Science.gov

Sample records for acceleration response spectra

  1. Using Modified Mercalli Intensities to estimate acceleration response spectra for the 1906 San Francisco earthquake

    USGS Publications Warehouse

    Boatwright, J.; Bundock, H.; Seekins, L.C.

    2006-01-01

    We derive and test relations between the Modified Mercalli Intensity (MMI) and the pseudo-acceleration response spectra at 1.0 and 0.3 s - SA(1.0 s) and SA(0.3 s) - in order to map response spectral ordinates for the 1906 San Francisco earthquake. Recent analyses of intensity have shown that MMI ??? 6 correlates both with peak ground velocity and with response spectra for periods from 0.5 to 3.0 s. We use these recent results to derive a linear relation between MMI and log SA(1.0 s), and we refine this relation by comparing the SA(1.0 s) estimated from Boatwright and Bundock's (2005) MMI map for the 1906 earthquake to the SA(1.0 s) calculated from recordings of the 1989 Loma Prieta earthquake. South of San Jose, the intensity distributions for the 1906 and 1989 earthquakes are remarkably similar, despite the difference in magnitude and rupture extent between the two events. We use recent strong motion regressions to derive a relation between SA(1.0 s) and SA(0.3 s) for a M7.8 strike-slip earthquake that depends on soil type, acceleration level, and source distance. We test this relation by comparing SA(0.3 s) estimated for the 1906 earthquake to SA(0.3 s) calculated from recordings of both the 1989 Loma Prieta and 1994 Northridge earthquakes, as functions of distance from the fault. ?? 2006, Earthquake Engineering Research Institute.

  2. Multi-component ground motion response spectra for coupled horizontal, vertical, angular accelerations, and tilt

    USGS Publications Warehouse

    Kalkan, E.; Graizer, V.

    2007-01-01

    Rotational and vertical components of ground motion are almost always ignored in design or in the assessment of structures despite the fact that vertical motion can be twice as much as the horizontal motion and may exceed 2g level, and rotational excitation may reach few degrees in the proximity of fault rupture. Coupling of different components of ground excitation may significantly amplify the seismic demand by introducing additional lateral forces and enhanced P-?? effects. In this paper, a governing equation of motion is postulated to compute the response of a SDOF oscillator under a multi-component excitation. The expanded equation includes secondary P-?? components associated with the combined impacts of tilt and vertical excitations in addition to the inertial forcing terms due to the angular and translational accelerations. The elastic and inelastic spectral ordinates traditionally generated considering the uniaxial input motion are compared at the end with the multi-component response spectra of coupled horizontal, vertical and tilting motions. The proposed multi-component response spectrum reflects kinematic characteristics of the ground motion that are not identifiable by the conventional spectrum itself, at least for the near-fault region where high intensity vertical shaking and rotational excitation are likely to occur.

  3. Accelerated Fitting of Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Ting, Yuan-Sen; Conroy, Charlie; Rix, Hans-Walter

    2016-07-01

    Stellar spectra are often modeled and fitted by interpolating within a rectilinear grid of synthetic spectra to derive the stars’ labels: stellar parameters and elemental abundances. However, the number of synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions, precluding the simultaneous and self-consistent fitting of more than a few elemental abundances. Shortcuts such as fitting subsets of labels separately can introduce unknown systematics and do not produce correct error covariances in the derived labels. In this paper we present a new approach—Convex Hull Adaptive Tessellation (chat)—which includes several new ideas for inexpensively generating a sufficient stellar synthetic library, using linear algebra and the concept of an adaptive, data-driven grid. A convex hull approximates the region where the data lie in the label space. A variety of tests with mock data sets demonstrate that chat can reduce the number of required synthetic model calculations by three orders of magnitude in an eight-dimensional label space. The reduction will be even larger for higher dimensional label spaces. In chat the computational effort increases only linearly with the number of labels that are fit simultaneously. Around each of these grid points in the label space an approximate synthetic spectrum can be generated through linear expansion using a set of “gradient spectra” that represent flux derivatives at every wavelength point with respect to all labels. These techniques provide new opportunities to fit the full stellar spectra from large surveys with 15-30 labels simultaneously.

  4. HF Accelerated Electron Fluxes, Spectra, and Ionization

    NASA Astrophysics Data System (ADS)

    Carlson, Herbert C.; Jensen, Joseph B.

    2015-10-01

    Wave particle interactions, an essential aspect of laboratory, terrestrial, and astrophysical plasmas, have been studied for decades by transmitting high power HF radio waves into Earth's weakly ionized space plasma, to use it as a laboratory without walls. Application to HF electron acceleration remains an active area of research (Gurevich in Usp Fizicheskikh Nauk 177(11):1145-1177, 2007) today. HF electron acceleration studies began when plasma line observations proved (Carlson et al. in J Atmos Terr Phys 44:1089-1100, 1982) that high power HF radio wave-excited processes accelerated electrons not to ~eV, but instead to -100 times thermal energy (10 s of eV), as a consequence of inelastic collision effects on electron transport. Gurevich et al (J Atmos Terr Phys 47:1057-1070, 1985) quantified the theory of this transport effect. Merging experiment with theory in plasma physics and aeronomy, enabled prediction (Carlson in Adv Space Res 13:1015-1024, 1993) of creating artificial ionospheres once ~GW HF effective radiated power could be achieved. Eventual confirmation of this prediction (Pedersen et al. in Geophys Res Lett 36:L18107, 2009; Pedersen et al. in Geophys Res Lett 37:L02106, 2010; Blagoveshchenskaya et al. in Ann Geophys 27:131-145, 2009) sparked renewed interest in optical inversion to estimate electron spectra in terrestrial (Hysell et al. in J Geophys Res Space Phys 119:2038-2045, 2014) and planetary (Simon et al. in Ann Geophys 29:187-195, 2011) atmospheres. Here we present our unpublished optical data, which combined with our modeling, lead to conclusions that should meaningfully improve future estimates of the spectrum of HF accelerated electron fluxes. Photometric imaging data can significantly improve detection of emissions near ionization threshold, and confirm depth of penetration of accelerated electrons many km below the excitation altitude. Comparing observed to modeled emission altitude shows future experiments need electron density profiles

  5. ACCELERATION RESPONSIVE SWITCH

    DOEpatents

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  6. A Spatial Correlation Model of Peak Ground Acceleration and Response Spectra Based on Data of the Istanbul Earthquake Rapid Response and Early Warning System

    NASA Astrophysics Data System (ADS)

    Wagener, Thomas; Goda, Katsuichiro; Erdik, Mustafa; Daniell, James; Wenzel, Friedemann

    2016-04-01

    Ground motion intensity measures such as the peak ground acceleration (PGA) and the pseudo spectral acceleration (PSA) at two sites due to the same seismic event are correlated. The spatial correlation needs to be considered when modelling ground-motion fields for seismic loss assessments, since it can have a significant influence on the statistical moments and probability distribution of aggregated seismic loss of a building portfolio. Empirical models of spatial correlation of ground motion intensity measures exist only for a few seismic regions in the world such as Japan, Taiwan and California, since for this purpose a dense observation network of earthquake ground motion is required. The Istanbul Earthquake Rapid Response and Early Warning System (IERREWS) provides one such dense array with station spacing of typically 2 km in the urban area of Istanbul. Based on the records of eight small to moderate (Mw3.5 - Mw5.1) events, which occurred since 2003 in the Marmara region, we establish a model of intra-event spatial correlation for PGA and PSA up to the natural period of 1.0 s. The results indicate that the correlation coefficients of PGA and short-period PSA decay rapidly with increasing interstation distance, resulting in correlation lengths of approximately 2-3 km, while correlation lengths at longer natural periods (above 0.5 s) exceed 5 km. Finally, we implement the correlation model in a Monte Carlo simulation to evaluate economic loss in Istanbul's district Zeytinburnu due to an Mw7.2 scenario earthquake.

  7. Sensor response rate accelerator

    DOEpatents

    Vogt, Michael C.

    2002-01-01

    An apparatus and method for sensor signal prediction and for improving sensor signal response time, is disclosed. An adaptive filter or an artificial neural network is utilized to provide predictive sensor signal output and is further used to reduce sensor response time delay.

  8. A simple model for strong ground motions and response spectra

    USGS Publications Warehouse

    Safak, Erdal; Mueller, Charles; Boatwright, John

    1988-01-01

    A simple model for the description of strong ground motions is introduced. The model shows that response spectra can be estimated by using only four parameters of the ground motion, the RMS acceleration, effective duration and two corner frequencies that characterize the effective frequency band of the motion. The model is windowed band-limited white noise, and is developed by studying the properties of two functions, cumulative squared acceleration in the time domain, and cumulative squared amplitude spectrum in the frequency domain. Applying the methods of random vibration theory, the model leads to a simple analytical expression for the response spectra. The accuracy of the model is checked by using the ground motion recordings from the aftershock sequences of two different earthquakes and simulated accelerograms. The results show that the model gives a satisfactory estimate of the response spectra.

  9. Analytical considerations of beam hardening in medical accelerator photon spectra.

    PubMed

    Kleinschmidt, C

    1999-09-01

    Beam hardening is a well-known phenomenon for therapeutic accelerator beams passing through matter in narrow beam geometry. This study assesses quantitatively the magnitude of beam hardening of therapeutic beams in water. A formal concept of beam hardening is proposed which is based on the decrease of the mean attenuation coefficient with depth. On the basis of this concept calculations of beam hardening effects are easily performed by means of a commercial spreadsheet program. Published accelerator spectra and the tabulated values of attenuation coefficients serve as input for these calculations. It is shown that the mean attenuation coefficient starts at depth zero with an almost linear decrease and then slowly levels off to a limit value. A similar behavior is found for the beam hardening coefficient. A physically reasonable, semianalytical model is given which fits the data better than previously published functions. The energy dependence of the initial attenuation coefficient is evaluated and shown. It fits well to published experimental data. The initial beam hardening coefficient, however, shows no energy dependence. Its mean value (eta0) approximately 0.006 cm(-1)) is also in close agreement to the measured data.

  10. Accelerated Broadband Spectra Using Transition Dipole Decomposition and Padé Approximants.

    PubMed

    Bruner, Adam; LaMaster, Daniel; Lopata, Kenneth

    2016-08-09

    We present a method for accelerating the computation of UV-visible and X-ray absorption spectra in large molecular systems using real-time time-dependent density functional theory (TDDFT). This approach is based on deconvolution of the dipole into molecular orbital dipole pairs developed by Repisky, et al. [Repisky et al., J. Chem. Theory Comput. 2015, 11, 980-911] followed by Padé approximants to their Fourier transforms. By combining these two techniques, the required simulation time is reduced by a factor of 5 or more, and moreover, the transition dipoles yield the molecular orbital contributions to each transition, akin to the coefficients in linear-response TDDFT. We validate this method on valence and core-level spectra of gas-phase water and nickel porphyrin, where the results are essentially equivalent to conventional linear response. This approach makes real-time TDDFT competitive against linear response for large molecular and material systems with a high density of states.

  11. Analysis of afferent responses from isolated semicircular canal of the guitarfish using rotational acceleration white-noise inputs. II. Estimation of linear system parameters and gain and phase spectra.

    PubMed

    O'Leary, D P; Honrubia, V

    1976-05-01

    Quantitative estimates were computed for exponential coefficients and rate constants contributing to afferent unit impulse responses obtained from bundles innervating specific regions of the semicircular canal. The grouping of these estimates into specific response classes provided quantitative correlations with specific anatomical regions of innervation of the crista. Linear system gain and phase spectra were computed also, by applying Fourier transformations to unit impulse responses, for purposes of comparison with previous studies employing frequency domain analyses. Responses fitted by third-order linear system equations were specific to afferents innervating the crest and transition regions of the crista; whereas those fitted by overdamped, second-order equations were specific to afferents innervating the slopes and transition crista regions. It was concluded that strictly mechanical models of the transduction process are inadequate to account for the diverse and spatially distributed classes of observed responses and, moreover, structural features such as different hair cell types or efferent innervation effects could be excluded as inoperative in this preparation. The alternative hypothesis was suggested that certain of the observed subcomponents could be direct reflections of the initial mechanical stimulus, but that other subcomponents were reflections of more complex filtering mechanisms operating at the cellular or synaptic levels.

  12. Non-thermal Electron Acceleration in Low Mach Number Collisionless Shocks. I. Particle Energy Spectra and Acceleration Mechanism

    NASA Astrophysics Data System (ADS)

    Guo, Xinyi; Sironi, Lorenzo; Narayan, Ramesh

    2014-10-01

    Electron acceleration to non-thermal energies in low Mach number (Ms <~ 5) shocks is revealed by radio and X-ray observations of galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with Ms = 3 and a quasi-perpendicular pre-shock magnetic field. We find that about 15% of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p ~= 2.4. Initially, thermal electrons are energized at the shock front via shock drift acceleration (SDA). The accelerated electrons are then reflected back upstream where their interaction with the incoming flow generates magnetic waves. In turn, the waves scatter the electrons propagating upstream back toward the shock for further energization via SDA. In summary, the self-generated waves allow for repeated cycles of SDA, similarly to a sustained Fermi-like process. This mechanism offers a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  13. Non-thermal electron acceleration in low Mach number collisionless shocks. I. Particle energy spectra and acceleration mechanism

    SciTech Connect

    Guo, Xinyi; Narayan, Ramesh; Sironi, Lorenzo

    2014-10-20

    Electron acceleration to non-thermal energies in low Mach number (M{sub s} ≲ 5) shocks is revealed by radio and X-ray observations of galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with M{sub s} = 3 and a quasi-perpendicular pre-shock magnetic field. We find that about 15% of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p ≅ 2.4. Initially, thermal electrons are energized at the shock front via shock drift acceleration (SDA). The accelerated electrons are then reflected back upstream where their interaction with the incoming flow generates magnetic waves. In turn, the waves scatter the electrons propagating upstream back toward the shock for further energization via SDA. In summary, the self-generated waves allow for repeated cycles of SDA, similarly to a sustained Fermi-like process. This mechanism offers a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  14. Effect of causal and acausal filters on elastic and inelastic response spectra

    USGS Publications Warehouse

    Boore, D.M.; Akkar, Sinan

    2003-01-01

    With increasing interest in displacement spectra and long-period motions, it is important to check the sensitivity of both elastic and inelastic response spectra to the filtering that is often necessary to remove long period artifacts, even from many modern digital recordings. Using two records of very different character from the M=7.1, 1999 Hector Mine, California, earthquake, we find that the response spectra can be sensitive to the corner periods used in causal filtering, even for oscillator periods much less than the filter corner periods. The effect is most pronounced for inelastic response spectra, where the ratio of response spectra computed from accelerations filtered at 25 and 200 sec can be close to a factor of 2 for oscillator periods less than 5 sec. Published in 2003 by John Wiley and Sons, Ltd.

  15. Measuring the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator

    SciTech Connect

    Albert, F.; Pollock, B. B.; Shaw, J. L.; Marsh, K. A.; Ralph, J. E.; Chen, Y. -H.; Alessi, D.; Pak, A.; Clayton, C. E.; Glenzer, S. H.; Joshi, C.

    2014-07-22

    This paper presents a new technique to measure the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator. Measurements are performed with a stacked image plates spectrometer, capable of detecting broadband x-ray radiation up to 1 MeV. It can provide measurements of the betatron x-ray spectrum at any angle of observation (within a 40 mrad cone) and of the beam profile. A detailed description of our data analysis is given, along with comparison for several shots. As a result, these measurements provide useful information on the dynamics of the electrons are they are accelerated and wiggled by the wakefield.

  16. Relativistic cosmic ray spectra in the full non-linear theory of shock acceleration

    NASA Technical Reports Server (NTRS)

    Eichler, D.; Ellison, D. C.

    1985-01-01

    The non-linear theory of shock acceleration was generalized to include wave dynamics. In the limit of rapid wave damping, it is found that a finite ave velocity tempers the acceleration of high Mach number shocks and limits the maximum compression ratio even when energy loss is important. For a given spectrum, the efficiency of relativistic particle production is essentially independent of v sub Ph. For the three families shown, the percentage of kinetic energy flux going into relativistic particles is (1) 72%, 2) 44%, and (3) 26% (this includes the energy loss at the upper energy cuttoff). Even small v sub ph, typical of the HISM, produce quasi-universal spectra that depend only weakly on the acoustic Mach number. These spectra should be close enough to e(-2) to satisfy cosmic ray source requirements.

  17. Relativistic cosmic-ray spectra in the fully nonlinear theory of shock acceleration

    NASA Technical Reports Server (NTRS)

    Ellison, D. C.; Eichler, D.

    1985-01-01

    The non-linear theory of shock acceleration was generalized to include wave dynamics. In the limit of rapid wave damping, it is found that a finite wave velocity tempers the acceleration of high Mach number shocks and limits the maximum compression ratio even when energy loss is important. For a given spectrum, the efficiency of relativistic particle production is essentially independent of v sub Ph. For the three families shown, the percentage of kinetic energy flux going into relativistic particles is (1) 72 percent, (2) 44 percent, and (3) 26 percent (this includes the energy loss at the upper energy cutoff). Even small v sub ph, typical of the HISM, produce quasi-universal spectra that depend only weakly on the acoustic Mach number. These spectra should be close enough to e(-2) to satisfy cosmic ray source requirements.

  18. Self-Consistent Synchrotron Spectra from Trans-Relativistic Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Becker, Peter A.

    2015-01-01

    Most existing analytical models describing the second-order Fermi acceleration of relativistic electrons due to collisions with MHD waves assume that the injected seed particles are already highly relativistic, despite the fact that the most prevalent source of particles is usually the non-relativistic thermal background gas. This presents a problem because the momentum dependence of the momentum diffusion coefficient describing the interaction between the electrons and the MHD waves is qualitatively different in the non-relativistic and highly relativistic limits. The lack of an analytical model has forced workers to rely on numerical simulations to obtain particle spectra describing the trans-relativistic case. In this work, we present the first analytical solution to the global, trans-relativistic problem of electron acceleration, obtained by using a hybrid form for the momentum diffusion coefficient, given by the sum of the two asymptotic forms. We refer to this process as "quasi hard-sphere scattering." The model also incorporates the appropriate momentum dependence for the particle escape timescale, and the effect of synchrotron and inverse-Compton losses, which are critical for establishing the location of the high-energy cutoff in the particle spectrum. Since synchrotron and inverse-Compton losses are included in the transport equation, the resulting radiation spectra are computed self-consistently. The results can be used to model the acceleration of radiating electrons in AGN and solar environments, applications of both types are discussed.

  19. Target optimization for desired X-ray spectra produced by laser plasma accelerated electrons

    NASA Astrophysics Data System (ADS)

    Lobok, Maxim; Brantov, Andrey; Bychenkov, Valery

    2016-10-01

    Different regimes of electron acceleration from low-density targets are investigated using three-dimensional numerical simulations. Multiple spatial target density profiles were examined, including laser pre-pulse modified targets. The size of the plasma corona is shown to be one of the main parameters characterizing the temperature and number of hot electrons, which determine the yield of X-ray radiation and its hardness. The generation of X-ray radiation by laser accelerated electrons, which impact the converter target located behind the laser target, was studied. The X-ray spectra were computed using Monte-Carlo simulations. This work was partially supported by the Russian Foundation for Basic Research 16-02-00088-a.

  20. Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues.

    PubMed

    Swartling, Johannes; Pifferi, Antonio; Enejder, Annika M K; Andersson-Engels, Stefan

    2003-04-01

    Two efficient Monte Carlo models are described, facilitating predictions of complete time-resolved fluorescence spectra from a light-scattering and light-absorbing medium. These are compared with a third, conventional fluorescence Monte Carlo model in terms of accuracy, signal-to-noise statistics, and simulation time. The improved computation efficiency is achieved by means of a convolution technique, justified by the symmetry of the problem. Furthermore, the reciprocity principle for photon paths, employed in one of the accelerated models, is shown to simplify the computations of the distribution of the emitted fluorescence drastically. A so-called white Monte Carlo approach is finally suggested for efficient simulations of one excitation wavelength combined with a wide range of emission wavelengths. The fluorescence is simulated in a purely scattering medium, and the absorption properties are instead taken into account analytically afterward. This approach is applicable to the conventional model as well as to the two accelerated models. Essentially the same absolute values for the fluorescence integrated over the emitting surface and time are obtained for the three models within the accuracy of the simulations. The time-resolved and spatially resolved fluorescence exhibits a slight overestimation at short delay times close to the source corresponding to approximately two grid elements for the accelerated models, as a result of the discretization and the convolution. The improved efficiency is most prominent for the reverse-emission accelerated model, for which the simulation time can be reduced by up to two orders of magnitude.

  1. Usage of Simulated Response Matrices for the Scintillation Spectra Unfolding

    NASA Astrophysics Data System (ADS)

    Klusoň, J.; Urban, T.

    2014-06-01

    Response of the scintillation spectrometer to incident photons has complex character due to complex character of photon interaction processes. Experimental spectrum thus provide qualitative information given by the identifiable peaks positions, while extraction of the full, quantitative information (i.e. photon flux energy distribution) require spectra unfolding based on the spectrometer response (represented by the response matrix) knowledge. As experimental determination of response matrix is difficult or impossible in most cases, the Monte Carlo simulation is the proved solution. Usage of the unfolding for experimental spectra processing enable to determine dosimetric characteristics of the incident photon fields and/or characteristics of the sources, creating those photon fields. The response matrices for scintillation spectrometers with different detectors (commonly used NaI, BGO and new LaBr) were calculated using Monte Carlo method. The response to the internal activity of the LaBr detector was also simulated and considered in spectra processing. Calculated matrices were used for unfolding of the experimental spectra from different applications to determine desired dosimetric quantities. Typical applications are environmental monitoring, monitoring of the working environment, accidental monitoring and contamination measurement, etc. Method is suitable also for the airborne monitoring or security applications. Results for individual detection systems are compared and discussed with aim to analyze potential advantages of the LaBr detector for considered applications.

  2. Light accelerates plant responses to warming.

    PubMed

    De Frenne, Pieter; Rodríguez-Sánchez, Francisco; De Schrijver, An; Coomes, David A; Hermy, Martin; Vangansbeke, Pieter; Verheyen, Kris

    2015-08-17

    Competition for light has profound effects on plant performance in virtually all terrestrial ecosystems. Nowhere is this more evident than in forests, where trees create environmental heterogeneity that shapes the dynamics of forest-floor communities(1-3). Observational evidence suggests that biotic responses to both anthropogenic global warming and nitrogen pollution may be attenuated by the shading effects of trees and shrubs(4-9). Here we show experimentally that tree shade is slowing down changes in below-canopy communities due to warming. We manipulated levels of photosynthetically active radiation, temperature and nitrogen, alone and in combination, in a temperate forest understorey over a 3-year period, and monitored the composition of the understorey community. Light addition, but not nitrogen enrichment, accelerated directional plant community responses to warming, increasing the dominance of warmth-preferring taxa over cold-tolerant plants (a process described as thermophilization(6,10-12)). Tall, competitive plants took greatest advantage of the combination of elevated temperature and light. Warming of the forest floor did not result in strong community thermophilization unless light was also increased. Our findings suggest that the maintenance of locally closed canopy conditions could reduce, at least temporarily, warming-induced changes in forest floor plant communities.

  3. Modifying proton fluence spectra to generate spread-out Bragg peaks with laser accelerated proton beams.

    PubMed

    Schell, S; Wilkens, J J

    2009-10-07

    Currently, energy spectra of laser accelerated proton beams are far from being monoenergetic. For their application in radiation therapy, energy selection systems using magnetic fields have been proposed to single out particles with the desired energy. These systems allow the choice of protons between a lowest and a highest energy. In this work, we present a slight modification that allows us to influence the relative number of particles per energy bin. In fact, the transmitted spectrum can be shaped in such a way that it corresponds to a full spread out Bragg peak delivered simultaneously. This change of the spectrum can be achieved by inserting suitably formed scattering material at the central plane of the energy selection system where the particles are separated in space depending on their energy. With the help of Monte Carlo simulations we analysed both simple wedge geometries and various stacks of lead slices. We found that these configurations can provide energy spectra that naturally produce spread out Bragg peaks within one laser shot. This increases the particle efficiency of the whole system and makes laser accelerated protons more suitable for radiation therapy.

  4. The structural response of a rail acceleration

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.

    1984-01-01

    The transient response of a 0.4 by 0.6 cm rectangular bore rail accelerator was analyzed by a three dimensional finite element code. The copper rail deflected to a peak value of 0.08 mm in compression and then oscillated at an amplitude of 0.02 mm. Simultaneously the insulating side wall of glass fabric base, epoxy resin laminate (G-10) was compressed to a peak value of 0.13 mm and rebounded to a steady state in extension. Projectile pinch or blowby due to the rail extension or compression, respectively, can be identified by examining the time history of the rail displacement. The effect of blowby was most significant at the side wall characterized by mm size displacement in compression. Dynamic stress calculations indicate that the G-10 supporting material behind the rail is subjected to over 21 MPa at which the G-10 could fail if the laminate was not carefully oriented. Results for a polycarbonate resin (Lexan) side wall show much larger displacements and stresses than for G-10. The tradeoff between the transparency of Lexan and the mechanical strength of G-10 for sidewall material is obvious. Displacement calculations from the modal method are smaller than the results from the direct integration method by almost an order of magnitude, because the high frequency effect is neglected. Previously announced in STAR as N83-35412

  5. The structural response of a rail accelerator

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.

    1983-01-01

    The transient response of a 0.4 by 0.6 cm rectangular bore rail accelerator was analyzed by a three dimensional finite element code. The copper rail deflected to a peak value of 0.08 mm in compression and then oscillated at an amplitude of 0.02 mm. Simultaneously the insulating side wall of glass fabric base, epoxy resin laminate (G-1o) was compressed to a peak value of 0.13 mm and rebounded to a steady state in extension. Projectile pinch or blowby due to the rail extension or compression, respectively, can be identified by examining the time history of the rail displacement. The effect of blowby was most significant at the side wall characterized by mm size displacement in compression. Dynamic stress calculations indicate that the G-10 supporting material behind the rail is subjected to over 21 MPa at which the G-10 could fail if the laminate was not carefully oriented. Results for a polycarbonate resin (Lexan) side wall show much larger displacements and stresses than for G-10. The tradeoff between the transparency of Lexan and the mechanical strength of G-10 for sidewall material is obvious. Displacement calculations from the modal method are smaller than the results from the direct integration method by almost an order of magnitude, because the high frequency effect is neglected.

  6. Analysis of accelerator based neutron spectra for BNCT using proton recoil spectroscopy

    SciTech Connect

    Wielopolski, L.; Ludewig, H.; Powell, J.R.; Raparia, D.; Alessi, J.G.; Lowenstein, D.I.

    1999-03-01

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by {sup 10}B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase 1/2 clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra, alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark

  7. SSI response of a typical shear wall structure. Appendix B. In-structure response spectra comparisons. Volume 2

    SciTech Connect

    Johnson, J.J.; Schewe, E.C.; Maslenikov, O.R.

    1984-04-01

    The objectives of this study were two-fold: (1) develop building response calibration factors, i.e., factors which relate best estimate or median level response to responses calculated by selected design procedures. Soil-structure interaction was the phenomenon of interest because significant simplifications are frequently introduced in its treatment; and (2) the second objective can be viewed in the context of a question: what effect does placing an identical structure on different sites and with different foundation conditions have on structure response. The structure selected for this study is a part of the Zion AFT complex. Only the auxiliary, fuel-handling, and diesel generator buildings were studied. This structure is a connected group of shear-wall buildings constructed of reinforced concrete, typical of nuclear power plant structures. The bases of comparison for this study were structure responses: peak in-structure accelerations (27 components), and peak wall forces and moments (111 components). In-structure response spectra were also considered. This appendix contains in-structure response spectra comparisons in detail.

  8. Spectra of accelerated particles at supernova shocks in the presence of neutral hydrogen: the case of Tycho

    NASA Astrophysics Data System (ADS)

    Morlino, G.; Blasi, P.

    2016-05-01

    Context. The presence of neutral hydrogen in the shock proximity changes the structure of the shock and affects the spectra of particles accelerated through the first-order Fermi mechanism. This phenomenon has profound implications for the interpretation of the multifrequency spectra of radiation from supernova remnants. Aims: Neutrals that undergo charge exchange with hot ions downstream of the shock may result in fast neutrals moving towards the upstream gas, where they can suffer additional charge exchange or ionisation reactions, thereby depositing energy and momentum upstream. Here we discuss the implications of this neutral return flux, which was already predicted in our previous work on neutral mediated supernova shocks, and show how the spectra of accelerated particles turn out to be appreciably steeper than p-4, thereby affecting the gamma ray spectra from supernova remnants in general and from Tycho specifically. Methods: The theory that describes non-linear diffusive shock acceleration in the presence of neutral hydrogen has been developed in recent years. Here we use a semi-analytical theory developed in previous work and specialise our predictions to the case of the Tycho supernova shock, where there is evidence from gamma ray observations that the spectrum of the parent cosmic rays is steeper than expected from the traditional theory of diffusive shock acceleration. Results: We show that, if the fraction of neutral hydrogen in the vicinity of the Tycho supernova shock is, as suggested by observations, ~70-90%, then spectra of accelerated protons steeper than p-4 may be a natural consequence of charge exchange reactions and the associated neutral return flux. The spectral shape is affected by this phenomenon for particles with energies below ~100-1000 GeV, for which the diffusion length is less than or at most comparable to the path length of charge exchange and ionisation upstream of the shock.

  9. Acceleration response spectrum for predicting floor vibration due to occupant walking

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Xu, Ruotian; Zhang, Mengshi

    2014-07-01

    Annoying vibrations caused by occupant walking is an important serviceability problem for long-span floors. At the design stage the floor's structural arrangement may frequently change to cater for the owner's varying requirements. An efficient and accurate approach for predicting a floor's acceleration response is thus of great significance. This paper presents a design-oriented acceleration response spectrum for calculating a floor's response given the floor's modal characteristics and a specified confidence level. 2204 measured footfall traces from 61 test subjects were used to generate 10 s peak root-mean-square acceleration response spectra, on which a piecewise mathematical representation is based. The proposed response spectrum consists of three main parts: the first harmonic plateau ranging from 1.5 to 2.5 Hz, the second harmonic plateau ranging from 3.0 to 5.0 Hz and the descending part going with frequencies from 5.0 to 10.0 Hz. The representative value of each plateau and the mathematical representation for the descending curve were determined statistically for different confidence levels. Furthermore, the effects of factors, such as floor span, occupant stride length, higher modes of vibration, boundary conditions and peak acceleration response, on the proposed spectrum have been investigated and a modification measure for each factor is suggested. A detailed application procedure for the proposed spectrum approach is presented and has been applied to four existing floors to predict their acceleration responses. Comparison between predicted and field measured responses shows that the measured accelerations of the four floors are generally close to or slightly higher than the predicted values for the 75 percent confidence level, but are all lower than the predicted values for the 95 percent confidence level. Therefore the suggested spectrum-based approach can be used for predicting a floor's response subject to a single person walking.

  10. Response properties of pigeon otolith afferents to linear acceleration

    NASA Technical Reports Server (NTRS)

    Si, X.; Angelaki, D. E.; Dickman, J. D.

    1997-01-01

    In the present study, the sensitivity to sinusoidal linear accelerations in the plane of the utricular macula was tested in afferents. The head orientation relative to the translation axis was varied in order to determine the head position that elicited the maximal and minimal responses for each afferent. The response gain and phase values obtained to 0.5-Hz and 2-Hz linear acceleration stimuli were then plotted as a function of head orientation and a modified cosine function was fit to the data. From the best-fit cosine function, the predicted head orientations that would produce the maximal and minimal response gains were estimated. The estimated maximum response gains to linear acceleration in the utricular plane for the afferents varied between 75 and 1420 spikes s-1 g-1. The mean maximal gains for all afferents to 0.5-Hz and 2-Hz sinusoidal linear acceleration stimuli were 282 and 367 spikes s-1 g-1, respectively. The minimal response gains were essentially zero for most units. The response phases always led linear acceleration and remained constant for each afferent, regardless of head orientation. These response characteristics indicate that otolith afferents are cosine tuned and behave as one-dimensional linear accelerometers. The directions of maximal sensitivity to linear acceleration for the afferents varied throughout the plane of the utricle; however, most vectors were directed out of the opposite ear near the interaural axis. The response dynamics of the afferents were tested using stimulus frequencies ranging between 0.25 Hz and 10 Hz (0.1 g peak acceleration). Across stimulus frequencies, most afferents had increasing gains and constant phase values. These dynamic properties for individual afferents were fit with a simple transfer function that included three parameters: a mechanical time constant, a gain constant, and a fractional order distributed adaptation operator.

  11. Leg tissue mass composition affects tibial acceleration response following impact.

    PubMed

    Schinkel-Ivy, Alison; Burkhart, Timothy A; Andrews, David M

    2012-02-01

    To date, there has not been a direct examination of the effect that tissue composition (lean mass/muscle, fat mass, bone mineral content) differences between males and females has on how the tibia responds to impacts similar to those seen during running. To evaluate this, controlled heel impacts were imparted to 36 participants (6 M and 6 F in each of low, medium and high percent body fat [BF] groups) using a human pendulum. A skin-mounted accelerometer medial to the tibial tuberosity was used to determine the tibial response parameters (peak acceleration, acceleration slope and time to peak acceleration). There were no consistent effects of BF or specific tissue masses on the un-normalized tibial response parameters. However, females experienced 25% greater peak acceleration than males. When normalized to lean mass, wobbling mass, and bone mineral content, females experienced 50%, 62% and 70% greater peak acceleration, respectively, per gram of tissue than males. Higher magnitudes of lean mass and bone mass significantly contributed to decreased acceleration responses in general.

  12. Computed lateral rate and acceleration power spectral response of conventional and STOL airplanes to atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Lichtenstein, J. H.

    1975-01-01

    Power-spectral-density calculations were made of the lateral responses to atmospheric turbulence for several conventional and short take-off and landing (STOL) airplanes. The turbulence was modeled as three orthogonal velocity components, which were uncorrelated, and each was represented with a one-dimensional power spectrum. Power spectral densities were computed for displacements, rates, and accelerations in roll, yaw, and sideslip. In addition, the power spectral density of the transverse acceleration was computed. Evaluation of ride quality based on a specific ride quality criterion was also made. The results show that the STOL airplanes generally had larger values for the rate and acceleration power spectra (and, consequently, larger corresponding root-mean-square values) than the conventional airplanes. The ride quality criterion gave poorer ratings to the STOL airplanes than to the conventional airplanes.

  13. Emitting electron spectra and acceleration processes in the jet of PKS 0447-439

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Yan, Dahai; Dai, Benzhong; Zhang, Li

    2014-02-01

    We investigate the electron energy distributions (EEDs) and the corresponding acceleration processes in the jet of PKS 0447-439, and estimate its redshift through modeling its observed spectral energy distribution (SED) in the frame of a one-zone synchrotron-self Compton (SSC) model. Three EEDs formed in different acceleration scenarios are assumed: the power-law with exponential cut-off (PLC) EED (shock-acceleration scenario or the case of the EED approaching equilibrium in the stochastic-acceleration scenario), the log-parabolic (LP) EED (stochastic-acceleration scenario and the acceleration dominating), and the broken power-law (BPL) EED (no acceleration scenario). The corresponding fluxes of both synchrotron and SSC are then calculated. The model is applied to PKS 0447-439, and modeled SEDs are compared to the observed SED of this object by using the Markov Chain Monte Carlo method. The results show that the PLC model fails to fit the observed SED well, while the LP and BPL models give comparably good fits for the observed SED. The results indicate that it is possible that a stochastic acceleration process acts in the emitting region of PKS 0447-439 and the EED is far from equilibrium (acceleration dominating) or no acceleration process works (in the emitting region). The redshift of PKS 0447-439 is also estimated in our fitting: z = 0.16 ± 0.05 for the LP case and z = 0.17 ± 0.04 for BPL case.

  14. The human ocular torsion position response during yaw angular acceleration.

    PubMed

    Smith, S T; Curthoys, I S; Moore, S T

    1995-07-01

    Recent results by Wearne [(1993) Ph.D. thesis] using the scleral search-coil method of measuring eye position indicate that changes in ocular torsion position (OTP) occur during yaw angular acceleration about an earth vertical axis. The present set of experiments, using an image processing method of eye movement measurement free from the possible confound of search coil slippage, demonstrates the generality and repeatability of this phenomenon and examines its possible causes. The change in torsion position is not a linear vestibulo-ocular reflex (LVOR) response to interaural linear acceleration stimulation of the otoliths, but rather the effect is dependent on the characteristics of the angular acceleration stimulus, commencing at the onset and decaying at the offset of the angular acceleration. In the experiments reported here, the magnitude of the angular acceleration stimulus was varied and the torsion position response showed corresponding variations. We consider that the change in torsion position observed during angular acceleration is most likely to be due to activity of the semicircular canals.

  15. Effects of variables upon pyrotechnically induced shock response spectra

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1986-01-01

    Throughout the aerospace industry, large variations of 50 percent (6 dB) or more are continually noted for linear shaped charge (LSC) generated shock response spectra (SRS) from flight data (from the exact same location on different flights) and from plate tests (side by side measurements on the same test). A research program was developed to investigate causes of these large SRS variations. A series of ball drop calibration tests to verify calibration of accelerometers and a series of plate tests to investigate charge and assembly variables were performed. The resulting data were analyzed to determine if and to what degree manufacturing and assembly variables, distance from the shock source, data acquisition instrumentation, and shock energy propagation affect the SRS. LSC variables consisted of coreload, standoff, and apex angle. The assembly variable was the torque on the LSC holder. Other variables were distance from source of accelerometers, accelerometer mounting methods, and joint effects. Results indicated that LSC variables did not affect SRS as long as the plate was severed. Accelerometers mounted on mounting blocks showed significantly lower levels above 5000 Hz. Lap joints did not affect SRS levels. The test plate was mounted in an almost free-free state; therefore, distance from the source did not affect the SRS. Several varieties and brands of accelerometers were used, and all but one demonstrated very large variations in SRS.

  16. Encoding of head acceleration in vestibular neurons. I. Spatiotemporal response properties to linear acceleration

    NASA Technical Reports Server (NTRS)

    Bush, G. A.; Perachio, A. A.; Angelaki, D. E.

    1993-01-01

    1. Extracellular recordings were made in and around the medial vestibular nuclei in decerebrated rats. Neurons were functionally identified according to their semicircular canal input on the basis of their responses to angular head rotations around the yaw, pitch, and roll head axes. Those cells responding to angular acceleration were classified as either horizontal semicircular canal-related (HC) or vertical semicircular canal-related (VC) neurons. The HC neurons were further characterized as either type I or type II, depending on the direction of rotation producing excitation. Cells that lacked a response to angular head acceleration, but exhibited sensitivity to a change in head position, were classified as purely otolith organ-related (OTO) neurons. All vestibular neurons were then tested for their response to sinusoidal linear translation in the horizontal head plane. 2. Convergence of macular and canal inputs onto central vestibular nuclei neurons occurred in 73% of the type I HC, 79% of the type II HC, and 86% of the VC neurons. Out of the 223 neurons identified as receiving macular input, 94 neurons were further studied, and their spatiotemporal response properties to sinusoidal stimulation with pure linear acceleration were quantified. Data were obtained from 33 type I HC, 22 type II HC, 22 VC, and 17 OTO neurons. 3. For each neuron the angle of the translational stimulus vector was varied by 15, 30, or 45 degrees increments in the horizontal head plane. In all tested neurons, a direction of maximum sensitivity was identified. An interesting difference among neurons was their response to translation along the direction perpendicular to that that produced the maximum response ("null" direction). For the majority of neurons tested, it was possible to evoke a nonzero response during stimulation along the null direction always had response phases that varied as a function of stimulus direction. 4. These spatiotemporal response properties were quantified in two

  17. Use of the stochastic-source model to simulate ground motion and response spectra in northern Vietnam

    NASA Astrophysics Data System (ADS)

    Hung, Tran Viet; Kiyomiya, Osamu

    2013-01-01

    Northern Vietnam has experienced large earthquakes in the past, but waveforms are not mentioned in the Vietnamese Specification for Bridge Design, and the acceleration response spectrum in these specifications has not been adequately studied under Vietnamese seismic conditions. The simulation of future earthquake events based on regional seismicity and a ground motion model is necessary because of the absence of data on strong ground motions. This paper summarizes artificial ground motion procedures, which were studied using a stochastic point-source model. Simulated waveforms were employed to synthesize seismograms with VN L1 and VN L2 ground motions estimated using a 475-year return period (M 5.8) and the largest recorded earthquake events (M 7.0). Ground motions were simulated using different source parameters and their response spectra were compared with corresponding available data. As a result, target response spectra are proposed for future earthquake-resistant design in Vietnam.

  18. Neutron spectra around a tandem linear accelerator in the generation of (18)F with a bonner sphere spectrometer.

    PubMed

    Lagares, J I; Araque, J E Guerrero; Méndez-Villafañe, R; Arce, P; Sansaloni, F; Vela, O; Díaz, C; Campo, Xandra; Pérez, J M

    2016-08-01

    A Bonner sphere spectrometer was used to measure the neutron spectra produced at the collision of protons with an H2(18)O target at different angles. A unique H2(18)O target to produce (18)F was designed and placed in a Tandem linear particle accelerator which produces 8.5MeV protons. The neutron count rates measured with the Bonner spheres were unfolded with the MAXED code. With the GEANT4 Monte Carlo code the neutron spectrum induced in the (p, n) reaction was estimated, this spectrum was used as initial guess during unfolding. Although the cross section of the reaction (18)O(p,n)(18)F is well known, the neutron energy spectra is not correctly defined and it is necessary to verify the simulation with measurements. For this reason, the sensitivity of the unfolding method to the initial spectrum was analyzed applying small variation to the fast neutron peak.

  19. Development of site-specific earthquake response spectra for eastern US sites

    SciTech Connect

    Beavers, J.E.; Brock, W.R.; Hunt, R.J.; Shaffer, K.E.

    1993-08-01

    Site-specific earthquake, uniform-hazard response spectra have been defined for the Department of Energy Oak Ridge, Tennessee, and Portsmouth, Ohio, sites for use in evaluating existing facilities and designing new facilities. The site-specific response spectra were defined from probabilistic and deterministic seismic hazard studies following the requirements in DOE-STD-1024-92, ``Guidelines for Probabilistic Seismic Hazard Curves at DOE Sites.` For these two sites, the results show that site-specific uniform-hazard response spectra are slightly higher in the high-frequency range and considerably lower in the low-frequency range compared with response spectra defined for these sites in the past.

  20. On baseline corrections and uncertainty in response spectra for baseline variations commonly encountered in digital accelerograph records

    USGS Publications Warehouse

    Akkar, Sinan; Boore, D.M.

    2009-01-01

    Most digital accelerograph recordings are plagued by long-period drifts, best seen in the velocity and displacement time series obtained from integration of the acceleration time series. These drifts often result in velocity values that are nonzero near the end of the record. This is clearly unphysical and can lead to inaccurate estimates of peak ground displacement and long-period spectral response. The source of the long-period noise seems to be variations in the acceleration baseline in many cases. These variations could be due to true ground motion (tilting and rotation, as well as local permanent ground deformation), instrumental effects, or analog-to-digital conversion. Very often the trends in velocity are well approximated by a linear trend after the strong shaking subsides. The linearity of the trend in velocity implies that no variations in the baseline could have occurred after the onset of linearity in the velocity time series. This observation, combined with the lack of any trends in the pre-event motion, allows us to compute the time interval in which any baseline variations could occur. We then use several models of the variations in a Monte Carlo procedure to derive a suite of baseline-corrected accelerations for each noise model using records from the 1999 Chi-Chi earthquake and several earthquakes in Turkey. Comparisons of the mean values of the peak ground displacements, spectral displacements, and residual displacements computed from these corrected accelerations for the different noise models can be used as a guide to the accuracy of the baseline corrections. For many of the records considered here the mean values are similar for each noise model, giving confidence in the estimation of the mean values. The dispersion of the ground-motion measures increases with period and is noise-model dependent. The dispersion of inelastic spectra is greater than the elastic spectra at short periods but approaches that of the elastic spectra at longer periods

  1. Particle spectra and efficiency in nonlinear relativistic shock acceleration - survey of scattering models

    NASA Astrophysics Data System (ADS)

    Ellison, Donald C.; Warren, Donald C.; Bykov, Andrei M.

    2016-03-01

    We include a general form for the scattering mean free path, λmfp(p), in a nonlinear Monte Carlo model of relativistic shock formation and Fermi acceleration. Particle-in-cell simulations, as well as analytic work, suggest that relativistic shocks tend to produce short-scale, self-generated magnetic turbulence that leads to a scattering mean free path with a stronger momentum dependence than the λmfp ∝ p dependence for Bohm diffusion. In unmagnetized shocks, this turbulence is strong enough to dominate the background magnetic field so the shock can be treated as parallel regardless of the initial magnetic field orientation, making application to γ-ray bursts, pulsar winds, type Ibc supernovae, and extragalactic radio sources more straightforward and realistic. In addition to changing the scale of the shock precursor, we show that, when nonlinear effects from efficient Fermi acceleration are taken into account, the momentum dependence of λmfp(p) has an important influence on the efficiency of cosmic ray production as well as the accelerated particle spectral shape. These effects are absent in non-relativistic shocks and do not appear in relativistic shock models unless nonlinear effects are self-consistently described. We show, for limited examples, how the changes in Fermi acceleration translate to changes in the intensity and spectral shape of γ-ray emission from proton-proton interactions and pion-decay radiation.

  2. Accelerating calculations of ultrafast time-resolved electronic spectra with efficient quantum dynamics methods.

    PubMed

    Wehrle, Marius; Sulc, Miroslav; Vanícek, Jirí

    2011-01-01

    We explore three specific approaches for speeding up the calculation of quantum time correlation functions needed for time-resolved electronic spectra. The first relies on finding a minimum set of sufficiently accurate electronic surfaces. The second increases the time step required for convergence of exact quantum simulations by using different split-step algorithms to solve the time-dependent Schrödinger equation. The third approach lowers the number of trajectories needed for convergence of approximate semiclassical dynamics methods.

  3. The effect of sampling rate and anti-aliasing filters on high-frequency response spectra

    USGS Publications Warehouse

    Boore, David M.; Goulet, Christine

    2013-01-01

    The most commonly used intensity measure in ground-motion prediction equations is the pseudo-absolute response spectral acceleration (PSA), for response periods from 0.01 to 10 s (or frequencies from 0.1 to 100 Hz). PSAs are often derived from recorded ground motions, and these motions are usually filtered to remove high and low frequencies before the PSAs are computed. In this article we are only concerned with the removal of high frequencies. In modern digital recordings, this filtering corresponds at least to an anti-aliasing filter applied before conversion to digital values. Additional high-cut filtering is sometimes applied both to digital and to analog records to reduce high-frequency noise. Potential errors on the short-period (high-frequency) response spectral values are expected if the true ground motion has significant energy at frequencies above that of the anti-aliasing filter. This is especially important for areas where the instrumental sample rate and the associated anti-aliasing filter corner frequency (above which significant energy in the time series is removed) are low relative to the frequencies contained in the true ground motions. A ground-motion simulation study was conducted to investigate these effects and to develop guidance for defining the usable bandwidth for high-frequency PSA. The primary conclusion is that if the ratio of the maximum Fourier acceleration spectrum (FAS) to the FAS at a frequency fsaa corresponding to the start of the anti-aliasing filter is more than about 10, then PSA for frequencies above fsaa should be little affected by the recording process, because the ground-motion frequencies that control the response spectra will be less than fsaa . A second topic of this article concerns the resampling of the digital acceleration time series to a higher sample rate often used in the computation of short-period PSA. We confirm previous findings that sinc-function interpolation is preferred to the standard practice of using

  4. Hazard consistent structural demands and in-structure design response spectra

    SciTech Connect

    Houston, Thomas W; Costantino, Michael C; Costantino, Carl J

    2009-01-01

    Current analysis methodology for the Soil Structure Interaction (SSI) analysis of nuclear facilities is specified in ASCE Standard 4. This methodology is based on the use of deterministic procedures with the intention that enough conservatism is included in the specified procedures to achieve an 80% probability of non-exceedance in the computed response of a Structure, System. or Component for given a mean seismic design input. Recently developed standards are aimed at achieving performance-based, risk consistent seismic designs that meet specified target performance goals. These design approaches rely upon accurately characterizing the probability (hazard) level of system demands due to seismic loads consistent with Probabilistic Seismic Hazard Analyses. This paper examines the adequacy of the deterministic SSI procedures described in ASCE 4-98 to achieve an 80th percentile of Non-Exceedance Probability (NEP) in structural demand, given a mean seismic input motion. The study demonstrates that the deterministic procedures provide computed in-structure response spectra that are near or greater than the target 80th percentile NEP for site profiles other than those resulting in high levels of radiation damping. The deterministic procedures do not appear to be as robust in predicting peak accelerations, which correlate to structural demands within the structure.

  5. Stress and adaptation responses to repeated acute acceleration.

    NASA Technical Reports Server (NTRS)

    Burton, R. R.; Smith, A. H.

    1972-01-01

    Study in which groups of adult male chickens (single-comb white leghorn) were exposed daily to acceleration (centrifugation) of 2 or 3 G for 10 min, 1, 4, 8, 12, 16, and 24 hr (continuously), or 0 time (controls). After approximately five months of this intermittent treatment (training), the birds were exposed to continuous accelerations of the same G force (intensity). The degree of stress and adaptation of each bird was determined by survival and relative lymphocyte count criteria. Intermittent training exposures of 2 G developed levels of adaptation in birds directly proportional to the duration of their daily exposure. Intermittent training periods at 3 G, however, produced a physiological deterioration in birds receiving daily exposures of 8 hr or more. Adaptive benefits were found only in the 1- and 4-hr-daily intermittent 3-G exposure groups. Exposure to 3 G produced an immediate stress response as indicated by a low relative lymphocyte count which returned to control (preexposed) values prior to the next daily acceleration period in the 10-min, 1-hr, and 4-hr groups. This daily recovery period from stress appeared to be necessary for adaptation as opposed to deterioration for the more severe environmental (3 G) alteration.

  6. Frequency response characteristics and response spectra of base-isolated and un-isolated structures

    SciTech Connect

    Mok, G.C.; Namba, H.

    1995-07-06

    The transmissibility of seismic loads through a linear base-isolation system is analyzed using an impedance method. The results show that the system acts like a {open_quotes}low-pass{close_quotes} filter. It attenuates high-frequency loads but passes through low-frequency ones. The filtering effect depends on the vibration frequencies and damping of the isolated structure and the isolation system. This paper demonstrates the benefits and design principles of base isolation by comparing the transmissibilities and response spectra of isolated and un-isolated structures. Parameters of typical isolated buildings and ground motions of the 1994 Northridge earthquake are used for the demonstration.

  7. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator

    NASA Astrophysics Data System (ADS)

    Puchalska, Monika; Sihver, Lembit

    2015-06-01

    Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.

  8. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator.

    PubMed

    Puchalska, Monika; Sihver, Lembit

    2015-06-21

    Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.

  9. COLLISIONAL RELAXATION OF ELECTRONS IN A WARM PLASMA AND ACCELERATED NONTHERMAL ELECTRON SPECTRA IN SOLAR FLARES

    SciTech Connect

    Kontar, Eduard P.; Jeffrey, Natasha L. S.; Bian, N. H.; Emslie, A. Gordon

    2015-08-10

    Extending previous studies of nonthermal electron transport in solar flares, which include the effects of collisional energy diffusion and thermalization of fast electrons, we present an analytic method to infer more accurate estimates of the accelerated electron spectrum in solar flares from observations of the hard X-ray spectrum. Unlike for the standard cold-target model, the spatial characteristics of the flaring region, especially the necessity to consider a finite volume of hot plasma in the source, need to be taken into account in order to correctly obtain the injected electron spectrum from the source-integrated electron flux spectrum (a quantity straightforwardly obtained from hard X-ray observations). We show that the effect of electron thermalization can be significant enough to nullify the need to introduce an ad hoc low-energy cutoff to the injected electron spectrum in order to keep the injected power in non-thermal electrons at a reasonable value. Rather, the suppression of the inferred low-energy end of the injected spectrum compared to that deduced from a cold-target analysis allows the inference from hard X-ray observations of a more realistic energy in injected non-thermal electrons in solar flares.

  10. Particle Acceleration Inside Thunderstorms and the Variation in Source Spectra of Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Cramer, Eric; Dwyer, Joseph R.; Briggs, Michael S.; Rassoul, Hamid K.

    2016-03-01

    One of the unresolved questions in the atmospheric sciences is the origin of Terrestrial Gamma-ray Flashes (TGFs). These flashes are short but intense gamma ray bursts emanating from Earth's atmosphere. This phenomenon has been observed by gamma ray detectors on orbiting satellites, e.g. NASA Fermi, intended to study astrophysical phenomena such as Gamma-ray Bursts. TGFs are thought to originate inside thunderstorms where electrons can be accelerated and emit radiation in the multi MeV range due to bremsstrahlung interactions with air molecules. These so called ``runaway electrons'' are seeded from cosmic ray air showers hitting the Earth's atmosphere from (extra) galactic sources. In this work, we present a Monte Carlo model that simulates particle physics inside a thunderstorm region. The subsequent transport of high energy gamma rays through the Earth's atmosphere and up to satellite orbit is also included. We show that by varying both the potential difference and the ambient electric field inside the thundercloud, different electron and photon energy distributions are produced. This effect may be detectable by orbiting spacecraft, and therefore serves as a method to remote sense the electric fields that exist inside thunderstorms.

  11. Collisional Relaxation of Electrons in a Warm Plasma and Accelerated Nonthermal Electron Spectra in Solar Flares

    NASA Astrophysics Data System (ADS)

    Kontar, Eduard P.; Jeffrey, Natasha L. S.; Emslie, A. Gordon; Bian, N. H.

    2015-08-01

    Extending previous studies of nonthermal electron transport in solar flares, which include the effects of collisional energy diffusion and thermalization of fast electrons, we present an analytic method to infer more accurate estimates of the accelerated electron spectrum in solar flares from observations of the hard X-ray spectrum. Unlike for the standard cold-target model, the spatial characteristics of the flaring region, especially the necessity to consider a finite volume of hot plasma in the source, need to be taken into account in order to correctly obtain the injected electron spectrum from the source-integrated electron flux spectrum (a quantity straightforwardly obtained from hard X-ray observations). We show that the effect of electron thermalization can be significant enough to nullify the need to introduce an ad hoc low-energy cutoff to the injected electron spectrum in order to keep the injected power in non-thermal electrons at a reasonable value. Rather, the suppression of the inferred low-energy end of the injected spectrum compared to that deduced from a cold-target analysis allows the inference from hard X-ray observations of a more realistic energy in injected non-thermal electrons in solar flares.

  12. Determination of Δσand κ0 from response spectra of large earthquakes in Greece

    USGS Publications Warehouse

    Margaris, B.N.; Boore, D.M.

    1998-01-01

    We fit an ω−2 model to response spectra from eight recent Greek earthquakes ranging in size from M = 5.8 to M = 6.9. The diminution parameter κ0 was determined for each site, with a value near 0.06 for a typical soil site. The stress parameter (Δσ) showed little variation from earthquake to earthquake and had a mean value of 56 bars over all earthquakes. Predictions of peak velocity, peak acceleration, rupture duration, and fault length using the derived stress parameters are consistent with observations. Frequency-dependent site amplifications were included in all estimates; the combined effect of amplification and attenuation had a maximum value close to a factor of 2.5 for a typical soil site, relative to the motions at the surface of a perfectly elastic uniform half-space composed of materials near the source. The results form the foundation for predictions of strong motions in Greece for distances and magnitudes other than those for which data are available.

  13. Changing Climate Drives Lagging and Accelerating Glacier Responses and Accelerating Adjustments of the Hazard Regime

    NASA Astrophysics Data System (ADS)

    Kargel, Jeffrey

    2013-04-01

    advances) of glaciers due to historic and future anthropogenic and longer term climate change relate to a changing glacier hazard regime. Climate change is connected to changes in the geographic distribution and magnitudes of potentially hazardous glacier lakes, large rock and ice avalanches, ice-dammed rivers, and surges. I shall consider these changes in hazard environment in relation to response-time theory and dynamical divergences from idealized response-time theory. Case histories of certain hazard-prone regions, including developments in fast-response-type glaciers and slow-response glaciers and ice sheets will also be discussed. In short, there will be a strong tendency of the hazard regimes of glacierized regions to shift far more rapidly in the 21st century than they did in the 20th century. The magnitude of the shifts will be more dramatic than any simple linear scaling to climate warming would suggest; this is largely because, due to lagging responses, glaciers are still trying to catch up to a new equilibrium for 20th century climate, while climate change remains a moving target that will drive accelerating glacier responses (including responses in hazard environments) in most glacierized regions.

  14. Prediction of spectral acceleration response ordinates based on PGA attenuation

    USGS Publications Warehouse

    Graizer, V.; Kalkan, E.

    2009-01-01

    Developed herein is a new peak ground acceleration (PGA)-based predictive model for 5% damped pseudospectral acceleration (SA) ordinates of free-field horizontal component of ground motion from shallow-crustal earthquakes. The predictive model of ground motion spectral shape (i.e., normalized spectrum) is generated as a continuous function of few parameters. The proposed model eliminates the classical exhausted matrix of estimator coefficients, and provides significant ease in its implementation. It is structured on the Next Generation Attenuation (NGA) database with a number of additions from recent Californian events including 2003 San Simeon and 2004 Parkfield earthquakes. A unique feature of the model is its new functional form explicitly integrating PGA as a scaling factor. The spectral shape model is parameterized within an approximation function using moment magnitude, closest distance to the fault (fault distance) and VS30 (average shear-wave velocity in the upper 30 m) as independent variables. Mean values of its estimator coefficients were computed by fitting an approximation function to spectral shape of each record using robust nonlinear optimization. Proposed spectral shape model is independent of the PGA attenuation, allowing utilization of various PGA attenuation relations to estimate the response spectrum of earthquake recordings.

  15. Eurosid-2 dummy head-neck responses to lateral acceleration.

    PubMed

    Humm, John; Yoganandan, Narayan; Stemper, Brian; Shender, Barry; Paskoff, Glen

    2012-01-01

    The objective of this study was to characterize the ES-2 head and neck response to lateral impacts at varying low magnitudes of impact velocities. A pendulum and mini sled were used to deliver inertial acceleration pulses to an isolated ES-2 head and neck. The base of the neck was attached to a cart which slid along the direction of impact from left to right on two precision ground rails. The shape of the cart acceleration was controlled by altering the momentum transfer of the pendulum. Eighteen tests were conducted at velocities ranging from 1.0 to 4.3 m/s. The head was instrumented with an internal nine accelerometer package to measure the linear and angular head accelerations. Upper and lower neck load cells measured the forces and moments. Cart and pendulum acceleration were measured from uniaxial accelerometers. All data was sampled at 20 kHz and filtered according to SAEJ211. A six-camera 1 kHz Vicon system measured the 3-d kinematics of retroreflective targets affixed to the head and neck. All forces and moments increased with velocity. Peak axial and shear forces at the upper and lower neck were similar, however moments at the lower neck were up to three times higher. The Head to T1 (Head-T1) and Head to Upper Spine (Head-US) angles were calculated from the marker position data. The Head-US angle plateaued at about 10 degrees at the high velocity due to the physical constraints of the upper neck joint. Peak Head-T1 angle increased up to about 50 degrees at the end velocity; however the overall percentage contribution of the Head-US angle to the Head-T1 angle decreased. The ES-2 head displayed a characteristic head lag that was demonstrated in Head-US angle and upper neck moment plots in velocities above 1.0 m/s which have also been reported in the human head neck complex studies. Matched paired tests with isolated Post Mortem Human Subjects are necessary to fully compare the ES-2 head and neck biofidelity.

  16. Increased Flooding Risk - Accelerating Threat and Stakeholder Response

    NASA Astrophysics Data System (ADS)

    Atkinson, L. P.; Ezer, T.; De Young, R.; McShane, M. K.; McFarlane, B.

    2012-12-01

    Coastal cities have been adapting to coastal flooding for centuries. Now, with increased population along the coast combined with increased flooding because of sea level rise (SLR) the vulnerability of coastal cities has increased significantly. In this paper we will discuss the physical threat of accelerating sea level rise and the response of stakeholders. Sallenger et al (2012) stated "... we present evidence of recently accelerated SLR in a unique 1,000-km-long hotspot on the highly populated North American Atlantic coast north of Cape Hatteras and show that it is consistent with a modeled fingerprint of dynamic SLR." In the Northeast Hotspot (NEH) dynamic processes such as Gulf Stream transport can cause local sea level differences (Ezer, 2001). Sweet et al (2009) attributed the anomalously high sea level along the mid-Atlantic in 2009 to dynamic SLR. A recent paper (Ezer and Corlett, 2012 submitted), focused on Chesapeake Bay, confirms Sallenger et al. These accelerations suggest that the higher estimates of SLR in IPCC reports may be better estimates. The combination of local sea level rise and acceleration, even with average coastal storm surge, results in increased vulnerability and economic losses. We will use three examples of stakeholder response to this threat: shipbuilding, cities and insurance. Nuclear aircraft carrier drydock in Newport News, VA - The only drydock where nuclear powered aircraft carriers are built flooded during Hurricane Isabel. A study showed that with a 1 meter sea level rise and no change in storm severity they would have 'Major Flooding' every 4 months rather than every 27 years. Cities infrastructure - In a recent report on sea level rise, the Hampton Roads Planning District Commission (representing nearly 2m people) found that "sea level rise will be a major issue", "there is not yet official state or federal guidance for addressing sea level rise", "…the "…U.S. Army Corps of Engineers has developed guidance…" for their

  17. Association of hormonal responses and performance of student pilots during acceleration training on the human centrifuge

    NASA Astrophysics Data System (ADS)

    Wirth, D.; Rohleder, N.; Welsch, H.

    2005-08-01

    Prediction of student pilots' +Gz tolerance by stress hormone levels would be a useful tool in aviation medicine. The aim of the present study was to analyze the relationship between neuroendocrine parameters with performance during acceleration training on the human centrifuge (HC).We investigated 21 student pilots during self-controlled acceleration training on the HC. Adrenocorticotropic hormone (ACTH), cortisol, epinephrine, and norepinephrine were measured after individual training sessions and at rest. Performance was defined by several characteristics including maximum tolerated acceleration. ACTH and cortisol, were significantly higher 20 minutes after acceleration training compared to the resting condition. Subjects tolerated a maximal acceleration of +6.69 Gz. HPA hormone levels and responses were associated with maximum tolerated acceleration +Gz. These findings support the expectation that acceleration- induced increases in stress hormones may enable the organism to tolerate a higher acceleration and could therefore be used as predictors for acceleration tolerance.

  18. EMITTING ELECTRONS SPECTRA AND ACCELERATION PROCESSES IN THE JET OF Mrk 421: FROM THE LOW STATE TO THE GIANT FLARE STATE

    SciTech Connect

    Yan Dahai; Zhang Li; Fan Zhonghui; Zeng Houdun; Yuan Qiang

    2013-03-10

    We investigate the electron energy distributions (EEDs) and the acceleration processes in the jet of Mrk 421 through fitting the spectral energy distributions (SEDs) in different active states in the frame of a one-zone synchrotron self-Compton model. After assuming two possible EEDs formed in different acceleration models: the shock-accelerated power law with exponential cut-off (PLC) EED and the stochastic-turbulence-accelerated log-parabolic (LP) EED, we fit the observed SEDs of Mrk 421 in both low and giant flare states using the Markov Chain Monte Carlo method which constrains the model parameters in a more efficient way. The results from our calculations indicate that (1) the PLC and LP models give comparably good fits for the SED in the low state, but the variations of model parameters from low state to flaring can be reasonably explained only in the case of the PLC in the low state; and (2) the LP model gives better fits compared to the PLC model for the SED in the flare state, and the intra-day/night variability observed at GeV-TeV bands can be accommodated only in the LP model. The giant flare may be attributed to the stochastic turbulence re-acceleration of the shock-accelerated electrons in the low state. Therefore, we may conclude that shock acceleration is dominant in the low state, while stochastic turbulence acceleration is dominant in the flare state. Moreover, our result shows that the extrapolated TeV spectra from the best-fit SEDs from optical through GeV with the two EEDs are different. It should be considered with caution when such extrapolated TeV spectra are used to constrain extragalactic background light models.

  19. Accelerator measurement of the energy spectra of neutrons emitted in the interaction of 3-GeV protons with several elements

    NASA Technical Reports Server (NTRS)

    Nalesnik, W. J.; Devlin, T. J.; Merker, M.; Shen, B. S. P.

    1972-01-01

    The application of time of flight techniques for determining the shapes of the energy spectra of neutrons between 20 and 400 MeV is discussed. The neutrons are emitted at 20, 34, and 90 degrees in the bombardment of targets by 3 GeV protons. The targets used are carbon, aluminum, cobalt, and platinum with cylindrical cross section. Targets being bombarded are located in the internal circulating beam of a particle accelerator.

  20. Using Gamma-Ray and Neutron Emission to Determine Solar Flare Accelerated Particle Spectra and Composition and the Conditions Within the Flare Magnetic Loop

    DTIC Science & Technology

    2007-01-01

    computer codes we have cal- culated the yields of deexcitation lines, escaping neutron spec- tra and the neutron capture line for monoenergetic ...USING GAMMA-RAYAND NEUTRON EMISSION TO DETERMINE SOLAR FLARE ACCELERATED PARTICLE SPECTRA AND COMPOSITION AND THE CONDITIONS WITHIN THE FLARE...California, San Diego, La Jolla, CA Received 2006 May 4; accepted 2006 August 23 ABSTRACT The measurable quantities associated with -ray and neutron

  1. Analytical approach to calculation of response spectra from seismological models of ground motion

    USGS Publications Warehouse

    Safak, Erdal

    1988-01-01

    An analytical approach to calculate response spectra from seismological models of ground motion is presented. Seismological models have three major advantages over empirical models: (1) they help in an understanding of the physics of earthquake mechanisms, (2) they can be used to predict ground motions for future earthquakes and (3) they can be extrapolated to cases where there are no data available. As shown with this study, these models also present a convenient form for the calculation of response spectra, by using the methods of random vibration theory, for a given magnitude and site conditions. The first part of the paper reviews the past models for ground motion description, and introduces the available seismological models. Then, the random vibration equations for the spectral response are presented. The nonstationarity, spectral bandwidth and the correlation of the peaks are considered in the calculation of the peak response.

  2. Optimal binning of X-ray spectra and response matrix design

    NASA Astrophysics Data System (ADS)

    Kaastra, J. S.; Bleeker, J. A. M.

    2016-03-01

    Aims: A theoretical framework is developed to estimate the optimal binning of X-ray spectra. Methods: We derived expressions for the optimal bin size for model spectra as well as for observed data using different levels of sophistication. Results: It is shown that by taking into account both the number of photons in a given spectral model bin and their average energy over the bin size, the number of model energy bins and the size of the response matrix can be reduced by a factor of 10-100. The response matrix should then contain the response at the bin centre as well as its derivative with respect to the incoming photon energy. We provide practical guidelines for how to construct optimal energy grids as well as how to structure the response matrix. A few examples are presented to illustrate the present methods.

  3. Development of a Wireless Displacement Measurement System Using Acceleration Responses

    PubMed Central

    Park, Jong-Woong; Sim, Sung-Han; Jung, Hyung-Jo; Spencer, Billie F.

    2013-01-01

    Displacement measurements are useful information for various engineering applications such as structural health monitoring (SHM), earthquake engineering and system identification. Most existing displacement measurement methods are costly, labor-intensive, and have difficulties particularly when applying to full-scale civil structures because the methods require stationary reference points. Indirect estimation methods converting acceleration to displacement can be a good alternative as acceleration transducers are generally cost-effective, easy to install, and have low noise. However, the application of acceleration-based methods to full-scale civil structures such as long span bridges is challenging due to the need to install cables to connect the sensors to a base station. This article proposes a low-cost wireless displacement measurement system using acceleration. Developed with smart sensors that are low-cost, wireless, and capable of on-board computation, the wireless displacement measurement system has significant potential to impact many applications that need displacement information at multiple locations of a structure. The system implements an FIR-filter type displacement estimation algorithm that can remove low frequency drifts typically caused by numerical integration of discrete acceleration signals. To verify the accuracy and feasibility of the proposed system, laboratory tests are carried out using a shaking table and on a three storey shear building model, experimentally confirming the effectiveness of the proposed system. PMID:23881123

  4. ON THE e{sup +}e{sup -} EXCESSES AND THE KNEE OF THE COSMIC RAY SPECTRA-HINTS OF COSMIC RAY ACCELERATION IN YOUNG SUPERNOVA REMNANTS

    SciTech Connect

    Hu Hongbo; Yuan Qiang; Wang Bo; Fan Chao; Zhang Jianli; Bi Xiaojun

    2009-08-01

    Supernova remnants (SNRs) have long been regarded as sources of the Galactic cosmic rays (CRs) up to petaelectronvolts, but convincing evidence is still lacking. In this work we explore the common origin of the subtle features of the CR spectra, such as the knee of CR spectra and the excesses of electron/positron fluxes recently observed by ATIC, H.E.S.S., Fermi-LAT, and PAMELA. Numerical calculation shows that those features of CR spectra can be well reproduced in a scenario with e{sup +}e{sup -} pair production by interactions between high-energy CRs and background photons in an environment similar to the young SNR. The success of such a coherent explanation serves in turn as evidence that at least a portion of CRs might be accelerated in young SNRs.

  5. Solar disturbances and correlated geospace responses: Relativistic magnetospheric electron acceleration

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Pulkkinen, T. I.

    1997-01-01

    The role of high-speed solar wind streams in driving relativistic electron acceleration within the earth's magnetosphere is discussed based on International Solar-Terrestrial Physics (ISTP) Observatory and related spacecraft observations. A 'recirculation' mechanism for electron acceleration and redistribution was invoked. Recently, an increase in the number of coronal mass ejections (CMEs) and related 'magnetic clouds' was seen at 1 AU. As these CME/cloud systems interact with the earth's magnetosphere, they are able to produce rapid enhancements in the magnetospheric electron population. The relativistic electron signatures observed by the POLAR, SAMPEX, and other spacecraft during recent magnetic cloud events, especially January 1997 and May 1997, were compared and contrasted. In these cases, there were large solar wind and IMF changes during the cloud passages and very rapid energetic electron acceleration was observed. The relative geoeffectiveness of these events is examined and 'space weather' predicatability is assessed.

  6. Non Parametric Determination of Acceleration Characteristics in Supernova Shocks Based on Spectra of Cosmic Rays and Remnant Radiation

    NASA Astrophysics Data System (ADS)

    Petrosian, Vahe

    2016-07-01

    We have developed an inversion method for determination of the characteristics of the acceleration mechanism directly and non-parametrically from observations, in contrast to the usual forward fitting of parametric model variables to observations. This is done in the frame work of the so-called leaky box model of acceleration, valid for isotropic momentum distribution and for volume integrated characteristics in a finite acceleration site. We consider both acceleration by shocks and stochastic acceleration where turbulence plays the primary role to determine the acceleration, scattering and escape rates. Assuming a knowledge of the background plasma the model has essentially two unknown parameters, namely the momentum and pitch angle scattering diffusion coefficients, which can be evaluated given two independent spectral observations. These coefficients are obtained directly from the spectrum of radiation from the supernova remnants (SNRs), which gives the spectrum of accelerated particles, and the observed spectrum of cosmic rays (CRs), which are related to the spectrum of particles escaping the SNRs. The results obtained from application of this method will be presented.

  7. The variability of PSV response spectra across a dense array deployed during the Northridge aftershock sequence

    USGS Publications Warehouse

    Field, E.H.; Hough, S.E.

    1997-01-01

    This study addresses the variability of pseudo-velocity response spectra across an array deployed on stiff soil in the San Fernando Valley during the Northridge (Mw 6.7) aftershock sequence. The separation between stations ranged from 0.5 to 5 km, and the aftershock magnitudes ranged from 2.3 to 4.0. We find that 95-percent of observed response spectra are within a factor of 1.9 to 2.6 of the network average. Statistically significant relative amplification factors were found for some of the sites, but the variability of observed response spectra is not significantly reduced by correcting for these effects. This implies that microzonation efforts on less than 5-km distance scales are not warranted at these types of sites. We also found a distance dependence for the response-spectral variability between neighboring sites. 95-percent are within a factor of ???2.3 at 0.5 km, increasing to 95-percent within a factor of ???4.2 at 5 km. No frequency dependence in these values could be resolved. Additional work is needed to examine the influence of other factors such as earthquake magnitude.

  8. Dynamic response of an accelerator driven system to accelerator beam interruptions for criticality

    NASA Astrophysics Data System (ADS)

    Lafuente, A.; Abanades, A.; Leon, P. T.; Sordo, F.; Martinez-Val, J. M.

    2008-06-01

    Subcritical nuclear reactors driven by intense neutron sources can be very suitable tools for nuclear waste transmutation, particularly in the case of minor actinides with very low fractions of delayed neutrons. A proper control of these systems needs to know at every time the absolute value of the reactor subcriticality (negative reactivity), which must be measured by fully reliable methods, usually conveying a short interruption of the accelerator beam in order to assess the neutron flux reduction. Those interruptions should be very short in time, for not disturbing too much the thermal magnitudes of the reactor. Otherwise, the cladding and the fuel would suffer from thermal fatigue produced by those perturbations, and the mechanical integrity of the reactor would be jeopardized. It is shown in this paper that beam interruptions of the order of 400 μs repeated every second would not disturb significantly the reactor thermal features, while enabling for an adequate measurement of the negative reactivity.

  9. Measurement of angularly dependent spectra of betatron gamma-rays from a laser plasma accelerator with quadrant-sectored range filters

    NASA Astrophysics Data System (ADS)

    Jeon, Jong Ho; Nakajima, Kazuhisa; Kim, Hyung Taek; Rhee, Yong Joo; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Shin, Jung Hun; Yoo, Byung Ju; Jo, Sung Ha; Shin, Kang Woo; Hojbota, Calin; Bae, Lee Jin; Jung, Jaehyung; Cho, Min Sang; Sung, Jae Hee; Lee, Seong Ku; Cho, Byoung Ick; Choi, Il Woo; Nam, Chang Hee

    2016-07-01

    Measurement of angularly dependent spectra of betatron gamma-rays radiated by GeV electron beams from laser wakefield accelerators (LWFAs) are presented. The angle-resolved spectrum of betatron radiation was deconvolved from the position dependent data measured for a single laser shot with a broadband gamma-ray spectrometer comprising four-quadrant sectored range filters and an unfolding algorithm, based on the Monte Carlo code GEANT4. The unfolded gamma-ray spectra in the photon energy range of 0.1-10 MeV revealed an approximately isotropic angular dependence of the peak photon energy and photon energy-integrated fluence. As expected by the analysis of betatron radiation from LWFAs, the results indicate that unpolarized gamma-rays are emitted by electrons undergoing betatron motion in isotropically distributed orbit planes.

  10. Neutron Generation from Laser-Accelerated Ion Beams: Use of Alternative Deuteron-Rich Targets for Improved Neutron Yield and Control of Neutron Spectra

    NASA Astrophysics Data System (ADS)

    Albright, B. J.; Yin, L.; Favalli, A.

    2016-10-01

    Laser-ion-beam generation in the break-out afterburner (BOA) acceleration regime has been modeled for several deuteron-rich solid-density targets using the VPIC particle-in-cell code. Monte Carlo modeling of the transport of these beams in a beryllium converter in a pitcher-catcher neutron source configuration shows significant increases in neutron yields may be achievable through judicious choices of laser target material. Additionally, species-separation dynamics in some target materials during the BOA ion acceleration phase can be exploited to control the shapes of the neutron spectra. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Los Alamos National Laboratory Directed Research and Development Program.

  11. Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares. II. Inclusion of Radiative Transfer with RADYN

    NASA Astrophysics Data System (ADS)

    Rubio da Costa, Fatima; Liu, Wei; Petrosian, Vahé; Carlsson, Mats

    2015-11-01

    Solar flares involve complex processes that are coupled and span a wide range of temporal, spatial, and energy scales. Modeling such processes self-consistently has been a challenge in the past. Here we present results from simulations that couple particle kinetics with hydrodynamics (HD) of the atmospheric plasma. We combine the Stanford unified Fokker-Planck code that models particle acceleration and transport with the RADYN HD code that models the atmospheric response to collisional heating by accelerated electrons through detailed radiative transfer calculations. We perform simulations using two different electron spectra, one an ad hoc power law and the other predicted by the model of stochastic acceleration by turbulence or plasma waves. Surprisingly, the later model, even with energy flux \\ll {10}10 {erg} {{{s}}}-1 {{cm}}-2, can cause “explosive” chromospheric evaporation and drive stronger up- and downflows (and HD shocks). This is partly because our acceleration model, like many others, produces a spectrum consisting of a quasi-thermal component plus a power-law tail. We synthesize emission-line profiles covering different heights in the lower atmosphere, including Hα 6563 Å, He ii 304 Å, Ca ii K 3934 Å, and Si iv 1393 Å. One interesting result is the unusual high temperature (up to a few times 105 K) of the formation site of He ii 304 Å, which is expected owing to photoionization-recombination under flare conditions, compared to those in the quiet Sun dominated by collisional excitation. When compared with observations, our results can constrain the properties of nonthermal electrons and thus the poorly understood particle acceleration mechanism.

  12. Real-Time Continuous Response Spectra Exceedance Calculation Displayed in a Web-Browser Enables Rapid and Robust Damage Evaluation by First Responders

    NASA Astrophysics Data System (ADS)

    Franke, M.; Skolnik, D. A.; Harvey, D.; Lindquist, K.

    2014-12-01

    A novel and robust approach is presented that provides near real-time earthquake alarms for critical structures at distributed locations and large facilities using real-time estimation of response spectra obtained from near free-field motions. Influential studies dating back to the 1980s identified spectral response acceleration as a key ground motion characteristic that correlates well with observed damage in structures. Thus, monitoring and reporting on exceedance of spectra-based thresholds are useful tools for assessing the potential for damage to facilities or multi-structure campuses based on input ground motions only. With as little as one strong-motion station per site, this scalable approach can provide rapid alarms on the damage status of remote towns, critical infrastructure (e.g., hospitals, schools) and points of interests (e.g., bridges) for a very large number of locations enabling better rapid decision making during critical and difficult immediate post-earthquake response actions. Details on the novel approach are presented along with an example implementation for a large energy company. Real-time calculation of PSA exceedance and alarm dissemination are enabled with Bighorn, an extension module based on the Antelope software package that combines real-time spectral monitoring and alarm capabilities with a robust built-in web display server. Antelope is an environmental data collection software package from Boulder Real Time Technologies (BRTT) typically used for very large seismic networks and real-time seismic data analyses. The primary processing engine produces continuous time-dependent response spectra for incoming acceleration streams. It utilizes expanded floating-point data representations within object ring-buffer packets and waveform files in a relational database. This leads to a very fast method for computing response spectra for a large number of channels. A Python script evaluates these response spectra for exceedance of one or more

  13. Effects of Frequency and Acceleration Amplitude on Osteoblast Mechanical Vibration Responses: A Finite Element Study

    PubMed Central

    Hsu, Hung-Yao

    2016-01-01

    Bone cells are deformed according to mechanical stimulation they receive and their mechanical characteristics. However, how osteoblasts are affected by mechanical vibration frequency and acceleration amplitude remains unclear. By developing 3D osteoblast finite element (FE) models, this study investigated the effect of cell shapes on vibration characteristics and effect of acceleration (vibration intensity) on vibrational responses of cultured osteoblasts. Firstly, the developed FE models predicted natural frequencies of osteoblasts within 6.85–48.69 Hz. Then, three different levels of acceleration of base excitation were selected (0.5, 1, and 2 g) to simulate vibrational responses, and acceleration of base excitation was found to have no influence on natural frequencies of osteoblasts. However, vibration response values of displacement, stress, and strain increased with the increase of acceleration. Finally, stress and stress distributions of osteoblast models under 0.5 g acceleration in Z-direction were investigated further. It was revealed that resonance frequencies can be a monotonic function of cell height or bottom area when cell volumes and material properties were assumed as constants. These findings will be useful in understanding how forces are transferred and influence osteoblast mechanical responses during vibrations and in providing guidance for cell culture and external vibration loading in experimental and clinical osteogenesis studies. PMID:28074178

  14. Comparison of helium and heavy ion spectra in /sup 3/He-rich solar flares with model calculations based on stochastic Fermi acceleration in Alfven turbulence

    SciTech Connect

    Moebius, E.; Scholer, M.; Hovestadt, D.; Klecker, B.; Gloeckler, G.

    1982-08-01

    A systematic study of the He isotopes, O, and Fe in six /sup 3/He-rich solar flares during the 1977--1979 period using the dE/dx versus E Ultralow Energy Wide Angle Telescope (ULEWAT) of the Max-Planck-Institut/University of Maryland experiment on ISEE 1 and ISEE 3 revealed that the /sup 3/He spectrum is generally harder than that of /sup 4/He, and the O spectrum is harder than that of Fe in the energy range 0.4--4. MeV per nucleon. At higher energies the flux of the anomalous cosmic ray component exceeds the flux of /sup 4/He and O solar particles for 1977. The spectra as measured for /sup 3/He and /sup 4/He are basically in agreement with a stationary model based on stochastic Fermi acceleration in Alfven turbulence including the corresponding rigidity-dependent diffusive particle loss. The oxygen and iron spectra, however, differ from the ones predicted by the model: the variation of the Fe/O ratio is larger than predicted. It is suggested that the occasional observation of a maximum of the /sup 3/He spectrum is due to a short time injection of /sup 3/He and a long time injection of normal composition material. Subject headings: cosmic rays: general: particle acceleration: Sun: abundances: Sun:flares

  15. Detector-Response Correction of Two-Dimensional γ -Ray Spectra from Neutron Capture

    DOE PAGES

    Rusev, G.; Jandel, M.; Arnold, C. W.; ...

    2015-05-28

    The neutron-capture reaction produces a large variety of γ-ray cascades with different γ-ray multiplicities. A measured spectral distribution of these cascades for each γ-ray multiplicity is of importance to applications and studies of γ-ray statistical properties. The DANCE array, a 4π ball of 160 BaF2 detectors, is an ideal tool for measurement of neutron-capture γ-rays. The high granularity of DANCE enables measurements of high-multiplicity γ-ray cascades. The measured two-dimensional spectra (γ-ray energy, γ-ray multiplicity) have to be corrected for the DANCE detector response in order to compare them with predictions of the statistical model or use them in applications. Themore » detector-response correction problem becomes more difficult for a 4π detection system than for a single detector. A trial and error approach and an iterative decomposition of γ-ray multiplets, have been successfully applied to the detector-response correction. Applications of the decomposition methods are discussed for two-dimensional γ-ray spectra measured at DANCE from γ-ray sources and from the 10B(n, γ) and 113Cd(n, γ) reactions.« less

  16. Response of mean turbulent energy dissipation rate and spectra to concentrated wall suction

    NASA Astrophysics Data System (ADS)

    Oyewola, O.; Djenidi, L.; Antonia, R. A.

    2008-01-01

    The response of mean turbulent energy dissipation rate and spectra to concentrated suction applied through a porous wall strip has been quantified. Both suction and no suction data of the spectra collapsed reasonably well for Kolmogorov normalised wavenumber k {1/*} > 0.2. Similar results were also observed for second-order structure functions (not shown) for Kolmogorov normalised radius r* < 10. Although, the quality of collapsed is poorer for transverse component, the result highlights that Kolmogorov similarity hypothesis is reasonably well satisfied. However, the suction results shows a significant departure from the no suction case of the Kolmogorov normalised spectra and second-order structure functions for k {1/*} < 0.2 and r* > 20, respectively. The departure at the larger scales with collapse at the small scales suggests that suction induce a change in the small-scale motion. This is also reflected in the alteration of mean turbulent energy dissipation rate and Taylor microscale Reynolds number. This change is a result of the weakening of the large-scale structures. The effect is increased as the suction rate is increased.

  17. Shock response spectra variational analysis for pyrotechnic qualification testing of flight hardware

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1984-01-01

    Shock response spectra data from flight certification tests were analyzed to determine envelope variation with respect to mean values in each axis. An overall variation of + or - 8.61 dB or 169 percent exists for the data. This large variation may be attributed to one or more of the following: (1) Instrumentation problems may exist. (2) Variations in the source charge (blasting caps) such as shape or explosive load may exist. (3) Two blasting caps were used to excite the pyrotechnic plate tester. Delay time between charge firings may have varied. The cause or causes of the variations need to be identified and researched to prevent future pyroshock problems.

  18. Project CARDS technical information record: parametric and sensitivity analysis and determination of response spectra for horizontal, vertical and rotational motion of a radioactive material shipping package relative to the motion of its support (railcar). Part 2. Continuation of CARDS-TIR-80-3 (Preliminary)

    SciTech Connect

    Fields, S.R.

    1980-11-26

    The generation of the response spectra was coupled to a parametric and sensitivity analysis. Support accelerations and tiedown forces are presented as functions of time. The parametric analysis found that the horizontal acceleration of the support and the MAR (max absolute relative) horizontal acceleration are relatively insensitive, while the corresponding vertical accelerations are highly sensitive to changes in 4 of the 13 parameters, and the corresponding rotational accelerations are highly sensitive to changes in 8 of the 13 parameters. The tiedown forces are moderately sensitive to changes in 3 of the parameters. (DLC)

  19. Breast Cancer Spatial Heterogeneity in Near-Infrared Spectra and the Prediction of Neoadjuvant Chemotherapy Response

    NASA Astrophysics Data System (ADS)

    Santoro, Ylenia

    Breast cancer accounts for more than 20% of all female cancers. Many of these patients receive neoadjuvant chemotherapy (NAC) to reduce the size of the tumor before surgery and to anticipate the efficacy of treatments for after the procedure. Breast cancer is a heterogeneous disease that comes in several clinical and histological forms. The prediction of the efficacy of chemotherapy would potentially select good candidates who would respond while excluding poor candidates who would not benefit from treatment. In this work we investigate the possibility of noninvasively predicting chemotherapy response prior to treatment based on optical biomarkers obtained from tumor spatial heterogeneities of spectral features measured using Diffuse Optical Spectroscopy. We describe an algorithm to calculate an index that characterizes spatial differences in broadband near-infrared absorption spectra of tumor-containing breast tissue. Patient-specific tumor spatial heterogeneities are visualized through a Heterogeneity Spectrum (HS). HS is a biomarker that can be attributed to different molecular distributions within the tumor. To classify lesion heterogeneities, we built a Heterogeneity Index (HI) from the HS by weighing specific absorption bands. It has been shown that NAC response is potentially related to tumor heterogeneity. Therefore, we correlate the HI obtained prior to treatment with the final response to NAC. In this thesis we also present a novel digital parallel frequency domain system for tissue imaging. The systems employs a supercontinuum laser with high brightness, and a photomultiplier with a large detection area, both allowing a deep penetration with extremely low power on the sample. The digital parallel acquisition is performed through the use of the Flimbox and it decreases the time required for standard serial systems that need to scan through all modulation frequencies. The all-digital acquisition removes analog noise, avoids the analog mixer and it does not

  20. Behavioral responses to resource heterogeneity can accelerate biological invasions.

    PubMed

    Lutscher, Frithjof; Musgrave, Jeffrey A

    2017-02-14

    The abundance and spatial distribution of resources in a landscape and the behavioral response of individuals determines whether and how fast an invasive species spreads in an environment. Whether and how landscape manipulations can be used to slow invasive species is of great interest, in particular in forest ecosystems, where tree removal, thinning, and increasing tree diversity are discussed as management options. Classically, the focus is on availability and accessibility of resources; more recent considerations include individual-level behavioral movement responses to a spatially heterogeneous resource distribution. We derive a novel model for insect-host dynamics that includes three common behavioral aspects of foraging: higher movement rate in resource-poor areas, lower ovipositioning rate in resource poor areas, and movement preference for resource-rich areas. We show that each of these basic mechanisms can increase the speed of invasion in a source-sink landscape above that in a homogeneous landscape with larger overall resource availability. We parameterize our model and illustrate our results with data for Emerald ash borer, a recent highly destructive forest pest in North America. Our results highlight the importance of empirical work on movement behavior in different landscape types and near the interface between types. This article is protected by copyright. All rights reserved.

  1. Untangling the Effect of Head Acceleration on Brain Responses to Blast Waves.

    PubMed

    Mao, Haojie; Unnikrishnan, Ginu; Rakesh, Vineet; Reifman, Jaques

    2015-12-01

    Multiple injury-causing mechanisms, such as wave propagation, skull flexure, cavitation, and head acceleration, have been proposed to explain blast-induced traumatic brain injury (bTBI). An accurate, quantitative description of the individual contribution of each of these mechanisms may be necessary to develop preventive strategies against bTBI. However, to date, despite numerous experimental and computational studies of bTBI, this question remains elusive. In this study, using a two-dimensional (2D) rat head model, we quantified the contribution of head acceleration to the biomechanical response of brain tissues when exposed to blast waves in a shock tube. We compared brain pressure at the coup, middle, and contre-coup regions between a 2D rat head model capable of simulating all mechanisms (i.e., the all-effects model) and an acceleration-only model. From our simulations, we determined that head acceleration contributed 36-45% of the maximum brain pressure at the coup region, had a negligible effect on the pressure at the middle region, and was responsible for the low pressure at the contre-coup region. Our findings also demonstrate that the current practice of measuring rat brain pressures close to the center of the brain would record only two-thirds of the maximum pressure observed at the coup region. Therefore, to accurately capture the effects of acceleration in experiments, we recommend placing a pressure sensor near the coup region, especially when investigating the acceleration mechanism using different experimental setups.

  2. A Preliminary Analysis on Empirical Attenuation of Absolute Velocity Response Spectra (1 to 10s) in Japan

    NASA Astrophysics Data System (ADS)

    Dhakal, Y. P.; Kunugi, T.; Suzuki, W.; Aoi, S.

    2013-12-01

    The Mw 9.1 Tohoku-oki earthquake caused strong shakings of super high rise and high rise buildings constructed on deep sedimentary basins in Japan. Many people felt difficulty in moving inside the high rise buildings even on the Osaka basin located at distances as far as 800 km from the epicentral area. Several empirical equations are proposed to estimate the peak ground motions and absolute acceleration response spectra applicable mainly within 300 to 500km from the source area. On the other hand, Japan Meteorological Agency has recently proposed four classes of absolute velocity response spectra as suitable indices to qualitatively describe the intensity of long-period ground motions based on the observed earthquake records, human experiences, and actual damages that occurred in the high rise and super high rise buildings. The empirical prediction equations have been used in disaster mitigation planning as well as earthquake early warning. In this study, we discuss the results of our preliminary analysis on attenuation relation of absolute velocity response spectra calculated from the observed strong motion records including those from the Mw 9.1 Tohoku-oki earthquake using simple regression models with various model parameters. We used earthquakes, having Mw 6.5 or greater, and focal depths shallower than 50km, which occurred in and around Japanese archipelago. We selected those earthquakes for which the good quality records are available over 50 observation sites combined from K-NET and KiK-net. After a visual inspection on approximately 21,000 three component records from 36 earthquakes, we used about 15,000 good quality records in the period range of 1 to 10s within the hypocentral distance (R) of 800km. We performed regression analyses assuming the following five regression models. (1) log10Y (T) = c+ aMw - log10R - bR (2) log10Y (T) = c+ aMw - log10R - bR +gS (3) log10Y (T) = c+ aMw - log10R - bR + hD (4) log10Y (T) = c+ aMw - log10R - bR +gS +hD (5) log10Y

  3. Responses to rotating linear acceleration vectors considered in relation to a model of the otolith organs. [human oculomotor response to transverse acceleration stress

    NASA Technical Reports Server (NTRS)

    Benson, A. J.; Barnes, G. R.

    1973-01-01

    Human subjects were exposed to a linear acceleration vector that rotated in the transverse plane of the skull without angular counterrotation. Lateral eye movements showed a sinusoidal change in slow phase velocity and an asymmetry or bias in the same direction as vector rotation. A model is developed that attributes the oculomotor response to otolithic mechanisms. It is suggested that the bias component is the manifestation of torsion of the statoconial plaque relative to the base of the utricular macula and that the sinusoidal component represents the translational oscillation of the statoconia. The model subsumes a hypothetical neural mechanism which allows x- and y-axis accelerations to be resolved. Derivation of equations of motion for the statoconial plaque in torsion and translation, which take into account forces acting in shear and normal to the macula, yield estimates of bias and sinusoidal components that are in qualitative agreement with the diverse experimental findings.

  4. Acceleration Model in the Heterogeneous Case of the General Graded Response Model.

    ERIC Educational Resources Information Center

    Samejima, Fumiko

    1995-01-01

    A new model, the acceleration model, is proposed in the framework of the heterogeneous case of the graded response model, based on processing functions defined for a finite or enumerable number of steps. The model is expected to be useful in cognitive assessment. (SLD)

  5. A methodology for defining shock tests based on shock response spectra and temporal moments

    SciTech Connect

    Cap, J.S.; Smallwood, D.O.

    1997-11-01

    Defining acceptable tolerances for a shock test has always been a problem due in large part to the use of Shock Response Spectra (SRS) as the sole description of the shock. While SRS do contain a wealth of information if one knows what to look for, it is commonly accepted that different agencies can generate vastly different time domain test inputs whose SRS all satisfy the test requirements within a stated tolerance band. At an even more basic level, the laboratory test specifications often fail to resemble the field environment even though the SRS appear to be similar. A concise means of bounding the time domain inputs would be of great benefit in reducing the variation in the resulting shock tests. This paper describes a methodology that uses temporal moments to improve the repeatability of shock test specifications.

  6. Human Physiological Responses to Cycle Ergometer Leg Exercise During +Gz Acceleration

    NASA Technical Reports Server (NTRS)

    Chou, J. L.; Stad, N. J.; Barnes, P. R.; Leftheriotis, G. P. N.; Arndt, N. F.; Simonson, S.; Greenleaf, J. E.

    1998-01-01

    Spaceflight and bed-rest deconditioning decrease maximal oxygen uptake (aerobic power), strength, endurance capacity, and orthostatic tolerance. In addition to extensive use of muscular exercise conditioning as a countermeasure for the reduction in aerobic power (VO(sub 2max)), stimuli from some form of +Gz acceleration conditioning may be necessary to attenuate the orthostatic intolerance component of this deconditioning. Hypothesis: There will be no significant difference in the physiological responses (oxygen uptake, heart rate, ventilation, or respiratory exchange ratio) during supine exercise with moderate +Gz acceleration.

  7. Acceleration response spectrum for prediction of structural vibration due to individual bouncing

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Wang, Lei; Racic, Vitomir; Lou, Jiayue

    2016-08-01

    This study is designed to develop an acceleration response spectrum that can be used in vibration serviceability assessment of civil engineering structures, such as floors and grandstands those are dynamically excited by individual bouncing. The spectrum is derived from numerical simulations and statistical analysis of acceleration responses of a single degree of freedom system with variable natural frequency and damping under a large number of experimentally measured individual bouncing loads. Its mathematical representation is fit for fast yet reliable application in design practice and is comprised of three equations that describe three distinct frequency regions observed in the actual data: the first resonant plateau (2-3.5 Hz), the second resonant plateau (4-7 Hz) and a descension region (7-15 Hz). Finally, this paper verifies the proposed response spectrum approach to predict structural vibration by direct comparison against numerical simulations and experimental results.

  8. Ecotypic variation in response to light spectra in Scots pine (Pinus sylvestris L.).

    PubMed

    Ranade, Sonali S; García-Gil, M R

    2013-02-01

    We investigated Scots pine adaptive responses to the light spectra by measuring hypocotyl length in seeds sampled from three natural Scots pine ecotypes across a latitudinal cline ranging from 63° to 68° N in Sweden where the adaptive cline is known to be steeper. Seeds were germinated under dark (D) and three monochromatic continuous light wavelengths: blue (B), red (R) and far-red (FR). Analysis of variance revealed a northward decrease in the inhibitory effect of FR with respect to D, the so-called far red high irradiance response. Ecotypic variation for hypocotyl development was observed under the FR and D treatments, while the trends for the B and R treatments were not statistically significant. Under FR the ecotypic variation showed an increase in hypocotyl length northwards, in contrast to the treatment under D which showed a decrease in the hypocotyl length northwards. These results could be interpreted in view of the previously reported northward increase in FR requirement to maintain growth in Norway spruce and Scots pine. Prior to the performance of the main light experiment, the maternal effect on progeny performance was investigated, which showed the absence of maternal environment effect on the performance of the seedlings.

  9. Untangling the Effect of Head Acceleration on Brain Responses to Blast Waves

    PubMed Central

    Mao, Haojie; Unnikrishnan, Ginu; Rakesh, Vineet; Reifman, Jaques

    2015-01-01

    Multiple injury-causing mechanisms, such as wave propagation, skull flexure, cavitation, and head acceleration, have been proposed to explain blast-induced traumatic brain injury (bTBI). An accurate, quantitative description of the individual contribution of each of these mechanisms may be necessary to develop preventive strategies against bTBI. However, to date, despite numerous experimental and computational studies of bTBI, this question remains elusive. In this study, using a two-dimensional (2D) rat head model, we quantified the contribution of head acceleration to the biomechanical response of brain tissues when exposed to blast waves in a shock tube. We compared brain pressure at the coup, middle, and contre-coup regions between a 2D rat head model capable of simulating all mechanisms (i.e., the all-effects model) and an acceleration-only model. From our simulations, we determined that head acceleration contributed 36–45% of the maximum brain pressure at the coup region, had a negligible effect on the pressure at the middle region, and was responsible for the low pressure at the contre-coup region. Our findings also demonstrate that the current practice of measuring rat brain pressures close to the center of the brain would record only two-thirds of the maximum pressure observed at the coup region. Therefore, to accurately capture the effects of acceleration in experiments, we recommend placing a pressure sensor near the coup region, especially when investigating the acceleration mechanism using different experimental setups. PMID:26458125

  10. Effect of prolonged bedrest and plus Gz acceleration on peripheral visual response time

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1973-01-01

    Peripheral visual response time changes during +G sub z acceleration following fourteen days of bedrest are considered as well as what effect prolonged bedrest has upon this response. Eighteen test lights, placed 10 deg are apart along the horizontal meridian of the subject's field of view, were presented in a random sequence. The subject was instructed to press a button as soon as a light appeared. Response time testing occurred periodically during bedrest and continuously during centrifugation testing. The results indicate that: (1) mean response time is significantly longer to stimuli imaged in the far periphery than to stimuli imaged closer to the line of sight; (2) mean response time at each stimulus position tends to be longer at plateau g than during the preacceleration baseline period; (3) mean response time tends to lengthen as the g level is increased; (4) peripheral visual response time during +G sub x acceleration at 2, 3.2, and 3.8 g was not a reliable advanced indicator that blackout was going to occur; and (5) the subject's field of view collapsed rapidly just before blackout. Bedrest data showed that the distribution of response times to stimuli imaged across the subject's horizontal retinal meridian remained remarkably constant from day to day during both the bedrest and recovery periods.

  11. Long-term moderate exercise accelerates the recovery of stress-evoked cardiovascular responses.

    PubMed

    Hsu, Yuan-Chang; Tsai, Sheng-Feng; Yu, Lung; Chuang, Jih-Ing; Wu, Fong-Sen; Jen, Chauying J; Kuo, Yu-Min

    2016-01-01

    Psychological stress is an important global health problem. It is well documented that stress increases the incidences of various cardiovascular disorders. Regular exercise is known to reduce resting blood pressure (BP) and heart rate (HR). This study was designed to clarify the effects of long-term exercise on stress-evoked cardiovascular responses and to emphasize post-stress recovery effects. Male Wistar rats underwent 8 weeks of moderate treadmill training, with cardiovascular responses, autonomic nervous system activities and local Fos reactivity changes in the cardiovascular regulation center were monitored before, during and after immobilization stress. A spectral analysis of cardiovascular parameters was used to examine autonomic nervous activities. We found that long-term exercise (i) lowered resting BP, HR and sympathetic activity, but increased resting parasympathetic activity and baroreflex sensitivity (BRS); (ii) accelerated post-stress recovery of stress-evoked cardiovascular and sympathetic responses along with increased BRS and (iii) accelerated post-stress recovery of stress-evoked neuron activations in the paraventricular nucleus, but delayed it in the nucleus of the tractus solitarius. We conclude that, in rats, long-term exercise accelerated recovery of stress-evoked cardiovascular responses differentially altering hypothalamic and medullar neuron activities.

  12. Improving linear accelerator service response with a real-time electronic event reporting system.

    PubMed

    Hoisak, Jeremy D P; Pawlicki, Todd; Kim, Gwe-Ya; Fletcher, Richard; Moore, Kevin L

    2014-09-01

    To track linear accelerator performance issues, an online event recording system was developed in-house for use by therapists and physicists to log the details of technical problems arising on our institution's four linear accelerators. In use since October 2010, the system was designed so that all clinical physicists would receive email notification when an event was logged. Starting in October 2012, we initiated a pilot project in collaboration with our linear accelerator vendor to explore a new model of service and support, in which event notifications were also sent electronically directly to dedicated engineers at the vendor's technical help desk, who then initiated a response to technical issues. Previously, technical issues were reported by telephone to the vendor's call center, which then disseminated information and coordinated a response with the Technical Support help desk and local service engineers. The purpose of this work was to investigate the improvements to clinical operations resulting from this new service model. The new and old service models were quantitatively compared by reviewing event logs and the oncology information system database in the nine months prior to and after initiation of the project. Here, we focus on events that resulted in an inoperative linear accelerator ("down" machine). Machine downtime, vendor response time, treatment cancellations, and event resolution were evaluated and compared over two equivalent time periods. In 389 clinical days, there were 119 machine-down events: 59 events before and 60 after introduction of the new model. In the new model, median time to service response decreased from 45 to 8 min, service engineer dispatch time decreased 44%, downtime per event decreased from 45 to 20 min, and treatment cancellations decreased 68%. The decreased vendor response time and reduced number of on-site visits by a service engineer resulted in decreased downtime and decreased patient treatment cancellations. PACS

  13. Improving linear accelerator service response with a real- time electronic event reporting system.

    PubMed

    Hoisak, Jeremy D P; Pawlicki, Todd; Kim, Gwe-Ya; Fletcher, Richard; Moore, Kevin L

    2014-09-08

    To track linear accelerator performance issues, an online event recording system was developed in-house for use by therapists and physicists to log the details of technical problems arising on our institution's four linear accelerators. In use since October 2010, the system was designed so that all clinical physicists would receive email notification when an event was logged. Starting in October 2012, we initiated a pilot project in collaboration with our linear accelerator vendor to explore a new model of service and support, in which event notifications were also sent electronically directly to dedicated engineers at the vendor's technical help desk, who then initiated a response to technical issues. Previously, technical issues were reported by telephone to the vendor's call center, which then disseminated information and coordinated a response with the Technical Support help desk and local service engineers. The purpose of this work was to investigate the improvements to clinical operations resulting from this new service model. The new and old service models were quantitatively compared by reviewing event logs and the oncology information system database in the nine months prior to and after initiation of the project. Here, we focus on events that resulted in an inoperative linear accelerator ("down" machine). Machine downtime, vendor response time, treatment cancellations, and event resolution were evaluated and compared over two equivalent time periods. In 389 clinical days, there were 119 machine-down events: 59 events before and 60 after introduction of the new model. In the new model, median time to service response decreased from 45 to 8 min, service engineer dispatch time decreased 44%, downtime per event decreased from 45 to 20 min, and treatment cancellations decreased 68%. The decreased vendor response time and reduced number of on-site visits by a service engineer resulted in decreased downtime and decreased patient treatment cancellations.

  14. Oculogravic illusion in response to straight-ahead acceleration of a CF-104 aircraft

    NASA Technical Reports Server (NTRS)

    Graybiel, A.; Jennings, G. L.; Johnson, W. H.; Money, K. E.; Malcolm, R. E.

    1979-01-01

    Experimental subjects wore goggles that restricted monocular vision to a luminous line fixed relative to the head, and they were exposed on one occasion to a straight-ahead acceleration of an aircraft and on another occasion to a tilting chair. The magnitude of change of direction of the resultant acceleration was the same on both occasions, but the perceived movement of the luminous line from the two stimuli was very different. In response to the aircraft stimulus, the oculogravic illusion was experienced and the luminous line was perceived as tilting relative to the subject, in response to the tilting chair stimulus, the line was perceived as remaining fixed relative to the subject. It was concluded that the oculogravic illusion, as experienced in the aircraft (and previously in centrifuges), is a true illusion and not merely a fact of physics.

  15. Wavenumber-frequency Spectra of Pressure Fluctuations Measured via Fast Response Pressure Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Panda, J.; Roozeboom, N. H.; Ross, J. C.

    2016-01-01

    The recent advancement in fast-response Pressure-Sensitive Paint (PSP) allows time-resolved measurements of unsteady pressure fluctuations from a dense grid of spatial points on a wind tunnel model. This capability allows for direct calculations of the wavenumber-frequency (k-?) spectrum of pressure fluctuations. Such data, useful for the vibro-acoustics analysis of aerospace vehicles, are difficult to obtain otherwise. For the present work, time histories of pressure fluctuations on a flat plate subjected to vortex shedding from a rectangular bluff-body were measured using PSP. The light intensity levels in the photographic images were then converted to instantaneous pressure histories by applying calibration constants, which were calculated from a few dynamic pressure sensors placed at selective points on the plate. Fourier transform of the time-histories from a large number of spatial points provided k-? spectra for pressure fluctuations. The data provides first glimpse into the possibility of creating detailed forcing functions for vibro-acoustics analysis of aerospace vehicles, albeit for a limited frequency range.

  16. Effects of variables upon pyrotechnically induced shock response spectra, part 2

    NASA Technical Reports Server (NTRS)

    Smith, James Lee

    1988-01-01

    Throughout the aerospace industry, large variations of 50 percent (6 dB) or more in shock response spectra (SRS) derived from pyrotechnic separation events continue to be reported from actual spaceflight data and from laboratory tests. As a result of these variations, NASA funded a research program for 1984 through 1986. The purpose of the 1984 through 1986 project was to analyze variations in pyrotechnically induced SRS and to determine if and to what degree manufacturing and assembly variables and tolerances, distance from the shock source, data acquisition instrumentation, and shock energy propagation affect the SRS. Sixty-four free-free boundary plate tests were performed. NASA funded an additional study for 1987 through 1988. This paper is a summary of the additional study. The purpose was to evaluate shock dissipation through various spacecraft structural joint types, to evaluate shock variation for various manufacturing and assembly variables on clamped boundary test plates, and to verify data correction techniques. Five clamped boundary plate tests investigated manufacturing and assembly variables and mass loading effects. Six free-free boundary plate tests investigated shock dissipation across spacecraft joint structures.

  17. Predominant-period site classification for response spectra prediction equations in Italy

    USGS Publications Warehouse

    Di Alessandro, Carola; Bonilla, Luis Fabian; Boore, David M.; Rovelli, Antonio; Scotti, Oona

    2012-01-01

    We propose a site‐classification scheme based on the predominant period of the site, as determined from the average horizontal‐to‐vertical (H/V) spectral ratios of ground motion. Our scheme extends Zhao et al. (2006) classifications by adding two classes, the most important of which is defined by flat H/V ratios with amplitudes less than 2. The proposed classification is investigated by using 5%‐damped response spectra from Italian earthquake records. We select a dataset of 602 three‐component analog and digital recordings from 120 earthquakes recorded at 214 seismic stations within a hypocentral distance of 200 km. Selected events are in the moment‐magnitude range 4.0≤Mw≤6.8 and focal depths from a few kilometers to 46 km. We computed H/V ratios for these data and used them to classify each site into one of six classes. We then investigate the impact of this classification scheme on empirical ground‐motion prediction equations (GMPEs) by comparing its performance with that of the conventional rock/soil classification. Although the adopted approach results in only a small reduction of the overall standard deviation, the use of H/V spectral ratios in site classification does capture the signature of sites with flat frequency‐response, as well as deep and shallow‐soil profiles, characterized by long‐ and short‐period resonance, respectively; in addition, the classification scheme is relatively quick and inexpensive, which is an advantage over schemes based on measurements of shear‐wave velocity.

  18. Dynamic response of a poroelastic half-space to accelerating or decelerating trains

    NASA Astrophysics Data System (ADS)

    Cao, Zhigang; Boström, Anders

    2013-05-01

    The dynamic response of a fully saturated poroelastic half-space due to accelerating or decelerating trains is investigated by a semi-analytical method. The ground is modeled as a saturated poroelastic half-space and Biot's theory is applied to characterize the soil medium, taking the coupling effects between the soil skeleton and the pore fluid into account. A detailed track system is considered incorporating rails, sleepers and embankment, which are modeled as Euler-Bernoulli beams, an anisotropic Kirchhoff plate, and an elastic layer, respectively. The acceleration or deceleration of the train is simulated by properly choosing the time history of the train speed using Fourier transforms combined with Fresnel integrals in the transformed domain. The time domain results are obtained by the fast Fourier transform (FFT). It is found that the deceleration of moving trains can cause a significant increase to the ground vibrations as well as the excess pore water pressure responses at the train speed 200 km/h. Furthermore, the single-phase elastic soil model would underestimate the vertical displacement responses caused by both the accelerating and decelerating trains at the speed 200 km/h.

  19. Vestibular afferent responses to linear accelerations in the alert squirrel monkey

    NASA Technical Reports Server (NTRS)

    Somps, Christopher J.; Schor, Robert H.; Tomko, David L.

    1994-01-01

    The spontaneous activity of 40 otolith afferents and 44 canal afferents was recorded in 4 alert, intact squirrel monkeys. Polarization vectors and response properties of otolith afferents were determined during static re-orientations relative to gravity and during Earth-horizontal, sinusoidal, linear oscillations. Canal afferents were tested for sensitivity to linear accelerations. For regular otolith afferents, a significant correlation between upright discharge rate and sensitivity to dynamic acceleration in the horizontal plane was observed. This correlation was not present in irregular units. The sensitivity of otolith afferents to both static tilts and dynamic linear acceleration was much greater in irregularly discharging units than in regularly discharging units. The spontaneous activity and static and dynamic response properties of regularly discharging otolith afferents were similar to those reported in barbiturate-anesthetized squirrel monkeys. Irregular afferents also had similar dynamic response properties when compared to anesthetized monkeys. However, this sample of irregular afferents in alert animals had higher resting discharge rates and greater sensitivity to static tilts. The majority of otolith polarization vectors were oriented near the horizontal in the plane of the utricular maculae; however, directions of maximum sensitivity were different during dynamic and static testing. Canal afferents were not sensitive to static tilts or linear oscillations of the head.

  20. Calculation of 10 MV x-ray spectra emitted by a medical linear accelerator using the BFGS quasi-Newton method.

    PubMed

    Shimozato, T; Tabushi, K; Kitoh, S; Shiota, Y; Hirayama, C; Suzuki, S

    2007-01-21

    To calculate photon spectra for a 10 MV x-ray beam emitted by a medical linear accelerator, we performed numerical analysis using the aluminium transmission data obtained along the central axis of the beam under the narrow beam condition corresponding to a 3x3 cm2 field at a 100 cm distance from the source. We used the BFGS quasi-Newton method based on a general nonlinear optimization technique for the numerical analysis. The attenuation coefficients, aluminium thicknesses and measured transmission data are necessary inputs for the numerical analysis. The calculated x-ray spectrum shape was smooth in the lower to higher energy regions without any angular components. The x-ray spectrum acquired by the employed method was evaluated by comparing the measurements along the central axis percentage depth dose in a water phantom and by a Monte Carlo simulation code, the electron gamma shower code. The values of the calculated percentage depth doses for a 10x10 cm2 field at a 100 cm source-to-surface distance in a water phantom were obtained using the same geometry settings as those of the water phantom measurement. The differences in the measured and calculated values were less than +/-1.0% for a broad region from the shallow part near the surface to deep parts of up to 25 cm in the water phantom.

  1. Wavelet Analysis of Acceleration Response of Beam Under the Moving Mass for Damage Assessment

    NASA Astrophysics Data System (ADS)

    Vaidya, Tanuja; Chatterjee, Animesh

    2016-04-01

    In the present study, acceleration response of cracked beam is analyzed by using the wavelet transform to detect the crack presence, its location and also to predict the crack severity. The equation of motion of beam under the moving mass is solved by using the fourth order Runge-Kutta method. A code is written by expanding the equation for first three vibration modes. Acceleration signal of the damaged beam under the moving mass contains the discontinuity at the crack location. This discontinuity contained in the acceleration signal is sufficiently visible but it is very small for some signals. Therefore, the acceleration signals are transformed using the wavelet analysis. A wavelet coefficient peak occurs at the location of discontinuity, so that we can identify the crack presence and its location. From the value of wavelet coefficient peak, we can also predict the crack effect with respect to the change in velocity of moving mass and change in crack depth. The main advantage of this method is that the wavelet coefficient peak is sufficiently higher even for the higher velocities and small size crack.

  2. Hemodynamic responses to seated and supine lower body negative pressure - Comparison with +Gz acceleration

    NASA Technical Reports Server (NTRS)

    Polese, Alvese; Sandler, Harold; Montgomery, Leslie D.

    1992-01-01

    The hemodynamic responses to LBNP in seated subjects and in subjects in supine body positions were compared and were correlated with hemodynamic changes which occurred during a simulated (by centrifugation) Shuttle reentry acceleration with a slow onset rate of 0.002 G/s and during gradual onset exposures to +3 Gz and +4 Gz. Results demonstrate that seated LBNP at a level of -40 mm Hg can serve as a static simulator for changes in the heart rate and in mean blood pressure induced by gradual onset acceleration stress occurring during Shuttle reentry. The findings also provide a rationale for using LBNP during weightlessness as a means of imposing G-loading on the circulation prior to reentry.

  3. Measuring the response of canopy emissivity spectra to leaf area index variation using thermal hyperspectral data

    NASA Astrophysics Data System (ADS)

    Neinavaz, Elnaz; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Groen, Thomas A.

    2016-12-01

    One of the plant biophysical factors affecting the canopy spectral reflectance of plants in the optical domain to receive research attention in recent decades is leaf area index (LAI). Although it is expected that the value of LAI affects the emission of radiation, it not known how. To our knowledge, the effect of LAI on plant canopy emissivity spectra has not yet been investigated in the thermal infrared region (TIR 8-14 μm). The overall aim of this study was to demonstrate the effect of LAI on canopy emissivity spectra of different species at the nadir position. The 279 spectral wavebands in the TIR domain were measured under controlled laboratory condition using a MIDAC spectrometer for four plant species. The corresponding LAI of each measurement was destructively calculated. We found a positive correlation between canopy emissivity spectra at various LAI values, indicating that emissivity increases concomitantly with LAI value. The canopy emissivity spectra of the four species were found to be statistically different at various wavebands even when the LAI values of the species were similar. It seems that other biophysical or biochemical factors also contribute to canopy emissivity spectra: this merits further investigation. We not only quantify the role of LAI on canopy emissivity spectra for the first time, but also demonstrate the potential of using hyperspectral thermal data to estimate LAI of plant species.

  4. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (acceleration. At least three different groups of central response dynamics were described according to the properties observed for motion along the maximum sensitivity direction. "High-pass" neurons exhibited increasing gains and phase values as a function of frequency. "Flat" neurons were characterized by relatively flat gains and constant phase lags (approximately 20-55 degrees ). A few neurons ("low-pass") were characterized by decreasing gain and phase as a function of frequency. The response dynamics of central otolith neurons suggest that the approximately 90 degrees phase lags observed at low frequencies are not the result of a neural integration but rather the effect of nonminimum phase behavior, which could arise at least partly through spatiotemporal convergence. Neither afferent nor central otolith neurons discriminated between gravitational and inertial components of linear acceleration. Thus response sensitivity was indistinguishable during 0.5-Hz pitch oscillations and fore-aft movements

  5. Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. I. Normal responses

    NASA Technical Reports Server (NTRS)

    Minor, L. B.; Lasker, D. M.; Backous, D. D.; Hullar, T. E.; Shelhamer, M. J. (Principal Investigator)

    1999-01-01

    The horizontal angular vestibuloocular reflex (VOR) evoked by high-frequency, high-acceleration rotations was studied in five squirrel monkeys with intact vestibular function. The VOR evoked by steps of acceleration in darkness (3,000 degrees /s(2) reaching a velocity of 150 degrees /s) began after a latency of 7.3 +/- 1.5 ms (mean +/- SD). Gain of the reflex during the acceleration was 14.2 +/- 5.2% greater than that measured once the plateau head velocity had been reached. A polynomial regression was used to analyze the trajectory of the responses to steps of acceleration. A better representation of the data was obtained from a polynomial that included a cubic term in contrast to an exclusively linear fit. For sinusoidal rotations of 0.5-15 Hz with a peak velocity of 20 degrees /s, the VOR gain measured 0.83 +/- 0.06 and did not vary across frequencies or animals. The phase of these responses was close to compensatory except at 15 Hz where a lag of 5.0 +/- 0.9 degrees was noted. The VOR gain did not vary with head velocity at 0.5 Hz but increased with velocity for rotations at frequencies of >/=4 Hz (0. 85 +/- 0.04 at 4 Hz, 20 degrees /s; 1.01 +/- 0.05 at 100 degrees /s, P < 0.0001). No responses to these rotations were noted in two animals that had undergone bilateral labyrinthectomy indicating that inertia of the eye had a negligible effect for these stimuli. We developed a mathematical model of VOR dynamics to account for these findings. The inputs to the reflex come from linear and nonlinear pathways. The linear pathway is responsible for the constant gain across frequencies at peak head velocity of 20 degrees /s and also for the phase lag at higher frequencies being less than that expected based on the reflex delay. The frequency- and velocity-dependent nonlinearity in VOR gain is accounted for by the dynamics of the nonlinear pathway. A transfer function that increases the gain of this pathway with frequency and a term related to the third power of head

  6. Vibrational absorption spectra from vibrational coupled cluster damped linear response functions calculated using an asymmetric Lanczos algorithm

    NASA Astrophysics Data System (ADS)

    Thomsen, Bo; Hansen, Mikkel Bo; Seidler, Peter; Christiansen, Ove

    2012-03-01

    We report the theory and implementation of vibrational coupled cluster (VCC) damped response functions. From the imaginary part of the damped VCC response function the absorption as function of frequency can be obtained, requiring formally the solution of the now complex VCC response equations. The absorption spectrum can in this formulation be seen as a matrix function of the characteristic VCC Jacobian response matrix. The asymmetric matrix version of the Lanczos method is used to generate a tridiagonal representation of the VCC response Jacobian. Solving the complex response equations in the relevant Lanczos space provides a method for calculating the VCC damped response functions and thereby subsequently the absorption spectra. The convergence behaviour of the algorithm is discussed theoretically and tested for different levels of completeness of the VCC expansion. Comparison is made with results from the recently reported [P. Seidler, M. B. Hansen, W. Györffy, D. Toffoli, and O. Christiansen, J. Chem. Phys. 132, 164105 (2010)] vibrational configuration interaction damped response function calculated using a symmetric Lanczos algorithm. Calculations of IR spectra of oxazole, cyclopropene, and uracil illustrate the usefulness of the new VCC based method.

  7. Vibrational absorption spectra from vibrational coupled cluster damped linear response functions calculated using an asymmetric Lanczos algorithm.

    PubMed

    Thomsen, Bo; Hansen, Mikkel Bo; Seidler, Peter; Christiansen, Ove

    2012-03-28

    We report the theory and implementation of vibrational coupled cluster (VCC) damped response functions. From the imaginary part of the damped VCC response function the absorption as function of frequency can be obtained, requiring formally the solution of the now complex VCC response equations. The absorption spectrum can in this formulation be seen as a matrix function of the characteristic VCC Jacobian response matrix. The asymmetric matrix version of the Lanczos method is used to generate a tridiagonal representation of the VCC response Jacobian. Solving the complex response equations in the relevant Lanczos space provides a method for calculating the VCC damped response functions and thereby subsequently the absorption spectra. The convergence behaviour of the algorithm is discussed theoretically and tested for different levels of completeness of the VCC expansion. Comparison is made with results from the recently reported [P. Seidler, M. B. Hansen, W. Györffy, D. Toffoli, and O. Christiansen, J. Chem. Phys. 132, 164105 (2010)] vibrational configuration interaction damped response function calculated using a symmetric Lanczos algorithm. Calculations of IR spectra of oxazole, cyclopropene, and uracil illustrate the usefulness of the new VCC based method.

  8. TGF-β1 accelerates the DNA damage response in epithelial cells via Smad signaling.

    PubMed

    Lee, Jeeyong; Kim, Mi-Ra; Kim, Hyun-Ji; An, You Sun; Yi, Jae Youn

    2016-08-05

    The evidence suggests that transforming growth factor-beta (TGF-β) regulates the DNA-damage response (DDR) upon irradiation, and we previously reported that TGF-β1 induced DNA ligase IV (Lig4) expression and enhanced the nonhomologous end-joining repair pathway in irradiated cells. In the present study, we investigated the effects of TGF-β1 on the irradiation-induced DDRs of A431 and HaCaT cells. Cells were pretreated with or without TGF-β1 and irradiated. At 30 min post-irradiation, DDRs were detected by immunoblotting of phospho-ATM, phospho-Chk2, and the presence of histone foci (γH2AX). The levels of all three factors were similar right after irradiation regardless of TGF-β1 pretreatment. However, they soon thereafter exhibited downregulation in TGF-β1-pretreated cells, indicating the acceleration of the DDR. Treatment with a TGF-β type I receptor inhibitor (SB431542) or transfections with siRNAs against Smad2/3 or DNA ligase IV (Lig4) reversed this acceleration of the DDR. Furthermore, the frequency of irradiation-induced apoptosis was decreased by TGF-β1 pretreatment in vivo, but this effect was abrogated by SB431542. These results collectively suggest that TGF-β1 could enhance cell survival by accelerating the DDR via Smad signaling and Lig4 expression.

  9. Hyperlipidemia Promotes Anti-Donor Th17 Responses That Accelerate Allograft Rejection

    PubMed Central

    Yuan, J.; Bagley, J.; Iacomini, J.

    2016-01-01

    Hyperlipidemia occurs in 95% of organ transplant recipients, however its effect on organ allograft rejection has not been investigated. We found that induction of hyperlipidemia in mice caused a significant acceleration of rejection of cardiac allografts. Accelerated rejection was associated with an aggressive T cell infiltrate that mediated significant tissue damage as well as increased serum levels of the proinflammatory cytokines IL-2, IL-6, and IL-17. Hyperlipidemic mice had an increased number of Th17 cells in their periphery and rejecting allografts from hyperlipidemic mice contained significant numbers of IL-17 producing T cells that were not detectable in transplants harvested from controls. Neutralization or genetic ablation of IL-17 prolonged survival of cardiac allografts transplanted into hyperlipidemic recipients, suggesting that IL-17 production promotes accelerated rejection. Analysis of alloreactive T cell frequencies directly ex vivo in naïve mice revealed that the frequency of donor reactive IL-17 producing cells in hyperlipidemic was increased prior to antigen exposure, suggesting that hyperlipidemia was sufficient to alter T cell alloreactivity and promote anti-donor Th17 responses on first exposure to antigen. Together, our data suggest that hyperlipidemia alters rejection by altering the types of T cell subsets that respond to donor antigen by promoting Th17 biased anti-donor reactivity. PMID:26079335

  10. Gravitational tides on Jupiter. 3: Atmospheric response and mean flow acceleration

    NASA Astrophysics Data System (ADS)

    Ioannou, P. J.; Lindzen, R. S.

    1994-04-01

    The gravitational tidal response at the visible cloud level of Jupiter is obtained as a function of static stability in the planetary interior. It is suggested that confirmation of the presence of static stability in the planetary interior could be achieved by observing tidal fields at cloud level. We also calculate the mean flow acceleration induced by tidal fields and suggest that, if the interior is even marginally statically stable, the tides may provide the momentum source maintaining the alternating zonal jets observed at the cloud level of the planet.

  11. Trajectories of Microbial Community Function in Response to Accelerated Remediation of Subsurface Metal Contaminants

    SciTech Connect

    Firestone, Mary

    2015-01-14

    Objectives of proposed research were to; Determine if the trajectories of microbial community composition and function following organic carbon amendment can be related to, and predicted by, key environmental determinants; Assess the relative importance of the characteristics of the indigenous microbial community, sediment, groundwater, and concentration of organic carbon amendment as the major determinants of microbial community functional response and bioremediation capacity; and Provide a fundamental understanding of the microbial community ecology underlying subsurface metal remediation requisite to successful application of accelerated remediation and long-term stewardship of DOE-IFC sites.

  12. Macrophage Response to UHMWPE Submitted to Accelerated Ageing in Hydrogen Peroxide.

    PubMed

    Rocha, Magda F G; Mansur, Alexandra A P; Martins, Camila P S; Barbosa-Stancioli, Edel F; Mansur, Herman S

    2010-06-10

    Ultra-high molecular weight polyethylene (UHMWPE) has been the most commonly used bearing material in total joint arthroplasty. Wear and oxidation fatigue resistance of UHMWPE are regarded as two important properties to extend the longevity of knee prostheses. The present study investigated the accelerated ageing of UHMWPE in hydrogen peroxide highly oxidative chemical environment. The sliced samples of UHMWPE were oxidized in a hydrogen peroxide solution for 120 days with their total level of oxidation (Iox) characterized by Fourier Transformed Infrared Spectroscopy (FTIR). The potential inflammatory response, cell viability and biocompatibility of such oxidized UHMWPE systems were assessed by a novel biological in vitro assay based on the secretion of nitric oxide (NO) by activated murine macrophages with gamma interferon (IFN-gamma) cytokine and lipopolysaccharide (LPS). Furthermore, macrophage morphologies in contact with UHMWPE oxidized surfaces were analyzed by cell spreading-adhesion procedure using scanning electron microscopy (SEM). The results have given significant evidence that the longer the period of accelerated aging of UHMWPE the higher was the macrophage inflammatory equivalent response based on NO secretion analysis.

  13. A New Method for the Reconstruction of Very-High-Energy Gamma-Ray Spectra and Application to Galactic Cosmic-Ray Accelerators

    NASA Astrophysics Data System (ADS)

    Fernandes, Milton Virgílio

    2014-06-01

    In this thesis, high-energy (HE; E > 0.1 GeV) and very-high-energy (VHE; E > 0.1 TeV) γ-ray data were investigated to probe Galactic stellar clusters (SCs) and star-forming regions (SFRs) as sites of hadronic Galactic cosmic-ray (GCR) acceleration. In principle, massive SCs and SFRs could accelerate GCRs at the shock front of the collective SC wind fed by the individual high-mass stars. The subsequently produced VHE γ rays would be measured with imaging air-Cherenkov telescopes (IACTs). A couple of the Galactic VHE γ-ray sources, including those potentially produced by SCs, fill a large fraction of the field-of-view (FoV) and require additional observations of source-free regions to determine the dominant background for a spectral reconstruction. A new method of reconstructing spectra for such extended sources without the need of further observations is developed: the Template Background Spectrum (TBS). This methods is based on a method to generate skymaps, which determines background in parameter space. The idea is the creation of a look-up of the background normalisation in energy, zenith angle, and angular separation and to account for possible systematics. The results obtained with TBS and state-of-the-art background-estimation methods on H.E.S.S. data are in good agreement. With TBS even those sources could be reconstructed that normally would need further observations. Therefore, TBS is the third method to reconstruct VHE γ-ray spectra, but the first one to not need additional observations in the analysis of extended sources. The discovery of the largest VHE γ-ray source HESS J1646-458 (2.2° in size) towards the SC Westerlund 1 (Wd 1) can be plausibly explained by the SC-wind scenario. But owing to its size, other alternative counterparts to the TeV emission (pulsar, binary system, magnetar) were found in the FoV. Therefore, an association of HESS J1646-458 with the SC is favoured, but cannot be confirmed. The SC Pismis 22 is located in the centre of

  14. Adjusting Spectral Indices for Spectral Response Function Differences of Very High Spatial Resolution Sensors Simulated from Field Spectra

    PubMed Central

    Cundill, Sharon L.; van der Werff, Harald M. A.; van der Meijde, Mark

    2015-01-01

    The use of data from multiple sensors is often required to ensure data coverage and continuity, but differences in the spectral characteristics of sensors result in spectral index values being different. This study investigates spectral response function effects on 48 spectral indices for cultivated grasslands using simulated data of 10 very high spatial resolution sensors, convolved from field reflectance spectra of a grass covered dike (with varying vegetation condition). Index values for 48 indices were calculated for original narrow-band spectra and convolved data sets, and then compared. The indices Difference Vegetation Index (DVI), Global Environmental Monitoring Index (GEMI), Enhanced Vegetation Index (EVI), Modified Soil-Adjusted Vegetation Index (MSAVI2) and Soil-Adjusted Vegetation Index (SAVI), which include the difference between the near-infrared and red bands, have values most similar to those of the original spectra across all 10 sensors (1:1 line mean 1:1R2 > 0.960 and linear trend mean ccR2 > 0.997). Additionally, relationships between the indices’ values and two quality indicators for grass covered dikes were compared to those of the original spectra. For the soil moisture indicator, indices that ratio bands performed better across sensors than those that difference bands, while for the dike cover quality indicator, both the choice of bands and their formulation are important. PMID:25781511

  15. Vestibular short latency responses to pulsed linear acceleration in unanesthetized animals

    NASA Technical Reports Server (NTRS)

    Jones, T. A.

    1992-01-01

    Linear acceleration transients were used to elicit vestibular compound action potentials in non-invasively prepared, unanesthetized animals for the first time (chicks, Gallus domesticus, n = 33). Responses were composed of a series of up to 8 dominant peaks occurring within 8 msec of the stimulus. Response amplitudes for 1.0 g stimulus ranged from 1 to 10 microV. A late, slow, triphasic, anesthesia-labile component was identified as a dominant response feature in unanesthetized animals. Amplitudes increased and latencies decreased as stimulus intensity was increased (MANOVA P less than 0.05). Linear regression slope ranges were: amplitudes = 1.0-5.0 microV/g; latencies = -300 to -1100 microseconds/g. Thresholds for single polarity stimuli (0.035 +/- 0.022 g, n = 11) were significantly lower than those of alternating polarity (0.074 +/- 0.028 g, n = 18, P less than 0.001). Bilateral labyrinthectomy eliminated responses whereas bilateral extirpation of cochleae did not significantly change response thresholds. Intense acoustic masking (100/104 dB SL) produced no effect in 2 animals, but did produce small to moderate effects on response amplitudes in 7 others. Changes were attributed to effects on vestibular end organs. Results of unilateral labyrinth blockade (tetrodotoxin) suggest that P1 and N1 preferentially reflect ipsilateral eighth nerve compound action potentials whereas components beyond approximately 2 msec reflect activity from vestibular neurons that depend on both labyrinths. The results demonstrate that short latency vestibular compound action potentials can be measured in unanesthetized, non-invasively prepared animals.

  16. Use of induced acceleration to quantify the (de)stabilization effect of external and internal forces on postural responses.

    PubMed

    van Asseldonk, Edwin H F; Carpenter, Mark G; van der Helm, Frans C T; van der Kooij, Herman

    2007-12-01

    Due to the mechanical coupling between the body segments, it is impossible to see with the naked eye the causes of body movements and understand the interaction between movements of different body parts. The goal of this paper is to investigate the use of induced acceleration analysis to reveal the causes of body movements. We derive the analytical equations to calculate induced accelerations and evaluate its potential to study human postural responses to support-surface translations. We measured the kinematic and kinetic responses of a subject to sudden forward and backward translations of a moving platform. The kinematic and kinetics served as input to the induced acceleration analyses. The induced accelerations showed explicitly that the platform acceleration and deceleration contributed to the destabilization and restabilization of standing balance, respectively. Furthermore, the joint torques, coriolis and centrifugal forces caused by swinging of the arms, contributed positively to stabilization of the Center of Mass. It is concluded that induced acceleration analyses is a valuable tool in understanding balance responses to different kinds of perturbations and may help to identify the causes of movement in different pathologies.

  17. TUSC3 Loss Alters the ER Stress Response and Accelerates Prostate Cancer Growth in vivo

    NASA Astrophysics Data System (ADS)

    Horak, Peter; Tomasich, Erwin; Vaňhara, Petr; Kratochvílová, Kateřina; Anees, Mariam; Marhold, Maximilian; Lemberger, Christof E.; Gerschpacher, Marion; Horvat, Reinhard; Sibilia, Maria; Pils, Dietmar; Krainer, Michael

    2014-01-01

    Prostate cancer is the most prevalent cancer in males in developed countries. Tumor suppressor candidate 3 (TUSC3) has been identified as a putative tumor suppressor gene in prostate cancer, though its function has not been characterized. TUSC3 shares homologies with the yeast oligosaccharyltransferase (OST) complex subunit Ost3p, suggesting a role in protein glycosylation. We provide evidence that TUSC3 is part of the OST complex and affects N-linked glycosylation in mammalian cells. Loss of TUSC3 expression in DU145 and PC3 prostate cancer cell lines leads to increased proliferation, migration and invasion as well as accelerated xenograft growth in a PTEN negative background. TUSC3 downregulation also affects endoplasmic reticulum (ER) structure and stress response, which results in increased Akt signaling. Together, our findings provide first mechanistic insight in TUSC3 function in prostate carcinogenesis in general and N-glycosylation in particular.

  18. Delaying histone deacetylase response to injury accelerates conversion into repair Schwann cells and nerve regeneration

    PubMed Central

    Brügger, Valérie; Duman, Mert; Bochud, Maëlle; Münger, Emmanuelle; Heller, Manfred; Ruff, Sophie; Jacob, Claire

    2017-01-01

    The peripheral nervous system (PNS) regenerates after injury. However, regeneration is often compromised in the case of large lesions, and the speed of axon reconnection to their target is critical for successful functional recovery. After injury, mature Schwann cells (SCs) convert into repair cells that foster axonal regrowth, and redifferentiate to rebuild myelin. These processes require the regulation of several transcription factors, but the driving mechanisms remain partially understood. Here we identify an early response to nerve injury controlled by histone deacetylase 2 (HDAC2), which coordinates the action of other chromatin-remodelling enzymes to induce the upregulation of Oct6, a key transcription factor for SC development. Inactivating this mechanism using mouse genetics allows earlier conversion into repair cells and leads to faster axonal regrowth, but impairs remyelination. Consistently, short-term HDAC1/2 inhibitor treatment early after lesion accelerates functional recovery and enhances regeneration, thereby identifying a new therapeutic strategy to improve PNS regeneration after lesion. PMID:28139683

  19. TUSC3 Loss Alters the ER Stress Response and Accelerates Prostate Cancer Growth in vivo

    PubMed Central

    Horak, Peter; Tomasich, Erwin; Vaňhara, Petr; Kratochvílová, Kateřina; Anees, Mariam; Marhold, Maximilian; Lemberger, Christof E.; Gerschpacher, Marion; Horvat, Reinhard; Sibilia, Maria; Pils, Dietmar; Krainer, Michael

    2014-01-01

    Prostate cancer is the most prevalent cancer in males in developed countries. Tumor suppressor candidate 3 (TUSC3) has been identified as a putative tumor suppressor gene in prostate cancer, though its function has not been characterized. TUSC3 shares homologies with the yeast oligosaccharyltransferase (OST) complex subunit Ost3p, suggesting a role in protein glycosylation. We provide evidence that TUSC3 is part of the OST complex and affects N-linked glycosylation in mammalian cells. Loss of TUSC3 expression in DU145 and PC3 prostate cancer cell lines leads to increased proliferation, migration and invasion as well as accelerated xenograft growth in a PTEN negative background. TUSC3 downregulation also affects endoplasmic reticulum (ER) structure and stress response, which results in increased Akt signaling. Together, our findings provide first mechanistic insight in TUSC3 function in prostate carcinogenesis in general and N-glycosylation in particular. PMID:24435307

  20. Combining optimization methods with response spectra curve-fitting toward improved damping ratio estimation

    NASA Astrophysics Data System (ADS)

    Brewick, Patrick T.; Smyth, Andrew W.

    2016-12-01

    The authors have previously shown that many traditional approaches to operational modal analysis (OMA) struggle to properly identify the modal damping ratios for bridges under traffic loading due to the interference caused by the driving frequencies of the traffic loads. This paper presents a novel methodology for modal parameter estimation in OMA that overcomes the problems presented by driving frequencies and significantly improves the damping estimates. This methodology is based on finding the power spectral density (PSD) of a given modal coordinate, and then dividing the modal PSD into separate regions, left- and right-side spectra. The modal coordinates were found using a blind source separation (BSS) algorithm and a curve-fitting technique was developed that uses optimization to find the modal parameters that best fit each side spectra of the PSD. Specifically, a pattern-search optimization method was combined with a clustering analysis algorithm and together they were employed in a series of stages in order to improve the estimates of the modal damping ratios. This method was used to estimate the damping ratios from a simulated bridge model subjected to moving traffic loads. The results of this method were compared to other established OMA methods, such as Frequency Domain Decomposition (FDD) and BSS methods, and they were found to be more accurate and more reliable, even for modes that had their PSDs distorted or altered by driving frequencies.

  1. Detector-Response Correction of Two-Dimensional γ -Ray Spectra from Neutron Capture

    SciTech Connect

    Rusev, G.; Jandel, M.; Arnold, C. W.; Bredeweg, T. A.; Couture, A.; Mosby, S. M.; Ullmann, J. L.

    2015-05-28

    The neutron-capture reaction produces a large variety of γ-ray cascades with different γ-ray multiplicities. A measured spectral distribution of these cascades for each γ-ray multiplicity is of importance to applications and studies of γ-ray statistical properties. The DANCE array, a 4π ball of 160 BaF2 detectors, is an ideal tool for measurement of neutron-capture γ-rays. The high granularity of DANCE enables measurements of high-multiplicity γ-ray cascades. The measured two-dimensional spectra (γ-ray energy, γ-ray multiplicity) have to be corrected for the DANCE detector response in order to compare them with predictions of the statistical model or use them in applications. The detector-response correction problem becomes more difficult for a 4π detection system than for a single detector. A trial and error approach and an iterative decomposition of γ-ray multiplets, have been successfully applied to the detector-response correction. Applications of the decomposition methods are discussed for two-dimensional γ-ray spectra measured at DANCE from γ-ray sources and from the 10B(n, γ) and 113Cd(n, γ) reactions.

  2. Seismic analysis of the large 70-meter antenna, part 1: Earthquake response spectra versus full transient analysis

    NASA Technical Reports Server (NTRS)

    Kiedron, K.; Chian, C. T.

    1985-01-01

    As a check on structure safety aspects, two approaches in seismic analysis for the large 70-m antennas are presented. The first approach, commonly used by civil engineers, utilizes known recommended design response spectra. The second approach, which is the full transient analysis, is versatile and applicable not only to earthquake loading but also to other dynamic forcing functions. The results obtained at the fundamental structural frequency show that the two approaches are in good agreement with each other and both approaches show a safe design. The results also confirm past 64-m antenna seismic studies done by the Caltech Seismology Staff.

  3. A responsivity-based criterion for accurate calibration of FTIR emission spectra: identification of in-band low-responsivity wavenumbers.

    PubMed

    Rowe, Penny M; Neshyba, Steven P; Cox, Christopher J; Walden, Von P

    2011-03-28

    Spectra measured by remote-sensing Fourier transform infrared spectrometers are often calibrated using two calibration sources. At wavenumbers where the absorption coefficient is large, air within the optical path of the instrument can absorb most calibration-source signal, resulting in extreme errors. In this paper, a criterion in terms of the instrument responsivity is used to identify such wavenumbers within the instrument bandwidth of two remote-sensing Fourier transform infrared spectrometers. Wavenumbers identified by the criterion are found to be correlated with strong absorption line-centers of water vapor. Advantages of using a responsivity-based criterion are demonstrated.

  4. Understanding vegetation response to climate variability from space: the scientific objectives, the approach and the concept of the SPECTRA Mission

    NASA Astrophysics Data System (ADS)

    Menenti, M.

    2002-06-01

    The response of vegetation to climate variability is a major scientific question. The monitoring of the carbon stock in terrestrial environments, as well as the improved understanding of the surface-atmosphere interactions controlling the exchange of matter, energy and momentum, is of immediate interest for an improved assessment of the various components of the global carbon cycle. Studies of the Earth System processes at the global scale rely on models that require an advanced understanding and proper characterization of processes at smaller scales. The goal of the SPECTRA mission is to improve the description of those processes by means of better constraints on and parameterizations of the associated models. Many vegetation properties are related to features of reflectance spectra in the region 400 nm - 2500 nm. Detailed observations of spectral reflectance reveal subtle features related to biochemical components of leaves such as chlorophyll and water. The architecture of vegetation canopies determines complex changes of observed reflectance spectra with view and illumination angle. Quantitative analysis of reflectance spectra requires, therefore, an accurate characterization of the anisotropy of reflected radiance. This can be achieved with nearly simultaneous observations at different view angles. Exchange of energy between the biosphere and the atmosphere is an important mechanism determining the response of vegetation to climate variability. This requires measurements of the component temperature of foliage and soil. The prime objective of SPECTRA is to determine the amount, assess the conditions and understand the response of terrestrial vegetation to climate variability and its role in the coupled cycles of energy, water and carbon. The amount and state of vegetation will be determined by the combination of observed vegetation properties and data assimilation. Specifically, the mission will characterize the amount and state of vegetation with observations

  5. Understanding vegetation response to climate variability from space the scientific objectives, the approach and the concept of the Spectra Mission

    NASA Astrophysics Data System (ADS)

    Menenti, M.; Rast, M.; Baret, F.; Hurk, B.; Knorr, W.; Mauser, W.; Miller, J.; Schaepman, M.; Schimel, D.; Verstraete, M.

    The response of vegetation to climate variability is a major scientific question. The monitoring of the carbon stock in terrestrial environments, as well as the improved understanding of the surface-atmosphere interactions controlling the exchange of matter, energy and momentum, is of immediate interest for an improved assessment of the various components of the global carbon cycle. Studies of the Earth System processes at the global scale rely on models that require an advanced understanding and proper characterization of processes at smaller scales. The goal of the SPECTRA mission is to improve the description of those processes by means of better constraints on and parameterizations of the associated models. Many vegetation properties are related to features of reflectance spectra in the region 400 nm - 2500 nm. Detailed observations of spectral reflectance reveal subtle features related to biochemical components of leaves such as chlorophyll and water. The architecture of vegetation canopies determines complex changes of observed reflectance spectra with view and illumination angle. Quantitative analysis of reflectance spectra requires, therefore, an accurate characterization of the anisotropy of reflected radiance. This can be achieved with nearly - simultaneous observations at different view angles. Exchange of energy between the biosphere and the atmosphere is an important mechanism determining the response of vegetation to climate variability. This requires measurements of the component t mperature ofe foliage and soil. The prime objective of SPECTRA is to determine the amount, assess the conditions and understand the response of terrestrial vegetation to climate variability and its role in the coupled cycles of energy, water and carbon. The amount and state of vegetation will be determined by the combination of observed vegetation properties and data assimilation. Specifically, the mission will characterize the amount and state of vegetation with

  6. Understanding Vegetation Response To Climate Variability From Space: The Scientific Objectives< The Approach and The Concept of The Spectra Mission

    NASA Astrophysics Data System (ADS)

    Menenti, M.; Rast, M.; Baret, F.; Mauser, W.; Miller, J.; Schaepman, M.; Schimel, D.; Verstraete, M.

    The response of vegetation to climate variability is a major scientific question. The monitoring of the carbon stock in terrestrial environments, as well as the improved understanding of the surface-atmosphere interactions controlling the exchange of mat- ter, energy and momentum, is of immediate interest for an improved assessment of the various components of the global carbon cycle. Studies of the Earth System processes at the global scale rely on models that require an advanced understanding and proper characterization of processes at smaller scales. The goal of the SPECTRA mission is to improve the description of those processes by means of better constraints on and parameterizations of the associated models. Many vegetation properties are related to features of reflectance spectra in the region 400 nm U 2500 nm. Detailed observa- tions of spectral reflectance reveal subtle features related to biochemical components of leaves such as chlorophyll and water. The architecture of vegetation canopies de- termines complex changes of observed reflectance spectra with view and illumination angle. Quantitative analysis of reflectance spectra requires, therefore, an accurate char- acterization of the anisotropy of reflected radiance. This can be achieved with nearly U simultaneous observations at different view angles. Exchange of energy between the biosphere and the atmosphere is an important mechanism determining the response of vegetation to climate variability. This requires measurements of the component tem- perature of foliage and soil. The prime objective of SPECTRA is to determine the amount, assess the conditions and understand the response of terrestrial vegetation to climate variability and its role in the coupled cycles of energy, water and carbon. The amount and state of vegetation will be determined by the combination of observed vegetation properties and data assimilation. Specifically, the mission will character- ize the amount and state of vegetation

  7. Assessment of the setup dependence of detector response functions for mega-voltage linear accelerators

    SciTech Connect

    Fox, Christopher; Simon, Tom; Simon, Bill; Dempsey, James F.; Kahler, Darren; Palta, Jatinder R.; Liu Chihray; Yan Guanghua

    2010-02-15

    Purpose: Accurate modeling of beam profiles is important for precise treatment planning dosimetry. Calculated beam profiles need to precisely replicate profiles measured during machine commissioning. Finite detector size introduces perturbations into the measured profiles, which, in turn, impact the resulting modeled profiles. The authors investigate a method for extracting the unperturbed beam profiles from those measured during linear accelerator commissioning. Methods: In-plane and cross-plane data were collected for an Elekta Synergy linac at 6 MV using ionization chambers of volume 0.01, 0.04, 0.13, and 0.65 cm{sup 3} and a diode of surface area 0.64 mm{sup 2}. The detectors were orientated with the stem perpendicular to the beam and pointing away from the gantry. Profiles were measured for a 10x10 cm{sup 2} field at depths ranging from 0.8 to 25.0 cm and SSDs from 90 to 110 cm. Shaping parameters of a Gaussian response function were obtained relative to the Edge detector. The Gaussian function was deconvolved from the measured ionization chamber data. The Edge detector profile was taken as an approximation to the true profile, to which deconvolved data were compared. Data were also collected with CC13 and Edge detectors for additional fields and energies on an Elekta Synergy, Varian Trilogy, and Siemens Oncor linear accelerator and response functions obtained. Response functions were compared as a function of depth, SSD, and detector scan direction. Variations in the shaping parameter were introduced and the effect on the resulting deconvolution profiles assessed. Results: Up to 10% setup dependence in the Gaussian shaping parameter occurred, for each detector for a particular plane. This translated to less than a {+-}0.7 mm variation in the 80%-20% penumbral width. For large volume ionization chambers such as the FC65 Farmer type, where the cavity length to diameter ratio is far from 1, the scan direction produced up to a 40% difference in the shaping

  8. Dual-mass vibratory rate gyroscope with suppressed translational acceleration response and quadrature-error correction capability

    NASA Technical Reports Server (NTRS)

    Clark, William A. (Inventor); Juneau, Thor N. (Inventor); Lemkin, Mark A. (Inventor); Roessig, Allen W. (Inventor)

    2001-01-01

    A microfabricated vibratory rate gyroscope to measure rotation includes two proof-masses mounted in a suspension system anchored to a substrate. The suspension has two principal modes of compliance, one of which is driven into oscillation. The driven oscillation combined with rotation of the substrate about an axis perpendicular to the substrate results in Coriolis acceleration along the other mode of compliance, the sense-mode. The sense-mode is designed to respond to Coriolis accelerationwhile suppressing the response to translational acceleration. This is accomplished using one or more rigid levers connecting the two proof-masses. The lever allows the proof-masses to move in opposite directions in response to Coriolis acceleration. The invention includes a means for canceling errors, termed quadrature error, due to imperfections in implementation of the sensor. Quadrature-error cancellation utilizes electrostatic forces to cancel out undesired sense-axis motion in phase with drive-mode position.

  9. Retinal ON Bipolar Cells Express a New PCP2 Splice Variant That Accelerates the Light Response

    PubMed Central

    Sulaiman, Pyroja; Feddersen, Rod M.; Liu, Jian; Smith, Robert G.; Vardi, Noga

    2008-01-01

    PCP2, a member of the GoLoco domain-containing family, is present exclusively in cerebellar Purkinje cells and retinal ON bipolar cells. Its function in these tissues is unknown. Biochemical and expression system studies suggest that PCP2 is a guanine nucleotide dissociation inhibitor, although a guanine nucleotide exchange factor has also been suggested. Here, we studied the function of PCP2 in ON bipolar cells because their light response depends on Gαo1, which is known to interact with PCP2. We identified a new splice variant of PCP2 (Ret-PCP2) and localized it to rod bipolar and ON cone bipolar cells. Electroretinogram recordings from PCP2-null mice showed a normal a-wave but a slower falling phase of the b-wave (generated by the activity of ON bipolar cells) relative to the wild type. Whole-cell recordings from rod bipolar cells showed, both under Ames medium and after blocking GABAA/C and glycine receptors, that PCP2-null rod bipolar cells were more depolarized than wild-type cells with greater inward current when clamped to −60 mV. Also under both conditions, the rise time of the response to intense light was slower by 28% (Ames) and 44% (inhibitory blockers) in the null cells. Under Ames medium, we also observed >30% longer decay time in the PCP2-null rod bipolar cells. We conclude that PCP2 facilitates cation channels closure in the dark, shortens the rise time of the light response directly, and accelerates the decay time indirectly via the inhibitory network. These data can most easily be explained if PCP2 serves as a guanine nucleotide exchange factor. PMID:18768681

  10. A Simple Experiment Demonstrating the Relationship between Response Curves and Absorption Spectra.

    ERIC Educational Resources Information Center

    Li, Chia-yu

    1984-01-01

    Describes an experiment for recording two individual spectrophotometer response curves. The two curves are directly related to the power of transmitted beams that pass through a solvent and solution. An absorption spectrum of the solution can be constructed from the calculated rations of the curves as a function of wavelength. (JN)

  11. Broadband inversion of 1J(CC) responses in 1,n-ADEQUATE spectra.

    PubMed

    Reibarkh, Mikhail; Williamson, R Thomas; Martin, Gary E; Bermel, Wolfgang

    2013-11-01

    Establishing the carbon skeleton of a molecule greatly facilitates the process of structure elucidation, both manual and computer-assisted. Recent advances in the family of ADEQUATE experiments demonstrated their potential in this regard. 1,1-ADEQUATE, which provides direct (13)C-(13)C correlation via (1)J(CC), and 1,n-ADEQUATE, which typically yields (3)J(CC) and (1)J(CC) correlations, are more sensitive and more widely applicable experiments than INADEQUATE and PANACEA. A recently reported modified pulse sequence that semi-selectively inverts (1)J(CC) correlations in 1,n-ADEQUATE spectra provided a significant improvement, allowing (1)J(CC) and (n)J(CC) correlations to be discerned in the same spectrum. However, the reported experiment requires a careful matching of the amplitude transfer function with (1)J(CC) coupling constants in order to achieve the inversion, and even then some (1)J(CC) correlations could still have positive intensity due to the oscillatory nature of the transfer function. Both shortcomings limit the practicality of the method. We now report a new, dual-optimized inverted (1)J(CC) 1,n-ADEQUATE experiment, which provides more uniform inversion of (1)J(CC) correlations across the range of 29-82 Hz. Unlike the original method, the dual optimization experiment does not require fine-tuning for the molecule's (1)J(CC) coupling constant values. Even more usefully, the dual-optimized version provides up to two-fold improvement in signal-to-noise for some long-range correlations. Using modern, cryogenically-cooled probes, the experiment can be successfully applied to samples of ~1 mg under favorable circumstances. The improvements afforded by dual optimization inverted (1)J(CC) 1,n-ADEQUATE experiment make it a useful and practical tool for NMR structure elucidation and should facilitate the implementation and utilization of the experiment.

  12. AUTOMATED ELEMENTAL COMPOSITION DETERMINATION AND CORRELATION OF PRECURSOR WITH PRODUCT IONS BASED ON ORTHOGONAL ACCELERATION, TIME-OF-FLIGHT MASS SPECTRA

    EPA Science Inventory

    For more than a decade in our laboratory, elemental compositions of ions in mass spectra havebeen routinely determined by measuring exact masses and relative isotopic abundances of ions in isotopicclusters using a GC coupled to a double focusing mass spectrometer.1 HPLC interfac...

  13. Response of sensitive human ataxia and resistant T-1 cell lines to accelerated heavy ions

    SciTech Connect

    Tobias, C.A.; Blakely, E.A.; Chang, P.Y.; Lommel, L.; Roots, R.

    1983-07-01

    The radiation dose responses of fibroblast from a patient with Ataxia telangiectasis (AT-2SF) and an established line of human T-1 cells were studied. Nearly monoenergetic accelerated neon and argon ions were used at the Berkeley Bevalac with various residual range values. The LET of the particles varied from 30 keV/..mu..m to over 1000 keV/..mu..m. All Ataxia survival curves were exponential functions of the dose. Their radiosensitivity reached peak values at 100 to 200 keV/..mu..m. Human T-1 cells have effective sublethal damage repair as has been evidenced by split dose experiments, and they are much more resistant to low LET than to high LET radiation. The repair-misrepair model has been used to interpret these results. We have obtained mathematical expressions that describe the cross sections and inactivation coefficients for both human cell lines as a function of the LET and the type of particle used. The results suggest either that high-LET particles induce a greater number of radiolesions per track or that heavy-ions at high LET induce lesions that kill cells more effectively and that are different from those produced at low LET. We assume that the lesions induced in T-1 and Ataxia cells are qualitatively similar and that each cell line attempts to repair these lesions. The result in most irradiated Ataxia cells, however, is either lethal misrepair or incomplete repair leading to cell death. 63 references, 10 figures, 1 table.

  14. Response surface methodology to optimise Accelerated Solvent Extraction of steviol glycosides from Stevia rebaudiana Bertoni leaves.

    PubMed

    Jentzer, Jean-Baptiste; Alignan, Marion; Vaca-Garcia, Carlos; Rigal, Luc; Vilarem, Gérard

    2015-01-01

    Following the approval of steviol glycosides as a food additive in Europe in December 2011, large-scale stevia cultivation will have to be developed within the EU. Thus there is a need to increase the efficiency of stevia evaluation through germplasm enhancement and agronomic improvement programs. To address the need for faster and reproducible sample throughput, conditions for automated extraction of dried stevia leaves using Accelerated Solvent Extraction were optimised. A response surface methodology was used to investigate the influence of three factors: extraction temperature, static time and cycle number on the stevioside and rebaudioside A extraction yields. The model showed that all the factors had an individual influence on the yield. Optimum extraction conditions were set at 100 °C, 4 min and 1 cycle, which yielded 91.8% ± 3.4% of total extractable steviol glycosides analysed. An additional optimisation was achieved by reducing the grind size of the leaves giving a final yield of 100.8% ± 3.3%.

  15. A small amount of tetrachloroethylene ingestion from drinking water accelerates antigen-stimulated allergic responses.

    PubMed

    Seo, Makoto; Yamagiwa, Takeo; Kobayashi, Ryo; Ikeda, Koji; Satoh, Masahiko; Inagaki, Naoki; Nagai, Hiroichi; Nagase, Hisamitsu

    2008-01-01

    Previously, we observed that tetrachloroethylene (perchloroethylene, PCE) increased histamine release and inflammatory mediator production from antigen-stimulated mast cells. In this study, we examined the enhancing effect of low concentrations of PCE in drinking water on antigen-stimulated allergic responses. After exposure of Wistar rats to PCE in drinking water for 2 or 4 weeks, we performed a passive cutaneous anaphylaxis (PCA) reaction. PCE exposure for 4 weeks enhanced PCA reaction in a dose-dependent manner. In pathological studies, PCE exposure for 2 weeks exacerbated inflammation characterized by infiltration of lymphocytes and accumulation of mast cells around the vessel. Non-purified mast cells (NPMCs) from rats treated with 1mg/L PCE in drinking water for 2 weeks increased antigen-stimulated histamine release. Furthermore, the leukocytes of rats treated with PCE in drinking water for 4 weeks showed increased interleukin (IL)-4 expression. The mechanism of enhancing the PCA reaction is assumed to be that PCE increases IL-4 production and PCE causes T helper (Th) 1/Th2-type helper T-cell imbalance and increases histamine release from excessively accumulated mast cells. The results suggest that the intake of PCE in drinking water, even at a low concentration, leads to the initiation and acceleration of allergic diseases.

  16. Optimization by response surface methodology of lutein recovery from paprika leaves using accelerated solvent extraction.

    PubMed

    Kang, Jae-Hyun; Kim, Suna; Moon, BoKyung

    2016-08-15

    In this study, we used response surface methodology (RSM) to optimize the extraction conditions for recovering lutein from paprika leaves using accelerated solvent extraction (ASE). The lutein content was quantitatively analyzed using a UPLC equipped with a BEH C18 column. A central composite design (CCD) was employed for experimental design to obtain the optimized combination of extraction temperature (°C), static time (min), and solvent (EtOH, %). The experimental data obtained from a twenty sample set were fitted to a second-order polynomial equation using multiple regression analysis. The adjusted coefficient of determination (R(2)) for the lutein extraction model was 0.9518, and the probability value (p=0.0000) demonstrated a high significance for the regression model. The optimum extraction conditions for lutein were temperature: 93.26°C, static time: 5 min, and solvent: 79.63% EtOH. Under these conditions, the predicted extraction yield of lutein was 232.60 μg/g.

  17. Sorafenib inhibition of Mcl-1 accelerates ATRA induced apoptosis in differentiation responsive AML cells

    PubMed Central

    Wang, Rui; Xia, Lijuan; Gabrilove, Janice; Waxman, Samuel; Jing, Yongkui

    2015-01-01

    Purpose All trans retinoic acid (ATRA) is successful in treating acute promyelocytic leukemia (APL) by inducing terminal differentiation-mediated cell death, but it has limited activity in non-APL acute myeloid leukemia (AML). We aim to improve ATRA therapy of AML by enhancing apoptosis through repression of the anti-apoptotic proteins Bcl-2 and Mcl-1. Experimental Design APL and AML cell lines, as well as primary AML samples, were used to explore the mechanisms regulating differentiation and apoptosis during ATRA treatment. Stable transfection and gene silencing with siRNA were used to identify the key factors that inhibit apoptosis during induction of differentiation and drugs that accelerate apoptosis. Results In differentiation responsive AML cells, ATRA treatment induces long-lasting repression of Bcl-2 while first up-modulating and then reducing the Mcl-1 level. The Mcl-1 level appears to serve as a gatekeeper between differentiation and apoptosis. During differentiation induction, activation of MEK/ERK and PI3K/Akt pathways by ATRA leads to activation of p90RSK and inactivation of glycogen synthase kinase 3β (GSK3β), which increase Mcl-1 levels by increasing its translation and stability. Sorafenib blocks ATRA-induced Mcl-1 increase by reversing p90RSK activation and GSK3β inactivation, maintains the repressed Bcl-2 level, and enhances ATRA induced apoptosis in non-APL AML cell lines and in primary AML cells. Conclusion Inhibition of Mcl-1 is required for apoptosis induction in ATRA differentiation responsive AML cells. ATRA and Sorafenib can be developed as a novel drug combination therapy for AML patients because this drug combination augments apoptosis by inhibiting Bcl-2 and Mcl-1. PMID:26459180

  18. Determination Of The Elements In The Olive Oil Responsible For The Luminescence Spectra Using A Green Laser

    NASA Astrophysics Data System (ADS)

    Fawaz, Saiof; Mahmod, Al-gafary; Lamia, Al-mamouly

    2009-09-01

    In this paper, we were able to record luminescence spectra of olive, sunflower, corn, gourd and laurel oils, chlorophyll and carotene by using an argon laser (488-514 nm) and second harmonic Nd-YAG laser (532 nm) along with a monochromator whose spectral range is 400-900 nm. Only when the luminescence light is vertical to laser light, two new peaks 540 nm and 673 nm have been detected with the latter one is more intense. In discussing our results, we succeeded in determining which materials in olive oil are responsible for producing the luminescence spectral peak; 673 nm. The experimental data has shown that the chlorophyll is the main part of the olive components which gives the olive oil luminescence spectral peak; 673 nm. The other luminescence spectral peak; 540 nm was common to all different kinds of oil in general.

  19. Representation of high frequency Space Shuttle data by ARMA algorithms and random response spectra

    NASA Technical Reports Server (NTRS)

    Spanos, P. D.; Mushung, L. J.

    1990-01-01

    High frequency Space Shuttle lift-off data are treated by autoregressive (AR) and autoregressive-moving-average (ARMA) digital algorithms. These algorithms provide useful information on the spectral densities of the data. Further, they yield spectral models which lend themselves to incorporation to the concept of the random response spectrum. This concept yields a reasonably smooth power spectrum for the design of structural and mechanical systems when the available data bank is limited. Due to the non-stationarity of the lift-off event, the pertinent data are split into three slices. Each of the slices is associated with a rather distinguishable phase of the lift-off event, where stationarity can be expected. The presented results are rather preliminary in nature; it is aimed to call attention to the availability of the discussed digital algorithms and to the need to augment the Space Shuttle data bank as more flights are completed.

  20. Increased Hippocampal Neurogenesis and Accelerated Response to Antidepressants in Mice with Specific Deletion of CREB in the Hippocampus: Role of cAMP Response-Element Modulator τ

    PubMed Central

    Gundersen, Brigitta B.; Briand, Lisa A.; Onksen, Jennifer L.; LeLay, John; Kaestner, Klaus H.

    2013-01-01

    The transcription factor cAMP response element-binding protein (CREB) has been implicated in the pathophysiology of depression as well as in the efficacy of antidepressant treatment. However, altering CREB levels appears to have differing effects on anxiety- and depression-related behaviors, depending on which brain region is examined. Furthermore, many manipulations of CREB lead to corresponding changes in other CREB family proteins, and the impact of these changes has been largely ignored. To further investigate the region-specific importance of CREB in depression-related behavior and antidepressant response, we used CrebloxP/loxP mice to localize CREB deletion to the hippocampus. In an assay sensitive to chronic antidepressant response, the novelty-induced hypophagia procedure, hippocampal CREB deletion, did not alter the response to chronic antidepressant treatment. In contrast, mice with hippocampal CREB deletion responded to acute antidepressant treatment in this task, and this accelerated response was accompanied by an increase in hippocampal neurogenesis. Upregulation of the CREB-family protein cAMP response-element modulator (CREM) was observed after CREB deletion. Viral overexpression of the activator isoform of CREM, CREMτ, in the hippocampus also resulted in an accelerated response to antidepressants as well as increased hippocampal neurogenesis. This is the first demonstration of CREMτ within the brain playing a role in behavior and specifically in behavioral outcomes following antidepressant treatment. The current results suggest that activation of CREMτ may provide a means to accelerate the therapeutic efficacy of current antidepressant treatment. PMID:23966689

  1. Accelerated resolution of inflammation underlies sex differences in inflammatory responses in humans

    PubMed Central

    Rathod, Krishnaraj S.; Kapil, Vikas; Velmurugan, Shanti; Khambata, Rayomand S.; Siddique, Umme; Khan, Saima; Van Eijl, Sven; Bansal, Jascharanpreet; Pitrola, Kavi; Shaw, Christopher; D’Acquisto, Fulvio; Colas, Romain A.; Marelli-Berg, Federica

    2016-01-01

    BACKGROUND. Cardiovascular disease occurs at lower incidence in premenopausal females compared with age-matched males. This variation may be linked to sex differences in inflammation. We prospectively investigated whether inflammation and components of the inflammatory response are altered in females compared with males. METHODS. We performed 2 clinical studies in healthy volunteers. In 12 men and 12 women, we assessed systemic inflammatory markers and vascular function using brachial artery flow-mediated dilation (FMD). In a further 8 volunteers of each sex, we assessed FMD response to glyceryl trinitrate (GTN) at baseline and at 8 hours and 32 hours after typhoid vaccine. In a separate study in 16 men and 16 women, we measured inflammatory exudate mediators and cellular recruitment in cantharidin-induced skin blisters at 24 and 72 hours. RESULTS. Typhoid vaccine induced mild systemic inflammation at 8 hours, reflected by increased white cell count in both sexes. Although neutrophil numbers at baseline and 8 hours were greater in females, the neutrophils were less activated. Systemic inflammation caused a decrease in FMD in males, but an increase in females, at 8 hours. In contrast, GTN response was not altered in either sex after vaccine. At 24 hours, cantharidin formed blisters of similar volume in both sexes; however, at 72 hours, blisters had only resolved in females. Monocyte and leukocyte counts were reduced, and the activation state of all major leukocytes was lower, in blisters of females. This was associated with enhanced levels of the resolving lipids, particularly D-resolvin. CONCLUSIONS. Our findings suggest that female sex protects against systemic inflammation-induced endothelial dysfunction. This effect is likely due to accelerated resolution of inflammation compared with males, specifically via neutrophils, mediated by an elevation of the D-resolvin pathway. TRIAL REGISTRATION. ClinicalTrials.gov NCT01582321 and NRES: City Road and Hampstead Ethics

  2. Understanding How Kurtosis Is Transferred from Input Acceleration to Stress Response and Its Influence on Fatigue Llife

    NASA Technical Reports Server (NTRS)

    Kihm, Frederic; Rizzi, Stephen A.; Ferguson, Neil S.; Halfpenny, Andrew

    2013-01-01

    High cycle fatigue of metals typically occurs through long term exposure to time varying loads which, although modest in amplitude, give rise to microscopic cracks that can ultimately propagate to failure. The fatigue life of a component is primarily dependent on the stress amplitude response at critical failure locations. For most vibration tests, it is common to assume a Gaussian distribution of both the input acceleration and stress response. In real life, however, it is common to experience non-Gaussian acceleration input, and this can cause the response to be non-Gaussian. Examples of non-Gaussian loads include road irregularities such as potholes in the automotive world or turbulent boundary layer pressure fluctuations for the aerospace sector or more generally wind, wave or high amplitude acoustic loads. The paper first reviews some of the methods used to generate non-Gaussian excitation signals with a given power spectral density and kurtosis. The kurtosis of the response is examined once the signal is passed through a linear time invariant system. Finally an algorithm is presented that determines the output kurtosis based upon the input kurtosis, the input power spectral density and the frequency response function of the system. The algorithm is validated using numerical simulations. Direct applications of these results include improved fatigue life estimations and a method to accelerate shaker tests by generating high kurtosis, non-Gaussian drive signals.

  3. The molecular underpinnings of a solute-pump/solvent-probe spectroscopy: the theory of polarizability response spectra and an application to preferential solvation.

    PubMed

    Sun, Xiang; Stratt, Richard M

    2012-05-14

    Recent ultrafast experiments on liquids have made clear that it is possible to go beyond light scattering techniques such as optical Kerr spectroscopy that look at the dynamics of a liquid as a whole. It is now possible to measure something far more conceptually manageable: how that liquid dynamics (and that light scattering) can be modified by electronically exciting a solute. Resonant-pump polarizability-response spectra (RP-PORS) in particular, seem to show that different solvents respond in noticeably distinct ways to such solute perturbations. This paper is a theoretical attempt at understanding the kinds of molecular information that can be revealed by experiments of this sort. After developing the general classical statistical mechanical linear response theory for these spectra, we show that the experimentally interesting limit of long solute-pump/solvent-probe delays corresponds to measuring the differences in 4-wave-mixing spectra between solutions with equilibrated ground- and excited-state solutes-meaning that the spectra are essentially probes of how changing liquid structure affects intermolecular liquid vibrations and librations. We examine the spectra in this limit for the special case of an atomic solute dissolved in an atomic-liquid mixture, a preferential solvation problem, and show that, as with the experimental spectra, different solvents can lead to spectra with different magnitudes and even different signs. Our molecular-level analysis of these results points out that solvents can also differ in how local a portion of the solvent dynamics is accessed by this spectroscopy.

  4. Separating Fluid Shear Stress from Acceleration during Vibrations in Vitro: Identification of Mechanical Signals Modulating the Cellular Response

    PubMed Central

    Uzer, Gunes; Manske, Sarah L; Chan, M Ete; Chiang, Fu-Pen; Rubin, Clinton T; Frame, Mary D; Judex, Stefan

    2012-01-01

    The identification of the physical mechanism(s) by which cells can sense vibrations requires the determination of the cellular mechanical environment. Here, we quantified vibration-induced fluid shear stresses in vitro and tested whether this system allows for the separation of two mechanical parameters previously proposed to drive the cellular response to vibration – fluid shear and peak accelerations. When peak accelerations of the oscillatory horizontal motions were set at 1g and 60Hz, peak fluid shear stresses acting on the cell layer reached 0.5Pa. A 3.5-fold increase in fluid viscosity increased peak fluid shear stresses 2.6-fold while doubling fluid volume in the well caused a 2-fold decrease in fluid shear. Fluid shear was positively related to peak acceleration magnitude and inversely related to vibration frequency. These data demonstrated that peak shear stress can be effectively separated from peak acceleration by controlling specific levels of vibration frequency, acceleration, and/or fluid viscosity. As an example for exploiting these relations, we tested the relevance of shear stress in promoting COX-2 expression in osteoblast like cells. Across different vibration frequencies and fluid viscosities, neither the level of generated fluid shear nor the frequency of the signal were able to consistently account for differences in the relative increase in COX-2 expression between groups, emphasizing that the eventual identification of the physical mechanism(s) requires a detailed quantification of the cellular mechanical environment. PMID:23074384

  5. Clinical evaluation of peak endocardial acceleration as a sensor for rate responsive pacing.

    PubMed

    Greco, Enrico Maria; Ferrario, Marco; Romano, Salvatore

    2003-04-01

    An innovative control parameter for rate responsive (RR) pacing that uses a sensor to measure mechanical vibrations generated by the myocardium during the isovolumetric contraction phase (peak endocardial acceleration [PEA]), has been devised by SORIN Biomedica (BEST Living System). To assess the physiological sensitivity of the pacemaker sensor along with reliability of the algorithm to supply appropriate pacing rates three different relationships were examined (linear regression analysis): (1) recorded deltaPEA exercise steps against the calculated energy cost of exercise (MET), (2) exercise pacing rates against predicted values, and (3) deltaPEA against exercise pacing rates. Fifteen patients (mean age 68 +/- 12 years) in NYHA Class I-II, implanted with the BEST Living System (Living 1 DDDR pacemaker) for advanced AVB and/or SSS, underwent one of the following maximal exercise stress protocols: bicycle (25 W, 2-minute steps) or Bruce or Chronotropic Assessment Exercise Protocol (CAEP). Pacing rates for each step were matched against those predicted by a reliable and tested custom software called Pacing Rate Profile Software (PRPS). The PRPS is based on the oxygen pulse reserve (OPR) method (OPR = VO2 reserve divided by heart rate reserve), American College of Sports Medicine (ACSM) formulas for calculating workload/metabolic requirements, and data derived from the Weber functional classes. On the basis of certain patient, data the PRPS then supplies appropriate metabolic pacing rate profiles. In all 15 patients linear regression analysis of deltaPEA against MET, as evaluated during the exercise protocol steps, showed a high correlation (r = 0.97). Likewise, a high correlation was also obtained between PRPS predicted heart rates and exercise pacing rates (r = 0.96) and PEA against exercise pacing rates (r = 0.96). The results of this study show that, through PEA dynamic monitoring, the SORIN Best Living System produces physiological pacing rates that are

  6. Depth-dependent Vertical-to-Horizontal (V/H) Ratios of Free-Field Ground Motion Response Spectra for Deeply Embedded Nuclear Structures

    SciTech Connect

    Wei, X.; Braverman, J.; Miranda, M.; Rosario, M. E.; Costantino, C. J.

    2015-02-01

    This report documents the results of a study to determine the depth-dependent V/H ratios of ground motion response spectra in the free field. The V/H ratios reported herein were developed from a worldwide database of surface and downhole acceleration recordings obtained from 45 vertical array stations. This database was specifically compiled for this project, and includes information from a diversity of active tectonic regions (California, Alaska, Taiwan, Japan), site conditions (rock to soft soil), ground motion intensity levels (PGAs between 0.01 g and 0.50 g), magnitudes (between ML 2.78 and JMA 8.1), epicentral distances (between 3.2 km and 812 km), and source depths (between 1.2 km and 112 km), as well as sensors at surface and at a wide range of depths relevant to the project. To study the significance of the depth effect, V/H ratios from all the records were sorted into a number of depth bins relevant to the project, and statistics (average, standard deviation, coefficient of variation, 16th, 50th, and 84th percentiles) of the V/H ratios within each bin were computed. Similar analyses were repeated, controlling for different site conditions, ground motion intensity levels, array locations, and source depths, to study their relative effect on the V/H ratios. Our findings confirm the importance of the depth effect on the V/H ratios. The research findings in this report can be used to provide guidance on the significance of the depth effect, and the extent to which this effect should be considered in the seismic design of deeply embedded SMR structures and NPP structures in general.

  7. Head impact accelerations for brain strain-related responses in contact sports: a model-based investigation.

    PubMed

    Ji, Songbai; Zhao, Wei; Li, Zhigang; McAllister, Thomas W

    2014-10-01

    Both linear [Formula: see text] and rotational [Formula: see text] accelerations contribute to head impacts on the field in contact sports; however, they are often isolated in injury studies. It is critical to evaluate the feasibility of estimating brain responses using isolated instead of full degrees-of-freedom (DOFs) accelerations. In this study, we investigated the sensitivities of regional brain strain-related responses to resultant [Formula: see text] and [Formula: see text] as well as the relative contributions of these acceleration components to the responses via random sampling and linear regression using parameterized, triangulated head impacts with kinematic variable values based on on-field measurements. Two independently established and validated finite element models of the human head were employed to evaluate model-consistency and dependency in results: the Dartmouth Head Injury Model and Simulated Injury Monitor. For the majority of the brain, volume-weighted regional peak strain, strain rate, and von Mises stress accumulated from the simulation significantly correlated with the product of the magnitude and duration of [Formula: see text], or effectively, the rotational velocity, but not to [Formula: see text]. Responses from [Formula: see text]-only were comparable to the full-DOF counterparts especially when normalized by injury-causing thresholds (e.g., volume fractions of large differences virtually diminished (i.e., [Formula: see text]1 %) at typical difference percentage levels of 1-4 % on average). These model-consistent results support the inclusion of both rotational acceleration magnitude and duration into kinematics-based injury metrics and demonstrate the feasibility of estimating strain-related responses from isolated [Formula: see text] for analyses of strain-induced injury relevant to contact sports without significant loss of accuracy, especially for the cerebrum.

  8. Vestibular responses to linear acceleration are absent in otoconia-deficient C57BL/6JEi-het mice

    NASA Technical Reports Server (NTRS)

    Jones, S. M.; Erway, L. C.; Bergstrom, R. A.; Schimenti, J. C.; Jones, T. A.

    1999-01-01

    Vestibular evoked potentials (VsEPs) were measured in normal mice and in mice homozygous for the head tilt mutation (het/het, abbr. het). The het mice lack otoconia, the inertial mass critical for natural stimulation of inner ear gravity receptors. Our findings demonstrate that vestibular neural responses to pulsed linear acceleration are absent in het mice. The results: (1) confirm that adequate sensory stimuli fail to activate gravity receptors in the het model; and (2) serve as definitive evidence that far-field vestibular responses to pulsed linear acceleration depend critically on otolith end organs. The C57BL/6JEi-het mouse may be an excellent model of gravity receptor sensory deprivation.

  9. Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. III. Responses after labyrinthectomy

    NASA Technical Reports Server (NTRS)

    Lasker, D. M.; Hullar, T. E.; Minor, L. B.; Shelhamer, M. J. (Principal Investigator)

    2000-01-01

    The horizontal angular vestibuloocular reflex (VOR) evoked by high-frequency, high-acceleration rotations was studied in four squirrel monkeys after unilateral labyrinthectomy. Spontaneous nystagmus was measured at the beginning and end of each testing session. During the period that animals were kept in darkness (4 days), the nystagmus at each of these times measured approximately 20 degrees /s. Within 18-24 h after return to the light, the nystagmus (measured in darkness) decreased to 2.8 +/- 1.5 degrees /s (mean +/- SD) when recorded at the beginning but was 20.3 +/- 3.9 degrees /s at the end of the testing session. The latency of the VOR measured from responses to steps of acceleration (3,000 degrees /s(2) reaching a velocity of 150 degrees /s) was 8.4 +/- 0.3 ms for responses to ipsilesional rotations and 7.7 +/- 0.4 ms for contralesional rotations. During the period that animals were kept in darkness after the labyrinthectomy, the gain of the VOR measured during the steps of acceleration was 0.67 +/- 0.12 for contralesional rotations and 0.39 +/- 0.04 for ipsilesional rotations. Within 18-24 h after return to light, the VOR gain for contralesional rotations increased to 0.87 +/- 0.08, whereas there was only a slight increase for ipsilesional rotations to 0.41 +/- 0. 06. A symmetrical increase in the gain measured at the plateau of head velocity was noted after the animals were returned to light. The VOR evoked by sinusoidal rotations of 2-15 Hz, +/-20 degrees /s, showed a better recovery of gain at lower (2-4 Hz) than at higher (6-15 Hz) frequencies. At 0.5 Hz, gain decreased symmetrically when the peak amplitude was increased from 20 to 100 degrees /s. At 10 Hz, gain was decreased for ipsilesional half-cycles and increased for contralesional half-cycles when velocity was raised from 20 to 50 degrees /s. A model incorporating linear and nonlinear pathways was used to simulate the data. Selective increases in the gain for the linear pathway accounted for the

  10. Close correspondence between the action spectra for the blue light responses of the guard cell and coleoptile chloroplasts, and the spectra for blue light-dependent stomatal opening and coleoptile phototropism

    SciTech Connect

    Quinones, M.A.; Lu, Zhenmin; Zeiger, E.

    1996-03-05

    Fluorescence spectroscopy was used to characterize blue light responses from chloroplasts of adaxial guard cells from Pima cotton (Gossypium barbadense) and coleoptile tips from corn (Zea mays). The chloroplast response to blue light was quantified by measurements of the blue light-induced enhancement of a red light-stimulated quenching of chlorophyll a fluorescence. In adaxial (upper) guard cells, low fluence rates of blue light applied under saturating fluence rates of red light enhanced the red light-stimulated fluorescence quenching by up to 50%. In contrast, added blue light did not alter the red light-stimulated quenching from abaxial (lower) guard cells. This response pattern paralleled the blue light sensitivity of stomatal opening in the two leaf surfaces. An action spectrum for the blue light-induced enhancement of the red light-stimulated quenching showed a major peak at 450 nm and two minor peaks at 420 and 470 nm. This spectrum matched closely an action spectrum for blue light-stimulated stomatal opening. Coleoptile chloroplasts also showed an enhancement by blue light of red light-stimulated quenching. The action spectrum of this response, showing a major peak at 450 nm, a minor peak at 470 nm, and a shoulder at 430 nm, closely matched an action spectrum for blue light-stimulated coleoptile phototropism. Both action spectra match the absorption spectrum of zeaxanthin, a chloroplastic carotenoid recently implicated in blue light photoreception of both guard cells and coleoptiles. The remarkable similarity between the action spectra for the blue light responses of guard cells and coleoptile chloroplasts and the spectra for blue light-stimulated stomatal opening and phototropism, coupled to the recently reported evidence on a role of zeaxanthin in blue light photoreception, indicates that the guard cell and coleoptile chloroplasts specialize in sensory transduction. 28 refs. 4 figs.

  11. Accelerated tests for bounding the low dose rate radiation response of lateral PNP bipolar junction transistors

    SciTech Connect

    Witczak, S.C.; Schrimpf, R.D.; Galloway, K.F.; Schmidt, D.M.; Fleetwood, D.M.; Pease, R.L.; Coombs, W.E.; Suehle, J.S.

    1996-03-01

    Low dose rate gain degradation of lateral pnp bipolar transistors can be simulated by accelerated irradiations performed at approximately 135 degrees C. Degradation enhancement is explained by temperature- dependent radiation-induced interface trap formation above the transistor`s base.

  12. Learner-Responsive Instructional Strategies for Adults in Accelerated Classroom Formats: Creating Inclusive Learning Environments

    ERIC Educational Resources Information Center

    Gupta, Kalpana

    2012-01-01

    This study was focused on investigating inclusive learning environments in accelerated classroom formats. Three 8-week sections of an undergraduate course at Regis University were examined. Results from observations and surveys were analyzed to determine the effectiveness and consistency of 13 inclusive strategies derived from Wlodkowski and…

  13. Damping scaling factors for elastic response spectra for shallow crustal earthquakes in active tectonic regions: "average" horizontal component

    USGS Publications Warehouse

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Abrahamson, Norman; Campbell, Kenneth; Silva, Walter

    2014-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra are typically developed at a 5% viscous damping ratio. In reality, however, structural and nonstructural systems can have other damping ratios. This paper develops a new model for a damping scaling factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE for damping ratios between 0.5% to 30%. The model is developed based on empirical data from worldwide shallow crustal earthquakes in active tectonic regions. Dependencies of the DSF on potential predictor variables, such as the damping ratio, spectral period, ground motion duration, moment magnitude, source-to-site distance, and site conditions, are examined. The strong influence of duration is captured by the inclusion of both magnitude and distance in the DSF model. Site conditions show weak influence on the DSF. The proposed damping scaling model provides functional forms for the median and logarithmic standard deviation of DSF, and is developed for both RotD50 and GMRotI50 horizontal components. A follow-up paper develops a DSF model for vertical ground motion.

  14. Nondestructive prediction of point source pyroshock response spectra based on experimental conditioning of laser-induced shocks

    NASA Astrophysics Data System (ADS)

    Jang, Jae-Kyeong; Lee, Jung-Ryul

    2014-09-01

    Pyroshock can easily cause failures in electronic and optical components that are sensitive to high-frequency energy. Pyroshock is generated during explosive-based pyrotechnical events, such as the separation of boosters from a space shuttle and the separation of satellites from a space launcher. Therefore, the prediction of high-frequency structural response, particularly the shock response spectrum (SRS), is important for safe operation of pyrotechnical devices. In general, real explosive testing using distributed accelerometers is widely used. This paper proposes a technology to replace the expensive, dangerous, low-repeatability explosive test with a laser-induced shock test based on a laser beam and in-line filter conditioning. This method does not use any special numerical signal processing. Two different experiments based on explosive and laser excitation were performed with a 2-mm thick aluminum plate. The optimum laser-induced shock experimental conditions to predict real pyroshock were investigated while considering the size, energy, and fluence of the laser beam as parameters. The similarity of the SRS of the laser-induced shock to that of the real explosive pyroshock was evaluated based on the mean acceleration difference (MAD, %). The experimentally determined optimal conditions were also applied to four points on the path of a pyroshock propagation. To match the SRS at each point, the laser-induced shock was amplified, for which three different gain concepts are proposed: the initial gain, optimized gain, and constant gain. The proposed technology enables nondestructive pyro SRS prediction by conditioning the laser-induced shock to obtain an SRS with high similarity to the real pyroshock.

  15. Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. IV. Responses after spectacle-induced adaptation

    NASA Technical Reports Server (NTRS)

    Clendaniel, R. A.; Lasker, D. M.; Minor, L. B.; Shelhamer, M. J. (Principal Investigator)

    2001-01-01

    The horizontal angular vestibuloocular reflex (VOR) evoked by sinusoidal rotations from 0.5 to 15 Hz and acceleration steps up to 3,000 degrees /s(2) to 150 degrees /s was studied in six squirrel monkeys following adaptation with x2.2 magnifying and x0.45 minimizing spectacles. For sinusoidal rotations with peak velocities of 20 degrees /s, there were significant changes in gain at all frequencies; however, the greatest gain changes occurred at the lower frequencies. The frequency- and velocity-dependent gain enhancement seen in normal monkeys was accentuated following adaptation to magnifying spectacles and diminished with adaptation to minimizing spectacles. A differential increase in gain for the steps of acceleration was noted after adaptation to the magnifying spectacles. The gain during the acceleration portion, G(A), of a step of acceleration (3,000 degrees /s(2) to 150 degrees /s) increased from preadaptation values of 1.05 +/- 0.08 to 1.96 +/- 0.16, while the gain during the velocity plateau, G(V), only increased from 0.93 +/- 0.04 to 1.36 +/- 0.08. Polynomial fits to the trajectory of the response during the acceleration step revealed a greater increase in the cubic than the linear term following adaptation with the magnifying lenses. Following adaptation to the minimizing lenses, the value of G(A) decreased to 0.61 +/- 0.08, and the value of G(V) decreased to 0.59 +/- 0.09 for the 3,000 degrees /s(2) steps of acceleration. Polynomial fits to the trajectory of the response during the acceleration step revealed that there was a significantly greater reduction in the cubic term than in the linear term following adaptation with the minimizing lenses. These findings indicate that there is greater modification of the nonlinear as compared with the linear component of the VOR with spectacle-induced adaptation. In addition, the latency to the onset of the adapted response varied with the dynamics of the stimulus. The findings were modeled with a bilateral model

  16. Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight

    NASA Technical Reports Server (NTRS)

    Clement, G.; Moore, S. T.; Raphan, T.; Cohen, B.

    2001-01-01

    During the 1998 Neurolab mission (STS-90), four astronauts were exposed to interaural and head vertical (dorsoventral) linear accelerations of 0.5 g and 1 g during constant velocity rotation on a centrifuge, both on Earth and during orbital space flight. Subjects were oriented either left-ear-out or right-ear-out (Gy centrifugation), or lay supine along the centrifuge arm with their head off-axis (Gz centrifugation). Pre-flight centrifugation, producing linear accelerations of 0.5 g and 1 g along the Gy (interaural) axis, induced illusions of roll-tilt of 20 degrees and 34 degrees for gravito-inertial acceleration (GIA) vector tilts of 27 degrees and 45 degrees , respectively. Pre-flight 0.5 g and 1 g Gz (head dorsoventral) centrifugation generated perceptions of backward pitch of 5 degrees and 15 degrees , respectively. In the absence of gravity during space flight, the same centrifugation generated a GIA that was equivalent to the centripetal acceleration and aligned with the Gy or Gz axes. Perception of tilt was underestimated relative to this new GIA orientation during early in-flight Gy centrifugation, but was close to the GIA after 16 days in orbit, when subjects reported that they felt as if they were 'lying on side'. During the course of the mission, inflight roll-tilt perception during Gy centrifugation increased from 45 degrees to 83 degrees at 1 g and from 42 degrees to 48 degrees at 0.5 g. Subjects felt 'upside-down' during in-flight Gz centrifugation from the first in-flight test session, which reflected the new GIA orientation along the head dorsoventral axis. The different levels of in-flight tilt perception during 0.5 g and 1 g Gy centrifugation suggests that other non-vestibular inputs, including an internal estimate of the body vertical and somatic sensation, were utilized in generating tilt perception. Interpretation of data by a weighted sum of body vertical and somatic vectors, with an estimate of the GIA from the otoliths, suggests that

  17. Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. II. Responses after canal plugging

    NASA Technical Reports Server (NTRS)

    Lasker, D. M.; Backous, D. D.; Lysakowski, A.; Davis, G. L.; Minor, L. B.

    1999-01-01

    The horizontal angular vestibuloocular reflex (VOR) evoked by high-frequency, high-acceleration rotations was studied in four squirrel monkeys after unilateral plugging of the three semicircular canals. During the period (1-4 days) that animals were kept in darkness after plugging, the gain during steps of acceleration (3, 000 degrees /s(2), peak velocity = 150 degrees /s) was 0.61 +/- 0.14 (mean +/- SD) for contralesional rotations and 0.33 +/- 0.03 for ipsilesional rotations. Within 18-24 h after animals were returned to light, the VOR gain for contralesional rotations increased to 0. 88 +/- 0.05, whereas there was only a slight increase in the gain for ipsilesional rotations to 0.37 +/- 0.07. A symmetrical increase in the gain measured at the plateau of head velocity was noted after animals were returned to light. The latency of the VOR was 8.2 +/- 0. 4 ms for ipsilesional and 7.1 +/- 0.3 ms for contralesional rotations. The VOR evoked by sinusoidal rotations of 0.5-15 Hz, +/-20 degrees /s had no significant half-cycle asymmetries. The recovery of gain for these responses after plugging was greater at lower than at higher frequencies. Responses to rotations at higher velocities for frequencies >/=4 Hz showed an increase in contralesional half-cycle gain, whereas ipsilesional half-cycle gain was unchanged. A residual response that appeared to be canal and not otolith mediated was noted after plugging of all six semicircular canals. This response increased with frequency to reach a gain of 0.23 +/- 0.03 at 15 Hz, resembling that predicted based on a reduction of the dominant time constant of the canal to 32 ms after plugging. A model incorporating linear and nonlinear pathways was used to simulate the data. The coefficients of this model were determined from data in animals with intact vestibular function. Selective increases in the gain for the linear and nonlinear pathways predicted the changes in recovery observed after canal plugging. An increase in gain of

  18. Accelerated electron distributions with high- and low-energy cutoffs deduced from the application of a return-current model to solar flare X-ray spectra observed by RHESSI

    NASA Astrophysics Data System (ADS)

    Alaoui, Meriem; Holman, Gordon D.

    2015-04-01

    The X-ray bremsstrahlung emission observed from solar flares requires a high flux, and corresponding high current, of non-thermal electrons. This current is thought to be stabilized by a co-spatial return current, which also resupplies electrons to the acceleration region. In the standard collisional thick-target model (CTTM), electrons accelerated in the corona lose all of their energy through Coulomb collisions when they reach the higher densities in the lower atmosphere of the sun. In the presence of the return current, however, the electrons also lose energy in the corona as they propagate downward. These losses introduce a break into the observed X-ray spectrum if the potential drop associated with the return current is sufficiently high.We analyzed the temporal evolution of RHESSI (Ramaty High Energy Solar Spectroscopic Imager) spectra from a solar flare with strong spectral breaks in terms of a return-current collisional thick-target model (RCCTTM). The presence of strong breaks ensures that albedo and non-uniform ionization are not sufficient to explain the spectral flattening at energies below the break. We find that the model successfully fits the spectral data. The fits were significantly improved with the inclusion of a high-energy cutoff to the injected electron distribution (better chi-squared values and residuals), providing the time evolution of the highest energy to which electrons were accelerated. A lower limit to the low-energy cutoff to the electron distribution was obtained by restricting the beam density to a value less than the ambient coronal density. The derived plasma resistivity and the drift speed of the return-current electrons both suggest that plasma turbulence might have been important in the corona.This work was supported by the NASA Heliophysics Guest Investigator Program and the RHESSI Project.

  19. TU-F-CAMPUS-T-01: Dose and Energy Spectra From Neutron Induced Radioactivity in Medical Linear Accelerators Following High Energy Total Body Irradiation

    SciTech Connect

    Keehan, S; Taylor, M; Franich, R; Smith, R; Dunn, L; Kron, T

    2015-06-15

    Purpose: To assess the risk posed by neutron induced activation of components in medical linear accelerators (linacs) following the delivery of high monitor unit 18 MV photon beams such as used in TBI. Methods: Gamma spectroscopy was used to identify radioisotopes produced in components of a Varian 21EX and an Elekta Synergy following delivery of photon beams. Dose and risk estimates for TBI were assessed using dose deliveries from an actual patient treatment. A 1 litre spherical ion chamber (PTW, Germany) has been used to measure the dose at the beam exit window and at the total body irradiation (TBI) treatment couch following large and small field beams with long beam-on times. Measurements were also made outside of the closed jaws to quantify the benefit of the attenuation provided by the jaws. Results: The radioisotopes produced in the linac head have been identified as {sup 187}W, {sup 56}Mn, {sup 24}Na and {sup 28}Al, which have half-lives from between 2.3 min to 24 hours. The dose at the beam exit window following an 18 MV 2197 MU TBI beam delivery was 12.6 µSv in ten minutes. The dose rate at the TBI treatment couch 4.8 m away is a factor of ten lower. For a typical TBI delivered in six fractions each consisting of four beams and an annual patient load of 24, the annual dose estimate for a staff member at the treatment couch for ten minutes is 750 µSv. This can be further reduced by a factor of about twelve if the jaws are closed before entering the room, resulting in a dose estimate of 65 µSv. Conclusion: The dose resulting from the activation products for a representative TBI workload at our clinic of 24 patients per year is 750 µSv, which can be further reduced to 65 µSv by closing the jaws.

  20. Particle Acceleration in Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi

    2005-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma ray burst (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments.

  1. Impact Acceleration Response of the Selspot Motion Analysis System and an Endevco Angular Accelerometer

    DTIC Science & Technology

    1990-02-01

    consists of caliper brakes which grip the track rails when activated by onboard compressed nitrogen gas. The track rails are one inch thick and the total...coasting or by brake application. Various acceleration profiles may be obtained by changing the differential pressures, the travel length of the...thrust assembly and the metering structure on the thrust piston. The sled glides along the track rails on 21 twelve glide pads. The sled braking system

  2. Behavior of human horizontal vestibulo-ocular reflex in response to high-acceleration stimuli

    NASA Technical Reports Server (NTRS)

    Maas, E. F.; Huebner, W. P.; Seidman, S. H.; Leigh, R. J.

    1989-01-01

    The horizontal vestibulo-ocular reflex (VOR) during transient, high-acceleration (1900-7100 deg/sec-squared) head rotations was studied in four human subjects. Such stimuli perturbed the angle of gaze and caused illusory movement of a viewed target (oscillopsia). The disturbance of gaze could be attributed to the latency of the VOR (which ranged from 6-15 ms) and inadequate compensatory eye rotations (median VOR gain ranged from 0.61-0.83).

  3. Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares. 1. The Numerical Model

    DTIC Science & Technology

    2009-09-10

    The Astrophysical Journal, 702:1553–1566, 2009 September 10 doi:10.1088/0004-637X/702/2/1553 C© 2009. The American Astronomical Society. All rights...to investigate a variety of high-energy processes in solar, space, and astrophysical plasmas. Key words: acceleration of particles – hydrodynamics...and can be viewed as an elementary process of sequential excitation of multiple loops. Evolution on longer timescales (say, !100 s) involves multiple

  4. Sensory Constraints on Birdsong Syntax: Neural Responses to Swamp Sparrow Songs with Accelerated Trill Rates.

    PubMed

    Prather, Jf; Peters, S; Mooney, R; Nowicki, S

    2012-06-01

    Both sensory and motor mechanisms can constrain behavioral performance. Sensory mechanisms may be especially important for constraining behaviors that depend on experience, such as learned birdsongs. Swamp sparrows learn to sing by imitating the song of a tutor, but sparrows fail to accurately imitate artificial tutor songs with abnormally accelerated trills, instead singing brief and rapid trills interrupted by silent gaps. This "broken syntax" has been proposed to arise from vocal-motor limitations. Here we consider whether sensory limitations exist that could also contribute to broken syntax. We tested this idea by recording auditory-evoked activity of sensorimotor neurons in the swamp sparrow's brain that are known to be important for the learning, performance and perception of song. In freely behaving adult sparrows that sang songs with normal syntax, neurons were detected that exhibited precisely time-locked activity to each repetition of the syllable in a trill when presented at a natural rate. Those cells failed to faithfully follow syllables presented at an accelerated rate, however, and their failure to respond to consecutive syllables increased as a function of trill rate. This "flickering" auditory representation in animals performing normal syntax reveals a central constraint on the sensory processing of rapid trills. Furthermore, because these neurons are implicated in both song learning and perception, and because auditory flickering began to occur at accelerated trill rates previously associated with the emergence of broken song syntax, these sensory constraints may contribute to the emergence of broken syntax.

  5. Sensory Constraints on Birdsong Syntax: Neural Responses to Swamp Sparrow Songs with Accelerated Trill Rates

    PubMed Central

    Prather, JF; Peters, S; Mooney, R; Nowicki, S

    2013-01-01

    Both sensory and motor mechanisms can constrain behavioral performance. Sensory mechanisms may be especially important for constraining behaviors that depend on experience, such as learned birdsongs. Swamp sparrows learn to sing by imitating the song of a tutor, but sparrows fail to accurately imitate artificial tutor songs with abnormally accelerated trills, instead singing brief and rapid trills interrupted by silent gaps. This “broken syntax” has been proposed to arise from vocal-motor limitations. Here we consider whether sensory limitations exist that could also contribute to broken syntax. We tested this idea by recording auditory-evoked activity of sensorimotor neurons in the swamp sparrow’s brain that are known to be important for the learning, performance and perception of song. In freely behaving adult sparrows that sang songs with normal syntax, neurons were detected that exhibited precisely time-locked activity to each repetition of the syllable in a trill when presented at a natural rate. Those cells failed to faithfully follow syllables presented at an accelerated rate, however, and their failure to respond to consecutive syllables increased as a function of trill rate. This “flickering” auditory representation in animals performing normal syntax reveals a central constraint on the sensory processing of rapid trills. Furthermore, because these neurons are implicated in both song learning and perception, and because auditory flickering began to occur at accelerated trill rates previously associated with the emergence of broken song syntax, these sensory constraints may contribute to the emergence of broken syntax. PMID:23976787

  6. HIV co-infection accelerates decay of humoral responses in spontaneous resolvers of HCV infection.

    PubMed

    Liu, Y; Shen, T; Zhang, C; Long, L; Duan, Z; Lu, F

    2014-10-01

    Acute hepatitis C virus (HCV) infection is primarily followed by chronic infection, while spontaneous recovery of HCV infection (SR-HCV) occurs in a minority of those infected. Identification of SR-HCV clinically depends on two combined indicators, persistently undetectable peripheral HCV RNA and positivity for anti-HCV. However, the characteristics of dynamic variation in anti-HCV antibodies in SR-HCV, especially in those patients co-infected with HIV, are still undefined. In this study, a cohort of patients infected with HCV through commercial blood collection practices was studied. We found that the annual decreasing rate of anti-HCV presented a gradually accelerated process in HCV resolvers. However, the variation in the decline of anti-HCV presented a slowly accelerated process within the early decrease stage and a gradually decelerated process within the latter decrease stage. In addition, we deduced that it expended approximately 16 years from natural HCV recovery to undetectable peripheral anti-HCV in HCV resolvers co-infected with HIV, while this time was estimated to be 20 years in SR-HCV without HIV co-infection. Our data indicated that the decay of anti-HCV was accelerated by HIV-related impairment of immune function. The prevalence of HCV infection may be severely underestimated in this large-scale retrospective epidemiologic investigation in an HIV-infected population.

  7. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  8. Antecedent plant physiological performance influences the metabolic acceleration of semi-arid soils in response to rainfall

    NASA Astrophysics Data System (ADS)

    Potts, D. L.; Barron-Gafford, G. A.; Jenerette, D.

    2011-12-01

    In semi-arid ecosystems precipitation often arrives as discrete rainfall events. Under these conditions of episodic resource availability, natural selection might favor rapid metabolic responses to the sudden availability of otherwise limiting resources. We introduce and define the term metabolic acceleration (α) as the first derivative of the metabolic rate of a biological system. In other words, α describes the ability of a biological system to up- and down-regulate metabolic rate. Examples include, but are not limited to, the metabolic acceleration of leaf maximum net CO2 assimilation (αAnet), of the CO2 efflux produced by roots and soil microbes (αsoil), and of net ecosystem CO2 exchange (αNEE). To better understand αsoil in relation to seasonal patterns of rainfall and plant physiological performance, we compared three microhabitats (under mesquite, under bunchgrasses, and in intercanopy soils) in a semi-arid shrubland near Tucson, Arizona. Across microhabitats, maximum αsoil varied seasonally such that αsoil was greatest during the warm, wet summer months and lowest during cool winter months. Furthermore, throughout course of the year αsoil beneath mesquites was greater than beneath bunchgrasses or in intercanopy soils. Finally, microhabitat-specific responses of αsoil to the onset of the North American monsoon were consistent with patterns of antecedent plant physiological performance. By quantifying the ability of living systems to respond to episodic resource availability, metabolic acceleration provides a new perspective on the biological significance of antecedent conditions in pulse-driven ecosystems. Finally, that αAnet varies among plant functional types and that αsoil varies among microhabitats suggests the potential for the existence of previously unrecognized life-history trade-offs involving the ability of biological systems to rapidly adjust their metabolic rate in response to episodic resource availability.

  9. Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares. 1; The Numerical Model

    NASA Technical Reports Server (NTRS)

    Liu, Wei; Petrosian, Vahe; Mariska, John T.

    2009-01-01

    Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares, but for convenience and simplicity they were artificially separated in the past. We present here self consistently combined Fokker-Planck modeling of particles and hydrodynamic simulation of flare plasma. Energetic electrons are modeled with the Stanford unified code of acceleration, transport, and radiation, while plasma is modeled with the Naval Research Laboratory flux tube code. We calculated the collisional heating rate directly from the particle transport code, which is more accurate than those in previous studies based on approximate analytical solutions. We repeated the simulation of Mariska et al. with an injection of power law, downward-beamed electrons using the new heating rate. For this case, a -10% difference was found from their old result. We also used a more realistic spectrum of injected electrons provided by the stochastic acceleration model, which has a smooth transition from a quasi-thermal background at low energies to a non thermal tail at high energies. The inclusion of low-energy electrons results in relatively more heating in the corona (versus chromosphere) and thus a larger downward heat conduction flux. The interplay of electron heating, conduction, and radiative loss leads to stronger chromospheric evaporation than obtained in previous studies, which had a deficit in low-energy electrons due to an arbitrarily assumed low-energy cutoff. The energy and spatial distributions of energetic electrons and bremsstrahlung photons bear signatures of the changing density distribution caused by chromospheric evaporation. In particular, the density jump at the evaporation front gives rise to enhanced emission, which, in principle, can be imaged by X-ray telescopes. This model can be applied to investigate a variety of high-energy processes in solar, space, and astrophysical plasmas.

  10. Experimental Characterization of a Plasma Deflagration Accelerator for Simulating Fusion Wall Response to Disruption Events

    NASA Astrophysics Data System (ADS)

    Underwood, Thomas; Loebner, Keith; Cappelli, Mark

    2016-10-01

    In this work, the suitability of a pulsed deflagration accelerator to simulate the interaction of edge-localized modes with plasma first wall materials is investigated. Experimental measurements derived from a suite of diagnostics are presented that focus on the both the properties of the plasma jet and the manner in which such jets couple with material interfaces. Detailed measurements of the thermodynamic plasma state variables within the jet are presented using a quadruple Langmuir probe operating in current-saturation mode. This data in conjunction with spectroscopic measurements of H α Stark broadening via a fast-framing, intensified CCD camera provide spatial and temporal measurements of how the plasma density and temperature scale as a function of input energy. Using these measurements, estimates for the energy flux associated with the deflagration accelerator are found to be completely tunable over a range spanning 150 MW m-2 - 30 GW m-2. The plasma-material interface is investigated using tungsten tokens exposed to the plasma plume under variable conditions. Visualizations of resulting shock structures are achieved through Schlieren cinematography and energy transfer dynamics are discussed by presenting temperature measurements of exposed materials. This work is supported by the U.S. Department of Energy Stewardship Science Academic Program in addition to the National Defense Science Engineering Graduate Fellowship.

  11. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise.

    PubMed

    Donnelly, J P; Bertness, M D

    2001-12-04

    The distribution of New England salt marsh communities is intrinsically linked to the magnitude, frequency, and duration of tidal inundation. Cordgrass (Spartina alterniflora) exclusively inhabits the frequently flooded lower elevations, whereas a mosaic of marsh hay (Spartina patens), spike grass (Distichlis spicata), and black rush (Juncus gerardi) typically dominate higher elevations. Monitoring plant zonal boundaries in two New England salt marshes revealed that low-marsh cordgrass rapidly moved landward at the expense of higher-marsh species between 1995 and 1998. Plant macrofossils from sediment cores across modern plant community boundaries provided a 2,500-year record of marsh community composition and documented the migration of cordgrass into the high marsh. Isotopic dating revealed that the initiation of cordgrass migration occurred in the late 19th century and continued through the 20th century. The timing of the initiation of cordgrass migration is coincident with an acceleration in the rate of sea-level rise recorded by the New York tide gauge. These results suggest that increased flooding associated with accelerating rates of sea-level rise has stressed high-marsh communities and promoted landward migration of cordgrass. If current rates of sea-level rise continue or increase slightly over the next century, New England salt marshes will be dominated by cordgrass. If climate warming causes sea-level rise rates to increase significantly over the next century, these cordgrass-dominated marshes will likely drown, resulting in extensive losses of coastal wetlands.

  12. Kalman Filter Models for Extrapolations in Dose-Response Experiments and Accelerated Life-Tests.

    DTIC Science & Technology

    1988-09-09

    Kalman-Filter models with Gaussian innovations provide a useful and easy to implement tool for inference from dose - response experiments and...proposed dose - response relationship. This is in contrast to the currently used approaches wherein there is an implicit commitment to the validity of

  13. Analysis of factors responsible for the accelerated creep rupture of 12% Cr martensitic steel weld joints

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. S.; Okhapkin, K. A.; Mikhailov, M. S.; Skutin, V. S.; Zubova, G. E.; Fedotov, B. V.

    2016-06-01

    In the process of the investigation of the heat resistance of a 0.07C-12Cr-Ni-Mo-V-Nb steel of the martensitic-ferritic class, a reduction was revealed in the long-term strength of its welded joints to below the level of the strength of the base metal. To establish the causes for the accelerated failure of the welded joints, an imitation of the thermal cycles was carried out that produce the structure of the heataffected zone using a dilatometer. In the samples with the structure that corresponds to that of the heataffected zone, a local zone of softening was revealed. The investigations of the metal structure using transmission electron microscopy have shown that the reduction in the creep rupture strength was caused by structural changes under the conditions of the thermal cycle of welding upon the staying of the steel in the temperature range between the Ac 1 and Ac 3 points.

  14. A dose-response curve for biodosimetry from a 6 MV electron linear accelerator.

    PubMed

    Lemos-Pinto, M M P; Cadena, M; Santos, N; Fernandes, T S; Borges, E; Amaral, A

    2015-05-26

    Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates.

  15. A dose-response curve for biodosimetry from a 6 MV electron linear accelerator.

    PubMed

    Lemos-Pinto, M M P; Cadena, M; Santos, N; Fernandes, T S; Borges, E; Amaral, A

    2015-10-01

    Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates.

  16. Joule heating a palladium nanowire sensor for accelerated response and recovery to hydrogen gas.

    PubMed

    Yang, Fan; Taggart, David K; Penner, Reginald M

    2010-07-05

    The properties of a single heated palladium (Pd) nanowire for the detection of hydrogen gas (H(2)) are explored. In these experiments, a Pd nanowire, 48-98 microm in length, performs three functions in parallel: 1) Joule self-heating is used to elevate the nanowire temperature by up to 128 K, 2) the 4-contact wire resistance in the absence of H(2) is used to measure its temperature, and 3) the nanowire resistance in the presence of H(2) is correlated with its concentration, allowing it to function as a H(2) sensor. Compared with the room-temperature response of a Pd nanowire, the response of the heated nanowire to hydrogen is altered in two ways: First, the resistance change (DeltaR/R(0)) induced by H(2) exposure at any concentration is reduced by a factor of up to 30 and second, the rate of the resistance change - observed at the beginning ("response") and at the end ("recovery") of a pulse of H(2) - is increased by more than a factor of 50 at some H(2) concentrations. Heating nearly eliminates the retardation of response and recovery seen from 1-2% H(2), caused by the alpha --> beta phase transition of PdH(x), a pronounced effect for nanowires at room temperature. The activation energies associated with sensor response and recovery are measured and interpreted.

  17. Temperature and behavioral responses of squirrel monkeys to 2Gz acceleration

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Tremor, J.; Connolly, J. P.; Williams, B. A.

    1982-01-01

    This study examines the responses of squirrel monkeys to acute +2Gz exposure. Body temperature responses of loosely restrained animals were recorded via a thermistor in the colon. Behavioral responses were recorded by video monitoring. After baseline recording at 1G, monkeys were exposed to 2G for 60 min. The body temperature started to fall within 10 min of the onset of centrifugation and declined an average of 1.4 C in 60 min. This is in contrast to a stable body temperature during the control period. Further, after a few minutes at 2G, the animals became drowsy and appeared to fall asleep. During the control period, however, they were alert and continually shifting their gaze about the cage. Thus, primates are susceptible to hypergravic fields in the +Gz orientation. The depression in primate body temperature was consistent and significant. Further, the observed drowsiness in this study has significant ramifications regarding alertness and performance in man.

  18. Effect of bedrest and positive radial acceleration upon peripheral visual response time.

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1972-01-01

    Attempt to determine if peripheral visual response time (RT) could be used as a reliable advanced predictor of +G sub z-related blackout or grayout. The relatively high luminance of the peripheral stimuli used in the experiments may account for the finding that peripheral RT was not sensitive to impending blackout or grayout. The relatively consistent mean RTs within subjects across test days in bed is probably due to the relatively constant response characteristics of the retina and to the high repeatability of the stimuli.

  19. Suprathermal Charged Particle Acceleration by Small-scale Flux Ropes.

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; le Roux, J. A.; Webb, G. M.

    2015-12-01

    We consider different limits of our recently developed kinetic transport theory to investigate the potential of super-Alvenic solar wind regions containing several small-scale flux ropes to explain the acceleration of suprathermal ions to power-law spectra as observations show. Particle acceleration is modeled in response to flux-rope activity involving contraction, merging (reconnection), and collisions in the limit where the particle gyoradius is smaller than the characteristic flux-rope scale length. The emphasis is mainly on the statistical variance in the electric fields induced by flux-rope dynamics rather than on the mean electric field induced by multiple flux ropes whose acceleration effects are discussed elsewhere. Our steady-state analytical solutions suggest that particle drift acceleration by flux ropes, irrespective of whether displaying incompressible or compressible behavior, can yield power laws asymptotically at higher energies whereas an exponential spectral rollover results asymptotically when field-aligned guiding center motion acceleration occur by reconnection electric fields from merging flux ropes. This implies that at sufficiently high particle energies, drift acceleration might dominate. We also expect compressive flux ropes to yield harder power-law spectra than incompressible flux ropes. Preliminary results will be discussed to illustrate how particle acceleration might be affected when both diffusive shock and small-scale flux acceleration occur simultaneously at interplanetary shocks.

  20. Human comfort response to random motions with a dominant transverse motion

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1975-01-01

    Subjective ride comfort response ratings were measured on the Langley Visual Motion Simulator with transverse acceleration inputs with various power spectra shapes and magnitudes. The results show only little influence of spectra shape on comfort response. The effects of magnitude on comfort response indicate the applicability of psychophysical precepts for comfort modeling.

  1. Human comfort response to random motions with a dominant longitudinal motion

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1975-01-01

    Subjective ride comfort response ratings were measured on the Langley Visual Motion Simulator with longitudinal acceleration inputs with various power spectra shapes and magnitudes. The results show only little influence of spectra shape on comfort response. The effects of magnitude on comfort response indicate the applicability of psychophysical precepts for comfort modeling.

  2. Dose-Volume Response Relationship for Brain Metastases Treated with Frameless Single-Fraction Linear Accelerator-Based Stereotactic Radiosurgery

    PubMed Central

    Pan, Jianmin; Yusuf, Mehran B; Dragun, Anthony; Dunlap, Neal; Guan, Timothy; Boling, Warren; Rai, Shesh; Woo, Shiao

    2016-01-01

    Background: Our aim was to identify a dose-volume response relationship for brain metastases treated with frameless stereotactic radiosurgery (SRS). Methods: We reviewed patients who underwent frameless single-fraction linear accelerator SRS for brain metastases between 2007 and 2013 from an institutional database. Proportional hazards modeling was used to identify predictors of outcome. A ratio of maximum lesion dose per mm-diameter (Gy/mm) was constructed to establish a dose-volume relationship. Results: There were 316 metastases evaluated in 121 patients (2 - 33 mm in the largest diameter). The median peripheral dose was 18.0 Gy (range: 10.0 – 24.0 Gy). Local control was 84.8% for all lesions and was affected by location, peripheral dose, maximum dose, and lesion size (p values < 0.050). A dose-volume response relationship was constructed using the maximum dose and lesion size. A unit increase in Gy/mm was associated with decreased local failure (p = 0.005). Local control of 80%, 85%, and 90% corresponded to maximum doses per millimeter of 1.67 Gy/mm, 2.86 Gy/mm, and 4.4 Gy/mm, respectively. Toxicity was uncommon and only 1.0% of lesions developed radionecrosis requiring surgery. Conclusions: For brain metastases less than 3 cm, a dose-volume response relationship exists between maximum radiosurgical dose and lesion size, which is predictive of local control. PMID:27284495

  3. Calculating vibrational spectra without determining excited eigenstates: Solving the complex linear equations of damped response theory for vibrational configuration interaction and vibrational coupled cluster states.

    PubMed

    Godtliebsen, Ian H; Christiansen, Ove

    2015-10-07

    It is demonstrated how vibrational IR and Raman spectra can be calculated from damped response functions using anharmonic vibrational wave function calculations, without determining the potentially very many eigenstates of the system. We present an implementation for vibrational configuration interaction and vibrational coupled cluster, and describe how the complex equations can be solved using iterative techniques employing only real trial vectors and real matrix-vector transformations. Using this algorithm, arbitrary frequency intervals can be scanned independent of the number of excited states. Sample calculations are presented for the IR-spectrum of water, Raman spectra of pyridine and a pyridine-silver complex, as well as for the infra-red spectrum of oxazole, and vibrational corrections to the polarizability of formaldehyde.

  4. Calculating vibrational spectra without determining excited eigenstates: Solving the complex linear equations of damped response theory for vibrational configuration interaction and vibrational coupled cluster states

    NASA Astrophysics Data System (ADS)

    Godtliebsen, Ian H.; Christiansen, Ove

    2015-10-01

    It is demonstrated how vibrational IR and Raman spectra can be calculated from damped response functions using anharmonic vibrational wave function calculations, without determining the potentially very many eigenstates of the system. We present an implementation for vibrational configuration interaction and vibrational coupled cluster, and describe how the complex equations can be solved using iterative techniques employing only real trial vectors and real matrix-vector transformations. Using this algorithm, arbitrary frequency intervals can be scanned independent of the number of excited states. Sample calculations are presented for the IR-spectrum of water, Raman spectra of pyridine and a pyridine-silver complex, as well as for the infra-red spectrum of oxazole, and vibrational corrections to the polarizability of formaldehyde.

  5. Systemic response to thermal injury in rats. Accelerated protein degradation and altered glucose utilization in muscle.

    PubMed Central

    Clark, A S; Kelly, R A; Mitch, W E

    1984-01-01

    Negative nitrogen balance and increased oxygen consumption after thermal injury in humans and experimental animals is related to the extent of the burn. To determine whether defective muscle metabolism is restricted to the region of injury, we studied protein and glucose metabolism in forelimb muscles of rats 48 h after a scalding injury of their hindquarters. This injury increased muscle protein degradation (PD) from 140 +/- 5 to 225 +/- 5 nmol tyrosine/g per h, but did not alter protein synthesis. Muscle lactate release was increased greater than 70%, even though plasma catecholamines and muscle cyclic AMP were not increased. Insulin dose-response studies revealed that the burn decreased the responsiveness of muscle glycogen synthesis to insulin but did not alter its sensitivity to insulin. Rates of net glycolysis and glucose oxidation were increased and substrate cycling of fructose-6-phosphate was decreased at all levels of insulin. The burn-induced increase in protein and glucose catabolism was not mediated by adrenal hormones, since they persisted despite adrenalectomy. Muscle PGE2 production was not increased by the burn and inhibition of prostaglandin synthesis by indomethacin did not inhibit proteolysis. The increase in PD required lysosomal proteolysis, since inhibition of cathepsin B with EP475 reduced PD. Insulin reduced PD 20% and the effects of EP475 and insulin were additive, reducing PD 41%. An inhibitor of muscle PD, alpha-ketoisocaproate, reduced burn-induced proteolysis 28% and lactate release 56%. The rate of PD in muscle of burned and unburned rats was correlated with the percentage of glucose uptake that was directed into lactate production (r = +0.82, P less than 0.01). Thus, a major thermal injury causes hypercatabolism of protein and glucose in muscle that is distant from the injury, and these responses may be linked to a single metabolic defect. PMID:6470144

  6. Transient responses of an axially accelerating viscoelastic string constituted by a fractional differentiation law

    NASA Astrophysics Data System (ADS)

    Chen, Li-Qun; Zhao, Wei-Jia; Zu, Jean W.

    2004-12-01

    This paper deals with the transverse vibration of an initially stressed moving viscoelastic string obeying a fractional differentiation constitutive law. The governing equation is derived from Newtonian second law of motion, and reduced to a set of non-linear differential-integral equations based on Galerkin's truncation. A numerical approach is proposed to solve numerically the differential-integral equation through developing an approximate expression of the fractional derivatives involved. Some numerical examples are presented to highlight the effects of viscoelastic parameters and frequencies of parametric excitations on the transient responses of the axially moving string.

  7. Spectral response of the intrinsic region of a GaAs-InAs quantum dot solar cell considering the absorption spectra of ideal cubic dots

    NASA Astrophysics Data System (ADS)

    Biswas, Sayantan; Chatterjee, Avigyan; Biswas, Ashim Kumar; Sinha, Amitabha

    2016-10-01

    Recently, attempts have been made by some researchers to improve the efficiency of quantum dot solar cells by incorporating different types of quantum dots. In this paper, the photocurrent density has been obtained considering the absorption spectra of ideal cubic dots. The effects of quantum dot size dispersion on the spectral response of the intrinsic region of a GaAs-InAs quantum dot solar cell have been studied. The dependence of the spectral response of this region on the size of quantum dots of such solar cell has also been investigated. The investigation shows that for smaller quantum dot size dispersion, the spectral response of the intrinsic region of the cell increases significantly. It is further observed that by enlarging the quantum dot size it is possible to enhance the spectral response of such solar cells as it causes better match between absorption spectra of the quantum dots and the solar spectrum. These facts indicate the significant role of quantum dot size and size dispersion on the performance of such devices. Also, the power conversion efficiency of such solar cell has been studied under 1 sun, AM 1.5 condition.

  8. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  9. Detection of Large Ions in Time-of-Flight Mass Spectrometry: Effects of Ion Mass and Acceleration Voltage on Microchannel Plate Detector Response

    NASA Astrophysics Data System (ADS)

    Liu, Ranran; Li, Qiyao; Smith, Lloyd M.

    2014-08-01

    In time-of-flight mass spectrometry (TOF-MS), ion detection is typically accomplished by the generation and amplification of secondary electrons produced by ions colliding with a microchannel plate (MCP) detector. Here, the response of an MCP detector as a function of ion mass and acceleration voltage is characterized, for singly charged peptide/protein ions ranging from 1 to 290 kDa in mass, and for acceleration voltages from 5 to 25 kV. A nondestructive inductive charge detector (ICD) employed in parallel with MCP detection provides a reliable reference signal to allow accurate calibration of the MCP response. MCP detection efficiencies were very close to unity for smaller ions at high acceleration voltages (e.g., angiotensin, 1046.5 Da, at 25 kV acceleration voltage), but decreased to ~11% for the largest ions examined (immunoglobulin G (IgG) dimer, 290 kDa) even at the highest acceleration voltage employed (25 kV). The secondary electron yield γ (average number of electrons produced per ion collision) is found to be proportional to mv3.1 (m: ion mass, v: ion velocity) over the entire mass range examined, and inversely proportional to the square root of m in TOF-MS analysis. The results indicate that although MCP detectors indeed offer superlative performance in the detection of smaller peptide/protein species, their performance does fall off substantially for larger proteins, particularly under conditions of low acceleration voltage.

  10. Detection of large ions in time-of-flight mass spectrometry: effects of ion mass and acceleration voltage on microchannel plate detector response.

    PubMed

    Liu, Ranran; Li, Qiyao; Smith, Lloyd M

    2014-08-01

    In time-of-flight mass spectrometry (TOF-MS), ion detection is typically accomplished by the generation and amplification of secondary electrons produced by ions colliding with a microchannel plate (MCP) detector. Here, the response of an MCP detector as a function of ion mass and acceleration voltage is characterized, for singly charged peptide/protein ions ranging from 1 to 290 kDa in mass, and for acceleration voltages from 5 to 25 kV. A nondestructive inductive charge detector (ICD) employed in parallel with MCP detection provides a reliable reference signal to allow accurate calibration of the MCP response. MCP detection efficiencies were very close to unity for smaller ions at high acceleration voltages (e.g., angiotensin, 1046.5 Da, at 25 kV acceleration voltage), but decreased to ~11% for the largest ions examined (immunoglobulin G (IgG) dimer, 290 kDa) even at the highest acceleration voltage employed (25 kV). The secondary electron yield γ (average number of electrons produced per ion collision) is found to be proportional to mv(3.1) (m: ion mass, v: ion velocity) over the entire mass range examined, and inversely proportional to the square root of m in TOF-MS analysis. The results indicate that although MCP detectors indeed offer superlative performance in the detection of smaller peptide/protein species, their performance does fall off substantially for larger proteins, particularly under conditions of low acceleration voltage.

  11. Topical Estrogen Accelerates Cutaneous Wound Healing in Aged Humans Associated with an Altered Inflammatory Response

    PubMed Central

    Ashcroft, Gillian S.; Greenwell-Wild, Teresa; Horan, Michael A.; Wahl, Sharon M.; Ferguson, Mark W. J.

    1999-01-01

    The effects of intrinsic aging on the cutaneous wound healing process are profound, and the resulting acute and chronic wound morbidity imposes a substantial burden on health services. We have investigated the effects of topical estrogen on cutaneous wound healing in healthy elderly men and women, and related these effects to the inflammatory response and local elastase levels, an enzyme known to be up-regulated in impaired wound healing states. Eighteen health status-defined females (mean age, 74.4 years) and eighteen males (mean age, 70.7 years) were randomized in a double-blind study to either active estrogen patch or identical placebo patch attached for 24 hours to the upper inner arm, through which two 4-mm punch biopsies were made. The wounds were excised at either day 7 or day 80 post-wounding. Compared to placebo, estrogen treatment increased the extent of wound healing in both males and females with a decrease in wound size at day 7, increased collagen levels at both days 7 and 80, and increased day 7 fibronectin levels. In addition, estrogen enhanced the strength of day 80 wounds. Estrogen treatment was associated with a decrease in wound elastase levels secondary to reduced neutrophil numbers, and decreased fibronectin degradation. In vitro studies using isolated human neutrophils indicate that one mechanism underlying the altered inflammatory response involves both a direct inhibition of neutrophil chemotaxis by estrogen and an altered expression of neutrophil adhesion molecules. These data demonstrate that delays in wound healing in the elderly can be significantly diminished by topical estrogen in both male and female subjects. PMID:10514397

  12. Inequality spectra

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2017-03-01

    Inequality indices are widely applied in economics and in the social sciences as quantitative measures of the socioeconomic inequality of human societies. The application of inequality indices extends to size-distributions at large, where these indices can be used as general gauges of statistical heterogeneity. Moreover, as inequality indices are plentiful, arrays of such indices facilitate high-detail quantification of statistical heterogeneity. In this paper we elevate from arrays of inequality indices to inequality spectra: continuums of inequality indices that are parameterized by a single control parameter. We present a general methodology of constructing Lorenz-based inequality spectra, apply the general methodology to establish four sets of inequality spectra, investigate the properties of these sets, and show how these sets generalize known inequality gauges such as: the Gini index, the extended Gini index, the Rényi index, and hill curves.

  13. Can Dynamics Be Responsible for the Complex Multipeak Infrared Spectra of NO Adsorbed to Copper(II) Sites in Zeolites?

    PubMed

    Göltl, Florian; Sautet, Philippe; Hermans, Ive

    2015-06-26

    Copper-exchanged SSZ-13 is a very efficient material in the selective catalytic reduction of NO(x) using ammonia (deNO(x)-SCR) and characterizing the underlying distribution of copper sites in the material is of prime importance to understand its activity. The IR spectrum of NO adsorbed to divalent copper sites are modeled using ab initio molecular dynamics simulations. For most sites, complex multi-peak spectra induced by the thermal motion of the cation as well as the adsorbate are found. A finite temperature spectrum for a specific catalyst was constructed, which shows excellent agreement with previously reported data. Additionally these findings allow active and inactive species in deNO(x)-SCR to be identified. To the best of our knowledge, this is the first time such complex spectra for single molecules adsorbed to single active centers have been reported in heterogeneous catalysis, and we expect similar effects to be important in a large number of systems with mobile active centers.

  14. NSVA-3:. a Computer Code for Least-Squares Adjustment of Neutron Spectra and Measured Dosimeter Responses

    NASA Astrophysics Data System (ADS)

    Williams, J. G.; Ribaric, A. P.; Schnauber, T.

    2009-08-01

    A new spectrum adjustment code, NSVA-3, has been developed and is being made available to the community. The name refers to Neutron Spectrum Validation and Adjustment. The designation NSVA-3 is a version of the code that simultaneously adjusts spectra for multiple environments. The code is written in MATLAB®, a high-level script language. The main advantage of the NSVA code is its use of graphic user interfaces (GUIs) to assist the user with the data input and in interactive execution of adjustment cases. Items of data may be easily swapped in or out of the calculation. As with previous least-squares adjustment codes, the data input requires the preparation of files for fluence spectra, dosimetry measurements, the standard deviations of each of these, and correlation matrices of each. In the case of multiple environments, the cross correlations between environments of the input fluence and dosimetry measurements can also be included. The GUI assists the user in keeping track of all of these files. An 89-group cross section library including covariance matrices is incorporated in the code package. The paper presents the basic theory used in the code, the limitations and assumptions that are built into this implementation, and will describe the operation of the code by means of an example problem.

  15. Identification of sudden stiffness changes in the acceleration response of a bridge to moving loads using ensemble empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Aied, H.; González, A.; Cantero, D.

    2016-01-01

    The growth of heavy traffic together with aggressive environmental loads poses a threat to the safety of an aging bridge stock. Often, damage is only detected via visual inspection at a point when repairing costs can be quite significant. Ideally, bridge managers would want to identify a stiffness change as soon as possible, i.e., as it is occurring, to plan for prompt measures before reaching a prohibitive cost. Recent developments in signal processing techniques such as wavelet analysis and empirical mode decomposition (EMD) have aimed to address this need by identifying a stiffness change from a localised feature in the structural response to traffic. However, the effectiveness of these techniques is limited by the roughness of the road profile, the vehicle speed and the noise level. In this paper, ensemble empirical mode decomposition (EEMD) is applied by the first time to the acceleration response of a bridge model to a moving load with the purpose of capturing sudden stiffness changes. EEMD is more adaptive and appears to be better suited to non-linear signals than wavelets, and it reduces the mode mixing problem present in EMD. EEMD is tested in a variety of theoretical 3D vehicle-bridge interaction scenarios. Stiffness changes are successfully identified, even for small affected regions, relatively poor profiles, high vehicle speeds and significant noise. The latter is due to the ability of EEMD to separate high frequency components associated to sudden stiffness changes from other frequency components associated to the vehicle-bridge interaction system.

  16. Defects in cytokine-mediated neuroprotective glial responses to excitotoxic hippocampal injury in senescence-accelerated mouse.

    PubMed

    Hasegawa-Ishii, Sanae; Takei, Shiro; Inaba, Muneo; Umegaki, Hiroyuki; Chiba, Yoichi; Furukawa, Ayako; Kawamura, Noriko; Hosokawa, Masanori; Shimada, Atsuyoshi

    2011-01-01

    Aging is a result of damage accumulation, and understanding of the mechanisms of aging requires exploration of the cellular and molecular systems functioning to control damage. Senescence-accelerated mouse prone 10 (SAMP10) has been established as an inbred strain exhibiting accelerated aging with an earlier onset of cognitive impairment due to neurodegeneration than the senescence-resistant control (SAMR1) strain. We hypothesized that tissue-protective responses of glial cells are impaired in SAMP10 mice. We injected kainic acid (KA) to induce hippocampal injury and studied how cytokines were upregulated on Day 3 using 3-month-old SAMP10 and SAMR1 mice. Following microarray-based screening for upregulated genes, we performed real-time RT-PCR and immunohistochemistry. Results indicated well-orchestrated cytokine-mediated glial interactions in the injured hippocampus of SAMR1 mice, in which microglia-derived interferon (IFN)-γ stimulated astrocytes via IFN-γ receptor and thereby induced expression of CXCL10 and macrophage inflammatory protein (MIP)-1α, and activated microglia produced granulocyte-macrophage colony-stimulating factor (GM-CSF) and osteopontin (OPN). OPN was the most strongly upregulated cytokine. CD44, an OPN receptor, was also strongly upregulated in the neuropil, especially on neurons and astrocytes. KA-induced hippocampal upregulation of these cytokines was strikingly reduced in SAMP10 mice compared to SAMR1 mice. On Day 30 after KA injection, SAMP10 but not SAMR1 mice exhibited hippocampal layer atrophy. Since the OPN-CD44 system is essential for neuroprotection and remodeling, these findings highlight the defects of SAMP10 mice in cytokine-mediated neuroprotective glia-neuron interactions, which may be associated with the mechanism underlying the vulnerability of SAMP10 mice to age-related neurodegeneration.

  17. Using the Animal Model to Accelerate Response to Selection in a Self-Pollinating Crop

    PubMed Central

    Cowling, Wallace A.; Stefanova, Katia T.; Beeck, Cameron P.; Nelson, Matthew N.; Hargreaves, Bonnie L. W.; Sass, Olaf; Gilmour, Arthur R.; Siddique, Kadambot H. M.

    2015-01-01

    We used the animal model in S0 (F1) recurrent selection in a self-pollinating crop including, for the first time, phenotypic and relationship records from self progeny, in addition to cross progeny, in the pedigree. We tested the model in Pisum sativum, the autogamous annual species used by Mendel to demonstrate the particulate nature of inheritance. Resistance to ascochyta blight (Didymella pinodes complex) in segregating S0 cross progeny was assessed by best linear unbiased prediction over two cycles of selection. Genotypic concurrence across cycles was provided by pure-line ancestors. From cycle 1, 102/959 S0 plants were selected, and their S1 self progeny were intercrossed and selfed to produce 430 S0 and 575 S2 individuals that were evaluated in cycle 2. The analysis was improved by including all genetic relationships (with crossing and selfing in the pedigree), additive and nonadditive genetic covariances between cycles, fixed effects (cycles and spatial linear trends), and other random effects. Narrow-sense heritability for ascochyta blight resistance was 0.305 and 0.352 in cycles 1 and 2, respectively, calculated from variance components in the full model. The fitted correlation of predicted breeding values across cycles was 0.82. Average accuracy of predicted breeding values was 0.851 for S2 progeny of S1 parent plants and 0.805 for S0 progeny tested in cycle 2, and 0.878 for S1 parent plants for which no records were available. The forecasted response to selection was 11.2% in the next cycle with 20% S0 selection proportion. This is the first application of the animal model to cyclic selection in heterozygous populations of selfing plants. The method can be used in genomic selection, and for traits measured on S0-derived bulks such as grain yield. PMID:25943522

  18. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket.

    PubMed

    Nishida, Erika; Miyaji, Hirofumi; Kato, Akihito; Takita, Hiroko; Iwanaga, Toshihiko; Momose, Takehito; Ogawa, Kosuke; Murakami, Shusuke; Sugaya, Tsutomu; Kawanami, Masamitsu

    2016-01-01

    Graphene oxide (GO) consisting of a carbon monolayer has been widely investigated for tissue engineering platforms because of its unique properties. For this study, we fabricated a GO-applied scaffold and assessed the cellular and tissue behaviors in the scaffold. A preclinical test was conducted to ascertain whether the GO scaffold promoted bone induction in dog tooth extraction sockets. For this study, GO scaffolds were prepared by coating the surface of a collagen sponge scaffold with 0.1 and 1 µg/mL GO dispersion. Scaffolds were characterized using scanning electron microscopy (SEM), physical testing, cell seeding, and rat subcutaneous implant testing. Then a GO scaffold was implanted into a dog tooth extraction socket. Histological observations were made at 2 weeks postsurgery. SEM observations show that GO attached to the surface of collagen scaffold struts. The GO scaffold exhibited an interconnected structure resembling that of control subjects. GO application improved the physical strength, enzyme resistance, and adsorption of calcium and proteins. Cytocompatibility tests showed that GO application significantly increased osteoblastic MC3T3-E1 cell proliferation. In addition, an assessment of rat subcutaneous tissue response revealed that implantation of 1 µg/mL GO scaffold stimulated cellular ingrowth behavior, suggesting that the GO scaffold exhibited good biocompatibility. The tissue ingrowth area and DNA contents of 1 µg/mL GO scaffold were, respectively, approximately 2.5-fold and 1.4-fold greater than those of the control. Particularly, the infiltration of ED2-positive (M2) macrophages and blood vessels were prominent in the GO scaffold. Dog bone-formation tests showed that 1 µg/mL GO scaffold implantation enhanced bone formation. New bone formation following GO scaffold implantation was enhanced fivefold compared to that in control subjects. These results suggest that GO was biocompatible and had high bone-formation capability for the scaffold

  19. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket

    PubMed Central

    Nishida, Erika; Miyaji, Hirofumi; Kato, Akihito; Takita, Hiroko; Iwanaga, Toshihiko; Momose, Takehito; Ogawa, Kosuke; Murakami, Shusuke; Sugaya, Tsutomu; Kawanami, Masamitsu

    2016-01-01

    Graphene oxide (GO) consisting of a carbon monolayer has been widely investigated for tissue engineering platforms because of its unique properties. For this study, we fabricated a GO-applied scaffold and assessed the cellular and tissue behaviors in the scaffold. A preclinical test was conducted to ascertain whether the GO scaffold promoted bone induction in dog tooth extraction sockets. For this study, GO scaffolds were prepared by coating the surface of a collagen sponge scaffold with 0.1 and 1 µg/mL GO dispersion. Scaffolds were characterized using scanning electron microscopy (SEM), physical testing, cell seeding, and rat subcutaneous implant testing. Then a GO scaffold was implanted into a dog tooth extraction socket. Histological observations were made at 2 weeks postsurgery. SEM observations show that GO attached to the surface of collagen scaffold struts. The GO scaffold exhibited an interconnected structure resembling that of control subjects. GO application improved the physical strength, enzyme resistance, and adsorption of calcium and proteins. Cytocompatibility tests showed that GO application significantly increased osteoblastic MC3T3-E1 cell proliferation. In addition, an assessment of rat subcutaneous tissue response revealed that implantation of 1 µg/mL GO scaffold stimulated cellular ingrowth behavior, suggesting that the GO scaffold exhibited good biocompatibility. The tissue ingrowth area and DNA contents of 1 µg/mL GO scaffold were, respectively, approximately 2.5-fold and 1.4-fold greater than those of the control. Particularly, the infiltration of ED2-positive (M2) macrophages and blood vessels were prominent in the GO scaffold. Dog bone-formation tests showed that 1 µg/mL GO scaffold implantation enhanced bone formation. New bone formation following GO scaffold implantation was enhanced fivefold compared to that in control subjects. These results suggest that GO was biocompatible and had high bone-formation capability for the scaffold

  20. Energetic solar electron spectra and gamma-ray observations

    NASA Astrophysics Data System (ADS)

    Dröge, Wolfgang

    1996-06-01

    We analyze solar energetic electron events measured with particle detectors on board of the ISEE-3 (ICE) and Helios 1 and 2 spacecraft. Energy spectra in the range 0.1 to tens of MeV are generated applying the results of a careful re-examination of the electron response function of the instruments. The spectral shapes of events observed simultaneously, among them five on all three s/c, are in very good agreement inspite of the sometimes considerable difference in azimuthal and radial distances of the s/c with respect to the flare. These findings suggest that transport processes at the Sun and in the interplanetary medium depend only weakly on the electron energy and that the observed spectra are representative of the accelerated electron spectra at the Sun. A comparison of the electron spectra with SMM gamma-ray spectra gives evidence for the existence of different acceleration and emission mechanism in flares with long (LDEs) and short duration (SDEs) soft X-ray emission.

  1. Inverse modelling of Köhler theory - Part 1: A response surface analysis of CCN spectra with respect to surface-active organic species

    NASA Astrophysics Data System (ADS)

    Lowe, Samuel; Partridge, Daniel; Topping, David; Stier, Philip

    2016-04-01

    In this study an inverse modelling framework for the calculation of CCN spectra is developed to facilitate a more robust treatment of evaluation of Köhler models against observations. To achieve this, we define an objective function that provides a diagnostic metric of the deviation of modelled CCN spectra from observations as a function of input parameters. This allows for the assessment of model accuracy while simultaneously examining global parameter sensitivities and identifying parameter interactions across all atmospherically relevant supersaturations, corresponding to a broad range of cloud types and updraft velocities. The focus of this study is two-fold. Firstly, we assess the feasibility of inverse modelling as a new methodology for aerosol-CCN spectra closure. To achieve this goal, responses in the objective function to parameter perturbations in 2D cross-sections of the complete parameter space, response surfaces, are used to examine the likelihood of our chosen objective function containing enough information to constrain the model input parameters considered using automatic search algorithms. Secondly, these response surfaces are employed to conduct an extensive parametric sensitivity analysis and subsequently rank the relative importance of aerosol physiochemical parameters in determining CCN spectra. Using Köhler theory to model CCN concentrations requires knowledge of many physiochemical parameters, some of which are difficult to measure in-situ at the scale of interest. Therefore, novel methodologies, such as the one developed here, are required to probe the entire parameter space of aerosol-cloud interaction problems and provide global sensitivity analyses to constrain parametric uncertainties. Partitioning of surface-active species from the bulk to the surface phase can alter the point of CCN activation. Therefore, the analysis conducted here is carried out for a standard Köhler model as well as more complex Köhler models accounting for the

  2. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  3. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  4. Four-Component Damped Density Functional Response Theory Study of UV/Vis Absorption Spectra and Phosphorescence Parameters of Group 12 Metal-Substituted Porphyrins.

    PubMed

    Fransson, Thomas; Saue, Trond; Norman, Patrick

    2016-05-10

    The influences of group 12 (Zn, Cd, Hg) metal-substitution on the valence spectra and phosphorescence parameters of porphyrins (P) have been investigated in a relativistic setting. In order to obtain valence spectra, this study reports the first application of the damped linear response function, or complex polarization propagator, in the four-component density functional theory framework [as formulated in Villaume et al. J. Chem. Phys. 2010 , 133 , 064105 ]. It is shown that the steep increase in the density of states as due to the inclusion of spin-orbit coupling yields only minor changes in overall computational costs involved with the solution of the set of linear response equations. Comparing single-frequency to multifrequency spectral calculations, it is noted that the number of iterations in the iterative linear equation solver per frequency grid-point decreases monotonously from 30 to 0.74 as the number of frequency points goes from one to 19. The main heavy-atom effect on the UV/vis-absorption spectra is indirect and attributed to the change of point group symmetry due to metal-substitution, and it is noted that substitutions using heavier atoms yield small red-shifts of the intense Soret-band. Concerning phosphorescence parameters, the adoption of a four-component relativistic setting enables the calculation of such properties at a linear order of response theory, and any higher-order response functions do not need to be considered-a real, conventional, form of linear response theory has been used for the calculation of these parameters. For the substituted porphyrins, electronic coupling between the lowest triplet states is strong and results in theoretical estimates of lifetimes that are sensitive to the wave function and electron density parametrization. With this in mind, we report our best estimates of the phosphorescence lifetimes to be 460, 13.8, 11.2, and 0.00155 s for H2P, ZnP, CdP, and HgP, respectively, with the corresponding transition

  5. Research on the attribution evaluating methods of dynamic effects of various parameter uncertainties on the in-structure floor response spectra of nuclear power plant

    NASA Astrophysics Data System (ADS)

    Li, Jianbo; Lin, Gao; Liu, Jun; Li, Zhiyuan

    2017-01-01

    Consideration of the dynamic effects of the site and structural parameter uncertainty is required by the standards for nuclear power plants (NPPs) in most countries. The anti-seismic standards provide two basic methods to analyze parameter uncertainty. Directly manually dealing with the calculated floor response spectra (FRS) values of deterministic approaches is the first method. The second method is to perform probability statistical analysis of the FRS results on the basis of the Monte Carlo method. The two methods can only reflect the overall effects of the uncertain parameters, and the results cannot be screened for a certain parameter's influence and contribution. In this study, based on the dynamic analyses of the floor response spectra of NPPs, a comprehensive index of the assessed impact for various uncertain parameters is presented and recommended, including the correlation coefficient, the regression slope coefficient and Tornado swing. To compensate for the lack of guidance in the NPP seismic standards, the proposed method can effectively be used to evaluate the contributions of various parameters from the aspects of sensitivity, acuity and statistical swing correlations. Finally, examples are provided to verify the set of indicators from systematic and intuitive perspectives, such as the uncertainty of the impact of the structure parameters and the contribution to the FRS of NPPs. The index is sensitive to different types of parameters, which provides a new technique for evaluating the anti-seismic parameters required for NPPs.

  6. Alouatta trichromatic color vision: cone spectra and physiological responses studied with microspectrophotometry and single unit retinal electrophysiology.

    PubMed

    Silveira, Luiz Carlos L; Saito, Cézar A; da Silva Filho, Manoel; Kremers, Jan; Bowmaker, James K; Lee, Barry B

    2014-01-01

    The howler monkeys (Alouatta sp.) are the only New World primates to exhibit routine trichromacy. Both males and females have three cone photopigments. However, in contrast to Old World monkeys, Alouatta has a locus control region upstream of each opsin gene on the X-chromosome and this might influence the retinal organization underlying its color vision. Post-mortem microspectrophotometry (MSP) was performed on the retinae of two male Alouatta to obtain rod and cone spectral sensitivities. The MSP data were consistent with only a single opsin being expressed in each cone and electrophysiological data were consistent with this primate expressing full trichromacy. To study the physiological organization of the retina underlying Alouatta trichromacy, we recorded from retinal ganglion cells of the same animals used for MSP measurements with a variety of achromatic and chromatic stimulus protocols. We found MC cells and PC cells in the Alouatta retina with similar properties to those previously found in the retina of other trichromatic primates. MC cells showed strong phasic responses to luminance changes and little response to chromatic pulses. PC cells showed strong tonic response to chromatic changes and small tonic response to luminance changes. Responses to other stimulus protocols (flicker photometry; changing the relative phase of red and green modulated lights; temporal modulation transfer functions) were also similar to those recorded in other trichromatic primates. MC cells also showed a pronounced frequency double response to chromatic modulation, and with luminance modulation response saturation accompanied by a phase advance between 10-20 Hz, characteristic of a contrast gain mechanism. This indicates a very similar retinal organization to Old-World monkeys. Cone-specific opsin expression in the presence of a locus control region for each opsin may call into question the hypothesis that this region exclusively controls opsin expression.

  7. Expectation-induced placebo responses fail to accelerate wound healing in healthy volunteers: results from a prospective controlled experimental trial.

    PubMed

    Vits, Sabine; Dissemond, Joachim; Schadendorf, Dirk; Kriegler, Lisa; Körber, Andreas; Schedlowski, Manfred; Cesko, Elvir

    2015-12-01

    Placebo responses have been shown to affect the symptomatology of skin diseases. However, expectation-induced placebo effects on wound healing processes have not been investigated yet. We analysed whether subjects' expectation of receiving an active drug accelerates the healing process of experimentally induced wounds. In 22 healthy men (experimental group, n = 11; control group, n = 11) wounds were induced by ablative laser on both thighs. Using a deceptive paradigm, participants in the experimental group were informed that an innovative 'wound gel' was applied on one of the two wounds, whereas a 'non-active gel' was applied on the wound of the other thigh. In fact, both gels were identical hydrogels without any active components. A control group was informed to receive a non-active gel on both wounds. Progress in wound healing was documented via planimetry on days 1, 4 and 7 after wound induction. From day 9 onwards wound inspections were performed daily accompanied by a change of the dressing and a new application of the gel. No significant differences could be observed with regard to duration or process of wound healing, either by intraindividual or by interindividual comparisons. These data document no expectation-induced placebo effect on the healing process of experimentally induced wounds in healthy volunteers.

  8. Accelerated re-epithelialization in Dpr2-deficient mice is associated with enhanced response to TGFbeta signaling.

    PubMed

    Meng, Fanwei; Cheng, Xuan; Yang, Leilei; Hou, Ning; Yang, Xiao; Meng, Anming

    2008-09-01

    Members of the Dapper (Dpr)/Dact protein family are involved in the regulation of distinct signaling pathways, including TGFbeta/Nodal, canonical and noncanonical Wnt pathways. Three Dpr genes, Dpr1, Dpr2 and Dpr3, are expressed in mouse embryos and in many adult tissues; however, their in vivo functions have not been reported. In this study, we generated Dpr2-deficient mice using a gene-knockout approach. Homozygous Dpr2 knockout (Dpr2(-/-)) embryos developed normally and postnatal Dpr2(-/-) mice grew to adulthood without obvious morphological or behavioral defects. We found that Dpr2 was expressed highly in epidermal keratinocytes and in hair follicles of adult mice, and that Dpr2 deficiency resulted in accelerated re-epithelialization during cutaneous wound healing. Furthermore, we demonstrated that loss of Dpr2 function enhanced the responses of keratinocytes to TGFbeta stimulation, and that TGFbeta signals promoted adhesion to fibronectin and migration of keratinocytes, by regulating the expression of specific integrin genes. Thus, Dpr2 plays an inhibitory role in the re-epithelialization of adult skin wounds by attenuating TGFbeta signaling.

  9. Experience-dependent enhancement of pitch-specific responses in the auditory cortex is limited to acceleration rates in normal voice range

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Suresh, Chandan H.

    2015-01-01

    The aim of this study is to determine how pitch acceleration rates within and outside the normal pitch range may influence latency and amplitude of cortical pitch-specific responses (CPR) as a function of language experience (Chinese, English). Responses were elicited from a set of four pitch stimuli chosen to represent a range of acceleration rates (two each inside and outside the normal voice range) imposed on the high rising Mandarin Tone 2. Pitch-relevant neural activity, as reflected in the latency and amplitude of scalp-recorded CPR components, varied depending on language-experience and pitch acceleration of dynamic, time-varying pitch contours. Peak latencies of CPR components were shorter in the Chinese than the English group across stimuli. Chinese participants showed greater amplitude than English for CPR components at both frontocentral and temporal electrode sites in response to pitch contours with acceleration rates inside the normal voice pitch range as compared to pitch contours with acceleration rates that exceed the normal range. As indexed by CPR amplitude at the temporal sites, a rightward asymmetry was observed for the Chinese group only. Only over the right temporal site was amplitude greater in the Chinese group relative to the English. These findings may suggest that the neural mechanism(s) underlying processing of pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to acceleration in just those rising pitch contours that fall within the bounds of one’s native language. More broadly, enhancement of native pitch stimuli and stronger rightward asymmetry of CPR components in the Chinese group is consistent with the notion that long-term experience shapes adaptive, distributed hierarchical pitch processing in the auditory cortex, and reflects an interaction with higher-order, extrasensory processes beyond the sensory memory trace. PMID:26166727

  10. A band Lanczos approach for calculation of vibrational coupled cluster response functions: simultaneous calculation of IR and Raman anharmonic spectra for the complex of pyridine and a silver cation.

    PubMed

    Godtliebsen, Ian H; Christiansen, Ove

    2013-07-07

    We describe new methods for the calculation of IR and Raman spectra using vibrational response theory. Using damped linear response functions that incorporate a Lorentzian line-shape function from the outset, it is shown how the calculation of Raman spectra can be carried out through the calculation of a set of vibrational response functions in the same manner as described previously for IR spectra. The necessary set of response functions can be calculated for both vibrational coupled cluster (VCC) and vibrational configuration interaction (VCI) anharmonic vibrational wave-functions. For the efficient and simultaneous calculation of the full set of necessary response functions, a non-hermitian band Lanczos algorithm is implemented for VCC, and a hermitian band Lanczos algorithm is implemented for VCI. It is shown that the simultaneous calculation of several response functions is often advantageous. Sample calculations are presented for pyridine and the complex between pyridine and the silver cation.

  11. Human comfort response to random motions with a dominant vertical motion

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1975-01-01

    Subjective ride comfort response ratings were measured on the Langley Visual Motion Simulator with vertical acceleration inputs with various power spectra shapes and magnitudes. The data obtained are presented.

  12. NASTRAN postprocessor program for transient response to input accelerations. [procedure for generating and writing modal input data on tapes using NASTRAN

    NASA Technical Reports Server (NTRS)

    Wingate, R. T.; Jones, T. C.; Stephens, M. V.

    1973-01-01

    The description of a transient analysis program for computing structural responses to input base accelerations is presented. A hybrid modal formulation is used and a procedure is demonstrated for generating and writing all modal input data on user tapes via NASTRAN. Use of several new Level 15 modules is illustrated along with a problem associated with reading the postprocessor program input from a user tape. An example application of the program is presented for the analysis of a spacecraft subjected to accelerations initiated by thrust transients. Experience with the program has indicated it to be very efficient and economical because of its simplicity and small central memory storage requirements.

  13. Effects of visual reference on adaptation to motion sickness and subjective responses evoked by graded cross-coupled angular accelerations. [vestibular oculogravic effect in human acceleration adaptation

    NASA Technical Reports Server (NTRS)

    Reason, J. T.; Diaz, E.

    1973-01-01

    Three groups of 10 subjects each were exposed to stepwise increments of cross coupled angular accelerations in three visual modes: internal visual reference (IVR), external visual reference (EVR), and vision absent (VA). The subjects in the IVR condition required significantly greater amounts of stimulus exposure to neutralize their illusory subjective reactions. They also suffered a greater loss of well-being and a more marked incidence of motion sickness than did subjects in the EVR and VA conditions. The same 30 subjects were reexposed to the same graded cross coupled stimulation 1 week later. This time, however, all the subjects were tested under only the IVR condition. All three groups showed some positive transfer of adaptation, but only the IVR-IVR combination required significantly fewer head motions to achieve the same level of adaptation on the second occasion. Taken overall, however, the most efficient and least disturbing route to adaptation at the completion of the second test was via the VA-IVR combination.

  14. Study of timing response and charge spectra of glass based Resistive Plate Chamber detectors for INO-ICAL experiment

    NASA Astrophysics Data System (ADS)

    Gaur, A.; Kumar, A.; Naimuddin, Md.

    2017-03-01

    Resistive Plate chambers (RPCs) are robust and affordable gaseous detectors that combine low cost with excellent timing, good spatial resolution and fast response to the incoming particles. The India Based Neutrino Observatory is an approved project aimed at building a magnetised Iron Calorimeter (ICAL) detector to study Neutrino physics and related issues. The ICAL experiment will utilize about 29000 RPC's as active detector elements, sandwiched between alternate plates of thick iron. The RPC detectors will be used to detect muons produced from the atmospheric neutrinos interaction with an iron target. The spatial information of the muons will be extracted from the two dimensional readout and the hit position in the respective layers. The up going and down going directionality will be obtained using the time stamp of hits in the active detectors. The charge induced by the particle and its behaviour with respect to the applied voltage play a significant role in designing the readout electronics for the detector. In this paper, we present the timing and charge measurement of single gap glass based RPC detectors. We will also report about studies on the dependence of the timing and charge response of these RPC detectors as a function of the gas composition.

  15. A review of accelerated response actions available to the environmental restoration program: Selected case histories and associated issues. [CONTAINS GLOSSARY

    SciTech Connect

    Smyth, J D; Quinn, R D; Gianti, S J

    1991-05-01

    Accelerated actions were developed by the Environmental Protection Agency (EPA) within the regulatory framework for initiating early cleanup action or accelerating ongoing cleanup action to abate, mitigate, or reduce risk to human health or the environment at a contaminated waste site. The purposes of this report are to review the regulatory frameworks available to initiate accelerated actions at sites on the National Priorities List (NPL) and to provide case histories of sites where accelerated actions have been implemented. The findings of this report are applicable to non-NPL waste sites also. Accelerated actions are of interest to the Department of Energy (DOE) for two primary reasons: they are methods available to demonstrate progress in environmental restoration at DOE waste sites, and a subset of accelerated actions, termed interim remedial actions, may be required in place of final actions to avoid violating National Environmental Policy Act (NEPA) guidelines during the development of DOE Office of Environmental Restoration and Waste Management's (DOE- EM's) Programmatic Environmental Impact Statement (PEIS). To provide the case histories, interviews with staff and reviews of compliance documents were conducted for sites in EPA Regions 3, 4, and 7. 12 refs., 1 fig.

  16. Tuning of betatron radiation in laser-plasma accelerators via multimodal laser propagation through capillary waveguides

    NASA Astrophysics Data System (ADS)

    Curcio, A.; Giulietti, D.; Petrarca, M.

    2017-02-01

    The betatron radiation from laser-plasma accelerated electrons in dielectric capillary waveguides is investigated. The multimode laser propagation is responsible for a modulated plasma wakefield structure, which affects the electron transverse dynamics, therefore influencing the betatron radiation spectra. Such a phenomenon can be exploited to tune the energy spectrum of the betatron radiation by controlling the excitation of the capillary modes.

  17. Microscale acceleration history discriminators

    DOEpatents

    Polosky, Marc A.; Plummer, David W.

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  18. Atrial and ventricular rate response and patterns of heart rate acceleration during maternal-fetal terbutaline treatment of fetal complete heart block.

    PubMed

    Cuneo, Bettina F; Zhao, Hui; Strasburger, Janette F; Ovadia, Marc; Huhta, James C; Wakai, Ronald T

    2007-08-15

    Terbutaline is used to treat fetal bradycardia in the setting of complete heart block (CHB); however, little is known of its effects on atrial and ventricular beat rates or patterns of heart rate (HR) acceleration. Fetal atrial and ventricular beat rates were compared before and after transplacental terbutaline treatment (10 to 30 mg/day) by fetal echocardiography in 17 fetuses with CHB caused by immune-mediated damage to a normal conduction system (isoimmune, n = 8) or a congenitally malformed conduction system associated with left atrial isomerism (LAI, n = 9). While receiving terbutaline, 9 of the 17 fetuses underwent fetal magnetocardiography (fMCG) to assess maternal HR and rhythm, patterns of fetal HR acceleration, and correlation between fetal atrial and ventricular accelerations (i.e., AV correlation). Maternal HR and fetal atrial and ventricular beat rates increased with terbutaline. However, terbutaline's effects were greater on the atrial pacemaker(s) in fetuses with isoimmune CHB and greater on the ventricular pacemaker(s) in those with LAI-associated CHB. Patterns of fetal HR acceleration also differed between isoimmune and LAI CHB. Finally, despite increasing HR, terbutaline did not restore the normal coordinated response between atrial and ventricular accelerations in isoimmune or LAI CHB. In conclusion, the pathophysiologic heterogeneity of CHB is reflected in the differing effect of terbutaline on the atrial and ventricular pacemaker(s) and varying patterns of HR acceleration. However, regardless of the cause of CHB, terbutaline augments HR but not AV correlation, suggesting that its effects are determined by the conduction system defect rather than the autonomic control of the developing heart.

  19. Atrial and Ventricular Rate Response and Patterns of Heart Rate Acceleration during Maternal–Fetal Terbutaline Treatment of Fetal Complete Heart Block

    PubMed Central

    Cuneo, Bettina F.; Zhao, Hui; Strasburger, Janette F.; Ovadia, Marc; Huhta, James C.; Wakai, Ronald T.

    2012-01-01

    Terbutaline is used to treat fetal bradycardia in the setting of complete heart block (CHB); however, little is known of its effects on atrial and ventricular beat rates or patterns of heart rate (HR) acceleration. Fetal atrial and ventricular beat rates were compared before and after transplacental terbutaline treatment (10 to 30 mg/day) by fetal echocardiography in 17 fetuses with CHB caused by immune-mediated damage to a normal conduction system (isoimmune, n = 8) or a congenitally malformed conduction system associated with left atrial isomerism (LAI, n = 9). While receiving terbutaline, 9 of the 17 fetuses underwent fetal magnetocardiography (fMCG) to assess maternal HR and rhythm, patterns of fetal HR acceleration, and correlation between fetal atrial and ventricular accelerations (i.e., AV correlation). Maternal HR and fetal atrial and ventricular beat rates increased with terbutaline. However, terbutaline's effects were greater on the atrial pacemaker(s) in fetuses with isoimmune CHB and greater on the ventricular pacemaker(s) in those with LAI-associated CHB. Patterns of fetal HR acceleration also differed between isoimmune and LAI CHB. Finally, despite increasing HR, terbutaline did not restore the normal coordinated response between atrial and ventricular accelerations in isoimmune or LAI CHB. In conclusion, the pathophysiologic heterogeneity of CHB is reflected in the differing effect of terbutaline on the atrial and ventricular pacemaker(s) and varying patterns of HR acceleration. However, regardless of the cause of CHB, terbutaline augments HR but not AV correlation, suggesting that its effects are determined by the conduction system defect rather than the autonomic control of the developing heart. PMID:17697825

  20. Determination of horizontal and vertical design spectra based on ground motion records at Lali tunnel, Iran

    NASA Astrophysics Data System (ADS)

    Moradpouri, F.; Mojarab, M.

    2012-08-01

    Most acceleration diagrams show high levels of unpredictability, as a result, it is the best to avoid using diagrams of earthquake acceleration spectra, even if the diagrams recorded at the site in question. In order to design earthquake resistant structures, we, instead, suggest constructing a design spectrum using a set of spectra that have common characteristics to the recorded acceleration diagrams at a particular site and smoothing the associated data. In this study, we conducted a time history analysis and determined a design spectrum for the region near the Lali tunnel in Southwestern Iran. We selected 13 specific ground motion records from the rock site to construct the design spectrum. To process the data, we first applied a base-line correction and then calculated the signal-to-noise ratio ( R SN) for each record. Next, we calculated the Fourier amplitude spectra of the acceleration pertaining to the signal window (1), and the Fourier amplitude spectra of the associated noise (2). After dividing each spectra by the square root of the selected window interval, they were divided by each other (1 divided by 2), in order to obtain the R SN ratio (filtering was also applied). In addition, all data were normalized to the peak ground acceleration (PGA). Next, the normalized vertical and horizontal responses and mean response spectrum (50%) and the mean plus-one standard deviation (84%) were calculated for all the selected ground motion records at 5% damping. Finally, the mean design spectrum and the mean plus-one standard deviation were plotted for the spectrums. The equation of the mean and the above-mean design spectrum at the Lali tunnel site are also provided, along with our observed conclusions.

  1. Inverse modelling of Köhler theory - Part 1: A response surface analysis of CCN spectra with respect to surface-active organic species

    NASA Astrophysics Data System (ADS)

    Lowe, Samuel; Partridge, Daniel G.; Topping, David; Stier, Philip

    2016-09-01

    In this study a novel framework for inverse modelling of cloud condensation nuclei (CCN) spectra is developed using Köhler theory. The framework is established by using model-generated synthetic measurements as calibration data for a parametric sensitivity analysis. Assessment of the relative importance of aerosol physicochemical parameters, while accounting for bulk-surface partitioning of surface-active organic species, is carried out over a range of atmospherically relevant supersaturations. By introducing an objective function that provides a scalar metric for diagnosing the deviation of modelled CCN concentrations from synthetic observations, objective function response surfaces are presented as a function of model input parameters. Crucially, for the chosen calibration data, aerosol-CCN spectrum closure is confirmed as a well-posed inverse modelling exercise for a subset of the parameters explored herein. The response surface analysis indicates that the appointment of appropriate calibration data is particularly important. To perform an inverse aerosol-CCN closure analysis and constrain parametric uncertainties, it is shown that a high-resolution CCN spectrum definition of the calibration data is required where single-valued definitions may be expected to fail. Using Köhler theory to model CCN concentrations requires knowledge of many physicochemical parameters, some of which are difficult to measure in situ on the scale of interest and introduce a considerable amount of parametric uncertainty to model predictions. For all partitioning schemes and environments modelled, model output showed significant sensitivity to perturbations in aerosol log-normal parameters describing the accumulation mode, surface tension, organic : inorganic mass ratio, insoluble fraction, and solution ideality. Many response surfaces pertaining to these parameters contain well-defined minima and are therefore good candidates for calibration using a Monte Carlo Markov Chain (MCMC

  2. Microelectromechanical acceleration-sensing apparatus

    DOEpatents

    Lee, Robb M.; Shul, Randy J.; Polosky, Marc A.; Hoke, Darren A.; Vernon, George E.

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  3. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  4. SUPERDIFFUSIVE SHOCK ACCELERATION

    SciTech Connect

    Perri, S.; Zimbardo, G.

    2012-05-10

    The theory of diffusive shock acceleration is extended to the case of superdiffusive transport, i.e., when the mean square deviation grows proportionally to t{sup {alpha}}, with {alpha} > 1. Superdiffusion can be described by a statistical process called Levy random walk, in which the propagator is not a Gaussian but it exhibits power-law tails. By using the propagator appropriate for Levy random walk, it is found that the indices of energy spectra of particles are harder than those obtained where a normal diffusion is envisaged, with the spectral index decreasing with the increase of {alpha}. A new scaling for the acceleration time is also found, allowing substantially shorter times than in the case of normal diffusion. Within this framework we can explain a number of observations of flat spectra in various astrophysical and heliospheric contexts, for instance, for the Crab Nebula and the termination shock of the solar wind.

  5. Storm Spectra

    NASA Technical Reports Server (NTRS)

    2007-01-01

    portion is defined by the day/night boundary (known as the terminator).

    These two images illustrate only a small fraction of the information contained in a single LEISA scan, highlighting just one aspect of the power of infrared spectra for atmospheric studies.

  6. Stochastic shock response spectrum decomposition method based on probabilistic definitions of temporal peak acceleration, spectral energy, and phase lag distributions of mechanical impact pyrotechnic shock test data

    NASA Astrophysics Data System (ADS)

    Hwang, James Ho-Jin; Duran, Adam

    2016-08-01

    Most of the times pyrotechnic shock design and test requirements for space systems are provided in Shock Response Spectrum (SRS) without the input time history. Since the SRS does not describe the input or the environment, a decomposition method is used to obtain the source time history. The main objective of this paper is to develop a decomposition method producing input time histories that can satisfy the SRS requirement based on the pyrotechnic shock test data measured from a mechanical impact test apparatus. At the heart of this decomposition method is the statistical representation of the pyrotechnic shock test data measured from the MIT Lincoln Laboratory (LL) designed Universal Pyrotechnic Shock Simulator (UPSS). Each pyrotechnic shock test data measured at the interface of a test unit has been analyzed to produce the temporal peak acceleration, Root Mean Square (RMS) acceleration, and the phase lag at each band center frequency. Maximum SRS of each filtered time history has been calculated to produce a relationship between the input and the response. Two new definitions are proposed as a result. The Peak Ratio (PR) is defined as the ratio between the maximum SRS and the temporal peak acceleration at each band center frequency. The ratio between the maximum SRS and the RMS acceleration is defined as the Energy Ratio (ER) at each band center frequency. Phase lag is estimated based on the time delay between the temporal peak acceleration at each band center frequency and the peak acceleration at the lowest band center frequency. This stochastic process has been applied to more than one hundred pyrotechnic shock test data to produce probabilistic definitions of the PR, ER, and the phase lag. The SRS is decomposed at each band center frequency using damped sinusoids with the PR and the decays obtained by matching the ER of the damped sinusoids to the ER of the test data. The final step in this stochastic SRS decomposition process is the Monte Carlo (MC

  7. Determination of Endpoint Energy and Bremsstrahlung Spectra for High-Energy Radiation-Therapy Beams

    NASA Astrophysics Data System (ADS)

    Landry, Danny Joe

    Few attempts have been made to experimentally determine thick-target bremsstrahlung spectra of megavoltage therapy beams. For spectral studies using the Compton scattering technique, sodium iodine (NaI) detectors with relatively poor energy resolution have been used. Other experimental techniques for determining spectra are generally not suited for a clinical environment with the inherent time and space constraints. To gather more spectral information than previously obtained in the region near the endpoint energy, the use of a high-resolution intrinsic-germanium (Ge) detector was proposed. A response function matrix was determined from experimentally obtained pulse height distributions on the multichannel analyzer. The distributions were for nine various monoenergetic sources between 280 adn 1525 keV. The response function was used to convert the measured pulse height distributions to photon flux spectra using an iterative approximation technique with a computer. Photon flux spectra from the Sagittaire Linear Accelerator were obtained at average-electron endpoint energies of 15, 20, and 25 MeV. Two spectra were measured at the 25 MeV setting; one spectrum was measured along the central axis and one spectrum at 4(DEGREES) off axis. Photon spectra were also obtained for a Van de Graaff generator at the nominal endpoint energies of 2.2, 2.35, and 2.5 MeV. The results for both the linac and the Van de Graaff generator were compared with theoretical spectra and previously measured spectra where available. Also, photon spectra from a Theratron-80 (('60)Co) unit were determined for three field sizes and for a 10 x 10 cm. field with a lucite tray or a 45(DEGREES) wedge in the beam. The resulting spectra were compared to previously measured ('60)Co spectra.

  8. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  9. Seismic design spectra 200 West and East Areas DOE Hanford Site, Washington

    SciTech Connect

    Tallman, A.M.

    1995-12-31

    This document presents equal hazard response spectra for the W236A project for the 200 East and West new high-level waste tanks. The hazard level is based upon WHC-SD-W236A-TI-002, Probabilistic Seismic Hazard Analysis, DOE Hanford Site, Washington. Spectral acceleration amplification is plotted with frequency (Hz) for horizontal and vertical motion and attached to this report. The vertical amplification is based upon the preliminary draft revision of Standard ASCE 4-86. The vertical spectral acceleration is equal to the horizontal at frequencies above 3.3Hz because of near-field, less than 15 km, sources.

  10. Dose and time dependent apoptotic response in a human melanoma cell line exposed to accelerated boron ions at four different LET.

    PubMed

    Meijer, A E; Jernberg, A R-M; Heiden, T; Stenerlöw, B; Persson, L M; Tilly, N; Lind, B K; Edgren, M R

    2005-04-01

    The aim was to investigate and compare the influence of linear energy transfer (LET), dose and time on the induction of apoptosis in a human melanoma cell line exposed to accelerated light boron ((10)B) ions and photons. Cells were exposed in vitro to doses up to 6 Gy accelerated boron ions (40, 80, 125 and 160 eV nm(-1)) and up to 12 Gy photons (0.2 eV nm(-1)). The induction of apoptosis was measured up to 9 days after irradiation using morphological characterization of apoptotic cells and bodies. In parallel, measurements of cell-cycle distribution, monitored by DNA flow cytometry, and cell survival based on the clonogenic cell survival assay, were performed. In addition, the induction and repair of DNA double-strand breaks (DSB), using pulsed-field gel electrophoresis (PFGE) were studied. Accelerated boron ions induced a significant increase in apoptosis as compared with photons at all time points studied. At 1-5 h the percentage of radiation-induced apoptotic cells increased with both dose and LET. At the later time points (24-216 h) the apoptotic response was more complex and did not increase in a strictly LET-dependent manner. The early premitotic apoptotic cells disappeared at 24 h following exposure to the highest LET (160 eV nm(-1)). A postmitotic apoptotic response was seen after release of the dose-, time- and LET-dependent G2/M accumulations. The loss of clonogenic ability was dose- and LET-dependent and the fraction of un-rejoined DSB increased with increasing LET. Despite the LET-dependent clonogenic cell killing, it was not possible to measure quantitatively a LET-dependent apoptotic response. This was due to the different time course of appearance and disappearance of apoptotic cells.

  11. Temporal adaptation of neutrophil oxidative responsiveness to n-formyl-methionyl-leucyl-phenylalanine. Acceleration by granulocyte-macrophage colony stimulating factor.

    PubMed

    English, D; Broxmeyer, H E; Gabig, T G; Akard, L P; Williams, D E; Hoffman, R

    1988-10-01

    This investigation was undertaken to clarify the mechanism by which purified recombinant human granulocyte-macrophage colony stimulating factor (GM-CSF) potentiates neutrophil oxidative responses triggered by the chemotactic peptide, FMLP. Previous studies have shown that GM-CSF priming of neutrophil responses to FMLP is induced relatively slowly, requiring 90 to 120 min of incubation in vitro, is not associated with increased levels of cytoplasmic free Ca2+, but is associated with up-regulation of cell-surface FMLP receptors. We have confirmed these findings and further characterized the process of GM-CSF priming. We found that the effect of GM-CSF on neutrophil oxidative responsiveness was induced in a temperature-dependent manner and was not reversed when the cells were washed extensively to remove the growth factor before stimulation with FMLP. Extracellular Ca2+ was not required for functional enhancement by GM-CSF and GM-CSF alone effected no detectable alteration in the 32P-labeled phospholipid content of neutrophils during incubation in vitro. Our data indicate that GM-CSF exerts its influence on neutrophils by accelerating a process that occurs spontaneously and results in up-regulation of both cell-surface FMLP receptors and oxidative responsiveness to FMLP. Thus, the results demonstrate that, with respect to oxidative activation, circulating endstage polymorphonuclear leukocytes are nonresponsive or hyporesponsive to FMLP; functional responsiveness increases dramatically as surface FMLP receptors are gradually deployed after the cells leave the circulation. Thus, as neutrophils mature, their responsiveness to FMLP changes in a manner which may be crucial for efficient host defense. At 37 degrees C, this process is markedly potentiated by GM-CSF. We conclude that endogenous GM-CSF, released systemically or at sites of infection and inflammation, potentially plays an important role in host defense by accelerating functional maturation of responding

  12. Studies of acceleration processes in the corona using ion measurements on the solar probe mission

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.

    1978-01-01

    The energy spectra and composition of particles escaping from the Sun provide essential information on mechanisms responsible for their acceleration, and may also be used to characterize the regions where they are accelerated and confined and through which they propagate. The suprathermal energy range, which extends from solar wind energies (approximately 1 KeV) to about 1 MeV/nucleon, is of special interest to studies of nonthermal acceleration processes because a large fraction of particles is likely to be accelerated into this energy range. Data obtained from near earth observations of particles in the suprathermal energy range are reviewed. The necessary capabilities of an a ion composition experiment in the solar probe mission and the required ion measurements are discussed. A possible configuration of an instrument consisting of an electrostatic deflection system, modest post acceleration, and a time of flight versus energy system is described as well as its possible location on the spacecraft.

  13. Charged particle acceleration by induction electric field in Neptune magnetotail

    NASA Astrophysics Data System (ADS)

    Vasko, I. Y.; Malova, H. V.; Artemyev, A. V.; Zelenyi, L. M.

    2012-12-01

    The precession of the Neptune magnetic dipole leads to strong dynamics of the magnetosphere and results in continuous transformation from the “Earth-like” configuration to the “pole-on” one and vice versa. In the present work we use simple model of the Neptune magnetotail to investigate the influence of magnetotail topology transformation on particle acceleration and transport through the tail. Energy spectra are obtained for protons penetrating from the solar wind and heavier ions N+ from the Neptune ionosphere. We have found that protons and heavier ions are accelerated up to ∼330 keV and ∼150 keV, respectively. More particles are accelerated and leave the tail during transformations from the “pole-on” configuration to the “Earth-like” one than during inverse transformations. We have shown that the dusk-dawn convection field is responsible for particle leaving through the dawn flank. We briefly compare our results with Voyager-2 observations.

  14. Determinations of Photon Spectra

    DTIC Science & Technology

    1989-01-01

    COVERED O14. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT THESIS/ftFROW*W FROM TO 1989 1 54 16. SUPPLEMENTARY NOTATION A ?RQVk;U kOR 3UB LIC RELEASE...IAW AFR 190- 1 ERNEST A. HAYGOOD, 1st Lt, USAF Executive Officer, Civilian Institution ProQrams 17. COSATI CODES 18. SUBJECT TERMS (Continue on...spectra from measurements obtained with a sodium iodide counting system. A response matrix is computed by combining photon cross sections with

  15. BONE MARROW EXPRESSED ANTIMICROBIAL CATIONIC PEPTIDE LL-37 ENHANCES RESPONSIVENESS OF HEMATOPOIETIC STEM PROGENITOR CELLS TO AN SDF-1 GRADIENT AND ACCELERATES THEIR ENGRAFTMENT AFTER TRANSPLANTATION

    PubMed Central

    Wu, Wan; Kim, Chi Hwa; Liu, Rui; Kucia, Magda; Greco, Nicholas; Ratajczak, Janina; Laughlin, Mary L.; Ratajczak, Mariusz Z.

    2011-01-01

    We report that the bone marrow stroma-released LL-37, a member of the cathelicidin family of antimicrobial peptides, primes/increases responsiveness of murine and human hematopoietic stem/progenitor cells (HSPCs) to an α-chemokine stromal-derived factor-1 (SDF-1) gradient. Accordingly, LL-37 is upregulated in irradiated BM cells and enhances the chemotactic responsiveness of hematopoietic progenitors from all lineages to a low physiological SDF-1 gradient as well as increases their i) adhesiveness, ii) SDF-1-mediated actin polymerization, and iii) MAPKp42/44 phosphorylation. Mice transplanted with bone marrow (BM) cells ex vivo primed by LL-37 showed accelerated recovery of platelet and neutrophil counts by ~3–5 days compared to mice transplanted with unprimed control cells. These priming effects were not mediated by LL-37 binding to its receptor and depended instead on incorporation of the CXCR4 receptor into membrane lipid rafts. We propose that LL-37, which has primarily antimicrobial functions and is harmless to mammalian cells, could be clinically applied to accelerate engraftment as ex vivo priming agent for transplanted human HSPCs. This novel approach would be particularly important in cord blood transplantations, where the number of HSCs available is usually limited. PMID:21931324

  16. Effects of an anti-G suit on the hemodynamic and renal responses to positive /+Gz/ acceleration

    NASA Technical Reports Server (NTRS)

    Shubrooks, S. J., Jr.; Epstein, M.; Duncan, D. C.

    1974-01-01

    The effects of the currently used U.S. Air Force (CSU-12/P) anti-G suit on renal function during positive radial acceleration (+Gz) were assessed in seven normal male subjects in balance on a 200 meq sodium diet. Following suit inflation in the seated position, +2.0 Gz for 30 min resulted in a decrease in the rate of sodium excretion from 125 plus or minus 19 to 60 plus or minus 14 microeq/min, which persisted during a 25-min recovery period. Fractional excretion of sodium also decreased significantly during +Gz. The magnitude of the antinatriuresis was indistinguishable from that observed during +Gz without suit inflation. In contrast to the antinatriuresis observed during centrifugation without suit, however, the antinatriuresis with suit was mediated primarily by an enhanced tubular reabsorption of sodium.

  17. Proton Acceleration at Oblique Shocks

    NASA Astrophysics Data System (ADS)

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-01

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  18. PROTON ACCELERATION AT OBLIQUE SHOCKS

    SciTech Connect

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-20

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  19. Using Solar Gamma Rays to Measure Heavy Accelerated Particles at the Sun

    NASA Astrophysics Data System (ADS)

    Share, G. H.; Murphy, R. J.

    2008-05-01

    Solar flare gamma-ray spectra contain information on heavy (>He) accelerated particle spectra and composition through measurement of highly Doppler broadened (~10%) lines. These gamma-rays are emitted when the nuclei de-excite following their interaction with chromospheric H and He; these are called inverse reactions in contrast to the direct reactions from accelerated p and α-particles that produce narrower lines. The ability to distinguish and measure the broadened features is complicated by their large number, the narrow lines, the presence of strong solar bremsstrahlung and nuclear continua, as well as by instrumental effects. The instrumental continuum from Compton scattering is minimized when the gamma-ray detector has a high photopeak efficiency and is relatively well shielded, as was the case for the Solar Maximum Mission spectrometer (GRS). It is also important that the detector response be well determined. We have constructed a new GRS response matrix based on a Monte Carlo calculation and apply it to spectra from strong nuclear-line flares. We use new theoretical gamma-ray templates derived from nuclear physics calculations for elements such as C, O, Ne, Mg, Si, and Fe to fit the spectra and derive information on the heavy-accelerated ions. This technique can also be applied to data from the RHESSI spectrometer, with its larger Compton continuum, if the instrument response is well determined. This work was supported under NASA Grants NNX07AH81G, NNX07AO74G, and NNG06GG14G.

  20. Discrete telencephalic lesions accelerate the habituation rate of behavioral arousal responses in Siamese fighting fish (Betta splendens).

    PubMed

    Marino-Neto, J; Sabbatini, R M

    1983-10-01

    Stereotaxic electrolytic lesions were made in the dorsomedial telencephalic area, laterally to the dorsal commissure, in male Siamese Fighting Fish (Betta splendens). The startle and orienting responses to regularly delivered taps on the side of the aquarium were recorded for lesioned, sham-operated and unoperated groups. Lesioned fish showed increased reactivity to environmental modifications, including tonic immobility and changes in body color. Although no changes in the arousal responses were detected, the lesioned fish showed an increased frequency of startle responses and habituated to the orienting responses faster than sham-operated and unoperated animals. The long-term inter-session retention of habituation was also decreased. The effects observed are the opposite of those obtained after complete or unilateral telencephalic ablation in teleosts and suggest the existence of antagonic telencephalic systems playing a modulatory role in arousal control.

  1. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  2. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1996-01-01

    1. The dynamic properties of otolith-ocular reflexes elicited by sinusoidal linear acceleration along the three cardinal head axes were studied during off-vertical axis rotations in rhesus monkeys. As the head rotates in space at constant velocity about an off-vertical axis, otolith-ocular reflexes are elicited in response to the sinusoidally varying linear acceleration (gravity) components along the interaural, nasooccipital, or vertical head axis. Because the frequency of these sinusoidal stimuli is proportional to the velocity of rotation, rotation at low and moderately fast speeds allows the study of the mid-and low-frequency dynamics of these otolith-ocular reflexes. 2. Animals were rotated in complete darkness in the yaw, pitch, and roll planes at velocities ranging between 7.4 and 184 degrees/s. Accordingly, otolith-ocular reflexes (manifested as sinusoidal modulations in eye position and/or slow-phase eye velocity) were quantitatively studied for stimulus frequencies ranging between 0.02 and 0.51 Hz. During yaw and roll rotation, torsional, vertical, and horizontal slow-phase eye velocity was sinusoidally modulated as a function of head position. The amplitudes of these responses were symmetric for rotations in opposite directions. In contrast, mainly vertical slow-phase eye velocity was modulated during pitch rotation. This modulation was asymmetric for rotations in opposite direction. 3. Each of these response components in a given rotation plane could be associated with an otolith-ocular response vector whose sensitivity, temporal phase, and spatial orientation were estimated on the basis of the amplitude and phase of sinusoidal modulations during both directions of rotation. Based on this analysis, which was performed either for slow-phase eye velocity alone or for total eye excursion (including both slow and fast eye movements), two distinct response patterns were observed: 1) response vectors with pronounced dynamics and spatial/temporal properties

  3. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  4. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  5. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  6. Wake field acceleration experiments

    SciTech Connect

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics. I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs.

  7. Enhanced SIV replication and accelerated progression to AIDS in macaques primed to mount a CD4 T cell response to the SIV envelope protein

    PubMed Central

    Staprans, Silvija I.; Barry, Ashley P.; Silvestri, Guido; Safrit, Jeffrey T.; Kozyr, Natalia; Sumpter, Beth; Nguyen, Hanh; McClure, Harold; Montefiori, David; Cohen, Jeffrey I.; Feinberg, Mark B.

    2004-01-01

    Given the dual role of CD4 T cells as both immune effectors and targets for HIV infection, the balance of CD4 versus CD8 T cell-mediated responses induced by candidate AIDS vaccines may be critical in determining postvaccination infection outcomes. An attenuated recombinant varicella-zoster virus vaccine expressing the simian immunodeficiency virus (SIV) envelope (Env) elicited nonneutralizing Env-binding antibodies and little if any cytotoxic T lymphocyte responses in rhesus macaques (Macaca mulatta). After challenge with SIV, Env vaccinees manifested increased levels of SIV replication, more rapid CD4 depletion, and accelerated progression to AIDS compared with controls. Enhanced SIV replication correlated with increased CD4 T cell proliferation soon after SIV challenge, apparently the result of an anamnestic response to SIV antigens. Thus activation of virus-specific CD4 T cells at the time of exposure to a CD4 T cell-tropic lentivirus, in the absence of an effective CD8 response, may enhance virus replication and disease. These data suggest suggest that candidate AIDS vaccines may not simply be either efficacious or neutral; they may also have the potential to be harmful. PMID:15326293

  8. Low-dose neutron dose response of zebrafish embryos obtained from the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Kong, E. Y.; Konishi, T.; Kobayashi, A.; Suya, N.; Cheng, S. H.; Yu, K. N.

    2015-09-01

    The dose response of embryos of the zebrafish, Danio rerio, irradiated at 5 h post fertilization (hpf) by 2-MeV neutrons with ≤100 mGy was determined. The neutron irradiations were made at the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility in the National Institute of Radiological Sciences (NIRS), Chiba, Japan. A total of 10 neutron doses ranging from 0.6 to 100 mGy were employed (with a gamma-ray contribution of 14% to the total dose), and the biological effects were studied through quantification of apoptosis at 25 hpf. The responses for neutron doses of 10, 20, 25, and 50 mGy approximately fitted on a straight line, while those for neutron doses of 0.6, 1 and 2.5 mGy exhibited neutron hormetic effects. As such, hormetic responses were generically developed by different kinds of ionizing radiations with different linear energy transfer (LET) values. The responses for neutron doses of 70 and 100 mGy were significantly below the lower 95% confidence band of the best-fit line, which strongly suggested the presence of gamma-ray hormesis.

  9. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  10. Reheat response and accelerated cooling of a microalloyed steel with an air/water atomizer: Effect on microstructure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Pejavar, S. R.; Aswath, P. B.

    1994-04-01

    The use of an atomizer for accelerated cooling is discussed. An atomizer is an effective tool for controlling the microstructure and properties of a microalloyed steel because of its flexibility of operation and control of cooling rate over a broad range of temperatures. Some basic issues regarding heat transfer in pool boiling and in spray cooling also are presented. Reheating response studies were conducted in addition to studies of the effect of accelerated cooling on the microstructure and properties of a low- carbon steel microalloyed with niobium and vanadium. This steel produces a tempered martensitic microstructure on quenching and a predominantly bainitic microstructure at slower cooling rates. The yield, tensile, and fracture strengths can be tailored by controlling the cooling rate, which in turn can be controlled by the air/water ratio and flow rates in the atomizer. Impact toughness is a function of cooling rate and reaches a maximum followed by a decrease, probably due to the formation of upper bainite at lower cooling rates. Fractographic studies indicated that tensile fracture occurred by microvoid coalescence, with the dimple size decreasing as the cooling rate decreased. Charpy impact fracture studies indicated that the primary mode of failure was by quasi- cleavage, with the number of secondary cracks also decreasing as the cooling rate decreased.

  11. Epoch-based likelihood models reveal no evidence for accelerated evolution of viviparity in squamate reptiles in response to cenozoic climate change.

    PubMed

    King, Benedict; Lee, Michael S Y

    2015-09-01

    A broad scale analysis of the evolution of viviparity across nearly 4,000 species of squamates revealed that origins increase in frequency toward the present, raising the question of whether rates of change have accelerated. We here use simulations to show that the increased frequency is within the range expected given that the number of squamate lineages also increases with time. Novel, epoch-based methods implemented in BEAST (which allow rates of discrete character evolution to vary across time-slices) also give congruent results, with recent epochs having very similar rates to older epochs. Thus, contrary to expectations, there was no accelerated burst of origins of viviparity in response to global cooling during the Cenozoic or glacial cycles during the Plio-Pleistocene. However, if one accepts the conventional view that viviparity is more likely to evolve than to be lost, and also the evidence here that viviparity has evolved with similar regularity throughout the last 200 Ma, then the absence of large, ancient clades of viviparous squamates (analogs to therian mammals) requires explanation. Viviparous squamate lineages might be more prone to extinction than are oviparous lineages, due to their prevalance at high elevations and latitudes and thus greater susceptibility to climate fluctuations. If so, the directional bias in character evolution would be offset by the bias in extinction rates.

  12. Acceleration of the loss of the first-phase insulin response during the progression to type 1 diabetes in diabetes prevention trial-type 1 participants.

    PubMed

    Sosenko, Jay M; Skyler, Jay S; Beam, Craig A; Krischer, Jeffrey P; Greenbaum, Carla J; Mahon, Jeffrey; Rafkin, Lisa E; Matheson, Della; Herold, Kevan C; Palmer, Jerry P

    2013-12-01

    We studied the change in the first-phase insulin response (FPIR) during the progression to type 1 diabetes (T1D). Seventy-four oral insulin trial progressors to T1D from the Diabetes Prevention Trial-Type 1 with at least one FPIR measurement after baseline and before diagnosis were studied. The FPIR was examined longitudinally in 26 progressors who had FPIR measurements during each of the 3 years before diagnosis. The association between the change from the baseline FPIR to the last FPIR and time to diagnosis was studied in the remainder (n = 48). The 74 progressors had lower baseline FPIR values than nonprogressors (n = 270), with adjustments made for age and BMI. In the longitudinal analysis of the 26 progressors, there was a greater decline in the FPIR from 1.5 to 0.5 years before diagnosis than from 2.5 to 1.5 years before diagnosis. This accelerated decline was also evident in a regression analysis of the 48 remaining progressors in whom the rate of decline became more marked with the approaching diagnosis. The patterns of decline were similar between the longitudinal and regression analyses. There is an acceleration of decline in the FPIR during the progression to T1D, which becomes especially marked between 1.5 and 0.5 years before diagnosis.

  13. Responses of Spartina alterniflora to Multiple Stressors: Changing Precipitation Patterns, Accelerated Sea Level Rise, and Nutrient Enrichment

    EPA Science Inventory

    Coastal wetlands, well recognized for their ecosystem services, have faced many threats throughout the United States and elsewhere. Managers require good information on responses of wetlands to the combined stressors that these habitats experience, or may in the future as a resul...

  14. An investigation of wing buffeting response at subsonic and transonic speeds. Phase 2: F-111A flight data analysis. Volume 2: Plotted power spectra

    NASA Technical Reports Server (NTRS)

    Benepe, D. B.; Cunningham, A. M., Jr.; Traylor, S., Jr.; Dunmyer, W. D.

    1978-01-01

    Plotted power spectra for all of the flight points examined during the Phase 2 flight data analysis are presented. Detailed descriptions of the aircraft, the flight instrumentation and the analysis techniques are given. Measured and calculated vibration mode frequencies are also presented to assist in further interpretation of the PSD data.

  15. Radiation from Shock-Accelerated Particles

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-ichi; Choi, E. J.; Min, K. W.; Niemiec, J.; Zhang, B.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

    2012-01-01

    Plasma instabilities excited in collisionless shocks are responsible for particle acceleration, generation of magnetic fields , and associated radiation. We have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic jet propagating into an unmagnetized plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. The shock structure depends on the composition of the jet and ambient plasma (electron-positron or electron-ions). Strong electromagnetic fields are generated in the reverse , jet shock and provide an emission site. These magnetic fields contribute to the electron's transverse deflection behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. The detailed properties of the radiation are important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jet shocks, and supernova remnants

  16. Immunization of Newborn Mice Accelerates the Architectural Maturation of Lymph Nodes, But AID-Dependent IgG Responses Are Still Delayed Compared to the Adult

    PubMed Central

    Munguía-Fuentes, Rosario; Yam-Puc, Juan Carlos; Silva-Sánchez, Aarón; Marcial-Juárez, Edith; Gallegos-Hernández, Isis Amara; Calderón-Amador, Juana; Randall, Troy D.; Flores-Romo, Leopoldo

    2017-01-01

    Lymph nodes (LNs) have evolved to maximize antigen (Ag) collection and presentation as well as lymphocyte proliferation and differentiation—processes that are spatially regulated by stromal cell subsets, including fibroblastic reticular cells (FRCs) and follicular dendritic cells (FDCs). Here, we showed that naïve neonatal mice have poorly organized LNs with few B and T cells and undetectable FDCs, whereas adult LNs have numerous B cells and large FDC networks. Interestingly, immunization on the day of birth accelerated B cell accumulation and T cell recruitment into follicles as well as FDC maturation and FRC organization in neonatal LNs. However, compared to adults, the formation of germinal centers was both delayed and reduced following immunization of neonatal mice. Although immunized neonates poorly expressed activation-induced cytidine deaminase (AID), they were able to produce Ag-specific IgGs, but with lower titers than adults. Interestingly, the Ag-specific IgM response in neonates was similar to that in adults. These results suggest that despite an accelerated structural maturation of LNs in neonates following vaccination, the B cell response is still delayed and reduced in its ability to isotype switch most likely due to poor AID expression. Of note, naïve pups born to Ag-immunized mothers had high titers of Ag-specific IgGs from day 0 (at birth). These transferred antibodies confirm a mother-derived coverage to neonates for Ags to which mothers (and most likely neonates) are exposed, thus protecting the neonates while they produce their own antibodies. Finally, the type of Ag used in this study and the results obtained also indicate that T cell help would be operating at this stage of life. Thus, neonatal immune system might not be intrinsically immature but rather evolutionary adapted to cope with Ags at birth. PMID:28154564

  17. Control spectra for Quito

    NASA Astrophysics Data System (ADS)

    Aguiar, Roberto; Rivas-Medina, Alicia; Caiza, Pablo; Quizanga, Diego

    2017-03-01

    The Metropolitan District of Quito is located on or very close to segments of reverse blind faults, Puengasí, Ilumbisí-La Bota, Carcelen-El Inca, Bellavista-Catequilla and Tangahuilla, making it one of the most seismically dangerous cities in the world. The city is divided into five areas: south, south-central, central, north-central and north. For each of the urban areas, elastic response spectra are presented in this paper, which are determined by utilizing some of the new models of the Pacific Earthquake Engineering Research Center (PEER) NGA-West2 program. These spectra are calculated considering the maximum magnitude that could be generated by the rupture of each fault segment, and taking into account the soil type that exists at different points of the city according to the Norma Ecuatoriana de la Construcción (2015). Subsequently, the recurrence period of earthquakes of high magnitude in each fault segment is determined from the physical parameters of the fault segments (size of the fault plane and slip rate) and the pattern of recurrence of type Gutenberg-Richter earthquakes with double truncation magnitude (Mmin and Mmax) is used.

  18. Locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals as detected by green fluorescent protein (GFP)-like pigments

    NASA Astrophysics Data System (ADS)

    D'Angelo, C.; Smith, E. G.; Oswald, F.; Burt, J.; Tchernov, D.; Wiedenmann, J.

    2012-12-01

    Homologs of the green fluorescent protein (GFP) are a prevalent group of host pigments responsible for the green, red and purple-blue colours of many reef-building corals. They have been suggested to contribute to the striking coloration changes of different corals species in response to wounding and infestation with epibionts/parasites. In order to elucidate the physiological processes underlying the potentially disease-related colour changes, we have analysed spatial and temporal expression patterns of GFP-like proteins and other biomarkers in corals from the Red Sea, the Arabian/Persian Gulf and Fiji both in their natural habitat and under specific laboratory conditions. The expression of distinct GFP-like proteins and the growth marker proliferating cell nuclear antigen was upregulated in growing branch tips and margins of healthy coral colonies as well as in disturbed colony parts. Furthermore, phenoloxidase activity increased in these proliferating tissues. It is thus demonstrated that locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals and, moreover, these processes can be detected utilizing the excellent biomarker properties of GFP-like proteins. Finally, the results of this work suggest an additional vulnerability of corals in predicted future scenarios of increased ocean acidification, warming and eutrophication that are anticipated to reduce coral growth capacity.

  19. Energetic Ion Acceleration by Small-scale Solar Wind Flux Ropes

    NASA Astrophysics Data System (ADS)

    le Roux, J. A.; Webb, G. M.; Zank, G. P.; Khabarova, O.

    2015-09-01

    We consider different limits of our recently developed kinetic transport theory to investigate the potential of supersonic solar wind regions containing several small-scale flux ropes to explain the acceleration of suprathermal ions to power-law spectra as observations show. Particle acceleration is modeled in response to flux-rope activity involving contraction, merging (reconnection), and collisions in the limit where the particle gyoradius is smaller than the characteristic flux-rope scale length. The emphasis is mainly on the statistical variance in the electric fields induced by flux-rope dynamics rather than on the mean electric field induced by multiple flux ropes whose acceleration effects are discussed elsewhere. Our steady-state analytical solutions suggest that ion drift acceleration by flux ropes, irrespective of whether displaying incompressible or compressible behavior, can yield power laws asymptotically at higher energies whereas an exponential spectral rollover results asymptotically when field-aligned guiding center motion acceleration occur by reconnection electric fields from merging flux ropes. This implies that at sufficiently high particle energies, drift acceleration might dominate. We also expect compressive flux ropes to yield harder power-law spectra than incompressible flux ropes.

  20. Acceleration Studies

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.

    1993-01-01

    Work to support the NASA MSFC Acceleration Characterization and Analysis Project (ACAP) was performed. Four tasks (analysis development, analysis research, analysis documentation, and acceleration analysis) were addressed by parallel projects. Work concentrated on preparation for and implementation of near real-time SAMS data analysis during the USMP-1 mission. User support documents and case specific software documentation and tutorials were developed. Information and results were presented to microgravity users. ACAP computer facilities need to be fully implemented and networked, data resources must be cataloged and accessible, future microgravity missions must be coordinated, and continued Orbiter characterization is necessary.

  1. Reactor Neutrino Spectra

    NASA Astrophysics Data System (ADS)

    Hayes, Anna C.; Vogel, Petr

    2016-10-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these spectra and their associated uncertainties is crucial for neutrino oscillation studies. The spectra used to date have been determined either by converting measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that make up the spectra, using modern databases as input. The uncertainties in the subdominant corrections to β-decay plague both methods, and we provide estimates of these uncertainties. Improving on current knowledge of the antineutrino spectra from reactors will require new experiments. Such experiments would also address the so-called reactor neutrino anomaly and the possible origin of the shoulder observed in the antineutrino spectra measured in recent high-statistics reactor neutrino experiments.

  2. Hair-type sheep generate an accelerated and longer-lived humoral immune response to Haemonchus contortus infection.

    PubMed

    Bowdridge, Scott; MacKinnon, Kathryn; McCann, Joshua C; Zajac, Anne M; Notter, David R

    2013-09-01

    Antibody levels produced in response to gastro-intestinal nematode (GIN) parasite infection are typically higher in GIN-resistant breeds than susceptible breeds. Consequently, GIN-resistant ewes should generate greater parasite-specific antibody in colostrum and milk, potentially providing greater passive immunity to young lambs. To test this hypothesis, we monitored immunoglobulin levels in wool and hair-type sheep infected with Haemonchus contortus for 35 days following the end of a 45-day autumn breeding season and subsequently for 6 weeks around the time of parturition. Ten, first-parity ewes of each type were infected with 12,000 H. contortus L3 larvae following the end of breeding. In response to infection, hair ewes generated greater serum IgA (P<0.05), although the pattern of IgA production was similar between the types. Following experimental infection, wool ewes were incapable of clearing the parasite infection well in advance of parturition. Prior to parturition, hair ewes had lower FEC and greater circulating H. contortus-specific IgA. However, no difference was seen in total or antigen-specific IgA production in the colostrum and milk of either breed. These data further demonstrate that hair-type sheep can rapidly reduce fecal egg output and generate greater humoral immunity as evidenced by higher levels of circulating antigen-specific antibody, but there is no evidence to suggest GIN-resistant sheep preferentially mobilize antigen-specific IgA to colostrum or milk. Thus, no clear difference exists between types of sheep in ability to deliver parasite-specific IgA to their offspring.

  3. Radiation from Accelerated Particles in Shocks and Reconnections

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Choi, E. J.; Min, K. W.; Niemiec, J.; Zhang, B.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

    2012-01-01

    Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. Our initial results of a jet-ambient interaction with anti-parallelmagnetic fields show pile-up of magnetic fields at the colliding shock, which may lead to reconnection and associated particle acceleration. We will investigate the radiation in a transient stage as a possible generation mechanism of precursors of prompt emission. In our simulations we calculate the radiation from electrons in the shock region. The detailed properties of this radiation are important for understanding the complex time evolution and spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  4. 3-D RPIC simulations of relativistic jets: Particle acceleration, magnetic field generation, and emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing (relativistic) jets and shocks, e.g., supernova remnants, active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the .shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations which show particle acceleration in jets.

  5. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  6. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  7. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  8. Western-style diet modulates contractile responses to phenylephrine differently in mesenteric arteries from senescence-accelerated prone (SAMP8) and resistant (SAMR1) mice.

    PubMed

    Jiménez-Altayó, Francesc; Onetti, Yara; Heras, Magda; Dantas, Ana P; Vila, Elisabet

    2013-08-01

    The influence of two known cardiovascular risk factors, aging and consumption of a high-fat diet, on vascular mesenteric artery reactivity was examined in a mouse model of accelerated senescence (SAM). Five-month-old SAM prone (SAMP8) and resistant (SAMR1) female mice were fed a Western-type high-fat diet (WD; 8 weeks). Mesenteric arteries were dissected, and vascular reactivity, protein and messenger RNA expression, superoxide anion (O 2 (·-) ) and hydrogen peroxide formation were evaluated by wire myography, immunofluorescence, RT-qPCR, ethidium fluorescence and ferric-xylenol orange, respectively. Contraction to KCl and relaxation to acetylcholine remained unchanged irrespective of senescence and diet. Although similar contractions to phenylephrine were observed in SAMR1 and SAMP8, accelerated senescence was associated with decreased eNOS and nNOS and increased O 2 (·-) synthesis. Senescence-related alterations were compensated, at least partly, by the contribution of NO derived from iNOS and the enhanced endogenous antioxidant capacity of superoxide dismutase 1 to maintain vasoconstriction. Administration of a WD induced qualitatively different alterations in phenylephrine contractions of mesenteric arteries from SAMR1 and SAMP8. SAMR1 showed increased contractions partly as a result of decreased NO availability generated by decreased eNOS and nNOS and enhanced O 2 (·-) formation. In contrast, WD feeding in SAMP8 resulted in reduced contractions due to, at least in part, the increased functional participation of iNOS-derived NO. In conclusion, senescence-dependent intrinsic alterations during early stages of vascular senescence may promote vascular adaptation and predispose to further changes in response to high-fat intake, which may lead to the progression of aging-related cardiovascular disease, whereas young subjects lack the capacity for this adaptation.

  9. Constitutive gp130 activation rapidly accelerates the transformation of human hepatocytes via an impaired oxidative stress response

    PubMed Central

    Herden, Johannes; Parplys, Ann Christin; Borgmann, Kerstin; Schmidt-Arras, Dirk; Lohse, Ansgar W.; Rose-John, Stefan; Wege, Henning

    2016-01-01

    Pro-inflammatory signaling pathways, especially interleukin 6 (IL-6), and reactive oxygen species (ROS) promote carcinogenesis in the liver. In order to elucidate the underlying oncogenic mechanism, we activated the IL-6 signal transducer glycoprotein 130 (gp130) via stable expression of a constitutively active gp130 construct (L-gp130) in untransformed telomerase-immortalized human fetal hepatocytes (FH-hTERT). As known from hepatocellular adenomas, forced gp130 activation alone was not sufficient to induce malignant transformation. However, additional challenge of FH-hTERT L-gp130 clones with oxidative stress resulted in 2- to 3-fold higher ROS levels and up to 6-fold more DNA-double strand breaks (DSB). Despite increased DNA damage, ROS-challenged FH-hTERT L-gp130 clones displayed an enhanced proliferation and rapidly developed colony growth capabilities in soft agar. As driving gp130-mediated oncogenic mechanism, we detected a decreased expression of antioxidant genes, in particular glutathione peroxidase 3 and apolipoprotein E, and an absence of P21 upregulation following ROS-conferred induction of DSB. In summary, an impaired oxidative stress response in hepatocytes with gp130 gain-of-function mutations, as detected in dysplastic intrahepatic nodules and hepatocellular adenomas, is one of the central oncogenic mechanisms in chronic liver inflammation. PMID:27489351

  10. Particle Accelerators in China

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Fang, Shouxian

    As the special machines that can accelerate charged particle beams to high energy by using electromagnetic fields, particle accelerators have been widely applied in scientific research and various areas of society. The development of particle accelerators in China started in the early 1950s. After a brief review of the history of accelerators, this article describes in the following sections: particle colliders, heavy-ion accelerators, high-intensity proton accelerators, accelerator-based light sources, pulsed power accelerators, small scale accelerators, accelerators for applications, accelerator technology development and advanced accelerator concepts. The prospects of particle accelerators in China are also presented.

  11. The Galactic Center: A Petaelectronvolt Cosmic-ray Acceleration Factory

    NASA Astrophysics Data System (ADS)

    Guo, Yi-Qing; Tian, Zhen; Wang, Zhen; Li, Hai-Jin; Chen, Tian-Lu

    2017-02-01

    The multiteraelectronvolt γ-rays from the galactic center (GC) have a cutoff at tens of teraelectronvolts, whereas the diffuse emission has no such cutoff, which is regarded as an indication of petaelectronvolt proton acceleration by the HESS experiment. It is important to understand the inconsistency and study the possibility that petaelectronvolt cosmic-ray acceleration could account for the apparently contradictory point and diffuse γ-ray spectra. In this work, we propose that the cosmic rays are accelerated up to greater than petaelectronvolts in the GC. The interaction between cosmic rays and molecular clouds is responsible for the multiteraelectronvolt γ-ray emissions from both the point and diffuse sources today. Enhanced by the small volume filling factor (VFF) of the clumpy structure, the absorption of the γ-rays leads to a sharp cutoff spectrum at tens of teraelectronvolts produced in the GC. Away from the GC, the VFF grows, and the absorption enhancement becomes negligible. As a result, the spectra of γ-ray emissions for both point and diffuse sources can be successfully reproduced under such a self-consistent picture. In addition, a “surviving tail” at ∼100 TeV is expected from the point source, which can be observed by future projects CTA and LHAASO. Neutrinos are simultaneously produced during proton-proton (PP) collision. With 5–10 years of observations, the KM3Net experiment will be able to detect the petaelectronvolt source according to our calculation.

  12. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  13. Laser acceleration

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  14. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  15. Second-Order Fermi Acceleration and Emission in Blazar Jets

    NASA Astrophysics Data System (ADS)

    Asano, Katsuaki; Takahara, Fumio; Toma, Kenji; Kusunose, Masaaki; Kakuwa, Jun

    The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations, adopt it for 1ES 1101-232, and Mrk 421. The Fermi-II model with radial evolution of the electron injection rate and/or diffusion coefficient can reproduce the spectra from the radio to the gamma-ray regime. For Mrk 421, an external radio photon field with a luminosity of 4.9 begin{math} {times} 10 (38) erg s (-1) is required to agree with the observed GeV flux. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.

  16. Gravitational effects on planetary neutron flux spectra

    NASA Astrophysics Data System (ADS)

    Feldman, W. C.; Drake, D. M.; O'dell, R. D.; Brinkley, F. W.; Anderson, R. C.

    1989-01-01

    The effects of gravity on the planetary neutron flux spectra for planet Mars, and the lifetime of the neutron, were investigated using a modified one-dimensional diffusion accelerated neutral-particle transport code, coupled with a multigroup cross-section library tailored specifically for Mars. The results showed the presence of a qualitatively new feature in planetary neutron leakage spectra in the form of a component of returning neutrons with kinetic energies less than the gravitational binding energy (0.132 eV for Mars). The net effect is an enhancement in flux at the lowest energies that is largest at and above the outermost layer of planetary matter.

  17. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  18. Eigenvectors of optimal color spectra.

    PubMed

    Flinkman, Mika; Laamanen, Hannu; Tuomela, Jukka; Vahimaa, Pasi; Hauta-Kasari, Markku

    2013-09-01

    Principal component analysis (PCA) and weighted PCA were applied to spectra of optimal colors belonging to the outer surface of the object-color solid or to so-called MacAdam limits. The correlation matrix formed from this data is a circulant matrix whose biggest eigenvalue is simple and the corresponding eigenvector is constant. All other eigenvalues are double, and the eigenvectors can be expressed with trigonometric functions. Found trigonometric functions can be used as a general basis to reconstruct all possible smooth reflectance spectra. When the spectral data are weighted with an appropriate weight function, the essential part of the color information is compressed to the first three components and the shapes of the first three eigenvectors correspond to one achromatic response function and to two chromatic response functions, the latter corresponding approximately to Munsell opponent-hue directions 9YR-9B and 2BG-2R.

  19. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  20. Crack spectra analysis

    SciTech Connect

    Tiernan, M.

    1980-09-01

    Crack spectra derived from velocity data have been shown to exhibit systematics which reflect microstructural and textural differences between samples (Warren and Tiernan, 1980). Further research into both properties and information content of crack spectra have yielded the following: Spectral features are reproducible even at low pressures; certain observed spectral features may correspond to non-in-situ crack populations created during sample retrieval; the functional form of a crack spectra may be diagnostic of the sample's grain texture; hysteresis is observed in crack spectra between up and down pressure runs - it may be due to friction between the faces of closed crack populations.

  1. Photographic spectra of fireballs

    NASA Astrophysics Data System (ADS)

    Borovička, J.

    2016-01-01

    Two methods of spectroscopy of meteors using image intensified video cameras and classical photographic film cameras are compared. Video cameras provide large number of low resolution spectra of meteors of normal brightness, which can be used for statistical studies. Large format film cameras have been used through the history and provide high resolution spectra, which can be used to derive temperature, density and absolute abundances of various elements in the radiating plasma. The sensitivity of films is, however, low and only spectra of bright meteors (fireballs) can be studied. Examples of photographic fireball spectra are provided.

  2. Impact accelerations

    NASA Technical Reports Server (NTRS)

    Vongierke, H. E.; Brinkley, J. W.

    1975-01-01

    The degree to which impact acceleration is an important factor in space flight environments depends primarily upon the technology of capsule landing deceleration and the weight permissible for the associated hardware: parachutes or deceleration rockets, inflatable air bags, or other impact attenuation systems. The problem most specific to space medicine is the potential change of impact tolerance due to reduced bone mass and muscle strength caused by prolonged weightlessness and physical inactivity. Impact hazards, tolerance limits, and human impact tolerance related to space missions are described.

  3. Metformin and the ATM DNA damage response (DDR): accelerating the onset of stress-induced senescence to boost protection against cancer.

    PubMed

    Menendez, Javier A; Cufí, Sílvia; Oliveras-Ferraros, Cristina; Martin-Castillo, Begoña; Joven, Jorge; Vellon, Luciano; Vazquez-Martin, Alejandro

    2011-11-01

    By activating the ataxia telangiectasia mutated (ATM)-mediated DNA Damage Response (DDR), the AMPK agonist metformin might sensitize cells against further damage, thus mimicking the precancerous stimulus that induces an intrinsic barrier against carcinogenesis. Herein, we present the new hypothesis that metformin might function as a tissue sweeper of pre-malignant cells before they gain stem cell/tumor initiating properties. Because enhanced glycolysis (the Warburg effect) plays a causal role in the gain of stem-like properties of tumor-initiating cells by protecting them from the pro-senescent effects of mitochondrial respiration-induced oxidative stress, metformin's ability to disrupt the glycolytic metabotype may generate a cellular phenotype that is metabolically protected against immortalization. The bioenergetic crisis imposed by metformin, which may involve enhanced mitochondrial biogenesis and oxidative stress, can lower the threshold for cellular senescence by pre-activating an ATM-dependent pseudo-DDR. This allows an accelerated onset of cellular senescence in response to additional oncogenic stresses. By pushing cancer cells to use oxidative phosphorylation instead of glycolysis, metformin can rescue cell surface major histocompatibility complex class I (MHC-I) expression that is downregulated by oncogenic transformation, a crucial adaptation of tumor cells to avoid the adaptive immune response by cytotoxic T-lymphocytes (CTLs). Aside from restoration of tumor immunosurveillance at the cell-autonomous level, metformin can activate a senescence-associated secretory phenotype (SASP) to reinforce senescence growth arrest, which might trigger an immune-mediated clearance of the senescent cells in a non-cell-autonomous manner. By diminishing the probability of escape from the senescence anti-tumor barrier, the net effect of metformin should be a significant decrease in the accumulation of dysfunctional, pre-malignant cells in tissues, including those with the

  4. T cells from baxalpha transgenic mice show accelerated apoptosis in response to stimuli but do not show restored DNA damage-induced cell death in the absence of p53.

    PubMed Central

    Brady, H J; Salomons, G S; Bobeldijk, R C; Berns, A J

    1996-01-01

    Baxalpha was isolated due to its interaction with Bcl-2. Baxalpha overexpression in an interleukin (IL)-3 dependent cell line accelerates apoptosis upon removal of the cytokine. The ratio of Baxalpha to Bcl-2 appears to be crucial for the effect. To study the action of the bax gene product in vivo, we have generated transgenic mice overexpressing Baxalpha specifically in T cells. Such T cells show accelerated apoptosis in response to gamma-radiation, dexamethasone and etoposide. By crossing baxalpha mice with bcl-2 transgenics we show that the critical nature of the Baxalpha:Bcl-2 ratio holds in primary T cells and that it can be manipulated to elicit a strong response to previously resisted stimuli. p53 has a role in the regulation of apoptosis in response to DNA-damaging agents. p53 directly activates transcription of the bax gene. The presence of the baxalpha transgene accelerated apoptosis in thymocytes from both p53-l- and p53+l- mice in response to dexamethasone. Thymocytes from p53-l- mice with the baxalpha transgene showed similar resistance to apoptosis by DNA-damaging agents as did p53-l- mice without the transgene. Baxalpha overexpression alone cannot restore the DNA damage apoptosis pathway, suggesting that p53 is required to induce or activate other factor(s) to reconstitute the response fully. Images PMID:8635454

  5. Action spectra for photosynthetic inhibition

    NASA Technical Reports Server (NTRS)

    Caldwell, M. M.; Flint, S.; Camp, L. B.

    1981-01-01

    The ultraviolet action spectrum for photosynthesis inhibition was determined to fall between that of the general DNA action spectrum and the generalized plant action spectrum. The characteristics of this action spectrum suggest that a combination of pronounced increase in effectiveness with decreasing wavelength, substantial specificity for the UV-B waveband, and very diminished response in the UV-A waveband result in large radiation amplification factors when the action spectra are used as weighting functions. Attempted determination of dose/response relationships for leaf disc inhibition provided inconclusive data from which to deconvolute an action spectrum.

  6. Monte Carlo simulations of particle acceleration at oblique shocks

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Ellison, Donald C.; Jones, Frank C.

    1994-01-01

    The Fermi shock acceleration mechanism may be responsible for the production of high-energy cosmic rays in a wide variety of environments. Modeling of this phenomenon has largely focused on plane-parallel shocks, and one of the most promising techniques for its study is the Monte Carlo simulation of particle transport in shocked fluid flows. One of the principal problems in shock acceleration theory is the mechanism and efficiency of injection of particles from the thermal gas into the accelerated population. The Monte Carlo technique is ideally suited to addressing the injection problem directly, and previous applications of it to the quasi-parallel Earth bow shock led to very successful modeling of proton and heavy ion spectra, as well as other observed quantities. Recently this technique has been extended to oblique shock geometries, in which the upstream magnetic field makes a significant angle Theta(sub B1) to the shock normal. Spectral resutls from test particle Monte Carlo simulations of cosmic-ray acceleration at oblique, nonrelativistic shocks are presented. The results show that low Mach number shocks have injection efficiencies that are relatively insensitive to (though not independent of) the shock obliquity, but that there is a dramatic drop in efficiency for shocks of Mach number 30 or more as the obliquity increases above 15 deg. Cosmic-ray distributions just upstream of the shock reveal prominent bumps at energies below the thermal peak; these disappear far upstream but might be observable features close to astrophysical shocks.

  7. Radiation from Accelerated Particles in Shocks and Reconnections

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Zhang, B.; Niemiec, J.; Medvedev, M.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J. T.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

    2011-01-01

    Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. We are currently investigating the specific case of a jet colliding with an anti-parallel magnetized ambient medium. The properties of the radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants.

  8. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  9. Photon spectral characteristics of dissimilar 6 MV linear accelerators.

    PubMed

    Hinson, William H; Kearns, William T; deGuzman, Allan F; Bourland, J Daniel

    2008-05-01

    This work measures and compares the energy spectra of four dosimetrically matched 6 MV beams, generated from four physically different linear accelerators. The goal of this work is twofold. First, this study determines whether the spectra of dosimetrically matched beams are measurably different. This study also demonstrates that the spectra of clinical photon beams can be measured as a part of the beam data collection process for input to a three-dimensional (3D) treatment planning system. The spectra of 6 MV beams that are dosimetrically matched for clinical use were studied to determine if the beam spectra are similarly matched. Each of the four accelerators examined had a standing waveguide, but with different physical designs. The four accelerators were two Varian 2100C/Ds (one 6 MV/18 MV waveguide and one 6 MV/10 MV waveguide), one Varian 600 C with a vertically mounted waveguide and no bending magnet, and one Siemens MD 6740 with a 6 MV/10 MV waveguide. All four accelerators had percent depth dose curves for the 6 MV beam that were matched within 1.3%. Beam spectra were determined from narrow beam transmission measurements through successive thicknesses of pure aluminum along the central axis of the accelerator, made with a graphite Farmer ion chamber with a Lucite buildup cap. An iterative nonlinear fit using a Marquardt algorithm was used to find each spectrum. Reconstructed spectra show that all four beams have similar energy distributions with only subtle differences, despite the differences in accelerator design. The measured spectra of different 6 MV beams are similar regardless of accelerator design. The measured spectra show excellent agreement with those found by the auto-modeling algorithm in a commercial 3D treatment planning system that uses a convolution dose calculation algorithm. Thus, beam spectra can be acquired in a clinical setting at the time of commissioning as a part of the routine beam data collection.

  10. Coastal response to accelerated sea-level rise (>4 mm/yr) based on early-mid Holocene coastal evolution in the northwestern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Anderson, J. B.; Rodriguez, A. B.; Simms, A.

    2009-12-01

    There is growing consensus that the rate of sea level rise by the end of this century will reach, and possibly exceed, 5 mm/yr. Predictions as to how sea-level rise will impact coasts often rely on passive inundation models that simply flood the coastal landscape. However, the geological record clearly shows that coastal response to past sea-level rise was more complex, mainly due to differences in sediment supply and subsidence. Ultimately, coastal submergence and erosion depend on whether coastal environments are capable of aggrading as fast as sea-level rises, and this is largely dependent on sediment supply and, in the case of wetlands, vegetation growth. It has been 7000 years since sea level was rising at a rate of 5 mm/yr in the northern Gulf of Mexico. After approximately 4000 cal yrs BP the rate of rise decreased to less than 1 mm/yr. The rate has more than doubled in historical time. An analysis of shoreline and bayline change in Texas and western Louisiana during the past 9000 years shows that coastal retreat was quite episodic, with episodes of widespread and pronounced change that lasted a few centuries. During these episodes, the larger bays of the region (Calcasieu Lake, Sabine Lake, Galveston Bay, Matagorda Bay and Corpus Christi Bay) experienced major re-organization of estuarine environments. Within the limits of radiocarbon precision (a few centuries due to poorly constrained regional carbon reservoir variations) these events appear to have been contemporaneous. This begs the question, where these events caused by short-lived increases in the rate of rise or do they reflect a threshold response of coastal systems to an overall rise that averaged 4.0 mm/yr? This was a time when the West Antarctic ice sheet was experiencing its final stages of retreat from the inner continental shelf and inland passages, which could have resulted in rapid sea-level events of a few decimeters, below the resolution of Gulf of Mexico sea-level curves. These results

  11. Lily Pad Spectra

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The color image on the lower left from the panoramic camera on the Mars Exploration Rover Opportunity shows the 'Lily Pad' bounce-mark area at Meridiani Planum, Mars. This image was acquired on the 3rd sol, or martian day, of Opportunity's mission (Jan.26, 2004). The upper left image is a monochrome (single filter) image from the rover's panoramic camera, showing regions from which spectra were extracted from the 'Lily Pad' area. As noted by the line graph on the right, the green spectra is from the undisturbed surface and the red spectra is from the airbag bounce mark.

  12. Electron Acceleration by High Power Radio Waves in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Bernhardt, Paul

    2012-10-01

    At the highest ERP of the High Altitude Auroral Research Program (HAARP) facility in Alaska, high frequency (HF) electromagnetic (EM) waves in the ionosphere produce artificial aurora and electron-ion plasma layers. Using HAARP, electrons are accelerated by high power electrostatic (ES) waves to energies >100 times the thermal temperature of the ambient plasma. These ES waves are driven by decay of the pump EM wave tuned to plasma resonances. The most efficient acceleration process occurs near the harmonics of the electron cyclotron frequency in earth's magnetic field. Mode conversion plays a role in transforming the ES waves into EM signals that are recorded with ground receivers. These diagnostic waves, called stimulated EM emissions (SEE), show unique resonant signatures of the strongest electron acceleration. This SEE also provides clues about the ES waves responsible for electron acceleration. The electron gas is accelerated by high frequency modes including Langmuir (electron plasma), upper hybrid, and electron Bernstein waves. All of these waves have been identified in the scattered EM spectra as downshifted sidebands of the EM pump frequency. Parametric decay is responsible low frequency companion modes such as ion acoustic, lower hybrid, and ion Bernstein waves. The temporal evolution of the scattered EM spectrum indicates development of field aligned irregularities that aid the mode conversion process. The onset of certain spectral features is strongly correlated with glow plasma discharge structures that are both visible with the unaided eye and detectable using radio backscatter techniques at HF and UHF frequencies. The primary goals are to understand natural plasma layers, to study basic plasma physics in a unique ``laboratory with walls,'' and to create artificial plasma structures that can aid radio communications.

  13. EGRET High Energy Capability and Multiwavelength Flare Studies and Solar Flare Proton Spectra

    NASA Technical Reports Server (NTRS)

    Chupp, Edward L.

    1997-01-01

    UNH was assigned the responsibility to use their accelerator neutron measurements to verify the TASC response function and to modify the TASC fitting program to include a high energy neutron contribution. Direct accelerator-based measurements by UNH of the energy-dependent efficiencies for detecting neutrons with energies from 36 to 720 MeV in NaI were compared with Monte Carlo TASC calculations. The calculated TASC efficiencies are somewhat lower (by about 20%) than the accelerator results in the energy range 70-300 MeV. The measured energy-loss spectrum for 207 MeV neutron interactions in NaI were compared with the Monte Carlo response for 200 MeV neutrons in the TASC indicating good agreement. Based on this agreement, the simulation was considered to be sufficiently accurate to generate a neutron response library to be used by UNH in modifying the TASC fitting program to include a neutron component in the flare spectrum modeling. TASC energy-loss data on the 1991 June 11 flare was transferred to UNH. Also included appendix: Gamma-rays and neutrons as a probe of flare proton spectra: the solar flare of 11 June 1991.

  14. ACCELERATION INTEGRATING MEANS

    DOEpatents

    Wilkes, D.F.

    1961-08-29

    An acceleration responsive device is described. A housing has at one end normally open electrical contacts and contains a piston system with a first part of non-magnetic material having metering orifices in the side walls for forming an air bearing between it and the walls of the housing; this first piston part is normally held against the other end of the housing from the noted contacts by a second piston or reset part. The reset part is of partly magnetic material, is separable from the flrst piston part, and is positioned within the housing intermediate the contacts and the first piston part. A magnet carried by the housing imposes a retaining force upon the reset part, along with a helical compression spring that is between the reset part and the end with the contacts. When a predetermined acceleration level is attained, the reset part overcomes the bias or retaining force provided by the magnet and the spring'' snaps'' into a depression in the housing adjacent the contacts. The first piston part is then free to move toward the contacts with its movement responsive tc acceleration forces and the metering orifices. (AEC)

  15. Electron acceleration to high energies at quasi-parallel shock waves in the solar corona

    NASA Technical Reports Server (NTRS)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves are generated by flares and/or coronal mass ejections. They manifest themselves in solar type 2 radio bursts appearing as emission stripes with a slow drift from high to low frequencies in dynamic radio spectra. Their nonthermal radio emission indicates that electrons are accelerated to suprathermal and/or relativistic velocities at these shocks. As well known by extraterrestrial in-situ measurements supercritical, quasi-parallel, collisionless shocks are accompanied by so-called SLAMS (short large amplitude magnetic field structures). These SLAMS can act as strong magnetic mirrors, at which charged particles can be reflected and accelerated. Thus, thermal electrons gain energy due to multiple reflections between two SLAMS and reach suprathermal and relativistic velocities. This mechanism of accelerating electrons is discussed for circumstances in the solar corona and may be responsible for the so-called 'herringbones' observed in solar type 2 radio bursts.

  16. An investigation of wing buffeting response at subsonic and transonic speeds. Phase 1: F-111A flight data analysis. Volume 2: Plotted power spectra

    NASA Technical Reports Server (NTRS)

    Benepe, D. B.; Cunningham, A. M., Jr.; Dunmyer, W. D.

    1978-01-01

    Volume 2 of this three volume report is presented. This volume presents plotted variations of power spectral density data with frequency for each structural response item for each data sampled and analyzed during the course of the investigation. Some of the information contained in Volume 1 are repeated to allow the reader to identify the specific conditions appropriate to each plot presented and to interpret the data.

  17. Mesozooplankton size structure in response to environmental conditions in the East China Sea: How much does size spectra theory fit empirical data of a dynamic coastal area?

    NASA Astrophysics Data System (ADS)

    García-Comas, Carmen; Chang, Chun-Yi; Ye, Lin; Sastri, Akash R.; Lee, Yu-Ching; Gong, Gwo-Ching; Hsieh, Chih-hao

    2014-02-01

    A fundamental ecological trait of marine organisms is body size. Various theoretical models have used the size distribution of plankton communities to explain their trophic structure and functioning. Recent studies indicate that changes associated with global warming, eutrophication, and fisheries might have dramatically shifted the size structure of marine organisms and thus changed ecosystem functioning. Accordingly, size structure has been suggested as a useful indicator for monitoring ecosystem status. Here, we used three size metrics to represent mesozooplankton size structure: the slope of normalized biomass spectra (NB-SS), NB-SS linear fit, and size diversity. We analyzed the relationship between zooplankton size structure and environmental conditions in the very dynamic East China Sea (ECS). We tested four hypotheses predicted by theoretical studies: (1) a coastal-offshore gradient for NB-SS, (2) a negative relationship between temperature and NB-SS steepness, (3) a positive relationship between trophic status (i.e., chlorophyll a and inorganic-nutrient concentrations as a proxy) and NB-SS steepness, and (4) a positive relationship between oligotrophy and NB-SS linearity. Hypotheses 1-3 did not stand up to our analyses of the empirical data, while hypothesis 4 was supported. In the ECS, we found no clear spatial gradient for each of the three size metrics, where (i) size diversity was not correlated to temperature and significantly decreased with chl a and phosphate concentrations, (ii) the NB-SS slope showed no relationship with the environment, and (iii) NB-SS linearity tended to be higher in more oligotrophic offshore waters. Trophic status exerted a stronger effect than temperature on size distribution, but its effect was opposite to model prediction. Our results suggest that population dynamics (i.e., pulses of reproduction due to increased food availability) override metabolic scaling effects on mesozooplankton NB-SS at the mesoscale. In addition

  18. Microscopic Processes On Radiation from Accelerated Particles in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P. E.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Sol, H.; Niemiec, J.; Pohl, M.; Nordlund, A.; Fredriksen, J.; Lyubarsky, Y.; Hartmann, D. H.; Fishman, G. J.

    2009-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The jitter'' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  19. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  20. Progress on plasma accelerators

    SciTech Connect

    Chen, P.

    1986-05-01

    Several plasma accelerator concepts are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA) and the Plasma Wake Field Accelerator (PWFA). Various accelerator physics issues regarding these schemes are discussed, and numerical examples on laboratory scale experiments are given. The efficiency of plasma accelerators is then revealed with suggestions on improvements. Sources that cause emittance growth are discussed briefly.

  1. Comparability of Red/Near-Infrared Reflectance and NDVI Based on the Spectral Response Function between MODIS and 30 Other Satellite Sensors Using Rice Canopy Spectra

    PubMed Central

    Huang, Weijiao; Huang, Jingfeng; Wang, Xiuzhen; Wang, Fumin; Shi, Jingjing

    2013-01-01

    Long-term monitoring of regional and global environment changes often depends on the combined use of multi-source sensor data. The most widely used vegetation index is the normalized difference vegetation index (NDVI), which is a function of the red and near-infrared (NIR) spectral bands. The reflectance and NDVI data sets derived from different satellite sensor systems will not be directly comparable due to different spectral response functions (SRF), which has been recognized as one of the most important sources of uncertainty in the multi-sensor data analysis. This study quantified the influence of SRFs on the red and NIR reflectances and NDVI derived from 31 Earth observation satellite sensors. For this purpose, spectroradiometric measurements were performed for paddy rice grown under varied nitrogen levels and at different growth stages. The rice canopy reflectances were convoluted with the spectral response functions of various satellite instruments to simulate sensor-specific reflectances in the red and NIR channels. NDVI values were then calculated using the simulated red and NIR reflectances. The results showed that as compared to the Terra MODIS, the mean relative percentage difference (RPD) ranged from −12.67% to 36.30% for the red reflectance, −8.52% to −0.23% for the NIR reflectance, and −9.32% to 3.10% for the NDVI. The mean absolute percentage difference (APD) compared to the Terra MODIS ranged from 1.28% to 36.30% for the red reflectance, 0.84% to 8.71% for the NIR reflectance, and 0.59% to 9.32% for the NDVI. The lowest APD between MODIS and the other 30 satellite sensors was observed for Landsat5 TM for the red reflectance, CBERS02B CCD for the NIR reflectance and Landsat4 TM for the NDVI. In addition, the largest APD between MODIS and the other 30 satellite sensors was observed for IKONOS for the red reflectance, AVHRR1 onboard NOAA8 for the NIR reflectance and IKONOS for the NDVI. The results also indicated that AVHRRs onboard NOAA7

  2. Comparability of red/near-infrared reflectance and NDVI based on the spectral response function between MODIS and 30 other satellite sensors using rice canopy spectra.

    PubMed

    Huang, Weijiao; Huang, Jingfeng; Wang, Xiuzhen; Wang, Fumin; Shi, Jingjing

    2013-11-26

    Long-term monitoring of regional and global environment changes often depends on the combined use of multi-source sensor data. The most widely used vegetation index is the normalized difference vegetation index (NDVI), which is a function of the red and near-infrared (NIR) spectral bands. The reflectance and NDVI data sets derived from different satellite sensor systems will not be directly comparable due to different spectral response functions (SRF), which has been recognized as one of the most important sources of uncertainty in the multi-sensor data analysis. This study quantified the influence of SRFs on the red and NIR reflectances and NDVI derived from 31 Earth observation satellite sensors. For this purpose, spectroradiometric measurements were performed for paddy rice grown under varied nitrogen levels and at different growth stages. The rice canopy reflectances were convoluted with the spectral response functions of various satellite instruments to simulate sensor-specific reflectances in the red and NIR channels. NDVI values were then calculated using the simulated red and NIR reflectances. The results showed that as compared to the Terra MODIS, the mean relative percentage difference (RPD) ranged from -12.67% to 36.30% for the red reflectance, -8.52% to -0.23% for the NIR reflectance, and -9.32% to 3.10% for the NDVI. The mean absolute percentage difference (APD) compared to the Terra MODIS ranged from 1.28% to 36.30% for the red reflectance, 0.84% to 8.71% for the NIR reflectance, and 0.59% to 9.32% for the NDVI. The lowest APD between MODIS and the other 30 satellite sensors was observed for Landsat5 TM for the red reflectance, CBERS02B CCD for the NIR reflectance and Landsat4 TM for the NDVI. In addition, the largest APD between MODIS and the other 30 satellite sensors was observed for IKONOS for the red reflectance, AVHRR1 onboard NOAA8 for the NIR reflectance and IKONOS for the NDVI. The results also indicated that AVHRRs onboard NOAA7-17 showed

  3. Combined linear response quantum mechanics and classical electrodynamics (QM/ED) method for the calculation of surface-enhanced Raman spectra.

    PubMed

    Mullin, Jonathan; Schatz, George C

    2012-03-01

    A multiscale method is presented that allows for evaluation of plasmon-enhanced optical properties of nanoparticle/molecule complexes with no additional cost compared to standard electrodynamics (ED) and linear response quantum mechanics (QM) calculations for the particle and molecule, respectively, but with polarization and orientation effects automatically described. The approach first calculates the total field of the nanoparticle by ED using the finite difference time domain (FDTD) method. The field intensity in the frequency domain as a function of distance from the nanoparticle is calculated via a Fourier transform. The molecular optical properties are then calculated with QM in the frequency domain in the presence of the total field of the nanoparticle. Back-coupling due to dipolar reradiation effects is included in the single-molecule plane wave approximation. The effects of polarization and partial orientation averaging are considered. The QM/ED method is evaluated for the well-characterized test case of surface-enhanced Raman scattering (SERS) of pyridine bound to silver, as well as for the resonant Raman chromophore rhodamine 6G. The electromagnetic contribution to the enhancement factor is 10(4) for pyridine and 10(2) for rhodamine 6G.

  4. SiSeRHMap v1.0: a simulator for mapped seismic response using a hybrid model

    NASA Astrophysics Data System (ADS)

    Grelle, Gerardo; Bonito, Laura; Lampasi, Alessandro; Revellino, Paola; Guerriero, Luigi; Sappa, Giuseppe; Guadagno, Francesco Maria

    2016-04-01

    The SiSeRHMap (simulator for mapped seismic response using a hybrid model) is a computerized methodology capable of elaborating prediction maps of seismic response in terms of acceleration spectra. It was realized on the basis of a hybrid model which combines different approaches and models in a new and non-conventional way. These approaches and models are organized in a code architecture composed of five interdependent modules. A GIS (geographic information system) cubic model (GCM), which is a layered computational structure based on the concept of lithodynamic units and zones, aims at reproducing a parameterized layered subsoil model. A meta-modelling process confers a hybrid nature to the methodology. In this process, the one-dimensional (1-D) linear equivalent analysis produces acceleration response spectra for a specified number of site profiles using one or more input motions. The shear wave velocity-thickness profiles, defined as trainers, are randomly selected in each zone. Subsequently, a numerical adaptive simulation model (Emul-spectra) is optimized on the above trainer acceleration response spectra by means of a dedicated evolutionary algorithm (EA) and the Levenberg-Marquardt algorithm (LMA) as the final optimizer. In the final step, the GCM maps executor module produces a serial map set of a stratigraphic seismic response at different periods, grid solving the calibrated Emul-spectra model. In addition, the spectra topographic amplification is also computed by means of a 3-D validated numerical prediction model. This model is built to match the results of the numerical simulations related to isolate reliefs using GIS morphometric data. In this way, different sets of seismic response maps are developed on which maps of design acceleration response spectra are also defined by means of an enveloping technique.

  5. Photobleaching response of different sources of chromophoric dissolved organic matter exposed to natural solar radiation using absorption and excitation-emission matrix spectra.

    PubMed

    Zhang, Yunlin; Liu, Xiaohan; Osburn, Christopher L; Wang, Mingzhu; Qin, Boqiang; Zhou, Yongqiang

    2013-01-01

    CDOM biogeochemical cycle is driven by several physical and biological processes such as river input, biogeneration and photobleaching that act as primary sinks and sources of CDOM. Watershed-derived allochthonous (WDA) and phytoplankton-derived autochthonous (PDA) CDOM were exposed to 9 days of natural solar radiation to assess the photobleaching response of different CDOM sources, using absorption and fluorescence (excitation-emission matrix) spectroscopy. Our results showed a marked decrease in total dissolved nitrogen (TDN) concentration under natural sunlight exposure for both WDA and PDA CDOM, indicating photoproduction of ammonium from TDN. In contrast, photobleaching caused a marked increase in total dissolved phosphorus (TDP) concentration for both WDA and PDA CDOM. Thus TDN:TDP ratios decreased significantly both for WDA and PDA CDOM, which partially explained the seasonal dynamic of TDN:TDP ratio in Lake Taihu. Photobleaching rate of CDOM absorption a(254), was 0.032 m/MJ for WDA CDOM and 0.051 m/MJ for PDA CDOM from days 0-9, indicating that phototransformations were initially more rapid for the newly produced CDOM from phytoplankton than for the river CDOM. Extrapolation of these values to the field indicated that 3.9%-5.1% CDOM at the water surface was photobleached and mineralized every day in summer in Lake Taihu. Photobleaching caused the increase of spectral slope, spectral slope ratio and molecular size, indicating the CDOM mean molecular weight decrease which was favorable to further microbial degradation of mineralization. Three fluorescent components were validated in parallel factor analysis models calculated separately for WDA and PDA CDOM. Our study suggests that the humic-like fluorescence materials could be rapidly and easily photobleached for WDA and PDA CDOM, but the protein-like fluorescence materials was not photobleached and even increased from the transformation of the humic-like fluorescence substance to the protein

  6. Exercise Training During +Gz Acceleration

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Chou, J. L.; Simonson, S. R.; Jackson, C. G. R.; Barnes, P. R.

    1999-01-01

    The overall purpose is to study the effect of passive (without exercise) and active (with exercise) +Gz (head-to-foot) acceleration training, using a short-arm (1.9m radius) centrifuge, on post- training maximal oxygen uptake (VO2 max, work capacity) and 70 deg head-up tilt (orthostatic) tolerance in ambulatory subjects to test the hypothesis that (a) both passive and active acceleration training will improve post-training tilt-tolerance, and (b) there will be no difference in tilt-tolerance between passive and active exercise acceleration training because increased hydrostatic and blood pressures, rather than increased muscular metabolism, will provide the major adaptive stimulus. The purpose of the pilot study was to test the hypothesis that there would be no significant difference in the metabolic responses (oxygen uptake, heart rate, pulmonary ventilation, or respiratory exchange ratio) during supine exercise with moderate +Gz acceleration.

  7. Spectra of Surface Waves

    DTIC Science & Technology

    1989-03-22

    with a wave follower during Marsen. J. Gophysical Res. 88, 9844-9849. 11. Hughes, B.A., 1978. The effects on internal waves on surface waves : 2...Spectra of Surface Waves K. Watson March 1989 JSR-88-130 Approved for public release; distribution unlimited. DTIC SELECTE JUN0 11989 0 JASONE The...Arlington, VA 22209 8503Z 11. TITLE (hlde Secvfty Cof.kaftn) SPECTRA OF SURFACE WAVES (U) 12. PERSONAL AUTHOfRS) K. Watson 13a. TYPE OF REPORT 13b. TIME

  8. Determining Energy Distributions of HF-Accelerated Electrons at HAARP

    DTIC Science & Technology

    2015-11-18

    are presented for selected modification mechanisms (electron heating or electron acceleration energy ), total RF-plasma energy transfer flux, and...suprathermal accelerated electron energy spectra [Gustavsson et al., 2005] using inversion techniques similar to those described by Rees and Luckey [1974...primary excitation mechanisms include electron impact excitation by energetic electrons with kinetic energy exceeding the respective energies of 1.96 and

  9. Photobleaching Response of Different Sources of Chromophoric Dissolved Organic Matter Exposed to Natural Solar Radiation Using Absorption and Excitation–Emission Matrix Spectra

    PubMed Central

    Zhang, Yunlin; Liu, Xiaohan; Osburn, Christopher L.; Wang, Mingzhu; Qin, Boqiang; Zhou, Yongqiang

    2013-01-01

    CDOM biogeochemical cycle is driven by several physical and biological processes such as river input, biogeneration and photobleaching that act as primary sinks and sources of CDOM. Watershed-derived allochthonous (WDA) and phytoplankton-derived autochthonous (PDA) CDOM were exposed to 9 days of natural solar radiation to assess the photobleaching response of different CDOM sources, using absorption and fluorescence (excitation-emission matrix) spectroscopy. Our results showed a marked decrease in total dissolved nitrogen (TDN) concentration under natural sunlight exposure for both WDA and PDA CDOM, indicating photoproduction of ammonium from TDN. In contrast, photobleaching caused a marked increase in total dissolved phosphorus (TDP) concentration for both WDA and PDA CDOM. Thus TDN∶TDP ratios decreased significantly both for WDA and PDA CDOM, which partially explained the seasonal dynamic of TDN∶TDP ratio in Lake Taihu. Photobleaching rate of CDOM absorption a(254), was 0.032 m/MJ for WDA CDOM and 0.051 m/MJ for PDA CDOM from days 0–9, indicating that phototransformations were initially more rapid for the newly produced CDOM from phytoplankton than for the river CDOM. Extrapolation of these values to the field indicated that 3.9%–5.1% CDOM at the water surface was photobleached and mineralized every day in summer in Lake Taihu. Photobleaching caused the increase of spectral slope, spectral slope ratio and molecular size, indicating the CDOM mean molecular weight decrease which was favorable to further microbial degradation of mineralization. Three fluorescent components were validated in parallel factor analysis models calculated separately for WDA and PDA CDOM. Our study suggests that the humic-like fluorescence materials could be rapidly and easily photobleached for WDA and PDA CDOM, but the protein-like fluorescence materials was not photobleached and even increased from the transformation of the humic-like fluorescence substance to the protein

  10. Convex Accelerated Maximum Entropy Reconstruction

    PubMed Central

    Worley, Bradley

    2016-01-01

    Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm – called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm – is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra. PMID:26894476

  11. Pulsar gamma-rays: Spectra luminosities and efficiencies

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1980-01-01

    The general characteristics of pulsar gamma ray spectra are presented for a model where the gamma rays are produced by curvature radiation from energetic particles above the polar cap and attenuated by pair production. The shape of the spectrum is found to depend on pulsar period, magnetic field strength, and primary particle energy. By a comparison of numerically calculated spectra with the observed spectra of the Crab and Vela pulsars, it is determined that primary particles must be accelerated to energies of about 3 x 10 to the 7th power mc sq. A genaral formula for pulsar gamma ray luminosity is determined and is found to depend on period and field strength.

  12. Quantum spectra and dynamics

    NASA Astrophysics Data System (ADS)

    Arce, Julio Cesar

    This work focuses on time-dependent quantum theory and methods for the study of the spectra and dynamics of atomic and molecular systems. Specifically, we have addressed the following two problems: (1) Development of a time-dependent spectral method for the construction of spectra of simple quantum systems. This includes the calculation of eigenenergies, the construction of bound and continuum eigenfunctions, and the calculation of photo cross-sections. Computational applications include the quadrupole photoabsorption spectra and dissociation cross-sections of molecular hydrogen from various vibrational states in its ground electronic potential-energy curve. This method is seen to provide an advantageous alternative, both from the computational and conceptual point of view, to existing standard methods. (2) Explicit time-dependent formulation of photoabsorption processes -- Analytical solutions of the time-dependent Schrodinger equation are constructed and employed for the calculation of probability densities, momentum distributions, fluxes, transition rates, expectation values and correlation functions. These quantities are seen to establish the link between the dynamics and the calculated, or measured, spectra and cross-sections, and to clarify the dynamical nature of the excitation, transition and ejection processes. Numerical calculations on atomic and molecular hydrogen corroborate and complement the previous results, allowing the identification of different regimes during the photoabsorption process.

  13. Quantum Spectra and Dynamics

    NASA Astrophysics Data System (ADS)

    Arce, Julio Cesar

    1992-01-01

    This work focuses on time-dependent quantum theory and methods for the study of the spectra and dynamics of atomic and molecular systems. Specifically, we have addressed the following two problems: (i) Development of a time-dependent spectral method for the construction of spectra of simple quantum systems--This includes the calculation of eigenenergies, the construction of bound and continuum eigenfunctions, and the calculation of photo cross-sections. Computational applications include the quadrupole photoabsorption spectra and dissociation cross-sections of molecular hydrogen from various vibrational states in its ground electronic potential -energy curve. This method is seen to provide an advantageous alternative, both from the computational and conceptual point of view, to existing standard methods. (ii) Explicit time-dependent formulation of photoabsorption processes --Analytical solutions of the time-dependent Schrodinger equation are constructed and employed for the calculation of probability densities, momentum distributions, fluxes, transition rates, expectation values and correlation functions. These quantities are seen to establish the link between the dynamics and the calculated, or measured, spectra and cross-sections, and to clarify the dynamical nature of the excitation, transition and ejection processes. Numerical calculations on atomic and molecular hydrogen corroborate and complement the previous results, allowing the identification of different regimes during the photoabsorption process.

  14. Atomic Spectra Database (ASD)

    National Institute of Standards and Technology Data Gateway

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  15. Future accelerator technology

    SciTech Connect

    Sessler, A.M.

    1986-05-01

    A general discussion is presented of the acceleration of particles. Upon this foundation is built a categorization scheme into which all accelerators can be placed. Special attention is devoted to accelerators which employ a wake-field mechanism and a restricting theorem is examined. It is shown how the theorem may be circumvented. Comments are made on various acceleration schemes.

  16. ACCELERATION AND THE GIFTED.

    ERIC Educational Resources Information Center

    GIBSON, ARTHUR R.; STEPHANS, THOMAS M.

    ACCELERATION OF PUPILS AND SUBJECTS IS CONSIDERED A MEANS OF EDUCATING THE ACADEMICALLY GIFTED STUDENT. FIVE INTRODUCTORY ARTICLES PROVIDE A FRAMEWORK FOR THINKING ABOUT ACCELERATION. FIVE PROJECT REPORTS OF ACCELERATED PROGRAMS IN OHIO ARE INCLUDED. ACCELERATION IS NOW BEING REGARDED MORE FAVORABLY THAN FORMERLY, BECAUSE METHODS HAVE BEEN…

  17. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  18. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  19. Rock Outcrop Spectra

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The color image on the lower left shows a rock outcrop at Meridiani Planum, Mars. This image was taken by the panoramic camera on the Mars Exploration Rover Opportunity, looking north, and was acquired on the 4th sol, or martian day, of the rover's mission (Jan. 27, 2004). The yellow box outlines an area detailed in the top left image, which is a monochrome (single filter) image from the rover's panoramic camera. The top image uses solid colors to show several regions on or near the rock outcrop from which spectra were extracted: the dark soil above the outcrop (yellow), the distant horizon surface (aqua), a bright rock in the outcrop (green), a darker rock in the outcrop (red), and a small dark cobblestone (blue). Spectra from these regions are shown in the plot to the right.

  20. Barnacle Bill Spectra

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These IMP spectra show the characteristics of the rock surface measured by the Alpha Proton X-Ray Spectrometer (blue), the soil trapped in pits on the rock surface (red), and the deposit of bright drift on the top of the rock. The area measured by the APXS has the properties expected for nearly unweathered igneous rock, and the soil trapped in the pits is intermediate to the unweathered rock and the highly weathered drift material.

  1. Experiment specific processing of residual acceleration data

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Alexander, J. I. D.

    1992-01-01

    To date, most Spacelab residual acceleration data collection projects have resulted in data bases that are overwhelming to the investigator of low-gravity experiments. This paper introduces a simple passive accelerometer system to measure low-frequency accelerations. Model responses for experiments using actual acceleration data are produced and correlations are made between experiment response and the accelerometer time history in order to test the idea that recorded acceleration data and experimental responses can be usefully correlated. Spacelab 3 accelerometer data are used as input to a variety of experiment models, and sensitivity limits are obtained for particular experiment classes. The modeling results are being used to create experiment-specific residual acceleration data processing schemes for interested investigators.

  2. Acceleration of positrons in supernova shocks

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.

    1992-01-01

    During this project we investigated the acceleration of leptons (electrons and positrons) in collisionless shock waves. In particular, we were interested in how leptons are accelerated in the blast waves existing in the remnants of supernova explosions. Supernova remnants (SNRs) have long been considered as the most likely source of galactic cosmic rays but no definite connection between SNRs and the cosmic rays seen at earth can be made. Only by understanding lepton acceleration in shocks can the rich SNR data base be properly used to understand cosmic ray origins. Our project was directed at the neglected aspects of lepton acceleration. We showed that the efficiency of lepton acceleration depended critically on the lepton injection energy. We showed that, even when infection effects are not important, that proton and lepton distribution functions produced by shocks are quite different in the critical energy range for producing the observed synchrotron emission. We also showed that transrelativistic effects produced proton spectra that were not in agreement with standard results from radio observations, but that the lepton spectra were, in fact, consistent with observations. We performed simulations of relativistic shocks (shocks where the flow speed is a sizable fraction of the speed of light) and discovered some interesting effects. We first demonstrated the power of the Monte Carlo technique by determining the shock jump conditions in relativistic shocks. We then proceeded to determine how relativistic shocks accelerate particles. We found that nonlinear relativistic shocks treat protons and leptons even more differently than nonrelativistic shocks. The transrelativistic effects on the shock structure from the heavy ion component reduces the lepton acceleration to a tiny fraction of the ion acceleration. This effect is dramatic even if high energy leptons (many times thermal energy) are injected, and was totally unexpected. Our results have important

  3. Test simulation of neutron damage to electronic components using accelerator facilities

    NASA Astrophysics Data System (ADS)

    King, D. B.; Fleming, R. M.; Bielejec, E. S.; McDonald, J. K.; Vizkelethy, G.

    2015-12-01

    The purpose of this work is to demonstrate equivalent bipolar transistor damage response to neutrons and silicon ions. We report on irradiation tests performed at the White Sands Missile Range Fast Burst Reactor, the Sandia National Laboratories (SNL) Annular Core Research Reactor, the SNL SPHINX accelerator, and the SNL Ion Beam Laboratory using commercial silicon npn bipolar junction transistors (BJTs) and III-V Npn heterojunction bipolar transistors (HBTs). Late time and early time gain metrics as well as defect spectra measurements are reported.

  4. SPECTRA. September 2011

    DTIC Science & Technology

    2011-09-01

    Transportation Services program with the Dragon capsule. (Credit: SpaceX /Chris Thompson) S p a c e c r a f t e n g in e e r in g spectra NRL...secondary payloads on board a Space Exploration Technologies ( SpaceX ), Inc., Falcon 9 launch vehicle. NRL’s nanosatellites are part of the CubeSat...Maryland. The primary payload launched aboard the SpaceX Falcon 9 was the Dragon capsule. Developed by SpaceX and sponsored by NASA’s Commercial Orbital

  5. Neutron dose measurements with the GSI ball at high-energy accelerators.

    PubMed

    Fehrenbacher, G; Gutermuth, F; Kozlova, E; Radon, T; Schuetz, R

    2007-01-01

    A moderator-type neutron monitor containing pairs of TLD 600/700 elements (Harshaw) modified with the addition of a lead layer (GSI ball) for the measurement of the ambient dose equivalent from neutrons at medium- and high-energy accelerators, is introduced in this work. Measurements were performed with the Gesellschaft für Schwerionenforschung (GSI) ball as well as with conventional polyethylene (PE) spheres at the high-energy accelerator SPS at European Organization for Nuclear Research [CERN (CERF)] and in Cave A of the heavy-ion synchrotron SIS at GSI. The measured dose values are compared with dose values derived from calculated neutron spectra folded with dose conversion coefficients. The estimated reading of the spheres calculated by means of the response functions and the neutron spectra is also included in the comparison. The analysis of the measurements shows that the PE/Pb sphere gives an improved estimate on the ambient dose equivalent of the neutron radiation transmitted through shielding of medium- and high-energy accelerators.

  6. Theoretical Studies of Molecular Spectra

    NASA Technical Reports Server (NTRS)

    McKay, Christopher (Technical Monitor); Freedman, Richard S.

    2002-01-01

    This summary describes the research activities of the principal investigator during the reporting period. The research includes spectroscopy, management of molecular databases, and generation of spectral line profiles and opacity data. The spectroscopy research includes oxygen broadening of nitric oxide (NO), analysis of CO2 spectra, analysis of HNO3 spectra, and analysis of CO spectra.

  7. Differential oxidative modification of proteins in MRL+/+ and MRL/lpr mice: Increased formation of lipid peroxidation-derived aldehyde-protein adducts may contribute to accelerated onset of autoimmune response.

    PubMed

    Wang, Gangduo; Li, Hui; Firoze Khan, M

    2012-12-01

    Even though reactive oxygen species (ROS) have been implicated in SLE pathogenesis, the contributory role of ROS, especially the consequences of oxidative modification of proteins by lipid peroxidation-derived aldehydes (LPDAs) such as malondialdehyde (MDA) and 4-hydroxynonenal (HNE) in eliciting an autoimmune response and disease pathogenesis remains largely unexplored. MRL/lpr mice, a widely used model for SLE, spontaneously develop a condition similar to human SLE, whereas MRL+/+ mice with the same MRL background, show much slower onset of SLE. To assess if the differences in the onset of SLE in the two substrains could partly be due to differential expression of LPDAs and to provide evidence for the role of LPDA-modified proteins in SLE pathogenesis, we determined the serum levels of MDA-/HNE-protein adducts, anti-MDA-/HNE-protein adduct antibodies, MDA-/HNE-protein adduct specific immune complexes, and various autoantibodies in 6-, 12- and 18-week old mice of both substrains. The results show age-related increases in the formation of MDA-/HNE-protein adducts, their corresponding antibodies and MDA-/HNE-specific immune complexes, but MRL/lpr mice showed greater and more accelerated response. Interestingly, a highly positive correlation between increased anti-MDA-/HNE-protein adduct antibodies and autoantibodies was observed. More importantly, we further observed that HNE-MSA caused significant inhibition in antinuclear antibodies (ANA) binding to nuclear antigens. These findings suggest that LPDA-modified proteins could be important sources of autoantibodies and CICs in these mice, and thus contribute to autoimmune disease pathogenesis. The observed differential responses to LPDAs in MRL/lpr and MRL+/+ mice may, in part, be responsible for accelerated and delayed onset of the disease, respectively.

  8. Accelerating Particles with Plasma

    ScienceCinema

    Litos, Michael; Hogan, Mark

    2016-07-12

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  9. Peak acceleration limiter

    NASA Technical Reports Server (NTRS)

    Chapman, C. P.

    1972-01-01

    Device is described that limits accelerations by shutting off shaker table power very rapidly in acceleration tests. Absolute value of accelerometer signal is used to trigger electronic switch which terminates test and sounds alarm.

  10. Linear Accelerator (LINAC)

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? A linear accelerator (LINAC) is the ... Therapy (SBRT) . top of page How does the equipment work? The linear accelerator uses microwave technology (similar ...

  11. Accelerating Particles with Plasma

    SciTech Connect

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  12. Improved plasma accelerator

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  13. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  14. RFQ accelerator tuning system

    DOEpatents

    Bolie, Victor W.

    1990-01-01

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.

  15. RFQ accelerator tuning system

    DOEpatents

    Bolie, V.W.

    1990-07-03

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.

  16. The effect of stochastic re-acceleration on the energy spectrum of shock-accelerated protons

    SciTech Connect

    Afanasiev, Alexandr; Vainio, Rami; Kocharov, Leon

    2014-07-20

    The energy spectra of particles in gradual solar energetic particle (SEP) events do not always have a power-law form attributed to the diffusive shock acceleration mechanism. In particular, the observed spectra in major SEP events can take the form of a broken (double) power law. In this paper, we study the effect of a process that can modify the power-law spectral form produced by the diffusive shock acceleration: the stochastic re-acceleration of energetic protons by enhanced Alfvénic turbulence in the downstream region of a shock wave. There are arguments suggesting that this process can be important when the shock propagates in the corona. We consider a coronal magnetic loop traversed by a shock and perform Monte Carlo simulations of interactions of shock-accelerated protons with Alfvén waves in the loop. The wave-particle interactions are treated self-consistently, so the finiteness of the available turbulent energy is taken into account. The initial energy spectrum of particles is taken to be a power law. The simulations reveal that the stochastic re-acceleration leads either to the formation of a spectrum that is described in a wide energy range by a power law (although the resulting power-law index is different from the initial one) or to a broken power-law spectrum. The resulting spectral form is determined by the ratio of the energy density of shock-accelerated protons to the wave energy density in the shock's downstream region.

  17. Curved Radio Spectra of Weak Cluster Shocks

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Ryu, Dongsu

    2015-08-01

    In order to understand certain observed features of arc-like giant radio relics such as the rareness, uniform surface brightness, and curved integrated spectra, we explore a diffusive shock acceleration (DSA) model for radio relics in which a spherical shock impinges on a magnetized cloud containing fossil relativistic electrons. Toward this end, we perform DSA simulations of spherical shocks with the parameters relevant for the Sausage radio relic in cluster CIZA J2242.8+5301, and calculate the ensuing radio synchrotron emission from re-accelerated electrons. Three types of fossil electron populations are considered: a delta-function like population with the shock injection momentum, a power-law distribution, and a power law with an exponential cutoff. The surface brightness profile of the radio-emitting postshock region and the volume-integrated radio spectrum are calculated and compared with observations. We find that the observed width of the Sausage relic can be explained reasonably well by shocks with speed {u}{{s}}˜ 3× {10}3 {km} {{{s}}}-1 and sonic Mach number {M}{{s}}˜ 3. These shocks produce curved radio spectra that steepen gradually over (0.1-10){ν }{br} with a break frequency {ν }{br}˜ 1 GHz if the duration of electron acceleration is ˜60-80 Myr. However, the abrupt increase in the spectral index above ˜1.5 GHz observed in the Sausage relic seems to indicate that additional physical processes, other than radiative losses, operate for electrons with {γ }{{e}}≳ {10}4.

  18. Accelerators, Colliders, and Snakes

    NASA Astrophysics Data System (ADS)

    Courant, Ernest D.

    2003-12-01

    The author traces his involvement in the evolution of particle accelerators over the past 50 years. He participated in building the first billion-volt accelerator, the Brookhaven Cosmotron, which led to the introduction of the "strong-focusing" method that has in turn led to the very large accelerators and colliders of the present day. The problems of acceleration of spin-polarized protons are also addressed, with discussions of depolarizing resonances and "Siberian snakes" as a technique for mitigating these resonances.

  19. Acceleration: It's Elementary

    ERIC Educational Resources Information Center

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  20. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  1. Accelerated test design

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1980-01-01

    The design of an accelerated life test program for electric batteries is discussed. A number of observations and suggestions on the procedures and objectives for conducting an accelerated life test program are presented. Equations based on nonlinear regression analysis for predicting the accelerated life test parameters are discussed.

  2. LOFAR imaging of Cygnus A - direct detection of a turnover in the hotspot radio spectra

    NASA Astrophysics Data System (ADS)

    McKean, J. P.; Godfrey, L. E. H.; Vegetti, S.; Wise, M. W.; Morganti, R.; Hardcastle, M. J.; Rafferty, D.; Anderson, J.; Avruch, I. M.; Beck, R.; Bell, M. E.; van Bemmel, I.; Bentum, M. J.; Bernardi, G.; Best, P.; Blaauw, R.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brüggen, M.; Cerrigone, L.; Ciardi, B.; de Gasperin, F.; Deller, A.; Duscha, S.; Engels, D.; Falcke, H.; Fallows, R. A.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J. M.; van Haarlem, M. P.; Heald, G.; Hoeft, M.; Horst, A. J. van der; Iacobelli, M.; Intema, H.; Juette, E.; Karastergiou, A.; Kondratiev, V. I.; Koopmans, L. V. E.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; Mulcahy, D. D.; Munk, H.; Nelles, A.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pietka, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H. J. A.; Rowlinson, A.; Scaife, A. M. M.; Serylak, M.; Shulevski, A.; Sluman, J.; Smirnov, O.; Steinmetz, M.; Stewart, A.; Swinbank, J.; Tagger, M.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2016-12-01

    The low-frequency radio spectra of the hotspots within powerful radio galaxies can provide valuable information about the physical processes operating at the site of the jet termination. These processes are responsible for the dissipation of jet kinetic energy, particle acceleration, and magnetic-field generation. Here, we report new observations of the powerful radio galaxy Cygnus A using the Low Frequency Array (LOFAR) between 109 and 183 MHz, at an angular resolution of ˜3.5 arcsec. The radio emission of the lobes is found to have a complex spectral index distribution, with a spectral steepening found towards the centre of the source. For the first time, a turnover in the radio spectrum of the two main hotspots of Cygnus A has been directly observed. By combining our LOFAR imaging with data from the Very Large Array at higher frequencies, we show that the very rapid turnover in the hotspot spectra cannot be explained by a low-energy cut-off in the electron energy distribution, as has been previously suggested. Thermal (free-free) absorption or synchrotron self-absorption models are able to describe the low-frequency spectral shape of the hotspots; however, as with previous studies, we find that the implied model parameters are unlikely, and interpreting the spectra of the hotspots remains problematic.

  3. Continuum Fitting HST QSO Spectra

    NASA Technical Reports Server (NTRS)

    Tytler, David; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The Principal Component Analysis (PCA) method which we are using to fit and describe QSO spectra relies upon the fact that QSO continuum are generally very smooth and simple except for emission and absorption lines. To see this we need high signal-to-noise (S/N) spectra of QSOs at low redshift which have relatively few absorption lines in the Lyman-a forest. We need a large number of such spectra to use as the basis set for the PCA analysis which will find the set of principal component spectra which describe the QSO family as a whole. We have found that too few HST spectra have the required S/N and hence we need to supplement them with ground based spectra of QSOs at higher redshift. We have many such spectra and we have been working to make them suitable for this analysis. We have concentrated on this topic since 12/15/01.

  4. Surface fluorination of rutile-TiO2 thin films deposited by reactive sputtering for accelerating response of optically driven capillary effect

    NASA Astrophysics Data System (ADS)

    Kobayashi, Taizo; Maeda, Hironobu; Konishi, Satoshi

    2016-06-01

    We report the acceleration of photoresponsive wettability switching by applying surface fluorination to rutile-TiO2 thin films deposited by reactive sputtering. Photoresponsive wettability switchable surfaces can be applied to optically driven liquid manipulation to enable the elimination of the electrical wiring and pneumatic tubing from fluidic systems. In this work, surface fluorination using CF4 plasma treatment is applied to rutile-TiO2 thin films, which exhibit a wider switching range of wettability than that of anatase-TiO2 thin films. Fluorine termination of TiO2 thin films increases the surface acidity and enhances its photocatalytic performance. TiO2 thin films with and without surface fluorination respectively exhibited the transition of contact angles ranging from 73.7 to 12.3°, and from 70.2 to 32° under UV irradiation for 15 min. Liquid introduction into a microchannel is also demonstrated, utilizing the developed TiO2 surface, which can generate a negative capillary pressure difference under ultraviolet light irradiation.

  5. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  6. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  7. Dynamically Reconfigurable Systolic Array Accelerator

    NASA Technical Reports Server (NTRS)

    Dasu, Aravind; Barnes, Robert

    2012-01-01

    A polymorphic systolic array framework has been developed that works in conjunction with an embedded microprocessor on a field-programmable gate array (FPGA), which allows for dynamic and complimentary scaling of acceleration levels of two algorithms active concurrently on the FPGA. Use is made of systolic arrays and a hardware-software co-design to obtain an efficient multi-application acceleration system. The flexible and simple framework allows hosting of a broader range of algorithms, and is extendable to more complex applications in the area of aerospace embedded systems. FPGA chips can be responsive to realtime demands for changing applications needs, but only if the electronic fabric can respond fast enough. This systolic array framework allows for rapid partial and dynamic reconfiguration of the chip in response to the real-time needs of scalability, and adaptability of executables.

  8. A self-consistent combined radiative transfer hydrodynamic and particle acceleration model for the X1.0 class flare on March 29, 2014

    NASA Astrophysics Data System (ADS)

    Rubio da Costa, F.; Kleint, L.; Sainz Dalda, A.; Petrosian, V.; Liu, W.

    2015-12-01

    The X1.0 flare on March 29, 2014 was well observed, covering its emission at several wavelengths from the photosphere to the corona. The RHESSI spectra images allow us to estimate the temporal variation of the electron spectra using regularized inversion techniques. Using this as input for a combined particle acceleration and transport (Stanford-Flare) and radiative transfer hydrodynamic (Radyn) code, we calculate the response of the atmosphere to the electron heating. We will present the evolution of the thermal continuum and several line emissions. Comparing them with GOES soft X-ray and high resolution observations from IRIS, SDO and DST/IBIS allows us to test the basic mechanism(s) of acceleration and to constrain its characteristics. We will also present perspectives on how to apply this methodology and related diagnostics to other flares.

  9. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  10. On the origin of a kink in the hardness spectra of cosmic-ray protons and helium nuclei in the vicinity of 230 GV

    NASA Astrophysics Data System (ADS)

    Loznikov, V. M.; Erokhin, N. S.; Zol'nikova, N. N.; Mikhailovskaya, L. A.

    2015-08-01

    A three-component phenomenological model for the description of specific features of spectra of cosmic-ray protons and helium nuclei in the hardness range from 30 to 2 × 105 GV is proposed. The first component corresponds to the constant background; the second component, to a variable "soft" (30-500 GV) heliospheric source; and the third component, to a variable "hard" (0.5-200 TV) galactic source inside a local bubble. The corresponding "surfatron accelerators" are responsible for the existence and variability of both sources. In order for such accelerators to operate, there should be an extended area with a nearly uniform and constant (in both the magnitude and direction) magnetic field and electromagnetic waves propagating perpendicular (or obliquely) to it. The dimensions of each source determine the maximum energy to which cosmic rays can be accelerated. The soft source with a size of ~100 au lies at the periphery of the heliosphere, beyond the terminal shock, while the hard source with a size of >0.1 pc is located near the boundary of a local interstellar cloud at a distance of ~0.01 pc from the Sun. A kink in the hardness spectra of p and He (near the hardness of about 230 GV) is caused by the variability of physical conditions in the acceleration region and depends on the relation between the amplitudes and power-law indices of the background, the soft heliospheric source, and the nearby hard galactic source. Ultrarelativistic acceleration of p and He in space plasma by an electromagnetic wave propagating perpendicular to the external magnetic field is investigated using numerical calculations. The conditions for particle trapping by the wave, as well as the dynamics of the velocity and momentum components, are analyzed. The calculations show that, in contrast to electrons and positrons ( e +), a trapped proton can escape from the effective potential well after a relatively short time, thereby terminating to accelerate. Such an effect gives rise to softer

  11. Accelerator Availability and Reliability Issues

    SciTech Connect

    Steve Suhring

    2003-05-01

    Maintaining reliable machine operations for existing machines as well as planning for future machines' operability present significant challenges to those responsible for system performance and improvement. Changes to machine requirements and beam specifications often reduce overall machine availability in an effort to meet user needs. Accelerator reliability issues from around the world will be presented, followed by a discussion of the major factors influencing machine availability.

  12. Response measurements for two building structures excited by noise from a large horizontal axis wind turbine generator

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Shepherd, K. P.

    1984-01-01

    Window and wall acceleration measurements and interior noise measurements ere made for two different building structures during excitation by noise from the WTS-4 horizontal axis wind turbine generator operating in a normal power generation mode. With turbine noise input pulses resulted in acceleration pulses for the wall and window elements of the two tests buildings. Response spectra suggest that natural vibration modes of the structures are excited. Responses of a house trailer were substantially greater than those for a building of sturdier construction. Peak acceleration values correlate well with similar data for houses excited by flyover noise from commercial and military airplanes and helicopters, and sonic booms from supersonic aircraft. Interior noise spectra have peaks at frequencies corresponding to structural vibration modes and room standing waves; and the levels for particular frequencies and locations can be higher than the outside levels.

  13. Response measurements for two building structures excited by noise from a large horizontal axis wind turbine generator

    NASA Astrophysics Data System (ADS)

    Hubbard, H. H.; Shepherd, K. P.

    1984-11-01

    Window and wall acceleration measurements and interior noise measurements ere made for two different building structures during excitation by noise from the WTS-4 horizontal axis wind turbine generator operating in a normal power generation mode. With turbine noise input pulses resulted in acceleration pulses for the wall and window elements of the two tests buildings. Response spectra suggest that natural vibration modes of the structures are excited. Responses of a house trailer were substantially greater than those for a building of sturdier construction. Peak acceleration values correlate well with similar data for houses excited by flyover noise from commercial and military airplanes and helicopters, and sonic booms from supersonic aircraft. Interior noise spectra have peaks at frequencies corresponding to structural vibration modes and room standing waves; and the levels for particular frequencies and locations can be higher than the outside levels.

  14. An Analytic Particle Acceleration Model in Pulsar Wind Termination Shocks Applied to the Crab Nebula Gamma-Ray Flares

    NASA Astrophysics Data System (ADS)

    Kroon, John J.; Becker, Peter A.; Justin, Finke; Dermer, Charles D.

    2017-01-01

    The Crab nebula is a persistent source of gamma-rays up to about 100 MeV due to synchrotron radiation from electrons/positrons emitting in an ambient magnetic field thought to be of magnitude B~200 μG. The radiating electrons are limited by radiation-reaction forces which place an upper limit of about 100 MeV on the gamma-ray photons it can produce. This normally quiescent nebula has been observed by AGILE and Fermi to undergo bright transients lasting about a week and characterized by a significant increase in gamma-ray flux far above the classical radiation-reaction limit, with energies often reaching 3 GeV. The flares imply a population of PeV electrons accelerated on sub-day timescales. The very short acceleration timescales and the observed emission above the radiation-reaction limit place severe constraints on contemporary shock acceleration models such as diffusive shock acceleration which cannot account for the temporal and energetic properties of the gamma-ray flares. In this component of my dissertation research, I revisit the problem and find an analytic solution to the Fokker-Planck equation which incorporates a variety of acceleration and loss terms. I find that the model can reproduce the various Fermi-LAT flare spectra well and that electrostatic acceleration is the most significant contributor to the underlying mechanisms responsible for the most energetic astrophysical particle population ever observed. I find that the spectra of all the Fermi-LAT flares from the Crab nebula can be reproduced with this model using magnetic fields that are in agreement with multi-wavelength observations.

  15. Radial Distribution of Electron Spectra from High-Energy Ions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.

    1998-01-01

    The average track model describes the response of physical and biological systems using radial dose distribution as the key physical descriptor. We report on an extension of this model to describe the average distribution of electron spectra as a function of radial distance from an ion. We present calculations of these spectra for ions of identical linear energy transfer (LET), but dissimilar charge and velocity to evaluate the differences in electron spectra from these ions. To illustrate the usefulness of the radial electron spectra for describing effects that are not described by electron dose, we consider the evaluation of the indirect events in microdosimetric distributions for ions. We show that folding our average electron spectra model with experimentally determined frequency distributions for photons or electrons provides a good representation of radial event spectra from high-energy ions in 0.5-2 micrometer sites.

  16. Monte Carlo simulation of Auger-electron spectra.

    PubMed

    Grau Carles, A; Kossert, K

    2009-01-01

    A procedure to calculate the complex spectra of electron-capture nuclides which simultaneously eject several electrons and X-rays with different energies is presented. The model is applied to compute spectra of the radionuclides (125)I, (123)I and (111)In. The spectra are then compared with experimental spectra obtained by means of liquid scintillation counting. To this end, the computed spectra were transformed to allow for the nonlinear response function for a liquid scintillator, chemical quenching, as well as the Wallac-type amplifier used for the measurements. The calculated spectra are important for applications of free parameter models in liquid scintillation counting and also for studying the impact of electron-capture nuclides on DNA.

  17. Sequencing BPS spectra

    NASA Astrophysics Data System (ADS)

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; Stošić, Marko; Sułkowski, Piotr

    2016-03-01

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d {N}=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  18. Sequencing BPS spectra

    SciTech Connect

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; Stošić, Marko; Sułkowski, Piotr

    2016-03-02

    In this article, we provide both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincar e polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (re fined) modular S-matrix. This leads to the identi fication of modular transformations in Chern-Simons theory and 3d N = 2 theory via the 3d/3d correspondence. In conclusion, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  19. Sequencing BPS spectra

    DOE PAGES

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; ...

    2016-03-02

    In this article, we provide both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explainmore » from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincar e polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (re fined) modular S-matrix. This leads to the identi fication of modular transformations in Chern-Simons theory and 3d N = 2 theory via the 3d/3d correspondence. In conclusion, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.« less

  20. Interpreting Chromosome Aberration Spectra

    NASA Technical Reports Server (NTRS)

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-01-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH ( multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.

  1. An introduction to acceleration mechanisms

    SciTech Connect

    Palmer, R.B.

    1987-05-01

    This paper discusses the acceleration of charged particles by electromagnetic fields, i.e., by fields that are produced by the motion of other charged particles driven by some power source. The mechanisms that are discussed include: Ponderamotive Forces, Acceleration, Plasma Beat Wave Acceleration, Inverse Free Electron Laser Acceleration, Inverse Cerenkov Acceleration, Gravity Acceleration, 2D Linac Acceleration and Conventional Iris Loaded Linac Structure Acceleration. (LSP)

  2. Diagnostics for studies of novel laser ion acceleration mechanisms

    NASA Astrophysics Data System (ADS)

    Senje, Lovisa; Yeung, Mark; Aurand, Bastian; Kuschel, Stephan; Rödel, Christian; Wagner, Florian; Li, Kun; Dromey, Brendan; Bagnoud, Vincent; Neumayer, Paul; Roth, Markus; Wahlström, Claes-Göran; Zepf, Matthew; Kuehl, Thomas; Jung, Daniel

    2014-11-01

    Diagnostic for investigating and distinguishing different laser ion acceleration mechanisms has been developed and successfully tested. An ion separation wide angle spectrometer can simultaneously investigate three important aspects of the laser plasma interaction: (1) acquire angularly resolved energy spectra for two ion species, (2) obtain ion energy spectra for multiple species, separated according to their charge to mass ratio, along selected axes, and (3) collect laser radiation reflected from and transmitted through the target and propagating in the same direction as the ion beam. Thus, the presented diagnostic constitutes a highly adaptable tool for accurately studying novel acceleration mechanisms in terms of their angular energy distribution, conversion efficiency, and plasma density evolution.

  3. Exercise Versus +Gz Acceleration Training

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Simonson, S. R.; Stocks, J. M.; Evans, J. M.; Knapp, C. F.; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    Decreased working capacity and "orthostatic" intolerance are two major problems for astronauts during and after landing from spaceflight in a return vehicle. The purpose was to test the hypotheses that (1) supine-passive-acceleration training, supine-interval-exercise plus acceleration training, and supine exercise plus acceleration training will improve orthostatic tolerance (OT) in ambulatory men; and that (2) addition of aerobic exercise conditioning will not influence this enhanced OT from that of passive-acceleration training. Seven untrained men (24-38 yr) underwent 3 training regimens (30 min/d x 5d/wk x 3wk on the human-powered centrifuge - HPC): (a) Passive acceleration (alternating +1.0 Gz to 50% Gzmax); (b) Exercise acceleration (alternating 40% - 90% V02max leg cycle exercise plus 50% of HPCmax acceleration); and (c) Combined intermittent exercise-acceleration at 40% to 90% HPCmax. Maximal supine exercise workloads increased (P < 0.05) by 8.3% with Passive, by 12.6% with Exercise, and by 15.4% with Combined; but maximal V02 and HR were unchanged in all groups. Maximal endurance (time to cessation) was unchanged with Passive, but increased (P < 0.05) with Exercise and Combined. Resting pre-tilt HR was elevated by 12.9% (P < 0.05) only after Passive training, suggesting that exercise training attenuated this HR response. All resting pre-tilt blood pressures (SBP, DBP, MAP) were not different pre- vs. post-training. Post-training tilt-tolerance time and HR were increased (P < 0.05) only with Passive training by 37.8% and by 29.1%, respectively. Thus, addition of exercise training attenuated the increased Passive tilt tolerance. Resting (pre-tilt) and post-tilt cardiac R-R interval, stroke volume, end-diastolic volume, and cardiac output were all uniformly reduced (P < 0.05) while peripheral resistance was uniformly increased (P < 0.05) pre-and post-training for the three regimens indicating no effect of any training regimen on those cardiovascular

  4. Schooling in Times of Acceleration

    ERIC Educational Resources Information Center

    Buddeberg, Magdalena; Hornberg, Sabine

    2017-01-01

    Modern societies are characterised by forms of acceleration, which influence social processes. Sociologist Hartmut Rosa has systematised temporal structures by focusing on three categories of social acceleration: technical acceleration, acceleration of social change, and acceleration of the pace of life. All three processes of acceleration are…

  5. Nonlinear Particle Acceleration and Thermal Particles in GRB Afterglows

    NASA Astrophysics Data System (ADS)

    Warren, Donald C.; Ellison, Donald C.; Barkov, Maxim V.; Nagataki, Shigehiro

    2017-02-01

    The standard model for GRB afterglow emission treats the accelerated electron population as a simple power law, N(E)\\propto {E}-p for p≳ 2. However, in standard Fermi shock acceleration, a substantial fraction of the swept-up particles do not enter the acceleration process at all. Additionally, if acceleration is efficient, then the nonlinear back-reaction of accelerated particles on the shock structure modifies the shape of the nonthermal tail of the particle spectra. Both of these modifications to the standard synchrotron afterglow impact the luminosity, spectra, and temporal variation of the afterglow. To examine the effects of including thermal particles and nonlinear particle acceleration on afterglow emission, we follow a hydrodynamical model for an afterglow jet and simulate acceleration at numerous points during the evolution. When thermal particles are included, we find that the electron population is at no time well fitted by a single power law, though the highest-energy electrons are; if the acceleration is efficient, then the power-law region is even smaller. Our model predicts hard–soft–hard spectral evolution at X-ray energies, as well as an uncoupled X-ray and optical light curve. Additionally, we show that including emission from thermal particles has drastic effects (increases by factors of 100 and 30, respectively) on the observed flux at optical and GeV energies. This enhancement of GeV emission makes afterglow detections by future γ-ray observatories, such as CTA, very likely.

  6. Laboratory simulation of dust spectra

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.

    1988-01-01

    Laboratory studies of the IR spectra of interstellar dust are reviewed. Studies of the absorption spectra of dense molecular clouds are discussed, including methods to produce interstellar ice analogues, simulations of astronomical spectra, and IR absorption features caused by ices. Comparisons are made between observational and experimental results of interstellar dust studies. Also, the interstellar emission features associated with dusty regions exposed to UV radiation are examined, including bands related to PAHs and PAH-related materials. It is shown that interstellar spectra are more consistant with emission from free PAHs than with emission from particles.

  7. Molecular dynamics and spectra. II. Diatomic Raman

    NASA Astrophysics Data System (ADS)

    Berens, Peter H.; White, Steven R.; Wilson, Kent R.

    1981-07-01

    This paper and paper I in this series [P.H. Berens and K.R. Wilison, J. Chem. Phys. 74, 4872 (1981)] indicate that infrared and Raman rotational and fundamental vibrational-rotational spectra of dense systems (high pressure gases, liquids, and solids) are essentially classical, in that they can be computed and understood from a basically classical mechanical viewpoint, with some caveats for features in which anharmonicity is important, such as the detailed shape of Q branches. It is demonstrated here, using the diatomic case as an example, that ordinary, i.e., nonresonant, Raman band contours can be computed from classical mechanics plus simple quantum corrections. Classical versions of molecular dynamics, linear response theory, and ensemble averaging, followed by straightforward quantum corrections, are used to compute the pure rotational and fundamental vibration-rotational Raman band contours of N2 for the gas phase and for solutions of N2 in different densities of gas phase Ar and in liquid Ar. The evolution is seen from multiple peaked line shapes characteristic of free rotation in the gas phase to single peaks characteristic of hindered rotation in the liquid phase. Comparison is made with quantum and correspondence principle classical gas phase spectral calculations and with experimental measurements for pure N2 and N2 in liquid Ar. Three advantages are pointed out for a classical approach to infrared and Raman spectra. First, a classical approach can be used to compute the spectra of complex molecular systems, e.g., of large molecules, clusters, liquids, solutions, and solids. Second, this classical approach can be extended to compute the spectra of nonequilibrium and time-dependent systems, e.g., infrared and Raman spectra during the course of chemical reactions. Third, a classical viewpoint allows experimental infrared and Raman spectra to be understood and interpreted in terms of atomic motions with the considerable aid of classical models and of our

  8. Is Africa a 'Graveyard' for Linear Accelerators?

    PubMed

    Reichenvater, H; Matias, L Dos S

    2016-12-01

    Linear accelerator downtimes are common and problematic in many African countries and may jeopardise the outcome of affected radiation treatments. The predicted increase in cancer incidence and prevalence on the African continent will require, inter alia, improved response with regard to a reduction in linear accelerator downtimes. Here we discuss the problems associated with the maintenance and repair of linear accelerators and propose alternative solutions relevant for local conditions in African countries. The paper is based on about four decades of experience in capacity building, installing, commissioning, calibrating, servicing and repairing linear accelerators in Africa, where about 40% of the low and middle income countries in the world are geographically located. Linear accelerators can successfully be operated, maintained and repaired in African countries provided proper maintenance and repair plans are put in place and executed.

  9. Wavevector-Frequency Spectra of Nonhomogeneous Fields

    DTIC Science & Technology

    1987-01-22

    TITLE (Indud* Security Qasafication) WAVEVECTOR-FREQUENCY SPECTRA OF NONHOMOGENEOUS FIELDS 12. PERSONAL AUTHOR(S) Dr . Wayne A. Strawderman...SAME AS RPT. D DTIC USERS 22a. NAME OF RESPONSIBLE INDIVIDUAL Dr . Wayne A. Strawderman 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED 22b.T...Program Element 62314N. The NUSC Project No. is B60010. Principal Investigator Dr . H. P. Bakewell, Jr., Code 2141. The Sponsoring Activity was the Office

  10. Uniformly accelerated black holes

    NASA Astrophysics Data System (ADS)

    Letelier, Patricio S.; Oliveira, Samuel R.

    2001-09-01

    The static and stationary C metric are examined in a generic framework and their interpretations studied in some detail, especially those with two event horizons, one for the black hole and another for the acceleration. We find that (i) the spacetime of an accelerated static black hole is plagued by either conical singularities or a lack of smoothness and compactness of the black hole horizon, (ii) by using standard black hole thermodynamics we show that accelerated black holes have a higher Hawking temperature than Unruh temperature of the accelerated frame, and (iii) the usual upper bound on the product of the mass and acceleration parameters (<1/27) is just a coordinate artifact. The main results are extended to accelerated rotating black holes with no significant changes.

  11. The Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  12. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  13. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  14. The foxhole accelerating structure

    SciTech Connect

    Fernow, R.C.; Claus, J.

    1992-07-17

    This report examines some properties of a new type of open accelerating structure. It consists of a series of rectangular cavities, which we call foxholes, joined by a beam channel. The power for accelerating the particles comes from an external radiation source and enters the cavities through their open upper surfaces. Analytic and computer calculations are presented showing that the foxhole is a suitable structure for accelerating relativistic electrons.

  15. Energy spectra of ions from impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Richardson, I. G.; Wenzel, K.-P.

    1991-01-01

    A study of the energy spectra of ions from impulsive solar flares in the 0.1 to 100 MeV region is reported with data from the combined observations of experiments on the ISEE 3 and IMP 8 spacecraft. Most of the events studied are dominated by He, and these He spectra show a persistent steepening or break above about 10 MeV resulting in an increase in the power-law spectral indices from about 2 to about 3.5 or more. One event, dominated by protons, shows a clear maximum in the spectrum near 1 MeV. If the rollover in the spectrum below 1 MeV is interpreted as a consequence of matter traversal in the solar atmosphere, then the source of the acceleration would lie only about 800 km above the photosphere, well below the corona. An alternative interpretation is that trapping in the acceleration region directly causes a peak in the spectrum.

  16. Particle acceleration in flares

    NASA Technical Reports Server (NTRS)

    Benz, Arnold O.; Kosugi, Takeo; Aschwanden, Markus J.; Benka, Steve G.; Chupp, Edward L.; Enome, Shinzo; Garcia, Howard; Holman, Gordon D.; Kurt, Victoria G.; Sakao, Taro

    1994-01-01

    Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, gamma-rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.

  17. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  18. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  19. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases.

  20. High Gradient Accelerator Research

    SciTech Connect

    Temkin, Richard

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  1. FFAGS for rapid acceleration

    SciTech Connect

    Carol J. Johnstone and Shane Koscielniak

    2002-09-30

    When large transverse and longitudinal emittances are to be transported through a circular machine, extremely rapid acceleration holds the advantage that the beam becomes immune to nonlinear resonances because there is insufficient time for amplitudes to build up. Uncooled muon beams exhibit large emittances and require fast acceleration to avoid decay losses and would benefit from this style of acceleration. The approach here employs a fixed-field alternating gradient or FFAG magnet structure and a fixed frequency acceleration system. Acceptance is enhanced by the use only of linear lattice elements, and fixed-frequency rf enables the use of cavities with large shunt resistance and quality factor.

  2. Acceleration of polarized protons in circular accelerators

    SciTech Connect

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  3. Algorithms for accelerated automatic tuning of controllers with estimating the plant model from the plant response to an impulse disturbance and under self-oscillation conditions

    NASA Astrophysics Data System (ADS)

    Kuzishchin, V. F.; Tsarev, V. S.

    2014-04-01

    The problem of automatically tuning controllers in an operating control system is considered. Two methods for quickly determining the model parameters with calculating the plant model and the optimal controller tuning parameters in real time are proposed for the preliminary controller tuning stage: from the experimentally obtained plant response to an impulse disturbance and from two periods of self-oscillations excited in the mode of two-position control. The PID controller tunings are determined using the calculation algorithm of indirect frequency optimality indicators. The results from checking the serviceability of the proposed method in a system fitted with an industry-grade controller are presented.

  4. Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator.

    PubMed

    Laschinsky, Lydia; Baumann, Michael; Beyreuther, Elke; Enghardt, Wolfgang; Kaluza, Malte; Karsch, Leonhard; Lessmann, Elisabeth; Naumburger, Doreen; Nicolai, Maria; Richter, Christian; Sauerbrey, Roland; Schlenvoigt, Hans-Peter; Pawelke, Jörg

    2012-01-01

    The notable progress in laser particle acceleration technology promises potential medical application in cancer therapy through compact and cost effective laser devices that are suitable for already existing clinics. Previously, consequences on the radiobiological response by laser driven particle beams characterised by an ultra high peak dose rate have to be investigated. Therefore, tumour and non-malignant cells were irradiated with pulsed laser accelerated electrons at the JETI facility for the comparison with continuous electrons of a conventional therapy LINAC. Dose response curves were measured for the biological endpoints clonogenic survival and residual DNA double strand breaks. The overall results show no significant differences in radiobiological response for in vitro cell experiments between laser accelerated pulsed and clinical used electron beams. These first systematic in vitro cell response studies with precise dosimetry to laser driven electron beams represent a first step toward the long term aim of the application of laser accelerated particles in radiotherapy.

  5. Women with elevated food addiction symptoms show accelerated reactions, but no impaired inhibitory control, in response to pictures of high-calorie food-cues.

    PubMed

    Meule, Adrian; Lutz, Annika; Vögele, Claus; Kübler, Andrea

    2012-12-01

    Addictive behaviors are accompanied by a lack of inhibitory control, specifically when individuals are confronted with substance-related cues. Thus, we expected women with symptoms of food addiction to be impaired in inhibitory control, when confronted with palatable, high-calorie food-cues. Female college students (N=50) were divided in low and high food addiction groups based on the symptom count of the Yale Food Addiction Scale. Participants performed a Go/No-go-task with high-calorie food-cues or neutral pictures presented behind the targets. Self-reported impulsivity was also assessed. The high food addiction group had faster reaction times in response to food-cues as compared to neutral cues and reported higher attentional impulsivity than the low food addiction group. Commission and omission errors did not differ between groups or picture types. Hence, women with food addiction symptoms reported higher attentional impulsivity and reacted faster in response to food-cues, although neither increased self-reported motor impulsivity nor impaired behavioral inhibition was found. Food addiction symptoms seem to be related to attentional aspects of impulsivity but not other facets of impulsivity.

  6. Particle Acceleration and Emission in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.; Hardee, P. E.; Richardson, G. A.; Preece, R. D.; Sol, H.; Fishman, G. J.

    2003-01-01

    Shock wave acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. While some Fermi acceleration may occur at the jet front, the majority of electron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  7. Catalogue of representative meteor spectra

    NASA Astrophysics Data System (ADS)

    Vojáček, V.; Borovička, J.; Koten, P.; Spurný, P.; Štork, R.

    2016-01-01

    We present a library of low-resolution meteor spectra that includes sporadic meteors, members of minor meteor showers, and major meteor showers. These meteors are in the magnitude range from +2 to -3, corresponding to meteoroid sizes from 1 mm to10 mm. This catalogue is available online at the CDS for those interested in video meteor spectra.

  8. Projecting Spectra for Classroom Investigations.

    ERIC Educational Resources Information Center

    Sadler, Philip

    1991-01-01

    Describes an inexpensive spectrum projector that makes high-dispersion, high-efficiency diffraction gratings using a holographic process. Discusses classroom applications such as transmission spectra, absorption spectra, reflection characteristics of materials, color mixing, florescence and phosphorescence, and break up spectral colors. (MDH)

  9. Experimental investigation of the response of an a-Si EPID to an unflattened photon beam from an Elekta Precise linear accelerator.

    PubMed

    Tyner, Elaine; McClean, Brendan; McCavana, Patrick; af Wetterstedt, Sacha

    2009-04-01

    The characteristics of an Elekta amorphous silicon (a-Si) electronic portal imaging device (EPID) in response to a 6 MV photon beam generated without a flattening filter, an unflattened beam, have been determined. The characteristics were then compared to those for a conventional photon beam generated with a flattening filter in the beam, a flattened beam, in order to determine the suitability of an a-Si EPID for transit dosimetry. The response of the EPID to the unflattened beam increased by 7.3% compared to the flattened beam, and copper buildup of 3 mm reduces the variation in the EPID response over air gaps ranging from 60 to 40 cm to within 2.5%. The scattering properties of the EPID with changing field size for the unflattened beam agree with those measured for a flattened beam to within 2%. Due to the minimal variation in the energy spectrum of the unflattened beam with the distance from the central axis, it was expected and experimentally found that the profile shape of the unflattened beam changes minimally with increasing phantom thickness. For an unflattened beam, EPID measured profiles with and without a phantom in the beam agree to within 2% using confidence limits. The difference between EPID and ionization chamber profiles measured at a depth of 5 cm in water is reduced compared to a flattened beam and remains unchanged with increasing phantom thickness. A difference of 4% was found between EPID profiles and the corresponding profiles measured with an ionization chamber measured in water over a range of phantom thickness. A calibration procedure was developed to convert EPID images to the equivalent absolute dose in water, at the EPID plane. A gamma evaluation was performed comparing the calibrated EPID images to dose measured with an ionization chamber array for rectangular fields and an IMRT segment. The fields were situated on axis and at 5 cm off axis with and without a 25 cm thick phantom in the beam. The gamma evaluation criteria of 3% and 3 mm

  10. EXOTIC MAGNETS FOR ACCELERATORS.

    SciTech Connect

    WANDERER, P.

    2005-09-18

    Over the last few years, several novel magnet designs have been introduced to meet the requirements of new, high performance accelerators and beam lines. For example, the FAIR project at GSI requires superconducting magnets ramped at high rates ({approx} 4 T/s) in order to achieve the design intensity. Magnets for the RIA and FAIR projects and for the next generation of LHC interaction regions will need to withstand high doses of radiation. Helical magnets are required to maintain and control the polarization of high energy protons at RHIC. In other cases, novel magnets have been designed in response to limited budgets and space. For example, it is planned to use combined function superconducting magnets for the 50 GeV proton transport line at J-PARC to satisfy both budget and performance requirements. Novel coil winding methods have been developed for short, large aperture magnets such as those used in the insertion region upgrade at BEPC. This paper will highlight the novel features of these exotic magnets.

  11. Particle Acceleration, Magnetic Field Generation, and Associated Emission in Collisionless Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron)jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  12. Particle Acceleration, Magnetic Field Generation and Associated Emission in Collisionless Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Ramirez-Ruiz, E.; Hardee, P.; Mizuno, Y.; Fishman. G. J.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  13. Scaling FFAG accelerator for muon acceleration

    SciTech Connect

    Lagrange, JB.; Planche, T.; Mori, Y.

    2011-10-06

    Recent developments in scaling fixed field alternating gradient (FFAG) accelerators have opened new ways for lattice design, with straight sections, and insertions like dispersion suppressors. Such principles and matching issues are detailed in this paper. An application of these new concepts is presented to overcome problems in the PRISM project.

  14. Scaling FFAG accelerator for muon acceleration

    NASA Astrophysics Data System (ADS)

    Lagrange, JB.; Planche, T.; Mori, Y.

    2011-10-01

    Recent developments in scaling fixed field alternating gradient (FFAG) accelerators have opened new ways for lattice design, with straight sections, and insertions like dispersion suppressors. Such principles and matching issues are detailed in this paper. An application of these new concepts is presented to overcome problems in the PRISM project.

  15. Angular velocities, angular accelerations, and coriolis accelerations

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  16. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  17. Accelerator Science: Why RF?

    SciTech Connect

    Lincoln, Don

    2016-12-21

    Particle accelerators can fire beams of subatomic particles at near the speed of light. The accelerating force is generated using radio frequency technology and a whole lot of interesting features. In this video, Fermilab’s Dr. Don Lincoln explains how it all works.

  18. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  19. Accelerators (3/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  20. Diagnostics for induction accelerators

    SciTech Connect

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960`s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore`s Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail.

  1. Accelerators (4/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  2. Measuring Model Rocket Acceleration.

    ERIC Educational Resources Information Center

    Jenkins, Randy A.

    1993-01-01

    Presents an experiment that measures the acceleration and velocity of a model rocket. Lift-off information is transmitted to a computer that creates a graph of the velocity. Discusses the analysis of the computer-generated data and differences between calculated and experimental velocity and acceleration of several rocket types. (MDH)

  3. Accelerators (5/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  4. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph

    2010-07-29

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?.

  5. Analysis of Transmitted Optical Spectrum Enabling Accelerated Testing of CPV Designs: Preprint

    SciTech Connect

    Miller, D. C.; Kempe, M. D.; Kennedy, C. E.; Kurtz, S. R.

    2009-07-01

    Reliability of CPV systems' materials is not well known; methods for accelerated UV testing have not been developed. UV and IR spectra transmitted through representative optical systems are evaluated.

  6. On the origin of a kink in the hardness spectra of cosmic-ray protons and helium nuclei in the vicinity of 230 GV

    SciTech Connect

    Loznikov, V. M. Erokhin, N. S. Zol’nikova, N. N.; Mikhailovskaya, L. A.

    2015-08-15

    A three-component phenomenological model for the description of specific features of spectra of cosmic-ray protons and helium nuclei in the hardness range from 30 to 2 × 10{sup 5} GV is proposed. The first component corresponds to the constant background; the second component, to a variable “soft” (30–500 GV) heliospheric source; and the third component, to a variable “hard” (0.5–200 TV) galactic source inside a local bubble. The corresponding “surfatron accelerators” are responsible for the existence and variability of both sources. In order for such accelerators to operate, there should be an extended area with a nearly uniform and constant (in both the magnitude and direction) magnetic field and electromagnetic waves propagating perpendicular (or obliquely) to it. The dimensions of each source determine the maximum energy to which cosmic rays can be accelerated. The soft source with a size of ∼100 au lies at the periphery of the heliosphere, beyond the terminal shock, while the hard source with a size of >0.1 pc is located near the boundary of a local interstellar cloud at a distance of ∼0.01 pc from the Sun. A kink in the hardness spectra of p and He (near the hardness of about 230 GV) is caused by the variability of physical conditions in the acceleration region and depends on the relation between the amplitudes and power-law indices of the background, the soft heliospheric source, and the nearby hard galactic source. Ultrarelativistic acceleration of p and He in space plasma by an electromagnetic wave propagating perpendicular to the external magnetic field is investigated using numerical calculations. The conditions for particle trapping by the wave, as well as the dynamics of the velocity and momentum components, are analyzed. The calculations show that, in contrast to electrons and positrons (e{sup +}), a trapped proton can escape from the effective potential well after a relatively short time, thereby terminating to accelerate. Such

  7. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators

    SciTech Connect

    McLaughlin, David J.; Shikhaliev, Polad M.; Matthews, Kenneth L.; Hogstrom, Kenneth R. Carver, Robert L.; Gibbons, John P.; Clarke, Taylor; Henderson, Alexander; Liang, Edison P.

    2015-09-15

    Purpose: The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. Methods: An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7–20 MeV) of an Elekta Infinity radiotherapy accelerator. Results: Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower

  8. Nuclear processes and accelerated particles in solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1987-01-01

    Nuclear processes and particle acceleration in solar flares are discussed and the theory of gamma-ray and neutron production is reviewed. Gamma-ray, neutron, and charged-particle observations of solar flares are compared with predictions, and the implications of these comparisons for particle energy spectra, total numbers, anisotropies, electron-to-proton ratios, and acceleration mechanisms are considered. Elemental and isotopic abundances of the ambient gas derived from gamma-ray observations have also been compared to abundances obtained from observations of escaping accelerated particles and other sources.

  9. Efficient Optical Energy Harvesting in Self-Accelerating Beams

    PubMed Central

    Bongiovanni, Domenico; Hu, Yi; Wetzel, Benjamin; Robles, Raul A.; Mendoza González, Gregorio; Marti-Panameño, Erwin A.; Chen, Zhigang; Morandotti, Roberto

    2015-01-01

    We report the experimental observation of energetically confined self-accelerating optical beams propagating along various convex trajectories. We show that, under an appropriate transverse compression of their spatial spectra, these self-accelerating beams can exhibit a dramatic enhancement of their peak intensity and a significant decrease of their transverse expansion, yet retaining both the expected acceleration profile and the intrinsic self-healing properties. We found our experimental results to be in excellent agreement with the numerical simulations. We expect further applications in such contexts where power budget and optimal spatial confinement can be important limiting factors. PMID:26299360

  10. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  11. Shapes of Energetic Ion Spectra in Saturn's Magnetosphere Compared with those at Earth and Jupiter

    NASA Astrophysics Data System (ADS)

    Hamilton, D. C.; Mitchell, D. G.; Krimigis, S. M.

    2013-12-01

    Saturn's magnetosphere contains suprathermal and energetic ions that originate from a number of plasma sources including Enceladus, Titan, Saturn's atmosphere and ionosphere and the solar wind, with internal sources dominating. Although different species originate at different locations, transport processes and acceleration during or after transport distribute the energetic ions throughout the magnetosphere out to the magnetopause. In principle, the shapes of the energy spectra of these ions contain information on acceleration processes. However, because outside of about 9 RS long-term average spectra of all species are quite good power laws, it is difficult to pick one energy parameter (e.g., energy/charge or energy/nucleon) as better organizing the spectra by, for example, maintaining constant abundance ratios from low to high energies. Inside of 9 RS there are energy-dependent losses that alter the spectra but aren't directly related to acceleration. Here, using data from the Cassini/CHEMS sensor, we investigate ion spectra over the energy per charge range 3-220 keV/e in more detail with better resolution in both space and time, looking for evidence of spectral differences among species based on charge (e.g., O+ vs. O++) or plasma source (e.g., O+ (Enceladus) vs. He++ (solar wind)). We will compare Saturn's ion spectra with those from the magnetospheres of Earth and Jupiter and discuss implications for acceleration processes.

  12. HBsAg sT123N mutation induces stronger antibody responses to HBsAg and HBcAg and accelerates in vivo HBsAg clearance.

    PubMed

    Li, Songxia; Zhao, Kaitao; Liu, Shuhui; Wu, Chunchen; Yao, Yongxuan; Cao, Liang; Hu, Xue; Zhou, Yuan; Wang, Yun; Pei, Rongjuan; Lu, Mengji; Chen, Xinwen

    2015-12-02

    Immune escape mutants with mutations in the hepatitis B surface antigen (HBsAg) major hydrophilic region (MHR) often emerge in association with diagnostic failure or breakthrough of HBV infection in patients with anti-HBs antibodies. Some mutants harboring substitutions to Asn in HBsAg MHR may have an additional potential N-glycosylation site. We have previously showed that sT123N substitution could generate additional N-glycosylated forms of HBsAg. In the present study, 1.3-fold-overlength HBV genomes containing the sT123N substitution were digested from the pHBV1.3-sT123N construct and subcloned into the pAAV vector to generate pAAV1.3-sT123N for hydrodynamic injection (HI) in mice. Viral expression and replication were phenotypically characterized by transient transfection. The results demonstrated that sT123N substitution impaired virion secretion, resulting in intracellular retention of HBcAg. Using the HBV HI mouse model, we found that mice mounted significantly stronger antibody responses to HBsAg and HBcAg, which accelerated HBsAg clearance. Thus, additional N-glycosylation generated by amino acid substitutions in HBsAg MHR may significantly modulate specific host immune responses and influence HBV infection in vivo. Our results help further the understanding of the role of immune escape mutants with N-linked glycosylation in the biology of HBV infection.

  13. PAMELA measurements of cosmic-ray proton and helium spectra.

    PubMed

    Adriani, O; Barbarino, G C; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bonechi, L; Bongi, M; Bonvicini, V; Borisov, S; Bottai, S; Bruno, A; Cafagna, F; Campana, D; Carbone, R; Carlson, P; Casolino, M; Castellini, G; Consiglio, L; De Pascale, M P; De Santis, C; De Simone, N; Di Felice, V; Galper, A M; Gillard, W; Grishantseva, L; Jerse, G; Karelin, A V; Koldashov, S V; Krutkov, S Y; Kvashnin, A N; Leonov, A; Malakhov, V; Malvezzi, V; Marcelli, L; Mayorov, A G; Menn, W; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Nikonov, N; Osteria, G; Palma, F; Papini, P; Pearce, M; Picozza, P; Pizzolotto, C; Ricci, M; Ricciarini, S B; Rossetto, L; Sarkar, R; Simon, M; Sparvoli, R; Spillantini, P; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G; Voronov, S A; Yurkin, Y T; Wu, J; Zampa, G; Zampa, N; Zverev, V G

    2011-04-01

    Protons and helium nuclei are the most abundant components of the cosmic radiation. Precise measurements of their fluxes are needed to understand the acceleration and subsequent propagation of cosmic rays in our Galaxy. We report precision measurements of the proton and helium spectra in the rigidity range 1 gigavolt to 1.2 teravolts performed by the satellite-borne experiment PAMELA (payload for antimatter matter exploration and light-nuclei astrophysics). We find that the spectral shapes of these two species are different and cannot be described well by a single power law. These data challenge the current paradigm of cosmic-ray acceleration in supernova remnants followed by diffusive propagation in the Galaxy. More complex processes of acceleration and propagation of cosmic rays are required to explain the spectral structures observed in our data.

  14. Engineering characterization of ground motion. Task I. Effects of characteristics of free-field motion on structural response

    SciTech Connect

    Kennedy, R.P.; Short, S.A.; Merz, K.L.; Tokarz, F.J.; Idriss, I.M.; Power, M.S.; Sadigh, K.

    1984-05-01

    This report presents the results of the first task of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this study is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study develops a basis for selecting design response spectra, taking into account the characteristics of free-field ground motion found to be significant in causing structural damage.

  15. Stochastic acceleration and magnetic damping in Tycho's SNR

    NASA Astrophysics Data System (ADS)

    Wilhelm, Alina; Telezhinsky, Igor; Dwarkadas, Vikram; Pohl, Martin

    2016-06-01

    Tycho's Supernova remnant (SNR) is also known as historical Supernova SN 1572 of Type Ia. Having exploded in a relatively clean environment and with a known age, it represents an ideal astrophysical testbed for the study of cosmic-ray acceleration and related phenomena. A number of studies suggest that shock acceleration with very efficient magnetic-field amplification is needed to explain the rather soft radio spectrum and the narrow rims observed in X-rays. We show that the wideband spectrum of Tycho's SNR can be alternatively well explained when accounting for stochastic acceleration as a secondary process. The re-acceleration of particles in the turbulent region immediately downstream of the shock provided by the fast-mode waves is efficient enough to impact particle spectra over several decades in energy. Our self-consistent model contains hydrodynamic simulations of the SNR plasma flow. The particle spectra are obtained from the time-dependent transport equation and the background magnetic field is computed either from the induction equation or it follows analytic profiles depending on the considered model. Although not as efficient as standard diffusive shock acceleration, stochastic acceleration leaves its imprint on the particle spectra. This is especially notable in the emission at radio wavelengths and soft γ-rays. Excessively strong magnetic fields and the so-called Alfvénic drift are not required in this scenario. The narrow X-ray and radio rims arise from damping of the turbulent magnetic field. We find a lower limit for the downstream magnetic field strength, Bd = 173 µG and investigate the energy-dependence of the X-ray filament width. We conclude that stochastic re-acceleration is an important mechanism for modifying particle and emission spectra in SNR and that the magnetic-field damping should be taken into account to properly explain the synchrotron intensity profiles of Tycho.

  16. Accelerated Ca2+ entry by membrane hyperpolarization due to Ca2+-activated K+ channel activation in response to histamine in chondrocytes.

    PubMed

    Funabashi, Kenji; Ohya, Susumu; Yamamura, Hisao; Hatano, Noriyuki; Muraki, Katsuhiko; Giles, Wayne; Imaizumi, Yuji

    2010-04-01

    In articular cartilage inflammation, histamine release from mast cells is a key event. It can enhance cytokine production and matrix synthesis and also promote cell proliferation by stimulating chondrocytes. In this study, the functional impact of Ca(2+)-activated K(+) (K(Ca)) channels in the regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in chondrocytes in response to histamine was examined using OUMS-27 cells, as a model of chondrocytes derived from human chondrosarcoma. Application of histamine induced a significant [Ca(2+)](i) rise and also membrane hyperpolarization, and both effects were mediated by the stimulation of H(1) receptors. The histamine-induced membrane hyperpolarization was attenuated to approximately 50% by large-conductance K(Ca) (BK) channel blockers, and further reduced by intermediate (IK) and small conductance K(Ca) (SK) channel blockers. The tonic component of histamine-induced [Ca(2+)](i) rise strongly depended on the presence of extracellular Ca(2+) ([Ca(2+)](o)) and was markedly reduced by La(3+) or Gd(3+) but not by nifedipine. It was significantly attenuated by BK channel blockers, and further blocked by the cocktail of BK, IK, and SK channel blockers. The K(Ca) blocker cocktail also significantly reduced the store-operated Ca(2+) entry (SOCE), which was induced by Ca(2+) addition after store-depletion by thapsigargin in [Ca(2+)](o) free solution. Our results demonstrate that the histamine-induced membrane hyperpolarization in chondrocytes due to K(Ca) channel activation contributes to sustained Ca(2+) entry mainly through SOCE channels in OUMS-27 cells. Thus, K(Ca) channels appear to play an important role in the positive feedback mechanism of [Ca(2+)](i) regulation in chondrocytes in the presence of articular cartilage inflammation.

  17. Flow accelerated organic coating degradation

    NASA Astrophysics Data System (ADS)

    Zhou, Qixin

    Applying organic coatings is a common and the most cost effective way to protect metallic objects and structures from corrosion. Water entry into coating-metal interface is usually the main cause for the deterioration of organic coatings, which leads to coating delamination and underfilm corrosion. Recently, flowing fluids over sample surface have received attention due to their capability to accelerate material degradation. A plethora of works has focused on the flow induced metal corrosion, while few studies have investigated the flow accelerated organic coating degradation. Flowing fluids above coating surface affect corrosion by enhancing the water transport and abrading the surface due to fluid shear. Hence, it is of great importance to understand the influence of flowing fluids on the degradation of corrosion protective organic coatings. In this study, a pigmented marine coating and several clear coatings were exposed to the laminar flow and stationary immersion. The laminar flow was pressure driven and confined in a flow channel. A 3.5 wt% sodium chloride solution and pure water was employed as the working fluid with a variety of flow rates. The corrosion protective properties of organic coatings were monitored inline by Electrochemical Impedance Spectroscopy (EIS) measurement. Equivalent circuit models were employed to interpret the EIS spectra. The time evolution of coating resistance and capacitance obtained from the model was studied to demonstrate the coating degradation. Thickness, gloss, and other topography characterizations were conducted to facilitate the assessment of the corrosion. The working fluids were characterized by Fourier Transform Infrared Spectrometer (FTIR) and conductivity measurement. The influence of flow rate, fluid shear, fluid composition, and other effects in the coating degradation were investigated. We conclude that flowing fluid on the coating surface accelerates the transport of water, oxygen, and ions into the coating, as

  18. Phonon spectra of alkali metals

    NASA Astrophysics Data System (ADS)

    Zeković, S.; Vukajlović, F.; Veljković, V.

    1982-10-01

    In this work we used a simple local model pseudopotential which includes screening for the phonon spectra calculations of alkali metals. The results obtained are in very good agreement with experimental data. In some branches of phonon spectra the differences between theoretical and experimental results are within 1-2%, while the maximum error is about 6%. The suggested form of the pseudopotential allows us to describe the phonon spectra of Na, K and Rb with only one, and, at the same time, a unique, parameter. In this case, the maximum disagreements from experiment are 9% for Na, 8% for K and 7% for Rb.

  19. Differential response of bone and kidney to ACEI in db/db mice: A potential effect of captopril on accelerating bone loss.

    PubMed

    Zhang, Yan; Li, Xiao-Li; Sha, Nan-Nan; Shu, Bing; Zhao, Yong-Jian; Wang, Xin-Luan; Xiao, Hui-Hui; Shi, Qi; Wong, Man-Sau; Wang, Yong-Jun

    2017-04-01

    The components of renin-angiotensin system (RAS) are expressed in the kidney and bone. Kidney disease and bone injury are common complications associated with diabetes. This study aimed to investigate the effects of an angiotensin-converting enzyme inhibitor, captopril, on the kidney and bone of db/db mice. The db/db mice were orally administered by gavage with captopril for 8weeks with db/+ mice as the non-diabetic control. Serum and urine biochemistries were determined by standard colorimetric methods or ELISA. Histological measurements were performed on the kidney by periodic acid-schiff staining and on the tibial proximal metaphysis by safranin O and masson-trichrome staining. Trabecular bone mass and bone quality were analyzed by microcomputed tomography. Quantitative polymerase chain reaction and immunoblotting were applied for molecular analysis on mRNA and protein expression. Captopril significantly improved albuminuria and glomerulosclerosis in db/db mice, and these effects might be attributed to the down-regulation of angiotensin II expression and the expression of its down-stream profibrotic factors in the kidney, like connective tissue growth factor and vascular endothelial growth factor. Urinary excretion of calcium and phosphorus markedly increased in db/db mice in response to captopril. Treatment with captopril induced a decrease in bone mineral density and deterioration of trabecular bone at proximal metaphysis of tibia in db/db mice, as shown in the histological and reconstructed 3-dimensional images. Even though captopril effectively reversed the diabetes-induced changes in calcium-binding protein 28-k and vitamin D receptor expression in the kidney as well as the expression of RAS components and bradykinin receptor-2 in bone tissue, treatment with captopril increased the osteoclast-covered bone surface, reduced the osteoblast-covered bone surface, down-regulated the expression of type 1 collagen and transcription factor runt-related transcription

  20. Response

    ERIC Educational Resources Information Center

    Higgins, Chris

    2012-01-01

    This article presents the author's response to the reviews of his book, "The Good Life of Teaching: An Ethics of Professional Practice." He begins by highlighting some of the main concerns of his book. He then offers a brief response, doing his best to address the main criticisms of his argument and noting where the four reviewers (Charlene…

  1. Large electrostatic accelerators

    SciTech Connect

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  2. Implications of X-Ray Observations for Electron Acceleration and Propagation in Solar Flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.; Aschwanden, M. J.; Aurass, H.; Battaglia, M.; Grigis, P. C.; Kontar, E. P.; Liu, W.; Saint-Hilaire, P.; Zharkova, V. V.

    2011-01-01

    High-energy X-rays and gamma-rays from solar flares were discovered just over fifty years ago. Since that time, the standard for the interpretation of spatially integrated flare X-ray spectra at energies above several tens of keV has been the collisional thick-target model. After the launch of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in early 2002, X-ray spectra and images have been of sufficient quality to allow a greater focus on the energetic electrons responsible for the X-ray emission, including their origin and their interactions with the flare plasma and magnetic field. The result has been new insights into the flaring process, as well as more quantitative models for both electron acceleration and propagation, and for the flare environment with which the electrons interact. In this article we review our current understanding of electron acceleration, energy loss, and propagation in flares. Implications of these new results for the collisional thick-target model, for general flare models, and for future flare studies are discussed.

  3. Investigations of turbulent motions and particle acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Jakimiec, J.; Fludra, A.; Lemen, J. R.; Dennis, B. R.; Sylwester, J.

    1986-01-01

    Investigations of X-raya spectra of solar flares show that intense random (turbulent) motions are present in hot flare plasma. Here it is argued that the turbulent motions are of great importance for flare development. They can efficiently enhance flare energy release and accelerate particles to high energies.

  4. Detecting Energy Modulation in a Dielectric Laser Accelerator

    SciTech Connect

    Lukaczyk, Louis

    2015-08-21

    The Dielectric Laser Acceleration group at SLAC uses micro-fabricated dielectric grating structures and conventional infrared lasers to accelerator electrons. These structures have been estimated to produce an accelerating gradient up to 2 orders of magnitude greater than that produced by conventional RF accelerators. The success of the experiment depends on both the laser damage threshold of the structure and the timing overlap of femtosecond duration laser pulses with the electron bunch. In recent dielectric laser acceleration experiments, the laser pulse was shorter both temporally and spatially than the electron bunch. As a result, the laser is theorized to have interacted with only a small portion of the electron bunch. The detection of this phenomenon, referred to as partial population modulation, required a new approach to the data analysis of the electron energy spectra. A fitting function was designed to separate the accelerated electron population from the un-accelerated electron population. The approach was unsuccessful in detecting acceleration in the partial population modulation data. However, the fitting functions provide an excellent figure of merit for previous data known to contain signatures of acceleration.

  5. Vacuum Beat Wave Accelerator

    NASA Astrophysics Data System (ADS)

    Moore, C. I.; Hafizi, B.; Ting, A.; Burris, H. R.; Sprangle, P.; Esarey, E.; Ganguly, A.; Hirshfield, J. L.

    1997-11-01

    The Vacuum Beat Wave Accelerator (VBWA) is a particle acceleration scheme which uses the non-linear ponderomotive beating of two different frequency laser beams to accelerate electrons. A proof-of-principle experiment to demonstrate the VBWA is underway at the Naval Research Laboratory (NRL). This experiment will use the beating of a 1054 nm and 527 nm laser pulse from the NRL T-cubed laser to generate the beat wave and a 4.5 MeV RF electron gun as the electron source. Simulation results and the experimental design will be presented. The suitability of using axicon or higher order Gaussian laser beams will also be discussed.

  6. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  7. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  8. Spectra ID of recent SN

    NASA Astrophysics Data System (ADS)

    Challis, Peter

    2013-12-01

    P. Challis, Harvard-Smithsonian Center for Astrophysics (CfA), on behalf of the CfA Supernova Group, report spectra (range 320-860 nm) of various SN obtained during Dec. 24-27 UT by P. Challis, S. Gottilla (MMTO.org), and E. Marin (MMTO.org) with the MMT 6.5-m telescope (+ Blue Channel). Cross-correlation with a library of supernova spectra using the "Supernova Identification" code (SNID; Blondin and Tonry 2007, Ap.J.

  9. Particle acceleration in cosmic plasmas – paradigm change?

    SciTech Connect

    Lytikov, Maxim; Guo, Fan

    2015-07-21

    The presentation begins by considering the requirements on the acceleration mechanism. It is found that at least some particles in high-energy sources are accelerated by magnetic reconnection (and not by shocks). The two paradigms can be distinguished by the hardness of the spectra. Shocks typically produce spectra with p > 2 (relativistic shocks have p ~ 2.2); non-linear shocks & drift acceleration may give p < 2, e.g. p=1.5; B-field dissipation can give p = 1. Then collapse of stressed magnetic X-point in force-free plasma and collapse of a system of magnetic islands are taken up, including Island merger: forced reconnection. Spectra as functions of sigma are shown, and gamma ~ 109 is addressed. It is concluded that reconnection in magnetically-dominated plasma can proceed explosively, is an efficient means of particle acceleration, and is an important (perhaps dominant for some phenomena) mechanism of particle acceleration in high energy sources.

  10. Representation of bidirectional ground motions for design spectra in building codes

    USGS Publications Warehouse

    Stewart, Jonathan P.; Abrahamson, Norman A.; Atkinson, Gail M.; Beker, Jack W.; Boore, David M.; Bozorgnia, Yousef; Campbell, Kenneth W.; Comartin, Craig D.; Idriss, I.M.; Lew, Marshall; Mehrain, Michael; Moehle, Jack P.; Naeim, Farzad; Sabol, Thomas A.

    2011-01-01

    The 2009 NEHRP Provisions modified the definition of horizontal ground motion from the geometric mean of spectral accelerations for two components to the peak response of a single lumped mass oscillator regardless of direction. These maximum-direction (MD) ground motions operate under the assumption that the dynamic properties of the structure (e.g., stiffness, strength) are identical in all directions. This assumption may be true for some in-plan symmetric structures, however, the response of most structures is dominated by modes of vibration along specific axes (e.g., longitudinal and transverse axes in a building), and often the dynamic properties (especially stiffness) along those axes are distinct. In order to achieve structural designs consistent with the collapse risk level given in the NEHRP documents, we argue that design spectra should be compatible with expected levels of ground motion along those principal response axes. The use of MD ground motions effectively assumes that the azimuth of maximum ground motion coincides with the directions of principal structural response. Because this is unlikely, design ground motions have lower probability of occurrence than intended, with significant societal costs. We recommend adjustments to make design ground motions compatible with target risk levels.

  11. Wind-induced vibrations of structures using design spectra

    NASA Astrophysics Data System (ADS)

    Martinez-Vazquez, P.

    2016-12-01

    This paper discusses the estimation of wind dynamic response of two types of structures by following classical and novel approaches. A new method for structural analysis based on wind design spectra is introduced and tested against simulated and experimental data. Design spectra are derived from the dynamic response of a group of oscillators subject to wind, using similar techniques than those used to derive design spectra for seismic engineering applications. The method is used on three chimneys of different height as well as on a regular building which has been experimentally tested in the past. The chimneys and building are also submitted to simulated wind fields to provide additional sets of results. It is observed that the spectral approach is consistent with experimental and simulated results and therefore is concluded that design spectra can cover broad range of practical applications.

  12. [Study on THz spectra of nicotinic acid, nicotinamide and nicotine].

    PubMed

    Yu, Bin; Huang, Zhen; Wang, Xiao-yan; Zhao, Guo-zhong

    2009-09-01

    The terahertz (THz) spectra of nicotinic acid, nicotinamide and nicotine were studied at room temperature. The time-domain THz spectra were measured. The frequency-domain spectra were obtained by fast Fourier transform (FFT). The spectral response and the dispersive relationship of refractive index in THz spectral range were obtained. The results show that the samples have obvious spectral response in THz spectral range except nicotine. The corresponding stimulated spectra were given by using density functional theory (DFT) method for both nicotinamide and nicotinic acid. The origin of the absorption peaks of nicotinic acid and nicotinamide was explored. It is thought that the absorption peak of nicotinic acid is caused by the torsion and wagging of the molecule, but the absorption peaks of nicotinamide (except 1.93 THz) are caused by intermolecular or phonon mode. It was shown that the molecule structure and vibrational modes of nicotinic acid and nicotinamide can be analyzed by the combination of simulation and experimental results.

  13. CLASHING BEAM PARTICLE ACCELERATOR

    DOEpatents

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  14. Vibration control in accelerators

    SciTech Connect

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  15. Dielectric assist accelerating structure

    NASA Astrophysics Data System (ADS)

    Satoh, D.; Yoshida, M.; Hayashizaki, N.

    2016-01-01

    A higher-order TM02 n mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

  16. Accelerator on a Chip

    SciTech Connect

    England, Joel

    2014-06-30

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  17. Charged particle accelerator grating

    DOEpatents

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  18. HEAVY ION LINEAR ACCELERATOR

    DOEpatents

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  19. Principles of Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Briggs*, Richard J.

    The basic concepts involved in induction accelerators are introduced in this chapter. The objective is to provide a foundation for the more detailed coverage of key technology elements and specific applications in the following chapters. A wide variety of induction accelerators are discussed in the following chapters, from the high current linear electron accelerator configurations that have been the main focus of the original developments, to circular configurations like the ion synchrotrons that are the subject of more recent research. The main focus in the present chapter is on the induction module containing the magnetic core that plays the role of a transformer in coupling the pulsed power from the modulator to the charged particle beam. This is the essential common element in all these induction accelerators, and an understanding of the basic processes involved in its operation is the main objective of this chapter. (See [1] for a useful and complementary presentation of the basic principles in induction linacs.)

  20. Accelerator on a Chip

    ScienceCinema

    England, Joel

    2016-07-12

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  1. DIELECTRIC WALL ACCELERATOR TECHNOLOGY

    SciTech Connect

    Sampayan, S; Caporaso, G; Chen, Y; Harris, J; Hawkins, S; Holmes, C; Nelson, S; Poole, B; Rhodes, M; Sanders, D; Sullivan, J; Wang, L; Watson, J

    2007-10-18

    The dielectric wall accelerator (DWA) is a compact pulsed power device where the pulse forming lines, switching, and vacuum wall are integrated into a single compact geometry. For this effort, we initiated a extensive compact pulsed power development program and have pursued the study of switching (gas, oil, laser induced surface flashover and photoconductive), dielectrics (ceramics and nanoparticle composites), pulse forming line topologies (asymmetric and symmetric Blumleins and zero integral pulse forming lines), and multilayered vacuum insulator (HGI) technology. Finally, we fabricated an accelerator cell for test on ETAII (a 5.5 MeV, 2 kA, 70 ns pulsewidth electron beam accelerator). We review our past results and report on the progress of accelerator cell testing.

  2. Accelerating Climate Simulations Through Hybrid Computing

    NASA Technical Reports Server (NTRS)

    Zhou, Shujia; Sinno, Scott; Cruz, Carlos; Purcell, Mark

    2009-01-01

    Unconventional multi-core processors (e.g., IBM Cell B/E and NYIDIDA GPU) have emerged as accelerators in climate simulation. However, climate models typically run on parallel computers with conventional processors (e.g., Intel and AMD) using MPI. Connecting accelerators to this architecture efficiently and easily becomes a critical issue. When using MPI for connection, we identified two challenges: (1) identical MPI implementation is required in both systems, and; (2) existing MPI code must be modified to accommodate the accelerators. In response, we have extended and deployed IBM Dynamic Application Virtualization (DAV) in a hybrid computing prototype system (one blade with two Intel quad-core processors, two IBM QS22 Cell blades, connected with Infiniband), allowing for seamlessly offloading compute-intensive functions to remote, heterogeneous accelerators in a scalable, load-balanced manner. Currently, a climate solar radiation model running with multiple MPI processes has been offloaded to multiple Cell blades with approx.10% network overhead.

  3. Communication: Nonadditive dielectric susceptibility spectra of associating liquids

    NASA Astrophysics Data System (ADS)

    Bierwirth, S. P.; Münzner, P.; Knapp, T. A.; Gainaru, C.; Böhmer, R.

    2017-03-01

    Highly unusual linear-response spectra involving contributions from hydrogen-bonded supramolecular processes and from structural relaxations are found in 4-methyl-3-heptanol mixed with 2-ethyl-1-hexylbromide. Although the mean time scales of the underlying relaxations are separated by more than 3 decades, the overall spectra cannot be decomposed into a sum of these processes. This finding challenges the ubiquitous practice of disentangling susceptibility spectra of Debye liquids by adding suitable subspectra. The spectral shape of the studied viscous mixtures is excellently described using the Williams ansatz, here a necessary approach and not as previously considered merely an alternative to additive analyses.

  4. Simulations of ion acceleration at non-relativistic shocks. I. Acceleration efficiency

    SciTech Connect

    Caprioli, D.; Spitkovsky, A.

    2014-03-10

    We use two-dimensional and three-dimensional hybrid (kinetic ions-fluid electrons) simulations to investigate particle acceleration and magnetic field amplification at non-relativistic astrophysical shocks. We show that diffusive shock acceleration operates for quasi-parallel configurations (i.e., when the background magnetic field is almost aligned with the shock normal) and, for large sonic and Alfvénic Mach numbers, produces universal power-law spectra ∝p {sup –4}, where p is the particle momentum. The maximum energy of accelerated ions increases with time, and it is only limited by finite box size and run time. Acceleration is mainly efficient for parallel and quasi-parallel strong shocks, where 10%-20% of the bulk kinetic energy can be converted to energetic particles and becomes ineffective for quasi-perpendicular shocks. Also, the generation of magnetic turbulence correlates with efficient ion acceleration and vanishes for quasi-perpendicular configurations. At very oblique shocks, ions can be accelerated via shock drift acceleration, but they only gain a factor of a few in momentum and their maximum energy does not increase with time. These findings are consistent with the degree of polarization and the morphology of the radio and X-ray synchrotron emission observed, for instance, in the remnant of SN 1006. We also discuss the transition from thermal to non-thermal particles in the ion spectrum (supra-thermal region) and we identify two dynamical signatures peculiar of efficient particle acceleration, namely, the formation of an upstream precursor and the alteration of standard shock jump conditions.

  5. Amps particle accelerator definition study

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1975-01-01

    The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.

  6. Diffuse Galactic gamma rays from shock-accelerated cosmic rays.

    PubMed

    Dermer, Charles D

    2012-08-31

    A shock-accelerated particle flux is proportional to p(-s), where p is the particle momentum, follows from simple theoretical considerations of cosmic-ray acceleration at nonrelativistic shocks followed by rigidity-dependent escape into the Galactic halo. A flux of shock-accelerated cosmic-ray protons with s≈2.8 provides an adequate fit to the Fermi Large Area Telescope γ-ray emission spectra of high-latitude and molecular cloud gas when uncertainties in nuclear production models are considered. A break in the spectrum of cosmic-ray protons claimed by Neronov, Semikoz, and Taylor [Phys. Rev. Lett. 108, 051105 (2012)] when fitting the γ-ray spectra of high-latitude molecular clouds is a consequence of using a cosmic-ray proton flux described by a power law in kinetic energy.

  7. Designing reliability into accelerators

    NASA Astrophysics Data System (ADS)

    Hutton, A.

    1992-07-01

    Future accelerators will have to provide a high degree of reliability. Quality must be designed in right from the beginning and must remain a central theme throughout the project. The problem is similar to the problems facing US industry today, and examples of the successful application of quality engineering will be given. Different aspects of an accelerator project will be addressed: Concept, Design, Motivation, Management Techniques, and Fault Diagnosis. The importance of creating and maintaining a coherent team will be stressed.

  8. Microgravity Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Microgravity Acceleration Measurement System (MAMS) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  9. CEBAF Accelerator Achievements

    NASA Astrophysics Data System (ADS)

    Chao, Y. C.; Drury, M.; Hovater, C.; Hutton, A.; Krafft, G. A.; Poelker, M.; Reece, C.; Tiefenback, M.

    2011-05-01

    In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

  10. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema

    None

    2016-07-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  11. Rolamite acceleration sensor

    DOEpatents

    Abbin, Joseph P.; Briner, Clifton F.; Martin, Samuel B.

    1993-01-01

    A rolamite acceleration sensor which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently.

  12. Rolamite acceleration sensor

    DOEpatents

    Abbin, J.P.; Briner, C.F.; Martin, S.B.

    1993-12-21

    A rolamite acceleration sensor is described which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently. 6 figures.

  13. Collective field accelerator

    DOEpatents

    Luce, John S.

    1978-01-01

    A collective field accelerator which operates with a vacuum diode and utilizes a grooved cathode and a dielectric anode that operates with a relativistic electron beam with a .nu./.gamma. of .about. 1, and a plurality of dielectric lenses having an axial magnetic field thereabout to focus the collectively accelerated electrons and ions which are ejected from the anode. The anode and lenses operate as unoptimized r-f cavities which modulate and focus the beam.

  14. Accelerators for America's Future

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  15. Biomedical accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  16. LET spectra measurements on LDEF: variations with shielding and location.

    PubMed

    Benton, E V; Frank, A L; Csige, I; Frigo, L A; Benton, E R

    1996-11-01

    LET spectra measurements made with passive plastic nuclear track detectors (PNTDs) were found to depend on detector orientation, shielding and experiment location. LET spectra were measured at several locations on LDEF as part of the P0006 LETSME experiment (Benton and Parnell, 1984), the P0004 Seeds in Space experiment (Parks and Alston, 1984), the A00l5 Free Flyer Biostacks and the M0004 Fiber Optics Data Link experiment (Taylor, 1984). Locations included the east, west and Earth sides of the LDEF satellite. The LET spectra measured with PNTDs deviated significantly from calculations, especially for high LET particles (LET infinity H2O > or = 100 keV/micrometer). At high LETs, short-range inelastic secondary particles produced by trapped proton interactions with the nuclei of the detector were found to be the principal contributor to LET spectra. At lower LETs, the spectra appeared to be due to short-range, inelastic and stopping primary protons, with primary GCR particles making a smaller contribution. The dependence of LET spectra on detector orientation and shielding was studied using the four orthogonal stacks in the P0006 experiment. Both measurements of total track density and LET spectra showed a greater number of particles arriving from the direction of space than from Earth. Measurements of LET spectra in CR-39 PNTD on the east (leading) and west (trailing) sides of LDEF showed a higher rate of production at the west side. This was caused by a larger flux of trapped protons on the west side as predicted by the east/west trapped proton anisotropy in the South Atlantic Anomaly (SAA). Track density measured in CR-39 PNTDs increased as a function of shielding depth in the detector stack. A similar measurement made in a thick stack of CR-39 interspersed with layers of Al and exposed to 154 MeV protons at a ground-based accelerator showed a similar result, indicating that a significant fraction of the particle events counted were from secondaries and that the

  17. LET spectra measurements on LDEF: variations with shielding and location

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Csige, I.; Frigo, L. A.; Benton, E. R.

    1996-01-01

    LET spectra measurements made with passive plastic nuclear track detectors (PNTDs) were found to depend on detector orientation, shielding and experiment location. LET spectra were measured at several locations on LDEF as part of the P0006 LETSME experiment (Benton and Parnell, 1984), the P0004 Seeds in Space experiment (Parks and Alston, 1984), the A00l5 Free Flyer Biostacks and the M0004 Fiber Optics Data Link experiment (Taylor, 1984). Locations included the east, west and Earth sides of the LDEF satellite. The LET spectra measured with PNTDs deviated significantly from calculations, especially for high LET particles (LET infinity H2O > or = 100 keV/micrometer). At high LETs, short-range inelastic secondary particles produced by trapped proton interactions with the nuclei of the detector were found to be the principal contributor to LET spectra. At lower LETs, the spectra appeared to be due to short-range, inelastic and stopping primary protons, with primary GCR particles making a smaller contribution. The dependence of LET spectra on detector orientation and shielding was studied using the four orthogonal stacks in the P0006 experiment. Both measurements of total track density and LET spectra showed a greater number of particles arriving from the direction of space than from Earth. Measurements of LET spectra in CR-39 PNTD on the east (leading) and west (trailing) sides of LDEF showed a higher rate of production at the west side. This was caused by a larger flux of trapped protons on the west side as predicted by the east/west trapped proton anisotropy in the South Atlantic Anomaly (SAA). Track density measured in CR-39 PNTDs increased as a function of shielding depth in the detector stack. A similar measurement made in a thick stack of CR-39 interspersed with layers of Al and exposed to 154 MeV protons at a ground-based accelerator showed a similar result, indicating that a significant fraction of the particle events counted were from secondaries and that the

  18. Accelerated development of liver fibrosis in CCl4-treated rats by the weekly induction of acute phase response episodes: upregulation of alpha1(I) procollagen and tissue inhibitor of metalloproteinase-1 mRNAs.

    PubMed

    Greenwel, P; Rojkind, M

    1997-08-22

    Patients with alcoholic hepatitis have several manifestations of the acute phase response (APR) and have elevated blood levels of interleukin-1, interleukin-6 and tumor necrosis factor-alpha. We have previously shown that liver stellate cells express interleukin-6 mRNA and protein and respond to this cytokine with increased expression of alpha1(I) procollagen mRNA. We further showed that the production of an APR episode stimulates a transient expression of alpha1(I) procollagen mRNA in the liver. In this communication we demonstrate that the concomitant induction of a weekly APR episode in rats with a schedule of CCl4 to produce cirrhosis, accelerates the development of liver fibrosis. We show that the enhancement of liver fibrosis is due, in part, to further upregulation in the expression of alpha1(I) procollagen and tissue inhibitor of metalloproteinases-1 mRNAs above values observed in control rats receiving only CCl4. The effect of the APR appears to have specificity since not all the mRNAs measured were equally affected. Altogether, these results suggest that increased blood or liver levels of APR cytokines, whether induced by APR episodes, endotoxin or other unrelated causes, may contribute to the development of liver fibrosis by enhancing the expression of type I collagen and of tissue inhibitor of metalloproteinases-1 mRNAs.

  19. Single-shot betatron source size measurement from a laser-wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Köhler, A.; Couperus, J. P.; Zarini, O.; Jochmann, A.; Irman, A.; Schramm, U.

    2016-09-01

    Betatron radiation emitted by accelerated electrons in laser-wakefield accelerators can be used as a diagnostic tool to investigate electron dynamics during the acceleration process. We analyze the spectral characteristics of the emitted Betatron pattern utilizing a 2D x-ray imaging spectroscopy technique. Together with simultaneously recorded electron spectra and x-ray images, the betatron source size, thus the electron beam radius, can be deduced at every shot.

  20. Theoretical Calculation of Prompt Neutron Spectra from Fission of Curium Isotopes

    NASA Astrophysics Data System (ADS)

    Ohsawa, Takaaki; Tani, Kazuhiro; Kishimoto, Yasufumi

    2003-06-01

    Prompt neutron spectra for Cm-isotopes (242Cm, 243Cm, 244Cm, 245Cm, 246Cm, 248Cm) were calculated on the basis of a modified version of the Madland-Nix model combined with a multimodal fission model. The predicted spectra were found to be in fair agreement with recent data. A slight enhancement of the low-energy component of the spectrum was interpreted in terms of neutron emission during fragment acceleration.

  1. Trans-Relativistic Particle Acceleration in Astrophysical Plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Peter A.; Subramanian, P.

    2014-01-01

    Trans-relativistic particle acceleration due to Fermi interactions between charged particles and MHD waves helps to power the observed high-energy emission in AGN transients and solar flares. The trans-relativistic acceleration process is challenging to treat analytically due to the complicated momentum dependence of the momentum diffusion coefficient. For this reason, most existing analytical treatments of particle acceleration assume that the injected seed particles are already relativistic, and therefore they are not suited to study trans-relativistic acceleration. The lack of an analytical model has forced workers to rely on numerical simulations to obtain particle spectra describing the trans-relativistic case. In this work we present the first analytical solution to the global, trans-relativistic problem describing the acceleration of seed particles due to hard-sphere collisions with MHD waves. The new results include the exact solution for the steady-state Green's function resulting from the continual injection of monoenergetic seed particles with an arbitrary energy. We also introduce an approximate treatment of the trans-relativistic acceleration process based on a hybrid form for the momentum diffusion coefficient, given by the sum of the two asymptotic forms. We refer to this process as "quasi hard-sphere scattering." The main advantage of the hybrid approximation is that it allows the extension of the physical model to include (i) the effects of synchrotron and inverse-Compton losses and (ii) time dependence. The new analytical results can be used to model the trans-relativistic acceleration of particles in AGN and solar environments, and can also be used to compute the spectra of the associated synchrotron and inverse-Compton emission. Applications of both types are discussed. We highlight (i) relativistic ion acceleration in black hole accretion coronae, and (ii) the production of gyrosynchrotron microwave emission due to relativistic electron

  2. 38 CFR 75.114 - Accelerated response.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... an immediate, substantial risk of identity theft of the individuals whose data was the subject of the... preventing, or mitigating the results of, identity theft based on the compromised VA sensitive personal... with data or applications generally available, to commit identity theft or otherwise misuse the data...

  3. 38 CFR 75.114 - Accelerated response.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... an immediate, substantial risk of identity theft of the individuals whose data was the subject of the... preventing, or mitigating the results of, identity theft based on the compromised VA sensitive personal... with data or applications generally available, to commit identity theft or otherwise misuse the data...

  4. 38 CFR 75.114 - Accelerated response.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... an immediate, substantial risk of identity theft of the individuals whose data was the subject of the... preventing, or mitigating the results of, identity theft based on the compromised VA sensitive personal... with data or applications generally available, to commit identity theft or otherwise misuse the data...

  5. 38 CFR 75.114 - Accelerated response.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... an immediate, substantial risk of identity theft of the individuals whose data was the subject of the... preventing, or mitigating the results of, identity theft based on the compromised VA sensitive personal... with data or applications generally available, to commit identity theft or otherwise misuse the data...

  6. 38 CFR 75.114 - Accelerated response.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... an immediate, substantial risk of identity theft of the individuals whose data was the subject of the... preventing, or mitigating the results of, identity theft based on the compromised VA sensitive personal... with data or applications generally available, to commit identity theft or otherwise misuse the data...

  7. Probing particle acceleration in lower hybrid turbulence via synthetic diagnostics produced by PIC simulations

    NASA Astrophysics Data System (ADS)

    Cruz, F.; Fonseca, R. A.; Silva, L. O.; Rigby, A.; Gregori, G.; Bamford, R. A.; Bingham, R.; Koenig, M.

    2016-10-01

    Efficient particle acceleration in astrophysical shocks can only be achieved in the presence of initial high energy particles. A candidate mechanism to provide an initial seed of energetic particles is lower hybrid turbulence (LHT). This type of turbulence is commonly excited in regions where space and astrophysical plasmas interact with large obstacles. Due to the nature of LH waves, energy can be resonantly transferred from ions (travelling perpendicular to the magnetic field) to electrons (travelling parallel to it) and the consequent motion of the latter in turbulent shock electromagnetic fields is believed to be responsible for the observed x-ray fluxes from non-thermal electrons produced in astrophysical shocks. Here we present PIC simulations of plasma flows colliding with magnetized obstacles showing the formation of a bow shock and the consequent development of LHT. The plasma and obstacle parameters are chosen in order to reproduce the results obtained in a recent experiment conducted at the LULI laser facility at Ecole Polytechnique (France) to study accelerated electrons via LHT. The wave and particle spectra are studied and used to produce synthetic diagnostics that show good qualitative agreement with experimental results. Work supported by the European Research Council (Accelerates ERC-2010-AdG 267841).

  8. Seismic response of transamerical building. I. Data and preliminary analysis

    USGS Publications Warehouse

    Celebi, M.; Safak, E.

    1991-01-01

    The objective of this paper is to present preliminary analyses of a set of acceleration response records obtained during the October 17, 1989 Loma Prieta earthquake (Ms = 7.1) from the 60-story vertically tapered, pyramid-shaped Trans-america Building-a landmark of San Francisco. The building was instrumented in 1985 with 22 channels of synchronized sensors consisting of 13 uniaxial accelerometers deployed throughout the structure and connected to a central recording system and three triaxial strong-motion accelerographs at three different levels of the structure. No free-field accelerographs are at the site. The acceleration records permit the study of the behavior of this unique structure. The predominant translational response of the building and the associated frequency at approximately 0.28 Hz are identified from the records and their Fourier amplitude spectra. The records do not indicate any significant torsional motion. However, there is rocking type soil-structure interaction, and an associated frequency of approximately 2.0 Hz is identified from the Fourier amplitude spectra of the differential motions between the ground level and that at the basement. In addition, the response spectra for the basement motions indicate significant resonance in both directions at a period of approximately 0.5 seconds.

  9. Vibrational Spectra of Selected Monohalogenated Monocarboxylic Acids.

    DTIC Science & Technology

    HALOGENATED HYDROCARBONS, INFRARED SPECTRA), (*CARBOXYLIC ACIDS, *INFRARED SPECTRA), IODINE COMPOUNDS, CHLORINE COMPOUNDS, BROMINE COMPOUNDS, ACETIC ACID , ACETATES, MOLECULAR STRUCTURE, MOLECULAR ASSOCIATION

  10. COMBINED STEREO/RHESSI STUDY OF CORONAL MASS EJECTION ACCELERATION AND PARTICLE ACCELERATION IN SOLAR FLARES

    SciTech Connect

    Temmer, M.; Veronig, A. M.; Krucker, S.; Vrsnak, B. E-mail: asv@igam.uni-graz.a E-mail: krucker@ssl.berkeley.ed

    2010-04-01

    Using the potential of two unprecedented missions, Solar Terrestrial Relations Observatory (STEREO) and Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI), we study three well-observed fast coronal mass ejections (CMEs) that occurred close to the limb together with their associated high-energy flare emissions in terms of RHESSI hard X-ray (HXR) spectra and flux evolution. From STEREO/EUVI and STEREO/COR1 data, the full CME kinematics of the impulsive acceleration phase up to {approx}4 R{sub sun} is measured with a high time cadence of <=2.5 minutes. For deriving CME velocity and acceleration, we apply and test a new algorithm based on regularization methods. The CME maximum acceleration is achieved at heights h <= 0.4 R{sub sun}, and the peak velocity at h <= 2.1 R{sub sun} (in one case, as small as 0.5 R{sub sun}). We find that the CME acceleration profile and the flare energy release as evidenced in the RHESSI HXR flux evolve in a synchronized manner. These results support the 'standard' flare/CME model which is characterized by a feedback relationship between the large-scale CME acceleration process and the energy release in the associated flare.

  11. Investigation on target normal sheath acceleration through measurements of ions energy distribution

    SciTech Connect

    Tudisco, S. Cirrone, G. A. P.; Mascali, D.; Schillaci, F.; Altana, C.; Lanzalone, G.; Muoio, A.; Brandi, F.; Cristoforetti, G.; Ferrara, P.; Fulgentini, L.; Koester, P.; Labate, L.; Gizzi, L. A.; and others

    2016-02-15

    An experimental campaign aiming at investigating the ion acceleration mechanisms through laser-matter interaction in femtosecond domain has been carried out at the Intense Laser Irradiation Laboratory facility with a laser intensity of up to 2 × 10{sup 19} W/cm{sup 2}. A Thomson parabola spectrometer was used to obtain the spectra of the ions of the different species accelerated. Here, we show the energy spectra of light-ions and we discuss their dependence on structural characteristics of the target and the role of surface and target bulk in the acceleration process.

  12. Photon spectra from WIMP annihilation

    SciTech Connect

    Cembranos, J. A. R.; Cruz-Dombriz, A. de la; Dobado, A.; Maroto, A. L.; Lineros, R. A.

    2011-04-15

    If the present dark matter in the Universe annihilates into standard model particles, it must contribute to the fluxes of cosmic rays that are detected on the Earth and, in particular, to the observed gamma-ray fluxes. The magnitude of such a contribution depends on the particular dark matter candidate, but certain features of the produced photon spectra may be analyzed in a rather model-independent fashion. In this work we provide the complete photon spectra coming from WIMP annihilation into standard model particle-antiparticle pairs obtained by extensive Monte Carlo simulations. We present results for each individual annihilation channel and provide analytical fitting formulas for the different spectra for a wide range of WIMP masses.

  13. Energy spectra of ions from impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Richardson, I. G.; Wenzel, K.-P.

    1992-01-01

    A study of the energy spectra of ions from impulsive solar flares in the 0.1-100 MeV region is reported. Most of the events studied are dominated by He and these He spectra show a persistent steepening or break above about 10 MeV resulting in an increase in the power-law spectral indices from about 2 to about 3.5 or more. Spectra of H, He-3, O, and Fe have spectral indices that are consistent with a value of about 3.5 above about 2 MeV/amu. One event, dominated by protons, shows a clear maximum in the spectrum near 1 MeV. If the rollover in the spectrum below 1 MeV is interpreted as a consequence of matter traversal in the solar atmosphere, then the source of the acceleration would lie only about 800 km above the photosphere, well below the corona. Alternative interpretations are that trapping in the acceleration region directly causes a peak in the resulting ion spectrum or that low-energy particles encounter significant additional scattering during transport from the flare.

  14. A satellite investigation of energy flux and inferred potential drop in auroral electron energy spectra

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Burch, J. L.

    1981-01-01

    The relationship between auroral electron energy flux and the inferred accelerating potential drop for accelerated Maxwellian distributions is investigated on the basis of Atmospheric Explorer D spectral measurements. An analytical approximation for the total downward energy flux carried by an isotropic Maxwellian electron population accelerated by a field-aligned electrostatic potential drop is derived which is valid for values of the electron energy/characteristic accelerated Maxwellian distribution energy which are less than the difference between the ratio of the magnetic field strengths at the altitude of observation and the altitude of potential drop, and unity. Data from the Low Energy Electron Experiment on board AE D obtained on both the dayside and the nightside during periods of significant inverted-V type electron precipitation shows that the 455 energy spectra considered, 160 of them, obtained between 60 and 85 deg invariant latitude, could be fit to accelerated Maxwellian distributions. The 160 Maxwellian spectra are then shown to be in agreement with the predictions of the accelerated Maxwellian model. Finally, analysis of individual spectra suggests that the altitude of the inferred potential drop is at a maximum near the center of the inverted-V structures.

  15. Laser Ion Acceleration Control

    NASA Astrophysics Data System (ADS)

    Kawata, Shigeo; Nagashima, T.; Izumiyama, T.; Sato, D.; Takano, M.; Barada, D.; Ma, Y. Y.; Gu, Y. J.; Kong, Q.; Wang, P. X.; Wang, W. M.

    2013-10-01

    An intense femtosecond pulsed laser is employed to accelerate ions. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching, the ion particle energy control, etc. In the study particle computer simulations were performed to solve the issues, and each component was designed to control the ion beam quality. When an intense laser illuminates a target, electrons in the target are accelerated and leave from the target; temporarily a strong electric field is formed between the high-energy electrons and the target ions, and the target ions are accelerated. The energy efficiency from the laser to ions was improved by using a solid target with a fine sub-wavelength structure or by a near critical density gas plasma. The ion beam collimation was realized by holes behind the solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching were successfully realized by a multi-stage laser-target interaction. The present study proposed a novel concept for a future compact laser ion accelerator, based on each component study required to control the ion beam quality and parameters. Partly supported by JSPS, MEXT, CORE, Japan/US Cooperation program, ASHULA and ILE/Osaka University.

  16. Dielectric laser accelerators

    NASA Astrophysics Data System (ADS)

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  17. Electrostatic Plasma Accelerator (EPA)

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1989-01-01

    The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass. The goal of the present program is to demonstrate feasibility of the EPA thruster concept through experimental and theoretical investigations of the EPA acceleration mechanism and discharge chamber performance. Experimental investigations will include operating the test bed ion (TBI) engine as an EPA thruster and parametrically varying the thruster geometry and operating conditions to quantify the electrostatic plasma acceleration effect. The theoretical investigations will include the development of a discharge chamber model which describes the relationships between the engine size, plasma properties, and overall performance. For the EPA thruster to be a viable propulsion concept, overall thruster efficiencies approaching 30% with specific impulses approaching 1000 s must be achieved.

  18. Advanced accelerator theory development

    SciTech Connect

    Sampayan, S.E.; Houck, T.L.; Poole, B.; Tishchenko, N.; Vitello, P.A.; Wang, I.

    1998-02-09

    A new accelerator technology, the dielectric wall accelerator (DWA), is potentially an ultra compact accelerator/pulsed power driver. This new accelerator relies on three new components: the ultra-high gradient insulator, the asymmetric Blumlein and low jitter switches. In this report, we focused our attention on the first two components of the DWA system the insulators and the asymmetric Blumlein. First, we sought to develop the necessary design tools to model and scale the behavior of the high gradient insulator. To perform this task we concentrated on modeling the discharge processes (i.e., initiation and creation of the surface discharge). In addition, because these high gradient structures exhibit favorable microwave properties in certain accelerator configurations, we performed experiments and calculations to determine the relevant electromagnetic properties. Second, we performed circuit modeling to understand energy coupling to dynamic loads by the asymmetric Blumlein. Further, we have experimentally observed a non-linear coupling effect in certain asymmetric Blumlein configurations. That is, as these structures are stacked into a complete module, the output voltage does not sum linearly and a lower than expected output voltage results. Although we solved this effect experimentally, we performed calculations to understand this effect more fully to allow better optimization of this DWA pulse-forming line system.

  19. QUALITATIVE INTERPRETATION OF GALAXY SPECTRA

    SciTech Connect

    Sanchez Almeida, J.; Morales-Luis, A. B.; Terlevich, R.; Terlevich, E.; Cid Fernandes, R. E-mail: abml@iac.es E-mail: eterlevi@inaoep.mx

    2012-09-10

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

  20. The structure of BPS spectra

    NASA Astrophysics Data System (ADS)

    Longhi, Pietro

    In this thesis we develop and apply novel techniques for analyzing BPS spectra of supersymmetric quantum field theories of class S. By a combination of wall-crossing, spectral networks and quiver methods we explore the BPS spectra of higher rank four-dimensional N = 2 super Yang-Mills, uncovering surprising new phenomena. Focusing on the SU(3) case, we prove the existence of wild BPS spectra in field theory, featuring BPS states of higher spin whose degeneracies grow exponentially with the energy. The occurrence of wild BPS states is surprising because it appears to be in tension with physical expectations on the behavior of the entropy as a function of the energy scale. The solution to this puzzle comes from realizing that the size of wild BPS states grows rapidly with their mass, and carefully analyzing the volume-dependence of the entropy of BPS states. We also find some interesting structures underlying wild BPS spectra, such as a Regge-like relation between the maximal spin of a BPS multiplet and the square of its mass, and the existence of a universal asymptotic distribution of spin-j irreps within a multiplet of given charge. We also extend the spectral networks construction by introducing a refinement in the topological classification of 2d-4d BPS states, and identifying their spin with a topological invariant known as the "writhe of soliton paths". A careful analysis of the 2d-4d wall-crossing behavior of this refined data reveals that it is described by motivic Kontsevich-Soibelman transformations, controlled by the Protected Spin Character, a protected deformation of the BPS index encoding the spin of BPS states. Our construction opens the way for the systematic study of refined BPS spectra in class S theories. We apply it to several examples, including ones featuring wild BPS spectra, where we find an interesting relation between spectral networks and certain functional equations. For class S theories of A 1 type, we derive an alternative technique for

  1. Plasma-based accelerator structures

    SciTech Connect

    Schroeder, Carl B.

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  2. An Accelerator Control Middle Layer Using MATLAB

    SciTech Connect

    Portmann, Gregory J.; Corbett, Jeff; Terebilo, Andrei

    2005-03-15

    Matlab is a matrix manipulation language originally developed to be a convenient language for using the LINPACK and EISPACK libraries. What makes Matlab so appealing for accelerator physics is the combination of a matrix oriented programming language, an active workspace for system variables, powerful graphics capability, built-in math libraries, and platform independence. A number of software toolboxes for accelerators have been written in Matlab--the Accelerator Toolbox (AT) for machine simulations, LOCO for accelerator calibration, Matlab Channel Access Toolbox (MCA) for EPICS connections, and the Middle Layer. This paper will describe the ''middle layer'' software toolbox that resides between the high-level control applications and the low-level accelerator control system. This software was a collaborative effort between ALS (LBNL) and SPEAR3 (SSRL) but easily ports to other machines. Five accelerators presently use this software. The high-level Middle Layer functionality includes energy ramp, configuration control (save/restore), global orbit correction, local photon beam steering, insertion device compensation, beam-based alignment, tune correction, response matrix measurement, and script-based programs for machine physics studies.

  3. Muscle activities during asymmetric trunk angular accelerations.

    PubMed

    Marras, W S; Mirka, G A

    1990-11-01

    The objective of this study was to characterize trunk muscle and intra-abdominal pressure behavior during extensions of the trunk when angular trunk acceleration levels and trunk twist were varied during lifting exertions. Since force is related to acceleration, it was believed that changes in trunk acceleration would cause activity changes in the muscles and abdominal cavity pressurization mechanics that load the spine during manual materials handling tasks. The electromyographic activity of 10 trunk muscles and intra-abdominal pressure were studied in 39 subjects as they moved their trunks under high, medium, and low constant angular acceleration conditions. The results indicated that almost all the muscles were affected by acceleration and asymmetry. Muscle activities of up to 50% of maximum were observed even though a minimal amount of torque was being produced by the back. Coactivation of muscles was also apparent. Muscles located at the greatest distances from the spine, such as the latissimus dorsi and oblique groups, increased their activities the most as trunk acceleration increased. Muscles located farthest from the spine also played an important role as the trunk became more asymmetric. Intra-abdominal pressure changed minimally over the test conditions. The nature of these responses and their impact on spine loading are discussed.

  4. Perturbations for transient acceleration

    SciTech Connect

    Vargas, Cristofher Zuñiga; Zimdahl, Winfried; Hipólito-Ricaldi, Wiliam S. E-mail: hipolito@ceunes.ufes.br

    2012-04-01

    According to the standard ΛCDM model, the accelerated expansion of the Universe will go on forever. Motivated by recent observational results, we explore the possibility of a finite phase of acceleration which asymptotically approaches another period of decelerated expansion. Extending an earlier study on a corresponding homogeneous and isotropic dynamics, in which interactions between dark matter and dark energy are crucial, the present paper also investigates the dynamics of the matter perturbations both on the Newtonian and General Relativistic (GR) levels and quantifies the potential relevance of perturbations of the dark-energy component. In the background, the model is tested against the Supernova type Ia (SNIa) data of the Constitution set and on the perturbative level against growth rate data, among them those of the WiggleZ survey, and the data of the 2dFGRS project. Our results indicate that a transient phase of accelerated expansion is not excluded by current observations.

  5. Uniform acceleration in general relativity

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov; Scarr, Tzvi

    2015-10-01

    We extend de la Fuente and Romero's (Gen Relativ Gravit 47:33, 2015) defining equation for uniform acceleration in a general curved spacetime from linear acceleration to the full Lorentz covariant uniform acceleration. In a flat spacetime background, we have explicit solutions. We use generalized Fermi-Walker transport to parallel transport the Frenet basis along the trajectory. In flat spacetime, we obtain velocity and acceleration transformations from a uniformly accelerated system to an inertial system. We obtain the time dilation between accelerated clocks. We apply our acceleration transformations to the motion of a charged particle in a constant electromagnetic field and recover the Lorentz-Abraham-Dirac equation.

  6. Diffusive Shock Acceleration

    NASA Astrophysics Data System (ADS)

    Baring, Matthew

    2003-04-01

    The process of diffusive acceleration of charged particles in shocked plasmas is widely invoked in astrophysics to account for the ubiquitous presence of signatures of non-thermal relativistic electrons and ions in the universe. This statistical energization mechanism, manifested in turbulent media, was first posited by Enrico Fermi in 1949 to explain the observed cosmic ray population, which exhibits an almost power-law distribution in rigidity. The absence of a momentum scale is a key characteristic of diffusive shock acceleration, and astrophysical systems generally only impose scales at the injection (low energy) and loss (high energy) ends of the particle spectrum. The existence of structure in the cosmic ray spectrum (the "knee") at around 3000 TeV has promoted contentions that there are at least two origins for cosmic rays, a galactic one supplying those up to the knee, and perhaps an extragalactic one that can explain even the ultra-high energy cosmic rays (UHECRs) seen at 1-300 EeV. Accounting for the UHECRs with familiar astrophysical sites of acceleration has historically proven difficult due to the need to assume high magnetic fields in order to reduce the shortest diffusive acceleration timescale, the ion gyroperiod, to meaningful values. Yet active galaxies and gamma-ray bursts remain strong and interesting candidate sources for UHECRs, turning the theoretical focus to relativistic shocks. This review summarizes properties of diffusive shock acceleration that are salient to the issue of UHECR generation. These include spectral indices, anisotropies, acceleration efficencies and timescales, as functions of the shock speed and mean field orientation, and also the degree of field turbulence. Astrophysical sites for UHECR production are also critiqued.

  7. 'Light Sail' Acceleration Reexamined

    SciTech Connect

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for 'optimal' values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple 'light sail' model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  8. HIGH GRADIENT INDUCTION ACCELERATOR

    SciTech Connect

    Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2007-06-21

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.

  9. "Light sail" acceleration reexamined.

    PubMed

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for "optimal" values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple "light sail" model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  10. High intensity hadron accelerators

    SciTech Connect

    Teng, L.C.

    1989-05-01

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics.

  11. Mutagenesis in human cells with accelerated H and Fe ions

    NASA Technical Reports Server (NTRS)

    Kronenberg, Amy

    1994-01-01

    The overall goals of this research were to determine the risks of mutation induction and the spectra of mutations induced by energetic protons and iron ions at two loci in human lymphoid cells. During the three year grant period the research has focused in three major areas: (1) the acquisition of sufficient statistics for human TK6 cell mutation experiments using Fe ions (400 MeV/amu), Fe ions (600 MeV/amu) and protons (250 MeV/amu); (2) collection of thymidine kinase- deficient (tk) mutants or hypoxanthine phosphoribosyltransferase deficient (hprt) mutants induced by either Fe 400 MeV/amu, Fe 600 MeV/amu, or H 250 MeV/amu for subsequent molecular analysis; and (3) molecular characterization of mutants isolated after exposure to Fe ions (600 MeV/amu). As a result of the shutdown of the BEVALAC heavy ion accelerator in December 1992, efforts were rearranged somewhat in time to complete our dose-response studies and to complete mutant collections in particular for the Fe ion beams prior to the shutdown. These goals have been achieved. A major effort was placed on collection, re-screening, and archiving of 3 different series of mutants for the various particle beam exposures: tk-ng mutants, tk-sg mutants, and hprt-deficient mutants. Where possible, groups of mutants were isolated for several particle fluences. Comparative analysis of mutation spectra has occured with characterization of the mutation spectrum for hprt-deficient mutants obtained after exposure of TK6 cells to Fe ions (600 MeV/amu) and a series of spontaneous mutants.

  12. Finite-Time Shock Acceleration of Energetic Storm Particles

    NASA Astrophysics Data System (ADS)

    Channok, Chanruangrit; Ruffolo, David; Desai, Mihir I.; Mason, Glenn M.

    2005-11-01

    Energetic storm particles (ESPs) of various ion species have been shown to arise from suprathermal seed ions accelerated by traveling interplanetary (IP) shocks. The observed spectral rollovers at ~0.1-10 MeV nucleon-1 can be attributed to the finite time available for shock acceleration. Using the locally measured shock strength parameters as inputs, the finite-time shock acceleration model can successfully fit the energy spectra of carbon, oxygen, and iron ions measured by the Ultra Low Energy Isotope Spectrometer (ULEIS) on board the Advanced Composition Explorer (ACE) during three ESP events. The inferred scattering mean free path in the acceleration region ranges from a typical IP value for the weakest ESP event down to 3.0×10-3 AU for the strongest event. This is consistent with the idea that proton-amplified waves result from the very intense particle fluxes in major events.

  13. Wave-particle interactions in the radiation belts: effect of wave spectra

    NASA Astrophysics Data System (ADS)

    Vassiliadis, Dimitris; Tornquist, Mattias; Koepke, Mark

    2014-10-01

    Particle acceleration in Earth's radiation belts is often explain in terms of radial diffusion theory. Some of the most important contributions to diffusive transport are stochastic as well as resonant interactions with low-frequency (Alfven/magnetosonic) waves. While spectra of such waves are traditionally assumed to be broadband and spectrally white, a number of recent studies [Rae et al., 2012; Ozeke et al., 2012] indicate that the spectra of ground geomagnetic pulsations are significantly more complex. We examine power-law spectra in particle simulations in a realistic magnetospheric field configuration and report on their effect on the transport and energization of the pre-storm electron population.

  14. Computer Simulation of NMR Spectra.

    ERIC Educational Resources Information Center

    Ellison, A.

    1983-01-01

    Describes a PASCAL computer program which provides interactive analysis and display of high-resolution nuclear magnetic resonance (NMR) spectra from spin one-half nuclei using a hard-copy or monitor. Includes general and theoretical program descriptions, program capability, and examples of its use. (Source for program/documentation is included.)…

  15. Classical Trajectories and Quantum Spectra

    NASA Technical Reports Server (NTRS)

    Mielnik, Bogdan; Reyes, Marco A.

    1996-01-01

    A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.

  16. Discrimination of petroleum fluorescence spectra.

    PubMed

    Stelmaszewski, Adam

    2007-01-01

    This paper presents studies of the total spectra (fluorescence-excitation matrix) of petroleum with regard to the utilization of fluorescence for determining petroleum pollutants. Thorough testing of one group, comprising almost forty lubricating oils in the form of their hexane solutions, points out their discrimination.

  17. Measuring Complex Sum Frequency Spectra with a Nonlinear Interferometer.

    PubMed

    Wang, Jing; Bisson, Patrick J; Marmolejos, Joam M; Shultz, Mary Jane

    2016-06-02

    Currently, the only techniques capable of delivering molecular-level data on buried or soft interfaces are the nonlinear spectroscopic methods: sum frequency generation (SFG) and second harmonic generation (SHG). Deducing molecular information from spectra requires measuring the complex components-the amplitude and the phase-of the surface response. A new interferometer has been developed to determine these components with orders-of-magnitude improvement in uncertainty compared with current methods. Both the sample and reference spectra are generated within the interferometer, hence the label nonlinear interferometer. The interferometer configuration provides experimenters with wide latitude for both the sample enclosure and reference material choice and is thus widely applicable. The instrument is described and applied to the well-studied octadecyltrichlorosilane (OTS) film. The OTS spectra support the interpretation that variation in fabrication solvent water content and substrate preparation account for differences in OTS spectra reported in the literature.

  18. Present status of Accelerator-Based BNCT

    PubMed Central

    Kreiner, Andres Juan; Bergueiro, Javier; Cartelli, Daniel; Baldo, Matias; Castell, Walter; Asoia, Javier Gomez; Padulo, Javier; Suárez Sandín, Juan Carlos; Igarzabal, Marcelo; Erhardt, Julian; Mercuri, Daniel; Valda, Alejandro A.; Minsky, Daniel M.; Debray, Mario E.; Somacal, Hector R.; Capoulat, María Eugenia; Herrera, María S.; del Grosso, Mariela F.; Gagetti, Leonardo; Anzorena, Manuel Suarez; Canepa, Nicolas; Real, Nicolas; Gun, Marcelo; Tacca, Hernán

    2016-01-01

    Aim This work aims at giving an updated report of the worldwide status of Accelerator-Based BNCT (AB-BNCT). Background There is a generalized perception that the availability of accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of BNCT. Accordingly, in recent years a significant effort has started to develop such machines. Materials and methods A variety of possible charged-particle induced nuclear reactions and the characteristics of the resulting neutron spectra are discussed along with the worldwide activity in suitable accelerator development. Results Endothermic 7Li(p,n)7Be and 9Be(p,n)9B and exothermic 9Be(d,n)10B are compared. In addition to having much better thermo-mechanical properties than Li, Be as a target leads to stable products. This is a significant advantage for a hospital-based facility. 9Be(p,n)9B needs at least 4–5 MeV bombarding energy to have a sufficient yield, while 9Be(d,n)10B can be utilized at about 1.4 MeV, implying the smallest possible accelerator. This reaction operating with a thin target can produce a sufficiently soft spectrum to be viable for AB-BNCT. The machines considered are electrostatic single ended or tandem accelerators or radiofrequency quadrupoles plus drift tube Linacs. Conclusions 7Li(p,n)7Be provides one of the best solutions for the production of epithermal neutron beams for deep-seated tumors. However, a Li-based target poses significant technological challenges. Hence, Be has been considered as an alternative target, both in combination with (p,n) and (d,n) reactions. 9Be(d,n)10B at 1.4 MeV, with a thin target has been shown to be a realistic option for the treatment of deep-seated lesions. PMID:26933390

  19. Shape effects on asteroid spectra

    NASA Astrophysics Data System (ADS)

    Davalos, J.; Carvano, J.

    2014-07-01

    The objective of this work is to probe how the shape of a body like an asteroid could be modifying its observed spectra and the derived mineralogical interfaces based on spectral modeling. To model this effect, we construct an oblate ellipsoid with triangular facets, where each facet contributes to the overall reflectance. The synthetic spectra is generated by the isotropic multiple-scattering approximation (IMSA) reflectance model of Hapke (1993). First, we obtained optical constants by inverting the spectra of meteorites, obtained from the RELAB spectral database. These optical constants were found inverting the reflectance bidirectional equation of Hapke; this is made in two steps: (i) The first inversion is to find the single-scattering albedo π (ii) in the model of Hapke, this albedo is found under the regime of the geometric optics, where the particle size is much larger than the wavelength of the incident radiation. Here we assumed a constant value for the real part of the optical constant n=1.5. With these optical constants, we can construct synthetic spectra for any particle size. The phase function used is the double Henyey-Greenstein phase function and an accurate expression for the H-functions. We started with the ellipsoidal shape a=1.0, b=c=0.5 for two particle size 50 and 250 μ m, in this part, we found good differences in the BAR parameter between the two geometric models, this was done for 100 Eucrite meteorites spectra. In this first study, we found that the BAR parameter between the two models is bigger when the particle size increases. In the second part, we started with different ellipsoidal shapes and produced synthetic spectra for material with eucrite and diogenite composition with a phase angle of 20 degrees, incidence and emission angles of 10 degrees, and particle size at 250 μ m. All spectra was generated for four parameters of phase angle b=[0.2,0.4,0.6,0.8] taking the empirical relation between the phase constants of Hapke (2012

  20. SiSeRHMap v1.0: a simulator for mapped seismic response using a hybrid model

    NASA Astrophysics Data System (ADS)

    Grelle, G.; Bonito, L.; Lampasi, A.; Revellino, P.; Guerriero, L.; Sappa, G.; Guadagno, F. M.

    2015-06-01

    SiSeRHMap is a computerized methodology capable of drawing up prediction maps of seismic response. It was realized on the basis of a hybrid model which combines different approaches and models in a new and non-conventional way. These approaches and models are organized in a code-architecture composed of five interdependent modules. A GIS (Geographic Information System) Cubic Model (GCM), which is a layered computational structure based on the concept of lithodynamic units and zones, aims at reproducing a parameterized layered subsoil model. A metamodeling process confers a hybrid nature to the methodology. In this process, the one-dimensional linear equivalent analysis produces acceleration response spectra of shear wave velocity-thickness profiles, defined as trainers, which are randomly selected in each zone. Subsequently, a numerical adaptive simulation model (Spectra) is optimized on the above trainer acceleration response spectra by means of a dedicated Evolutionary Algorithm (EA) and the Levenberg-Marquardt Algorithm (LMA) as the final optimizer. In the final step, the GCM Maps Executor module produces a serial map-set of a stratigraphic seismic response at different periods, grid-solving the calibrated Spectra model. In addition, the spectra topographic amplification is also computed by means of a numerical prediction model. This latter is built to match the results of the numerical simulations related to isolate reliefs using GIS topographic attributes. In this way, different sets of seismic response maps are developed, on which, also maps of seismic design response spectra are defined by means of an enveloping technique.