30 mA.

  11. Accelerator-based Neutron Fluence Standard of the National Metrology Institute of Japan

    NASA Astrophysics Data System (ADS)

    Harano, Hideki; Matsumoto, Tetsuro; Nishiyama, Jun; Uritani, Akira; Kudo, Katsuhisa

    2009-03-01

    We report the present status of the national standard on accelerator-based fast neutron fluences in Japan. Monoenergetic neutron fluence standards have been established at 144 keV, 565 keV, 5.0 MeV and 8.0 MeV by using a Van de Graaff accelerator and at 2.5 MeV and 14.8 MeV by using a Cockcroft Walton accelerator. These standards are prepared to measure the detection efficiency and the energy response of neutron sensitive devices, such as personal dosimeters and survey meters. Neutron production and absolute fluence measurement for these energies are described. We are developing a new standard in the energy region of a few tens of keV, which is also introduced here as well as our future plans.

  12. The STIRAP-based unitary decelerating and accelerating processes of a single free atom

    NASA Astrophysics Data System (ADS)

    Miao, Xijia

    2008-05-01

    The STIRAP-based unitary decelerating and accelerating processes have been constructed for the physical system of a single free atom. The present theoretical work is focused on investigating analytically how the momentum distribution of a momentum superposition state of a quantum system such as a momentum Gaussian wave-packet state of a single freely moving atom affects the STIRAP state transfer in these decelerating and accelerating processes. The complete STIRAP state transfer and the unitarity of these processes are stressed highly in the investigation. It has been shown that the momentum distribution has an important influence upon the STIRAP state-transfer efficiency. In the ideal adiabatic condition these unitary decelerating and accelerating processes are studied in detail for a freely moving atom. A general adiabatic condition for the basic STIRAP unitary decelerating and accelerating processes is also derived analytically. The unitary decelerating and accelerating processes may be used to manipulate and control in time and space a Gaussian wave-packet motional state of a free atom. The detail work see: Xijia Miao, http://arxiv.org/abs/quant-ph/0707.0063.

  13. Microstructures and Mechanical Properties of High-Mn TRIP Steel Based on Warm Deformation of Martensite

    NASA Astrophysics Data System (ADS)

    Guo, Zhikai; Li, Longfei; Yang, Wangyue; Sun, Zuqing

    2015-04-01

    High-Mn TRIP steel with about 5 wt pct Mn was prepared by a thermo-mechanical treatment based on warm deformation of martensite and subsequent short-time annealing in the intercritical region. The microstructural evolution and the mechanical properties of the used steel during such treatment were investigated. The results indicate that during warm deformation of martensite in the intercritical region, the decomposition of martensite was accelerated by warm deformation and the occurrence of dynamic recrystallization of ferrite led to the formation of equiaxed ferrite grains. Meanwhile, the reverse transformation of austenite was accelerated by warm deformation to some extent. During subsequent annealing in the intercritical region, static recrystallization of ferrite led to the increase in the fraction of equiaxed ferrite grains, and the formation of the reversed austenite was accelerated by the addition of the deformation-stored energy, while the stability of the reversed austenite was improved by the accelerated diffusions of C atoms and Mn atoms. As a whole, the mechanical properties of the used steel by the thermo-mechanical treatment based on warm deformation of martensite and subsequent short-time annealing in the intercritical region were comparable to the steels with similar compositions subjected to intercritical annealing for hours after cold rolling of martensite.

  14. Sprint Acceleration Mechanics: The Major Role of Hamstrings in Horizontal Force Production

    PubMed Central

    Morin, Jean-Benoît; Gimenez, Philippe; Edouard, Pascal; Arnal, Pierrick; Jiménez-Reyes, Pedro; Samozino, Pierre; Brughelli, Matt; Mendiguchia, Jurdan

    2015-01-01

    Recent literature supports the importance of horizontal ground reaction force (GRF) production for sprint acceleration performance. Modeling and clinical studies have shown that the hip extensors are very likely contributors to sprint acceleration performance. We experimentally tested the role of the hip extensors in horizontal GRF production during short, maximal, treadmill sprint accelerations. Torque capabilities of the knee and hip extensors and flexors were assessed using an isokinetic dynamometer in 14 males familiar with sprint running. Then, during 6-s sprints on an instrumented motorized treadmill, horizontal and vertical GRF were synchronized with electromyographic (EMG) activity of the vastus lateralis, rectus femoris, biceps femoris, and gluteus maximus averaged over the first half of support, entire support, entire swing and end-of-swing phases. No significant correlations were found between isokinetic or EMG variables and horizontal GRF. Multiple linear regression analysis showed a significant relationship (P = 0.024) between horizontal GRF and the combination of biceps femoris EMG activity during the end of the swing and the knee flexors eccentric peak torque. In conclusion, subjects who produced the greatest amount of horizontal force were both able to highly activate their hamstring muscles just before ground contact and present high eccentric hamstring peak torque capability. PMID:26733889

  15. Accelerated 4D Quantitative Single Point EPR Imaging Using Model-based Reconstruction

    PubMed Central

    Jang, Hyungseok; Matsumoto, Shingo; Devasahayam, Nallathamby; Subramanian, Sankaran; Zhuo, Jiachen; Krishna, Murali C.; McMillan, Alan B

    2014-01-01

    Purpose EPRI has surfaced as a promising non-invasive imaging modality that is capable of imaging tissue oxygenation. Due to extremely short spin-spin relaxation time, EPRI benefits from single point imaging and inherently suffers from limited spatial and temporal resolution, preventing localization of small hypoxic tissues and differentiation of hypoxia dynamics, making accelerated imaging a crucial issue. Method In this study, methods for accelerated single point imaging were developed by combining a bilateral k-space extrapolation technique with model-based reconstruction that benefits from dense sampling in the parameter domain (measurement of the T2* decay of an FID). In bilateral k-space extrapolation, more k-space samples are obtained in a sparsely sampled region by bilaterally extrapolating data from temporally neighboring k-spaces. To improve the accuracy of T2* estimation, a principal component analysis (PCA)-based method was implemented. Result In a computer simulation and a phantom experiment, the proposed methods showed its capability for reliable T2* estimation with high acceleration (8-fold, 15-fold, and 30-fold accelerations for 61×61×61, 95×95×95, and 127×127×127 matrix, respectively). Conclusion By applying bilateral k-space extrapolation and model-based reconstruction, improved scan times with higher spatial resolution can be achieved in the current SP-EPRI modality. PMID:24803382

  16. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    SciTech Connect

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10{sup 7} neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF{sub 3} composite and a stacked Al/Teflon design) at various incident electron energies.

  17. Random and bias errors in simple regression-based calculations of sea-level acceleration

    NASA Astrophysics Data System (ADS)

    Howd, P.; Doran, K. J.; Sallenger, A. H.

    2012-12-01

    We examine the random and bias errors associated with three simple regression-based methods used to calculate the acceleration of sea-level elevation (SL). These methods are: (1) using ordinary least-squares regression (OLSR) to fit a single second-order (in time) equation to an entire elevation time series; (2) using a sliding regression window with OLRS 2nd order fits to provide time and window length dependent estimates; and (3) using a sliding regression window with OLSR 1st order fits to provide time and window length dependent estimates of sea level rate differences (SLRD). A Monte Carlo analysis using synthetic elevation time series with 9 different noise formulations (red, AR(1), and white noise at 3 variance levels) is used to examine the error structure associated with the three analysis methods. We show that, as expected, the single-fit method (1), while providing statistically unbiased estimates of the mean acceleration over an interval, by statistical design does not provide estimates of time-varying acceleration. This technique cannot be expected to detect recent changes in SL acceleration, such as those predicted by some climate models. The two sliding window techniques show similar qualitative results for the test time series, but differ dramatically in their statistical significance. Estimates of acceleration based on the 2nd order fits (2) are numerically smaller than the rate differences (3), and in the presence of near-equal residual noise, are more difficult to detect with statistical significance. We show, using the SLRD estimates from tide gauge data, how statistically significant changes in sea level accelerations can be detected at different temporal and spatial scales.

  18. Collision-based mechanics of bipedal hopping.

    PubMed

    Gutmann, Anne K; Lee, David V; McGowan, Craig P

    2013-08-23

    The muscle work required to sustain steady-speed locomotion depends largely upon the mechanical energy needed to redirect the centre of mass and the degree to which this energy can be stored and returned elastically. Previous studies have found that large bipedal hoppers can elastically store and return a large fraction of the energy required to hop, whereas small bipedal hoppers can only elastically store and return a relatively small fraction. Here, we consider the extent to which large and small bipedal hoppers (tammar wallabies, approx. 7 kg, and desert kangaroo rats, approx. 0.1 kg) reduce the mechanical energy needed to redirect the centre of mass by reducing collisions. We hypothesize that kangaroo rats will reduce collisions to a greater extent than wallabies since kangaroo rats cannot elastically store and return as high a fraction of the mechanical energy of hopping as wallabies. We find that kangaroo rats use a significantly smaller collision angle than wallabies by employing ground reaction force vectors that are more vertical and center of mass velocity vectors that are more horizontal and thereby reduce their mechanical cost of transport. A collision-based approach paired with tendon morphometry may reveal this effect more generally among bipedal runners and quadrupedal trotters. PMID:23843217

  19. Mechanics model for actin-based motility

    NASA Astrophysics Data System (ADS)

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  20. Accelerating patch-based directional wavelets with multicore parallel computing in compressed sensing MRI.

    PubMed

    Li, Qiyue; Qu, Xiaobo; Liu, Yunsong; Guo, Di; Lai, Zongying; Ye, Jing; Chen, Zhong

    2015-06-01

    Compressed sensing MRI (CS-MRI) is a promising technology to accelerate magnetic resonance imaging. Both improving the image quality and reducing the computation time are important for this technology. Recently, a patch-based directional wavelet (PBDW) has been applied in CS-MRI to improve edge reconstruction. However, this method is time consuming since it involves extensive computations, including geometric direction estimation and numerous iterations of wavelet transform. To accelerate computations of PBDW, we propose a general parallelization of patch-based processing by taking the advantage of multicore processors. Additionally, two pertinent optimizations, excluding smooth patches and pre-arranged insertion sort, that make use of sparsity in MR images are also proposed. Simulation results demonstrate that the acceleration factor with the parallel architecture of PBDW approaches the number of central processing unit cores, and that pertinent optimizations are also effective to make further accelerations. The proposed approaches allow compressed sensing MRI reconstruction to be accomplished within several seconds. PMID:25620521

  1. Measuring test mass acceleration noise in space-based gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Congedo, Giuseppe

    2015-03-01

    The basic constituent of interferometric gravitational wave detectors—the test-mass-to-test-mass interferometric link—behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as nongravitational spurious forces. This last contribution is going to be characterized by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system's free evolution dominating the slow displacement dynamics of low-frequency detectors. Working with acceleration also provides an effective way to subtract measured signals acting as systematics, including the actuation forces. Because of the strong similarity with the equations of motion, the optimal subtraction of systematic signals, known within some amplitude and time shift, with the focus on measuring the noise provides an effective way to solve the problem and marginalize over nuisance parameters. The F statistic, in widespread use throughout the gravitation waves community, is included in the method and suitably generalized to marginalize over linear parameters and noise at the same time. The method is applied to LPF simulator data and, thanks to its generality, can also be applied to the data reduction and analysis of future gravitational wave detectors.

  2. Time Domain Structures: Generation Mechanisms and Their Role for Electron Acceleration in the Earth's Outer Radiation Belt

    NASA Astrophysics Data System (ADS)

    Mozer, F.; Artemyev, A.; Agapitov, O. V.; Drake, J. F.; Krasnoselskikh, V.; Lejosne, S.; Mournas, D.; Vasko, I.

    2015-12-01

    Time Domain Structures (TDS) is the generic name for short duration (~msec) electric field pulses that occur in streams and that have significant components parallel to the background magnetic field. Examples of TDS are electrostatic or electromagnetic double layers, electron holes, and non-linear whistlers. They are found in copious quantities in the Earth's outer radiation belt and on auroral zone magnetic field lines, in the tail, the plasma sheet, the plasma sheet boundary layer, at shocks, at magnetic field reconnection sites, in the solar wind and at Saturn. Mechanisms for the generation of TDS and their role in accelerating radiation belt electrons will be described.

  3. Mechanical Design and Analysis of a 200 MHz, Bolt-together RFQ forthe Accelerator Driven Neutron Source

    SciTech Connect

    Virostek, Steve; Hoff, Matt; Li, Derun; Staples, John; Wells,Russell

    2007-06-20

    A high-yield neutron source to screen sea-land cargocontainers for shielded Special Nuclear Materials (SNM) has been designedat LBNL [1,2]. The Accelerator-Driven Neutron Source (ADNS) uses theD(d,n)3He reaction to create a forward directed neutron beam. Keycomponents are a high-current radio-frequency quadrupole (RFQ)accelerator and a high-power target capable of producing a neutron fluxof>107 n/(cm2 cdot s) at a distance of 2.5 m. The mechanical designand analysis of the four-module, bolt-together RFQ will be presentedhere. Operating at 200 MHz, the 5.1 m long RFQ will accelerate a 40 mAdeuteron beam to 6 MeV. At a 5 percent duty factor, the time-average d+beam current on target is 1.5 mA. Each of the 1.27 m long RFQ moduleswill consist of four solid OFHC copper vanes. A specially designed 3-DO-ring will provide vacuum sealing between both the vanes and themodules. RF connections are made with canted coil spring contacts. Aseries of 60 water-cooled pi-mode rods provides quadrupole modestabilization. A set of 80 evenly spaced fixed slug tuners is used forfinal frequency adjustment and local field perturbationcorrection.

  4. Mechanisms and Simulation of accelerated shrinkage of continental glaciers: a case study of Urumqi Glacier No. 1 Eastern Tianshan, Central Asia

    NASA Astrophysics Data System (ADS)

    Li, Zhongqin; Ren, Jiawen; Li, Huilin; Wang, Puyu; Wang, Feiteng

    2016-04-01

    Similar to most mountain glaciers in the world, Urumqi Glacier No. 1 (UG1), the best observed glacier in China with continued glaciological and climatological monitoring records of longer than 50 years has experienced an accelerated recession during the past several decades. The purpose of this study is to investigate the acceleration of recession. By taking UG1 as an example, we analyze the generic mechanisms of acceleration of shrinkage of continental mountain glaciers. The results indicate that the acceleration of mass loss of UG1 commenced first in 1985 and second in 1996 and that the latter was more vigorous. The air temperature rises during melting season, the ice temperature augment of the glacier and the albedo reduction on the glacier surface are considered responsible for the accelerated recession. In addition, the simulations of the accelerated shrinkage of UG1 are introduced.

  5. Mechanism of head and neck response to -Gx impact acceleration: a math modeling approach.

    PubMed

    Frisch, G D; D'Aulerio, L; O'Rourke, J

    1977-03-01

    Mathematical modeling has attained wider acceptance in recent years. In particular, the use of computer programs to simulate the dynamic response of a human in a crash situation has become an attractive alternative to full-scale experimental testing. This paper analyzes data on the dynamic response of the living human head and neck to -Gx impact acceleration, where the motion of the subject's head and neck in the midsagittal plane was monitored with inertial instrumentation and high-speed photography for confirmation. The Calspan "3D Computer Simulator of Motor Vehicle Crash Victims" was used to predict expected responses for the deceleration pulses employed. These estimates were compared to the fully instrumented human test runs. The standard 15-segment and 14-joint representation of the occupant was modified to include two sternoclavicular joints, increasing the articulation in the upper torso. Analysis of the data indicated that muscular activity in the head and neck seemed to be evident and does influence motion of the head, even at relatively high (10-G peak, 530 G/s onset) acceleration levels. Simulation of muscular contraction, using a spring-damper arrangement, improved the results significantly. Additionally, possible limitations to head-to-neck motion, such as ligament restrictions, were also modeled. PMID:856153

  6. Quantifying the gantry sag on linear accelerators and introducing an MLC-based compensation strategy

    PubMed Central

    Du, Weiliang; Gao, Song; Wang, Xiaochun; Kudchadker, Rajat J.

    2012-01-01

    Purpose: Gantry sag is one of the well-known sources of mechanical imperfections that compromise the spatial accuracy of radiation dose delivery. The objectives of this study were to quantify the gantry sag on multiple linear accelerators (linacs), to investigate a multileaf collimator (MLC)-based strategy to compensate for gantry sag, and to verify the gantry sag and its compensation with film measurements. Methods: The authors used the Winston–Lutz method to measure gantry sag on three Varian linacs. A ball bearing phantom was imaged with megavolt radiation fields at 10° gantry angle intervals. The images recorded with an electronic portal imaging device were analyzed to derive the radiation isocenter and the gantry sag, that is, the superior–inferior wobble of the radiation field center, as a function of the gantry angle. The authors then attempted to compensate for the gantry sag by applying a gantry angle-specific correction to the MLC leaf positions. The gantry sag and its compensation were independently verified using film measurements. Results: Gantry sag was reproducible over a six-month measurement period. The maximum gantry sag was found to vary from 0.7 to 1.0 mm, depending on the linac and the collimator angle. The radiation field center moved inferiorly (i.e., away from the gantry) when the gantry was rotated from 0° to 180°. After the MLC leaf position compensation was applied at 90° collimator angle, the maximum gantry sag was reduced to <0.2 mm. The film measurements at gantry angles of 0° and 180° verified the inferior shift of the radiation fields and the effectiveness of MLC compensation. Conclusions: The results indicate that gantry sag on a linac can be quantitatively measured using a simple phantom and an electronic portal imaging device. Reduction of gantry sag is feasible by applying a gantry angle-specific correction to MLC leaf positions at 90° collimator angle. PMID:22482636

  7. Quantifying the gantry sag on linear accelerators and introducing an MLC-based compensation strategy

    SciTech Connect

    Du Weiliang; Gao Song; Wang Xiaochun; Kudchadker, Rajat J.

    2012-04-15

    Purpose: Gantry sag is one of the well-known sources of mechanical imperfections that compromise the spatial accuracy of radiation dose delivery. The objectives of this study were to quantify the gantry sag on multiple linear accelerators (linacs), to investigate a multileaf collimator (MLC)-based strategy to compensate for gantry sag, and to verify the gantry sag and its compensation with film measurements. Methods: The authors used the Winston-Lutz method to measure gantry sag on three Varian linacs. A ball bearing phantom was imaged with megavolt radiation fields at 10 deg. gantry angle intervals. The images recorded with an electronic portal imaging device were analyzed to derive the radiation isocenter and the gantry sag, that is, the superior-inferior wobble of the radiation field center, as a function of the gantry angle. The authors then attempted to compensate for the gantry sag by applying a gantry angle-specific correction to the MLC leaf positions. The gantry sag and its compensation were independently verified using film measurements. Results: Gantry sag was reproducible over a six-month measurement period. The maximum gantry sag was found to vary from 0.7 to 1.0 mm, depending on the linac and the collimator angle. The radiation field center moved inferiorly (i.e., away from the gantry) when the gantry was rotated from 0 deg. to 180 deg. After the MLC leaf position compensation was applied at 90 deg. collimator angle, the maximum gantry sag was reduced to <0.2 mm. The film measurements at gantry angles of 0 deg. and 180 deg. verified the inferior shift of the radiation fields and the effectiveness of MLC compensation. Conclusions: The results indicate that gantry sag on a linac can be quantitatively measured using a simple phantom and an electronic portal imaging device. Reduction of gantry sag is feasible by applying a gantry angle-specific correction to MLC leaf positions at 90 deg. collimator angle.

  8. Risk-Based Decision Process for Accelerated Closure of a Nuclear Weapons Facility

    SciTech Connect

    Butler, L.; Norland, R. L.; DiSalvo, R.; Anderson, M.

    2003-02-25

    Nearly 40 years of nuclear weapons production at the Rocky Flats Environmental Technology Site (RFETS or Site) resulted in contamination of soil and underground systems and structures with hazardous substances, including plutonium, uranium and hazardous waste constituents. The Site was placed on the National Priority List in 1989. There are more than 370 Individual Hazardous Substance Sites (IHSSs) at RFETS. Accelerated cleanup and closure of RFETS is being achieved through implementation and refinement of a regulatory framework that fosters programmatic and technical innovations: (1) extensive use of ''accelerated actions'' to remediate IHSSs, (2) development of a risk-based screening process that triggers and helps define the scope of accelerated actions consistent with the final remedial action objectives for the Site, (3) use of field instrumentation for real time data collection, (4) a data management system that renders near real time field data assessment, and (5) a regulatory agency consultative process to facilitate timely decisions. This paper presents the process and interim results for these aspects of the accelerated closure program applied to Environmental Restoration activities at the Site.

  9. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.

    PubMed

    He, Wei; Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2), while the MTTF is approximately 110.7 h. PMID:27583533

  10. Invited article: advanced drag-free concepts for future space-based interferometers: acceleration noise performance.

    PubMed

    Gerardi, D; Allen, G; Conklin, J W; Sun, K-X; DeBra, D; Buchman, S; Gath, P; Fichter, W; Byer, R L; Johann, U

    2014-01-01

    Future drag-free missions for space-based experiments in gravitational physics require a Gravitational Reference Sensor with extremely demanding sensing and disturbance reduction requirements. A configuration with two cubical sensors is the current baseline for the Laser Interferometer Space Antenna (LISA) and has reached a high level of maturity. Nevertheless, several promising concepts have been proposed with potential applications beyond LISA and are currently investigated at HEPL, Stanford, and EADS Astrium, Germany. The general motivation is to exploit the possibility of achieving improved disturbance reduction, and ultimately understand how low acceleration noise can be pushed with a realistic design for future mission. In this paper, we discuss disturbance reduction requirements for LISA and beyond, describe four different payload concepts, compare expected strain sensitivities in the "low-frequency" region of the frequency spectrum, dominated by acceleration noise, and ultimately discuss advantages and disadvantages of each of those concepts in achieving disturbance reduction for space-based detectors beyond LISA. PMID:24517738

  11. Beam Based HOM Analysis of Accelerating Structures at the TESLA Test Facility Linac

    SciTech Connect

    Wendt, M.; Schreiber, S.; Castro, P.; Gossel, A.; Huning, M.; Devanz, G.; Jablonka, M.; Magne, C.; Napoly, O.; Baboi, N.; /SLAC

    2005-08-09

    The beam emittance in future linear accelerators for high energy physics and SASE-FEL applications depends highly on the field performance in the accelerating structures, i.e. the damping of higher order modes (HOM). Besides theoretical and laboratory analysis, a beam based analysis technique was established [1] at the TESLA Test Facility (TTF) linac. It uses a charge modulated beam of variable modulation frequency to excite dipole modes. This causes a modulation of the transverse beam displacement, which is observed at a downstream BPM and associated with a direct analysis of the modes at the HOM-couplers. A brief introduction of eigenmodes of a resonator and the concept of the wake potential is given. Emphasis is put on beam instrumentation and signal analysis aspects, required for this beam based HOM measurement technique.

  12. Mechanism of accelerated corrosion in Zircaloy-4 laser and electron-beam welds

    SciTech Connect

    McDonald, S.G.; Sabol, G.P.

    1982-01-01

    The corrosion resistance of a series of Zircaloy-4 laser, electron-beam (EB), and tungsten inert gas (TIG) welds was evaluated in high-temperature water and steam. Corrosion exposures carried out in 633 K water revealed that all welds had excellent corrosion resistance at this temperature. However, corrosion exposures carried out in 673 K steam indicated that the laser and EB welds were susceptible to accelerated corrosion, whereas the TIG welds were not. It is believed that alloy depletion and the resultant loss of high-temperature corrosion resistance can be eliminated or minimized by performing welding operations at a power density such that the metal surface is heated above the melting point, but below the boiling point. 23 refs.

  13. Mechanism for the acceleration and ejection of dust grains from Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Morfill, G.; Gruen, E.

    1993-01-01

    The Ulysses mission detected quasi-periodic streams of high-velocity submicron-sized dust particles during its encounter with Jupiter. It is shown here how the dust events could result from the acceleration and subsequent ejection of small grains by Jupiter's magnetosphere. Dust grains entering the plasma environment of the magnetosphere become charged, with the result that their motion is then determined by both electromagnetic and gravitational forces. This process is modeled, and it is found that only those particles in a certain size range gain sufficient energy to escape the Jovian system. Moreover, if Io is assumed to be the source of the dust grains, its location in geographic and geomagnetic coordinates determines the exit direction of the escaping particles, providing a possible explanation for the observed periodicities. The calculated mass and velocity range of the escaping dust gains are consistent with the Ulysses findings.

  14. Investigation of accelerated stress factors and failure/degradation mechanisms in terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1984-01-01

    Research on the reliability of terrestrial solar cells was performed to identify failure/degradation modes affecting solar cells and to relate these to basic physical, chemical, and metallurgical phenomena. Particular concerns addressed were the reliability attributes of individual single crystalline, polycrystalline, and amorphous thin film silicon cells. Results of subjecting different types of crystalline cells to the Clemson accelerated test schedule are given. Preliminary step stress results on one type of thin film amorphous silicon (a:Si) cell indicated that extraneous degradation modes were introduced above 140 C. Also described is development of measurement procedures which are applicable to the reliability testing of a:Si solar cells as well as an approach to achieving the necessary repeatability of fabricating a simulated a:Si reference cell from crystalline silicon photodiodes.

  15. Enhancement of proton acceleration by frequency-chirped laser pulse in radiation pressure mechanism

    NASA Astrophysics Data System (ADS)

    Vosoughian, H.; Riazi, Z.; Afarideh, H.; Yazdani, E.

    2015-07-01

    The transition from hole-boring to light-sail regime of radiation pressure acceleration by frequency-chirped laser pulses is studied using particle-in-cell simulation. The penetration depth of laser into the plasma with ramped density profile increases when a negatively chirped laser pulse is applied. Because of this induced transparency, the laser reflection layer moves deeper into the target and the hole-boring stage would smoothly transit into the light-sail stage. An optimum chirp parameter which satisfies the laser transparency condition, a 0 ≈ π n e l / n c λ , is obtained for each ramp scale length. Moreover, the efficiency of conversion of laser energy into the kinetic energy of particles is maximized at the obtained optimum condition. A relatively narrow proton energy spectrum with peak enhancement by a factor of 2 is achieved using a negatively chirped pulse compared with the un-chirped pulse.

  16. Mechanism for the acceleration and ejection of dust grains from Jupiter's magnetosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Morfill, G.; Grun, E.

    1993-05-01

    The Ulysses mission detected quasi-periodic streams of high-velocity submicron-sized dust particles during its encounter with Jupiter. It is shown here how the dust events could result from the acceleration and subsequent ejection of small grains by Jupiter's magnetosphere. Dust grains entering the plasma environment of the magnetosphere become charged, with the result that their motion is then determined by both electromagnetic and gravitational forces. This process is modeled, and it is found that only those particles in a certain size range gain sufficient energy to escape the Jovian system. Moreover, if Io is assumed to be the source of the dust grains, its location in geographic and geomagnetic coordinates determines the exit direction of the escaping particles, providing a possible explanation for the observed periodicities. The calculated mass and velocity range of the escaping dust gains are consistent with the Ulysses findings.

  17. High sensitivity to autoxidation in neonatal calf erythrocytes: possible mechanism of accelerated cell aging.

    PubMed

    Imre, S; Csornai, M; Balazs, M

    2001-01-01

    The suspension viscosity, formation of methaemoglobin and production of malondialdehyde (MDA) associated with the non-enzymatic oxidation of polyunsaturated fatty acids during auto-oxidation conditions in vitro have been compared in erythrocytes from young calves (2, 4 and 6 weeks of age) and mature cattle. The autoxidation conditions were designed to simulate the oxidative stress to which neonatal erythrocytes are exposed in vivo. Characterisation of lipid peroxidation was also undertaken by a combination of lipid fluorescent measurements and quantification of the superoxide dismutase (SOD) activities of the erythrocytes. The results demonstrated that high SOD activities in the erythrocytes of the neonatal calf was insufficient to afford protection against the increased autoxidation of haemoglobin and subsequent accumulation of lipid peroxidation products. High levels of methaemoglobin formation and lipid peroxidation were able to provide an explanation for an observed reduction in rheological adaptability (increased suspension viscosity) and an accelerated aging of the neonatal cells under in vivo conditions. PMID:11163624

  18. Optimization of an accelerator-based epithermal neutron source for neutron capture therapy

    SciTech Connect

    Kononov, O.E.; Kononov, V.N.; Bokhovko, M.V.; Korobeynikov, V.V.; Soloviev, A.N.; Chu, W.T.

    2004-02-20

    A modeling investigation was performed to choose moderator material and size for creating optimal epithermal neutron beams for BNCT based on a proton accelerator and the 7Li(p,n)7Be reaction as a neutrons source. An optimal configuration is suggested for the beam shaping assembly made from polytetrafluoroethylene and magnesium fluorine. Results of calculation were experimentally tested and are in good agreement with measurements.

  19. Accelerator driven system based on plutonium subcritical reactor and 660 MeV phasotron

    SciTech Connect

    Arkhipov, V. A.; Barashenkov, V. S.; Buttsev, V. S.; Chultem, D.; Furman, V. I.; Maltsev, A. A.; Onischenko, L. M.; Pogodajev, G. N.; Popov, Yu. P.; Puzynin, I. V.; Sissakian, A. N.; Dudarev, S. Yu.; Gudowski, W.; Janczyszyn, J.; Polanski, A.; Taczanowski, S.

    1999-11-16

    The proposal presents a PLUTONIUM BASED ENERGY AMPLIFIER TESTING CONCEPT which employs a plutonium subcritical assembly and a 660 MeV proton accelerator, operating in the the JINR (Dubna, Russia). To make the present conceptual design of the Plutonium Energy Amplifier we have chosen a nominal unit capacity of 20 kW (thermal). This corresponds to the multiplication coefficient keff between 0.94 and 0.95 and the energetic gain about 20.

  20. Accelerator Driven System Based on Plutonium Subcritical Reactor and 660 MeV Phasotron

    SciTech Connect

    Arkhipov, V.A.; Barashenkov, V.S.; Buttsev, V.S.; Chultem, D.; Dudarev, S.Yu.; Furman, V.I.; Gudowski, W.; Janczyszyn, J.; Maltsev, A.A.; Onischenko, L.M.; Pogodajev, G.N.; Polanski, A.; Popov, Yu.P.; Puzynin, I.V.; Sissakian, A.N.; Taczanowski, S.

    1999-12-31

    The proposal presents a PLUTONIUM BASED ENERGY AMPLIFIER TESTING CONCEPT which employs a plutonium subcritical assembly and a 660 MeV proton accelerator. operating in the JINR (Dubna, Russia). To make the present conceptual design of the Plutonium Energy Amplifier we have chosen a nominal unit capacity of 20 kW (thermal). This corresponds to a multiplication coefficient, keff, between 0.94 and 0.95 and an energy gain about 20.

  1. Development of a photovoltaic module qualification test based on combined-environment accelerated stress data

    NASA Astrophysics Data System (ADS)

    Trenchard, S. E.; Royal, E.; Anderson, R. T.

    The U.S. Coast Guard has developed a qualification test to screen photovoltaic modules for utilization on marine aids to navigation. The test is based on a combined-environment of hot and cold saltwater immersion and air pressurization. The test has demonstrated a very high acceleration factor and excellent correlation of electrical failures with modules in a concurrent real-time marine exposure.

  2. Development of a photovoltaic module qualification test based on combined-environment accelerated stress data

    NASA Technical Reports Server (NTRS)

    Trenchard, S. E.; Royal, E.; Anderson, R. T.

    1982-01-01

    The U.S. Coast Guard has developed a qualification test to screen photovoltaic modules for utilization on marine aids to navigation. The test is based on a combined-environment of hot and cold saltwater immersion and air pressurization. The test has demonstrated a very high acceleration factor and excellent correlation of electrical failures with modules in a concurrent real-time marine exposure.

  3. Anthropomorphic Phantoms for Confirmation of Linear Accelerator-Based Small Animal Irradiation

    PubMed Central

    Lucero, Steven; Monjazeb, Arta M; Li, Jian Jian

    2015-01-01

    Three dimensional (3D) scanning and printing technology is utilized to create phantom models of mice in order to assess the accuracy of ionizing radiation dosing from a clinical, human-based linear accelerator. Phantoms are designed to simulate a range of research questions, including irradiation of lung tumors and primary subcutaneous or orthotopic tumors for immunotherapy experimentation. The phantoms are used to measure the accuracy of dose delivery and then refine it to within 1% of the prescribed dose. PMID:26180678

  4. Chemistry technology base and fuel cycle of the Los Alamos accelerator-driven transmutation system

    SciTech Connect

    Williamson, M.A.

    1997-12-01

    This paper provides a brief overview of the Los Alamos accelerator-driven transmutation system, a description of the pyrochemistry technology base and the fuel cycle for the system. The pyrochemistry technology base consists of four processes: direct oxide reduction, reductive extraction, electrorefining, and electrowinning. Each process and its utility is described. The fuel cycle is described for a liquid metal-based system with the focus being the conversion of commercial spent nuclear fuel to fuel for the transmutation system. Fission product separation and actinide recycle processes are also described.

  5. Accelerator-based conversion (ABC) of weapons plutonium: Plant layout study and related design issues

    SciTech Connect

    Cowell, B.S.; Fontana, M.H.; Krakowski, R.A.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Sailor, W.C.; Williamson, M.A.

    1995-04-01

    In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although the ABC Plant Layout Study included the Accelerator Equipment as an essential element, the engineering assessment focused primarily on the Target; Primary System (blanket and all systems containing plutonium-bearing fuel salt); the Heat-Removal System (secondary-coolant-salt and supercritical-steam systems); Chemical Processing; Operation and Maintenance; Containment and Safety; and Instrumentation and Control systems. Although constrained primarily to a reflection of an accelerator-driven (subcritical) variant of MSBR system, unique features and added flexibilities of the ABC suggest improved or alternative approaches to each of the above-listed subsystems; these, along with the key technical issues in need of resolution through a detailed R&D plan for ABC are described on the bases of the ``strawman`` or ``point-of-departure`` plant layout that resulted from this study.

  6. Accelerated Reader.

    ERIC Educational Resources Information Center

    Education Commission of the States, Denver, CO.

    This paper provides an overview of Accelerated Reader, a system of computerized testing and record-keeping that supplements the regular classroom reading program. Accelerated Reader's primary goal is to increase literature-based reading practice. The program offers a computer-aided reading comprehension and management program intended to motivate…

  7. BioThreads: a novel VLIW-based chip multiprocessor for accelerating biomedical image processing applications.

    PubMed

    Stevens, David; Chouliaras, Vassilios; Azorin-Peris, Vicente; Zheng, Jia; Echiadis, Angelos; Hu, Sijung

    2012-06-01

    We discuss BioThreads, a novel, configurable, extensible system-on-chip multiprocessor and its use in accelerating biomedical signal processing applications such as imaging photoplethysmography (IPPG). BioThreads is derived from the LE1 open-source VLIW chip multiprocessor and efficiently handles instruction, data and thread-level parallelism. In addition, it supports a novel mechanism for the dynamic creation, and allocation of software threads to uncommitted processor cores by implementing key POSIX Threads primitives directly in hardware, as custom instructions. In this study, the BioThreads core is used to accelerate the calculation of the oxygen saturation map of living tissue in an experimental setup consisting of a high speed image acquisition system, connected to an FPGA board and to a host system. Results demonstrate near-linear acceleration of the core kernels of the target blood perfusion assessment with increasing number of hardware threads. The BioThreads processor was implemented on both standard-cell and FPGA technologies; in the first case and for an issue width of two, full real-time performance is achieved with 4 cores whereas on a mid-range Xilinx Virtex6 device this is achieved with 10 dual-issue cores. An 8-core LE1 VLIW FPGA prototype of the system achieved 240 times faster execution time than the scalar Microblaze processor demonstrating the scalability of the proposed solution to a state-of-the-art FPGA vendor provided soft CPU core. PMID:23853147

  8. Mechanical Forces Accelerate Collagen Digestion by Bacterial Collagenase in Lung Tissue Strips

    PubMed Central

    Yi, Eunice; Sato, Susumu; Takahashi, Ayuko; Parameswaran, Harikrishnan; Blute, Todd A.; Bartolák-Suki, Erzsébet; Suki, Béla

    2016-01-01

    Most tissues in the body are under mechanical tension, and while enzymes mediate many cellular and extracellular processes, the effects of mechanical forces on enzyme reactions in the native extracellular matrix (ECM) are not fully understood. We hypothesized that physiological levels of mechanical forces are capable of modifying the activity of collagenase, a key remodeling enzyme of the ECM. To test this, lung tissue Young's modulus and a nonlinearity index characterizing the shape of the stress-strain curve were measured in the presence of bacterial collagenase under static uniaxial strain of 0, 20, 40, and 80%, as well as during cyclic mechanical loading with strain amplitudes of ±10 or ±20% superimposed on 40% static strain, and frequencies of 0.1 or 1 Hz. Confocal and electron microscopy was used to determine and quantify changes in ECM structure. Generally, mechanical loading increased the effects of enzyme activity characterized by an irreversible decline in stiffness and tissue deterioration seen on both confocal and electron microscopic images. However, a static strain of 20% provided protection against digestion compared to both higher and lower strains. The decline in stiffness during digestion positively correlated with the increase in equivalent alveolar diameters and negatively correlated with the nonlinearity index. These results suggest that the decline in stiffness results from rupture of collagen followed by load transfer and subsequent rupture of alveolar walls. This study may provide new understanding of the role of collagen degradation in general tissue remodeling and disease progression. PMID:27462275

  9. Enrichment of bacteria possessing catechol dioxygenase genes in the rhizosphere of Spirodela polyrrhiza: a mechanism of accelerated biodegradation of phenol.

    PubMed

    Toyama, Tadashi; Sei, Kazunari; Yu, Ning; Kumada, Hirohide; Inoue, Daisuke; Hoang, Hai; Soda, Satoshi; Chang, Young-Cheol; Kikuchi, Shintaro; Fujita, Masanori; Ike, Michihiko

    2009-08-01

    The bacterial community structure in bulk water and in rhizosphere fractions of giant duckweed, Spirodela polyrrhiza, was quantitatively and qualitatively investigated by PCR-based methods using 6 environmental water samples to elucidate the mechanisms underlying selective accumulation of aromatic compound-degrading bacteria in the rhizosphere of S. polyrrhiza. S. polyrrhiza selectively accumulated a diverse range of aromatic compound-degrading bacteria in its rhizosphere, regardless of the origin of water samples, despite no exposure to phenol. The relative abundances of the catechol 1,2-dioxygenase (C12O) gene (C12O DNA) and catechol 2,3-dioxygenase (C23O) gene (C23O DNA) were calculated as the ratios of the copy numbers of these genes to the copy number of 16S rDNA and are referred to as the rhizosphere effect (RE) value. The RE values for C12O DNA and C23O DNA were 1.0 x 10(1)-9.3 x 10(3) and 1.7 x 10(2)-1.5 x 10(4) times as high, respectively, in rhizosphere fractions as in bulk water fractions, and these higher values were associated with a notably higher sequence diversity of C12O DNA and C23O DNA. The RE values during phenol degradation were 3.6 x 10(0)-4.3 x 10(2) and 2.2 x 10(0)-1.7 x 10(2), respectively, indicating the ability of S. polyrrhiza to selectively accumulate aromatic compound-degrading bacteria in its rhizosphere during phenol degradation. The bacterial communities in the rhizosphere fractions differed from those in the bulk water fractions, and those in the bulk water fractions were notably affected by the rhizosphere bacterial communities. S. polyrrhiza released more than 100 types of phenolic compound into its rhizosphere as root exudates at the considerably high specific release rate of 1520mg TOC and 214mg phenolic compounds/d/g root (wet weight). This ability of S. polyrrhiza might result in the selective recruitment and accumulation of a diverse range of bacteria harboring genes encoding C12O and C23O, and the subsequent accelerated

  10. A new acceleration switch based on separated mass component and elastic component

    NASA Astrophysics Data System (ADS)

    Wu, Liping; Hu, Jun; Yang, Bo; Shao, Qing; Peng, Gang

    2010-10-01

    This paper presents a new linear inertial acceleration switch which senses inertial acceleration and gives a signal of switchpoint. It is an entire mechanical device has two particular characters: a simple structure and an environmental interference-free capability. The structure and work principle of the switch is introduced, then the design process to the spring is analyzed and simulated, and finally the rationality of this acceleration switch's design is given according to the sample's testing data. In this acceleration switch, the elastic component is a leaf spring, and the mass component is a standard steel ball. The spring and the ball are separated instead of rigidly connected, which make the whole structure is simple. When the switch is on the work direction the ball and the spring are interact, and the spring is on work; when the switch isn't on the work direction, the ball and the spring are separated; environmental external force is on the mass instead of on the spring. The spring is insusceptible on this condition. This particularity determines that the switch is highly environmental interference-free, and doesn't easily affected by environmental influence. Some parameters of the inertial switch are given as followings: (1) Overall dimension of the inertial switch is about 28mm×12mm×12mm (2) systemic precision of the inertial switch is 1.5%; (3) the inertial switch can endure 0.2g2/Hz stochastic vibration. It is suggested that this inertial switch can be applied in high consequence system.

  11. A computational study of dielectric photonic-crystal-based accelerator cavities

    NASA Astrophysics Data System (ADS)

    Bauer, C. A.

    Future particle accelerator cavities may use dielectric photonic crystals to reduce harmful wakefields and increase the accelerating electric field (or gradient). Reduced wakefields are predicted based on the bandgap property of some photonic crystals (i.e. frequency-selective reflection/transmission). Larger accelerating gradients are predicted based on certain dielectrics' strong resistance to electrical breakdown. Using computation, this thesis investigated a hybrid design of a 2D sapphire photonic crystal and traditional copper conducting cavity. The goals were to test the claim of reduced wakefields and, in general, judge the effectiveness of such structures as practical accelerating cavities. In the process, we discovered the following: (1) resonant cavities in truncated photonic crystals may confine radiation weakly compared to conducting cavities (depending on the level of truncation); however, confinement can be dramatically increased through optimizations that break lattice symmetry (but retain certain rotational symmetries); (2) photonic crystal cavities do not ideally reduce wakefields; using band structure calculations, we found that wakefields are increased by flat portions of the frequency dispersion (where the waves have vanishing group velocities). A complete comparison was drawn between the proposed photonic crystal cavities and the copper cavities for the Compact Linear Collider (CLIC); CLIC is one of the candidates for a future high-energy electron-positron collider that will study in greater detail the physics learned at the Large Hadron Collider. We found that the photonic crystal cavity, when compared to the CLIC cavity: (1) can lower maximum surface magnetic fields on conductors (growing evidence suggests this limits accelerating gradients by inducing electrical breakdown); (2) shows increased transverse dipole wakefields but decreased longitudinal monopole wakefields; and (3) exhibits lower accelerating efficiencies (unless

  12. Intense combined source of neutrons and photons for interrogation based on compact deuteron RF accelerator

    SciTech Connect

    Kurennoy, S. S.; Garnett, R. W.; Rybarcyk, L. J.

    2015-06-18

    Interrogation of special nuclear materials can benefit from mobile sources providing significant fluxes of neutrons (108/s at 2.5 MeV, 1010/s at 14.1 MeV) and of photons (>1012/s at 1-3 MeV). We propose a source that satisfies these requirements simultaneously plus also provides, via the reaction 11B(d,n)12C(γ15.1), a significant flux of 15-MeV photons, which are highly penetrating and optimal for inducing photo-fission in actinides. The source is based on a compact (< 5 m) deuteron RF accelerator that delivers an average current of a few mA of deuterons at 3-4 MeV to a boron target. The accelerator consists of a short RFQ followed by efficient inter-digital H-mode structures with permanent-magnet-quadrupole beam focusing [Kurennoy et al. (2012)], which suit perfectly for deuteron acceleration at low energies. Our estimates, based on recent measurements, indicate that the required fluxes of both neutrons and photons can be achieved at ~1 mA of 4-MeV deuterons. The goal of the proposed study is to confirm feasibility of the approach and develop requirements for future full system implementation.

  13. Intense combined source of neutrons and photons for interrogation based on compact deuteron RF accelerator

    DOE PAGESBeta

    Kurennoy, S. S.; Garnett, R. W.; Rybarcyk, L. J.

    2015-06-18

    Interrogation of special nuclear materials can benefit from mobile sources providing significant fluxes of neutrons (108/s at 2.5 MeV, 1010/s at 14.1 MeV) and of photons (>1012/s at 1-3 MeV). We propose a source that satisfies these requirements simultaneously plus also provides, via the reaction 11B(d,n)12C(γ15.1), a significant flux of 15-MeV photons, which are highly penetrating and optimal for inducing photo-fission in actinides. The source is based on a compact (< 5 m) deuteron RF accelerator that delivers an average current of a few mA of deuterons at 3-4 MeV to a boron target. The accelerator consists of a shortmore » RFQ followed by efficient inter-digital H-mode structures with permanent-magnet-quadrupole beam focusing [Kurennoy et al. (2012)], which suit perfectly for deuteron acceleration at low energies. Our estimates, based on recent measurements, indicate that the required fluxes of both neutrons and photons can be achieved at ~1 mA of 4-MeV deuterons. The goal of the proposed study is to confirm feasibility of the approach and develop requirements for future full system implementation.« less

  14. Three dimensional gait analysis using wearable acceleration and gyro sensors based on quaternion calculations.

    PubMed

    Tadano, Shigeru; Takeda, Ryo; Miyagawa, Hiroaki

    2013-01-01

    This paper proposes a method for three dimensional gait analysis using wearable sensors and quaternion calculations. Seven sensor units consisting of a tri-axial acceleration and gyro sensors, were fixed to the lower limbs. The acceleration and angular velocity data of each sensor unit were measured during level walking. The initial orientations of the sensor units were estimated using acceleration data during upright standing position and the angular displacements were estimated afterwards using angular velocity data during gait. Here, an algorithm based on quaternion calculation was implemented for orientation estimation of the sensor units. The orientations of the sensor units were converted to the orientations of the body segments by a rotation matrix obtained from a calibration trial. Body segment orientations were then used for constructing a three dimensional wire frame animation of the volunteers during the gait. Gait analysis was conducted on five volunteers, and results were compared with those from a camera-based motion analysis system. Comparisons were made for the joint trajectory in the horizontal and sagittal plane. The average RMSE and correlation coefficient (CC) were 10.14 deg and 0.98, 7.88 deg and 0.97, 9.75 deg and 0.78 for the hip, knee and ankle flexion angles, respectively. PMID:23877128

  15. Successes and lessons learned: How to accelerate the base closure process

    SciTech Connect

    Larkin, V.C.; Stoll, R.

    1994-12-31

    Naval Station Puget Sound, Seattle, was nominated for closure by the Base Closure Commission in 1991 (BRAC II) and will be transferred in September of 1995. Historic activities have resulted in petroleum-related environmental issues. Unlike many bases being closed, the politically sensitive issues are not the economics of job losses. Because homeless housing is expected to be included in the selected reuse plan, the primary concerns of the public are reduced real estate values and public safety. In addition to a reuse plan adopted by the Seattle City Council, the Muckleshoot Indian tribe has also submitted an alternative reuse plan to the Navy. Acceleration methods described in this paper include methods for beginning the environmental impact statement (EIS) process before reuse plans are finalized; tracking development of engineering alternatives in parallel with environmental investigations; using field screening data to begin developing plans and specifications for remediation, instead of waiting 6 weeks for analytical results and data validation; using efficient communication techniques to facilitate accelerated review of technical documents by the BCT; expediting removal actions and performing ``cleanups incidental to investigation``; and effectively facilitating members of the Restoration Advisory Board with divergent points of view. This paper will describe acceleration methods that proved to be effective and methods that could be modified to be more effective at other sites.

  16. A compact ion source and accelerator based on a piezoelectric driver

    SciTech Connect

    Norgard, P.; Kovaleski, S. D.; VanGordon, J. A.; Baxter, E. A.; Gall, B. B.; Kwon, Jae Wan; Kim, Baek Hyun; Dale, G. E.

    2013-04-19

    Compact ion sources and accelerators using piezoelectric devices for the production of energetic ion beams are being evaluated. A coupled source-accelerator is being tested as a neutron source to be incorporated into oil-well logging diagnostics. Two different ion sources are being investigated, including a piezoelectric transformer-based plasma source and a silicon-based field ion source. The piezoelectric transformer plasma ion source uses a cylindrical, resonantly driven piezoelectric crystal to produce high voltage inside a confined volume filled with low pressure deuterium gas. The plasma generated in the confined chamber is ejected through a small aperture into an evacuated drift region. The silicon field ion source uses localized electric field enhancement produced by an array of sharp emitters etched into a silicon blank to produce ions through field desorption ionization. A second piezoelectric device of a different design is used to generate an accelerating potential on the order of 130 kV; this potential is applied to a deuterated target plate positioned perpendicular to the ion stream produced by either plasma source. This paper discusses the results obtained by the individual components as they relate to the final neutron source.

  17. Three Dimensional Gait Analysis Using Wearable Acceleration and Gyro Sensors Based on Quaternion Calculations

    PubMed Central

    Tadano, Shigeru; Takeda, Ryo; Miyagawa, Hiroaki

    2013-01-01

    This paper proposes a method for three dimensional gait analysis using wearable sensors and quaternion calculations. Seven sensor units consisting of a tri-axial acceleration and gyro sensors, were fixed to the lower limbs. The acceleration and angular velocity data of each sensor unit were measured during level walking. The initial orientations of the sensor units were estimated using acceleration data during upright standing position and the angular displacements were estimated afterwards using angular velocity data during gait. Here, an algorithm based on quaternion calculation was implemented for orientation estimation of the sensor units. The orientations of the sensor units were converted to the orientations of the body segments by a rotation matrix obtained from a calibration trial. Body segment orientations were then used for constructing a three dimensional wire frame animation of the volunteers during the gait. Gait analysis was conducted on five volunteers, and results were compared with those from a camera-based motion analysis system. Comparisons were made for the joint trajectory in the horizontal and sagittal plane. The average RMSE and correlation coefficient (CC) were 10.14 deg and 0.98, 7.88 deg and 0.97, 9.75 deg and 0.78 for the hip, knee and ankle flexion angles, respectively. PMID:23877128

  18. Human ankle plantar flexor muscle-tendon mechanics and energetics during maximum acceleration sprinting.

    PubMed

    Lai, Adrian; Schache, Anthony G; Brown, Nicholas A T; Pandy, Marcus G

    2016-08-01

    Tendon elastic strain energy is the dominant contributor to muscle-tendon work during steady-state running. Does this behaviour also occur for sprint accelerations? We used experimental data and computational modelling to quantify muscle fascicle work and tendon elastic strain energy for the human ankle plantar flexors (specifically soleus and medial gastrocnemius) for multiple foot contacts of a maximal sprint as well as for running at a steady-state speed. Positive work done by the soleus and medial gastrocnemius muscle fascicles decreased incrementally throughout the maximal sprint and both muscles performed more work for the first foot contact of the maximal sprint (FC1) compared with steady-state running at 5 m s(-1) (SS5). However, the differences in tendon strain energy for both muscles were negligible throughout the maximal sprint and when comparing FC1 to SS5. Consequently, the contribution of muscle fascicle work to stored tendon elastic strain energy was greater for FC1 compared with subsequent foot contacts of the maximal sprint and compared with SS5. We conclude that tendon elastic strain energy in the ankle plantar flexors is just as vital at the start of a maximal sprint as it is at the end, and as it is for running at a constant speed. PMID:27581481

  19. Evaluation of stone durability using a combination of ultrasound, mechanical and accelerated aging tests

    NASA Astrophysics Data System (ADS)

    Molina, E.; Cultrone, G.; Sebastián, E.; Alonso, F. J.

    2013-06-01

    The durability of a rock when exposed to decay agents is an important criterion when assessing its quality as a building material. Our study focuses on six varieties of natural stone (two limestones, one dolostone, one travertine and two sandstones) that are widely used in both new and historical buildings. In order to assess their quality, we measured and characterized their dynamic elastic properties using ultrasounds, we measured their compressive strength using the uniaxial compression test and we evaluated their durability by means of accelerated aging tests (freeze-thaw and salt crystallization). In order to get a full picture of the decay suffered by the different stones, we determined the composition and amount of the clay fraction of the six stones. We also observed small fragments subjected to the salt crystallization test under an environmental scanning electron microscope to study any textural change and measured the changes of colour on the surface with a spectrophotometer. Finally, we analysed the pore system of the stones before and after their deterioration using mercury injection porosimetry. We then compared the results for the different stones and found that dolostone obtained the best results, while the two limestones proved to be the least durable and had the lowest compressive strength.

  20. Visualization of TlBr ionic transport mechanism by the Accelerated Device Degradation technique

    NASA Astrophysics Data System (ADS)

    Datta, Amlan; Becla, Piotr; Motakef, Shariar

    2015-06-01

    Thallium Bromide (TlBr) is a promising gamma radiation semiconductor detector material. However, it is an ionic semiconductor and suffers from polarization. As a result, TlBr devices degrade rapidly at room temperature. Polarization is associated with the flow of ionic current in the crystal under electrical bias, leading to the accumulation of charged ions at the device's electrical contacts. We report a fast and reliable direct characterization technique to identify the effects of various growth and post-growth process modifications on the polarization process. The Accelerated Device Degradation (ADD) characterization technique allows direct observation of nucleation and propagation of ionic transport channels within the TlBr crystals under applied bias. These channels are observed to be initiated both directly under the electrode as well as away from it. The propagation direction is always towards the anode indicating that Br- is the mobile diffusing species within the defect channels. The effective migration energy of the Br- ions was calculated to be 0.33±0.03 eV, which is consistent with other theoretical and experimental results.

  1. The Berkeley accelerator space effects facility (BASE) - A newmission for the 88-inch cyclotron at LBNL

    SciTech Connect

    McMahan, M.A.

    2005-09-06

    In FY04, the 88-Inch Cyclotron began a new operating mode that supports a local research program in nuclear science, R&D in accelerator technology and a test facility for the National Security Space (NSS) community (the U.S. Air Force and NRO). The NSS community (and others on a cost recovery basis) can take advantage of both the light- and heavy-ion capabilities of the Cyclotron to simulate the space radiation environment. A significant portion of this work involves the testing of microcircuits for single event effects. The experimental areas within the building that are used for the radiation effects testing are now called the Berkeley Accelerator and Space Effects (BASE) facility. Improvements to the facility to provide increased reliability, quality assurance and new capabilities are underway and will be discussed. These include a 16 AMeV ''cocktail'' of beams for heavy ion testing, a neutron beam, more robust dosimetry, and other upgrades.

  2. Cantilever-based FBG sensor for temperature-independent acceleration measurement

    NASA Astrophysics Data System (ADS)

    Zhou, Wenjun; Dong, Xinyong; Jin, Yongxing; Zhao, Chun-Liu

    2009-11-01

    A novel accelerometer based on a strain-chirped optical fiber Bragg grating (FBG) is proposed. The FBG is glued in a slanted direction onto the lateral side of a right-angled triangle cantilever beam with a mass bonded on its free end. Vertical acceleration applied to the cantilever beam leads to a uniform bending along the beam length. As a result, the FBG is chirped and its reflection bandwidth changes linearly with the applied acceleration. A high sensitivity of 0.679 nm/g has been achieved in the experiment. The experimental results of the sensor are compared with the results of a conventional accelerometer for the dynamic measurements. This sensor is temperature insensitive, owning to the temperature-independence nature of reflection bandwidth of the FBG.

  3. Accelerating PS model-based dynamic cardiac MRI using compressed sensing.

    PubMed

    Zhang, Xiaoyong; Xie, Guoxi; Shi, Caiyun; Su, Shi; Zhang, Yongqin; Liu, Xin; Qiu, Bensheng

    2016-02-01

    High spatiotemporal resolution MRI is a challenging topic in dynamic MRI field. Partial separability (PS) model has been successfully applied to dynamic cardiac MRI by exploiting data redundancy. However, the model requires substantial preprocessing data to accurately estimate the model parameters before image reconstruction. Since compressed sensing (CS) is a potential technique to accelerate MRI by reducing the number of acquired data, the combination of PS and CS, named as Stepped-SparsePS, was introduced to accelerate the preprocessing data acquisition of PS in this work. The proposed Stepped-SparsePS method sequentially reconstructs a set of aliased dynamic images in each channel based on PS model and then the final dynamic images from the aliased images using CS. The results from numerical simulations and in vivo experiments demonstrate that Stepped-SparsePS could significantly reduce data acquisition time while preserving high spatiotemporal resolution. PMID:26552006

  4. Radiative damping and electron beam dynamics in plasma-based accelerators.

    PubMed

    Michel, P; Schroeder, C B; Shadwick, B A; Esarey, E; Leemans, W P

    2006-08-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron, the resulting radiation can increase the relative energy spread of the beam to significant levels (e.g., several percent). This effect can be diminished by matching the beam into the channel, which could require micron sized beam radii for typical values of the beam emittance and plasma density. PMID:17025550

  5. Generating intense fully coherent soft x-ray radiation based on a laser-plasma accelerator.

    PubMed

    Feng, Chao; Xiang, Dao; Deng, Haixiao; Huang, Dazhang; Wang, Dong; Zhao, Zhentang

    2015-06-01

    Laser-plasma based accelerator has the potential to dramatically reduce the size and cost of future x-ray light sources to the university-laboratory scale. However, the large energy spread of the laser-plasma accelerated electron beam may hinder the way for short wavelength free-electron laser generation. In this paper, we propose a novel method for directly imprinting strong coherent micro-bunching on the electron beam with large intrinsic energy spread by using a wavefront-tilted conventional optical laser beam and a weak dipole magnet. Theoretical analysis and numerical simulations demonstrate that this technique can be used for the generation of fully coherent femtosecond soft x-ray radiation at gigawatts level with a very short undulator. PMID:26072855

  6. An OpenACC-Based Unified Programming Model for Multi-accelerator Systems

    SciTech Connect

    Kim, Jungwon; Lee, Seyong; Vetter, Jeffrey S

    2015-01-01

    This paper proposes a novel SPMD programming model of OpenACC. Our model integrates the different granularities of parallelism from vector-level parallelism to node-level parallelism into a single, unified model based on OpenACC. It allows programmers to write programs for multiple accelerators using a uniform programming model whether they are in shared or distributed memory systems. We implement a prototype of our model and evaluate its performance with a GPU-based supercomputer using three benchmark applications.

  7. Physical activity recognition based on rotated acceleration data using quaternion in sedentary behavior: a preliminary study.

    PubMed

    Shin, Y E; Choi, W H; Shin, T M

    2014-01-01

    This paper suggests a physical activity assessment method based on quaternion. To reduce user inconvenience, we measured the activity using a mobile device which is not put on fixed position. Recognized results were verified with various machine learning algorithms, such as neural network (multilayer perceptron), decision tree (J48), SVM (support vector machine) and naive bayes classifier. All algorithms have shown over 97% accuracy including decision tree (J48), which recognized the activity with 98.35% accuracy. As a result, physical activity assessment method based on rotated acceleration using quaternion can classify sedentary behavior with more accuracy without considering devices' position and orientation. PMID:25571109

  8. A cell-based study on pedestrian acceleration and overtaking in a transfer station corridor

    NASA Astrophysics Data System (ADS)

    Ji, Xiangfeng; Zhou, Xuemei; Ran, Bin

    2013-04-01

    Pedestrian speed in a transfer station corridor is faster than usual and sometimes running can be found among some of them. In this paper, pedestrians are divided into two categories. The first one is aggressive, and the other is conservative. Aggressive pedestrians weaving their way through crowd in the corridor are the study object of this paper. During recent decades, much attention has been paid to the pedestrians' behavior, such as overtaking (also deceleration) and collision avoidance, and that continues in this paper. After sufficiently analyzing the characteristics of pedestrian flow in transfer station corridor, a cell-based model is presented in this paper, including the acceleration (also deceleration) and overtaking analysis. Acceleration (also deceleration) in a corridor is fixed according to Newton's Law and then speed calculated with a kinematic formula is discretized into cells based on the fuzzy logic. After the speed is updated, overtaking is analyzed based on updated speed and force explicitly, compared to rule-based models, which herein we call implicit ones. During the analysis of overtaking, a threshold value to determine the overtaking direction is introduced. Actually, model in this paper is a two-step one. The first step is to update speed, which is the cells the pedestrian can move in one time interval and the other is to analyze the overtaking. Finally, a comparison between the rule-based cellular automata, the model in this paper and data in HCM 2000 is made to demonstrate our model can be used to achieve reasonable simulation of acceleration (also deceleration) and overtaking among pedestrians.

  9. Theory of fracture mechanics based upon plasticity

    NASA Technical Reports Server (NTRS)

    Lee, J. D.

    1976-01-01

    A theory of fracture mechanics is formulated on the foundation of continuum mechanics. Fracture surface is introduced as an unknown quantity and is incorporated into boundary and initial conditions. Surface energy is included in the global form of energy conservation law and the dissipative mechanism is formulated into constitutive equations which indicate the thermodynamic irreversibility and the irreversibility of fracture process as well.

  10. Amalgamating oncolytic viruses to enhance their safety, consolidate their killing mechanisms, and accelerate their spread.

    PubMed

    Ayala-Breton, Camilo; Suksanpaisan, Lukkana; Mader, Emily K; Russell, Stephen J; Peng, Kah-Whye

    2013-10-01

    Oncolytic viruses are structurally and biologically diverse, spreading through tumors and killing them by various mechanisms and with different kinetics. Here, we created a hybrid vesicular stomatitis/measles virus (VSV/MV) that harnesses the safety of oncolytic MV, the speed of VSV, and the tumor killing mechanisms of both viruses. Oncolytic MV targets CD46 and kills by forcing infected cells to fuse with uninfected neighbors, but propagates slowly. VSV spreads rapidly, directly lysing tumor cells, but is neurotoxic and loses oncolytic potency when neuroattenuated by conventional approaches. The hybrid VSV/MV lacks neurotoxicity, replicates rapidly with VSV kinetics, and selectively targets CD46 on tumor cells. Its in vivo performance in a myeloma xenograft model was substantially superior to either MV or widely used recombinant oncolytic VSV-M51. PMID:23842448

  11. Mechanisms of accelerated proteolysis in rat soleus muscle atrophy induced by unweighting or denervation

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Kirby, Christopher; Rosenberg, Sara; Tome, Margaret; Chase, Peter

    1991-01-01

    A hypothesis proposed by Tischler and coworkers (Henriksen et al., 1986; Tischler et al., 1990) concerning the mechanisms of atrophy induced by unweighting or denervation was tested using rat soleus muscle from animals subjected to hindlimb suspension and denervation of muscles. The procedure included (1) measuring protein degradation in isolated muscles and testing the effects of lysosome inhibitors, (2) analyzing the lysosome permeability and autophagocytosis, (3) testing the effects of altering calcium-dependent proteolysis, and (4) evaluating in vivo the effects of various agents to determine the physiological significance of the hypothesis. The results obtained suggest that there are major differences between the mechanisms of atrophies caused by unweighting and denervation, though slower protein synthesis is an important feature common for both.

  12. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae

    PubMed Central

    Luo, M. C.; Deal, K. R.; Akhunov, E. D.; Akhunova, A. R.; Anderson, O. D.; Anderson, J. A.; Blake, N.; Clegg, M. T.; Coleman-Derr, D.; Conley, E. J.; Crossman, C. C.; Dubcovsky, J.; Gill, B. S.; Gu, Y. Q.; Hadam, J.; Heo, H. Y.; Huo, N.; Lazo, G.; Ma, Y.; Matthews, D. E.; McGuire, P. E.; Morrell, P. L.; Qualset, C. O.; Renfro, J.; Tabanao, D.; Talbert, L. E.; Tian, C.; Toleno, D. M.; Warburton, M. L.; You, F. M.; Zhang, W.; Dvorak, J.

    2009-01-01

    Single-nucleotide polymorphism was used in the construction of an expressed sequence tag map of Aegilops tauschii, the diploid source of the wheat D genome. Comparisons of the map with the rice and sorghum genome sequences revealed 50 inversions and translocations; 2, 8, and 40 were assigned respectively to the rice, sorghum, and Ae. tauschii lineages, showing greatly accelerated genome evolution in the large Triticeae genomes. The reduction of the basic chromosome number from 12 to 7 in the Triticeae has taken place by a process during which an entire chromosome is inserted by its telomeres into a break in the centromeric region of another chromosome. The original centromere–telomere polarity of the chromosome arms is maintained in the new chromosome. An intrachromosomal telomere–telomere fusion resulting in a pericentric translocation of a chromosome segment or an entire arm accompanied or preceded the chromosome insertion in some instances. Insertional dysploidy has been recorded in three grass subfamilies and appears to be the dominant mechanism of basic chromosome number reduction in grasses. A total of 64% and 66% of Ae. tauschii genes were syntenic with sorghum and rice genes, respectively. Synteny was reduced in the vicinity of the termini of modern Ae. tauschii chromosomes but not in the vicinity of the ancient termini embedded in the Ae. tauschii chromosomes, suggesting that the dependence of synteny erosion on gene location along the centromere–telomere axis either evolved recently in the Triticeae phylogenetic lineage or its evolution was recently accelerated. PMID:19717446

  13. The erosion of the beaches on the coast of Alicante: Study of the mechanisms of weathering by accelerated laboratory tests.

    PubMed

    López, I; López, M; Aragonés, L; García-Barba, J; López, M P; Sánchez, I

    2016-10-01

    One of the main problems that coasts around the world present, is the regression and erosion of beaches. However, the factors involved in these processes are unclear. In this study, the influence of sediment erosion on beach regression has been analysed. In order to do that, a three-step investigation has been carried out. Firstly, coastline variations of four Spanish beaches have been analysed. Secondly, a study on sediment position along the beach profile has been developed. Finally, the process that beach sediments undergo along the surf zone when they are hit by the incident waves has been simulated by an accelerated particle weathering test. Samples of sand and shells were subjected to this accelerated particle weathering test. Results were supplemented with those from carbonate content test, XRD, SEM and granulometric analysis. Results shows a cross-shore classification of sediments along the beach profile in which finer particles move beyond offshore limit. Besides, it was observed that sediment erosion process is divided into three sages: i) particles wear due to crashes ii) dissolution of the carbonate fraction, and iii) breakage and separation of mineral and carbonate parts of particles. All these processes lead to a reduction of particle size. The mechanism responsible of beach erosion would consist of multiples and continuous particle location exchanges along the beach profile as a consequence of grain-size decrease due to erosion. PMID:27220096

  14. Aerothermal and flight mechanic considerations by development of small launchers for low orbit payloads started from lorentz rail accelerator

    NASA Astrophysics Data System (ADS)

    Božić, O.; Eggers, T.; Wiggen, S.

    2011-10-01

    The injection of small payloads in Low Earth Orbit (LEO) by means of propelled launchers starting from a Lorentz Rail Accelerator (LRA) is a concept that may enable the access to space at extremely low cost. A propelled launcher is required since today a LRA is only able to launch a total mass of a few kilograms with a velocity up to 4.4 km/s but LEOpayloads require approximately 10 km/s at higher launch mass. Velocity difference must be assured with another propulsion system. Furthermore and independent of the type of selected propulsion, such solution has serious consequences on launcher design. Reasons are, e.g., the harsh mechanical loads like high acceleration on the LRA ramp, high deceleration due to pressure drag, unsteady phenomena during the transition from the LRA ramp into the free atmosphere and also due to extreme thermal loads in the first 30 s of flight. The study presents a conceptual design of a nominal payload of 3 kg, including dimensions, mass- and velocitybudget estimations. In the focus of the analysis are several concepts for the thermal protection of critical system like the nose cap, the front part of the fuselage which houses a hybrid kick-off engine, flares, and the attitude control engines. Additionally, the potential of plug nozzles in comparison to classical Laval nozzles as well as trajectory calculations are discussed. They underline that an elliptical orbit between 300 and 400 km is possible.

  15. Mechanical properties as an indicator of interstitials in niobium for superconducting accelerator cavities

    SciTech Connect

    Ricker, R. E. Pitchure, D. J.; Myneni, G. R.

    2015-12-04

    A preliminary investigation was conducted into the feasibility of using simple mechanical properties experiments to evaluate interstitial impurity uptake from processing environments. Two types of tests were examined: tensile tests and complex modulus measurements using a dynamic mechanical analyzer (DMA). For the tensile tests, samples were cut from a single crystal of niobium, with the same orientation, and then prepared following different procedures. Significant differences were observed during tensile tests, with yielding strength and strain-to-failure clearly related to interstitial uptake. When the strain rate was reduced by an order of magnitude, the strain-to-failure was reduced by 18 % indicating that interstitial hydrogen is responsible for this behavior. For the complex modulus measurement, polycrystalline samples from different locations of two different ingots were examined at a frequency of 1.0 Hz while the temperature was increased at the rate of 1.0 °C per minute. Anaelastic peaks were found for C, N, and O in all samples, but the lower limit of the system did not allow for detection of a peak for H. It is concluded that mechanical properties could be developed as a measurement tool to guide the development of processing methods for producing reduced interstitial content material, but additional research, and uncertainty analysis, is required for these tools to be reliable in this application.

  16. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing

    PubMed Central

    Fang, Ye; Ding, Yun; Feinstein, Wei P.; Koppelman, David M.; Moreno, Juana; Jarrell, Mark; Ramanujam, J.; Brylinski, Michal

    2016-01-01

    Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs) as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU). First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249. PMID:27420300

  17. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing.

    PubMed

    Fang, Ye; Ding, Yun; Feinstein, Wei P; Koppelman, David M; Moreno, Juana; Jarrell, Mark; Ramanujam, J; Brylinski, Michal

    2016-01-01

    Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs) as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU). First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249. PMID:27420300

  18. Accelerated RBC senescence as a novel pathologic mechanism of blood stasis syndrome in traditional East Asian medicine

    PubMed Central

    You, Sooseong; Park, Bongki; Lee, Myeong Soo

    2015-01-01

    Blood stasis syndrome (BSS) is an important pathologic condition in traditional East Asian medicine, characterized by multiple signs and symptoms, including sublingual varicosis, angiotelectasis, slow and choppy pulse, local fixed pain, nyctalgia, menstrual cramps, dark-purple tongue and infra-orbital darkness. However, recent studies have been restricted to the circulatory disorder and could not suggest the pathologic core to explain all of the characteristics of BSS. Here, we review the current research on the senescence of red blood cells (RBCs), focusing on the correlation between the pathologic properties of senescent RBCs and BSS-specific manifestations. The accumulation of senescent RBCs and their products induce pathological conditions that affect blood flow resistance and cause thrombosis, vasoconstriction and methemoglobinemia. These pathological alterations are identical to the characteristics of BSS, therefore supporting the hypothesis that accelerated RBC aging could be considered as a novel pathologic mechanism of BSS. PMID:26045884

  19. Recent Advances and Some Results in Plasma-Based Accelerator Modeling

    NASA Astrophysics Data System (ADS)

    Mori, W. B.

    2002-12-01

    Simulation, using particle-in-cell (PIC) methods, has played a critical role in the evolution of the field of plasma-based acceleration. Early on, simulations allowed the testing of new ideas using so-called cartoon parameters. These simulations were done in either one or two-dimensions using single processor supercomputers. Through the development of new algorithms and parallel computing, today, we can now use PIC simulations to model the full-scale of ongoing experiments in three-dimensions. These experiments are attempting to accelerate electrons to ˜1 GeV. In this article, I will present recent results in which simulation results are compared to experiment and I will discuss the future challenges in advanced accelerator modeling. Principally, these are 1.) to be able to model a 100+ on 100+ GeV collider in three-dimensions and, 2.) to develop more efficient, yet still accurate, algorithms so that simulation can be used for real-time feedback with experiment.

  20. Proposed method for internal electron therapy based on high-intensity laser acceleration

    NASA Astrophysics Data System (ADS)

    Tepper, Michal; Barkai, Uri; Gannot, Israel

    2015-05-01

    Radiotherapy is one of the main methods to treat cancer. However, due to the propagation pattern of high-energy photons in tissue and their inability to discriminate between healthy and malignant tissues, healthy tissues may also be damaged, causing undesired side effects. A possible method for internal electron therapy, based on laser acceleration of electrons inside the patient's body, is suggested. In this method, an optical waveguide, optimized for high intensities, is used to transmit the laser radiation and accelerate electrons toward the tumor. The radiation profile can be manipulated in order to create a patient-specific radiation treatment profile by changing the laser characteristics. The propagation pattern of electrons in tissues minimizes the side effects caused to healthy tissues. A simulation was developed to demonstrate the use of this method, calculating the trajectories of the accelerated electron as a function of laser properties. The simulation was validated by comparison to theory, showing a good fit for laser intensities of up to 2×1020 (W/cm2), and was then used to calculate suggested treatment profiles for two tumor test cases (with and without penetration to the tumor). The results show that treatment profiles can be designed to cover tumor area with minimal damage to adjacent tissues.

  1. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    PubMed

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks. PMID:21459008

  2. Neutronics analysis of three beam-filter assemblies for an accelerator-based BNCT facility

    SciTech Connect

    Bleuel, D.L.; Costes, S.V.; Donahue, R.J.; Ludewigt, B.A.

    1997-08-01

    Three moderator materials, AlF{sub 3}/Al, D{sub 2}O and LiF, have been analyzed for clinical usefulness using the reaction {sup 7}Li(p,n) as an accelerator driven neutron source. Proton energies between 2.1 MeV and 2.6 MeV have been investigated. Radiation transport in the reflector/moderator assembly is simulated using the MCNP program. Depth-dose distributions in a head phanton are calculated with the BNCT-RTPE patient treatment planning program from INEEL using the MCNP generated neutron and photon spectra as the subsequent source. Clinical efficacy is compared using the current BMRR protocol for all designs. Depth-dose distributions are compared for a fixed normal tissue tolerance dose of 12.5 Gy-Eq. Radiation analyses also include a complete anthropomorphic phantom. Results of organ and whole body dose components are presented for several designs. Results indicate that high quality accelerator beams may produce clinically favorable treatments to deep-seated tumors when compared to the BMRR beam. Also discussed are problems identified in comparing accelerator and reactor based designs using in-air figures of merit as well as some results of spectrum-averaged RBE`s.

  3. Doppler Broadening Analysis of Steel Specimens Using Accelerator Based In Situ Pair Production

    SciTech Connect

    Makarashvili, V.; Wells, D. P.; Roy, A. K.

    2009-03-10

    Positron Annihilation Spectroscopy (PAS) techniques can be utilized as a sensitive probe of defects in materials. Studying these microscopic defects is very important for a number of industries in order to predict material failure or structural integrity. We have been developing gamma-induced pair-production techniques to produce positrons in thick samples ({approx}4-40 g/cm{sup 2}, or {approx}0.5-5 cm in steel). These techniques are called 'Accelerator-based Gamma-induced Positron Annihilation Spectroscopy'(AG-PAS). We have begun testing the capabilities of this technique for imaging of defect densities in thick structural materials. As a first step, a linear accelerator (LINAC) was employed to produce photon beams by stopping 15 MeV electrons in a 1 mm thick tungsten converter. The accelerator is capable of operating with 30-60 ns pulse width, up to 200 mA peak current at 1 kHz repetition rate. The highly collimated bremsstrahlung beam impinged upon our steel tensile specimens, after traveling through a 1.2 m thick concrete wall. Annihilation radiation was detected by a well-shielded and collimated high-purity germanium detector (HPGe). Conventional Doppler broadening spectrometry (DBS) was performed to determine S, W and T parameters for our samples.

  4. An epithermal neutron source for BNCT based on an ESQ-accelerator

    SciTech Connect

    Ludewigt, B.A.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Phillips, T.L.; Reginato, L.L.; Wells, R.P.

    1997-07-01

    An accelerator-based BNCT facility is under development at the Lawrence Berkeley National Laboratory. Neutrons will be produced via the {sup 7}Li(p,n) reaction at proton energies of about 2.5 MeV with subsequent moderation and filtering for shaping epithermal neutron beams for BNCT. Moderator, filter, and shielding assemblies have been modeled using MCNP. Head-phantom dose distributions have been calculated using the treatment planning software BNCT{_}RTPE. The simulation studies have shown that a proton beam current of {approximately} 20 mA is required to deliver high quality brain treatments in about 40 minutes. The results also indicate that significantly higher doses can be delivered to deep-seated tumors in comparison to the Brookhaven Medical Research Reactor beam. An electrostatic quadrupole (ESQ) accelerator is ideally suited to provide the high beam currents desired. A novel power supply utilizing the air-coupled transformer concept is under development. It will enable the ESQ-accelerator to deliver proton beam currents exceeding 50 mA. A lithium target has been designed which consists of a thin layer of lithium on an aluminum backing. Closely spaced, narrow coolant passages cut into the aluminum allow the removal of a 50kW heat-load by convective water cooling. The system under development is suitable for hospital installation and has the potential for providing neutron beams superior to reactor sources.

  5. Another Mechanism which Can Prevent Infinite Collision Energy via Black Hole as Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Ding, Chikun; Lin, Siyuan; Li, Junfeng; Wang, Peng; Li, Qian; Zhang, Binqing

    2013-03-01

    It has recently been pointed out that infinite center of mass energies for the colliding particles can be attained when the black hole is exactly extremal and only at infinite time and on the horizon of the black hole. In this letter, we show that it cannot occur when the spacetime noncommutative effect is considered, i.e. the quantum effect of gravity is an other preventing mechanism. Additionally, the bigger of the black hole's mass is, the higher of center of mass energy that the particles obtain.

  6. ICA-based artefact and accelerated fMRI acquisition for improved Resting State Network imaging

    PubMed Central

    Griffanti, Ludovica; Salimi-Khorshidi, Gholamreza; Beckmann, Christian F.; Auerbach, Edward J.; Douaud, Gwenaëlle; Sexton, Claire E.; Zsoldos, Enikő; Ebmeier, Klaus P; Filippini, Nicola; Mackay, Clare E.; Moeller, Steen; Xu, Junqian; Yacoub, Essa; Baselli, Giuseppe; Ugurbil, Kamil; Miller, Karla L.; Smith, Stephen M.

    2014-01-01

    The identification of resting state networks (RSNs) and the quantification of their functional connectivity in resting-state fMRI (rfMRI) are seriously hindered by the presence of artefacts, many of which overlap spatially or spectrally with RSNs. Moreover, recent developments in fMRI acquisition yield data with higher spatial and temporal resolutions, but may increase artefacts both spatially and/or temporally. Hence the correct identification and removal of non-neural fluctuations is crucial, especially in accelerated acquisitions. In this paper we investigate the effectiveness of three data-driven cleaning procedures, compare standard against higher (spatial and temporal) resolution accelerated fMRI acquisitions, and investigate the combined effect of different acquisitions and different cleanup approaches. We applied single-subject independent component analysis (ICA), followed by automatic component classification with FMRIB’s ICA-based X-noiseifier (FIX) to identify artefactual components. We then compared two first-level (within-subject) cleaning approaches for removing those artefacts and motion-related fluctuations from the data. The effectiveness of the cleaning procedures were assessed using timeseries (amplitude and spectra), network matrix and spatial map analyses. For timeseries and network analyses we also tested the effect of a second-level cleaning (informed by group-level analysis). Comparing these approaches, the preferable balance between noise removal and signal loss was achieved by regressing out of the data the full space of motion-related fluctuations and only the unique variance of the artefactual ICA components. Using similar analyses, we also investigated the effects of different cleaning approaches on data from different acquisition sequences. With the optimal cleaning procedures, functional connectivity results from accelerated data were statistically comparable or significantly better than the standard (unaccelerated) acquisition

  7. Additive effect of BPA and Gd-DTPA for application in accelerator-based neutron source.

    PubMed

    Yoshida, F; Yamamoto, T; Nakai, K; Zaboronok, A; Matsumura, A

    2015-12-01

    Because of its fast metabolism gadolinium as a commercial drug was not considered to be suitable for neutron capture therapy. We studied additive effect of gadolinium and boron co-administration using colony forming assay. As a result, the survival of tumor cells with additional 5 ppm of Gd-DTPA decreased to 1/10 compared to the cells with boron only. Using gadolinium to increase the effect of BNCT instead of additional X-ray irradiation might be beneficial, as such combination complies with the short-time irradiation regimen at the accelerator-based neutron source. PMID:26242560

  8. OpenARC: Extensible OpenACC Compiler Framework for Directive-Based Accelerator Programming Study

    SciTech Connect

    Lee, Seyong; Vetter, Jeffrey S

    2014-01-01

    Directive-based, accelerator programming models such as OpenACC have arisen as an alternative solution to program emerging Scalable Heterogeneous Computing (SHC) platforms. However, the increased complexity in the SHC systems incurs several challenges in terms of portability and productivity. This paper presents an open-sourced OpenACC compiler, called OpenARC, which serves as an extensible research framework to address those issues in the directive-based accelerator programming. This paper explains important design strategies and key compiler transformation techniques needed to implement the reference OpenACC compiler. Moreover, this paper demonstrates the efficacy of OpenARC as a research framework for directive-based programming study, by proposing and implementing OpenACC extensions in the OpenARC framework to 1) support hybrid programming of the unified memory and separate memory and 2) exploit architecture-specific features in an abstract manner. Porting thirteen standard OpenACC programs and three extended OpenACC programs to CUDA GPUs shows that OpenARC performs similarly to a commercial OpenACC compiler, while it serves as a high-level research framework.

  9. Acceleration of stochastic seismic inversion in OpenCL-based heterogeneous platforms

    NASA Astrophysics Data System (ADS)

    Ferreirinha, Tomás; Nunes, Rúben; Azevedo, Leonardo; Soares, Amílcar; Pratas, Frederico; Tomás, Pedro; Roma, Nuno

    2015-05-01

    Seismic inversion is an established approach to model the geophysical characteristics of oil and gas reservoirs, being one of the basis of the decision making process in the oil&gas exploration industry. However, the required accuracy levels can only be attained by dealing and processing significant amounts of data, often leading to consequently long execution times. To overcome this issue and to allow the development of larger and higher resolution elastic models of the subsurface, a novel parallelization approach is herein proposed targeting the exploitation of GPU-based heterogeneous systems based on a unified OpenCL programming framework, to accelerate a state of art Stochastic Seismic Amplitude versus Offset Inversion algorithm. To increase the parallelization opportunities while ensuring model fidelity, the proposed approach is based on a careful and selective relaxation of some spatial dependencies. Furthermore, to take into consideration the heterogeneity of modern computing systems, usually composed of several and different accelerating devices, multi-device parallelization strategies are also proposed. When executed in a dual-GPU system, the proposed approach allows reducing the execution time in up to 30 times, without compromising the quality of the obtained models.

  10. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography.

    PubMed

    Xu, Daguang; Huang, Yong; Kang, Jin U

    2014-06-16

    We implemented the graphics processing unit (GPU) accelerated compressive sensing (CS) non-uniform in k-space spectral domain optical coherence tomography (SD OCT). Kaiser-Bessel (KB) function and Gaussian function are used independently as the convolution kernel in the gridding-based non-uniform fast Fourier transform (NUFFT) algorithm with different oversampling ratios and kernel widths. Our implementation is compared with the GPU-accelerated modified non-uniform discrete Fourier transform (MNUDFT) matrix-based CS SD OCT and the GPU-accelerated fast Fourier transform (FFT)-based CS SD OCT. It was found that our implementation has comparable performance to the GPU-accelerated MNUDFT-based CS SD OCT in terms of image quality while providing more than 5 times speed enhancement. When compared to the GPU-accelerated FFT based-CS SD OCT, it shows smaller background noise and less side lobes while eliminating the need for the cumbersome k-space grid filling and the k-linear calibration procedure. Finally, we demonstrated that by using a conventional desktop computer architecture having three GPUs, real-time B-mode imaging can be obtained in excess of 30 fps for the GPU-accelerated NUFFT based CS SD OCT with frame size 2048(axial) × 1,000(lateral). PMID:24977582

  11. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography

    PubMed Central

    Xu, Daguang; Huang, Yong; Kang, Jin U.

    2014-01-01

    We implemented the graphics processing unit (GPU) accelerated compressive sensing (CS) non-uniform in k-space spectral domain optical coherence tomography (SD OCT). Kaiser-Bessel (KB) function and Gaussian function are used independently as the convolution kernel in the gridding-based non-uniform fast Fourier transform (NUFFT) algorithm with different oversampling ratios and kernel widths. Our implementation is compared with the GPU-accelerated modified non-uniform discrete Fourier transform (MNUDFT) matrix-based CS SD OCT and the GPU-accelerated fast Fourier transform (FFT)-based CS SD OCT. It was found that our implementation has comparable performance to the GPU-accelerated MNUDFT-based CS SD OCT in terms of image quality while providing more than 5 times speed enhancement. When compared to the GPU-accelerated FFT based-CS SD OCT, it shows smaller background noise and less side lobes while eliminating the need for the cumbersome k-space grid filling and the k-linear calibration procedure. Finally, we demonstrated that by using a conventional desktop computer architecture having three GPUs, real-time B-mode imaging can be obtained in excess of 30 fps for the GPU-accelerated NUFFT based CS SD OCT with frame size 2048(axial)×1000(lateral). PMID:24977582

  12. Accelerator-based neutron source for the neutron-capture and fast neutron therapy at hospital

    NASA Astrophysics Data System (ADS)

    Bayanov, B. F.; Belov, V. P.; Bender, E. D.; Bokhovko, M. V.; Dimov, G. I.; Kononov, V. N.; Kononov, O. E.; Kuksanov, N. K.; Palchikov, V. E.; Pivovarov, V. A.; Salimov, R. A.; Silvestrov, G. I.; Skrinsky, A. N.; Soloviov, N. A.; Taskaev, S. Yu.

    The proton accelerator complex for neutron production in lithium target discussed, which can operate in two modes. The first provides a neutron beam kinematically collimated with good forward direction in 25° and average energy of 30 keV, directly applicable for neutron-capture therapy with high efficiency of proton beam use. The proton energy in this mode is 1.883-1.890 MeV that is near the threshold of the 7Li( p, n) 7Be reaction. In the second mode, at proton energy of 2.5 MeV, the complex-produced neutron beam with maximum energy board of 790 keV which can be used directly for fast neutron therapy and for neutron-capture therapy after moderation. The project of such a neutron source is based on the 2.5 MeV original electrostatic accelerator tandem with vacuum insulation developed at BINP which is supplied with a high-voltage rectifier. The rectifier is produced in BINP as a part of ELV-type industrial accelerator. Design features of the tandem determining its high reliability in operation with a high-current (up to 40 mA) H - ion beam are discussed. They are: the absence of ceramic accelerator columns around the beam passage region, good conditions for pumping out of charge-exchange gaseous target region, strong focusing optics and high acceleration rate minimizing the space charge effects. The possibility of stabilization of protons energy with an accuracy level of 0.1% necessary for operation in the near threshold region is considered. The design description of H - continuous ion source with a current of 40 mA is also performed. To operate with a 100 kW proton beam it is proposed to use liquid-lithium targets. A thin lithium layer on the surface of a tungsten disk cooled intensively by a liquid metal heat carrier is proposed for use in case of the vertical beam, and a flat liquid lithium jet flowing through the narrow nozzle - for the horizontal beam.

  13. Detecting sea-level hazards: Simple regression-based methods for calculating the acceleration of sea level

    USGS Publications Warehouse

    Doran, Kara S.; Howd, Peter A.; Sallenger,, Asbury H., Jr.

    2015-01-01

    Recent studies, and most of their predecessors, use tide gage data to quantify SL acceleration, ASL(t). In the current study, three techniques were used to calculate acceleration from tide gage data, and of those examined, it was determined that the two techniques based on sliding a regression window through the time series are more robust compared to the technique that fits a single quadratic form to the entire time series, particularly if there is temporal variation in the magnitude of the acceleration. The single-fit quadratic regression method has been the most commonly used technique in determining acceleration in tide gage data. The inability of the single-fit method to account for time-varying acceleration may explain some of the inconsistent findings between investigators. Properly quantifying ASL(t) from field measurements is of particular importance in evaluating numerical models of past, present, and future SLR resulting from anticipated climate change.

  14. Detailed analysis of the cell-inactivation mechanism by accelerated protons and light ions

    NASA Astrophysics Data System (ADS)

    Kundrát, Pavel

    2006-03-01

    A detailed study of the biological effects of diverse quality radiations, addressing their biophysical interpretation, is presented. Published survival data for V79 cells irradiated by monoenergetic protons, helium-3, carbon and oxygen ions and for CHO cells irradiated by carbon ions have been analysed using the probabilistic two-stage model of cell inactivation. Three different classes of DNA damage formed by traversing particles have been distinguished, namely severe single-track lesions which might lead to cell inactivation directly, less severe lesions where cell inactivation is caused by their combinations and lesions of negligible severity that can be repaired easily. Probabilities of single ions forming these lesions have been assessed in dependence on their linear energy transfer (LET) values. Damage induction probabilities increase with atomic number and LET. While combined lesions play a crucial role at lower LET values, single-track damage dominates in high-LET regions. The yields of single-track lethal lesions for protons have been compared with Monte Carlo estimates of complex DNA lesions, indicating that lethal events correlate well with complex DNA double-strand breaks. The decrease in the single-track damage probability for protons of LET above approximately 30 keV µm-1, suggested by limited experimental evidence, is discussed, together with the consequent differences in the mechanisms of biological effects between protons and heavier ions. Applications of the results in hadrontherapy treatment planning are outlined.

  15. Characterizing a Model of Coronal Heating and Solar Wind Acceleration Based on Wave Turbulence.

    NASA Astrophysics Data System (ADS)

    Downs, C.; Lionello, R.; Mikic, Z.; Linker, J.; Velli, M.

    2014-12-01

    Understanding the nature of coronal heating and solar wind acceleration is a key goal in solar and heliospheric research. While there have been many theoretical advances in both topics, including suggestions that they may be intimately related, the inherent scale coupling and complexity of these phenomena limits our ability to construct models that test them on a fundamental level for realistic solar conditions. At the same time, there is an ever increasing impetus to improve our spaceweather models, and incorporating treatments for these processes that capture their basic features while remaining tractable is an important goal. With this in mind, I will give an overview of our exploration of a wave-turbulence driven (WTD) model for coronal heating and solar wind acceleration based on low-frequency Alfvénic turbulence. Here we attempt to bridge the gap between theory and practical modeling by exploring this model in 1D HD and multi-dimensional MHD contexts. The key questions that we explore are: What properties must the model possess to be a viable model for coronal heating? What is the influence of the magnetic field topology (open, closed, rapidly expanding)? And can we simultaneously capture coronal heating and solar wind acceleration with such a quasi-steady formulation? Our initial results suggest that a WTD based formulation performs adequately for a variety of solar and heliospheric conditions, while significantly reducing the number of free parameters when compared to empirical heating and solar wind models. The challenges, applications, and future prospects of this type of approach will also be discussed.

  16. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination.

    PubMed

    Gravett, M R; Hopkins, F B; Self, A J; Webb, A J; Timperley, C M; Riches, J R

    2014-08-01

    In the event of alleged use of organophosphorus nerve agents, all kinds of environmental samples can be received for analysis. These might include decontaminated and charred matter collected from the site of a suspected chemical attack. In other scenarios, such matter might be sampled to confirm the site of a chemical weapon test or clandestine laboratory decontaminated and burned to prevent discovery. To provide an analytical capability for these contingencies, we present a preliminary investigation of the effect of accelerant-based fire and liquid decontamination on soil contaminated with the nerve agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). The objectives were (a) to determine if VX or its degradation products were detectable in soil after an accelerant-based fire promoted by aviation fuel, including following decontamination with Decontamination Solution 2 (DS2) or aqueous sodium hypochlorite, (b) to develop analytical methods to support forensic analysis of accelerant-soaked, decontaminated and charred soil and (c) to inform the design of future experiments of this type to improve analytical fidelity. Our results show for the first time that modern analytical techniques can be used to identify residual VX and its degradation products in contaminated soil after an accelerant-based fire and after chemical decontamination and then fire. Comparison of the gas chromatography-mass spectrometry (GC-MS) profiles of VX and its impurities/degradation products from contaminated burnt soil, and burnt soil spiked with VX, indicated that the fire resulted in the production of diethyl methylphosphonate and O,S-diethyl methylphosphonothiolate (by an unknown mechanism). Other products identified were indicative of chemical decontamination, and some of these provided evidence of the decontaminant used, for example, ethyl 2-methoxyethyl methylphosphonate and bis(2-methoxyethyl) methylphosphonate following decontamination with DS2. Sample preparation

  17. Non Parametric Determination of Acceleration Characteristics in Supernova Shocks Based on Spectra of Cosmic Rays and Remnant Radiation

    NASA Astrophysics Data System (ADS)

    Petrosian, Vahe

    2016-07-01

    We have developed an inversion method for determination of the characteristics of the acceleration mechanism directly and non-parametrically from observations, in contrast to the usual forward fitting of parametric model variables to observations. This is done in the frame work of the so-called leaky box model of acceleration, valid for isotropic momentum distribution and for volume integrated characteristics in a finite acceleration site. We consider both acceleration by shocks and stochastic acceleration where turbulence plays the primary role to determine the acceleration, scattering and escape rates. Assuming a knowledge of the background plasma the model has essentially two unknown parameters, namely the momentum and pitch angle scattering diffusion coefficients, which can be evaluated given two independent spectral observations. These coefficients are obtained directly from the spectrum of radiation from the supernova remnants (SNRs), which gives the spectrum of accelerated particles, and the observed spectrum of cosmic rays (CRs), which are related to the spectrum of particles escaping the SNRs. The results obtained from application of this method will be presented.

  18. K-essence model from the mechanical approach point of view: coupled scalar field and the late cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Bouhmadi-López, Mariam; Sravan Kumar, K.; Marto, João; Morais, João; Zhuk, Alexander

    2016-07-01

    In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, we can consider the Universe to be filled with dust-like matter in the form of discretely distributed galaxies, a K-essence scalar field, playing the role of dark energy, and radiation as matter sources. We investigate such a Universe in the mechanical approach. This means that the peculiar velocities of the inhomogeneities (in the form of galaxies) as well as the fluctuations of the other perfect fluids are non-relativistic. Such fluids are designated as coupled because they are concentrated around the inhomogeneities. In the present paper, we investigate the conditions under which the K-essence scalar field with the most general form for its action can become coupled. We investigate at the background level three particular examples of the K-essence models: (i) the pure kinetic K-essence field, (ii) a K-essence with a constant speed of sound and (iii) the K-essence model with the Lagrangian bX+cX2‑V(phi). We demonstrate that if the K-essence is coupled, all these K-essence models take the form of multicomponent perfect fluids where one of the component is the cosmological constant. Therefore, they can provide the late-time cosmic acceleration and be simultaneously compatible with the mechanical approach.

  19. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Pesaran, Ahmad; Zhang, Chao; Kim, Gi-heon; Santhanagopalan, Shriram

    2015-06-10

    The physical and chemical phenomena occurring in a battery are many and complex and in many different scales. Without a better knowledge of the interplay among the multi-physics occurring across the varied scales, it is very challenging and time consuming to design long-lasting, high-performing, safe, affordable large battery systems, enabling electrification of the vehicles and modernization of the grid. The National Renewable Energy Laboratory, a U.S. Department of Energy laboratory, has been developing thermal and electrochemical models for cells and battery packs. Working with software producers, carmakers, and battery developers, computer-aided engineering tools have been developed that can accelerate the electrochemical and thermal design of batteries, reducing time to develop and optimize them and thus reducing the cost of the system. In the past couple of years, we initiated a project to model the mechanical response of batteries to stress, strain, fracture, deformation, puncture, and crush and then link them to electrochemical and thermal models to predict the response of a battery. This modeling is particularly important for understanding the physics and processes that happen in a battery during a crush-inducing vehicle crash. In this paper, we provide an overview of electrochemical-thermal-mechanical models for battery system understanding and designing.

  20. Design of photon converter and photoneutron target for High power electron accelerator based BNCT.

    PubMed

    Rahmani, Faezeh; Seifi, Samaneh; Anbaran, Hossein Tavakoli; Ghasemi, Farshad

    2015-12-01

    An electron accelerator, ILU-14, with current of 10 mA and 100 kW in power has been considered as one of the options for neutron source in Boron Neutron Capture Therapy (BNCT). The final design of neutron target has been obtained using MCNPX to optimize the neutron production. Tungsten in strip shape and D2O in cylindrical form have been proposed as the photon converter and the photoneutron target, respectively. In addition calculation of heat deposition in the photon target design has been considered to ensure mechanical stability of target. The results show that about 8.37×10(12) photoneutron/s with average energy of 615 keV can be produced by this neutron source design. In addition, using an appropriate beam shaping assembly an epithermal neutron flux of the order of 1.24×10(8) cm(-2) s(-1) can be obtained for BNCT applications. PMID:26278347

  1. Elemental analysis of concrete samples using an accelerator-based PGNAA setup

    NASA Astrophysics Data System (ADS)

    Naqvi, A. A.; Nagadi, M. M.; Baghabra Al-Amoudi, Omar S.

    2004-09-01

    Elemental analysis of concrete samples was carried out using an accelerator-based prompt gamma ray neutron activation analysis (PGNAA) setup. The gamma rays were produced via the capture of thermal neutron in the concrete sample. The prompt gamma ray yield was measured for 12 cm long concrete samples as a function of sample radius over a range of 6-11.5 cm radii. The optimum yield of the prompt gamma rays from the concrete sample was measured from a sample with 11.5 cm radius. The gamma ray yield was also calculated for 12 cm long concrete samples with 6-11.5 cm radius using Monte Carlo simulations. The experimental results were in excellent agreement with the calculated yield of the prompt gamma rays from the samples. Result of this study has shown the useful application of an accelerator-based PGNAA setup in elemental analysis of concrete sample. The facility can be further used to determine the chloride and sulfate concentrations in concrete samples for corrosion studies of reinforcement steel in concrete structures.

  2. Fuel retention measurements in Alcator C-Mod using accelerator-based in situ materials surveillance

    NASA Astrophysics Data System (ADS)

    Hartwig, Zachary S.; Barnard, Harold S.; Sorbom, Brandon N.; Lanza, Richard C.; Lipschultz, Bruce; Stahle, Peter W.; Whyte, Dennis G.

    2015-08-01

    This paper presents the first in situ time- and space-resolved measurements of deuterium (D) fuel retention in plasma-facing component (PFC) surfaces using Accelerator-based In-situ Materials Surveillance (AIMS) on the Alcator C-Mod tokamak. AIMS is a novel in situ materials diagnostic technique based on the spectroscopic analysis of nuclear reaction products induced in PFC surfaces using an ∼MeV beam of deuterons from a compact linear accelerator in between plasma shots. AIMS measurements of D retention on inner wall PFCs were acquired during diverted and limited plasma operations and during wall conditioning experiments. Intershot measurements demonstrate the local erosion and codeposition of boron films on PFC surfaces with a constant D / B ratio. This is consistent with previous results suggesting that D codeposition with boron is insufficient to account for the net retention observed in Alcator C-Mod. Changes in deuterium concentration during boronization, electron cyclotron and glow cleanings were also measured.

  3. Accelerated electronic structure-based molecular dynamics simulations of shock-induced chemistry

    NASA Astrophysics Data System (ADS)

    Cawkwell, Marc

    2015-06-01

    The initiation and progression of shock-induced chemistry in organic materials at moderate temperatures and pressures are slow on the time scales available to regular molecular dynamics simulations. Accessing the requisite time scales is particularly challenging if the interatomic bonding is modeled using accurate yet expensive methods based explicitly on electronic structure. We have combined fast, energy conserving extended Lagrangian Born-Oppenheimer molecular dynamics with the parallel replica accelerated molecular dynamics formalism to study the relatively sluggish shock-induced chemistry of benzene around 13-20 GPa. We model interatomic bonding in hydrocarbons using self-consistent tight binding theory with an accurate and transferable parameterization. Shock compression and its associated transient, non-equilibrium effects are captured explicitly by combining the universal liquid Hugoniot with a simple shrinking-cell boundary condition. A number of novel methods for improving the performance of reactive electronic structure-based molecular dynamics by adapting the self-consistent field procedure on-the-fly will also be discussed. The use of accelerated molecular dynamics has enabled us to follow the initial stages of the nucleation and growth of carbon clusters in benzene under thermodynamic conditions pertinent to experiments.

  4. Radiation shielding and patient organ dose study for an accelerator- based BNCT Facility at LBNL

    SciTech Connect

    Costes, S.V.; Vujic, J.; Donahue, R.J.

    1996-10-24

    This study considers the radiation safety aspects of several designs discussed in a previous report of an accelerator-based source of neutrons, based on the [sup 7]Li(p,n) reaction, for a Boron Neutron Capture Therapy (BNCT) Facility at Lawrence Berkeley National Laboratory (LBNL). determines the optimal radiation shield thicknesses for the patient treatment room. Since this is an experimental facility no moderator or reflector is considered in the bulk wall shield design. This will allow the flexibility of using any postulated moderator/reflector design and assumes sufficient shielding even in the absence of a moderator/reflector. In addition the accelerator is assumed to be capable of producing 100 mA of 2.5 MeV proton beam current. The addition of 1% and 2% [sup 10]B (by weight) to the concrete is also investigated. The second part of this paper determines the radiation dose to the major organs of a patient during a treatment. Simulations use the MIRD 5 anthropomorphic phantom to calculate organ doses from a 20 mA proton beam assuming various envisioned moderator/reflector in place. Doses are tabulated by component and for a given uniform [sup 10]B loading in all organs. These are presented in for a BeO moderator and for an Al/AlF[sub 3] moderator. Dose estimates for different [sup 10]B loadings may be scaled.

  5. Accelerating Content-Based Image Retrieval via GPU-Adaptive Index Structure

    PubMed Central

    2014-01-01

    A tremendous amount of work has been conducted in content-based image retrieval (CBIR) on designing effective index structure to accelerate the retrieval process. Most of them improve the retrieval efficiency via complex index structures, and few take into account the parallel implementation of them on underlying hardware, making the existing index structures suffer from low-degree of parallelism. In this paper, a novel graphics processing unit (GPU) adaptive index structure, termed as plane semantic ball (PSB), is proposed to simultaneously reduce the work of retrieval process and exploit the parallel acceleration of underlying hardware. In PSB, semantics are embedded into the generation of representative pivots and multiple balls are selected to cover more informative reference features. With PSB, the online retrieval of CBIR is factorized into independent components that are implemented on GPU efficiently. Comparative experiments with GPU-based brute force approach demonstrate that the proposed approach can achieve high speedup with little information loss. Furthermore, PSB is compared with the state-of-the-art approach, random ball cover (RBC), on two standard image datasets, Corel 10 K and GIST 1 M. Experimental results show that our approach achieves higher speedup than RBC on the same accuracy level. PMID:24782668

  6. Challenges in Linear Accelerator Radiotherapy for Chordomas and Chondrosarcomas of the Skull Base: Focus on Complications

    SciTech Connect

    Hauptman, Jason S.; Barkhoudarian, Garni; Safaee, Michael; Gorgulho, Alessandra; Tenn, Steven; Agazaryan, Nzhde; Selch, Michael; De Salles, Antonio A.F.

    2012-06-01

    Purpose: Intracranial chordomas and chondrosarcomas are histologically low-grade, locally invasive tumors that infiltrate the skull base. Currently, consensus therapy includes surgical resection and adjuvant radiotherapy. Radiation delivery is typically limited by the proximity of these tumors to critical skull base structures. Methods: This is a retrospective review of 13 cases of chordomas and 2 cases of chondroid chondrosarcomas of the skull based treated with linear accelerator stereotactic radiotherapy (SRT, n = 10) or stereotactic radiosurgery (SRS, n = 5). The average time to the most recent follow-up visit was 4.5 years. The tumor characteristics, treatment details, and outcomes were recorded. Each radiation plan was reviewed, and the dosage received by the brainstem, optic apparatus, and pituitary was calculated. Results: Of the 10 patients treated with SRT, 6 were found to have unchanged or decreased tumor size as determined from radiographic follow-up. Of the 5 patients treated with SRS, 3 were found to have stable or unchanged tumors at follow-up. The complications included 1 SRT patient who developed endocrinopathy, 2 patients (1 treated with SRS and the other with SRT), who developed cranial neuropathy, and 1 SRS patient who developed visual deficits. Additionally, 1 patient who received both SRS and SRT within 2 years for recurrence experienced transient medial temporal lobe radiation changes that resolved. Conclusions: Where proton beam therapy is unavailable, linear accelerator-based SRT or radiosurgery remains a safe option for adjuvant therapy of chordomas and chondrosarcomas of the skull base. The exposure of the optic apparatus, pituitary stalk, and brainstem must be considered during planning to minimize complications. If the optic apparatus is included in the 80% isodose line, it might be best to fractionate therapy. Exposure of the pituitary stalk should be kept to <30 Gy to minimize endocrine dysfunction. Brainstem exposure should be

  7. GPU-accelerated 3D neutron diffusion code based on finite difference method

    SciTech Connect

    Xu, Q.; Yu, G.; Wang, K.

    2012-07-01

    Finite difference method, as a traditional numerical solution to neutron diffusion equation, although considered simpler and more precise than the coarse mesh nodal methods, has a bottle neck to be widely applied caused by the huge memory and unendurable computation time it requires. In recent years, the concept of General-Purpose computation on GPUs has provided us with a powerful computational engine for scientific research. In this study, a GPU-Accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. First, a clean-sheet neutron diffusion code (3DFD-CPU) was written in C++ on the CPU architecture, and later ported to GPUs under NVIDIA's CUDA platform (3DFD-GPU). The IAEA 3D PWR benchmark problem was calculated in the numerical test, where three different codes, including the original CPU-based sequential code, the HYPRE (High Performance Pre-conditioners)-based diffusion code and CITATION, were used as counterpoints to test the efficiency and accuracy of the GPU-based program. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. A speedup factor of about 46 times was obtained, using NVIDIA's Geforce GTX470 GPU card against a 2.50 GHz Intel Quad Q9300 CPU processor. Compared with the HYPRE-based code performing in parallel on an 8-core tower server, the speedup of about 2 still could be observed. More encouragingly, without any mathematical acceleration technology, the GPU implementation ran about 5 times faster than CITATION which was speeded up by using the SOR method and Chebyshev extrapolation technique. (authors)

  8. Analysis of accelerator based neutron spectra for BNCT using proton recoil spectroscopy

    SciTech Connect

    Wielopolski, L.; Ludewig, H.; Powell, J.R.; Raparia, D.; Alessi, J.G.; Lowenstein, D.I.

    1999-03-01

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by {sup 10}B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase 1/2 clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra, alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark

  9. ANALYSIS OF ACCELERATOR BASED NEUTRON SPECTRA FOR BNCT USING PROTON RECOIL SPECTROSCOPY

    SciTech Connect

    WIELOPOLSKI,L.; LUDEWIG,H.; POWELL,J.R.; RAPARIA,D.; ALESSI,J.G.; LOWENSTEIN,D.I.

    1998-11-06

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by {sup 10}B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase I/II clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark

  10. Preliminary tests of the electrostatic plasma accelerator

    NASA Technical Reports Server (NTRS)

    Aston, G.; Acker, T.

    1990-01-01

    This report describes the results of a program to verify an electrostatic plasma acceleration concept and to identify those parameters most important in optimizing an Electrostatic Plasma Accelerator (EPA) thruster based upon this thrust mechanism. Preliminary performance measurements of thrust, specific impulse and efficiency were obtained using a unique plasma exhaust momentum probe. Reliable EPA thruster operation was achieved using one power supply.

  11. Acceleration-based joint stability parameters for total knee arthroplasty that correspond with patient-reported instability.

    PubMed

    Roberts, Dustyn; Khan, Humera; Kim, Joo H; Slover, James; Walker, Peter S

    2013-10-01

    There is no universally accepted definition of human joint stability, particularly in nonperiodic general activities of daily living. Instability has proven to be a difficult parameter to define and quantify, since both spatial and temporal measures need to be considered to fully characterize joint stability. In this preliminary study, acceleration-based parameters were proposed to characterize the joint stability. Several time-statistical parameters of acceleration and jerk were defined as potential stability measures, since anomalous acceleration or jerk could be a symptom of poor control or stability. An inertial measurement unit attached at the level of the tibial tubercle of controls and patients following total knee arthroplasty was used to determine linear acceleration of the knee joint during several activities of daily living. The resulting accelerations and jerks were compared with patient-reported instability as determined through a standard questionnaire. Several parameters based on accelerations and jerks in the anterior/posterior direction during the step-up/step-down activity were significantly different between patients and controls and correlated with patient reports of instability in that activity. The range of the positive to negative peak acceleration and infinity norm of acceleration, in the anterior/posterior direction during the step-up/step-down activity, proved to be the best indicators of instability. As time derivatives of displacement, these acceleration-based parameters represent spatial and temporal information and are an important step forward in developing a definition and objective quantification of human joint stability that can complement the subjective patient report. PMID:23886970

  12. Dynamic mechanical and molecular weight measurements on polymer bonded explosives from thermally accelerated aging tests. I. Fluoropolymer binders

    SciTech Connect

    Hoffman, D.M.; Caley, L.E.

    1981-01-01

    The dynamic mechanical properties and molecular weight distribution of two polymer bonded explosives, LX-10-1 and PBX-9502, maintained at 23, 60, and 74/sup 0/C for 3 years were studied. LX-10-1 is 94.5% 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane explosive bonded together with 5.5% Viton A fluoropolymer. PBX-9502 is 95% triaminotrinitrobenzene explosive bonded with 5% Kel-F-800 fluoropolymer. There are two mechanical relaxations in the LX-10-1 in the military temperature range. The relaxation at -10/sup 0/C is associated with the glass transition temperature of the Viton A binder. A second weak relaxation occurs at about 30/sup 0/C in all LX-10-1 samples tested. This relaxation is probably associated with small amounts of crystallinity in the binder although this has not been demonstrated. There is a slight increase in modulus of the LX-10-1 with accelerated aging temperature. Changes in the dynamic mechanical properties of PBX-9502 are ascribed to crystallization of the chlorotrifluoroethylene component of the Kel-F-800 binder. The molecular weight of the Viton A binder decreased slight with increasing aging temperature. Using the kinetics of random scission the activation energy for polymer degradation in the presence of the explosive was 1.19 kcal/mole. The Arrhenius preexponential term and activation energy predict an expected use-life in excess of 60 years for LX-10-1. The Kel-F-800 in PBX-9502 is also extremely stable.

  13. FPGA accelerator for protein secondary structure prediction based on the GOR algorithm

    PubMed Central

    2011-01-01

    Background Protein is an important molecule that performs a wide range of functions in biological systems. Recently, the protein folding attracts much more attention since the function of protein can be generally derived from its molecular structure. The GOR algorithm is one of the most successful computational methods and has been widely used as an efficient analysis tool to predict secondary structure from protein sequence. However, the execution time is still intolerable with the steep growth in protein database. Recently, FPGA chips have emerged as one promising application accelerator to accelerate bioinformatics algorithms by exploiting fine-grained custom design. Results In this paper, we propose a complete fine-grained parallel hardware implementation on FPGA to accelerate the GOR-IV package for 2D protein structure prediction. To improve computing efficiency, we partition the parameter table into small segments and access them in parallel. We aggressively exploit data reuse schemes to minimize the need for loading data from external memory. The whole computation structure is carefully pipelined to overlap the sequence loading, computing and back-writing operations as much as possible. We implemented a complete GOR desktop system based on an FPGA chip XC5VLX330. Conclusions The experimental results show a speedup factor of more than 430x over the original GOR-IV version and 110x speedup over the optimized version with multi-thread SIMD implementation running on a PC platform with AMD Phenom 9650 Quad CPU for 2D protein structure prediction. However, the power consumption is only about 30% of that of current general-propose CPUs. PMID:21342582

  14. Conceptual design of an RFQ accelerator-based neutron source for boron neutron-capture therapy

    SciTech Connect

    Wangler, T.P.; Stovall, J.E.; Bhatia, T.S.; Wang, C.K.; Blue, T.E.; Gahbauer, R.A.

    1989-01-01

    We present a conceptual design of a low-energy neutron generator for treatment of brain tumors by boron neutron capture theory (BNCT). The concept is based on a 2.5-MeV proton beam from a radio-frequency quadrupole (RFQ) linac, and the neutrons are produced by the /sup 7/Li(p,n)/sup 7/Be reaction. A liquid lithium target and modulator assembly are designed to provide a high flux of epithermal neutrons. The patient is administered a tumor-specific /sup 10/Be-enriched compound and is irradiated by the neutrons to create a highly localized dose from the reaction /sup 10/B(n,..cap alpha..)/sup 7/Li. An RFQ accelerator-based neutron source for BNCT is compact, which makes it practical to site the facility within a hospital. 11 refs., 5 figs., 1 tab.

  15. An FPGA-based quench detection and protection system for superconducting accelerator magnets

    SciTech Connect

    Carcagno, R.H.; Feher, S.; Lamm, M.; Makulski, A.; Nehring, R.; Orris, D.F.; Pischalnikov, Y.; Tartaglia, M.; /Fermilab

    2005-05-01

    A new quench detection and protection system for superconducting accelerator magnets was developed for the Fermilab's Magnet Test Facility (MTF). This system is based on a Field-Programmable Gate Array (FPGA) module, and it is made of mostly commercially available, integrated hardware and software components. It provides all the functions of our existing VME-based quench detection and protection system, but in addition the new system is easily scalable to protect multiple magnets powered independently and a more powerful user interface and analysis tools. The new system has been used successfully for testing LHC Interaction Region Quadrupoles correctors and High Field Magnet HFDM04. In this paper we describe the system and present results.

  16. Pure acceleration is the primary determinant of speed to first-base in major-league baseball game situations.

    PubMed

    Eugene Coleman, A; Amonette, William E

    2012-06-01

    The purposes of this research were to (a) quantify interval sprint times between Home-Plate and the Foul-Line and the Foul-Line and First-Base, (b) determine if differences exist in interval velocities and acceleration between left- and right-handed batters or between-position groupings, and (c) to quantify determinants of time to First-Base in Major-League Baseball players during actual games. A total of 1,896 sprint times to the Foul-Line (13.7 m) and First-Base (27.4 m) were recorded in 302 baseball players by a single coach, positioned in the dugout with a hand-held stopwatch. Interval velocities and accelerations were computed between Home-Plate and the Foul-Line and the Foul-Line and First-Base; average velocity and acceleration were also determined over the entire 27.4 m. Velocity and acceleration for left-handed batters were greater than for right-handed batters from Home-Plate to the Foul-Line and from Home-Plate to First-Base; however, there were no differences in velocity or acceleration from the Foul-Line to First-Base. Interval velocity was significantly greater for outfielders and infielders compared with that for catchers from Home-Plate to the Foul-Line and from the Home-Plate to First-Base. Outfielders were faster than catchers from the Foul-Line to First-Base; no other between-group differences were evident. Accelerations from Home-Plate to the Foul-Line and from Home-Plate to First-Base were greater for outfielders compared with infielders and catchers. Infielders accelerated at greater rates than did catchers between these intervals. There were no between-position differences in acceleration from the Foul-Line to First-Base. These data indicate that time to First-Base is most affected by acceleration from Home-Plate to the Foul-Line. Coaches should implement strategies that encourage players to sprint maximally over the first 13.7 m to maximize chances of successfully reaching First-Base. PMID:22450255

  17. Possible incorporation of petroleum-based carbons in biochemicals produced by bioprocess--biomass carbon ratio measured by accelerator mass spectrometry.

    PubMed

    Kunioka, Masao

    2010-06-01

    The biomass carbon ratios of biochemicals related to biomass have been reviewed. Commercial products from biomass were explained. The biomass carbon ratios of biochemical compounds were measured by accelerator mass spectrometry (AMS) based on the (14)C concentration of carbons in the compounds. This measuring method uses the mechanism that biomass carbons include a very low level of (14)C and petroleum carbons do not include (14)C similar to the carbon dating measuring method. It was confirmed that there were some biochemicals synthesized from petroleum-based carbons. This AMS method has a high accuracy with a small standard deviation and can be applied to plastic products. PMID:20454790

  18. Cosmic Plasma Wakefield Acceleration

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Tajima, Toshiki; Takahashi, Yoshiyuki

    2002-10-01

    A cosmic acceleration mechanism is introduced which is based on the wakefields excited by the Alfven shocks in a relativistically flowing plasma. We show that there exists a threshold condition for transparency below which the accelerating particle is collision-free and suffers little energy loss in the plasma medium. The stochastic encounters of the random accelerating-decelerating phases results in a power-law energy spectrum: f([epsilon]) [is proportional to] 1/[epsilon]2. As an example, we discuss the possible production of super-GZK ultra high energy cosmic rays (UHECR) in the atmosphere of gamma ray bursts. The estimated event rate in our model agrees with that from UHECR observations. [copyright] 2002 American Institute of Physics

  19. A comparison of public datasets for acceleration-based fall detection.

    PubMed

    Igual, Raul; Medrano, Carlos; Plaza, Inmaculada

    2015-09-01

    Falls are one of the leading causes of mortality among the older population, being the rapid detection of a fall a key factor to mitigate its main adverse health consequences. In this context, several authors have conducted studies on acceleration-based fall detection using external accelerometers or smartphones. The published detection rates are diverse, sometimes close to a perfect detector. This divergence may be explained by the difficulties in comparing different fall detection studies in a fair play since each study uses its own dataset obtained under different conditions. In this regard, several datasets have been made publicly available recently. This paper presents a comparison, to the best of our knowledge for the first time, of these public fall detection datasets in order to determine whether they have an influence on the declared performances. Using two different detection algorithms, the study shows that the performances of the fall detection techniques are affected, to a greater or lesser extent, by the specific datasets used to validate them. We have also found large differences in the generalization capability of a fall detector depending on the dataset used for training. In fact, the performance decreases dramatically when the algorithms are tested on a dataset different from the one used for training. Other characteristics of the datasets like the number of training samples also have an influence on the performance while algorithms seem less sensitive to the sampling frequency or the acceleration range. PMID:26233258

  20. Transverse vibration and buckling of a cantilevered beam with tip body under constant axial base acceleration

    NASA Technical Reports Server (NTRS)

    Storch, J.; Gates, S.

    1983-01-01

    The planar transverse bending behavior of a uniform cantilevered beam with rigid tip body subject to constant axial base acceleration was analyzed. The beam is inextensible and capable of small elastic transverse bending deformations only. Two classes of tip bodies are recognized: (1) mass centers located along the beam tip tangent line; and (2) mass centers with arbitrary offset towards the beam attachment point. The steady state response is studied for the beam end condition cases: free, tip mass, tip body with restricted mass center offset, and tip body with arbitrary mass center offset. The first three cases constitute classical Euler buckling problems, and the characteristic equation for the critical loads/accelerations are determined. For the last case a unique steady state solution exists. The free vibration response is examined for the two classes of tip body. The characteristic equation, eigenfunctions and their orthogonality properties are obtained for the case of restricted mass center offset. The vibration problem is nonhomogeneous for the case of arbitrary mass center offset. The exact solution is obtained as a sum of the steady state solution and a superposition of simple harmonic motions.

  1. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Curzio, G.; d'Errico, F.; Nath, R.; Tinti, R.

    2002-01-01

    Neutron capture in 10B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.

  2. Accelerated solution of non-linear flow problems using Chebyshev iteration polynomial based RK recursions

    SciTech Connect

    Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H.

    1996-12-31

    The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.

  3. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy

    SciTech Connect

    Bleuel, D.L.; Donahue, R.J.; Ludewigt, B.A.; Vujic, J.

    1998-09-01

    The {sup 7}Li(p,n){sup 7}Be reaction has been investigated as an accelerator-driven neutron source for proton energies between 2.1 and 2.6 MeV. Epithermal neutron beams shaped by three moderator materials, Al/AlF{sub 3}, {sup 7}LiF, and D{sub 2}O, have been analyzed and their usefulness for boron neutron capture therapy (BNCT) treatments evaluated. Radiation transport through the moderator assembly has been simulated with the Monte Carlo {ital N}-particle code (MCNP). Fluence and dose distributions in a head phantom were calculated using BNCT treatment planning software. Depth-dose distributions and treatment times were studied as a function of proton beam energy and moderator thickness. It was found that an accelerator-based neutron source with Al/AlF{sub 3} or {sup 7}LiF as moderator material can produce depth-dose distributions superior to those calculated for a previously published neutron beam design for the Brookhaven Medical Research Reactor, achieving up to {approximately}50{percent} higher doses near the midline of the brain. For a single beam treatment, a proton beam current of 20 mA, and a {sup 7}LiF moderator, the treatment time was estimated to be about 40 min. The tumor dose deposited at a depth of 8 cm was calculated to be about 21 Gy-Eq. {copyright} {ital 1998 American Association of Physicists in Medicine.}

  4. Model-Based Acceleration of Look-Locker T1 Mapping

    PubMed Central

    Tran-Gia, Johannes; Wech, Tobias; Bley, Thorsten; Köstler, Herbert

    2015-01-01

    Mapping the longitudinal relaxation time T1 has widespread applications in clinical MRI as it promises a quantitative comparison of tissue properties across subjects and scanners. Due to the long scan times of conventional methods, however, the use of quantitative MRI in clinical routine is still very limited. In this work, an acceleration of Inversion-Recovery Look-Locker (IR-LL) T1 mapping is presented. A model-based algorithm is used to iteratively enforce an exponential relaxation model to a highly undersampled radially acquired IR-LL dataset obtained after the application of a single global inversion pulse. Using the proposed technique, a T1 map of a single slice with 1.6mm in-plane resolution and 4mm slice thickness can be reconstructed from data acquired in only 6s. A time-consuming segmented IR experiment was used as gold standard for T1 mapping in this work. In the subsequent validation study, the model-based reconstruction of a single-inversion IR-LL dataset exhibited a T1 difference of less than 2.6% compared to the segmented IR-LL reference in a phantom consisting of vials with T1 values between 200ms and 3000ms. In vivo, the T1 difference was smaller than 5.5% in WM and GM of seven healthy volunteers. Additionally, the T1 values are comparable to standard literature values. Despite the high acceleration, all model-based reconstructions were of a visual quality comparable to fully sampled references. Finally, the reproducibility of the T1 mapping method was demonstrated in repeated acquisitions. In conclusion, the presented approach represents a promising way for fast and accurate T1 mapping using radial IR-LL acquisitions without the need of any segmentation. PMID:25860381

  5. Mechanism-based bioanalysis and biomarkers for hepatic chemical stress.

    PubMed

    Antoine, D J; Mercer, A E; Williams, D P; Park, B K

    2009-08-01

    Adverse drug reactions, in particular drug-induced hepatotoxicity, represent a major challenge for clinicians and an impediment to safe drug development. Novel blood or urinary biomarkers of chemically-induced hepatic stress also hold great potential to provide information about pathways leading to cell death within tissues. The earlier pre-clinical identification of potential hepatotoxins and non-invasive diagnosis of susceptible patients, prior to overt liver disease is an important goal. Moreover, the identification, validation and qualification of biomarkers that have in vitro, in vivo and clinical transferability can assist bridging studies and accelerate the pace of drug development. Drug-induced chemical stress is a multi-factorial process, the kinetics of the interaction between the hepatotoxin and the cellular macromolecules are crucially important as different biomarkers will appear over time. The sensitivity of the bioanalytical techniques used to detect biological and chemical biomarkers underpins the usefulness of the marker in question. An integrated analysis of the biochemical, molecular and cellular events provides an understanding of biological (host) factors which ultimately determine the balance between xenobiotic detoxification, adaptation and liver injury. The aim of this review is to summarise the potential of novel mechanism-based biomarkers of hepatic stress which provide information to connect the intracellular events (drug metabolism, organelle, cell and whole organ) ultimately leading to tissue damage (apoptosis, necrosis and inflammation). These biomarkers can provide both the means to inform the pharmacologist and chemist with respect to safe drug design, and provide clinicians with valuable tools for patient monitoring. PMID:19621999

  6. Statistical mechanics of ontology based annotations

    NASA Astrophysics Data System (ADS)

    Hoyle, David C.; Brass, Andrew

    2016-01-01

    We present a statistical mechanical theory of the process of annotating an object with terms selected from an ontology. The term selection process is formulated as an ideal lattice gas model, but in a highly structured inhomogeneous field. The model enables us to explain patterns recently observed in real-world annotation data sets, in terms of the underlying graph structure of the ontology. By relating the external field strengths to the information content of each node in the ontology graph, the statistical mechanical model also allows us to propose a number of practical metrics for assessing the quality of both the ontology, and the annotations that arise from its use. Using the statistical mechanical formalism we also study an ensemble of ontologies of differing size and complexity; an analysis not readily performed using real data alone. Focusing on regular tree ontology graphs we uncover a rich set of scaling laws describing the growth in the optimal ontology size as the number of objects being annotated increases. In doing so we provide a further possible measure for assessment of ontologies.

  7. Comparative transcriptome and metabolome provides new insights into the regulatory mechanisms of accelerated senescence in litchi fruit after cold storage.

    PubMed

    Yun, Ze; Qu, Hongxia; Wang, Hui; Zhu, Feng; Zhang, Zhengke; Duan, Xuewu; Yang, Bao; Cheng, Yunjiang; Jiang, Yueming

    2016-01-01

    Litchi is a non-climacteric subtropical fruit of high commercial value. The shelf life of litchi fruit under ambient conditions (AC) is approximately 4-6 days. Post-harvest cold storage prolongs the life of litchi fruit for up to 30 days with few changes in pericarp browning and total soluble solids. However, the shelf life of litchi fruits at ambient temperatures after pre-cold storage (PCS) is only 1-2 days. To better understand the mechanisms involved in the rapid fruit senescence induced by pre-cold storage, a transcriptome of litchi pericarp was constructed to assemble the reference genes, followed by comparative transcriptomic and metabolomic analyses. Results suggested that the senescence of harvested litchi fruit was likely to be an oxidative process initiated by ABA, including oxidation of lipids, polyphenols and anthocyanins. After cold storage, PCS fruit exhibited energy deficiency, and respiratory burst was elicited through aerobic and anaerobic respiration, which was regulated specifically by an up-regulated calcium signal, G-protein-coupled receptor signalling pathway and small GTPase-mediated signal transduction. The respiratory burst was largely associated with increased production of reactive oxygen species, up-regulated peroxidase activity and initiation of the lipoxygenase pathway, which were closely related to the accelerated senescence of PCS fruit. PMID:26763309

  8. Comparative transcriptome and metabolome provides new insights into the regulatory mechanisms of accelerated senescence in litchi fruit after cold storage

    PubMed Central

    Yun, Ze; Qu, Hongxia; Wang, Hui; Zhu, Feng; Zhang, Zhengke; Duan, Xuewu; Yang, Bao; Cheng, Yunjiang; Jiang, Yueming

    2016-01-01

    Litchi is a non-climacteric subtropical fruit of high commercial value. The shelf life of litchi fruit under ambient conditions (AC) is approximately 4–6 days. Post-harvest cold storage prolongs the life of litchi fruit for up to 30 days with few changes in pericarp browning and total soluble solids. However, the shelf life of litchi fruits at ambient temperatures after pre-cold storage (PCS) is only 1–2 days. To better understand the mechanisms involved in the rapid fruit senescence induced by pre-cold storage, a transcriptome of litchi pericarp was constructed to assemble the reference genes, followed by comparative transcriptomic and metabolomic analyses. Results suggested that the senescence of harvested litchi fruit was likely to be an oxidative process initiated by ABA, including oxidation of lipids, polyphenols and anthocyanins. After cold storage, PCS fruit exhibited energy deficiency, and respiratory burst was elicited through aerobic and anaerobic respiration, which was regulated specifically by an up-regulated calcium signal, G-protein-coupled receptor signalling pathway and small GTPase-mediated signal transduction. The respiratory burst was largely associated with increased production of reactive oxygen species, up-regulated peroxidase activity and initiation of the lipoxygenase pathway, which were closely related to the accelerated senescence of PCS fruit. PMID:26763309

  9. Noncanonical Myo9b-RhoGAP Accelerates RhoA GTP Hydrolysis by a Dual-Arginine-Finger Mechanism.

    PubMed

    Yi, Fengshuang; Kong, Ruirui; Ren, Jinqi; Zhu, Li; Lou, Jizhong; Wu, Jane Y; Feng, Wei

    2016-07-31

    The GTP hydrolysis activities of Rho GTPases are stimulated by GTPase-activating proteins (GAPs), which contain a RhoGAP domain equipped with a characteristic arginine finger and an auxiliary asparagine for catalysis. However, the auxiliary asparagine is missing in the RhoGAP domain of Myo9b (Myo9b-RhoGAP), a unique motorized RhoGAP that specifically targets RhoA for controlling cell motility. Here, we determined the structure of Myo9b-RhoGAP in complex with GDP-bound RhoA and magnesium fluoride. Unexpectedly, Myo9b-RhoGAP contains two arginine fingers at its catalytic site. The first arginine finger resembles the one within the canonical RhoGAP domains and inserts into the nucleotide-binding pocket of RhoA, whereas the second arginine finger anchors the Switch I loop of RhoA and interacts with the nucleotide, stabilizing the transition state of GTP hydrolysis and compensating for the lack of the asparagine. Mutating either of the two arginine fingers impaired the catalytic activity of Myo9b-RhoGAP and affected the Myo9b-mediated cell migration. Our data indicate that Myo9b-RhoGAP accelerates RhoA GTP hydrolysis by a previously unknown dual-arginine-finger mechanism, which may be shared by other noncanonical RhoGAP domains lacking the auxiliary asparagine. PMID:27363609

  10. Sprint Accelerations to First Base Among Major League Baseball Players With Different Years of Career Experience.

    PubMed

    Coleman, A Eugene; Amonette, William E

    2015-07-01

    The purpose of this article was to compare times to first base in Major League Baseball games to determine whether running velocity decreases to the foul line and first base among players with differing years of playing experience. From 1998 to 2012, 1,185 sprint times to first base were analyzed: 469 outfielders, 601 infielders, and 115 catchers. The players were divided into differing experience categories depending on their years of service in Major League Baseball: 1-5, 6-10, 11-15, and 16-20+ years. Velocity at the foul line and first base was compared and interval accelerations were reported. Comparisons were completed by playing position, and within left- and right-handed batters. Left-handed outfielders exhibited reduced velocities at 6-10 (p = 0.04), 11-15 (p = 0.004), and 16-20 years (p < 0.001) compared with 1-5 years; there were no statistical differences in velocity at the foul line. Right-handed outfielders exhibited significantly reduced velocities at first base in 6-10 (p = 0.002) and 11-15 years (p = 0.001); they also had a reduced velocities at the foul line in 6-10 (p = 0.004) and 11-15 years (p = 0.009). Right-handed infielders had reduced velocities at first base in 11-15 years (p < 0.001). No other differences were observed within infielders at first base or the foul line. There were no differences within the compared variables for catchers. Decreases in running velocity to first base with experience are seen in outfielders but are less prominent in infielders and catchers. Although physical capabilities for sprinting may decline with age, it is possible that through repetition more experienced players perfect the skill-related component of running to first base, thus preserving speed. PMID:25353082

  11. 350 keV accelerator based PGNAA setup to detect nitrogen in bulk samples

    NASA Astrophysics Data System (ADS)

    Naqvi, A. A.; Al-Matouq, Faris A.; Khiari, F. Z.; Gondal, M. A.; Rehman, Khateeb-ur; Isab, A. A.; Raashid, M.; Dastageer, M. A.

    2013-11-01

    Nitrogen concentration was measured in explosive and narcotics proxy material, e.g. anthranilic acid, caffeine, melamine, and urea samples, bulk samples through thermal neutron capture reaction using 350 keV accelerator based prompt gamma ray neutron activation (PGNAA) setup. Intensity of 2.52, 3.53-3.68, 4.51, 5.27-5.30 and 10.38 MeV prompt gamma rays of nitrogen from the bulk samples was measured using a cylindrical 100 mm×100 mm (diameter×height ) BGO detector. Inspite of interference of nitrogen gamma rays from bulk samples with capture prompt gamma rays from BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays has been obtained. This is an indication of the excellent performance of the PGNAA setup for detection of nitrogen in bulk samples.

  12. Position and Velocity Estimation for Two-Inertia System with Nonlinear Stiffness Based on Acceleration Sensor

    PubMed Central

    Nam, Kyung-Tae; Lee, Seung-Joon; Kuc, Tae-Yong; Kim, Hyungjong

    2015-01-01

    In this paper, we consider the state estimation problem for flexible joint manipulators that involve nonlinear characteristics in their stiffness. The two key ideas of our design are that (a) an accelerometer is used in order that the estimation error dynamics do not depend on nonlinearities at the link part of the manipulators and (b) the model of the nonlinear stiffness is indeed a Lipschitz function. Based on the measured acceleration, we propose a nonlinear observer under the Lipschitz condition of the nonlinear stiffness. In addition, in order to effectively compensate for the estimation error, the gain of the proposed observer is chosen from the ARE (algebraic Riccati equations) which depend on the Lipschitz constant. Comparative experimental results verify the effectiveness of the proposed method. PMID:26729125

  13. A new method of accelerated graph display in primary flight display based on FPGA

    NASA Astrophysics Data System (ADS)

    Kong, Quancun; Li, Chenggui; Zhang, Fengqing

    2006-11-01

    With the development of avionic technology, there is the increasing amount of information to be displayed on Primary Flight Display (PFD) of the cockpit. Beside the higher requirement of accuracy, reliability and the real-time property of information should be met in some emergency situations. Therefore, it is rather important to make further improvement on speeding up graph generation and display. This paper, based on hardware acceleration, describes a designated method to satisfy the higher requirement of PFD for graph display. The new method is characterized with graphic layering double frame buffer alternation and graphic synthesis, which to a great extent, reduces the job of a processor and speeds up the graphic generation and display, hence solving the speed bottleneck in PFD graphic display.

  14. RF Surface Impedance Characterization of Potential New Materials for SRF-based Accelerators

    SciTech Connect

    Xiao, Binping; Eremeev, Grigory V.; Reece, Charles E.; Phillips, H. Lawrence; Kelley, Michael J.

    2012-09-01

    In the development of new superconducting materials for possible use in SRF-based accelerators, it is useful to work with small candidate samples rather than complete resonant cavities. The recently commissioned Jefferson Lab RF Surface Impedance Characterization (SIC) system can presently characterize the central region of 50 mm diameter disk samples of various materials from 2 to 40 K exposed to RF magnetic fields up to 14 mT at 7.4 GHz. We report the recent measurement results of bulk Nb, thin film Nb on Cu and sapphire substrates, Nb{sub 3}Sn sample, and thin film MgB{sub 2} on sapphire substrate provided by colleagues at JLab and Temple University.

  15. Research on acceleration method of reactor physics based on FPGA platforms

    SciTech Connect

    Li, C.; Yu, G.; Wang, K.

    2013-07-01

    The physical designs of the new concept reactors which have complex structure, various materials and neutronic energy spectrum, have greatly improved the requirements to the calculation methods and the corresponding computing hardware. Along with the widely used parallel algorithm, heterogeneous platforms architecture has been introduced into numerical computations in reactor physics. Because of the natural parallel characteristics, the CPU-FPGA architecture is often used to accelerate numerical computation. This paper studies the application and features of this kind of heterogeneous platforms used in numerical calculation of reactor physics through practical examples. After the designed neutron diffusion module based on CPU-FPGA architecture achieves a 11.2 speed up factor, it is proved to be feasible to apply this kind of heterogeneous platform into reactor physics. (authors)

  16. Robust Foot Clearance Estimation Based on the Integration of Foot-Mounted IMU Acceleration Data

    PubMed Central

    Benoussaad, Mourad; Sijobert, Benoît; Mombaur, Katja; Azevedo Coste, Christine

    2015-01-01

    This paper introduces a method for the robust estimation of foot clearance during walking, using a single inertial measurement unit (IMU) placed on the subject’s foot. The proposed solution is based on double integration and drift cancellation of foot acceleration signals. The method is insensitive to misalignment of IMU axes with respect to foot axes. Details are provided regarding calibration and signal processing procedures. Experimental validation was performed on 10 healthy subjects under three walking conditions: normal, fast and with obstacles. Foot clearance estimation results were compared to measurements from an optical motion capture system. The mean error between them is significantly less than 15% under the various walking conditions. PMID:26703622

  17. GPU technology as a platform for accelerating physiological systems modeling based on Laguerre-Volterra networks.

    PubMed

    Papadopoulos, Agathoklis; Kostoglou, Kyriaki; Mitsis, Georgios D; Theocharides, Theocharis

    2015-01-01

    The use of a GPGPU programming paradigm (running CUDA-enabled algorithms on GPU cards) in biomedical engineering and biology-related applications have shown promising results. GPU acceleration can be used to speedup computation-intensive models, such as the mathematical modeling of biological systems, which often requires the use of nonlinear modeling approaches with a large number of free parameters. In this context, we developed a CUDA-enabled version of a model which implements a nonlinear identification approach that combines basis expansions and polynomial-type networks, termed Laguerre-Volterra networks and can be used in diverse biological applications. The proposed software implementation uses the GPGPU programming paradigm to take advantage of the inherent parallel characteristics of the aforementioned modeling approach to execute the calculations on the GPU card of the host computer system. The initial results of the GPU-based model presented in this work, show performance improvements over the original MATLAB model. PMID:26736993

  18. GPU-based acceleration of free energy calculations in solid state physics

    NASA Astrophysics Data System (ADS)

    Januszewski, Michał; Ptok, Andrzej; Crivelli, Dawid; Gardas, Bartłomiej

    2015-07-01

    Obtaining a thermodynamically accurate phase diagram through numerical calculations is a computationally expensive problem that is crucially important to understanding the complex phenomena of solid state physics, such as superconductivity. In this work we show how this type of analysis can be significantly accelerated through the use of modern GPUs. We illustrate this with a concrete example of free energy calculation in multi-band iron-based superconductors, known to exhibit a superconducting state with oscillating order parameter (OP). Our approach can also be used for classical BCS-type superconductors. With a customized algorithm and compiler tuning we are able to achieve a 19×speedup compared to the CPU (119×compared to a single CPU core), reducing calculation time from minutes to mere seconds, enabling the analysis of larger systems and the elimination of finite size effects.

  19. Accelerated equilibrium core composition search using a new MCNP-based simulator

    NASA Astrophysics Data System (ADS)

    Seifried, Jeffrey E.; Gorman, Phillip M.; Vujic, Jasmina L.; Greenspan, Ehud

    2014-06-01

    MocDown is a new Monte Carlo depletion and recycling simulator which couples neutron transport with MCNP and transmutation with ORIGEN. This modular approach to depletion allows for flexible operation by incorporating the accelerated progression of a complex fuel processing scheme towards equilibrium and by allowing for the online coupling of thermo-fluids feedback. MocDown also accounts for the variation of decay heat with fuel isotopics evolution. In typical cases, MocDown requires just over a day to find the equilibrium core composition for a multi-recycling fuel cycle, with a self-consistent thermo-fluids solution-a task that required between one and two weeks using previous Monte Carlo-based approaches.

  20. A neutron producing target for BINP accelerator-based neutron source.

    PubMed

    Bayanov, B; Kashaeva, E; Makarov, A; Malyshkin, G; Samarin, S; Taskaev, S

    2009-07-01

    An innovative accelerator-based neutron source for BNCT has just started operation at the Budker Institute of Nuclear Physics, Novosibirsk. One of the main elements of the facility is a lithium target producing neutrons via the threshold (7)Li(p,n)(7)Be reaction at 25 kW proton beam with energies of 1.915 MeV or 2.5 MeV. The design of an optimal target and results of the investigation of radiation blistering of the lithium layer were presented at previous NCT Congresses. During the last two years the neutron target has been manufactured, assembled and placed in the facility. Optimization of the target is carried out with the Monte Carlo simulation code MCNP. In this article, the design of the target is discussed, results of all previous investigations are summarized, results of target testing and neutron generation are described, and results of simulation of neutron spectra are presented. PMID:19376729

  1. Accelerated vs. unaccelerated serial MRI based TBM-SyN measurements for Clinical Trials in Alzheimer’s disease

    PubMed Central

    Vemuri, Prashanthi; Senjem, Matthew L.; Gunter, Jeffrey L.; Lundt, Emily S.; Tosakulwong, Nirubol; Weigand, Stephen D.; Borowski, Bret J.; Bernstein, Matt A.; Zuk, Samantha M.; Lowe, Val J.; Knopman, David S.; Petersen, Ronald C.; Fox, Nick C.; Thompson, Paul M.; Weiner, Michael W.; Jack, Clifford R.

    2015-01-01

    Objective Our primary objective was to compare the performance of unaccelerated vs. accelerated structural MRI for measuring disease progression using serial scans in Alzheimer’s disease (AD). Methods We identified cognitively normal (CN), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI) and AD subjects from all available Alzheimer’s Disease Neuroimaging Initiative (ADNI) subjects with usable pairs of accelerated and unaccelerated scans. There were a total of 696 subjects with baseline and 3 month scans, 628 subjects with baseline and 6 month scans and 464 subjects with baseline and 12 month scans available. We employed the Symmetric Diffeomorphic Image Normalization method (SyN) for normalization of the serial scans to obtain Tensor Based Morphometry (TBM) maps which indicate the structural changes between pairs of scans. We computed a TBM-SyN summary score of annualized structural changes over 31 regions of interest (ROIs) that are characteristically affected in AD. TBM-SyN scores were computed using accelerated and unaccelerated scan pairs and compared in terms of agreement, group-wise discrimination, and sample size estimates for a hypothetical therapeutic trial. Results We observed a number of systematic differences between TBM-SyN scores computed from accelerated and unaccelerated pairs of scans. TBM-SyN scores computed from accelerated scans tended to have overall higher estimated values than those from unaccelerated scans. However, the performance of accelerated scans was comparable to unaccelerated scans in terms of discrimination between clinical groups and sample sizes required in each clinical group for a therapeutic trial. We also found that the quality of both accelerated vs. unaccelerated scans were similar. Conclusions Accelerated scanning protocols reduce scan time considerably. Their group-wise discrimination and sample size estimates were comparable to those obtained with unaccelerated scans. The two protocols did

  2. Tractor Mechanic--Teacher's Guide. Competency Based Education Curriculum.

    ERIC Educational Resources Information Center

    McCann, Edward W.

    This teacher's guide is designed to accompany the Tractor Mechanic Competency Based Education (CBE) Curriculum (CE 022 480). The following information is included: a discussion of the uses of the Tractor Mechanic CBE curriculum; definitions of related terms; the table of contents for the Tractor Mechanic CBE curriculum; a list of competencies by…

  3. High neutronic efficiency, low current targets for accelerator-based BNCT applications

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1998-08-01

    The neutronic efficiency of target/filters for accelerator-based BNCT applications is measured by the proton current required to achieve a desirable neutron current at the treatment port (10{sup 9} n/cm{sup 2}/s). In this paper the authors describe two possible targeyt/filter concepts wihch minimize the required current. Both concepts are based on the Li-7 (p,n)Be-7 reaction. Targets that operate near the threshold energy generate neutrons that are close tothe desired energy for BNCT treatment. Thus, the filter can be extremely thin ({approximately} 5 cm iron). However, this approach has an extremely low neutron yield (n/p {approximately} 1.0({minus}6)), thus requiring a high proton current. The proposed solutino is to design a target consisting of multiple extremely thin targets (proton energy loss per target {approximately} 10 keV), and re-accelerate the protons between each target. Targets operating at ihgher proton energies ({approximately} 2.5 MeV) have a much higher yield (n/p {approximately} 1.0({minus}4)). However, at these energies the maximum neutron energy is approximately 800 keV, and thus a neutron filter is required to degrade the average neutron energy to the range of interest for BNCT (10--20 keV). A neutron filter consisting of fluorine compounds and iron has been investigated for this case. Typically a proton current of approximately 5 mA is required to generate the desired neutron current at the treatment port. The efficiency of these filter designs can be further increased by incorporating neutron reflectors that are co-axial with the neutron source. These reflectors are made of materials which have high scattering cross sections in the range 0.1--1.0 MeV.

  4. High rates of carbon storage in old deciduous forests: Emerging mechanisms from the Forest Accelerated Succession ExperimenT (FASET)

    NASA Astrophysics Data System (ADS)

    Gough, C. M.; Nave, L. E.; Hardiman, B. S.; Bohrer, G.; Halperin, A.; Maurer, K.; Le Moine, J.; Nadelhoffer, K.; Vogel, C. S.; Curtis, P.; University Of Michigan Biological Station Forest Ecosystem Study (Umbs-Fest) Team

    2010-12-01

    Deciduous forests of the eastern US are broadly approaching an ecological threshold in which early successional dominant trees are senescing and giving way to later successional species, with unknown consequences for regional carbon (C) cycling. Though recent research demonstrates that forests may accumulate C for centuries, the mechanisms behind sustained rates of C storage in old, particularly deciduous, forests have not been identified. In a regionally representative forest at the University of Michigan Biological Station, we are combining observational and experimental C cycling studies to forecast how forest C storage responds to climate variation, disturbance, and succession. The Forest Accelerated Succession ExperimenT (FASET), in which >6,700 aspen and birch trees (~35 % LAI) were stem girdled within a 39 ha area, is testing the hypothesis that forest production will increase rather than decline with age, due to increases in nitrogen (N) availability, N allocation to the canopy, and the concurrent development of a more biologically and structurally complex canopy. Results thus far support our hypothesis that aging forests in the region may sustain high rates of C storage through shifts in N cycling and increased canopy complexity. Girdling-induced mortality of early successional species reduced soil respiration, accelerated fine root turnover, and prompted the redistribution of N from the foliage of early to later successional species. Nitrogen redistribution increased leaf area index (LAI) production by later successional species, offsetting declines in LAI from senescing early successional species. High rates of net primary production (NPP) were sustained in stands comprising a diverse assemblage of early and later successional species because later successional species, when already present in the canopy, rapidly compensated for declining growth of early successional species. Canopy structural complexity, which increased with forest age, was positively

  5. Comparison between CARIBIC Aerosol Samples Analysed by Accelerator-Based Methods and Optical Particle Counter Measurements

    NASA Astrophysics Data System (ADS)

    Martinsson, B. G.; Friberg, J.; Andersson, S. M.; Weigelt, A.; Hermann, M.; Assmann, D.; Voigtländer, J.; Brenninkmeijer, C. A. M.; van Velthoven, P. J. F.; Zahn, A.

    2014-08-01

    Inter-comparison of results from two kinds of aerosol systems in the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on a Instrument Container) passenger aircraft based observatory, operating during intercontinental flights at 9-12 km altitude, is presented. Aerosol from the lowermost stratosphere (LMS), the extra-tropical upper troposphere (UT) and the tropical mid troposphere (MT) were investigated. Aerosol particle volume concentration measured with an optical particle counter (OPC) is compared with analytical results of the sum of masses of all major and several minor constituents from aerosol samples collected with an impactor. Analyses were undertaken with the following accelerator-based methods: particle-induced X-ray emission (PIXE) and particle elastic scattering analysis (PESA). Data from 48 flights during 1 year are used, leading to a total of 106 individual comparisons. The ratios of the particle volume from the OPC and the total mass from the analyses were in 84% within a relatively narrow interval. Data points outside this interval are connected with inlet-related effects in clouds, large variability in aerosol composition, particle size distribution effects and some cases of non-ideal sampling. Overall, the comparison of these two CARIBIC measurements based on vastly different methods show good agreement, implying that the chemical and size information can be combined in studies of the MT/UT/LMS aerosol.

  6. Comparison between CARIBIC aerosol samples analysed by accelerator-based methods and optical particle counter measurements

    NASA Astrophysics Data System (ADS)

    Martinsson, B. G.; Friberg, J.; Andersson, S. M.; Weigelt, A.; Hermann, M.; Assmann, D.; Voigtländer, J.; Brenninkmeijer, C. A. M.; van Velthoven, P. J. F.; Zahn, A.

    2014-04-01

    Inter-comparison of results from two kinds of aerosol systems in the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) passenger aircraft based observatory, operating during intercontinental flights at 9-12 km altitude, is presented. Aerosol from the lowermost stratosphere (LMS), the extra-tropical upper troposphere (UT) and the tropical mid troposphere (MT) were investigated. Aerosol particle volume concentration measured with an optical particle counter (OPC) is compared with analytical results of the sum of masses of all major and several minor constituents from aerosol samples collected with an impactor. Analyses were undertaken with accelerator-based methods particle-induced X-ray emission (PIXE) and particle elastic scattering analysis (PESA). Data from 48 flights during one year are used, leading to a total of 106 individual comparisons. The ratios of the particle volume from the OPC and the total mass from the analyses were in 84% within a relatively narrow interval. Data points outside this interval are connected with inlet-related effects in clouds, large variability in aerosol composition, particle size distribution effects and some cases of non-ideal sampling. Overall, the comparison of these two CARIBIC measurements based on vastly different methods show good agreement, implying that the chemical and size information can be combined in studies of the MT/UT/LMS aerosol.

  7. Advances in boron neutron capture therapy (BNCT) at kyoto university - From reactor-based BNCT to accelerator-based BNCT

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Tanaka, Hiroki; Takata, Takushi; Fujimoto, Nozomi; Suzuki, Minoru; Masunaga, Shinichiro; Kinashi, Yuko; Kondo, Natsuko; Narabayashi, Masaru; Nakagawa, Yosuke; Watanabe, Tsubasa; Ono, Koji; Maruhashi, Akira

    2015-07-01

    At the Kyoto University Research Reactor Institute (KURRI), a clinical study of boron neutron capture therapy (BNCT) using a neutron irradiation facility installed at the research nuclear reactor has been regularly performed since February 1990. As of November 2014, 510 clinical irradiations were carried out using the reactor-based system. The world's first accelerator-based neutron irradiation system for BNCT clinical irradiation was completed at this institute in early 2009, and the clinical trial using this system was started in 2012. A shift of BCNT from special particle therapy to a general one is now in progress. To promote and support this shift, improvements to the irradiation system, as well as its preparation, and improvements in the physical engineering and the medical physics processes, such as dosimetry systems and quality assurance programs, must be considered. The recent advances in BNCT at KURRI are reported here with a focus on physical engineering and medical physics topics.

  8. Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration

    PubMed Central

    2013-01-01

    Background The replacement of hard tissues demands biocompatible and sometimes bioactive materials with properties similar to those of bone. Nano-composites made of biocompatible polymers and bioactive inorganic nano particles such as HDPE/HA have attracted attention as permanent bone substitutes due to their excellent mechanical properties and biocompatibility. Method The HDPE/HA nano-composite is prepared using melt blending at different HA loading ratios. For evaluation of the degradation by radiation, gamma rays of 35 kGy, and 70 kGy were used to irradiate the samples at room temperature in vacuum. The effects of accelerated ageing after gamma irradiation on morphological, mechanical and thermal properties of HDPE/HA nano-composites were measured. Results In Vitro test results showed that the HDPE and all HDPE/HA nano-composites do not exhibit any cytotoxicity to WISH cell line. The results also indicated that the tensile properties of HDPE/HA nano-composite increased with increasing the HA content except fracture strain decreased. The dynamic mechanical analysis (DMA) results showed that the storage and loss moduli increased with increasing the HA ratio and the testing frequency. Finally, it is remarked that all properties of HDPE/HA is dependent on the irradiation dose and accelerated aging. Conclusion Based on the experimental results, it is found that the addition of 10%, 20% and 30% HA increases the HDPE stiffness by 23%, 44 and 59% respectively. At the same time, the G’ increased from 2.25E11 MPa for neat HDPE to 4.7E11 MPa when 30% HA was added to the polymer matrix. Also, significant improvements in these properties have been observed due to irradiation. Finally, the overall properties of HDPE and its nano-composite properties significantly decreased due to aging and should be taken into consideration in the design of bone substitutes. It is attributed that the developed HDPE/HA nano-composites could be a good alternative material for bone tissue

  9. Mechanism of Actin-Based Motility

    NASA Astrophysics Data System (ADS)

    Pantaloni, Dominique; Le Clainche, Christophe; Carlier, Marie-France

    2001-05-01

    Spatially controlled polymerization of actin is at the origin of cell motility and is responsible for the formation of cellular protrusions like lamellipodia. The pathogens Listeria monocytogenes and Shigella flexneri, which undergo actin-based propulsion, are acknowledged models of the leading edge of lamellipodia. Actin-based motility of the bacteria or of functionalized microspheres can be reconstituted in vitro from only five pure proteins. Movement results from the regulated site-directed treadmilling of actin filaments, consistent with observations of actin dynamics in living motile cells and with the biochemical properties of the components of the synthetic motility medium.

  10. Rapid estimation of lives of deficient superpave mixes and laboratory-based accelerated mix testing models

    NASA Astrophysics Data System (ADS)

    Manandhar, Chandra Bahadur

    The engineers from the Kansas Department of Transportation (KDOT) often have to decide whether or not to accept non-conforming Superpave mixtures during construction. The first part of this study focused on estimating lives of deficient Superpave pavements incorporating nonconforming Superpave mixtures. These criteria were based on the Hamburg Wheel-Tracking Device (HWTD) test results and analysis. The second part of this study focused on developing accelerated mix testing models to considerably reduce test duration. To accomplish the first objective, nine fine-graded Superpave mixes of 12.5-mm nominal maximum aggregate size (NMAS) with asphalt grade PG 64-22 from six administrative districts of KDOT were selected. Specimens were prepared at three different target air void levels Ndesign gyrations and four target simulated in-place density levels with the Superpave gyratory compactor. Average number of wheel passes to 20-mm rut depth, creep slope, stripping slope, and stripping inflection point in HWTD tests were recorded and then used in the statistical analysis. Results showed that, in general, higher simulated in-place density up to a certain limit of 91% to 93%, results in a higher number of wheel passes until 20-mm rut depth in HWTD tests. A Superpave mixture with very low air voids Ndesign (2%) level performed very poorly in the HWTD test. HWTD tests were also performed on six 12.5-mm NMAS mixtures with air voids Ndesign of 4% for six projects, simulated in-place density of 93%, two temperature levels and five load levels with binder grades of PG 64-22, PG 64-28, and PG 70-22. Field cores of 150-mm in diameter from three projects in three KDOT districts with 12.5-mm NMAS and asphalt grade of PG 64-22 were also obtained and tested in HWTD for model evaluation. HWTD test results indicated as expected. Statistical analysis was performed and accelerated mix testing models were developed to determine the effect of increased temperature and load on the duration of

  11. Accelerating the Next Generation Long Read Mapping with the FPGA-Based System.

    PubMed

    Chen, Peng; Wang, Chao; Li, Xi; Zhou, Xuehai

    2014-01-01

    To compare the newly determined sequences against the subject sequences stored in the databases is a critical job in the bioinformatics. Fortunately, recent survey reports that the state-of-the-art aligners are already fast enough to handle the ultra amount of short sequence reads in the reasonable time. However, for aligning the long sequence reads (>400 bp) generated by the next generation sequencing (NGS) technology, it is still quite inefficient with present aligners. Furthermore, the challenge becomes more and more serious as the lengths and the amounts of the sequence reads are both keeping increasing with the improvement of the sequencing technology. Thus, it is extremely urgent for the researchers to enhance the performance of the long read alignment. In this paper, we propose a novel FPGA-based system to improve the efficiency of the long read mapping. Compared to the state-of-the-art long read aligner BWA-SW, our accelerating platform could achieve a high performance with almost the same sensitivity. Experiments demonstrate that, for reads with lengths ranging from 512 up to 4,096 base pairs, the described system obtains a 10x -48x speedup for the bottleneck of the software. As to the whole mapping procedure, the FPGA-based platform could achieve a 1.8x -3:3x speedup versus the BWA-SW aligner, reducing the alignment cycles from weeks to days. PMID:26356857

  12. Proposed inductive voltage adder based accelerator concepts for the second axis of DARHT

    SciTech Connect

    Smith, D.L.; Johnson, D.L.; Boyes, J.D.

    1997-06-01

    As participants in the Technology Options Study for the second axis of the Dual Axis Radiographic HydroTest (DARHT) facility located at Los Alamos National Laboratories, the authors have considered several accelerator concepts based on the Inductive Voltage Adder (IVA) technology that is being used successfully at Sandia on the SABRE and HERMES-III facilities. The challenging accelerator design requirements for the IVA approach include: {ge}12-MeV beam energy; {approximately}60-ns electrical pulse width; {le}40-kA electron beam current; {approximately}1-mm diameter e-beam; four pulses on the same axis or as close as possible to that axis; and an architecture that fits within the existing building envelope. To satisfy these requirements the IVA concepts take a modular approach. The basic idea is built upon a conservative design for eight ferromagnetically isolated 2-MV cavities that are driven by two 3 to 4-{Omega} water dielectric pulse forming lines (PFLs) synchronized with laser triggered gas switches. The 100-{Omega} vacuum magnetically insulated transmission line (MITL) would taper to a needle cathode that produces the electron beam(s). After considering many concepts the authors narrowed their study to the following options: (A) Four independent single pulse drivers powering four single pulse diodes; (B) Four series adders with interleaved cavities feeding a common MITL and diode; (C) Four stages of series PFLs, isolated from each other by triggered spark gap switches, with single-point feeds to a common adder, MITL, and diode; and (D) Isolated PFLs with multiple-feeds to a common adder using spark gap switches in combination with saturable magnetic cores to isolate the non-energized lines. The authors will discuss these options in greater detail identifying the challenges and risks associated with each.

  13. [Model based study of myocardial stimulation mechanisms].

    PubMed

    Weiss, I; Urbaszek, A; Schaldach, M

    1997-01-01

    The present study investigated the mechanisms of electrical stimulation of a myocardial fibre with the aim of developing improved minimally invasive stimulation methods. Using a dynamic myocyte model, the ionic currents crossing the voltage-dependent channels of the membrane are computed. To trigger an action potential, the membrane must first be depolarized to the threshold potential, when further depolarization continues spontaneously through the avalanche-like opening of the sodium channels. For the development of an action potential, not merely the amount of charge injected into the cell during the stimulus is of importance, but an above-threshold magnitude of the stimulation current is also required. The smallest energy required is achieved when the stimulus duration is chosen to be equal to the chronaxie. A second aspect of the study concerned the far-field stimulation of a muscle fibre, achieved by generating a potential gradient along the fibre. First, using a continuous fibre model, the fibre activating function is computed. In a more detailed study, the discrete segmental structure of the fibre determined by the gap junctions is taken into account, and the impact of these junctions on the activating function analysed. By optimizing the electrode configuration, an appropriate activating function results which guarantees successful stimulation when its maximum is above than threshold potential. The most important finding is that the myocardium can be stimulated by floating electrodes, thus opening up new possibilities for a less invasive electro-stimulation of the heart. PMID:9172726

  14. Mechanism of the oxo reaction. I The conversion of cobalt carbonyls during the oxo reaction. The promoting effect of organic bases

    SciTech Connect

    Borovikov, M.S.; Rybakov, V.A.

    1986-01-01

    The authors use the Breslow-Heck mechanism to examine the conversions of cobalt carbonyls during the oxo reaction. An interrelationship was found between hydrogen activation (catalysis of the hydrogenolysts of Co/sub 2/(CO)/sub 8/) and olefin activation (acceleration of the oxo reaction). A mechanism was proposed for the promoting effect of organic bases in the oxo reaction.

  15. Recent results and future challenges for large scale Particle-In-Cell simulations of plasma-based accelerator concepts

    SciTech Connect

    Huang, C.; An, W.; Decyk, V.K.; Lu, W.; Mori, W.B.; Tsung, F.S.; Tzoufras, M.; Morshed, S.; Antomsen, T.; Feng, B.; Katsouleas, T; Fonseca, R.A.; Martins, S.F.; Vieira, J.; Silva, L.O.; Geddes, C.G.R.; Cormier-Michel, E; Vay, J.-L.; Esarey, E.; Leemans, W.P.; Bruhwiler, D.L.; Cowan, B.; Cary, J.R.; Paul, K.

    2009-05-01

    The concept and designs of plasma-based advanced accelerators for high energy physics and photon science are modeled in the SciDAC COMPASS project with a suite of Particle-In-Cell codes and simulation techniques including the full electromagnetic model, the envelope model, the boosted frame approach and the quasi-static model. In this paper, we report the progress of the development of these models and techniques and present recent results achieved with large-scale parallel PIC simulations. The simulation needs for modeling the plasma-based advanced accelerator at the energy frontier is discussed and a path towards this goal is outlined.

  16. Evidence for a Common Acceleration Mechanism for Enrichments of 3He and Heavy Ions in Impulsive SEP Events

    NASA Astrophysics Data System (ADS)

    Mason, Glenn M.; Nitta, Nariaki V.; Wiedenbeck, Mark E.; Innes, Davina E.

    2016-06-01

    We have surveyed the period 1997–2015 for a rare type of 3He-rich solar energetic particle (SEP) event, with enormously enhanced values of the S/O ratio, that differs from the majority of 3He-rich events, which show enhancements of heavy ions increasing smoothly with mass. Sixteen events were found, most of them small but with solar source characteristics similar to other 3He-rich SEP events. A single event on 2014 May 16 had higher intensities than the others, and curved Si and S spectra that crossed the O spectrum above ∼200 keV nucleon‑1. Such crossings of heavy-ion spectra have never previously been reported. The dual enhancement of Si and S suggests that element Q/M ratio is critical to the enhancement since this pair of elements uniquely has very similar Q/M ratios over a wide range of temperatures. Besides 3He, Si, and S, in this same event the C, N, and Fe spectra also showed curved shape and enhanced abundances compared to O. The spectral similarities suggest that all have been produced from the same mechanism that enhances 3He. The enhancements are large only in the high-energy portion of the spectrum, and so affect only a small fraction of the ions. The observations suggest that the accelerated plasma was initially cool (∼0.4 MK) and was then heated to a few million kelvin to generate the preferred Q/M ratio in the range C–Fe. The temperature profile may be the distinct feature of these events that produces the unusual abundance signature.

  17. Seismic metamaterials based on isochronous mechanical oscillators

    SciTech Connect

    Finocchio, G. Garescì, F.; Azzerboni, B.; Casablanca, O.; Chiappini, M.; Ricciardi, G.; Alibrandi, U.

    2014-05-12

    This Letter introduces a seismic metamaterial (SM) composed by a chain of mass-in-mass system able to filter the S-waves of an earthquake. We included the effect of the SM into the mono dimensional model for the soil response analysis. The SM modifies the soil behavior and in presence of an internal damping the amplitude of the soil amplification function is reduced also in a region near the resonance frequency. This SM can be realized by a continuous structure with inside a 3d-matrix of isochronous oscillators based on a sphere rolling over a cycloidal trajectory.

  18. Mechanically based generative laws of morphogenesis

    NASA Astrophysics Data System (ADS)

    Beloussov, Lev V.

    2008-03-01

    A deep (although at the first glance naïve) question which may be addressed to embryonic development is why during this process quite definite and accurately reproduced successions of precise and complicated shapes are taking place, or why, in several cases, the result of development is highly precise in spite of an extensive variability of intermediate stages. This problem can be attacked in two different ways. One of them, up to now just slightly employed, is to formulate robust macroscopic generative laws from which the observed successions of shapes could be derived. Another one, which dominates in modern embryology, regards the development as a succession of highly precise 'micropatterns', each of them arising due to the action of specific factors, having, as a rule, nothing in common with each other. We argue that the latter view contradicts a great bulk of firmly established data and gives no satisfactory answers to the main problems of development. Therefore we intend to follow the first way. By doing this, we regard developing embryos as self-organized systems transpierced by feedbacks among which we pay special attention to those linked with mechanical stresses (MS). We formulate a hypothesis of so-called MS hyper-restoration as a common basis for the developmentally important feedback loops. We present a number of examples confirming this hypothesis and use it for reconstructing prolonged chains of developmental events. Finally, we discuss the application of the same set of assumptions to the first steps of egg development and to the internal differentiation of embryonic cells.

  19. Mechanical and thermal properties of irradiated films based on Tilapia ( Oreochromis niloticus) proteins

    NASA Astrophysics Data System (ADS)

    Sabato, S. F.; Nakamurakare, N.; Sobral, P. J. A.

    2007-11-01

    Proteins are considered potential material in natural films as alternative to traditional packaging. When gamma radiation is applied to protein film forming solution it resulted in an improvement in mechanical properties of whey protein films. The objective of this work was the characterization of mechanical and thermal properties of irradiated films based on muscle proteins from Nile Tilapia ( Oreochromis niloticus). The films were prepared according to a casting technique with two levels of plasticizer: 25% and 45% glycerol and irradiated in electron accelerator type Radiation Dynamics, 0.550 MeV at dose range from 0 to 200 kGy. Thermal properties and mechanical properties were determined using a differential scanning calorimeter and a texture analyzer, respectively. Radiation from electron beam caused a slightly increase on its tensile strength characteristic at 100 kGy, while elongation value at this dose had no reduction.

  20. Optimal technique of linear accelerator-based stereotactic radiosurgery for tumors adjacent to brainstem.

    PubMed

    Chang, Chiou-Shiung; Hwang, Jing-Min; Tai, Po-An; Chang, You-Kang; Wang, Yu-Nong; Shih, Rompin; Chuang, Keh-Shih

    2016-01-01

    Stereotactic radiosurgery (SRS) is a well-established technique that is replacing whole-brain irradiation in the treatment of intracranial lesions, which leads to better preservation of brain functions, and therefore a better quality of life for the patient. There are several available forms of linear accelerator (LINAC)-based SRS, and the goal of the present study is to identify which of these techniques is best (as evaluated by dosimetric outcomes statistically) when the target is located adjacent to brainstem. We collected the records of 17 patients with lesions close to the brainstem who had previously been treated with single-fraction radiosurgery. In all, 5 different lesion catalogs were collected, and the patients were divided into 2 distance groups-1 consisting of 7 patients with a target-to-brainstem distance of less than 0.5cm, and the other of 10 patients with a target-to-brainstem distance of ≥ 0.5 and < 1cm. Comparison was then made among the following 3 types of LINAC-based radiosurgery: dynamic conformal arcs (DCA), intensity-modulated radiosurgery (IMRS), and volumetric modulated arc radiotherapy (VMAT). All techniques included multiple noncoplanar beams or arcs with or without intensity-modulated delivery. The volume of gross tumor volume (GTV) ranged from 0.2cm(3) to 21.9cm(3). Regarding the dose homogeneity index (HIICRU) and conformity index (CIICRU) were without significant difference between techniques statistically. However, the average CIICRU = 1.09 ± 0.56 achieved by VMAT was the best of the 3 techniques. Moreover, notable improvement in gradient index (GI) was observed when VMAT was used (0.74 ± 0.13), and this result was significantly better than those achieved by the 2 other techniques (p < 0.05). For V4Gy of brainstem, both VMAT (2.5%) and IMRS (2.7%) were significantly lower than DCA (4.9%), both at the p < 0.05 level. Regarding V2Gy of normal brain, VMAT plans had attained 6.4 ± 5%; this was significantly better (p < 0.05) than

  1. Recent advances in high-performance modeling of plasma-based acceleration using the full PIC method

    NASA Astrophysics Data System (ADS)

    Vay, J.-L.; Lehe, R.; Vincenti, H.; Godfrey, B. B.; Haber, I.; Lee, P.

    2016-09-01

    Numerical simulations have been critical in the recent rapid developments of plasma-based acceleration concepts. Among the various available numerical techniques, the particle-in-cell (PIC) approach is the method of choice for self-consistent simulations from first principles. The fundamentals of the PIC method were established decades ago, but improvements or variations are continuously being proposed. We report on several recent advances in PIC-related algorithms that are of interest for application to plasma-based accelerators, including (a) detailed analysis of the numerical Cherenkov instability and its remediation for the modeling of plasma accelerators in laboratory and Lorentz boosted frames, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, and (c) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of perfectly matched layers in high-order and pseudo-spectral solvers.

  2. Accelerated Biodegradation of Agriculture Film Based on Aromatic-Aliphatic Copolyester in Soil under Mesophilic Conditions.

    PubMed

    Šerá, Jana; Stloukal, Petr; Jančová, Petra; Verney, Vincent; Pekařová, Silvie; Koutný, Marek

    2016-07-20

    A study was conducted on the biodegradation of aromatic-aliphatic copolyester-based agricultural film in soil at 25 °C. The polymer is known to be biodegradable under composting conditions although rather recalcitrant under mesophilic conditions. The material investigated comprised of the copolyester filled with approximately 25% of starch containing biodegradable plasticizers, and its behavior was compared to the corresponding material without the filler. Mineralization followed by CO2 production merely reached the point of about 6% after 100 days of incubation in the pure copolyester film, whereas the value of around 53% was recorded for the filled copolyester film, which exceeded the readily biodegradable starch filler content in the material by more than 20% and could be accounted for biodegradation of the copolyester. It was suggested that the accelerated copolyester biodegradation in the starch-filled material was most likely explained by the increase in the active surface area of the material available for the microbial attack after biodegradation of the filler. The results were supported by changes in molecular weight distributions of the copolyester and observations made by several microscopic techniques. These findings encourage further development of biodegradable agricultural films based on this material. PMID:27367168

  3. Accelerating Multiple Compound Comparison Using LINGO-Based Load-Balancing Strategies on Multi-GPUs

    PubMed Central

    Lin, Chun-Yuan; Wang, Chung-Hung; Hung, Che-Lun; Lin, Yu-Shiang

    2015-01-01

    Compound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can be found and then used for the pharmacy experiments. The time complexity of a pairwise compound comparison is O(n2), where n is the maximal length of compounds. In general, the length of compounds is tens to hundreds, and the computation time is small. However, more and more compounds have been synthesized and extracted now, even more than tens of millions. Therefore, it still will be time-consuming when comparing with a large amount of compounds (seen as a multiple compound comparison problem, abbreviated to MCC). The intrinsic time complexity of MCC problem is O(k2n2) with k compounds of maximal length n. In this paper, we propose a GPU-based algorithm for MCC problem, called CUDA-MCC, on single- and multi-GPUs. Four LINGO-based load-balancing strategies are considered in CUDA-MCC in order to accelerate the computation speed among thread blocks on GPUs. CUDA-MCC was implemented by C+OpenMP+CUDA. CUDA-MCC achieved 45 times and 391 times faster than its CPU version on a single NVIDIA Tesla K20m GPU card and a dual-NVIDIA Tesla K20m GPU card, respectively, under the experimental results. PMID:26491652

  4. Ameliorating Effects of Sphingomyelin-Based Liposomes on Sarcopenia in Senescence-Accelerated Mice.

    PubMed

    Ishida, Yuuki; Kiyokawa, Yuri; Asai, Tomohiro; Oku, Naoto

    2016-01-01

    The effects of orally administered sphingomyelin-based liposomes (SM-lipo) on muscle function were investigated in senescence-accelerated mice prone 1 (SAMP1) for the purpose of protection against or treatment of sarcopenia. SM-lipo were prepared by thin lipid-film hydration followed by extrusion. Their spherical shape was observed by transmission electron microscopy. The obtained liposomes were stable in gastric liquid and intestinal fluid models as well as in water. In in vitro tests liposomalization of sphingomyelin significantly increased its transport into human intestinal epithelial Caco-2 cells. In addition, SM-lipo upregulated the proliferation of murine C2C12 myoblasts compared with free sphingomyelin or phosphatidylcholine-based liposomes (PC-lipo). Finally, SM-lipo orally administered to SAMP1 for 10 weeks significantly increased quadriceps femoris weight and extended swimming time until fatigue compared with PC-lipo. In conclusion, these findings indicate that SM-lipo are well absorbed into the body and improve muscle weakness caused by senescence. PMID:27150148

  5. Accelerating Multiple Compound Comparison Using LINGO-Based Load-Balancing Strategies on Multi-GPUs.

    PubMed

    Lin, Chun-Yuan; Wang, Chung-Hung; Hung, Che-Lun; Lin, Yu-Shiang

    2015-01-01

    Compound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can be found and then used for the pharmacy experiments. The time complexity of a pairwise compound comparison is O(n (2)), where n is the maximal length of compounds. In general, the length of compounds is tens to hundreds, and the computation time is small. However, more and more compounds have been synthesized and extracted now, even more than tens of millions. Therefore, it still will be time-consuming when comparing with a large amount of compounds (seen as a multiple compound comparison problem, abbreviated to MCC). The intrinsic time complexity of MCC problem is O(k (2) n (2)) with k compounds of maximal length n. In this paper, we propose a GPU-based algorithm for MCC problem, called CUDA-MCC, on single- and multi-GPUs. Four LINGO-based load-balancing strategies are considered in CUDA-MCC in order to accelerate the computation speed among thread blocks on GPUs. CUDA-MCC was implemented by C+OpenMP+CUDA. CUDA-MCC achieved 45 times and 391 times faster than its CPU version on a single NVIDIA Tesla K20m GPU card and a dual-NVIDIA Tesla K20m GPU card, respectively, under the experimental results. PMID:26491652

  6. Accelerator-based trace element analysis of foods and agriculture products

    NASA Astrophysics Data System (ADS)

    Lagunas-Solar, Manuel C.; Piña U, Cecilia; Solís, Corina; Mireles, Alibech

    2008-05-01

    An accelerator-based analytical method for measuring trace elements in foods and agricultural products was developed, optimized, validated and compared using reference standards. The method's initial phase is a new, rapid and effective digestion process of a small mass analyte in an aqueous media containing H2O2. Digestion is initiated by radicals formed in water with pulsed UV (PUV) induced (laser) photolysis, which rapidly react with organic matter. After digestion, trace metals are pre-concentrated as carbamates and deposited as thin targets onto Teflon filters. Conventional particle induced X-ray emission (PIXE) or X-ray fluorescence (XRF) methods are then used to analyze elements in the sample. When foods and other agricultural commodities (i.e., soils, feeds) are analyzed, the combined method named pulsed UV (PUV)/PIXE results in enhanced detection of trace elements such as Fe, Co, Ni, Cu, Zn and Pb at ∼1 mg/kg (1 ppm) levels, without lengthy, acid-based digestions. It provides improvements in digestion kinetics and processing time enhancing analytical sensitivity and element recovery. Precision and recovery yields were confirmed with food reference standards. The analysis of edible foods from contaminated agricultural areas is also reported.

  7. GEANT4 simulations for beam emittance in a linear collider based on plasma wakefield acceleration

    SciTech Connect

    Mete, O. Xia, G.; Hanahoe, K.; Labiche, M.

    2015-08-15

    Alternative acceleration technologies are currently under development for cost-effective, robust, compact, and efficient solutions. One such technology is plasma wakefield acceleration, driven by either a charged particle or laser beam. However, the potential issues must be studied in detail. In this paper, the emittance evolution of a witness beam through elastic scattering from gaseous media and under transverse focusing wakefields is studied.

  8. Accelerating groundwater flow simulation in MODFLOW using JASMIN-based parallel computing.

    PubMed

    Cheng, Tangpei; Mo, Zeyao; Shao, Jingli

    2014-01-01

    To accelerate the groundwater flow simulation process, this paper reports our work on developing an efficient parallel simulator through rebuilding the well-known software MODFLOW on JASMIN (J Adaptive Structured Meshes applications Infrastructure). The rebuilding process is achieved by designing patch-based data structure and parallel algorithms as well as adding slight modifications to the compute flow and subroutines in MODFLOW. Both the memory requirements and computing efforts are distributed among all processors; and to reduce communication cost, data transfers are batched and conveniently handled by adding ghost nodes to each patch. To further improve performance, constant-head/inactive cells are tagged and neglected during the linear solving process and an efficient load balancing strategy is presented. The accuracy and efficiency are demonstrated through modeling three scenarios: The first application is a field flow problem located at Yanming Lake in China to help design reasonable quantity of groundwater exploitation. Desirable numerical accuracy and significant performance enhancement are obtained. Typically, the tagged program with load balancing strategy running on 40 cores is six times faster than the fastest MICCG-based MODFLOW program. The second test is simulating flow in a highly heterogeneous aquifer. The AMG-based JASMIN program running on 40 cores is nine times faster than the GMG-based MODFLOW program. The third test is a simplified transient flow problem with the order of tens of millions of cells to examine the scalability. Compared to 32 cores, parallel efficiency of 77 and 68% are obtained on 512 and 1024 cores, respectively, which indicates impressive scalability. PMID:23600445

  9. Degradation and corresponding failure mechanism for GaN-based LEDs

    NASA Astrophysics Data System (ADS)

    Fu, Jiajia; Zhao, Lixia; Cao, Haicheng; Sun, Xuejiao; Sun, Baojuan; Wang, Junxi; Li, Jinmin

    2016-05-01

    The degradation behaviors of high power GaN-based vertical blue LEDs on Si substrates were measured using in-situ accelerated life test. The results show that the dominant failure mechanism would be different during the operation. Besides that, the corresponding associated failure mechanisms were investigated systematically by using different analysis technologies, such as Scan Electron Microscopy, Reflectivity spectroscopy, Transient Thermal Analysis, Raman Spectra, etc. It is shown that initially, the failure modes were mainly originated from the semiconductor die and interconnect, while afterwards, the following serious deterioration of the radiant fluxes was attributed to the package. The interface material and quality, such as die attach and frame, play an important role in determining the thermal performance and reliability. In addition, the heating effect during the operation will also release the compressive strain in the chip. These findings will help to improve the reliability of GaN-based LEDs, especially for the LEDs with vertical structure.

  10. A label-free colorimetric sensor for Pb2+ detection based on the acceleration of gold leaching by graphene oxide.

    PubMed

    Shi, Xinhao; Gu, Wei; Zhang, Cuiling; Zhao, Longyun; Peng, Weidong; Xian, Yuezhong

    2015-03-14

    In this work, we developed a novel, label-free, colorimetric sensor for Pb(2+) detection based on the acceleration of gold leaching by graphene oxide (GO) at room temperature. Gold nanoparticles (AuNPs) can be dissolved in a thiosulfate (S2O3(2-)) aqueous environment in the presence of oxygen; however, the leaching rate is very slow due to the high activation energy (27.99 kJ mol(-1)). In order to enhance the reaction rate, some accelerators should be added. In comparison with the traditional accelerators (metal ions or middle ligands), we found that GO could efficiently accelerate the gold leaching reaction. Kinetic data demonstrate that the dissolution rate of gold in the Pb(2+)-S2O3(2-)-GO system is 5 times faster than that without GO at room temperature. In addition, the effects of surface modification and the nanoparticle size on the etching of AuNPs were investigated. Based on the GO-accelerated concentration-dependent colour changes of AuNPs, a colorimetric sensor for Pb(2+) detection was developed with a linear range from 0.1 to 20 μM and the limit of detection (LOD) was evaluated to be 0.05 μM. This colorimetric assay is simple, low-cost, label-free, and has numerous potential applications in the field of environmental chemistry. PMID:25656247

  11. Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science

    SciTech Connect

    Crabtree, George; Glotzer, Sharon; McCurdy, Bill; Roberto, Jim

    2010-07-26

    This report is based on a SC Workshop on Computational Materials Science and Chemistry for Innovation on July 26-27, 2010, to assess the potential of state-of-the-art computer simulations to accelerate understanding and discovery in materials science and chemistry, with a focus on potential impacts in energy technologies and innovation. The urgent demand for new energy technologies has greatly exceeded the capabilities of today's materials and chemical processes. To convert sunlight to fuel, efficiently store energy, or enable a new generation of energy production and utilization technologies requires the development of new materials and processes of unprecedented functionality and performance. New materials and processes are critical pacing elements for progress in advanced energy systems and virtually all industrial technologies. Over the past two decades, the United States has developed and deployed the world's most powerful collection of tools for the synthesis, processing, characterization, and simulation and modeling of materials and chemical systems at the nanoscale, dimensions of a few atoms to a few hundred atoms across. These tools, which include world-leading x-ray and neutron sources, nanoscale science facilities, and high-performance computers, provide an unprecedented view of the atomic-scale structure and dynamics of materials and the molecular-scale basis of chemical processes. For the first time in history, we are able to synthesize, characterize, and model materials and chemical behavior at the length scale where this behavior is controlled. This ability is transformational for the discovery process and, as a result, confers a significant competitive advantage. Perhaps the most spectacular increase in capability has been demonstrated in high performance computing. Over the past decade, computational power has increased by a factor of a million due to advances in hardware and software. This rate of improvement, which shows no sign of abating, has

  12. An accelerated life test model for solid lubricated bearings based on dependence analysis and proportional hazard effect

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Wang, Shaoping; Bai, Guanghan

    2014-02-01

    Solid lubricated bearings are important mechanical components in space, and accelerated life tests (ALT) of them are widely conducted. ALT model is needed to give the lifetime of solid lubricated bearings with ALT data, and former accelerated life test models of solid lubricated models are mainly statistical models, while physical models can imply an understanding of the failure mechanism and are preferred whenever possible. This paper proposes a physical model, which is called copula dependent proportional hazards model. A solid lubricated bearing is considered as a system consisting of several dependent items and Clayton copula function is used to describe the dependence. Proportional hazard effect is also considered to build the model. An ALT of solid lubricated bearing is carried out and the results show that this model is effective.

  13. Understanding the mechanism of base development of HSQ

    SciTech Connect

    Kim, Jihoon; Chao, Weilun; Griedel, Brian; Liang, Xiaogan; Lewis, Mark; Hilken, Dawn; Olynick, Deirdre

    2009-06-16

    We study the dissolution mechanism of HSQ (hydrogen silsesquioxane) in base solutions with the addition of chloride salts to elucidate the development mechanism. Reaction mechanisms are proposed based on the dissolution mechanism of quartz. Development kinetics points to two dose-dependent development mechanisms. Considering ion sizes, both hydrated and non-hydrated, and ion exchange, we propose that a combination of a surface dominated reaction at higher doses and a matrix dominated reaction at lower doses accounts for the high development contrast with a NaOH base/NaCl salt mixture. The interplay between the hydrated and non-hydrated ion size leads to higher contrast developers, such as tetramethyl ammonium hydroxide (TMAH) with NaCl.

  14. Mixed-field GCR Simulations for Radiobiological Research using Ground Based Accelerators

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis

    Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20 percents accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator.

  15. Mixed-field GCR Simulations for Radiobiological Research Using Ground Based Accelerators

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis A.

    2014-01-01

    Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20% accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator.

  16. Tractor Mechanic--Student Material. Competency Based Education Curriculum.

    ERIC Educational Resources Information Center

    McCann, Edward W.

    Developed to assist vocational agricultural mechanics students in learning to be tractor mechanics, this curriculum guide contains all the student competency sheets which comprise this competency-based curriculum. These competency sheets are categorized under sixteen instructional units. The first two units cover employment opportunities and…

  17. 3D Simulations for a Micron-Scale, Dielectric-Based Acceleration Experiment

    SciTech Connect

    Yoder, R. B.; Travish, G.; Xu Jin; Rosenzweig, J. B.

    2009-01-22

    An experimental program to demonstrate a dielectric, slab-symmetric accelerator structure has been underway for the past two years. These resonant devices are driven by a side-coupled 800-nm laser and can be configured to maintain the field profile necessary for synchronous acceleration and focusing of relativistic or nonrelativistic particles. We present 3D simulations of various versions of the structure geometry, including a metal-walled structure relevant to ongoing cold tests on resonant properties, and an all-dielectric structure to be constructed for a proof-of-principle acceleration experiment.

  18. Man-systems evaluation of moving base vehicle simulation motion cues. [human acceleration perception involving visual feedback

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M.; Brye, R. G.

    1974-01-01

    A motion cue investigation program is reported that deals with human factor aspects of high fidelity vehicle simulation. General data on non-visual motion thresholds and specific threshold values are established for use as washout parameters in vehicle simulation. A general purpose similator is used to test the contradictory cue hypothesis that acceleration sensitivity is reduced during a vehicle control task involving visual feedback. The simulator provides varying acceleration levels. The method of forced choice is based on the theory of signal detect ability.

  19. Analytical bunch compression studies for a linac-based electron accelerator

    NASA Astrophysics Data System (ADS)

    Schreck, M.; Wesolowski, P.

    2015-10-01

    The current paper deals with analytical bunch compression studies for FLUTE whose results are compared to simulations. FLUTE is a linac-based electron accelerator with a design energy of approximately 40 MeV currently being constructed at the Karlsruhe Institute of Technology. One of the goals of FLUTE is to generate electron bunches with their length lying in the femtosecond regime. In the first phase this will be accomplished using a magnetic bunch compressor. This compressor forms the subject of the studies presented. The paper is divided into two parts. The first part deals with pure geometric investigations of the bunch compressor where space charge effects and the backreaction of bunches with coherent synchrotron radiation are neglected. The second part is dedicated to the treatment of space charge effects. The upshot is that the analytical results in the two parts agree quite well with what is obtained from simulations. This paper shall form the basis for future analytical studies of the FLUTE bunch compressor and of bunch compression, in general.

  20. Accelerated in vitro durability testing of nonvascular Nitinol stents based on the electrical potential sensing method

    NASA Astrophysics Data System (ADS)

    Park, Chan-Hee; Tijing, Leonard D.; Pant, Hem Raj; Kim, Tae-Hyung; Amarjargal, Altangerel; Kim, Han Joo; Kim, Cheol Sang

    2013-09-01

    In this paper, we report an evaluation of the performance of a new stent durability tester based on the electrical potential sensing method through accelerated in vitro testing of six different nonvascular Nitinol stents simulating physiological conditions. The stents were subjected to a pulsatile loading of 33 Hz for a total of 62,726,400 cycles, at constant temperature and pressure of 35±0.5 °C and 120±4 mmHg, respectively. The electrical potential of each stent was measured in real-time and monitored for any changes in readings. After conducting test-to-fracture tests, the stents were visually checked, and by scanning electron microscopy. A sudden electrical potential drop in the readings suggests a fracture has occurred, and the only two instances of fracture in our present results were correctly determined by our present device, with the fractures confirmed visually after the test. The excellent performance of our new method shows good potential for a highly reliable and applicable in vitro durability testing for different kinds and sizes of metallic stents.

  1. QuickPIC: a highly efficient fully parallelized PIC code for plasma-based acceleration

    NASA Astrophysics Data System (ADS)

    Huang, C.; Decyk, V. K.; Zhou, M.; Lu, W.; Mori, W. B.; Cooley, J. H.; Antonsen, T. M., Jr.; Feng, B.; Katsouleas, T.; Vieira, J.; Silva, L. O.

    2006-09-01

    A highly efficient, fully parallelized, fully relativistic, three-dimensional particle-incell model for simulating plasma and laser wakefield acceleration is described. The model is based on the quasi-static approximation, which reduces a fully three-dimensional electromagnetic field solve and particle push to a two-dimensional field solve and particle push. This is done by calculating the plasma wake assuming that the drive beam and/or laser does not evolve during the time it takes for it to pass a plasma particle. The complete electromagnetic fields of the plasma wake and its associated index of refraction are then used to evolve the drive beam and/or laser using very large time steps. This algorithm reduces the computation time by 2 to 3 orders of magnitude without loss of accuracy for highly nonlinear problems of interest. The code is fully parallelizable with different domain decompositions for the 2D and 3D pieces of the code. The code also has dynamic load balancing. We present the basic algorithms and design of QuickPIC, as well as comparison between the new algorithm and conventional fully explicit models (OSIRIS). Direction for future work is also presented including a software pipeline technique to further scale QuickPIC to 10,000+ processors.

  2. Solar wind acceleration obtained from kinetic models based on electron velocity distribution functions with suprathermal particles

    NASA Astrophysics Data System (ADS)

    Pierrard, V.; Pieters, M.; Lazar, M.; Voitenko, Y.; Lamy, H.; Echim, M.

    2014-12-01

    Astrophysical and space plasmas are commonly found to be out ofthermal equilibrium, i.e., the velocity distribution functions (VDF)of plasma particles cannot be described well enough by Maxwelliandistribution functions. The suprathermal populations are ubiquitousenhancing the high-energy tail of the distribution. A kinetic model has been developed to successfullydescribe such plasmas with tails decreasing as a power law of thevelocity. In the present work, we show that a natural heating ofsolar and stellar coronas automatically appears when an enhancedpopulation of suprathermal particles is present at low altitude inthe solar (or stellar) atmosphere. This is true not only forelectrons and protons, but also for the minor ions which exhibit atemperature increase proportional to their mass. Moreover,suprathermal electrons contribute to the acceleration of stellarwinds to high bulk velocities when Coulomb collisions are neglected.These results are illustrated by using a global model of the solarcorona and solar wind based on VDF with suprathermal tails for thedifferent particle species. The energetic particles are non-collisional (without Coulomb collisions) even when thermalparticles are submitted to collisions. In the presence of long-rangecorrelations supplied by the fields and plasma instabilities,turbulence can play a role in the generation of such suprathermaltails. Solar wind observations are used as boundary conditions to determine the VDF in the other regions of the heliosphere. Consequences of suprathermal particles are also illustratedfor other space plasmas like the plasmasphere and the polar wind ofthe Earth and other planets.

  3. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device.

    PubMed

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C; Marino, Stephen A; Geard, Charles R; Brenner, David J; Garty, Guy

    2015-10-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields. PMID:26414507

  4. Accelerated life test for high-power white LED based on spectroradiometric measurement

    NASA Astrophysics Data System (ADS)

    Shen, Haiping; Pan, Jiangen; Feng, Huajun

    2008-03-01

    We implement an accelerated life test for the high-power white LEDs based on spectroradiometric measurement. The luminous flux degradation performances are investigated at both the rated current of 350mA and a higher current of 500mA. The average lifetime of the LEDs is 7057 hours at 350mA and 3508 hours at 500mA. The variations of the color of the white LEDs are studied. The color of the low quality white LEDs changes greatly, while the high quality white LEDs keep their color stable. The degradation performances of the chip and phosphor are studied separately. The quantum efficiency of the phosphor becomes lower from 350mA to 500mA current supply. The LED chip degrades faster than the phosphor during the 500mA high current aging. The luminous flux increase and the peak wavelength shift from 350mA to 500mA current supply are found to be useful lifetime indicating parameters that correlate well to the reliability of the high-power white LEDs.

  5. Implementation of Accelerated Beam-Specific Matched-Filter-Based Optical Alignment

    SciTech Connect

    Awwal, A S; Rice, K L; Taha, T M

    2009-01-29

    Accurate automated alignment of laser beams in the National Ignition Facility (NIF) is essential for achieving extreme temperature and pressure required for inertial confinement fusion. The alignment achieved by the integrated control systems relies on algorithms processing video images to determine the position of the laser beam images in real-time. Alignment images that exhibit wide variations in beam quality require a matched-filter algorithm for position detection. One challenge in designing a matched-filter based algorithm is to construct a filter template that is resilient to variations in imaging conditions while guaranteeing accurate position determination. A second challenge is to process the image as fast as possible. This paper describes the development of a new analytical template that captures key recurring features present in the beam image to accurately estimate the beam position under good image quality conditions. Depending on the features present in a particular beam, the analytical template allows us to create a highly tailored template containing only those selected features. The second objective is achieved by exploiting the parallelism inherent in the algorithm to accelerate processing using parallel hardware that provides significant performance improvement over conventional processors. In particular, a Xilinx Virtex II Pro FPGA hardware implementation processing 32 templates provided a speed increase of about 253 times over an optimized software implementation running on a 2.0 GHz AMD Opteron core.

  6. Experimental dosimetry and beam evaluation in a phantom for near lithium threshold accelerator based BNCT

    NASA Astrophysics Data System (ADS)

    Kudchadker, R. J.; Lee, C. L.; Harker, Y. D.; Harmon, F.

    1999-06-01

    Current accelerator-based neutron source concepts for boron neutron capture therapy (BNCT) are centered on the lithium (p,n) reaction. The near lithium threshold source concept uses proton energies ≲100 keV above the reaction threshold energy (1.88 MeV). For deeply seated brain tumors, epithermal (1 eV to 10 keV) neutrons are needed to penetrate the skull cap and subsequently thermalize at the tumor location. All BNCT neutron sources inherently have thermal, fast neutron and gamma-ray contamination. In order to quantify the thermal neutron component, a cylindrical acrylic head phantom has been constructed to simulate the patient's head and neck. BF3 proportional counters have been used to determine the thermal neutron flux (boron dose). The thermal neutron flux component has been compared with Monte Carlo N-Particle (MCNP) code calculations. Our results indicate a good comparison between the MCNP code calculations and the benchmark experiments performed. The results also indicate that the near threshold neutron concept is competitive with other BNCT neutron sources.

  7. Experimental dosimetry and beam evaluation in a phantom for near lithium threshold accelerator based BNCT

    SciTech Connect

    Kudchadker, R. J.; Harmon, F.; Lee, C. L.; Harker, Y. D.

    1999-06-10

    Current accelerator-based neutron source concepts for boron neutron capture therapy (BNCT) are centered on the lithium (p,n) reaction. The near lithium threshold source concept uses proton energies < or approx. 100 keV above the reaction threshold energy (1.88 MeV). For deeply seated brain tumors, epithermal (1 eV to 10 keV) neutrons are needed to penetrate the skull cap and subsequently thermalize at the tumor location. All BNCT neutron sources inherently have thermal, fast neutron and gamma-ray contamination. In order to quantify the thermal neutron component, a cylindrical acrylic head phantom has been constructed to simulate the patient's head and neck. BF{sub 3} proportional counters have been used to determine the thermal neutron flux (boron dose). The thermal neutron flux component has been compared with Monte Carlo N-Particle (MCNP) code calculations. Our results indicate a good comparison between the MCNP code calculations and the benchmark experiments performed. The results also indicate that the near threshold neutron concept is competitive with other BNCT neutron sources.

  8. A Computer-based Course in Classical Mechanics.

    ERIC Educational Resources Information Center

    Kane, D.; Sherwood, B.

    1980-01-01

    Describes and illustrates the tutorial and homework exercise lessons, student routing, course organization, administration, and evaluation of a PLATO computer-based course in classical mechanics. An appendix lists 41 lessons developed for the course. (CMV)

  9. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  10. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  11. Proton Acceleration at Oblique Shocks

    NASA Astrophysics Data System (ADS)

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-01

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  12. PROTON ACCELERATION AT OBLIQUE SHOCKS

    SciTech Connect

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-20

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  13. Beam-based measurements of long-range transverse wakefields in the Compact Linear Collider main-linac accelerating structure

    NASA Astrophysics Data System (ADS)

    Zha, Hao; Latina, Andrea; Grudiev, Alexej; De Michele, Giovanni; Solodko, Anastasiya; Wuensch, Walter; Schulte, Daniel; Adli, Erik; Lipkowitz, Nate; Yocky, Gerald S.

    2016-01-01

    The baseline design of CLIC (Compact Linear Collider) uses X-band accelerating structures for its main linacs. In order to maintain beam stability in multibunch operation, long-range transverse wakefields must be suppressed by 2 orders of magnitude between successive bunches, which are separated in time by 0.5 ns. Such strong wakefield suppression is achieved by equipping every accelerating structure cell with four damping waveguides terminated with individual rf loads. A beam-based experiment to directly measure the effectiveness of this long-range transverse wakefield and benchmark simulations was made in the FACET test facility at SLAC using a prototype CLIC accelerating structure. The experiment showed good agreement with the simulations and a strong suppression of the wakefields with an unprecedented minimum resolution of 0.1 V /(pC mm m ) .

  14. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    NASA Astrophysics Data System (ADS)

    Burlon, Alejandro A.; Girola, Santiago; Valda, Alejandro A.; Minsky, Daniel M.; Kreiner, Andrés J.

    2010-08-01

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7Li(p, n)7Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  15. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    SciTech Connect

    Burlon, Alejandro A.; Valda, Alejandro A.; Girola, Santiago; Minsky, Daniel M.; Kreiner, Andres J.

    2010-08-04

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the {sup 7}Li(p, n){sup 7}Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  16. Numerical investigations into a fiber laser based dielectric reverse dual-grating accelerator

    NASA Astrophysics Data System (ADS)

    Aimidula, A.; Welsch, C. P.; Xia, G.; Koyama, K.; Uesaka, M.; Yoshida, M.; Mete, O.; Matsumura, Y.

    2014-03-01

    Dielectric laser accelerators (DLAs) have great potential for applications, since they can generate acceleration gradients in the range of GeV/m and produce attosecond electron bunches. We described a novel reverse dual-grating dielectric accelerator structure made up of Silicon which is expected to improve beam confinement, and make fabrication easier. Numerical simulation results show that this structure effectively manipulates the laser field and generates a standing wave in the vacuum channel with a phase velocity synchronized to relativistic particles travelling through the structure. Optimum pillar height and channel width have been determined. All required laser parameters and initial particle energy have been analytically estimated and a suitable laser as an energy source is proposed. Finally, the effect of fabrication error on the acceleration gradient is discussed.

  17. Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    SciTech Connect

    Bakeman, M.S.; Van Tilborg, J.; Nakamura, K.; Gonsalves, A.; Osterhoff, J.; Sokollik, T.; Lin, C.; Robinson, K.E.; Schroeder, C.B.; Toth, Cs.; Weingartner, R.; Gruner, F.; Esarey, E.; Leemans, W.P.

    2010-06-01

    The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.

  18. A Heading and Flight-Path Angle Control of Aircraft Based on Required Acceleration Vector

    NASA Astrophysics Data System (ADS)

    Yoshitani, Naoharu

    This paper describes a control of heading and flight-path angles of aircraft to time-varying command angles. The controller first calculates an acceleration command vector (acV), which is vertical to the velocity vector. acV consists of two components; the one is feedforward acceleration obtained from the rates of command angles, and the other is feedback acceleration obtained from angle deviations by using PID control law. A bank angle command around the velocity vector and commands of pitch and yaw rates are then obtained to generate the required acceleration. A roll rate command is calculated from bank angle deviation. Roll, pitch and yaw rate commands are put into the attitude controller, which can be composed of any suitable control laws such as PID control. The control requires neither aerodynamic coefficients nor online calculation of the inverse dynamics of the aircraft. A numerical simulation illustrates the effects of the control.

  19. Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    SciTech Connect

    Bakeman, M. S.; Van Tilborg, J.; Nakamura, K.; Gonsalves, A.; Osterhoff, J.; Robinson, K. E.; Schroeder, C. B.; Toth, Cs.; Esarey, E.; Leemans, W. P.; Sokollik, T.; Lin, C.; Weingartner, R.; Gruener, F.

    2010-11-04

    The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.

  20. Accelerator-Based Boron Neutron Capture Therapy and the Development of a Dedicated Tandem-Electrostatic-Quadrupole

    SciTech Connect

    Kreiner, A. J.; Di Paolo, H.; Burlon, A. A.; Valda, A. A.; Debray, M. E.; Somacal, H. R.; Minsky, D. M.; Kesque, J. M.; Giboudot, Y.; Levinas, P.; Fraiman, M.; Romeo, V.

    2007-10-26

    There is a generalized perception that the availability of suitable particle accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of Boron Neutron Capture Therapy (BNCT). Progress on an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator for Accelerator-Based (AB)-BNCT is described here. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the {sup 7}Li(p,n){sup 7}Be reaction slightly beyond its resonance at 2.25 MeV. A folded tandem, with 1.25 MV terminal voltage, combined with an ESQ chain is being designed and constructed. A 30 mA proton beam of 2.5 MeV are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the {sup 7}Li(p,n){sup 7}Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. The first design and construction of an ESQ module is discussed and its electrostatic fields are investigated theoretically and experimentally. Also new beam transport calculations through the accelerator are presented.

  1. Accelerated gradient-based free form deformable registration for online adaptive radiotherapy.

    PubMed

    Yu, Gang; Liang, Yueqiang; Yang, Guanyu; Shu, Huazhong; Li, Baosheng; Yin, Yong; Li, Dengwang

    2015-04-01

    The registration of planning fan-beam computed tomography (FBCT) and daily cone-beam CT (CBCT) is a crucial step in adaptive radiation therapy. The current intensity-based registration algorithms, such as Demons, may fail when they are used to register FBCT and CBCT, because the CT numbers in CBCT cannot exactly correspond to the electron densities. In this paper, we investigated the effects of CBCT intensity inaccuracy on the registration accuracy and developed an accurate gradient-based free form deformation algorithm (GFFD). GFFD distinguishes itself from other free form deformable registration algorithms by (a) measuring the similarity using the 3D gradient vector fields to avoid the effect of inconsistent intensities between the two modalities; (b) accommodating image sampling anisotropy using the local polynomial approximation-intersection of confidence intervals (LPA-ICI) algorithm to ensure a smooth and continuous displacement field; and (c) introducing a 'bi-directional' force along with an adaptive force strength adjustment to accelerate the convergence process. It is expected that such a strategy can decrease the effect of the inconsistent intensities between the two modalities, thus improving the registration accuracy and robustness. Moreover, for clinical application, the algorithm was implemented by graphics processing units (GPU) through OpenCL framework. The registration time of the GFFD algorithm for each set of CT data ranges from 8 to 13 s. The applications of on-line adaptive image-guided radiation therapy, including auto-propagation of contours, aperture-optimization and dose volume histogram (DVH) in the course of radiation therapy were also studied by in-house-developed software. PMID:25767898

  2. Accelerated gradient-based free form deformable registration for online adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Yu, Gang; Liang, Yueqiang; Yang, Guanyu; Shu, Huazhong; Li, Baosheng; Yin, Yong; Li, Dengwang

    2015-04-01

    The registration of planning fan-beam computed tomography (FBCT) and daily cone-beam CT (CBCT) is a crucial step in adaptive radiation therapy. The current intensity-based registration algorithms, such as Demons, may fail when they are used to register FBCT and CBCT, because the CT numbers in CBCT cannot exactly correspond to the electron densities. In this paper, we investigated the effects of CBCT intensity inaccuracy on the registration accuracy and developed an accurate gradient-based free form deformation algorithm (GFFD). GFFD distinguishes itself from other free form deformable registration algorithms by (a) measuring the similarity using the 3D gradient vector fields to avoid the effect of inconsistent intensities between the two modalities; (b) accommodating image sampling anisotropy using the local polynomial approximation-intersection of confidence intervals (LPA-ICI) algorithm to ensure a smooth and continuous displacement field; and (c) introducing a ‘bi-directional’ force along with an adaptive force strength adjustment to accelerate the convergence process. It is expected that such a strategy can decrease the effect of the inconsistent intensities between the two modalities, thus improving the registration accuracy and robustness. Moreover, for clinical application, the algorithm was implemented by graphics processing units (GPU) through OpenCL framework. The registration time of the GFFD algorithm for each set of CT data ranges from 8 to 13 s. The applications of on-line adaptive image-guided radiation therapy, including auto-propagation of contours, aperture-optimization and dose volume histogram (DVH) in the course of radiation therapy were also studied by in-house-developed software.

  3. Calculating Nozzle Side Loads using Acceleration Measurements of Test-Based Models

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Ruf, Joe

    2007-01-01

    As part of a NASA/MSFC research program to evaluate the effect of different nozzle contours on the well-known but poorly characterized "side load" phenomena, we attempt to back out the net force on a sub-scale nozzle during cold-flow testing using acceleration measurements. Because modeling the test facility dynamics is problematic, new techniques for creating a "pseudo-model" of the facility and nozzle directly from modal test results are applied. Extensive verification procedures were undertaken, resulting in a loading scale factor necessary for agreement between test and model based frequency response functions. Side loads are then obtained by applying a wide-band random load onto the system model, obtaining nozzle response PSD's, and iterating both the amplitude and frequency of the input until a good comparison of the response with the measured response PSD for a specific time point is obtained. The final calculated loading can be used to compare different nozzle profiles for assessment during rocket engine nozzle development and as a basis for accurate design of the nozzle and engine structure to withstand these loads. The techniques applied within this procedure have extensive applicability to timely and accurate characterization of all test fixtures used for modal test.A viewgraph presentation on a model-test based pseudo-model used to calculate side loads on rocket engine nozzles is included. The topics include: 1) Side Loads in Rocket Nozzles; 2) Present Side Loads Research at NASA/MSFC; 3) Structural Dynamic Model Generation; 4) Pseudo-Model Generation; 5) Implementation; 6) Calibration of Pseudo-Model Response; 7) Pseudo-Model Response Verification; 8) Inverse Force Determination; 9) Results; and 10) Recent Work.

  4. Summary Report of Working Group 7: Electromagnetic-Structure Based Accelerators

    SciTech Connect

    Colby, E.; Musumeci, P.; /INFN, Rome

    2007-04-02

    We detail the most pressing physics and technical issues confronting short-wavelength acceleration. We review new acceleration concepts that are proposed and under development, and recent progress on technical issues such as structure fabrication and material damage. We outline key areas where work is still needed before a reliable assessment of the value of working at wavelengths below 1 cm can be made. Possible ways to enhance collaboration and progress in this important area are also discussed.

  5. Restructuring a software based MPEG-4 video decoder for short latency hardware acceleration

    NASA Astrophysics Data System (ADS)

    Boutellier, Jani; Silvén, Olli; Erdelyi, Tamas

    2007-02-01

    The multimedia capabilities of emerging high-end battery powered mobile devices rely on monolithic hardware accelerators with long latencies to minimize interrupt and software overheads. When compared to pure software implementations, monolithic hardware accelerator solutions need an order of magnitude less power. However, they are rather inflexible and difficult to modify to provide support for multiple coding standards. A more flexible alternative is to employ finer grained short latency accelerators that implement the individual coding functions. Unfortunately, with this approach the software overheads can become very high, if interrupts are used for synchronizing the software and hardware. Preferably, the cost of hardware accelerator interfacing should be at the same level with software functions. In this paper we study the benefits attainable from such an approach. As a case study we restructure a MPEG-4 video decoder in a manner that enables the simultaneous decoding of multiple bit streams using short latency hardware accelerators. The approach takes multiple video bit streams as input and produces a multiplexed stream that is used to control the hardware accelerators without interrupts. The decoding processes of each stream can be considered as threads that share the same hardware resources. Software simulations predict that the energy efficiency of the approach would be significantly better than for a pure software implementation.

  6. Aitken-based acceleration methods for assessing convergence of multilayer neural networks.

    PubMed

    Pilla, R S; Kamarthi, S V; Lindsay, B G

    2001-01-01

    This paper first develops the ideas of Aitken delta(2) method to accelerate the rate of convergence of an error sequence (value of the objective function at each step) obtained by training a neural network with a sigmoidal activation function via the backpropagation algorithm. The Aitken method is exact when the error sequence is exactly geometric. However, theoretical and empirical evidence suggests that the best possible rate of convergence obtainable for such an error sequence is log-geometric. This paper develops a new invariant extended-Aitken acceleration method for accelerating log-geometric sequences. The resulting accelerated sequence enables one to predict the final value of the error function. These predictions can in turn be used to assess the distance between the current and final solution and thereby provides a stopping criterion for a desired accuracy. Each of the techniques described is applicable to a wide range of problems. The invariant extended-Aitken acceleration approach shows improved acceleration as well as outstanding prediction of the final error in the practical problems considered. PMID:18249928

  7. An acceleration transducer based on optical fiber Bragging grating with temperature self-compensating function

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Lu, Qiyu; Ou, Jinping

    2013-04-01

    Along with the maturity and development of Optical Fiber Bragg Grating (OFBG) sensing technology, OFBG sensors with different functions have been developed and applied in large-scale engineering structure health monitoring and construction monitoring. In this paper, an acceleration transducer with a characteristic of temperature self-compensating is introduced. It is a cantilever structure model with equal strength beam, fixed with a mass block at the end of the beam, and two consecutive OFBGs are pasted on the upper and lower surface axis of the beam at the corresponding places. Because of the two OFBGs are near to each other, the wavelength changes caused by the environment temperature is the same. According to the temperature self-compensating principle and acceleration measurement principle developed in this paper, we can achieve the temperature self-compensating function of real acceleration measurement by simply calculating the test results. The experimental results show that this type of acceleration transducer has high sensitivity and stability and its measuring range can also be changed according to the practical requirements. This type of acceleration transducer is suitable for engineering structure acceleration measurement in different environment conditions.

  8. A low emittance and high efficiency visible light photocathode for high brightness accelerator-based X-ray light sources

    SciTech Connect

    Vecchione, T.; Ben-Zvi, I.; Dowell, D.H.; Feng, J.; Rao, T.; Smedley, J.; Wan, W.; Padmore, H.A.

    2011-07-21

    Free-electron lasers and energy recovery linacs represent a new generation of ultra-high brightness electron accelerator based x-ray sources. Photocathodes are a critical performance-limiting component of these systems. Here, we describe the development of photocathodes based on potassium-cesium-antimonide that satisfy many of the key requirements of future light sources, such as robustness, high quantum efficiency when excited with visible light, and low transverse emittance.

  9. A low emittance and high efficiency visible light photocathode for high brightness accelerator-based X-ray light sources

    SciTech Connect

    Vecchione, T.; Feng, J.; Wan, W.; Padmore, H. A.; Ben-Zvi, I.; Dowell, D. H.; Rao, T.; Smedley, J.

    2011-07-18

    Free-electron lasers and energy recovery linacs represent a new generation of ultra-high brightness electron accelerator based x-ray sources. Photocathodes are a critical performance-limiting component of these systems. Here, we describe the development of photocathodes based on potassium-cesium-antimonide that satisfy many of the key requirements of future light sources, such as robustness, high quantum efficiency when excited with visible light, and low transverse emittance.

  10. Material removal mechanism of copper chemical mechanical polishing in a periodate-based slurry

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Wang, Tongqing; He, Yongyong; Lu, Xinchun

    2015-05-01

    The material removal mechanism of copper in a periodate-based slurry during barrier layer chemical mechanical polishing (CMP) has not been intensively investigated. This paper presents a study of the copper surface film chemistry and mechanics in a periodate-based slurry. On this basis, the controlling factor of the copper CMP material removal mechanism is proposed. The results show that the chemical and electrochemical reaction products on the copper surface are complex and vary considerably as a function of the solution pH. Under acidic conditions (pH 4) the copper surface underwent strong chemical dissolution while the corrosion was mild and uniform under alkaline conditions (pH 11). The corrosion effect was the lowest in near neutral solutions because the surface was covered with non-uniform Cu(IO3)2·H2O/Cu-periodate/copper oxides films, which had better passivation effect. The surface film thickness and mechanical removal properties were studied by AES and AFM nano-scratch tests. Based on the combined surface film analysis and CMP experiment results, it can be concluded that the controlling factor during copper CMP in a periodate-based slurry is the chemical-enhanced mechanical removal of the surface films. The periodate-based slurry should be modified by the addition of corrosion inhibitors and complexing agents to achieve a good copper surface quality with moderate chemical dissolution.

  11. Capture and Transport of Laser Accelerated Protons by Pulsed Magnetic Fields: Advancements Toward Laser-Based Proton Therapy

    NASA Astrophysics Data System (ADS)

    Burris-Mog, Trevor J.

    The interaction of intense laser light (I > 10 18 W/cm2) with a thin target foil leads to the Target Normal Sheath Acceleration mechanism (TNSA). TNSA is responsible for the generation of high current, ultra-low emittance proton beams, which may allow for the development of a compact and cost effective proton therapy system for the treatment of cancer. Before this application can be realized, control is needed over the large divergence and the 100% kinetic energy spread that are characteristic of TNSA proton beams. The work presented here demonstrates control over the divergence and energy spread using strong magnetic fields generated by a pulse power solenoid. The solenoidal field results in a parallel proton beam with a kinetic energy spread DeltaE/E = 10%. Assuming that next generation lasers will be able to operate at 10 Hz, the 10% spread in the kinetic energy along with the 23% capture efficiency of the solenoid yield enough protons per laser pulse to, for the first time, consider applications in Radiation Oncology. Current lasers can generate proton beams with kinetic energies up to 67.5 MeV, but for therapy applications, the proton kinetic energy must reach 250 MeV. Since the maximum kinetic energy Emax of the proton scales with laser light intensity as Emax ∝ I0.5, next generation lasers may very well accelerate 250 MeV protons. As the kinetic energy of the protons is increased, the magnetic field strength of the solenoid will need to increase. The scaling of the magnetic field B with the kinetic energy of the protons follows B ∝ E1/2. Therefor, the field strength of the solenoid presented in this work will need to be increased by a factor of 2.4 in order to accommodate 250 MeV protons. This scaling factor seems reasonable, even with present technology. This work not only demonstrates control over beam divergence and energy spread, it also allows for us to now perform feasibility studies to further research what a laser-based proton therapy system

  12. An improved anti-leech mechanism based on session identifier

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbiao; Zhu, Tong; Zhang, Han; Lin, Li

    2012-01-01

    With the rapid development of information technology and extensive requirement of network resource sharing, plenty of resource hotlinking phenomenons appear on the internet. The hotlinking problem not only harms the interests of legal websites but also leads to a great affection to fair internet environment. The anti-leech technique based on session identifier is highly secure, but the transmission of session identifier in plaintext form causes some security flaws. In this paper, a proxy hotlinking technique based on session identifier is introduced firstly to illustrate these security flaws; next, this paper proposes an improved anti-leech mechanism based on session identifier, the mechanism takes the random factor as the core and detects hotlinking request using a map table that contains random factor, user's information and time stamp; at last the paper analyzes the security of mechanism in theory. The result reveals that the improved mechanism has the merits of simple realization, high security and great flexibility.

  13. An improved anti-leech mechanism based on session identifier

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbiao; Zhu, Tong; Zhang, Han; Lin, Li

    2011-12-01

    With the rapid development of information technology and extensive requirement of network resource sharing, plenty of resource hotlinking phenomenons appear on the internet. The hotlinking problem not only harms the interests of legal websites but also leads to a great affection to fair internet environment. The anti-leech technique based on session identifier is highly secure, but the transmission of session identifier in plaintext form causes some security flaws. In this paper, a proxy hotlinking technique based on session identifier is introduced firstly to illustrate these security flaws; next, this paper proposes an improved anti-leech mechanism based on session identifier, the mechanism takes the random factor as the core and detects hotlinking request using a map table that contains random factor, user's information and time stamp; at last the paper analyzes the security of mechanism in theory. The result reveals that the improved mechanism has the merits of simple realization, high security and great flexibility.

  14. Analysis of the dynamics of a nutating body. [numerical analysis of displacement, velocity, and acceleration of point on mechanical drives

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.

    1974-01-01

    The equations for the displacement, velocity, and acceleration of a point in a nutating body are developed. These are used to derive equations for the inertial moment developed by a nutating body of arbitrary shape. Calculations made for a previously designed nutating plate transmission indicate that that device is severely speed limited because of the very high magnitude inertial moment.

  15. On isocentre adjustment and quality control in linear accelerator based radiosurgery with circular collimators and room lasers

    NASA Astrophysics Data System (ADS)

    Treuer, H.; Hoevels, M.; Luyken, K.; Gierich, A.; Kocher, M.; Müller, R.-P.; Sturm, V.

    2000-08-01

    We have developed a densitometric method for measuring the isocentric accuracy and the accuracy of marking the isocentre position for linear accelerator based radiosurgery with circular collimators and room lasers. Isocentric shots are used to determine the accuracy of marking the isocentre position with room lasers and star shots are used to determine the wobble of the gantry and table rotation movement, the effect of gantry sag, the stereotactic collimator alignment, and the minimal distance between gantry and table rotation axes. Since the method is based on densitometric measurements, beam spot stability is implicitly tested. The method developed is also suitable for quality assurance and has proved to be useful in optimizing isocentric accuracy. The method is simple to perform and only requires a film box and film scanner for instrumentation. Thus, the method has the potential to become widely available and may therefore be useful in standardizing the description of linear accelerator based radiosurgical systems.

  16. Laser-plasma accelerators-based high energy radiation femtochemistry and spatio-temporal radiation biomedicine

    NASA Astrophysics Data System (ADS)

    Gauduel, Y. A.; Lundh, O.; Martin, M. T.; Malka, V.

    2012-06-01

    The innovating advent of powerful TW laser sources (~1019 W cm-z) and laser-plasma interactions providing ultra-short relativistic particle beams (electron, proton) in the MeV domain open exciting opportunities for the simultaneous development of high energy radiation femtochemistry (HERF) and ultrafast radiation biomedicine. Femtolysis experiments (Femtosecond radiolysis) of aqueous targets performed with relativistic electron bunches of 2.5-15 MeV give new insights on transient physicochemical events that take place in the prethermal regime of confined ionization tracks. Femtolysis studies emphasize the pre-eminence of ultra-fast quantum effects in the temporal range 10-14 - 10-11 s. The most promising advances of HERF concern the quantification of ultrafast sub-nanometric biomolecular damages (bond weakening and bond breaking) in the radial direction of a relativistic particle beam. Combining ultra-short relativistic particle beams and near-infrared spectroscopic configurations, laser-plasma accelerators based high energy radiation femtochemistry foreshadows the development of real-time radiation chemistry in the prethermal regime of nascent ionisation clusters. These physico-chemical advances would be very useful for future developments in biochemically relevant environments (DNA, proteins) and in more complex biological systems such as living cells. The first investigation of single and multiple irradiation shots performed at high energy level (90 MeV) and very high dose rate, typically 1013 Gy s-1, demonstrates that measurable assessments of immediate and reversible DNA damage can be explored at single cell level. Ultrafast in vivo irradiations would permit the development of bio-nanodosimetry on the time scale of molecular motions, i.e. angstrom or sub-angstrom displacements and open new perspectives in the emerging domain of ultrafast radiation biomedicine such as pulsed radiotherapy.

  17. Linear Accelerator-Based Radiosurgery Alone for Arteriovenous Malformation: More Than 12 Years of Observation

    SciTech Connect

    Matsuo, Takayuki Kamada, Kensaku; Izumo, Tsuyoshi; Hayashi, Nobuyuki; Nagata, Izumi

    2014-07-01

    Purpose: Although radiosurgery is an accepted treatment method for intracranial arteriovenous malformations (AVMs), its long-term therapeutic effects have not been sufficiently evaluated, and many reports of long-term observations are from gamma-knife facilities. Furthermore, there are few reported results of treatment using only linear accelerator (LINAC)-based radiosurgery (LBRS). Methods and Materials: Over a period of more than 12 years, we followed the long-term results of LBRS treatment performed in 51 AVM patients. Results: The actuarial obliteration rates, after a single radiosurgery session, at 3, 5, 10, and 15 years were 46.9%, 54.0%, 64.4%, and 68.0%, respectively; when subsequent radiosurgeries were included, the rates were 46.9%, 61.3%, 74.2%, and 90.3%, respectively. Obliteration rates were significantly related to target volumes ≥4 cm{sup 3}, marginal doses ≥12 Gy, Spetzler-Martin grades (1 vs other), and AVM scores ≥1.5; multivariate analyses revealed a significant difference for target volumes ≥4 cm{sup 3}. The postprocedural actuarial symptomatic radiation injury rates, after a single radiation surgery session, at 5, 10, and 15 years were 12.3%, 16.8%, and 19.1%, respectively. Volumes ≥4 cm{sup 3}, location (lobular or other), AVM scores ≥1.5, and the number of radiosurgery were related to radiation injury incidence; multivariate analyses revealed significant differences associated with volumes ≥4 cm{sup 3} and location (lobular or other). Conclusions: Positive results can be obtained with LBRS when performed with a target volume ≤4 cm{sup 3}, an AVM score ≤1.5, and ≥12 Gy radiation. Bleeding and radiation injuries may appear even 10 years after treatment, necessitating long-term observation.

  18. SU-E-T-528: Robustness Evaluation for Fiducial-Based Accelerated Partial Breast Proton Therapy

    SciTech Connect

    Zhao, L; Rana, S; Zheng, Y

    2014-06-01

    Purpose: To investigate the robustness of the proton treatment plans in the presence of rotational setup error when patient is aligned with implanted fiducials. Methods: Five Stage I invasive breast cancer patients treated with the APBP protocol (PCG BRE007-12) were studied. The rotational setup errors were simulated by rotating the original CT images around the body center clockwise and counterclockwise 5 degrees (5CW and 5CCW). Manual translational registration was then performed to match the implanted fiducials on the rotated images to the original dataset. Patient contours were copied to the newly created CT set. The original treatment plan was applied to the new CT dataset with the beam isocenter placed at the geometrical center of PTV. The dose distribution was recalculated for dosimetric parameters comparison. Results: CTV and PTV (D95 and V95) coverages were not significantly different between the two simulated plans (5CW and 5CCW) and the original plan. PTV D95 and CTV D95 absolute difference among the three plans were relatively small, with maximum changes of 0.28 CGE and 0.15 CGE, respectively. PTV V95 and CTV V95 absolute differences were 0.79% and 0.48%. The dosage to the thyroid, heart, contralateral breast and lung remained zero for all three plans. The Dmax and Dmean to the volume of ipsilateral breast excluding CTV were compared, with maximum difference values of 1.02 CGE for Dmax and 3.56 CGE for Dmean. Ipsilateral lung Dmean maintained no significant changes through the three plan comparison, with the largest value 0.32 CGE. Ipsilateral lung Dmax was the most sensitive parameter to this simulation study, with a maximum difference at 20.2 CGE. Conclusion: Our study suggests that fiducial-based Accelerated Partial Breast Proton Therapy is robust with respect to +/− 5 degree patient setup rotational errors, as long as the internal fiducial markers are used for patient alignment.

  19. A polarization-based frequency scanning interferometer and the signal processing acceleration method based on parallel processing architecture

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hyun; Kim, Min Young

    FSI system, one of the most promising optical surface measurement techniques, generally results in superior optical performance comparing with other 3-dimensional measuring methods as its hardware structure is fixed in operation and only the light frequency is scanned in a specific spectral band without vertical scanning of the target surface or the objective lens. FSI system collects a set of images of interference fringe by changing the frequency of light source. After that, it transforms intensity data of acquired image into frequency information, and calculates the height profile of target objects with the help of frequency analysis based on FFT. However, it still suffers from optical noise from target surface and relatively long processing time due to the number of images acquired in frequency scanning phase. First, a polarization-based frequency scanning interferometry (PFSI) is proposed for optical noise robustness. It consists of tunable laser for light source, λ/4 plate in front of reference mirror, λ/4 plate in front of target object, polarizing beam splitter, polarizer in front of image sensor, polarizer in front of the fiber coupled light source, λ/2 plate between PBS and polarizer of the light source. Using the proposed system, we can solve the problem low contrast of acquired fringe image by using polarization technique. Also, we can control light distribution of object beam and reference beam. Second, the signal processing acceleration method is proposed for PFSI, based on parallel processing architecture, which consists of parallel processing hardware and software such as GPU (Graphic Processing Unit) and CUDA (Compute Unified Device Architecture). As a result, the processing time reaches into tact time level of real-time processing. Finally, the proposed system is evaluated in terms of accuracy and processing speed through a series of experiment and the obtained results show the effectiveness of the proposed system and method.

  20. General description of electromagnetic radiation processes based on instantaneous charge acceleration in ''endpoints''

    SciTech Connect

    James, Clancy W.; Falcke, Heino; Huege, Tim; Ludwig, Marianne

    2011-11-15

    We present a methodology for calculating the electromagnetic radiation from accelerated charged particles. Our formulation - the 'endpoint formulation' - combines numerous results developed in the literature in relation to radiation arising from particle acceleration using a complete, and completely general, treatment. We do this by describing particle motion via a series of discrete, instantaneous acceleration events, or 'endpoints', with each such event being treated as a source of emission. This method implicitly allows for particle creation and destruction, and is suited to direct numerical implementation in either the time or frequency domains. In this paper we demonstrate the complete generality of our method for calculating the radiated field from charged particle acceleration, and show how it reduces to the classical named radiation processes such as synchrotron, Tamm's description of Vavilov-Cherenkov, and transition radiation under appropriate limits. Using this formulation, we are immediately able to answer outstanding questions regarding the phenomenology of radio emission from ultra-high-energy particle interactions in both the earth's atmosphere and the moon. In particular, our formulation makes it apparent that the dominant emission component of the Askaryan effect (coherent radio-wave radiation from high-energy particle cascades in dense media) comes from coherent 'bremsstrahlung' from particle acceleration, rather than coherent Vavilov-Cherenkov radiation.

  1. Novel durable bio-photocatalyst purifiers, a non-heterogeneous mechanism: accelerated entrapped dye degradation into structural polysiloxane-shield nano-reactors.

    PubMed

    Dastjerdi, Roya; Montazer, Majid; Shahsavan, Shadi; Böttcher, Horst; Moghadam, M B; Sarsour, Jamal

    2013-01-01

    This research has designed innovative Ag/TiO(2) polysiloxane-shield nano-reactors on the PET fabric to develop novel durable bio-photocatalyst purifiers. To create these very fine nano-reactors, oppositely surface charged multiple size nanoparticles have been applied accompanied with a crosslinkable amino-functionalized polysiloxane (XPs) emulsion. Investigation of photocatalytic dye decolorization efficiency revealed a non-heterogeneous mechanism including an accelerated degradation of entrapped dye molecules into the structural polysiloxane-shield nano-reactors. In fact, dye molecules can be adsorbed by both Ag and XPs due to their electrostatic interactions and/or even via forming a complex with them especially with silver NPs. The absorbed dye and active oxygen species generated by TiO(2) were entrapped by polysiloxane shelter and the presence of silver nanoparticles further attract the negative oxygen species closer to the adsorbed dye molecules. In this way, the dye molecules are in close contact with concentrated active oxygen species into the created nano-reactors. This provides an accelerated degradation of dye molecules. This non-heterogeneous mechanism has been detected on the sample containing all of the three components. Increasing the concentration of Ag and XPs accelerated the second step beginning with an enhanced rate. Further, the treated samples also showed an excellent antibacterial activity. PMID:23010055

  2. Shape memory-based actuators and release mechanisms therefrom

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Rajan (Inventor); Snyder, Daniel W. (Inventor); Schoenwald, David K. (Inventor); Lam, Nhin S. (Inventor); Watson, Daniel S. (Inventor); Krishnan, Vinu B. (Inventor); Noebe, Ronald D. (Inventor)

    2012-01-01

    SM-based actuators (110) and release mechanisms (100) therefrom and systems (500) including one or more release mechanisms (100). The actuators (110) comprise a SM member (118) and a deformable member (140) mechanically coupled to the SM member (118) which deforms upon a shape change of the SM member triggered by a phase transition of the SM member. A retaining element (160) is mechanically coupled to the deformable member (140), wherein the retaining element (160) moves upon the shape change. Release mechanism (100) include an actuator, a rotatable mechanism (120) including at least one restraining feature (178) for restraining rotational movement of the retaining element (160) before the shape change, and at least one spring (315) that provides at least one locked spring-loaded position when the retaining element is in the restraining feature and at least one released position that is reached when the retaining element is in a position beyond the restraining feature (178). The rotatable mechanism (120) includes at least one load-bearing protrusion (310). A hitch (400) is for mechanically coupling to the load, wherein the hitch is supported on the load bearing protrusion (310) when the rotatable mechanism is in the locked spring-loaded position.

  3. Wavefront-sensor-based electron density measurements for laser-plasma accelerators

    SciTech Connect

    Plateau, Guillaume; Matlis, Nicholas; Geddes, Cameron; Gonsalves, Anthony; Shiraishi, Satomi; Lin, Chen; van Mourik, Reinier; Leemans, Wim

    2010-02-20

    Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength, hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, have greater phase sensitivity, straightforward analysis, improving shot-to-shot plasma-density diagnostics.

  4. A diffusion synthetic acceleration scheme for rectangular geometries based on bilinear discontinuous finite elements

    SciTech Connect

    Turcksin, B.; Ragusa, J. C.

    2013-07-01

    A DSA technique to accelerate the iterative convergence of S{sub n} transport solves is derived for bilinear discontinuous (BLD) finite elements on rectangular grids. The diffusion synthetic acceleration equations are discretized using BLD elements by adapting the Modified Interior Penalty technique, introduced in [4] for triangular grids. The MIP-DSA equations are SPD and thus are solved using a preconditioned CG technique. Fourier analyses and implementation of the technique in a BLD S{sub n} transport code show that the technique is stable is effective. (authors)

  5. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  6. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  7. A new method of accelerated life testing based on the Grey System Theory for a model-based lithium-ion battery life evaluation system

    NASA Astrophysics Data System (ADS)

    Gu, Weijun; Sun, Zechang; Wei, Xuezhe; Dai, Haifeng

    2014-12-01

    The lack of data samples is the main difficulty for the lifetime study of a lithium-ion battery, especially for a model-based evaluation system. To determine the mapping relationship between the battery fading law and the different external factors, the testing of batteries should be implemented to the greatest extent possible. As a result, performing a battery lifetime study has become a notably time-consuming undertaking. Without reducing the number of testing items pre-specified within the test matrices of an accelerated life testing schedule, a grey model that can be used to predict the cycle numbers that result in the specific life ending index is established in this paper. No aging mechanism is required for this model, which is exclusively a data-driven method obtained from a small quantity of actual testing data. For higher accuracy, a specific smoothing method is introduced, and the error between the predicted value and the actual value is also modeled using the same method. By the verification of a phosphate iron lithium-ion battery and a manganese oxide lithium-ion battery, this grey model demonstrated its ability to reduce the required number of cycles for the operational mode of various electric vehicles.

  8. Molecular Mechanisms and Evolutionary Processes Contributing to Accelerated Divergence of Gene Expression on the Drosophila X Chromosome.

    PubMed

    Coolon, Joseph D; Stevenson, Kraig R; McManus, C Joel; Yang, Bing; Graveley, Brenton R; Wittkopp, Patricia J

    2015-10-01

    In species with a heterogametic sex, population genetics theory predicts that DNA sequences on the X chromosome can evolve faster than comparable sequences on autosomes. Both neutral and nonneutral evolutionary processes can generate this pattern. Complex traits like gene expression are not predicted to have accelerated evolution by these theories, yet a "faster-X" pattern of gene expression divergence has recently been reported for both Drosophila and mammals. Here, we test the hypothesis that accelerated adaptive evolution of cis-regulatory sequences on the X chromosome is responsible for this pattern by comparing the relative contributions of cis- and trans-regulatory changes to patterns of faster-X expression divergence observed between strains and species of Drosophila with a range of divergence times. We find support for this hypothesis, especially among male-biased genes, when comparing different species. However, we also find evidence that trans-regulatory differences contribute to a faster-X pattern of expression divergence both within and between species. This contribution is surprising because trans-acting regulators of X-linked genes are generally assumed to be randomly distributed throughout the genome. We found, however, that X-linked transcription factors appear to preferentially regulate expression of X-linked genes, providing a potential mechanistic explanation for this result. The contribution of trans-regulatory variation to faster-X expression divergence was larger within than between species, suggesting that it is more likely to result from neutral processes than positive selection. These data show how accelerated evolution of both coding and noncoding sequences on the X chromosome can lead to accelerated expression divergence on the X chromosome relative to autosomes. PMID:26041937

  9. Symmetry-based reciprocity: evolutionary constraints on a proximate mechanism

    PubMed Central

    Campennì, Marco

    2016-01-01

    Background. While the evolution of reciprocal cooperation has attracted an enormous attention, the proximate mechanisms underlying the ability of animals to cooperate reciprocally are comparatively neglected. Symmetry-based reciprocity is a hypothetical proximate mechanism that has been suggested to be widespread among cognitively unsophisticated animals. Methods. We developed two agent-based models of symmetry-based reciprocity (one relying on an arbitrary tag and the other on interindividual proximity) and tested their ability both to reproduce significant emergent features of cooperation in group living animals and to promote the evolution of cooperation. Results. Populations formed by agents adopting symmetry-based reciprocity showed differentiated “social relationships” and a positive correlation between cooperation given and received: two common aspects of animal cooperation. However, when reproduction and selection across multiple generations were added to the models, agents adopting symmetry-based reciprocity were outcompeted by selfish agents that never cooperated. Discussion. In order to evolve, hypothetical proximate mechanisms must be able to stand competition from alternative strategies. While the results of our simulations require confirmation using analytical methods, we provisionally suggest symmetry-based reciprocity is to be abandoned as a possible proximate mechanism underlying the ability of animals to reciprocate cooperative interactions. PMID:26998412

  10. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology

    NASA Astrophysics Data System (ADS)

    Wu, Fengjun; Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen; Cui, Yuan; Yan, Hongbin; Zhang, Huajian; Wang, Bin; Li, Xiaohui

    2016-08-01

    To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply.

  11. Advantages and safety features using foundation fieldbus-H1 based instrumentation & control for cryo system in accelerators

    NASA Astrophysics Data System (ADS)

    Kaushik, S.; Haneef, K. K. M.; Jayaram, M. N.; Lalsare, D. K.

    2008-05-01

    Large accelerator programme instrumentation and control for monitoring of large no. of parameters for cryogenic/cooling system. The parameters are Cryo Temperature, Vacuum, He Level and He flow etc. The circumference of the accelerator may vary up to several kilometers. Large size accelerators require huge cabling and hardware. The use of foundation fieldbus based Transmitters for measurement and Control valves field positioners for cryo system shall reduce the cabling, hardware, maintenance and enhance data processing and interoperability. Safety is an important requirement for efficient, trouble free and safe operation of any process industry such as cryo used in accelerators. Instrumentation and Control systems can be developed using Foundation Field Bus. The safety features in foundation field bus system can be achieved by use of intrinsic safe devices, fail safe configuration, minimize the hazard by distribution of control function blocks, short circuit preventers. Apart from above features, the significant cable reduction in the fieldbus system reduces the hazard due to electrical cable fire, which is considered one of the major risk in industry. Further the reliability in fieldbus can be improved by hot stand-by redundant power supply, hot stand-by redundant CPU, hot stand-by redundant network capability and use of link active scheduler.

  12. An efficient low frequency horizontal diamagnetic levitation mechanism based vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Palagummi, S.; Yuan, F. G.

    2016-04-01

    This article identifies and studies key parameters that characterize a horizontal diamagnetic levitation (HDL) mechanism based low frequency vibration energy harvester with the aim of enhancing performance metrics such as efficiency and volume figure of merit (FoMv). The HDL mechanism comprises of three permanent magnets and two diamagnetic plates. Two of the magnets, aka lifting magnets, are placed co-axially at a distance such that each attract a centrally located magnet, aka floating magnet, to balance its weight. This floating magnet is flanked closely by two diamagnetic plates which stabilize the levitation in the axial direction. The influence of the geometry of the floating magnet, the lifting magnet and the diamagnetic plate are parametrically studied to quantify their effects on the size, stability of the levitation mechanism and the resonant frequency of the floating magnet. For vibration energy harvesting using the HDL mechanism, a coil geometry and eddy current damping are critically discussed. Based on the analysis, an efficient experimental system is setup which showed a softening frequency response with an average system efficiency of 25.8% and a FoMv of 0.23% when excited at a root mean square acceleration of 0.0546 m/s2 and at frequency of 1.9 Hz.

  13. Quantifying accelerated soil erosion through ecological site-based assessments of wind and water erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work explores how organising soil erosion assessments using established groupings of similar soils (ecological sites) can inform systems for managing accelerated soil erosion. We evaluated aeolian sediment transport and fluvial erosion rates for five ecological sites in southern New Mexico, USA...

  14. Linear Accelerator-Based Intensity-Modulated Total Marrow Irradiation Technique for Treatment of Hematologic Malignancies: A Dosimetric Feasibility Study

    SciTech Connect

    Yeginer, Mete; Roeske, John C.; Radosevich, James A.; Aydogan, Bulent

    2011-03-15

    Purpose: To investigate the dosimetric feasibility of linear accelerator-based intensity-modulated total marrow irradiation (IM-TMI) in patients with hematologic malignancies. Methods and Materials: Linear accelerator-based IM-TMI treatment planning was performed for 9 patients using the Eclipse treatment planning system. The planning target volume (PTV) consisted of all the bones in the body from the head to the mid-femur, except for the forearms and hands. Organs at risk (OAR) to be spared included the lungs, heart, liver, kidneys, brain, eyes, oral cavity, and bowel and were contoured by a physician on the axial computed tomography images. The three-isocenter technique previously developed by our group was used for treatment planning. We developed and used a common dose-volume objective method to reduce the planning time and planner subjectivity in the treatment planning process. Results: A 95% PTV coverage with the 99% of the prescribed dose of 12 Gy was achieved for all nine patients. The average dose reduction in OAR ranged from 19% for the lungs to 68% for the lenses. The common dose-volume objective method decreased the planning time by an average of 35% and reduced the inter- and intra- planner subjectivity. Conclusion: The results from the present study suggest that the linear accelerator-based IM-TMI technique is clinically feasible. We have demonstrated that linear accelerator-based IM-TMI plans with good PTV coverage and improved OAR sparing can be obtained within a clinically reasonable time using the common dose-volume objective method proposed in the present study.

  15. Direct Particle Acceleration in Astroplasmas

    NASA Astrophysics Data System (ADS)

    Hoshino, M.

    2002-10-01

    The high energy particle acceleration mechanisms are discussed by focusing on the direct acceleration in the astrophysical context. We specifically argue that the relativistic magnetic reconnection and the shock surfing/surfatron processes can efficiently accelerate charged particles to a relativistic energy, and that those mechanisms may produce a non-thermal, power-law energy spectrum. [copyright] 2002 American Institute of Physics

  16. Studies of $${\\rm Nb}_{3}{\\rm Sn}$$ Strands Based on the Restacked-Rod Process for High Field Accelerator Magnets

    DOE PAGESBeta

    Barzi, E.; Bossert, M.; Gallo, G.; Lombardo, V.; Turrioni, D.; Yamada, R.; Zlobin, A. V.

    2011-12-21

    A major thrust in Fermilab's accelerator magnet R&D program is the development of Nb3Sn wires which meet target requirements for high field magnets, such as high critical current density, low effective filament size, and the capability to withstand the cabling process. The performance of a number of strands with 150/169 restack design produced by Oxford Superconducting Technology was studied for round and deformed wires. To optimize the maximum plastic strain, finite element modeling was also used as an aid in the design. Results of mechanical, transport and metallographic analyses are presented for round and deformed wires.

  17. Ecological site-based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands

    USGS Publications Warehouse

    Webb, Nicholas P.; Herrick, Jeffrey E.; Duniway, Michael C.

    2014-01-01

    Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explore how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass-succulent states across the ecological sites at the plot scale (0.25 Ha). We identify vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area can be effectively controlled when bare ground cover is 100 cm in length is less than ~35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the development of

  18. An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations.

    PubMed

    Tian, Zhen; Li, Yongbao; Folkerts, Michael; Shi, Feng; Jiang, Steve B; Jia, Xun

    2015-10-21

    Recently, there has been a lot of research interest in developing fast Monte Carlo (MC) dose calculation methods on graphics processing unit (GPU) platforms. A good linear accelerator (linac) source model is critical for both accuracy and efficiency considerations. In principle, an analytical source model should be more preferred for GPU-based MC dose engines than a phase-space file-based model, in that data loading and CPU-GPU data transfer can be avoided. In this paper, we presented an analytical field-independent source model specifically developed for GPU-based MC dose calculations, associated with a GPU-friendly sampling scheme. A key concept called phase-space-ring (PSR) was proposed. Each PSR contained a group of particles that were of the same type, close in energy and reside in a narrow ring on the phase-space plane located just above the upper jaws. The model parameterized the probability densities of particle location, direction and energy for each primary photon PSR, scattered photon PSR and electron PSR. Models of one 2D Gaussian distribution or multiple Gaussian components were employed to represent the particle direction distributions of these PSRs. A method was developed to analyze a reference phase-space file and derive corresponding model parameters. To efficiently use our model in MC dose calculations on GPU, we proposed a GPU-friendly sampling strategy, which ensured that the particles sampled and transported simultaneously are of the same type and close in energy to alleviate GPU thread divergences. To test the accuracy of our model, dose distributions of a set of open fields in a water phantom were calculated using our source model and compared to those calculated using the reference phase-space files. For the high dose gradient regions, the average distance-to-agreement (DTA) was within 1 mm and the maximum DTA within 2 mm. For relatively low dose gradient regions, the root-mean-square (RMS) dose difference was within 1.1% and the maximum

  19. An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations

    NASA Astrophysics Data System (ADS)

    Tian, Zhen; Li, Yongbao; Folkerts, Michael; Shi, Feng; Jiang, Steve B.; Jia, Xun

    2015-10-01

    Recently, there has been a lot of research interest in developing fast Monte Carlo (MC) dose calculation methods on graphics processing unit (GPU) platforms. A good linear accelerator (linac) source model is critical for both accuracy and efficiency considerations. In principle, an analytical source model should be more preferred for GPU-based MC dose engines than a phase-space file-based model, in that data loading and CPU-GPU data transfer can be avoided. In this paper, we presented an analytical field-independent source model specifically developed for GPU-based MC dose calculations, associated with a GPU-friendly sampling scheme. A key concept called phase-space-ring (PSR) was proposed. Each PSR contained a group of particles that were of the same type, close in energy and reside in a narrow ring on the phase-space plane located just above the upper jaws. The model parameterized the probability densities of particle location, direction and energy for each primary photon PSR, scattered photon PSR and electron PSR. Models of one 2D Gaussian distribution or multiple Gaussian components were employed to represent the particle direction distributions of these PSRs. A method was developed to analyze a reference phase-space file and derive corresponding model parameters. To efficiently use our model in MC dose calculations on GPU, we proposed a GPU-friendly sampling strategy, which ensured that the particles sampled and transported simultaneously are of the same type and close in energy to alleviate GPU thread divergences. To test the accuracy of our model, dose distributions of a set of open fields in a water phantom were calculated using our source model and compared to those calculated using the reference phase-space files. For the high dose gradient regions, the average distance-to-agreement (DTA) was within 1 mm and the maximum DTA within 2 mm. For relatively low dose gradient regions, the root-mean-square (RMS) dose difference was within 1.1% and the maximum

  20. MECHANICAL AND CHEMICAL PROPERTIES OF CEMENTITIOUS MATERIALS USING γ-2CaO.SiO2 UNDER THE SEVERAL CONDITIONS IN ACCELERATED CARBONATION CURING

    NASA Astrophysics Data System (ADS)

    Watanabe, Kenzo; Yokozeki, Kosuke; Torichigai, Takeshi; Sakai, Etsuo

    The experiments have been conducted in order to investigate the mechanical and chemical properties of mortar with three different binders under the several conditions in accelerated carbonation curing. As the results, the depth of carbonation varied among each mix proportion. It is proven that by increasing CO2 density in the mortar having γ-2CaO.SiO2, the CaCO3 production will increase, which leads to the increase of filling ability in the pore of mortar. Furthermore, as a result from the calculation of Tritium permeation, it shows that the permeation decreases with an increase of CO2 density.