Science.gov

Sample records for acceleration section consisting

  1. Cosmological consistency tests of gravity theory and cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Ishak-Boushaki, Mustapha B.

    2017-01-01

    Testing general relativity at cosmological scales and probing the cause of cosmic acceleration are among the important objectives targeted by incoming and future astronomical surveys and experiments. I present our recent results on consistency tests that can provide insights about the underlying gravity theory and cosmic acceleration using cosmological data sets. We use statistical measures, the rate of cosmic expansion, the growth rate of large scale structure, and the physical consistency of these probes with one another.

  2. Martial arts striking hand peak acceleration, accuracy and consistency.

    PubMed

    Neto, Osmar Pinto; Marzullo, Ana Carolina De Miranda; Bolander, Richard P; Bir, Cynthia A

    2013-01-01

    The goal of this paper was to investigate the possible trade-off between peak hand acceleration and accuracy and consistency of hand strikes performed by martial artists of different training experiences. Ten male martial artists with training experience ranging from one to nine years volunteered to participate in the experiment. Each participant performed 12 maximum effort goal-directed strikes. Hand acceleration during the strikes was obtained using a tri-axial accelerometer block. A pressure sensor matrix was used to determine the accuracy and consistency of the strikes. Accuracy was estimated by the radial distance between the centroid of each subject's 12 strikes and the target, whereas consistency was estimated by the square root of the 12 strikes mean squared distance from their centroid. We found that training experience was significantly correlated to hand peak acceleration prior to impact (r(2)=0.456, p =0.032) and accuracy (r(2)=0. 621, p=0.012). These correlations suggest that more experienced participants exhibited higher hand peak accelerations and at the same time were more accurate. Training experience, however, was not correlated to consistency (r(2)=0.085, p=0.413). Overall, our results suggest that martial arts training may lead practitioners to achieve higher striking hand accelerations with better accuracy and no change in striking consistency.

  3. ΛCDM is Consistent with SPARC Radial Acceleration Relation

    NASA Astrophysics Data System (ADS)

    Keller, B. W.; Wadsley, J. W.

    2017-01-01

    Recent analysis of the Spitzer Photometry and Accurate Rotation Curve (SPARC) galaxy sample found a surprisingly tight relation between the radial acceleration inferred from the rotation curves and the acceleration due to the baryonic components of the disk. It has been suggested that this relation may be evidence for new physics, beyond ΛCDM. In this Letter, we show that 32 galaxies from the MUGS2 match the SPARC acceleration relation. These cosmological simulations of star-forming, rotationally supported disks were simulated with a WMAP3 ΛCDM cosmology, and match the SPARC acceleration relation with less scatter than the observational data. These results show that this acceleration relation is a consequence of dissipative collapse of baryons, rather than being evidence for exotic dark-sector physics or new dynamical laws.

  4. Commissioning of the Ground Test Accelerator Intertank Matching Section

    SciTech Connect

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Cole, R.; Connolly, R.; Gilpatrick, J.D.; Ingalls, W.B.; Kersteins, D.; Little, C.; Lohsen, R.A.; Lysenko, W.P.; Mottershead, C.T.; Power, J.; Rusthoi, D.P.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-09-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H{sup {minus}} beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 keV H{sup {minus}} injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2{beta}{gamma} Drift Tube Linac (DTL-1) module, the 8.7 MeV 2{beta}{gamma} DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the IMS beam experiments will be presented.

  5. Commissioning of the Ground Test Accelerator Intertank Matching Section

    SciTech Connect

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Cole, R.; Connolly, R.; Gilpatrick, J.D.; Ingalls, W.B.; Kersteins, D.; Little, C.; Lohsen, R.A.; Lysenko, W.P.; Mottershead, C.T.; Power, J.; Rusthoi, D.P.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-01-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H{sup {minus}} beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 keV H{sup {minus}} injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2{beta}{gamma} Drift Tube Linac (DTL-1) module, the 8.7 MeV 2{beta}{gamma} DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the IMS beam experiments will be presented.

  6. Periodic Pulay method for robust and efficient convergence acceleration of self-consistent field iterations

    DOE PAGES

    Banerjee, Amartya S.; Suryanarayana, Phanish; Pask, John E.

    2016-01-21

    Pulay's Direct Inversion in the Iterative Subspace (DIIS) method is one of the most widely used mixing schemes for accelerating the self-consistent solution of electronic structure problems. In this work, we propose a simple generalization of DIIS in which Pulay extrapolation is performed at periodic intervals rather than on every self-consistent field iteration, and linear mixing is performed on all other iterations. Lastly, we demonstrate through numerical tests on a wide variety of materials systems in the framework of density functional theory that the proposed generalization of Pulay's method significantly improves its robustness and efficiency.

  7. Accelerating self-consistent field convergence with the augmented Roothaan–Hall energy function

    PubMed Central

    Hu, Xiangqian; Yang, Weitao

    2010-01-01

    Based on Pulay’s direct inversion iterative subspace (DIIS) approach, we present a method to accelerate self-consistent field (SCF) convergence. In this method, the quadratic augmented Roothaan–Hall (ARH) energy function, proposed recently by Høst and co-workers [J. Chem. Phys. 129, 124106 (2008)], is used as the object of minimization for obtaining the linear coefficients of Fock matrices within DIIS. This differs from the traditional DIIS of Pulay, which uses an object function derived from the commutator of the density and Fock matrices. Our results show that the present algorithm, abbreviated ADIIS, is more robust and efficient than the energy-DIIS (EDIIS) approach. In particular, several examples demonstrate that the combination of ADIIS and DIIS (“ADIIS+DIIS”) is highly reliable and efficient in accelerating SCF convergence. PMID:20136307

  8. Spill-to-spill and daily proton energy consistency with a new accelerator control system.

    PubMed

    Moyers, M F; Ghebremedhin, A

    2008-05-01

    The Loma Linda University proton accelerator has had several upgrades installed including synchrotron dipole power supplies and a system for monitoring the beam energy. The consistency of the energy from spill-to-spill has been tested by measuring the depth ionization at the distal edge as a function of time. These measurements were made with a minimally equipped beamline to reduce interference from confounding factors. The consistency of the energy over several months was measured in a treatment room beamline using an ionization chamber based daily quality assurance device. The results showed that the energy of protons delivered from the accelerator (in terms of water equivalent range) was consistent from spill-to-spill to better than +/-0.03 mm at 70, 155, and 250 MeV and that the energy check performed each day in the treatment room over a several month period was within +/-0.11 mm (+/-0.06 MeV) at 149 MeV. These results are within the tolerances required for the energy stacking technique.

  9. Self-Consistent Synchrotron Spectra from Trans-Relativistic Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Becker, Peter A.

    2015-01-01

    Most existing analytical models describing the second-order Fermi acceleration of relativistic electrons due to collisions with MHD waves assume that the injected seed particles are already highly relativistic, despite the fact that the most prevalent source of particles is usually the non-relativistic thermal background gas. This presents a problem because the momentum dependence of the momentum diffusion coefficient describing the interaction between the electrons and the MHD waves is qualitatively different in the non-relativistic and highly relativistic limits. The lack of an analytical model has forced workers to rely on numerical simulations to obtain particle spectra describing the trans-relativistic case. In this work, we present the first analytical solution to the global, trans-relativistic problem of electron acceleration, obtained by using a hybrid form for the momentum diffusion coefficient, given by the sum of the two asymptotic forms. We refer to this process as "quasi hard-sphere scattering." The model also incorporates the appropriate momentum dependence for the particle escape timescale, and the effect of synchrotron and inverse-Compton losses, which are critical for establishing the location of the high-energy cutoff in the particle spectrum. Since synchrotron and inverse-Compton losses are included in the transport equation, the resulting radiation spectra are computed self-consistently. The results can be used to model the acceleration of radiating electrons in AGN and solar environments, applications of both types are discussed.

  10. Section 7.3. accelerator facilities. Technology review of accelerator facilities

    NASA Astrophysics Data System (ADS)

    McKeown, Joseph

    New initiatives in basic science, accelerator engineering and market development, continue to stimulate applications of electron accelerators. Contributions from scientific experts in each of these segments have been assimulated to reflect the present status of accelerator technology in radiation processing.

  11. Acceleration in Perpendicular Relativistic Shocks for Plasmas Consisting of Leptons and Hadrons

    NASA Astrophysics Data System (ADS)

    Stockem, A.; Fiúza, F.; Fonseca, R. A.; Silva, L. O.

    2012-08-01

    We investigate the acceleration of light particles in perpendicular shocks for plasmas consisting of a mixture of leptonic and hadronic particles. Starting from the full set of conservation equations for the mixed plasma constituents, we generalize the magnetohydrodynamical jump conditions for a multi-component plasma, including information about the specific adiabatic constants for the different species. The impact of deviations from the standard model of an ideal gas is compared in theory and particle-in-cell simulations, showing that the standard MHD model is a good approximation. The simulations of shocks in electron-positron-ion plasmas are for the first time multi-dimensional, transverse effects are small in this configuration, and one-dimensional (1D) simulations are a good representation if the initial magnetization is chosen high. 1D runs with a mass ratio of 1836 are performed, which identify the Larmor frequency ω ci as the dominant frequency that determines the shock physics in mixed component plasmas. The maximum energy in the non-thermal tail of the particle spectra evolves in time according to a power law vpropt α with α in the range 1/3 < α < 1, depending on the initial parameters. A connection is made with transport theoretical models by Drury and Gargaté & Spitkovsky, which predict an acceleration time vpropγ and the theory for small wavelength scattering by Kirk & Reville, which predicts a behavior rather as vpropγ2. Furthermore, we compare different magnetic field orientations with B 0 inside and out of the plane, observing qualitatively different particle spectra than in pure electron-ion shocks.

  12. Neural-network accelerated fusion simulation with self-consistent core-pedestal coupling

    NASA Astrophysics Data System (ADS)

    Meneghini, O.; Candy, J.; Snyder, P. B.; Staebler, G.; Belli, E.

    2016-10-01

    Practical fusion Whole Device Modeling (WDM) simulations require the ability to perform predictions that are fast, but yet account for the sensitivity of the fusion performance to the boundary constraint that is imposed by the pedestal structure of H-mode plasmas due to the stiff core transport models. This poster presents the development of a set of neural-network (NN) models for the pedestal structure (as predicted by the EPED model), and the neoclassical and turbulent transport fluxes (as predicted by the NEO and TGLF codes, respectively), and their self-consistent coupling within the TGYRO transport code. The results are benchmarked with the ones obtained via the coupling scheme described in [Meneghini PoP 2016]. By substituting the most demanding codes with their NN-accelerated versions, the solution can be found at a fraction of the computation cost of the original coupling scheme, thereby combining the accuracy of a high-fidelity model with the fast turnaround time of a reduced model. Work supported by U.S. DOE DE-FC02-04ER54698 and DE-FG02-95ER54309.

  13. Diaphragm opening effects on shock wave formation and acceleration in a rectangular cross section channel

    NASA Astrophysics Data System (ADS)

    Pakdaman, S. A.; Garcia, M.; Teh, E.; Lincoln, D.; Trivedi, M.; Alves, M.; Johansen, C.

    2016-11-01

    Shock wave formation and acceleration in a high-aspect ratio cross section shock tube were studied experimentally and numerically. The relative importance of geometric effects and diaphragm opening time on shock formation are assessed. The diaphragm opening time was controlled through the use of slit-type (fast opening time) and petal-type (slow opening time) diaphragms. A novel method of fabricating the petal-type diaphragms, which results in a consistent burst pressure and symmetric opening without fragmentation, is presented. High-speed schlieren photography was used to visualize the unsteady propagation of the lead shock wave and trailing gas dynamic structures. Surface-mounted pressure sensors were used to capture the spatial and temporal development of the pressure field. Unsteady Reynolds-Averaged Navier-Stokes simulation predictions using the shear-stress-transport turbulence model are compared to the experimental data. Simulation results are used to explain the presence of high-frequency pressure oscillations observed experimentally in the driver section as well as the cause of the initial acceleration and subsequent rapid decay of shock velocity measured along the top and bottom channel surfaces. A one-dimensional theoretical model predicting the effect of the finite opening time of the diaphragm on the rate of driver depressurization and shock acceleration is proposed. The model removes the large amount of empiricism that accompanies existing models published in the literature. Model accuracy is assessed through comparisons with experiments and simulations. Limitations of and potential improvements in the model are discussed.

  14. Superconducting travelling wave ring with high gradient accelerating section

    SciTech Connect

    Avrakhov, P.; Solyak, N.; /Fermilab

    2007-06-01

    Use of a superconducting traveling wave accelerating (STWA) structure instead of a standing wave cavity has major advantages in increasing the accelerating gradient in the ILC. In contrast with standing wave cavity STWA requires feedback loop, which sends wave from the structure output to input, making a superconducting traveling wave ring (STWR). One or few input couplers need to excite STWR and compensate power dissipations due to beam loading. To control traveling wave regime in the structure two independent knobs can be used for tuning both resonant ring frequency and backward wave. We discuss two variants of the STWR with one and two feed couplers.

  15. Medium effects in K+ nucleus interaction from consistent analysis of integral and differential cross sections

    NASA Astrophysics Data System (ADS)

    Friedman, E.; Gal, A.; Mareš, J.

    1997-02-01

    Self-consistency in the analysis of transmission measurements for K+ on several nuclei in the momentum range of 500-700 MeV/c is achieved with a `teff(ρ)ρ' potential and new results are derived for total cross sections. The imaginary part of the teff amplitude is found to increase linearly with the average nuclear density in excess of a threshold value of 0.088+/-0.004 fm-3. This phenomenological density dependence of the K+ nucleus optical potential also gives rise to good agreement with recent measurements of differential cross sections for elastic scattering of 715 MeV/c K+ by 6Li and C.

  16. Minimization of transverse beam-emittance growth in the 90-degree bending section of the RAON rare-isotope accelerator

    NASA Astrophysics Data System (ADS)

    Oh, B. H.; Yoon, M.

    2016-11-01

    The major contribution of the transverse beam emittance growth (EG) in a RAON heavy-ion accelerator comes from the bending section, which consists of a charge-stripping section, a matching section, and a charge-selection section in sequence. In this paper, we describe our research to minimize the two-dimensional EG in the 90-degree bending section of the RAON currently being developed in Korea. The EG minimization was achieved with the help of multi-objective genetic algorithms and the simplex method. We utilized those algorithms to analyze the 90-degree bending section in a driver linac for the in-flight fragmentation system. Horizontal and vertical EGs were limited to below 10 % in the bending section by adjustment of the transverse beam optics upstream from the charge-stripping section, redesign of the charge-selection section, and optimization of the vertical beam optics at the entrance of a charge-selection section.

  17. A periodogram-based test for weak stationarity and consistency between sections in time series.

    PubMed

    Halliday, D M; Rosenberg, J R; Rigas, A; Conway, B A

    2009-05-30

    In one approach to spectral estimation, a sample record is broken into a number of disjoint sections, or data is collected over a number of discrete trials. Spectral parameters are formed by averaging periodograms across these discrete sections or trials. A key assumption in this approach is that of weak stationarity. This paper describes a simple test that checks if periodogram ordinates are consistent across sections as a means of assessing weak stationarity. The test is called the Periodogram Coefficient of Variation (PCOV) test, and is a frequency domain test based on a technique of spectral analysis. Application of the test is illustrated to both simulated and experimental data (EMG, physiological tremor, EEG). An additional role for the test as a useful tool in exploratory analysis of time series is highlighted.

  18. Cross-Section Measurements with the Radioactive Isotope Accelerator (RIA)

    SciTech Connect

    Stoyer, M A; Moody, K J; Wild, J F; Patin, J B; Shaughnessy, D A; Stoyer, N J; Harris, L J

    2002-11-19

    RIA will produce beams of exotic nuclei of unprecedented luminosity. Preliminary studies of the feasibility of measuring cross-sections of interest to the science based stockpile stewardship (SBSS) program will be presented, and several experimental techniques will be discussed. Cross-section modeling attempts for the A = 95 mass region will be shown. In addition, several radioactive isotopes could be collected for target production or medical isotope purposes while the main in-beam experiments are running. The inclusion of a broad range mass analyzer (BRAMA) capability at RIA will enable more effective utilization of the facility, enabling the performance of multiple experiments at the same time. This option will be briefly discussed.

  19. Comparison of hamstring-to-quadriceps ratio between accelerating and decelerating sections during squat exercise.

    PubMed

    Yoo, Won-Gyu

    2016-09-01

    [Purpose] The aim of this study was to compare hamstring-to-quadriceps ratio between the accelerating and decelerating sections for anterior cruciate ligament protection during squat exercise. [Subjects and Methods] Nine asymptomatic males were enrolled in this study. The hamstring (medial part) and quadriceps (rectus femoris) muscle activities during squat exercise were measured, and the squat exercises were classified into two sections (accelerating and decelerating) by using an accelerometer. [Results] The hamstring-to-quadriceps ratio was significantly higher in the decelerating section than in the accelerating section during the squat exercise. [Conclusion] Application of an increasing decelerating section strategy during the squat exercise can prevent damage in patients with a weakened anterior cruciate ligament due to sports activities.

  20. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  1. Beam dynamics simulations of post low energy beam transport section in RAON heavy ion accelerator

    SciTech Connect

    Jin, Hyunchang Jang, Ji-Ho; Jang, Hyojae; Hong, In-Seok

    2016-02-15

    RAON (Rare isotope Accelerator Of Newness) heavy ion accelerator of the rare isotope science project in Daejeon, Korea, has been designed to accelerate multiple-charge-state beams to be used for various science programs. In the RAON accelerator, the rare isotope beams which are generated by an isotope separation on-line system with a wide range of nuclei and charges will be transported through the post Low Energy Beam Transport (LEBT) section to the Radio Frequency Quadrupole (RFQ). In order to transport many kinds of rare isotope beams stably to the RFQ, the post LEBT should be devised to satisfy the requirement of the RFQ at the end of post LEBT, simultaneously with the twiss parameters small. We will present the recent lattice design of the post LEBT in the RAON accelerator and the results of the beam dynamics simulations from it. In addition, the error analysis and correction in the post LEBT will be also described.

  2. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    SciTech Connect

    Jang, Hyojae Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  3. Elliptic Preconditioner for Accelerating the Self-Consistent Field Iteration in Kohn--Sham Density Functional Theory

    SciTech Connect

    Lin, Lin; Yang, Chao

    2013-10-28

    We discuss techniques for accelerating the self consistent field (SCF) iteration for solving the Kohn-Sham equations. These techniques are all based on constructing approximations to the inverse of the Jacobian associated with a fixed point map satisfied by the total potential. They can be viewed as preconditioners for a fixed point iteration. We point out different requirements for constructing preconditioners for insulating and metallic systems respectively, and discuss how to construct preconditioners to keep the convergence rate of the fixed point iteration independent of the size of the atomistic system. We propose a new preconditioner that can treat insulating and metallic system in a unified way. The new preconditioner, which we call an elliptic preconditioner, is constructed by solving an elliptic partial differential equation. The elliptic preconditioner is shown to be more effective in accelerating the convergence of a fixed point iteration than the existing approaches for large inhomogeneous systems at low temperature.

  4. Dioecy does not consistently accelerate or slow lineage diversification across multiple genera of angiosperms.

    PubMed

    Sabath, Niv; Goldberg, Emma E; Glick, Lior; Einhorn, Moshe; Ashman, Tia-Lynn; Ming, Ray; Otto, Sarah P; Vamosi, Jana C; Mayrose, Itay

    2016-02-01

    Dioecy, the sexual system in which male and female organs are found in separate individuals, allows greater specialization for sex-specific functions and can be advantageous under various ecological and environmental conditions. However, dioecy is rare among flowering plants. Previous studies identified contradictory trends regarding the relative diversification rates of dioecious lineages vs their nondioecious counterparts, depending on the methods and data used. We gathered detailed species-level data for dozens of genera that contain both dioecious and nondioecious species. We then applied a probabilistic approach that accounts for differential speciation, extinction, and transition rates between states to examine whether there is an association between dioecy and lineage diversification. We found a bimodal distribution, whereby dioecious lineages exhibited higher diversification in certain genera but lower diversification in others. Additional analyses did not uncover an ecological or life history trait that could explain a context-dependent effect of dioecy on diversification. Furthermore, in-depth simulations of neutral characters demonstrated that such bimodality is also found when simulating neutral characters across the observed trees. Our analyses suggest that - at least for these genera with the currently available data - dioecy neither consistently places a strong brake on diversification nor is a strong driver.

  5. Accelerating self consistent field convergence by rubber sheeting of initial electronic wave functions.

    NASA Astrophysics Data System (ADS)

    Matthews, G. Eric; Holzwarth, N. A. W.; Martin, George; Keeling, Briana; Agopsowicz, Douglas

    2007-03-01

    We develop an algorithm for generating better initial electronic wave function estimates for density functional theory calculations following atomic movement. First principles molecular dynamics and atomic relaxation calculations involve successive movements of atoms followed by self consistent field (SCF) solutions for electronic wave functions. The SCF solutions converge most rapidly when starting from reasonably good estimates. Often estimates are generated directly from the wave functions of the previous atomic positions without adjustments for effects of position changes. Such estimates result in fast convergence to the correct wave function for small atomic movements, but for larger movements, convergence may be much slower. We present a method for improving the estimates of the new wave functions by using information from the movement of the atoms. Our algorithm is based on the ``rubber-sheeting'' method used in overlaying satellite imagery on geographic maps. A warping function is calculated that stretches and shrinks different regions of the wave function so that regions near nuclei are dragged along with the atoms. These estimates yield faster convergence for cases studied thus far.

  6. Measurements of Neutron Induced Cross Sections at the Oak Ridge Electron Linear Accelerator

    SciTech Connect

    Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.

    1999-09-20

    We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and the fission cross sections of 233U in the energy range from 0.36 eV to ~700 keV. We report average fission and total cross sections. Also, we measured the neutron total cross sections of 27Al and Natural chlorine as well as the capture cross section of Al over an energy range from 100 eV up to about 400 keV.

  7. Cluster cross sections from pickup measurements: Are the established methods consistent?

    NASA Astrophysics Data System (ADS)

    Fedor, J.; Poterya, V.; Pysanenko, A.; Fárník, M.

    2011-09-01

    Pickup of several molecules, H2O, HBr, and CH3OH, and Ar atoms on free ArN clusters has been investigated in a molecular beam experiment. The pickup cross sections of the clusters with known mean sizes, bar{N}≈ 150 and 260 were measured by two independent methods: (i) the cluster beam velocity decrease due to the momentum transfer of the picked up molecules to the clusters, and (ii) Poisson distribution of a selected cluster fragment ion as a function of the pickup pressure. In addition, the pickup cross sections were calculated using molecular dynamics and Monte Carlo simulations. The simulations support the results of the velocity measurements. On the other hand, the Poisson distributions yield significantly smaller cross sections, inconsistent with the known ArN cluster sizes. These results are discussed in terms of: (i) an incomplete coagulation of guest molecules on the argon clusters when two or more molecules are picked up; and (ii) the fragmentation pattern of the embedded molecules and their clusters upon ionization on the Ar cluster. We conclude that the Poisson distribution method has to be cautiously examined, if conclusions should be drawn about the cluster cross section, or the mean cluster size bar{N}, and the number of picked up molecules.

  8. Modernization of electron accelerator with a large cross section beam for radiation effects on materials

    NASA Astrophysics Data System (ADS)

    Vorobyov, M. S.; Denisov, V. V.; Koval, N. N.; Sulakshin, S. A.; Shugurov, V. V.; Yakovlev, V. V.

    2017-01-01

    The results of the work on the creation of an automated wide-aperture electron accelerator with a grid plasma cathode based on the low-pressure arc discharge and outputting of a large section beam (750×150 mm) in the atmosphere through a outlet foil window. The distinctive feature of such electron accelerator is a weak correlation of beam parameters, as well as a high current beam extraction efficiency to air, reaching ≈ (80 ÷ 90)% of the current in the accelerating gap at an accelerating voltage of 200 kV, beam current amplitude in the atmosphere up to 30A, frequency and pulse duration up to 50 s-1 and 100 μs, respectively. The electron source provides a stable continuous operation for tens of hours in a repetitively pulsed modes at the maximum average beam power in the atmosphere is ≈5 kW. Examples of applications of such accelerator in the radiation-stimulated technology are given, showing the prospects of its using in scientific and technological purposes.

  9. Shielding analysis at the upper section of the accelerator-driven system.

    PubMed

    Sasa, Toshinobu; Yang, Jin An; Oigawa, Hiroyuki

    2005-01-01

    The proton beam duct of the accelerator-driven system (ADS) acts as a streaming path for spallation neutrons and photons and causes the activation of the magnets and other devices above the subcritical core. We have performed a streaming analysis at the upper section of the lead-bismuth target/cooled ADS (800 MWth). MCNPX was used to calculate the radiation dose from streamed neutrons and photons through the beam duct. For the secondary photon production calculation, cross sections for several actinides were substituted with plutonium because of the lack of gamma production cross section. From the results of this analysis, the neutron dose from the beam duct is seen to be about 20 orders higher than that of the bulk shield. The magnets and shield plug are heavily irradiated by streaming neutrons according to the DCHAIN-SP analysis.

  10. Asymptotic high frequency analysis of the electromagnetic backscattering from an inlet model consisting of piecewise linearly tapered sections

    NASA Technical Reports Server (NTRS)

    Altintas, A.; Pathak, P. H.

    1985-01-01

    Electromagnetic backscattering from an open ended three dimensional inlet model is analyzed and computed patterns are compared with results of experimental measurements. The model is comprised of two sections. The first section consists of a linearly tapered waveguide with a rectangular opening at one end and the other end is connected to the second section which is a uniform rectangular waveguide with a planar perfectly conducting termination. The model is electrically large so that many propagating modes are excited. The method of analysis contains conventional aperture integration and modal techniques combined with high frequency techniques, which employ concepts such as modal rays, geometrical theory of diffraction and equivalent currents. For the cases considered, it is shown that only a few of the many propagating modes contribute appreciably to the backscattered field. These modes are selected according to their modal ray angle directions.

  11. Cross section for inelastic neutron ''acceleration'' by {sup 178}Hf{sup m2}

    SciTech Connect

    Karamian, S. A.; Carroll, J. J.

    2011-02-15

    The scattering of thermal neutrons from isomeric nuclei may include events in which the outgoing neutrons have increased kinetic energy. This process has been called inelastic neutron acceleration, or INNA, and occurs when the final nucleus, after emission of the neutron, is left in a state with lower energy than that of the isomer. The result, therefore, is an induced depletion of the isomer to the ground state. A cascade of several {gamma}'s must accompany the neutron emission to release the high angular momentum of the initial isomeric state. INNA was previously observed in a few cases, and the measured cross sections were only in modest agreement with theoretical estimates. The most recent measurement of an INNA cross section was {sigma}{sub INNA}=258{+-}58 b for neutron scattering by {sup 177}Lu{sup m}. In the present work, an INNA cross section of {sigma}{sub INNA}=168 {+-} 33 b was deduced from measurements of the total burnup of the high-spin, four-quasiparticle isomer {sup 178}Hf{sup m2} during irradiation by thermal neutrons. Statistical estimates for the probability of different reaction channels past neutron absorption were used in the analysis, and the deduced {sigma}{sub INNA} was compared to the theoretically predicted cross section.

  12. Gadolinium-148 and other spallation production cross section measurements for accelerator target facilities

    NASA Astrophysics Data System (ADS)

    Kelley, Karen Corzine

    At the Los Alamos Neutron Science Center accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research facility and the 1L target at the Lujan Center. The Department of Energy requires hazard classification analyses to be performed on these targets and places limits on certain radionuclide inventories in the targets to avoid characterizing the facilities as "nuclear facilities." Gadolinium-148 is a radionuclide created from the spallation of tungsten. Allowed isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of Gadolinium-148 is low, but it encompasses almost two-thirds of the total dose burden for the two tungsten targets based on present yield estimates. From a hazard classification standpoint, this severely limits the lifetime of these tungsten targets. The cross section is not well-established experimentally and this is the motivation for measuring the Gadolinium-148 production cross section from tungsten. In a series of experiments at the Weapons Neutron Research facility, Gadolinium-148 production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold. These experiments used 3 mum thin tungsten, tantalum, and gold foils and 10 mum thin aluminum activation foils. In addition, spallation yields were determined for many short-lived and long-lived spallation products with these foils using gamma and alpha spectroscopy and compared with predictions of the Los Alamos National Laboratory codes CEM2k+GEM2 and MCNPX. The cumulative Gadolinium-148 production cross section measured from tantalum, tungsten, and gold for incident 600-MeV protons were 15.2 +/- 4.0, 8.31 +/- 0.92, and 0.591 +/- 0.155, respectively. The average production cross sections measured at 800 MeV were 28.6 +/- 3.5, 19.4 +/- 1.8, and 3.69 +/- 0.50 for tantalum, tungsten, and gold, respectively. These cumulative

  13. Neutron Capture and Neutron Total Cross Sections Measurements for {sup 27}Al at the Oak Ridge Electron Linear Accelerator

    SciTech Connect

    Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.; Wright, R.Q.

    1999-08-30

    We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and capture cross sections of {sup 27}Al in the energy range from 100 eV to {approximately}400 keV. We report the resonance parameters as well as the Maxwellian average capture cross sections.

  14. HELIOS: An Open-source, GPU-accelerated Radiative Transfer Code for Self-consistent Exoplanetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Malik, Matej; Grosheintz, Luc; Mendonça, João M.; Grimm, Simon L.; Lavie, Baptiste; Kitzmann, Daniel; Tsai, Shang-Min; Burrows, Adam; Kreidberg, Laura; Bedell, Megan; Bean, Jacob L.; Stevenson, Kevin B.; Heng, Kevin

    2017-02-01

    We present the open-source radiative transfer code named HELIOS, which is constructed for studying exoplanetary atmospheres. In its initial version, the model atmospheres of HELIOS are one-dimensional and plane-parallel, and the equation of radiative transfer is solved in the two-stream approximation with nonisotropic scattering. A small set of the main infrared absorbers is employed, computed with the opacity calculator HELIOS-K and combined using a correlated-k approximation. The molecular abundances originate from validated analytical formulae for equilibrium chemistry. We compare HELIOS with the work of Miller-Ricci & Fortney using a model of GJ 1214b, and perform several tests, where we find: model atmospheres with single-temperature layers struggle to converge to radiative equilibrium; k-distribution tables constructed with ≳ 0.01 cm‑1 resolution in the opacity function (≲ {10}3 points per wavenumber bin) may result in errors ≳ 1%–10% in the synthetic spectra; and a diffusivity factor of 2 approximates well the exact radiative transfer solution in the limit of pure absorption. We construct “null-hypothesis” models (chemical equilibrium, radiative equilibrium, and solar elemental abundances) for six hot Jupiters. We find that the dayside emission spectra of HD 189733b and WASP-43b are consistent with the null hypothesis, while the latter consistently underpredicts the observed fluxes of WASP-8b, WASP-12b, WASP-14b, and WASP-33b. We demonstrate that our results are somewhat insensitive to the choice of stellar models (blackbody, Kurucz, or PHOENIX) and metallicity, but are strongly affected by higher carbon-to-oxygen ratios. The code is publicly available as part of the Exoclimes Simulation Platform (exoclime.net).

  15. A New Green's Function for the Wake Potential Calculation of the SLAC S-band Constant Gradient Accelerating Section

    SciTech Connect

    Novokhatski, A,; /SLAC

    2012-02-17

    The behavior of the longitudinal wake fields excited by a very short bunch in the SLAC S-band constant gradient accelerating structures has been studied. Wake potential calculations were performed for a bunch length of 10 microns using the author's code to obtain a numerical solution of Maxwell's equations in the time domain. We have calculated six accelerating sections in the series (60-ft) to find the stationary solution. While analyzing the computational results we have found a new formula for the Green's function. Wake potentials, which are calculated using this Green's function are in amazingly good agreement with numerical results over a wide range of bunch lengths. The Green's function simplifies the wake potential calculations and can be easily incorporated into the tracking codes. This is very useful for beam dynamics studies of the linear accelerators of LCLS and FACET.

  16. Projected Life of the SLAC Linac Braze Joints: Braze integrity and corrosion of cooling water hardware on accelerator sections

    SciTech Connect

    Glesener, W.F.; Garwin, E.L.; /SLAC

    2006-07-17

    The objective of this study was to ascertain the condition of braze joints and cooling water hardware from an accelerator section after prolonged use. Metallographic analysis was used to examine critical sites on an accelerator section that had been in use for more than 30 years. The end flange assembly showed no internal operational damage or external environmental effects. The cavity cylinder stack showed no internal operational damage however the internal surface was highly oxidized. The internal surface of the cooling water tubing was uniformly corroding at a rate of about 1 mil per year and showed no evidence of pitting. Tee fitting internal surfaces are corroding at non-uniform rates due to general corrosion and pitting. Remaining service life of the cooling water jacket is estimated to be about 20 years or year 2027. At this time, water supply pressure will exceed allowable fitting pressure due to corrosion of tubing walls.

  17. Measurement of the stellar 58Ni(n ,γ )59Ni cross section with accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ludwig, Peter; Rugel, Georg; Dillmann, Iris; Faestermann, Thomas; Fimiani, Leticia; Hain, Karin; Korschinek, Gunther; Lachner, Johannes; Poutivtsev, Mikhail; Knie, Klaus; Heil, Michael; Käppeler, Franz; Wallner, Anton

    2017-03-01

    The 58Ni(n ,γ )59Ni cross section was measured with a combination of the activation technique and accelerator mass spectrometry (AMS). The neutron activations were performed at the Karlsruhe 3.7 MV Van de Graaff accelerator using the quasistellar neutron spectrum at k T =25 keV produced by the 7Li(p ,n )7Be reaction. The subsequent AMS measurements were carried out at the 14 MV tandem accelerator of the Maier-Leibnitz Laboratory in Garching using the gas-filled analyzing magnet system (GAMS). Three individual samples were measured, yielding a Maxwellian-averaged cross section at k T =30 keV of <σ> 30 keV = 30.4 (23)syst(9)stat mbarn. This value is slightly lower than two recently published measurements using the time-of-flight (TOF) method, but agrees within the uncertainties. Our new results also resolve the large discrepancy between older TOF measurements and our previous value.

  18. Western diet consumption promotes vascular remodeling in non-senescent mice consistent with accelerated senescence, but does not modify vascular morphology in senescent ones.

    PubMed

    Dantas, Ana Paula; Onetti, Yara; Oliveira, María Aparecida; Carvalho, Maria Helena; Heras, Magda; Vila, Elisabet; Jiménez-Altayó, Francesc

    2014-07-01

    Senescence accelerated mice (SAM) are susceptible to developing vascular dysfunction and remodeling. Food intake and type of diet have also been identified as determining factors in vascular remodeling. However, the interplay between senescence and diet in vascular remodeling is largely unknown. We aimed to analyze structure of large (aorta) and small (mesenteric; MA) arteries from seven-month-old SAM prone (SAMP8) and resistant (SAMR1) mice that received a Western-type high-fat diet (WD; 8weeks). Aortic structure was assessed by morphometric analysis of hematoxylin and eosin-stained cross sections, and collagen content by qRT-PCR, immunofluorescence and picrosirius red. In MAs, structural and mechanical properties were measured by pressure myography; elastin and collagen content by qRT-PCR and immunofluorescence; nuclei distribution by confocal microscopy; and apoptosis by qRT-PCR and TUNEL assay. In aorta, wall thickness (WT), but not cross-sectional area (CSA), was increased by senescence, and WD only increased WT in SAMR1. WD intake, but not senescence, was associated with increased collagen deposition. In MAs, senescence diminished WT and CSA, without altering collagen and elastin deposition, reduced the number of MA wall cells, and increased pro apoptotic activation. WD consumption promoted in SAMR1 the same remodeling observed with senescence, while in SAMP8 the senescence-associated changes remained unaffected. The mechanisms involved in WD-induced MA remodeling in SAMR1 mimicked those observed in senescence per se. Our study reveals qualitatively different remodeling in aortas and MAs from senescent mice. Consumption of a WD induced remodeling of the SAMR1 vasculature similar to that induced by senescence, while it did not promote any further alteration in the latter. Therefore, we propose that increased consumption of fat-enriched diets could promote accelerated senescence of the non-senescent vasculature, although it does not exacerbate vascular

  19. Ion Pre-acceleration in Fully Self-consistent Particle-in-cell Simulations of Supercritical Perpendicular Reforming Shocks in Multiple Ion Species Plasmas

    NASA Astrophysics Data System (ADS)

    Rekaa, V. L.; Chapman, S. C.; Dendy, R. O.

    2014-08-01

    Supernova remnant and heliopause termination shock plasmas may contain significant populations of minority heavy ions, with relative number densities n α/ni up to 50%. Preliminary kinetic simulations of collisionless shocks in these environments showed that the reformation cycle and acceleration mechanisms at quasi-perpendicular shocks can depend on the value of n α/ni . Shock reformation unfolds on ion spatio-temporal scales, requiring fully kinetic simulations of particle dynamics, together with the self-consistent electric and magnetic fields. This paper presents the first set of particle-in-cell simulations for two ion species, protons (np ) and α-particles (n α), with differing mass and charge-to-mass ratios, that spans the entire range of n α/ni from 0% to 100%. The interplay between the differing gyro length scales and timescales of the ion species is crucial to the time-evolving phenomenology of the shocks, the downstream turbulence, and the particle acceleration at different n α/ni . We show how the overall energization changes with n α/ni , and relate this to the processes individual ions undergo in the shock region and in the downstream turbulence, and to the power spectra of magnetic field fluctuations. The crossover between shocks dominated by the respective ion species happens when n α/ni = 25%, and minority ion energization is strongest in this regime. Energization of the majority ion species scales with injection energy. The power spectrum of the downstream turbulence includes peaks at sequential ion cyclotron harmonics, suggestive of ion ring-beam collective instability.

  20. AN INTEGRAL REACTOR PHYSICS EXPERIMENT TO INFER ACTINIDE CAPTURE CROSS-SECTIONS FROM THORIUM TO CALIFORNIUM WITH ACCELERATOR MASS SPECTROMETRY

    SciTech Connect

    G. Youinou; M. Salvatores; M. Paul; R. Pardo; G. Palmiotti; F. Kondev; G. Imel

    2010-04-01

    The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectroscopy (AMS) technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am and 248Cm.

  1. Modal Bin Hybrid Model: A Surface Area Consistent, Triple Moment Sectional Method for Use in Process-oriented Modeling of Atmospheric Aerosols

    SciTech Connect

    Kajino, Mizuo; Easter, Richard C.; Ghan, Steven J.

    2013-09-10

    A triple moment sectional method, Modal Bin Hybrid Model (MBHM), has been developed. In addition to number and mass (volume), surface area is predicted (and preserved), which is important for gas-to-particle mass transfer and light extinction cross section. The performance of MBHM was evaluated against double moment sectional (DMS) methods with various size resolutions up to BIN256 (BINx: x is number of sections over three orders of magnitude in size, ΔlogD = 3/x) for simulating evolution of particles under simultaneously occurring nucleation, condensation and coagulation processes. Because MBHM gives a physically consistent form of the intra-sectional distributions, errors and biases of MBHM at BIN4-8 resolution were almost equivalent to those of DMS at BIN16-32 resolution for various important variables such as the moments Mk (k: 0, 2, 3), dMk/dt, and the number and volume of particles larger than a certain diameter. Another important feature of MBHM is that only a single bin is adequate to simulate full aerosol dynamics for particles whose size distribution can be approximated by a single lognormal mode. This flexibility is useful for process-oriented (multi category and/or mixing state) modeling: primary aerosols whose size parameters would not differ substantially in time and space can be expressed by a single or a small number of modes, whereas secondary aerosols whose size changes drastically from one to several hundred nanometers can be expressed by a number of modes. Added dimensions can be applied to MBHM to represent mixing state or photo-chemical age for aerosol mixing state studies.

  2. Fast, accurate photon beam accelerator modeling using BEAMnrc: a systematic investigation of efficiency enhancing methods and cross-section data.

    PubMed

    Fragoso, Margarida; Kawrakow, Iwan; Faddegon, Bruce A; Solberg, Timothy D; Chetty, Indrin J

    2009-12-01

    In this work, an investigation of efficiency enhancing methods and cross-section data in the BEAMnrc Monte Carlo (MC) code system is presented. Additionally, BEAMnrc was compared with VMC++, another special-purpose MC code system that has recently been enhanced for the simulation of the entire treatment head. BEAMnrc and VMC++ were used to simulate a 6 MV photon beam from a Siemens Primus linear accelerator (linac) and phase space (PHSP) files were generated at 100 cm source-to-surface distance for the 10 x 10 and 40 x 40 cm2 field sizes. The BEAMnrc parameters/techniques under investigation were grouped by (i) photon and bremsstrahlung cross sections, (ii) approximate efficiency improving techniques (AEITs), (iii) variance reduction techniques (VRTs), and (iv) a VRT (bremsstrahlung photon splitting) in combination with an AEIT (charged particle range rejection). The BEAMnrc PHSP file obtained without the efficiency enhancing techniques under study or, when not possible, with their default values (e.g., EXACT algorithm for the boundary crossing algorithm) and with the default cross-section data (PEGS4 and Bethe-Heitler) was used as the "base line" for accuracy verification of the PHSP files generated from the different groups described previously. Subsequently, a selection of the PHSP files was used as input for DOSXYZnrc-based water phantom dose calculations, which were verified against measurements. The performance of the different VRTs and AEITs available in BEAMnrc and of VMC++ was specified by the relative efficiency, i.e., by the efficiency of the MC simulation relative to that of the BEAMnrc base-line calculation. The highest relative efficiencies were approximately 935 (approximately 111 min on a single 2.6 GHz processor) and approximately 200 (approximately 45 min on a single processor) for the 10 x 10 field size with 50 million histories and 40 x 40 cm2 field size with 100 million histories, respectively, using the VRT directional bremsstrahlung splitting

  3. A self-consistent combined radiative transfer hydrodynamic and particle acceleration model for the X1.0 class flare on March 29, 2014

    NASA Astrophysics Data System (ADS)

    Rubio da Costa, F.; Kleint, L.; Sainz Dalda, A.; Petrosian, V.; Liu, W.

    2015-12-01

    The X1.0 flare on March 29, 2014 was well observed, covering its emission at several wavelengths from the photosphere to the corona. The RHESSI spectra images allow us to estimate the temporal variation of the electron spectra using regularized inversion techniques. Using this as input for a combined particle acceleration and transport (Stanford-Flare) and radiative transfer hydrodynamic (Radyn) code, we calculate the response of the atmosphere to the electron heating. We will present the evolution of the thermal continuum and several line emissions. Comparing them with GOES soft X-ray and high resolution observations from IRIS, SDO and DST/IBIS allows us to test the basic mechanism(s) of acceleration and to constrain its characteristics. We will also present perspectives on how to apply this methodology and related diagnostics to other flares.

  4. Comparison of IUPAC k0 Values and Neutron Cross Sections to Determine a Self-consistent Set of Data for Neutron Activation Analysis

    SciTech Connect

    Firestone, Richard B; Revay, Zsolt

    2009-12-01

    Independent databases of nuclear constants for Neutron Activation Analysis (NAA) have been independently maintained by the physics and chemistry communities for many year. They contain thermal neturon cross sections s0, standardization values k0, and transition probabilities Pg. Chemistry databases tend to rely upon direct measurements of the nuclear constants k0 and Pg which are often published in chemistry journals while the physics databases typically include evaluated s0 and Pg data from a variety of experiments published mainly in physics journals. The IAEA/LBNL Evaluated Gamma-ray Activation File (EGAF) also contains prompt and delayed g-ray cross sections sg from Prompt Gamma-ray Activation Analysis (PGAA) measurements that can also be used to determine k0 and s0 values. As a result several independent databases of fundamental constants for NAA have evolved containing slightly different and sometimes discrepant results. An IAEA CRP for a Reference Database for Neutron Activation Analysis was established to compare these databases and investigate the possibilitiy of producing a self-consistent set of s0, k0, sg, and Pg values for NAA and other applications. Preliminary results of this IAEA CRP comparison are given in this paper.

  5. Particle Accelerators in China

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Fang, Shouxian

    As the special machines that can accelerate charged particle beams to high energy by using electromagnetic fields, particle accelerators have been widely applied in scientific research and various areas of society. The development of particle accelerators in China started in the early 1950s. After a brief review of the history of accelerators, this article describes in the following sections: particle colliders, heavy-ion accelerators, high-intensity proton accelerators, accelerator-based light sources, pulsed power accelerators, small scale accelerators, accelerators for applications, accelerator technology development and advanced accelerator concepts. The prospects of particle accelerators in China are also presented.

  6. Prevalence of high frequency hearing loss consistent with noise exposure among people working with sound systems and general population in Brazil: A cross-sectional study

    PubMed Central

    El Dib, Regina P; Silva, Edina MK; Morais, José F; Trevisani, Virgínia FM

    2008-01-01

    Background Music is ever present in our daily lives, establishing a link between humans and the arts through the senses and pleasure. Sound technicians are the link between musicians and audiences or consumers. Recently, general concern has arisen regarding occurrences of hearing loss induced by noise from excessively amplified sound-producing activities within leisure and professional environments. Sound technicians' activities expose them to the risk of hearing loss, and consequently put at risk their quality of life, the quality of the musical product and consumers' hearing. The aim of this study was to measure the prevalence of high frequency hearing loss consistent with noise exposure among sound technicians in Brazil and compare this with a control group without occupational noise exposure. Methods This was a cross-sectional study comparing 177 participants in two groups: 82 sound technicians and 95 controls (non-sound technicians). A questionnaire on music listening habits and associated complaints was applied, and data were gathered regarding the professionals' numbers of working hours per day and both groups' hearing complaint and presence of tinnitus. The participants' ear canals were visually inspected using an otoscope. Hearing assessments were performed (tonal and speech audiometry) using a portable digital AD 229 E audiometer funded by FAPESP. Results There was no statistically significant difference between the sound technicians and controls regarding age and gender. Thus, the study sample was homogenous and would be unlikely to lead to bias in the results. A statistically significant difference in hearing loss was observed between the groups: 50% among the sound technicians and 10.5% among the controls. The difference could be addressed to high sound levels. Conclusion The sound technicians presented a higher prevalence of high frequency hearing loss consistent with noise exposure than did the general population, although the possibility of residual

  7. STOCHASTIC ACCELERATION AND THE EVOLUTION OF SPECTRAL DISTRIBUTIONS IN SYNCHRO-SELF-COMPTON SOURCES: A SELF-CONSISTENT MODELING OF BLAZARS' FLARES

    SciTech Connect

    Tramacere, A.; Taylor, A. M.; Massaro, E.

    2011-10-01

    The broadband spectral distributions of non-thermal sources, such as those of several known blazars, are well described by a log-parabolic fit. The second-degree term in these fits measures the curvature in the spectrum. In this paper, we investigate whether the curvature parameter observed in the spectra of the synchrotron emission can be used as a fingerprint of stochastic acceleration. As a first approach, we use the multiplicative central limit theorem to show how fluctuations in the energy gain result in the broadening of the spectral shape, introducing a curvature into the energy distribution. Then, by means of a Monte Carlo description, we investigate how the curvature produced in the electron distribution is linked to the diffusion in momentum space. To get a more generic description of the problem we turn to the diffusion equation in momentum space. We first study some 'standard' scenarios, in order to understand the conditions that make the curvature in the spectra significant, and the relevance of cooling during the acceleration process. We try to quantify the correlation between the curvature and the diffusive process in the pre-equilibrium stage, and investigate how the transition between the Klein-Nishina and the Thomson regimes, in inverse Compton cooling, determine the curvature in the distribution at equilibrium. We apply these results to some observed trends, such as the anticorrelation between the peak energy and the curvature term observed in the spectra of Mrk 421, and a sample of BL Lac objects whose synchrotron emission peaks at X-ray energies.

  8. Self-Consistent Simulation of Transport and Energy Deposition of Intense Laser-Accelerated Proton Beams in Solid-Density Matter.

    PubMed

    Kim, J; Qiao, B; McGuffey, C; Wei, M S; Grabowski, P E; Beg, F N

    2015-07-31

    The first self-consistent hybrid particle-in-cell (PIC) simulation of intense proton beam transport and energy deposition in solid-density matter is presented. Both the individual proton slowing-down and the collective beam-plasma interaction effects are taken into account with a new dynamic proton stopping power module that has been added to a hybrid PIC code. In this module, the target local stopping power can be updated at each time step based on its thermodynamic state. For intense proton beams, the reduction of target stopping power from the cold condition due to continuous proton heating eventually leads to broadening of the particle range and energy deposition far beyond the Bragg peak. For tightly focused beams, large magnetic field growth in collective interactions results in self-focusing of the beam and much stronger localized heating of the target.

  9. Accelerator mass spectrometry measurements of the 13C (n ,γ )14C and 14N(n ,p )14C cross sections

    NASA Astrophysics Data System (ADS)

    Wallner, A.; Bichler, M.; Buczak, K.; Dillmann, I.; Käppeler, F.; Karakas, A.; Lederer, C.; Lugaro, M.; Mair, K.; Mengoni, A.; Schätzel, G.; Steier, P.; Trautvetter, H. P.

    2016-04-01

    The technique of accelerator mass spectrometry (AMS), offering a complementary tool for sensitive studies of key reactions in nuclear astrophysics, was applied for measurements of the 13C (n ,γ )14C and the 14N(n ,p )14C cross sections, which act as a neutron poison in s -process nucleosynthesis. Solid samples were irradiated at Karlsruhe Institute of Technology with neutrons closely resembling a Maxwell-Boltzmann distribution for k T =25 keV, and also at higher energies between En=123 and 182 keV. After neutron irradiation the produced amount of 14C in the samples was measured by AMS at the Vienna Environmental Research Accelerator (VERA) facility. For both reactions the present results provide important improvements compared to previous experimental data, which were strongly discordant in the astrophysically relevant energy range and missing for the comparably strong resonances above 100 keV. For 13C (n ,γ ) we find a four times smaller cross section around k T =25 keV than a previous measurement. For 14N(n ,p ), the present data suggest two times lower cross sections between 100 and 200 keV than had been obtained in previous experiments and data evaluations. The effect of the new stellar cross sections on the s process in low-mass asymptotic giant branch stars was studied for stellar models of 2 M⊙ initial mass, and solar and 1 /10th solar metallicity.

  10. The pH profile for acid-induced elongation of coleoptile and epicotyl sections is consistent with the acid-growth theory

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.; Buckley, G.; Nowbar, S.; Lew, N. M.; Stinemetz, C.; Evans, M. L.; Rayle, D. L.

    1991-01-01

    The acid-growth theory predicts that a solution with a pH identical to that of the apoplast of auxin-treated tissues (4.5.-5.0) should induce elongation at a rate comparable to that of auxin. Different pH profiles for elongation have been obtained, however, depending on the type of pretreatment between harvest of the sections and the start of the pH-incubations. To determine the acid sensitivity under in vivo conditions, oat (Avena sativa L.) coleoptile, maize (Zea mays L.) coleoptile and pea (Pisum sativum L.) epicotyl sections were abraded so that exogenous buffers could penetrate the free space, and placed in buffered solutions of pH 3.5-6.5 without any preincubation. The extension, without auxin, was measured over the first 3 h. Experiments conducted in three laboratories produced similar results. For all three species, sections placed in buffer without pretreatment elongated at least threefold faster at pH 5.0 than at 6.0 or 6.5, and the rate elongation at pH 5.0 was comparable to that induced by auxin. Pretreatment of abraded sections with pH-6.5 buffer or distilled water adjusted to pH 6.5 or above gave similar results. We conclude that the pH present in the apoplast of auxin-treated coleoptile and stems is sufficiently low to account for the initial growth response to auxin.

  11. Determination of cross sections of 60Ni(n,2n)59Ni induced by 14 MeV neutrons with accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    He, Ming; Xu, Yongning; Guan, Yongjing; Shen, Hongtao; Du, Liang; Hongtao, Chen; Dong, Kejun; Jiang, Shan; Yang, Xuran; Wang, Xiaoming; Ruan, Xiang dong; Liu, Jiancheng; Wu, Shaoyong; Zhao, Qingzhang; Cai, Li; Pang, Fangfang

    2015-10-01

    The cross section of the 60Ni(n,2n)59Ni induced by neutron with energy around 14 MeV is important for a fusion environment. However, the published values are strongly discordant. By taking advantage of the high sensitivity of 59Ni measurement at China Institute of Atomic Energy (CIAE), determination of the cross section has been carried out. A natural Nickel foil was irradiated by neutrons produce by a T(D,n)α neutron generator. 57Co and 58Co which produced in the Nickel foil were chosen for the neutron fluence determination. Then the ratio of 59Ni/60Ni for the irradiated sample was determined via accelerator mass spectrometry (AMS) utilizing a 13MV tandem accelerator and a Q3D magnet spectrometry at CIAE. As a result, the cross section of 60Ni(n,2n)59Ni for the incident neutron energy of (14.60 ± 0.40) MeV was determined to be (426 ± 53) mb.

  12. Handbook of Accelerator Physics and Engineering (sections 2.7.1 - 2.7.5 and 7.6.2)

    SciTech Connect

    Roser, T.

    1999-04-19

    The sections written by this author are: 2.7.1- Thomas - BMT equation; 2.2.2- Spinor Algebra; 2.7.3- Spin Rotators and Siberian Snakes; 2.7.4- Ring with Spin Rotator and Siberian Snakes; 2.7.5- Depolarizing Resonances and Spin Flippers; & 7.6.2- Proton Beam Polarimeters

  13. Solid consistency

    NASA Astrophysics Data System (ADS)

    Bordin, Lorenzo; Creminelli, Paolo; Mirbabayi, Mehrdad; Noreña, Jorge

    2017-03-01

    We argue that isotropic scalar fluctuations in solid inflation are adiabatic in the super-horizon limit. During the solid phase this adiabatic mode has peculiar features: constant energy-density slices and comoving slices do not coincide, and their curvatures, parameterized respectively by ζ and Script R, both evolve in time. The existence of this adiabatic mode implies that Maldacena's squeezed limit consistency relation holds after angular average over the long mode. The correlation functions of a long-wavelength spherical scalar mode with several short scalar or tensor modes is fixed by the scaling behavior of the correlators of short modes, independently of the solid inflation action or dynamics of reheating.

  14. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  15. MANTRA: An Integral Reactor Physics Experiment to Infer Actinide Capture Cross-sections from Thorium to Californium with Accelerator Mass Spectrometry

    SciTech Connect

    G. Youinou; C. McGrath; G. Imel; M. Paul; R. Pardo; F. Kondev; M. Salvatores; G. Palmiotti

    2011-08-01

    The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectrometry technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am, 244Cm and 248Cm.

  16. An electron-impact cross section data set (10 eV-1 keV) of DNA constituents based on consistent experimental data: A requisite for Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Bug, Marion U.; Yong Baek, Woon; Rabus, Hans; Villagrasa, Carmen; Meylan, Sylvain; Rosenfeld, Anatoly B.

    2017-01-01

    This work provides the first cross section data set of DNA constituents for an impact of electrons in the energy range between about 10 eV and 1 keV on a DNA target. The data set is designed for an implementation in Monte Carlo simulations and consists of model functions, taking into account elastic scattering, ionization and excitation interactions with the DNA constituents tetrahydrofuran, trimethylphosphate, pyrimidine and purine. It was developed on the basis of experimentally determined absolute differential and total scattering cross sections in accordance with the available literature data. The data set will be available in the Geant4-DNA toolkit to allow secondary electron transport in a DNA-like medium down to the ionization threshold.

  17. Gradient Optimization for SC CW Accelerators

    SciTech Connect

    Schneider, William; Kneisel, Peter; Rode, Claus

    2003-05-01

    The proposed rare isotope accelerator (RIA) design consists of a normally conducting radio frequency quadruple (RFQ) section, a superconducting (SC) drift tube cavity section, a SC elliptical multi-cell cavity section and two charge strippers with associated charge state selection and beam matching optics. The SC elliptical section uses two or three multi-cell beta cavity types installed into cryomodules to span the energy region of about 84.5 MeV/nucleon up to 400 MeV/nucleon. This paper focuses on the gradient optimization of these SC elliptical cavities that provide a significant portion of the total acceleration to the beam. The choice of gradient coupled with the cavity quality factor has a strong affect on the overall cost of the accelerator. The paper describes the optimization of the capital and operating cost associated with the RIA elliptical cavity cryomodules.

  18. Amps particle accelerator definition study

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1975-01-01

    The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.

  19. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  20. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  1. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  2. The foxhole accelerating structure

    SciTech Connect

    Fernow, R.C.; Claus, J.

    1992-07-17

    This report examines some properties of a new type of open accelerating structure. It consists of a series of rectangular cavities, which we call foxholes, joined by a beam channel. The power for accelerating the particles comes from an external radiation source and enters the cavities through their open upper surfaces. Analytic and computer calculations are presented showing that the foxhole is a suitable structure for accelerating relativistic electrons.

  3. Study of photon emission by electron capture during solar nuclei acceleration, 1: Temperature-dependent cross section for charge changing processes

    NASA Technical Reports Server (NTRS)

    Perez-Peraza, J.; Alvarez, M.; Laville, A.; Gallegos, A.

    1985-01-01

    The study of charge changing cross sections of fast ions colliding with matter provides the fundamental basis for the analysis of the charge states produced in such interactions. Given the high degree of complexity of the phenomena, there is no theoretical treatment able to give a comprehensive description. In fact, the involved processes are very dependent on the basic parameters of the projectile, such as velocity charge state, and atomic number, and on the target parameters, the physical state (molecular, atomic or ionized matter) and density. The target velocity, may have also incidence on the process, through the temperature of the traversed medium. In addition, multiple electron transfer in single collisions intrincates more the phenomena. Though, in simplified cases, such as protons moving through atomic hydrogen, considerable agreement has been obtained between theory and experiments However, in general the available theoretical approaches have only limited validity in restricted regions of the basic parameters. Since most measurements of charge changing cross sections are performed in atomic matter at ambient temperature, models are commonly based on the assumption of targets at rest, however at Astrophysical scales, temperature displays a wide range in atomic and ionized matter. Therefore, due to the lack of experimental data , an attempt is made here to quantify temperature dependent cross sections on basis to somewhat arbitrary, but physically reasonable assumptions.

  4. Combined generating-accelerating buncher for compact linear accelerators

    NASA Astrophysics Data System (ADS)

    Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Sokolov, I. D.; Zavadtsev, A. A.

    2016-09-01

    Described in the previous article [1] method of the power extraction from the modulated electron beam has been applied to the compact standing wave electron linear accelerator feeding system, which doesnt require any connection waveguides between the power source and the accelerator itself [2]. Generating and accelerating bunches meet in the hybrid accelerating cell operating at TM020 mode, thus the accelerating module is placed on the axis of the generating module, which consists from the pulsed high voltage electron sources and electrons dumps. This combination makes the accelerator very compact in size which is very valuable for the modern applications such as portable inspection sources. Simulations and geometry cold tests are presented.

  5. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  6. Scaling FFAG accelerator for muon acceleration

    SciTech Connect

    Lagrange, JB.; Planche, T.; Mori, Y.

    2011-10-06

    Recent developments in scaling fixed field alternating gradient (FFAG) accelerators have opened new ways for lattice design, with straight sections, and insertions like dispersion suppressors. Such principles and matching issues are detailed in this paper. An application of these new concepts is presented to overcome problems in the PRISM project.

  7. Scaling FFAG accelerator for muon acceleration

    NASA Astrophysics Data System (ADS)

    Lagrange, JB.; Planche, T.; Mori, Y.

    2011-10-01

    Recent developments in scaling fixed field alternating gradient (FFAG) accelerators have opened new ways for lattice design, with straight sections, and insertions like dispersion suppressors. Such principles and matching issues are detailed in this paper. An application of these new concepts is presented to overcome problems in the PRISM project.

  8. Large Scale Accelerator Production of 225Ac: Effective Cross sections for 78-192 MeV Protons Incident on 232Th Targets

    DOE PAGES

    Griswold, Justin R; Medvedev, Dmitri G.; Engle, Jonathan W.; ...

    2016-09-28

    Actinium-225 and 213Bi have been used successfully in targeted alpha therapy (TAT) in preclinical and clinical research. This paper is a continuation of research activities aiming to expand the availability of 225Ac. The high energy proton spallation reaction on natural thorium metal target has been utilized to produce millicurie quantities of 225Ac. The results of sixteen irradiation experiments of Th metal at beam energies between 78 and 200 MeV are summarized in this work. Irradiations have been conducted at Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL), while target dissolution and processing was carried out at Oak Ridgemore » National Laboratory (ORNL). Excitation functions for actinium and thorium isotopes as well as for some of the fission products are presented. The cross sections for production of 225Ac range from 3.6 to 16.7 mb in the incident proton energy range of 78 to 192 MeV. Based on these data, production of Curie quantities of 225Ac is possible by irradiating a 5.0 g cm-2232Th target for 10 days in either BNL or LANL proton irradiation facilities.« less

  9. Large scale accelerator production of (225)Ac: Effective cross sections for 78-192MeV protons incident on (232)Th targets.

    PubMed

    Griswold, J R; Medvedev, D G; Engle, J W; Copping, R; Fitzsimmons, J M; Radchenko, V; Cooley, J C; Fassbender, M E; Denton, D L; Murphy, K E; Owens, A C; Birnbaum, E R; John, K D; Nortier, F M; Stracener, D W; Heilbronn, L H; Mausner, L F; Mirzadeh, S

    2016-12-01

    Actinium-225 and (213)Bi have been used successfully in targeted alpha therapy (TAT) in preclinical and clinical research. This paper is a continuation of research activities aiming to expand the availability of (225)Ac. The high-energy proton spallation reaction on natural thorium metal targets has been utilized to produce millicurie quantities of (225)Ac. The results of sixteen irradiation experiments of thorium metal at beam energies between 78 and 192MeV are summarized in this work. Irradiations have been conducted at Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL), while target dissolution and processing was carried out at Oak Ridge National Laboratory (ORNL). Excitation functions for actinium and thorium isotopes, as well as for some of the fission products, are presented. The cross sections for production of (225)Ac range from 3.6 to 16.7mb in the incident proton energy range of 78-192MeV. Based on these data, production of curie quantities of (225)Ac is possible by irradiating a 5.0gcm(-2 232)Th target for 10 days in either BNL or LANL proton irradiation facilities.

  10. Association between different risk factors and vascular accelerated ageing (EVA study): study protocol for a cross-sectional, descriptive observational study

    PubMed Central

    Gomez-Marcos, Manuel A; Martinez-Salgado, Carlos; Gonzalez-Sarmiento, Rogelio; Hernandez-Rivas, Jesus Ma; Sanchez-Fernandez, Pedro L; Recio-Rodriguez, Jose I; Rodriguez-Sanchez, Emiliano; García-Ortiz, Luis

    2016-01-01

    Introduction The process of population ageing that is occurring in developed societies represents a major challenge for the health system. The aim of this study is to analyse factors that have an influence on early vascular ageing (EVA), estimated by carotid-femoral pulse wave velocity (cf-PWV) and Cardio Ankle Vascular Index (CAVI), and to determine differences by gender in a Spanish population. Methods and analysis An observational, descriptive, cross-sectional study. Study population From the population assigned to the participating healthcare centres, a cluster random sampling stratified by age and gender will be performed to obtain 500 participants aged between 35 and 75. Those who meet the inclusion criteria and give written informed consent will be included in the study. Measurements Main dependent variables: cf-PWV determined using the SphygmoCor System and CAVI estimated using VASERA. Secondary dependent variables: telomere length, carotid intima-media thickness, central and peripheral augmentation index, ankle-brachial pulse wave velocity, ankle-brachial index, retinal arteriovenous index, and renal and cardiac organ damage. Independent variables: lifestyles (physical activity, adherence to the Mediterranean diet, alcohol and tobacco consumption); psychological factors (depression, anxiety and chronic stress); inflammatory factors and oxidative stress. Ethics and dissemination The study has been approved by the clinical research ethics committee of the healthcare area of Salamanca. All study participants will sign an informed consent form agreeing to participate in the study in compliance with the Declaration of Helsinki and the WHO standards for observational studies. The results of this study will allow the understanding of the relationship of the different influencing factors and their relative weight in the development of EVA. At least 5 publications in first-quartile scientific journals are planned. Trial registration number NCT02623894; Pre

  11. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy

    SciTech Connect

    Inoue, T. Sugimoto, S.; Sasai, K.; Hattori, T.

    2014-02-15

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.

  12. Consistent model driven architecture

    NASA Astrophysics Data System (ADS)

    Niepostyn, Stanisław J.

    2015-09-01

    The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.

  13. Guidelines for Developing an Academic Acceleration Policy

    ERIC Educational Resources Information Center

    Colangelo, Nicholas; Assouline, Susan G.; Marron, Maureen A.; Castellano, Jaime A.; Clinkenbeard, Pamela R.; Rogers, Karen; Calvert, Eric; Malek, Rosanne; Smith, Donnajo

    2010-01-01

    As an educational intervention, acceleration is decidedly effective for high-ability students. The research support for acceleration that has accumulated over many decades is robust and consistent and allows us to confidently state that carefully planned acceleration decisions are successful. Both grade-based and content-based acceleration are…

  14. Indexing Consistency and Quality.

    ERIC Educational Resources Information Center

    Zunde, Pranas; Dexter, Margaret E.

    A measure of indexing consistency is developed based on the concept of 'fuzzy sets'. It assigns a higher consistency value if indexers agree on the more important terms than if they agree on less important terms. Measures of the quality of an indexer's work and exhaustivity of indexing are also proposed. Experimental data on indexing consistency…

  15. Lazy arc consistency

    SciTech Connect

    Schiex, T.; Gaspin, C.; Regin, J.C.; Verfaillie, G.

    1996-12-31

    Arc consistency filtering is widely used in the framework of binary constraint satisfaction problems: with a low complexity, inconsistency may be detected and domains are filtered. In this paper, we show that when detecting inconsistency is the objective, a systematic domain filtering is useless and a lazy approach is more adequate. Whereas usual arc consistency algorithms produce the maximum arc consistent sub-domain, when it exists, we propose a method, called LAC{tau}, which only looks for any arc consistent sub-domain. The algorithm is then extended to provide the additional service of locating one variable with a minimum domain cardinality in the maximum arc consistent sub-domain, without necessarily computing all domain sizes. Finally, we compare traditional AC enforcing and lazy AC enforcing using several benchmark problems, both randomly generated CSP and real life problems.

  16. Dielectric assist accelerating structure

    NASA Astrophysics Data System (ADS)

    Satoh, D.; Yoshida, M.; Hayashizaki, N.

    2016-01-01

    A higher-order TM02 n mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

  17. HEAVY ION LINEAR ACCELERATOR

    DOEpatents

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  18. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  19. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  20. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  1. Accelerated Management Development

    ERIC Educational Resources Information Center

    Munn, Kenn

    1974-01-01

    Western Electric's accelerated management development program for hand picked college graduate students consists of a high risk training project in which the management candidate accomplishes his task or is terminated. The success of such projects puts candidates in third level management in seven years or half the normal time. (DS)

  2. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  3. Network Consistent Data Association.

    PubMed

    Chakraborty, Anirban; Das, Abir; Roy-Chowdhury, Amit K

    2016-09-01

    Existing data association techniques mostly focus on matching pairs of data-point sets and then repeating this process along space-time to achieve long term correspondences. However, in many problems such as person re-identification, a set of data-points may be observed at multiple spatio-temporal locations and/or by multiple agents in a network and simply combining the local pairwise association results between sets of data-points often leads to inconsistencies over the global space-time horizons. In this paper, we propose a Novel Network Consistent Data Association (NCDA) framework formulated as an optimization problem that not only maintains consistency in association results across the network, but also improves the pairwise data association accuracies. The proposed NCDA can be solved as a binary integer program leading to a globally optimal solution and is capable of handling the challenging data-association scenario where the number of data-points varies across different sets of instances in the network. We also present an online implementation of NCDA method that can dynamically associate new observations to already observed data-points in an iterative fashion, while maintaining network consistency. We have tested both the batch and the online NCDA in two application areas-person re-identification and spatio-temporal cell tracking and observed consistent and highly accurate data association results in all the cases.

  4. 40 CFR 55.12 - Consistency updates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Consistency updates. 55.12 Section 55...) OUTER CONTINENTAL SHELF AIR REGULATIONS § 55.12 Consistency updates. (a) The Administrator will update... to update part 55 accordingly. (c) Consistency reviews triggered by receipt of an NOI. Upon...

  5. High intensity hadron accelerators

    SciTech Connect

    Teng, L.C.

    1989-05-01

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics.

  6. Accelerator and rf system development for NLC

    SciTech Connect

    Vlieks, A.E.; Callin, R.; Deruyter, H.

    1993-04-01

    An experimental station for an X-band Next Linear Collider has been constructed at SLAC. This station consists of a klystron and modulator, a low-loss waveguide system for rf power distribution, a SLED II pulse-compression and peak-power multiplication system, acceleration sections and beam-line components (gun, prebuncher, preaccelerator, focussing elements and spectrometer). An extensive program of experiments to evaluate the performance of all components is underway. The station is described in detail in this paper, and results to date are presented.

  7. Acceleration Studies

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.

    1993-01-01

    Work to support the NASA MSFC Acceleration Characterization and Analysis Project (ACAP) was performed. Four tasks (analysis development, analysis research, analysis documentation, and acceleration analysis) were addressed by parallel projects. Work concentrated on preparation for and implementation of near real-time SAMS data analysis during the USMP-1 mission. User support documents and case specific software documentation and tutorials were developed. Information and results were presented to microgravity users. ACAP computer facilities need to be fully implemented and networked, data resources must be cataloged and accessible, future microgravity missions must be coordinated, and continued Orbiter characterization is necessary.

  8. Consistent Quantum Theory

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2001-11-01

    Quantum mechanics is one of the most fundamental yet difficult subjects in physics. Nonrelativistic quantum theory is presented here in a clear and systematic fashion, integrating Born's probabilistic interpretation with Schrödinger dynamics. Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory. The quantum measurement process is consistently analyzed using fundamental quantum principles without referring to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used here was first introduced by the author, and extended by M. Gell-Mann, J. Hartle and R. Omnès. Essential for researchers yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book is supplementary to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics. Comprehensive account Written by one of the main figures in the field Paperback edition of successful work on philosophy of quantum mechanics

  9. Consistent quantum measurements

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2015-11-01

    In response to recent criticisms by Okon and Sudarsky, various aspects of the consistent histories (CH) resolution of the quantum measurement problem(s) are discussed using a simple Stern-Gerlach device, and compared with the alternative approaches to the measurement problem provided by spontaneous localization (GRW), Bohmian mechanics, many worlds, and standard (textbook) quantum mechanics. Among these CH is unique in solving the second measurement problem: inferring from the measurement outcome a property of the measured system at a time before the measurement took place, as is done routinely by experimental physicists. The main respect in which CH differs from other quantum interpretations is in allowing multiple stochastic descriptions of a given measurement situation, from which one (or more) can be selected on the basis of its utility. This requires abandoning a principle (termed unicity), central to classical physics, that at any instant of time there is only a single correct description of the world.

  10. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  11. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  12. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  13. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  14. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  15. Induction accelerators for the phase rotator system

    SciTech Connect

    Reginato, Lou; Yu, Simon; Vanecek, Dave

    2001-07-30

    The principle of magnetic induction has been applied to the acceleration of high current beams in betatrons and a variety of induction accelerators. The linear induction accelerator (LIA) consists of a simple nonresonant structure where the drive voltage is applied to an axially symmetric gap that encloses a toroidal ferromagnetic material. The change in flux in the magnetic core induces an axial electric field that provides particle acceleration. This simple nonresonant (low Q) structure acts as a single turn transformer that can accelerate from hundreds of amperes to tens of kiloamperes, basically only limited by the drive impedance. The LIA is typically a low gradient structure that can provide acceleration fields of varying shapes and time durations from tens of nanoseconds to several microseconds. The efficiency of the LIA depends on the beam current and can exceed 50% if the beam current exceeds the magnetization current required by the ferromagnetic material. The acceleration voltage available is simply given by the expression V=A dB/dt. Hence, for a given cross section of material, the beam pulse duration influences the energy gain. Furthermore, a premium is put on minimizing the diameter, which impacts the total weight or cost of the magnetic material. The diameter doubly impacts the cost of the LIA since the power (cost) to drive the cores is proportional to the volume as well. The waveform requirements during the beam pulse makes it necessary to make provisions in the pulsing system to maintain the desired dB/dt during the useful part of the acceleration cycle. This is typically done two ways, by using the final stage of the pulse forming network (PFN) and by the pulse compensation network usually in close proximity of the acceleration cell. The choice of magnetic materials will be made by testing various materials both ferromagnetic and ferrimagnetic. These materials will include the nickel-iron, silicon steel amorphous and various types of ferrites not

  16. 14 CFR 23.943 - Negative acceleration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Negative acceleration. 23.943 Section 23... Negative acceleration. No hazardous malfunction of an engine, an auxiliary power unit approved for use in... the airplane is operated at the negative accelerations within the flight envelopes prescribed in §...

  17. 14 CFR 23.943 - Negative acceleration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Negative acceleration. 23.943 Section 23... Negative acceleration. No hazardous malfunction of an engine, an auxiliary power unit approved for use in... the airplane is operated at the negative accelerations within the flight envelopes prescribed in §...

  18. 14 CFR 23.943 - Negative acceleration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Negative acceleration. 23.943 Section 23... Negative acceleration. No hazardous malfunction of an engine, an auxiliary power unit approved for use in... the airplane is operated at the negative accelerations within the flight envelopes prescribed in §...

  19. 14 CFR 23.943 - Negative acceleration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Negative acceleration. 23.943 Section 23... Negative acceleration. No hazardous malfunction of an engine, an auxiliary power unit approved for use in... the airplane is operated at the negative accelerations within the flight envelopes prescribed in §...

  20. 14 CFR 23.943 - Negative acceleration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Negative acceleration. 23.943 Section 23... Negative acceleration. No hazardous malfunction of an engine, an auxiliary power unit approved for use in... the airplane is operated at the negative accelerations within the flight envelopes prescribed in §...

  1. Dielectric laser accelerators

    NASA Astrophysics Data System (ADS)

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  2. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  3. Laser acceleration

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  4. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  5. Accelerator simulation using computers

    SciTech Connect

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a multi-track'' simulation and analysis code can be used for these applications.

  6. Accelerator simulation using computers

    SciTech Connect

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a ``multi-track`` simulation and analysis code can be used for these applications.

  7. 40 CFR 55.12 - Consistency updates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Consistency updates. 55.12 Section 55.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) OUTER CONTINENTAL SHELF AIR REGULATIONS § 55.12 Consistency updates. (a) The Administrator will...

  8. Report on accelerated corrosion studies.

    SciTech Connect

    Mowry, Curtis Dale; Glass, Sarah Jill; Sorensen, Neil Robert

    2011-03-01

    Sandia National Laboratories (SNL) conducted accelerated atmospheric corrosion testing for the U.S. Consumer Product Safety Commission (CPSC) to help further the understanding of the development of corrosion products on conductor materials in household electrical components exposed to environmental conditions representative of homes constructed with problem drywall. The conditions of the accelerated testing were chosen to produce corrosion product growth that would be consistent with long-term exposure to environments containing humidity and parts per billion (ppb) levels of hydrogen sulfide (H{sub 2}S) that are thought to have been the source of corrosion in electrical components from affected homes. This report documents the test set-up, monitoring of electrical performance of powered electrical components during the exposure, and the materials characterization conducted on wires, screws, and contact plates from selected electrical components. No degradation in electrical performance (measured via voltage drop) was measured during the course of the 8-week exposure, which was approximately equivalent to 40 years of exposure in a light industrial environment. Analyses show that corrosion products consisting of various phases of copper sulfide, copper sulfate, and copper oxide are found on exposed surfaces of the conductor materials including wires, screws, and contact plates. The morphology and the thickness of the corrosion products showed a range of character. In some of the copper wires that were observed, corrosion product had flaked or spalled off the surface, exposing fresh metal to the reaction with the contaminant gasses; however, there was no significant change in the wire cross-sectional area.

  9. Learner-Responsive Instructional Strategies for Adults in Accelerated Classroom Formats: Creating Inclusive Learning Environments

    ERIC Educational Resources Information Center

    Gupta, Kalpana

    2012-01-01

    This study was focused on investigating inclusive learning environments in accelerated classroom formats. Three 8-week sections of an undergraduate course at Regis University were examined. Results from observations and surveys were analyzed to determine the effectiveness and consistency of 13 inclusive strategies derived from Wlodkowski and…

  10. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  11. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  12. Impact accelerations

    NASA Technical Reports Server (NTRS)

    Vongierke, H. E.; Brinkley, J. W.

    1975-01-01

    The degree to which impact acceleration is an important factor in space flight environments depends primarily upon the technology of capsule landing deceleration and the weight permissible for the associated hardware: parachutes or deceleration rockets, inflatable air bags, or other impact attenuation systems. The problem most specific to space medicine is the potential change of impact tolerance due to reduced bone mass and muscle strength caused by prolonged weightlessness and physical inactivity. Impact hazards, tolerance limits, and human impact tolerance related to space missions are described.

  13. Low Energy Accelerator Laboratory Technical Area 53, Los Alamos National Laboratory. Environmental assessment

    SciTech Connect

    1995-04-01

    This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the Department of Energy (DOE) were to construct and operate a small research and development laboratory building at Technical Area (TA) 53 at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. DOE proposes to construct a small building to be called the Low Energy Accelerator Laboratory (LEAL), at a previously cleared, bladed, and leveled quarter-acre site next to other facilities housing linear accelerator research activities at TA-53. Operations proposed for LEAL would consist of bench-scale research, development, and testing of the initial section of linear particle accelerators. This initial section consists of various components that are collectively called an injector system. The anticipated life span of the proposed development program would be about 15 years.

  14. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  15. Accelerator research studies

    SciTech Connect

    Not Available

    1992-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the first year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams, TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams; TASK C, Study of a Gyroklystron High-power Microwave Source for Linear Colliders. In this report we document the progress that has been made during the past year for each of the three tasks.

  16. 26 CFR 20.6166A-3 - Acceleration of payment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 14 2011-04-01 2010-04-01 true Acceleration of payment. 20.6166A-3 Section 20... § 20.6166A-3 Acceleration of payment. (a) In general. Under the circumstances described in this section... any amount paid by reason of the application of this acceleration rule). (3) The payment described...

  17. 26 CFR 20.6166A-3 - Acceleration of payment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 14 2013-04-01 2013-04-01 false Acceleration of payment. 20.6166A-3 Section 20... § 20.6166A-3 Acceleration of payment. (a) In general. Under the circumstances described in this section... any amount paid by reason of the application of this acceleration rule). (3) The payment described...

  18. 26 CFR 20.6166A-3 - Acceleration of payment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Acceleration of payment. 20.6166A-3 Section 20... § 20.6166A-3 Acceleration of payment. (a) In general. Under the circumstances described in this section... any amount paid by reason of the application of this acceleration rule). (3) The payment described...

  19. 26 CFR 20.6166A-3 - Acceleration of payment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 14 2012-04-01 2012-04-01 false Acceleration of payment. 20.6166A-3 Section 20... § 20.6166A-3 Acceleration of payment. (a) In general. Under the circumstances described in this section... any amount paid by reason of the application of this acceleration rule). (3) The payment described...

  20. Kinematics of transition during human accelerated sprinting

    PubMed Central

    Nagahara, Ryu; Matsubayashi, Takeo; Matsuo, Akifumi; Zushi, Koji

    2014-01-01

    ABSTRACT This study investigated kinematics of human accelerated sprinting through 50 m and examined whether there is transition and changes in acceleration strategies during the entire acceleration phase. Twelve male sprinters performed a 60-m sprint, during which step-to-step kinematics were captured using 60 infrared cameras. To detect the transition during the acceleration phase, the mean height of the whole-body centre of gravity (CG) during the support phase was adopted as a measure. Detection methods found two transitions during the entire acceleration phase of maximal sprinting, and the acceleration phase could thus be divided into initial, middle, and final sections. Discriminable kinematic changes were found when the sprinters crossed the detected first transition—the foot contacting the ground in front of the CG, the knee-joint starting to flex during the support phase, terminating an increase in step frequency—and second transition—the termination of changes in body postures and the start of a slight decrease in the intensity of hip-joint movements, thus validating the employed methods. In each acceleration section, different contributions of lower-extremity segments to increase in the CG forward velocity—thigh and shank for the initial section, thigh, shank, and foot for the middle section, shank and foot for the final section—were verified, establishing different acceleration strategies during the entire acceleration phase. In conclusion, there are presumably two transitions during human maximal accelerated sprinting that divide the entire acceleration phase into three sections, and different acceleration strategies represented by the contributions of the segments for running speed are employed. PMID:24996923

  1. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  2. Proton Acceleration at Oblique Shocks

    NASA Astrophysics Data System (ADS)

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-01

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  3. PROTON ACCELERATION AT OBLIQUE SHOCKS

    SciTech Connect

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-20

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  4. Berkeley Proton Linear Accelerator

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  5. Progress on plasma accelerators

    SciTech Connect

    Chen, P.

    1986-05-01

    Several plasma accelerator concepts are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA) and the Plasma Wake Field Accelerator (PWFA). Various accelerator physics issues regarding these schemes are discussed, and numerical examples on laboratory scale experiments are given. The efficiency of plasma accelerators is then revealed with suggestions on improvements. Sources that cause emittance growth are discussed briefly.

  6. 36 CFR 241.22 - Consistency determinations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Consistency determinations. 241.22 Section 241.22 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE FISH AND WILDLIFE Conservation of Fish, Wildlife, and Their Habitat, Chugach National Forest,...

  7. 36 CFR 241.22 - Consistency determinations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Consistency determinations. 241.22 Section 241.22 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE FISH AND WILDLIFE Conservation of Fish, Wildlife, and Their Habitat, Chugach National Forest,...

  8. 36 CFR 241.22 - Consistency determinations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Consistency determinations. 241.22 Section 241.22 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE FISH AND WILDLIFE Conservation of Fish, Wildlife, and Their Habitat, Chugach National Forest,...

  9. 7 CFR 766.355 - Acceleration of loans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... (a) General. (1) The Agency accelerates loans in accordance with this section, unless: (i) State law imposes separate restrictions on accelerations; (ii) The borrower is American Indian, whose real estate...

  10. Petawatt pulsed-power accelerator

    DOEpatents

    Stygar, William A.; Cuneo, Michael E.; Headley, Daniel I.; Ives, Harry C.; Ives, legal representative; Berry Cottrell; Leeper, Ramon J.; Mazarakis, Michael G.; Olson, Craig L.; Porter, John L.; Wagoner; Tim C.

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  11. 10 CFR 820.34 - Accelerated decision.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Accelerated decision. 820.34 Section 820.34 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES Enforcement Process § 820.34 Accelerated decision. (a) General. The Presiding Officer, upon motion of any party or sua sponte, may at any...

  12. 5 CFR 179.308 - Accelerated procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Accelerated procedures. 179.308 Section 179.308 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS CLAIMS COLLECTION STANDARDS Administrative Offset § 179.308 Accelerated procedures. OPM may make an...

  13. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Roberts, W. T.

    1985-01-01

    The space experiments with particle accelerators (SEPAC) instruments consist of an electron accelerator, a plasma accelerator, a neutral gas (N2) release device, particle and field diagnostic instruments, and a low light level television system. These instruments are used to accomplish multiple experiments: to study beam particle interactions and other plasma processes; as probes to investigate magnetospheric processes; and as perturbation devices to study energy coupling mechanisms in the magnetosphere, ionosphere, and upper atmosphere.

  14. Derivation of Hamiltonians for accelerators

    SciTech Connect

    Symon, K.R.

    1997-09-12

    In this report various forms of the Hamiltonian for particle motion in an accelerator will be derived. Except where noted, the treatment will apply generally to linear and circular accelerators, storage rings, and beamlines. The generic term accelerator will be used to refer to any of these devices. The author will use the usual accelerator coordinate system, which will be introduced first, along with a list of handy formulas. He then starts from the general Hamiltonian for a particle in an electromagnetic field, using the accelerator coordinate system, with time t as independent variable. He switches to a form more convenient for most purposes using the distance s along the reference orbit as independent variable. In section 2, formulas will be derived for the vector potentials that describe the various lattice components. In sections 3, 4, and 5, special forms of the Hamiltonian will be derived for transverse horizontal and vertical motion, for longitudinal motion, and for synchrobetatron coupling of horizontal and longitudinal motions. Hamiltonians will be expanded to fourth order in the variables.

  15. Polarization measurement of laser-accelerated protons

    SciTech Connect

    Raab, Natascha; Engels, Ralf; Engin, Ilhan; Greven, Patrick; Holler, Astrid; Lehrach, Andreas; Maier, Rudolf; Büscher, Markus; Cerchez, Mirela; Swantusch, Marco; Toncian, Monika; Toncian, Toma; Willi, Oswald; Gibbon, Paul; Karmakar, Anupam

    2014-02-15

    We report on the successful use of a laser-driven few-MeV proton source to measure the differential cross section of a hadronic scattering reaction as well as on the measurement and simulation study of polarization observables of the laser-accelerated charged particle beams. These investigations were carried out with thin foil targets, illuminated by 100 TW laser pulses at the Arcturus laser facility; the polarization measurement is based on the spin dependence of hadronic proton scattering off nuclei in a Silicon target. We find proton beam polarizations consistent with zero magnitude which indicates that for these particular laser-target parameters the particle spins are not aligned by the strong magnetic fields inside the laser-generated plasmas.

  16. Elementary principles of linear accelerators

    SciTech Connect

    Loew, G.A.; Talman, R.

    1983-09-01

    These lectures come in five sections. The first is this introduction. The second is a short chronology of what are viewed as important milestones in the field. The third covers proton linacs. It introduces elementary concepts such as transit time, shunt impedance, and Q. Critical issues such as phase stability and transverse forces are discussed. The fourth section contains an elementary discussion of waveguide accelerating structures. It can be regarded as an introduction to some of the more advanced treatments of the subject. The final section is devoted to electron accelerators. Taking SLAC as an example, various topics are discussed such as structure design, choice of parameters, frequency optimization, beam current, emittance, bunch length and beam loading. Recent developments and future challenges are mentioned briefly. 41 figures, 4 tables.

  17. A measurement of hadron production cross sections for the simulation of accelerator neutrino beams and a search for muon-neutrino to electron-neutrino oscillations in the Δm2 about equals 1-eV2 region

    SciTech Connect

    Schmitz, David W.

    2008-01-01

    A measurement of hadron production cross-sections for the simulation of accelerator neutrino beams and a search for muon neutrino to electron neutrino oscillations in the Δm2 ~ 1 eV2} region. This dissertation presents measurements from two different high energy physics experiments with a very strong connection: the Hadron Production (HARP) experiment located at CERN in Geneva, Switzerland, and the Mini Booster Neutrino Experiment (Mini-BooNE) located at Fermilab in Batavia, Illinois.

  18. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    SciTech Connect

    Leibfritz, J.; Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Kucera, M.; Martinez, A.; Nagaitsev, S.; /Fermilab

    2012-05-01

    The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  19. Future accelerator technology

    SciTech Connect

    Sessler, A.M.

    1986-05-01

    A general discussion is presented of the acceleration of particles. Upon this foundation is built a categorization scheme into which all accelerators can be placed. Special attention is devoted to accelerators which employ a wake-field mechanism and a restricting theorem is examined. It is shown how the theorem may be circumvented. Comments are made on various acceleration schemes.

  20. ACCELERATION AND THE GIFTED.

    ERIC Educational Resources Information Center

    GIBSON, ARTHUR R.; STEPHANS, THOMAS M.

    ACCELERATION OF PUPILS AND SUBJECTS IS CONSIDERED A MEANS OF EDUCATING THE ACADEMICALLY GIFTED STUDENT. FIVE INTRODUCTORY ARTICLES PROVIDE A FRAMEWORK FOR THINKING ABOUT ACCELERATION. FIVE PROJECT REPORTS OF ACCELERATED PROGRAMS IN OHIO ARE INCLUDED. ACCELERATION IS NOW BEING REGARDED MORE FAVORABLY THAN FORMERLY, BECAUSE METHODS HAVE BEEN…

  1. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  2. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  3. Localized lower hybrid acceleration of ionospheric plasma

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Vago, J.; Chesney, S.; Arnoldy, R. L.; Lynch, K. A.; Pollock, C. J.; Moore, T. E.

    1992-01-01

    Observations of the transverse acceleration of ions in localized regions of intense lower hybrid waves at altitudes near 1000 km in the auroral ionosphere are reported. The acceleration regions are thin filaments with dimensions across geomagnetic field lines of about 50-100 m corresponding to 5-10 thermal ion gyroradii or one hot ion gyroradius. Within the acceleration region lower hybrid waves reach peak-to-peak amplitudes of 100-300 mV/m and ions are accelerated transversely with characteristic energies of the order of 10 eV. These observations are consistent with theories of lower hybrid wave collapse.

  4. Consistency argued students of fluid

    NASA Astrophysics Data System (ADS)

    Viyanti; Cari; Suparmi; Winarti; Slamet Budiarti, Indah; Handika, Jeffry; Widyastuti, Fatma

    2017-01-01

    Problem solving for physics concepts through consistency arguments can improve thinking skills of students and it is an important thing in science. The study aims to assess the consistency of the material Fluid student argmentation. The population of this study are College students PGRI Madiun, UIN Sunan Kalijaga Yogyakarta and Lampung University. Samples using cluster random sampling, 145 samples obtained by the number of students. The study used a descriptive survey method. Data obtained through multiple-choice test and interview reasoned. Problem fluid modified from [9] and [1]. The results of the study gained an average consistency argmentation for the right consistency, consistency is wrong, and inconsistent respectively 4.85%; 29.93%; and 65.23%. Data from the study have an impact on the lack of understanding of the fluid material which is ideally in full consistency argued affect the expansion of understanding of the concept. The results of the study as a reference in making improvements in future studies is to obtain a positive change in the consistency of argumentations.

  5. The Spallation Neutron Source accelerator system design

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  6. Beam dynamics studies in the driver LINAC pre-Stripper section of the RIA facility.

    SciTech Connect

    Lessner, E. S.; Ostroumov, P. N.

    2003-07-10

    The RIA facility driver linac consists of about 400 superconducting (SC) independently phased rf cavities. The linac is designed to accelerate simultaneously several-charge-state beams to generate as much as 400 kW of uranium beam power. The linac beam dynamics is most sensitive to the focusing and accelerating-structure parameters of the prestripper section, where the uranium beam is accelerated from 0.17 keV/u to 9.4 MeV/u. This section is designed to accept and accelerate 2 charge states (28 and 29) of uranium beam from an ECR ion source. The prestripper section must be designed to minimize the beam emittance distortion of this two-charge-state beam. In particular, the inter-cryostat spaces must be minimized and beam parameters near transitions of the accelerating and focusing lattices must be matched carefully. Several sources of possible effective emittance growth are considered in the design of the prestripper section and a tolerance budget is established. Numerical beam dynamics studies include realistic electric and magnetic 3-dimensional field distributions in the SC rf cavities and SC solenoids. Error effects in the longitudinal beam parameters are studied.

  7. Pulsed Plasma Accelerator Modeling

    NASA Technical Reports Server (NTRS)

    Goodman, M.; Kazeminezhad, F.; Owens, T.

    2009-01-01

    This report presents the main results of the modeling task of the PPA project. The objective of this task is to make major progress towards developing a new computational tool with new capabilities for simulating cylindrically symmetric 2.5 dimensional (2.5 D) PPA's. This tool may be used for designing, optimizing, and understanding the operation of PPA s and other pulsed power devices. The foundation for this task is the 2-D, cylindrically symmetric, magnetohydrodynamic (MHD) code PCAPPS (Princeton Code for Advanced Plasma Propulsion Simulation). PCAPPS was originally developed by Sankaran (2001, 2005) to model Lithium Lorentz Force Accelerators (LLFA's), which are electrode based devices, and are typically operated in continuous magnetic field to the model, and implementing a first principles, self-consistent algorithm to couple the plasma and power circuit that drives the plasma dynamics.

  8. 40 CFR 1066.265 - Acceleration and deceleration verification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Acceleration and deceleration...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.265 Acceleration... ability to achieve targeted acceleration and deceleration rates. Paragraph (c) of this section...

  9. 40 CFR 1066.265 - Acceleration and deceleration verification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Acceleration and deceleration...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.265 Acceleration... ability to achieve targeted acceleration and deceleration rates. Paragraph (c) of this section...

  10. 7 CFR 766.355 - Acceleration of loans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Acceleration of loans. 766.355 Section 766.355... AGRICULTURE SPECIAL PROGRAMS DIRECT LOAN SERVICING-SPECIAL Loan Liquidation § 766.355 Acceleration of loans... imposes separate restrictions on accelerations; (ii) The borrower is American Indian, whose real estate...

  11. 40 CFR 1066.265 - Acceleration and deceleration verification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Acceleration and deceleration...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.265 Acceleration... ability to achieve targeted acceleration and deceleration rates. Paragraph (c) of this section...

  12. 7 CFR 766.355 - Acceleration of loans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Acceleration of loans. 766.355 Section 766.355... AGRICULTURE SPECIAL PROGRAMS DIRECT LOAN SERVICING-SPECIAL Loan Liquidation § 766.355 Acceleration of loans... imposes separate restrictions on accelerations; (ii) The borrower is American Indian, whose real estate...

  13. 7 CFR 766.355 - Acceleration of loans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Acceleration of loans. 766.355 Section 766.355... AGRICULTURE SPECIAL PROGRAMS DIRECT LOAN SERVICING-SPECIAL Loan Liquidation § 766.355 Acceleration of loans... imposes separate restrictions on accelerations; (ii) The borrower is American Indian, whose real estate...

  14. 7 CFR 766.355 - Acceleration of loans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Acceleration of loans. 766.355 Section 766.355... AGRICULTURE SPECIAL PROGRAMS DIRECT LOAN SERVICING-SPECIAL Loan Liquidation § 766.355 Acceleration of loans... imposes separate restrictions on accelerations; (ii) The borrower is American Indian, whose real estate...

  15. Thin Sections

    PubMed Central

    Peachey, Lee D.

    1958-01-01

    Knowledge of the thickness of sections is important for proper interpretation of electron micrographs. Therefore, the thicknesses of sections of n-butyl methacrylate polymer were determined by ellipsometry, and correlated with the color shown in reflected light. The results are: gray, thinner than 60 mµ; silver, 60 to 90 mµ; gold, 90 to 150 mµ; purple, 150 to 190 mµ; blue, 190 to 240 mµ; green, 240 to 280 mµ; and yellow, 280 to 320 mµ. These results agree well with optical theory and with previous published data for thin films. Sections, after cutting, are 30 to 40 per cent shorter than the face of the block from which they were cut. Only a small improvement results from allowing the sections to remain in the collecting trough at room temperature. Heating above room temperature, however, reduces this shortening, with a corresponding improvement in dimensions and spatial relationships in the sections. When the thickness of the section is considered in interpreting electron micrographs instead of considering the section to be two-dimensional, a more accurate interpretation is possible. The consideration of electron micrographs as arising from projections of many profiles from throughout the whole thickness of the section explains the apparent lack of continuity often observed in serial sections. It is believed that serial sections are actually continuous, but that the change in size of structure through the thickness of one section and the consideration of only the largest profile shown in the micrograph can account for the lack of continuity previously observed. PMID:13549493

  16. Accelerating Particles with Plasma

    ScienceCinema

    Litos, Michael; Hogan, Mark

    2016-07-12

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  17. Peak acceleration limiter

    NASA Technical Reports Server (NTRS)

    Chapman, C. P.

    1972-01-01

    Device is described that limits accelerations by shutting off shaker table power very rapidly in acceleration tests. Absolute value of accelerometer signal is used to trigger electronic switch which terminates test and sounds alarm.

  18. Linear Accelerator (LINAC)

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? A linear accelerator (LINAC) is the ... Therapy (SBRT) . top of page How does the equipment work? The linear accelerator uses microwave technology (similar ...

  19. Accelerating Particles with Plasma

    SciTech Connect

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  20. Improved plasma accelerator

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  1. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  2. Cesarean Sections

    MedlinePlus

    ... the uterus itself. This incision can also be vertical or horizontal. Doctors usually use a horizontal incision ... especially if the incision on the uterus was vertical rather than horizontal. A C-section can also ...

  3. Accelerators, Colliders, and Snakes

    NASA Astrophysics Data System (ADS)

    Courant, Ernest D.

    2003-12-01

    The author traces his involvement in the evolution of particle accelerators over the past 50 years. He participated in building the first billion-volt accelerator, the Brookhaven Cosmotron, which led to the introduction of the "strong-focusing" method that has in turn led to the very large accelerators and colliders of the present day. The problems of acceleration of spin-polarized protons are also addressed, with discussions of depolarizing resonances and "Siberian snakes" as a technique for mitigating these resonances.

  4. Operation of polycarbonate projectiles in the ram accelerator

    NASA Astrophysics Data System (ADS)

    Elder, Timothy

    The ram accelerator is a hypervelocity launcher with direct space launch applications in which a sub-caliber projectile, analogous to the center-body of a ramjet engine, flies through fuel and oxidizer that have been premixed in a tube. Shock interactions in the tube ignite the propellant upon entrance of the projectile and the combustion travels with it, creating thrust on the projectile by stabilizing a high pressure region of gas behind it. Conventional ram accelerator projectiles consist of aluminum, magnesium, or titanium nosecones and bodies. An experimental program has been undertaken to determine the performance of polycarbonate projectiles in ram accelerator operation. Experimentation using polycarbonate projectiles has been divided into two series: determining the lower limit for starting velocity (i.e., less than 1100 m/s) and investigating the upper velocity limit. To investigate the influence of body length and starting velocity, a newly developed "combustion gun" was used to launch projectiles to their initial velocities. The combustion gun uses 3-6 m of ram accelerator test section as a breech and 4-6 m of the ram accelerator test section as a launch tube. A fuel-oxidizer mix is combusted in the breech using a spark plug or electric match and bursts a diaphragm, accelerating the ram projectile to its entrance velocity. The combustion gun can be operated at modest fill pressures (20 bar) but can only launch to relatively low velocities (approximately 1000 m/s) without destroying the projectile and obturator upon launch. Projectiles were successfully started at entrance velocities as low as 810 m/s and projectile body lengths as long as 91 mm were used. The tests investigating the upper Mach number limits of polycarbonate projectiles used the conventional single-stage light-gas gun because of its ability to reach higher velocities with a lower acceleration launch. It was determined that polycarbonate projectiles have an upper velocity limit in the

  5. Consistent transport coefficients in astrophysics

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Rovira, M.; Ferrofontan, C.

    1986-01-01

    A consistent theory for dealing with transport phenomena in stellar atmospheres starting with the kinetic equations and introducing three cases (LTE, partial LTE, and non-LTE) was developed. The consistent hydrodynamical equations were presented for partial-LTE, the transport coefficients defined, and a method shown to calculate them. The method is based on the numerical solution of kinetic equations considering Landau, Boltzmann, and Focker-Planck collision terms. Finally a set of results for the transport coefficients derived for a partially ionized hydrogen gas with radiation was shown, considering ionization and recombination as well as elastic collisions. The results obtained imply major changes is some types of theoretical model calculations and can resolve some important current problems concerning energy and mass balance in the solar atmosphere. It is shown that energy balance in the lower solar transition region can be fully explained by means of radiation losses and conductive flux.

  6. Postural consistency in skilled archers.

    PubMed

    Stuart, J; Atha, J

    1990-01-01

    The consistency of an archer's postural set at the moment of loose (arrow release) is commonly perceived to be an important determinant of success. The coach seeks, among other things, to provide the archer with information about postural consistency, details of which he acquires by eye or occasionally by video-recordings. The gains that might be achieved from more precise information are examined here. Nine skilled archers, classified into either skilled or elite groups according to their officially computed handicap, were continuously monitored and measured with a three-dimensional co-ordinate analyser (Charnwood Dynamics Coda-3 Scanner) while shooting two ends (series) of three arrows each. Considerable variability was observed in the precision with which the positions of head, elbow and bow at the moment of loose were replicated by archers of similar levels of skill. These results are interpreted to suggest that precise postural consistency may not be the primary feature distinguishing between the performance of archers at the higher skill levels.

  7. Consistent interpretations of quantum mechanics

    SciTech Connect

    Omnes, R. )

    1992-04-01

    Within the last decade, significant progress has been made towards a consistent and complete reformulation of the Copenhagen interpretation (an interpretation consisting in a formulation of the experimental aspects of physics in terms of the basic formalism; it is consistent if free from internal contradiction and complete if it provides precise predictions for all experiments). The main steps involved decoherence (the transition from linear superpositions of macroscopic states to a mixing), Griffiths histories describing the evolution of quantum properties, a convenient logical structure for dealing with histories, and also some progress in semiclassical physics, which was made possible by new methods. The main outcome is a theory of phenomena, viz., the classically meaningful properties of a macroscopic system. It shows in particular how and when determinism is valid. This theory can be used to give a deductive form to measurement theory, which now covers some cases that were initially devised as counterexamples against the Copenhagen interpretation. These theories are described, together with their applications to some key experiments and some of their consequences concerning epistemology.

  8. Acceleration: It's Elementary

    ERIC Educational Resources Information Center

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  9. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  10. Accelerated test design

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1980-01-01

    The design of an accelerated life test program for electric batteries is discussed. A number of observations and suggestions on the procedures and objectives for conducting an accelerated life test program are presented. Equations based on nonlinear regression analysis for predicting the accelerated life test parameters are discussed.

  11. Task Versus Component Consistency in the Development of Automatic Processes: Consistent Attending Versus Consistent Responding.

    DTIC Science & Technology

    1982-03-01

    a visual search paradigm, Schneider and Shiffrin (1977, Experiment 2) found that reaction times in conditions where subjects could consistently attend...requires less effort, is more accurate and is faster (see for example, Corballis, 1975; Egeth, Atkinson , Gilmore, & Marcus, 1973; Kristofferson, 1972...Logan, 1978, 1979; Neisser, 1974; Schneider & Shiffrin , 1977; Shiffrin & Schneider, 1977; Schneider & Fisk, in press - a; for a review, see Schneider

  12. Large Scale Accelerator Production of 225Ac: Effective Cross sections for 78-192 MeV Protons Incident on 232Th Targets

    SciTech Connect

    Griswold, Justin R; Medvedev, Dmitri G.; Engle, Jonathan W.; Copping, Roy; Fitzsimmons, Jonathan M.; Radchenko, Valery; Cooley, Jason; Fassbender, Michael; Denton, David L.; Murphy, Karen E.; Owens, Allison C.; Birnbaum, Eva R.; John, Kevin D.; Nortier, Francois M.; Stracener, Daniel W; Heilbronn, Lawrence H.; Mausner, Leonard F.; Mirzadeh, Saed

    2016-09-28

    Actinium-225 and 213Bi have been used successfully in targeted alpha therapy (TAT) in preclinical and clinical research. This paper is a continuation of research activities aiming to expand the availability of 225Ac. The high energy proton spallation reaction on natural thorium metal target has been utilized to produce millicurie quantities of 225Ac. The results of sixteen irradiation experiments of Th metal at beam energies between 78 and 200 MeV are summarized in this work. Irradiations have been conducted at Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL), while target dissolution and processing was carried out at Oak Ridge National Laboratory (ORNL). Excitation functions for actinium and thorium isotopes as well as for some of the fission products are presented. The cross sections for production of 225Ac range from 3.6 to 16.7 mb in the incident proton energy range of 78 to 192 MeV. Based on these data, production of Curie quantities of 225Ac is possible by irradiating a 5.0 g cm-2232Th target for 10 days in either BNL or LANL proton irradiation facilities.

  13. Surrogate measures and consistent surrogates.

    PubMed

    Vanderweele, Tyler J

    2013-09-01

    Surrogates which allow one to predict the effect of the treatment on the outcome of interest from the effect of the treatment on the surrogate are of importance when it is difficult or expensive to measure the primary outcome. Unfortunately, the use of such surrogates can give rise to paradoxical situations in which the effect of the treatment on the surrogate is positive, the surrogate and outcome are strongly positively correlated, but the effect of the treatment on the outcome is negative, a phenomenon sometimes referred to as the "surrogate paradox." New results are given for consistent surrogates that extend the existing literature on sufficient conditions that ensure the surrogate paradox is not manifest. Specifically, it is shown that for the surrogate paradox to be manifest it must be the case that either there is (i) a direct effect of treatment on the outcome not through the surrogate and in the opposite direction as that through the surrogate or (ii) confounding for the effect of the surrogate on the outcome, or (iii) a lack of transitivity so that treatment does not positively affect the surrogate for all the same individuals for whom the surrogate positively affects the outcome. The conditions for consistent surrogates and the results of the article are important because they allow investigators to predict the direction of the effect of the treatment on the outcome simply from the direction of the effect of the treatment on the surrogate. These results on consistent surrogates are then related to the four approaches to surrogate outcomes described by Joffe and Greene (2009, Biometrics 65, 530-538) to assess whether the standard criteria used by these approaches to assess whether a surrogate is "good" suffice to avoid the surrogate paradox.

  14. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  15. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  16. Remote operations in a global accelerator network

    SciTech Connect

    Peggs, Steve; Satogata, Todd; Agarwal, Deborah; Rice, David

    2003-05-08

    The INTRODUCTION to this paper summarizes the history of the Global Accelerator Network (GAN) concept and the recent workshops that discussed the relationship between GAN and Remote Operations. The REMOTE OPERATIONS SCENARIOS section brings out the organizational philosophy embodied in GAN-like and to non-GAN-like scenarios. The set of major TOPICS RAISED AT THE WORKSHOPS are only partially resolved. COLLABORATION TOOLS are described and discussed, followed by examples of REMOTE ACCELERATOR CONTROL PROJECTS around the world.

  17. REMOTE OPERATIONS IN A GLOBAL ACCELERATOR NETWORK

    SciTech Connect

    PEGGS,S.SATOGATA,TAGARWAL,DRICE,D

    2003-05-12

    The INTRODUCTION to this paper summarizes the history of the Global Accelerator Network (GAN) concept and the recent workshops that discussed the relationship between GAN and Remote Operations. The REMOTE OPERATIONS SCENARIOS section brings out the organizational philosophy embodied in GAN-like and to non-GAN-like scenarios. The set of major TOPICS RAISED AT THE WORKSHOPS are only partially resolved. COLLABORATION TOOLS are described and discussed, followed by examples of REMOTE ACCELERATOR CONTROL PROJECTS around the world.

  18. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  19. Relativistic klystron research for high gradient accelerators

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Lavine, T.L.; Lee, T.G.

    1988-06-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron--positron colliders, compact accelerators, and FEL sources. We have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our first klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 7 figs.

  20. Wake fields and wake field acceleration

    SciTech Connect

    Bane, K.L.F.; Wilson, P.B.; Weiland, T.

    1984-12-01

    In this lecture we introduce the concepts of wake fields and wake potentials, examine some basic properties of these functions, show how they can be calculated, and look briefly at a few important applications. One such application is wake field acceleration. The wake field accelerator is capable of producing the high gradients required for future very high energy e/sup +/e/sup -/ linear colliders. The principles of wake field acceleration, and a brief description of experiments in progress in this area, are presented in the concluding section. 40 references, 27 figures.

  1. The Two-beam accelerator

    SciTech Connect

    Sessler, A.M.; Hopkins, D.B.

    1986-06-01

    The Two-Beam Accelerator (TBA) consists of a long high-gradient accelerator structure (HGS) adjacent to an equal-length Free Electron Laser (FEL). In the FEL, a beam propagates through a long series of undulators. At regular intervals, waveguides couple microwave power out of the FEL into the HGS. To replenish energy given up by the FEL beam to the microwave field, induction accelerator units are placed periodically along the length of the FEL. In this manner it is expected to achieve gradients of more than 250 MV/m and thus have a serious option for a 1 TeV x 1 TeV linear collider. The state of present theoretical understanding of the TBA is presented with particular emphasis upon operation of the ''steady-state'' FEL, phase and amplitude control of the rf wave, and suppression of sideband instabilities. Experimental work has focused upon the development of a suitable HGS and the testing of this structure using the Electron Laser Facility (ELF). Description is given of a first test at ELF with a seven-cell 2..pi../3 mode structure which without preconditioning and with a not-very-good vacuum nevertheless at 35 GHz yielded an average accelerating gradient of 180 MV/m.

  2. Pulsed Inductive Plasma Acceleration: Performance Optimization Criteria

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2014-01-01

    Optimization criteria for pulsed inductive plasma acceleration are developed using an acceleration model consisting of a set of coupled circuit equations describing the time-varying current in the thruster and a one-dimensional momentum equation. The model is nondimensionalized, resulting in the identification of several scaling parameters that are varied to optimize the performance of the thruster. The analysis reveals the benefits of underdamped current waveforms and leads to a performance optimization criterion that requires the matching of the natural period of the discharge and the acceleration timescale imposed by the inertia of the working gas. In addition, the performance increases when a greater fraction of the propellant is initially located nearer to the inductive acceleration coil. While the dimensionless model uses a constant temperature formulation in calculating performance, the scaling parameters that yield the optimum performance are shown to be relatively invariant if a self-consistent description of energy in the plasma is instead used.

  3. Golden Sections

    ERIC Educational Resources Information Center

    Stuart, Stephen N.

    2006-01-01

    In this article, the author states that architects, musicians and other thoughtful people have, since the time of Pythagoras, been fascinated by various harmonious proportions. One, is the visual harmony attributed to Euclid, called "the golden section". He explores this concept in geometries of one, two and three dimensions. He added, that in…

  4. Maintaining consistency in distributed systems

    NASA Technical Reports Server (NTRS)

    Birman, Kenneth P.

    1991-01-01

    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability.

  5. Consistency of warm k -inflation

    NASA Astrophysics Data System (ADS)

    Peng, Zhi-Peng; Yu, Jia-Ning; Zhu, Jian-Yang; Zhang, Xiao-Min

    2016-11-01

    We extend k -inflation which is a type of kinetically driven inflationary model under the standard inflationary scenario to a possible warm inflationary scenario. The dynamical equations of this warm k -inflation model are obtained. We rewrite the slow-roll parameters which are different from the usual potential driven inflationary models and perform a linear stability analysis to give the proper slow-roll conditions in warm k -inflation. Two cases, a power-law kinetic function and an exponential kinetic function, are studied, when the dissipative coefficient Γ =Γ0 and Γ =Γ (ϕ ), respectively. A proper number of e-folds is obtained in both concrete cases of warm k -inflation. We find a constant dissipative coefficient (Γ =Γ0) is not a workable choice for these two cases while the two cases with Γ =Γ (ϕ ) are self-consistent warm inflationary models.

  6. Self-consistent triaxial models

    NASA Astrophysics Data System (ADS)

    Sanders, Jason L.; Evans, N. Wyn

    2015-11-01

    We present self-consistent triaxial stellar systems that have analytic distribution functions (DFs) expressed in terms of the actions. These provide triaxial density profiles with cores or cusps at the centre. They are the first self-consistent triaxial models with analytic DFs suitable for modelling giant ellipticals and dark haloes. Specifically, we study triaxial models that reproduce the Hernquist profile from Williams & Evans, as well as flattened isochrones of the form proposed by Binney. We explore the kinematics and orbital structure of these models in some detail. The models typically become more radially anisotropic on moving outwards, have velocity ellipsoids aligned in Cartesian coordinates in the centre and aligned in spherical polar coordinates in the outer parts. In projection, the ellipticity of the isophotes and the position angle of the major axis of our models generally changes with radius. So, a natural application is to elliptical galaxies that exhibit isophote twisting. As triaxial Stäckel models do not show isophote twists, our DFs are the first to generate mass density distributions that do exhibit this phenomenon, typically with a gradient of ≈10°/effective radius, which is comparable to the data. Triaxiality is a natural consequence of models that are susceptible to the radial orbit instability. We show how a family of spherical models with anisotropy profiles that transition from isotropic at the centre to radially anisotropic becomes unstable when the outer anisotropy is made sufficiently radial. Models with a larger outer anisotropy can be constructed but are found to be triaxial. We argue that the onset of the radial orbit instability can be identified with the transition point when adiabatic relaxation yields strongly triaxial rather than weakly spherical endpoints.

  7. High Energy Measurement of the Deuteron Photodisintegration Differential Cross Section

    SciTech Connect

    Schulte, Elaine

    2002-05-01

    New measurements of the high energy deuteron photodisintegration differential cross section were made at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia. Two experiments were performed. Experiment E96-003 was performed in experimental Hall C. The measurements were designed to extend the highest energy differential cross section values to 5.5 GeV incident photon energy at forward angles. This builds upon previous high energy measurements in which scaling consistent with the pQCD constituent counting rules was observed at 90 degrees and 70 degrees in the center of mass. From the new measurements, a threshold for the onset of constituent counting rule scaling seems present at transverse momentum approximately 1.3 GeV/c. The second experiment, E99-008, was performed in experimental Hall A. The measurements were designed to explore the angular distribution of the differential cross section at constant energy. The measurements were made symmetric about 90 degrees

  8. Numerical simulation of an accelerator injector

    SciTech Connect

    Boyd, J.K.; Caporaso, G.J.; Cole, A.G.

    1985-05-09

    Accelerator injector designs have been evaluated using two computer codes. The first code self consistently follows relativistic particles in two dimensions. Fields are obtained in the Darwin model which includes inductive effects. This code is used to study cathode emission and acceleration to full injector voltage. The second code transports a fixed segment of a beam along the remainder of the beam line. Using these two codes the effects of electrode configuration on emittance, beam quality and beam transport have been studied.

  9. Space experiments with particle accelerators: SEPAC

    NASA Technical Reports Server (NTRS)

    Roberts, B.

    1986-01-01

    The SEPAC instruments consist of an electron accelerator, a plasma accelerator, a neutral gas (N2) release device, particle and field diagnostic instruments, and a low light level television system. These instruments are used to accomplish multiple experiments: to study beam-particle interactions and other plasma processes; as probes to investigate magnetospheric processes; and as perturbation devices to study energy coupling mechanisms in the magnetosphere, ionosphere, and upper atmosphere.

  10. Polarized Proton Acceleration in AGS and RHIC

    SciTech Connect

    Roser, Thomas

    2008-02-06

    As the first hadron accelerator and collider consisting of two independent superconducting rings RHIC has operated with a wide range of beam energies and particle species including polarized proton beams. The acceleration of polarized beams in both the injector and the collider rings is complicated by numerous depolarizing spin resonances. Partial and full Siberian snakes have made it possible to overcome the depolarization and beam polarizations of up to 65% have been reached at 100 GeV in RHIC.

  11. POLARIZED PROTON ACCELERATION IN AGS AND RHIC.

    SciTech Connect

    ROSER,T.

    2007-09-10

    As the first hadron accelerator and collider consisting of two independent superconducting rings RHIC has operated with a wide range of beam energies and particle species including polarized proton beams. The acceleration of polarized beams in both the injector and the collider rings is complicated by numerous depolarizing spin resonances. Partial and full Siberian snakes have made it possible to overcome the depolarization and beam polarizations of up to 65% have been reached at 100 GeV in RHIC.

  12. An introduction to acceleration mechanisms

    SciTech Connect

    Palmer, R.B.

    1987-05-01

    This paper discusses the acceleration of charged particles by electromagnetic fields, i.e., by fields that are produced by the motion of other charged particles driven by some power source. The mechanisms that are discussed include: Ponderamotive Forces, Acceleration, Plasma Beat Wave Acceleration, Inverse Free Electron Laser Acceleration, Inverse Cerenkov Acceleration, Gravity Acceleration, 2D Linac Acceleration and Conventional Iris Loaded Linac Structure Acceleration. (LSP)

  13. Schooling in Times of Acceleration

    ERIC Educational Resources Information Center

    Buddeberg, Magdalena; Hornberg, Sabine

    2017-01-01

    Modern societies are characterised by forms of acceleration, which influence social processes. Sociologist Hartmut Rosa has systematised temporal structures by focusing on three categories of social acceleration: technical acceleration, acceleration of social change, and acceleration of the pace of life. All three processes of acceleration are…

  14. The effect of acceleration on turbulent entrainment

    NASA Astrophysics Data System (ADS)

    Breidenthal, Robert E.

    2008-12-01

    A new class of self-similar turbulent flows is proposed, which exhibits dramatically reduced entrainment rates. Under strong acceleration, the rotation period of the large-scale vortices is forced to decrease linearly in time. In ordinary unforced turbulence, the rotation period always increases linearly with time, at least in the mean. However, by imposing an exponential acceleration on the flow, the vortex rotation period is forced to become the e-folding timescale of the acceleration. If the e-folding timescale itself decreases linearly in time, the forcing is 'super-exponential', characterized by an acceleration parameter α. Based on dimensional and heuristic arguments, a model suggests that the dissipation rate is an exponential function of α and the dimensions of the conserved quantity of the flow. Acceleration decreases the dissipation and entrainment rates in all canonical laboratory flows except for Rayleigh-Taylor. Experiments of exponential jets and super-exponential transverse jets are in accord with the model. As noted by Johari, acceleration is the only known means of affecting the entrainment rate of the far-field jet. Numerical simulations of Rayleigh-Taylor flow by Cook and Greenough are also consistent. In the limit of large acceleration, vortices do not move far before their rotation period changes substantially. In this sense, extreme acceleration corresponds to stationary vortices.

  15. The Consistent Vehicle Routing Problem

    SciTech Connect

    Groer, Christopher S; Golden, Bruce; Edward, Wasil

    2009-01-01

    In the small package shipping industry (as in other industries), companies try to differentiate themselves by providing high levels of customer service. This can be accomplished in several ways, including online tracking of packages, ensuring on-time delivery, and offering residential pickups. Some companies want their drivers to develop relationships with customers on a route and have the same drivers visit the same customers at roughly the same time on each day that the customers need service. These service requirements, together with traditional constraints on vehicle capacity and route length, define a variant of the classical capacitated vehicle routing problem, which we call the consistent VRP (ConVRP). In this paper, we formulate the problem as a mixed-integer program and develop an algorithm to solve the ConVRP that is based on the record-to-record travel algorithm. We compare the performance of our algorithm to the optimal mixed-integer program solutions for a set of small problems and then apply our algorithm to five simulated data sets with 1,000 customers and a real-world data set with more than 3,700 customers. We provide a technique for generating ConVRP benchmark problems from vehicle routing problem instances given in the literature and provide our solutions to these instances. The solutions produced by our algorithm on all problems do a very good job of meeting customer service objectives with routes that have a low total travel time.

  16. Uniformly accelerated black holes

    NASA Astrophysics Data System (ADS)

    Letelier, Patricio S.; Oliveira, Samuel R.

    2001-09-01

    The static and stationary C metric are examined in a generic framework and their interpretations studied in some detail, especially those with two event horizons, one for the black hole and another for the acceleration. We find that (i) the spacetime of an accelerated static black hole is plagued by either conical singularities or a lack of smoothness and compactness of the black hole horizon, (ii) by using standard black hole thermodynamics we show that accelerated black holes have a higher Hawking temperature than Unruh temperature of the accelerated frame, and (iii) the usual upper bound on the product of the mass and acceleration parameters (<1/27) is just a coordinate artifact. The main results are extended to accelerated rotating black holes with no significant changes.

  17. The Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  18. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  19. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  20. ACCELERATION RESPONSIVE SWITCH

    DOEpatents

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  1. 7 CFR 766.356 - Acceleration of loans to American Indian borrowers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Acceleration of loans to American Indian borrowers... § 766.356 Acceleration of loans to American Indian borrowers. (a) General. (1) The Agency accelerates... with this section, unless State law imposes separate restrictions on accelerations. (2) The...

  2. 7 CFR 766.356 - Acceleration of loans to American Indian borrowers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Acceleration of loans to American Indian borrowers... § 766.356 Acceleration of loans to American Indian borrowers. (a) General. (1) The Agency accelerates... with this section, unless State law imposes separate restrictions on accelerations. (2) The...

  3. 7 CFR 766.356 - Acceleration of loans to American Indian borrowers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Acceleration of loans to American Indian borrowers... § 766.356 Acceleration of loans to American Indian borrowers. (a) General. (1) The Agency accelerates... with this section, unless State law imposes separate restrictions on accelerations. (2) The...

  4. Particle acceleration in flares

    NASA Technical Reports Server (NTRS)

    Benz, Arnold O.; Kosugi, Takeo; Aschwanden, Markus J.; Benka, Steve G.; Chupp, Edward L.; Enome, Shinzo; Garcia, Howard; Holman, Gordon D.; Kurt, Victoria G.; Sakao, Taro

    1994-01-01

    Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, gamma-rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.

  5. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  6. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  7. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases.

  8. High Gradient Accelerator Research

    SciTech Connect

    Temkin, Richard

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  9. FFAGS for rapid acceleration

    SciTech Connect

    Carol J. Johnstone and Shane Koscielniak

    2002-09-30

    When large transverse and longitudinal emittances are to be transported through a circular machine, extremely rapid acceleration holds the advantage that the beam becomes immune to nonlinear resonances because there is insufficient time for amplitudes to build up. Uncooled muon beams exhibit large emittances and require fast acceleration to avoid decay losses and would benefit from this style of acceleration. The approach here employs a fixed-field alternating gradient or FFAG magnet structure and a fixed frequency acceleration system. Acceptance is enhanced by the use only of linear lattice elements, and fixed-frequency rf enables the use of cavities with large shunt resistance and quality factor.

  10. Acceleration of polarized protons in circular accelerators

    SciTech Connect

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  11. Particle Simulations of a Linear Dielectric Wall Proton Accelerator

    SciTech Connect

    Poole, B R; Blackfield, D T; Nelson, S D

    2007-06-12

    The dielectric wall accelerator (DWA) is a compact induction accelerator structure that incorporates the accelerating mechanism, pulse forming structure, and switch structure into an integrated module. The DWA consists of stacked stripline Blumlein assemblies, which can provide accelerating gradients in excess of 100 MeV/meter. Blumleins are switched sequentially according to a prescribed acceleration schedule to maintain synchronism with the proton bunch as it accelerates. A finite difference time domain code (FDTD) is used to determine the applied acceleration field to the proton bunch. Particle simulations are used to model the injector as well as the accelerator stack to determine the proton bunch energy distribution, both longitudinal and transverse dynamic focusing, and emittance growth associated with various DWA configurations.

  12. 42 CFR 488.312 - Consistency of survey results.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false Consistency of survey results. 488.312 Section 488... (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES Survey and Certification of Long-Term Care Facilities § 488.312 Consistency of survey results. CMS does and the...

  13. 42 CFR 488.312 - Consistency of survey results.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Consistency of survey results. 488.312 Section 488... (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES Survey and Certification of Long-Term Care Facilities § 488.312 Consistency of survey results. CMS does and the...

  14. 42 CFR 488.312 - Consistency of survey results.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Consistency of survey results. 488.312 Section 488... (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES Survey and Certification of Long-Term Care Facilities § 488.312 Consistency of survey results. CMS does and the...

  15. 42 CFR 488.312 - Consistency of survey results.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false Consistency of survey results. 488.312 Section 488... (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES Survey and Certification of Long-Term Care Facilities § 488.312 Consistency of survey results. CMS does and the...

  16. 42 CFR 488.312 - Consistency of survey results.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Consistency of survey results. 488.312 Section 488... (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES Survey and Certification of Long-Term Care Facilities § 488.312 Consistency of survey results. CMS does and the...

  17. 42 CFR 435.901 - Consistency with objectives and statutes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 435.901 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... Methods of Administration § 435.901 Consistency with objectives and statutes. The Medicaid agency's standards and methods for determining eligibility must be consistent with the objectives of the program...

  18. 26 CFR 1.338-8 - Asset and stock consistency.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 4 2013-04-01 2013-04-01 false Asset and stock consistency. 1.338-8 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Effects on Corporation § 1.338-8 Asset and stock consistency. (a... the consolidated return regulations in the basis of target stock and may reduce gain from the sale...

  19. 26 CFR 1.338-8 - Asset and stock consistency.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 4 2014-04-01 2014-04-01 false Asset and stock consistency. 1.338-8 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Effects on Corporation § 1.338-8 Asset and stock consistency. (a... the consolidated return regulations in the basis of target stock and may reduce gain from the sale...

  20. 26 CFR 1.338-8 - Asset and stock consistency.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 4 2012-04-01 2012-04-01 false Asset and stock consistency. 1.338-8 Section 1... (CONTINUED) INCOME TAXES (Continued) Effects on Corporation § 1.338-8 Asset and stock consistency. (a... the consolidated return regulations in the basis of target stock and may reduce gain from the sale...

  1. Angular velocities, angular accelerations, and coriolis accelerations

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  2. Variable energy constant current accelerator structure

    DOEpatents

    Anderson, Oscar A.

    1990-01-01

    A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90.degree. intervals with opposing electrodes maintained at the same potential. Adjacent cylinder electrodes of the quadrupole structure are maintained at different potentials to thereby reshape the cross section of the charged particle beam to an ellipse in cross section at the mid point along each quadrupole electrode unit in the accelerator modules. The beam is maintained in focus by alternating the major axis of the ellipse along the x and y axis respectively at adjacent quadrupoles. In another embodiment, electrostatic ring electrodes may be utilized instead of the quadrupole electrodes.

  3. Auroral plasma acceleration processes at Mars

    NASA Astrophysics Data System (ADS)

    Lundin, R.; Barabash, S.; Winningham, D.

    2012-09-01

    Following the first Mars Express (MEX) findings of auroral plasma acceleration above Martian magnetic anomalies[1, 2], a more detailed analysis is carried out regarding the physical processes that leads to plasma acceleration, and how they connect to the dynamo-, and energy source regions. The ultimate energy source for Martian plasma acceleration is the solar wind. The question is, by what mechanisms is solar wind energy and momentum transferred into the magnetic flux tubes that connect to Martian magnetic anomalies? What are the key plasma acceleration processes that lead to aurora and the associated ionospheric plasma outflow from Mars? The experimental setup on MEX limits our capability to carry out "auroral physics" at Mars. However, with knowledge acquired from the Earth, we may draw some analogies with terrestrial auroral physics. Using the limited data set available, consisting of primarily ASPERA and MARSIS data, an interesting picture of aurora at Mars emerges. There are some strong similarities between accelerated/heated electrons and ions in the nightside high altitude region above Mars and the electron/ion acceleration above Terrestrial discrete aurora. Nearly monoenergetic downgoing electrons are observed in conjunction with nearly monoenergetic upgoing ions. Monoenergetic counterstreaming ions and electrons is the signature of plasma acceleration in quasi-static electric fields. However, compared to the Earth's aurora, with auroral process guided by a dipole field, aurora at Mars is expected to form complex patterns in the multipole environment governed by the Martian crustal magnetic field regions. Moreover, temporal/spatial scales are different at Mars. It is therefore of interest to mention another common characteristics that exist for Earth and Mars, plasma acceleration by waves. Low-frequency, Alfvén, waves is a very powerful means of plasma acceleration in the Earth's magnetosphere. Low-frequency waves associated with plasma acceleration

  4. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  5. Accelerator Science: Why RF?

    SciTech Connect

    Lincoln, Don

    2016-12-21

    Particle accelerators can fire beams of subatomic particles at near the speed of light. The accelerating force is generated using radio frequency technology and a whole lot of interesting features. In this video, Fermilab’s Dr. Don Lincoln explains how it all works.

  6. Particle Acceleration in Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi

    2005-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma ray burst (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments.

  7. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  8. Accelerators (3/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  9. Diagnostics for induction accelerators

    SciTech Connect

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960`s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore`s Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail.

  10. Accelerators (4/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  11. Measuring Model Rocket Acceleration.

    ERIC Educational Resources Information Center

    Jenkins, Randy A.

    1993-01-01

    Presents an experiment that measures the acceleration and velocity of a model rocket. Lift-off information is transmitted to a computer that creates a graph of the velocity. Discusses the analysis of the computer-generated data and differences between calculated and experimental velocity and acceleration of several rocket types. (MDH)

  12. Microscale acceleration history discriminators

    DOEpatents

    Polosky, Marc A.; Plummer, David W.

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  13. Accelerators (5/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  14. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph

    2010-07-29

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?.

  15. Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages

    DOEpatents

    Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph

    2014-05-13

    Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.

  16. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  17. Improving Interprofessional Consistency in Electronic Fetal Heart Rate Interpretation.

    PubMed

    Govindappagari, Shravya; Zaghi, Sahar; Zannat, Ferdous; Reimers, Laura; Goffman, Dena; Kassel, Irene; Bernstein, Peter S

    2016-07-01

    Objective To determine if mandatory online training in electronic fetal monitoring (EFM) improved agreement in documentation between obstetric care providers and nurses on labor and delivery. Methods Health care professionals working in obstetrics at our institution were required to complete a course on EFM interpretation. We performed a retrospective chart review of 701 charts including patients delivered before and after the introduction of the course to evaluate agreement among providers in their documentation of their interpretations of the EFM tracings. Results Agreement between provider and nurse documentation at the time of admission improved for variability and accelerations (variability: 91.1 vs. 98.3%, p < 0.001; and accelerations: 75.2 vs. 87.7%, p < 0.001). Similarly, agreement improved at the time of the last note prior to delivery for documentation of variability and accelerations (variability: 82.1 vs. 90.6%, p = 0.001; and accelerations: 56.7 vs. 68.6%, p = 0.0012). Agreement in interpretation of decelerations both at the time of admission and at the time of delivery increased (86.3 vs. 90.6%, p = 0.0787, and 56.7 vs. 61.1%, p = 0.2314, respectively) but was not significant. Conclusion An online EFM course can significantly improve consistency in multidisciplinary documentation of fetal heart rate tracing interpretation.

  18. Diagnosing particle acceleration in relativistic jets

    NASA Astrophysics Data System (ADS)

    Böttcher, Markus; Baring, Matthew G.; Liang, Edison P.; Summerlin, Errol J.; Fu, Wen; Smith, Ian A.; Roustazadeh, Parisa

    2015-03-01

    The high-energy emission from blazars and other relativistic jet sources indicates that electrons are accelerated to ultra-relativistic (GeV - TeV) energies in these systems. This paper summarizes recent results from numerical studies of two fundamentally different particle acceleration mechanisms potentially at work in relativistic jets: Magnetic-field generation and relativistic particle acceleration in relativistic shear layers, which are likely to be present in relativistic jets, is studied via Particle-in-Cell (PIC) simulations. Diffusive shock acceleration at relativistic shocks is investigated using Monte-Carlo simulations. The resulting magnetic-field configurations and thermal + non-thermal particle distributions are then used to predict multi-wavelength radiative (synchrotron + Compton) signatures of both acceleration scenarios. In particular, we address how anisotropic shear-layer acceleration may be able to circumvent the well-known Lorentz-factor crisis, and how the self-consistent evaluation of thermal + non-thermal particle populations in diffusive shock acceleration simulations provides tests of the bulk Comptonization model for the Big Blue Bump observed in the SEDs of several blazars.

  19. Radiation Safety Systems for Accelerator Facilities

    SciTech Connect

    Liu, James C

    2001-10-17

    The Radiation Safety System (RSS) of an accelerator facility is used to protect people from prompt radiation hazards associated with accelerator operation. The RSS is a fully interlocked, engineered system with a combination of passive and active elements that are reliable, redundant, and fail-safe. The RSS consists of the Access Control System (ACS) and the Radiation Containment System (RCS). The ACS is to keep people away from the dangerous radiation inside the shielding enclosure. The RCS limits and contains the beam/radiation conditions to protect people from the prompt radiation hazards outside the shielding enclosure in both normal and abnormal operations. The complexity of a RSS depends on the accelerator and its operation, as well as associated hazard conditions. The approaches of RSS among different facilities can be different. This report gives a review of the RSS for accelerator facilities.

  20. Radiation Safety Systems for Accelerator Facilities

    SciTech Connect

    James C. Liu; Jeffrey S. Bull; John Drozdoff; Robert May; Vaclav Vylet

    2001-10-01

    The Radiation Safety System (RSS) of an accelerator facility is used to protect people from prompt radiation hazards associated with accelerator operation. The RSS is a fully interlocked, engineered system with a combination of passive and active elements that are reliable, redundant, and fail-safe. The RSS consists of the Access Control System (ACS) and the Radiation Containment System (RCS). The ACS is to keep people away from the dangerous radiation inside the shielding enclosure. The RCS limits and contains the beam/radiation conditions to protect people from the prompt radiation hazards outside the shielding enclosure in both normal and abnormal operations. The complexity of a RSS depends on the accelerator and its operation, as well as associated hazard conditions. The approaches of RSS among different facilities can be different. This report gives a review of the RSS for accelerator facilities.

  1. Vertical accelerator device to apply loads simulating blast environments in the military to human surrogates.

    PubMed

    Yoganandan, Narayan; Pintar, Frank A; Schlick, Michael; Humm, John R; Voo, Liming; Merkle, Andrew; Kleinberger, Michael

    2015-09-18

    The objective of the study was to develop a simple device, Vertical accelerator (Vertac), to apply vertical impact loads to Post Mortem Human Subject (PMHS) or dummy surrogates because injuries sustained in military conflicts are associated with this vector; example, under-body blasts from explosive devices/events. The two-part mechanically controlled device consisted of load-application and load-receiving sections connected by a lever arm. The former section incorporated a falling weight to impact one end of the lever arm inducing a reaction at the other/load-receiving end. The "launch-plate" on this end of the arm applied the vertical impact load/acceleration pulse under different initial conditions to biological/physical surrogates, attached to second section. It is possible to induce different acceleration pulses by using varying energy absorbing materials and controlling drop height and weight. The second section of Vertac had the flexibility to accommodate different body regions for vertical loading experiments. The device is simple and inexpensive. It has the ability to control pulses and flexibility to accommodate different sub-systems/components of human surrogates. It has the capability to incorporate preloads and military personal protective equipment (e.g., combat helmet). It can simulate vehicle roofs. The device allows for intermittent specimen evaluations (x-ray and palpation, without changing specimen alignment). The two free but interconnected sections can be used to advance safety to military personnel. Examples demonstrating feasibilities of the Vertac device to apply vertical impact accelerations using PMHS head-neck preparations with helmet and booted Hybrid III dummy lower leg preparations under in-contact and launch-type impact experiments are presented.

  2. Operation of the accelerator

    SciTech Connect

    Pardo, R.C.; Batzka, B.; Billquist, P.J.

    1995-08-01

    Fiscal Year 1994 was the first year of seven-day operation since ATLAS became a national user facility in 1985. ATLAS made the most of the opportunity this year by providing 5200 hours of beam on-target to the research program. A record number of 60 experiments were completed and the {open_quotes}facility reliability{close_quotes} remained near the 90% level. Seven-day operation was made possible with the addition to the staff of two operator positions providing single-operator coverage during the weekend period. The normally scheduled coverage was augmented by an on-call list of system experts who respond to emergencies with phone-in advice and return to the Laboratory when necessary. This staffing approach continues but we rearranged our staffing patterns so that we now have one cryogenics engineer working a shift pattern which includes 8-hour daily coverage during the weekend. ATLAS provided a beam mix to users consisting of 26 different isotopic species, 23% of which were for A>100 in FY 1994. Approximately 60% of the beam time was provided by the Positive Ion Injector, slightly less than the usage rate of FY 1993. Experiments using uranium or lead beams accounted for 16.4% of the total beam time. The ECR ion source and high-voltage platform functioned well throughout the year. A new technique for solid material production in the source was developed which uses a sputtering process wherein the sample of material placed near the plasma chamber wall is biased negatively. Plasma ions are accelerated into the sample and material is sputtered from the surface into the plasma. This technique is now used routinely for many elements. Runs of calcium, germanium, nickel, lead, tellurium, and uranium were carried out with this technique.

  3. Neutrino flux predictions for cross section measurements

    SciTech Connect

    Hartz, Mark

    2015-05-15

    Experiments that measure neutrino interaction cross sections using accelerator neutrino sources require a prediction of the neutrino flux to extract the interaction cross section from the measured neutrino interaction rate. This article summarizes methods of estimating the neutrino flux using in-situ and ex-situ measurements. The application of these methods by current and recent experiments is discussed.

  4. Large electrostatic accelerators

    SciTech Connect

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  5. 38 CFR 9.14 - Accelerated Benefits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... section. (c) Who can apply for an Accelerated Benefit? Only you, the insured member, can apply for an... will be required to complete part of the application form. If you are an active duty servicemember... coverage (check one): SGLI (circle one of the following): Active DutyReady ReserveArmy or AirNational...

  6. 38 CFR 9.14 - Accelerated Benefits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... section. (c) Who can apply for an Accelerated Benefit? Only you, the insured member, can apply for an... will be required to complete part of the application form. If you are an active duty servicemember... coverage (check one): SGLI (circle one of the following): Active DutyReady ReserveArmy or AirNational...

  7. 40 CFR 164.91 - Accelerated decision.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Accelerated decision. 164.91 Section 164.91 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE GOVERNING HEARINGS, UNDER THE FEDERAL INSECTICIDE, FUNGICIDE, AND RODENTICIDE...

  8. 40 CFR 164.91 - Accelerated decision.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Accelerated decision. 164.91 Section 164.91 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE GOVERNING HEARINGS, UNDER THE FEDERAL INSECTICIDE, FUNGICIDE, AND RODENTICIDE...

  9. 40 CFR 164.91 - Accelerated decision.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Accelerated decision. 164.91 Section 164.91 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE GOVERNING HEARINGS, UNDER THE FEDERAL INSECTICIDE, FUNGICIDE, AND RODENTICIDE...

  10. 40 CFR 164.91 - Accelerated decision.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Accelerated decision. 164.91 Section 164.91 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE GOVERNING HEARINGS, UNDER THE FEDERAL INSECTICIDE, FUNGICIDE, AND RODENTICIDE...

  11. 40 CFR 164.91 - Accelerated decision.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Accelerated decision. 164.91 Section 164.91 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE GOVERNING HEARINGS, UNDER THE FEDERAL INSECTICIDE, FUNGICIDE, AND RODENTICIDE...

  12. Vacuum Beat Wave Accelerator

    NASA Astrophysics Data System (ADS)

    Moore, C. I.; Hafizi, B.; Ting, A.; Burris, H. R.; Sprangle, P.; Esarey, E.; Ganguly, A.; Hirshfield, J. L.

    1997-11-01

    The Vacuum Beat Wave Accelerator (VBWA) is a particle acceleration scheme which uses the non-linear ponderomotive beating of two different frequency laser beams to accelerate electrons. A proof-of-principle experiment to demonstrate the VBWA is underway at the Naval Research Laboratory (NRL). This experiment will use the beating of a 1054 nm and 527 nm laser pulse from the NRL T-cubed laser to generate the beat wave and a 4.5 MeV RF electron gun as the electron source. Simulation results and the experimental design will be presented. The suitability of using axicon or higher order Gaussian laser beams will also be discussed.

  13. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  14. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  15. Measurement of the inclusive jet cross section using the midpoint algorithm in Run II at CDF

    SciTech Connect

    Group, Robert Craig

    2006-01-01

    A measurement is presented of the inclusive jet cross section using the Midpoint jet clustering algorithm in five different rapidity regions. This is the first analysis which measures the inclusive jet cross section using the Midpoint algorithm in the forward region of the detector. The measurement is based on more than 1 fb-1 of integrated luminosity of Run II data taken by the CDF experiment at the Fermi National Accelerator Laboratory. The results are consistent with the predictions of perturbative quantum chromodynamics.

  16. Cutting thin sections of bone

    NASA Technical Reports Server (NTRS)

    Ashley, W. W.

    1972-01-01

    Medical equipment for obtaining repetitive planoparallel sections of bone to study healing of bone structure under high gravity stress is described. Device consists of modified saw with diamond cutting edges. Construction of device and manner of use are explained.

  17. Simulation of electron post-acceleration in a two-stage laser Wakefield accelerator

    SciTech Connect

    Reitsma, A.J.W.; Leemans, W.P.; Esarey, E.; Kamp, L.P.J.; Schep, T.J.

    2002-04-01

    Electron bunches produced in self-modulated laser wakefield experiments usually have a broad energy spectrum, with most electrons at low energy (1-3 MeV) and only a small fraction at high energy. We propose and investigate further acceleration of such bunches in a channel-guided resonant laser wakefield accelerator. Two-dimensional simulations with and without the effects of self-consistent beam loading are performed and compared. These results indicate that it is possible to trap about 40 percent of the injected bunch charge and accelerate this fraction to an average energy of about 50 MeV in a plasma channel of a few mn.

  18. DIANA: nuclear astrophysics with a deep underground accelerator facility

    NASA Astrophysics Data System (ADS)

    Lemut, Alberto

    2013-10-01

    Current stellar model simulations are at a level of precision such that nuclear reaction rates represent a major source of uncertainty for theoretical predictions and for the analysis of observational signatures. To address several open questions in cosmology, astrophysics, and non-Standard-Model neutrino physics, new high precision measurements of direct-capture nuclear fusion cross sections are essential. Experimental studies of nuclear reaction of astrophysical interest are hampered by the exponential drop of the cross-section. The extremely low value of σ (E) within the Gamow peak prevents measurement in a laboratory at the earth surface. The signal to noise ratio would be too small, even with the highest beam intensities presently available from industrial accelerators, because of the cosmic ray interactions with the detectors and surrounding materials. An excellent solution is to install an accelerator facility deep underground where the cosmic rays background into detectors is reduced by several order of magnitude, allowing the measurements to be pushed to far lower energies than presently possible. This has been clearly demonstrated at the Laboratory for Underground Nuclear Astrophysics (LUNA) by the successful studies of critical reactions in the pp-chains and first reaction studies in the CNO cycles. However many critical reactions still need high precision measurements, and next generation facilities, capable of very high beam currents over a wide energy range and state of the art target and detection technology, are highly desirable. The DIANA accelerator facility is being designed to achieve large laboratory reaction rates by delivering high ion beam currents (up to 100 mA) to a high density (up to 1018 atoms/cm2), super-sonic jet-gas target as well as to a solid target. DIANA will consist of two accelerators, 50-400 kV and 0.4-3 MV, that will cover a wide range of ion beam intensities, with sufficient energy overlap to consistently connect the

  19. CLASHING BEAM PARTICLE ACCELERATOR

    DOEpatents

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  20. Vibration control in accelerators

    SciTech Connect

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  1. Wake field acceleration experiments

    SciTech Connect

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics. I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs.

  2. Accelerator on a Chip

    SciTech Connect

    England, Joel

    2014-06-30

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  3. Charged particle accelerator grating

    DOEpatents

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  4. Principles of Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Briggs*, Richard J.

    The basic concepts involved in induction accelerators are introduced in this chapter. The objective is to provide a foundation for the more detailed coverage of key technology elements and specific applications in the following chapters. A wide variety of induction accelerators are discussed in the following chapters, from the high current linear electron accelerator configurations that have been the main focus of the original developments, to circular configurations like the ion synchrotrons that are the subject of more recent research. The main focus in the present chapter is on the induction module containing the magnetic core that plays the role of a transformer in coupling the pulsed power from the modulator to the charged particle beam. This is the essential common element in all these induction accelerators, and an understanding of the basic processes involved in its operation is the main objective of this chapter. (See [1] for a useful and complementary presentation of the basic principles in induction linacs.)

  5. Accelerator on a Chip

    ScienceCinema

    England, Joel

    2016-07-12

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  6. DIELECTRIC WALL ACCELERATOR TECHNOLOGY

    SciTech Connect

    Sampayan, S; Caporaso, G; Chen, Y; Harris, J; Hawkins, S; Holmes, C; Nelson, S; Poole, B; Rhodes, M; Sanders, D; Sullivan, J; Wang, L; Watson, J

    2007-10-18

    The dielectric wall accelerator (DWA) is a compact pulsed power device where the pulse forming lines, switching, and vacuum wall are integrated into a single compact geometry. For this effort, we initiated a extensive compact pulsed power development program and have pursued the study of switching (gas, oil, laser induced surface flashover and photoconductive), dielectrics (ceramics and nanoparticle composites), pulse forming line topologies (asymmetric and symmetric Blumleins and zero integral pulse forming lines), and multilayered vacuum insulator (HGI) technology. Finally, we fabricated an accelerator cell for test on ETAII (a 5.5 MeV, 2 kA, 70 ns pulsewidth electron beam accelerator). We review our past results and report on the progress of accelerator cell testing.

  7. 46 CFR 160.072-5 - Accelerated weathering test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Accelerated weathering test. 160.072-5 Section 160.072-5... weathering test. (a) Condition the flag, folded to 1/16th its size or as packaged, whichever is smaller, by... less than 24 hours. (d) The flag fails the accelerated weathering test if (1) After conditioning,...

  8. 46 CFR 160.072-5 - Accelerated weathering test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Accelerated weathering test. 160.072-5 Section 160.072-5... weathering test. (a) Condition the flag, folded to 1/16th its size or as packaged, whichever is smaller, by... less than 24 hours. (d) The flag fails the accelerated weathering test if (1) After conditioning,...

  9. 46 CFR 160.072-5 - Accelerated weathering test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Accelerated weathering test. 160.072-5 Section 160.072-5... weathering test. (a) Condition the flag, folded to 1/16th its size or as packaged, whichever is smaller, by... less than 24 hours. (d) The flag fails the accelerated weathering test if (1) After conditioning,...

  10. 46 CFR 160.072-5 - Accelerated weathering test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Accelerated weathering test. 160.072-5 Section 160.072-5... weathering test. (a) Condition the flag, folded to 1/16th its size or as packaged, whichever is smaller, by... less than 24 hours. (d) The flag fails the accelerated weathering test if (1) After conditioning,...

  11. 46 CFR 160.072-5 - Accelerated weathering test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Accelerated weathering test. 160.072-5 Section 160.072-5... weathering test. (a) Condition the flag, folded to 1/16th its size or as packaged, whichever is smaller, by... less than 24 hours. (d) The flag fails the accelerated weathering test if (1) After conditioning,...

  12. Operational experience with room temperature continuous wave accelerator structures

    NASA Astrophysics Data System (ADS)

    Alimov, A. S.; Ishkhanov, B. S.; Piskarev, I. M.; Shvedunov, V. I.; Tiunov, A. V.

    1993-05-01

    The paper reports the results of the computer simulation of parameters of the on-axis coupled accelerator structure for the continuous wave racetrack microtron. The operational experience with the accelerating sections on the basis of the on-axis coupled structure is described.

  13. 7 CFR 3201.64 - Compost activators and accelerators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Compost activators and accelerators. 3201.64 Section... PROCUREMENT Designated Items § 3201.64 Compost activators and accelerators. (a) Definition. Products in liquid or powder form designed to be applied to compost piles to aid in speeding up the composting...

  14. 7 CFR 3201.64 - Compost activators and accelerators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Compost activators and accelerators. 3201.64 Section... PROCUREMENT Designated Items § 3201.64 Compost activators and accelerators. (a) Definition. Products in liquid or powder form designed to be applied to compost piles to aid in speeding up the composting...

  15. 7 CFR 3201.64 - Compost activators and accelerators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Compost activators and accelerators. 3201.64 Section... PROCUREMENT Designated Items § 3201.64 Compost activators and accelerators. (a) Definition. Products in liquid or powder form designed to be applied to compost piles to aid in speeding up the composting...

  16. 24 CFR 207.257 - Commissioner's right to require acceleration.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Commissioner's right to require acceleration. 207.257 Section 207.257 Housing and Urban Development Regulations Relating to Housing and Urban... Mortgagee Under the Contract of Insurance § 207.257 Commissioner's right to require acceleration....

  17. 12 CFR 269b.220 - Priority; acceleration of proceedings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Priority; acceleration of proceedings. 269b.220 Section 269b.220 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL...; acceleration of proceedings. (a) A charge of “refusal to bargain” or a charge that, if sustained, would...

  18. 24 CFR 232.860 - Commissioner's right to require acceleration.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Commissioner's right to require acceleration. 232.860 Section 232.860 Housing and Urban Development Regulations Relating to Housing and Urban... of Insurance § 232.860 Commissioner's right to require acceleration. Upon receipt of notice of...

  19. 14 CFR 152.321 - Notice of delay or acceleration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Notice of delay or acceleration. 152.321 Section 152.321 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... acceleration. (a) The sponsor or planning agency shall promptly notify the FAA of each condition or event...

  20. 14 CFR 152.321 - Notice of delay or acceleration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Notice of delay or acceleration. 152.321 Section 152.321 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... acceleration. (a) The sponsor or planning agency shall promptly notify the FAA of each condition or event...

  1. 24 CFR 232.860 - Commissioner's right to require acceleration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Commissioner's right to require acceleration. 232.860 Section 232.860 Housing and Urban Development Regulations Relating to Housing and Urban... of Insurance § 232.860 Commissioner's right to require acceleration. Upon receipt of notice of...

  2. 24 CFR 241.860 - Commissioner's right to require acceleration.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Commissioner's right to require acceleration. 241.860 Section 241.860 Housing and Urban Development Regulations Relating to Housing and Urban... Insurance § 241.860 Commissioner's right to require acceleration. Upon receipt of notice of the failure...

  3. 38 CFR 36.4510 - Prepayment, acceleration, and liquidation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2014-07-01 2014-07-01 false Prepayment, acceleration, and liquidation. 36.4510 Section 36.4510 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) LOAN GUARANTY Direct Loans § 36.4510 Prepayment, acceleration, and...

  4. 38 CFR 36.4510 - Prepayment, acceleration, and liquidation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Prepayment, acceleration, and liquidation. 36.4510 Section 36.4510 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) LOAN GUARANTY Direct Loans § 36.4510 Prepayment, acceleration, and...

  5. 24 CFR 241.860 - Commissioner's right to require acceleration.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Commissioner's right to require acceleration. 241.860 Section 241.860 Housing and Urban Development Regulations Relating to Housing and Urban... Insurance § 241.860 Commissioner's right to require acceleration. Upon receipt of notice of the failure...

  6. 38 CFR 36.4510 - Prepayment, acceleration, and liquidation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false Prepayment, acceleration, and liquidation. 36.4510 Section 36.4510 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) LOAN GUARANTY Direct Loans § 36.4510 Prepayment, acceleration, and...

  7. 24 CFR 241.860 - Commissioner's right to require acceleration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Commissioner's right to require acceleration. 241.860 Section 241.860 Housing and Urban Development Regulations Relating to Housing and Urban... Insurance § 241.860 Commissioner's right to require acceleration. Upon receipt of notice of the failure...

  8. 24 CFR 232.860 - Commissioner's right to require acceleration.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Commissioner's right to require acceleration. 232.860 Section 232.860 Housing and Urban Development Regulations Relating to Housing and Urban... of Insurance § 232.860 Commissioner's right to require acceleration. Upon receipt of notice of...

  9. 12 CFR 269b.220 - Priority; acceleration of proceedings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 4 2014-01-01 2014-01-01 false Priority; acceleration of proceedings. 269b.220 Section 269b.220 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL...; acceleration of proceedings. (a) A charge of “refusal to bargain” or a charge that, if sustained, would...

  10. 38 CFR 36.4510 - Prepayment, acceleration, and liquidation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Prepayment, acceleration, and liquidation. 36.4510 Section 36.4510 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) LOAN GUARANTY Direct Loans § 36.4510 Prepayment, acceleration, and...

  11. 24 CFR 232.860 - Commissioner's right to require acceleration.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Commissioner's right to require acceleration. 232.860 Section 232.860 Housing and Urban Development Regulations Relating to Housing and Urban... of Insurance § 232.860 Commissioner's right to require acceleration. Upon receipt of notice of...

  12. 12 CFR 269b.220 - Priority; acceleration of proceedings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 4 2012-01-01 2012-01-01 false Priority; acceleration of proceedings. 269b.220 Section 269b.220 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL...; acceleration of proceedings. (a) A charge of “refusal to bargain” or a charge that, if sustained, would...

  13. 12 CFR 269b.220 - Priority; acceleration of proceedings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 3 2011-01-01 2011-01-01 false Priority; acceleration of proceedings. 269b.220 Section 269b.220 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL...; acceleration of proceedings. (a) A charge of “refusal to bargain” or a charge that, if sustained, would...

  14. 14 CFR 152.321 - Notice of delay or acceleration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Notice of delay or acceleration. 152.321 Section 152.321 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... acceleration. (a) The sponsor or planning agency shall promptly notify the FAA of each condition or event...

  15. 24 CFR 241.860 - Commissioner's right to require acceleration.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Commissioner's right to require acceleration. 241.860 Section 241.860 Housing and Urban Development Regulations Relating to Housing and Urban... Insurance § 241.860 Commissioner's right to require acceleration. Upon receipt of notice of the failure...

  16. 24 CFR 232.860 - Commissioner's right to require acceleration.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Commissioner's right to require acceleration. 232.860 Section 232.860 Housing and Urban Development Regulations Relating to Housing and Urban... of Insurance § 232.860 Commissioner's right to require acceleration. Upon receipt of notice of...

  17. 38 CFR 36.4510 - Prepayment, acceleration, and liquidation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2013-07-01 2013-07-01 false Prepayment, acceleration, and liquidation. 36.4510 Section 36.4510 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) LOAN GUARANTY Direct Loans § 36.4510 Prepayment, acceleration, and...

  18. 14 CFR 152.321 - Notice of delay or acceleration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Notice of delay or acceleration. 152.321 Section 152.321 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... acceleration. (a) The sponsor or planning agency shall promptly notify the FAA of each condition or event...

  19. 14 CFR 152.321 - Notice of delay or acceleration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Notice of delay or acceleration. 152.321 Section 152.321 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... acceleration. (a) The sponsor or planning agency shall promptly notify the FAA of each condition or event...

  20. 12 CFR 269b.220 - Priority; acceleration of proceedings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 4 2013-01-01 2013-01-01 false Priority; acceleration of proceedings. 269b.220 Section 269b.220 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL...; acceleration of proceedings. (a) A charge of “refusal to bargain” or a charge that, if sustained, would...

  1. 24 CFR 241.860 - Commissioner's right to require acceleration.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Commissioner's right to require acceleration. 241.860 Section 241.860 Housing and Urban Development Regulations Relating to Housing and Urban... Insurance § 241.860 Commissioner's right to require acceleration. Upon receipt of notice of the failure...

  2. 22 CFR 221.22 - No acceleration of Eligible Notes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false No acceleration of Eligible Notes. 221.22 Section 221.22 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEE STANDARD TERMS AND CONDITIONS Procedure for Obtaining Compensation § 221.22 No acceleration of Eligible...

  3. 22 CFR 221.22 - No acceleration of Eligible Notes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false No acceleration of Eligible Notes. 221.22 Section 221.22 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEE STANDARD TERMS AND CONDITIONS Procedure for Obtaining Compensation § 221.22 No acceleration of Eligible...

  4. 22 CFR 221.22 - No acceleration of Eligible Notes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false No acceleration of Eligible Notes. 221.22 Section 221.22 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEE STANDARD TERMS AND CONDITIONS Procedure for Obtaining Compensation § 221.22 No acceleration of Eligible...

  5. 22 CFR 221.22 - No acceleration of Eligible Notes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false No acceleration of Eligible Notes. 221.22 Section 221.22 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEE STANDARD TERMS AND CONDITIONS Procedure for Obtaining Compensation § 221.22 No acceleration of Eligible...

  6. 22 CFR 221.22 - No acceleration of Eligible Notes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false No acceleration of Eligible Notes. 221.22 Section 221.22 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEE STANDARD TERMS AND CONDITIONS Procedure for Obtaining Compensation § 221.22 No acceleration of Eligible...

  7. Drift tube suspension for high intensity linear accelerators

    DOEpatents

    Liska, D.J.; Schamaun, R.G.; Clark, D.C.; Potter, R.C.; Frank, J.A.

    1980-03-11

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  8. Drift tube suspension for high intensity linear accelerators

    DOEpatents

    Liska, Donald J.; Schamaun, Roger G.; Clark, Donald C.; Potter, R. Christopher; Frank, Joseph A.

    1982-01-01

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  9. Argonne Tandem-Linac Accelerator System

    SciTech Connect

    Bollinger, L.M.

    1983-01-01

    Design considerations and operational experience for the existing heavy-ion accelerator consisting of a tandem injecting into a superconducting linac are summarized, with emphasis on the general features of the system. This introduction provides the basis for a discussion of the objectives and design of ATLAS, a larger tandem-linac system being formed by expanding the existing superconducting linac.

  10. PARTS: (Plasma Accelerated Reusable Transport System)

    NASA Astrophysics Data System (ADS)

    Aherne, Michael; Davis, Phil; England, Matt; Gustavsson, Jake; Pankow, Steve; Sampaio, Chere; Savella, Phil

    2002-01-01

    The Plasma Accelerated Reusable Transport System (PARTS) is an unmanned cargo shuttle intended to ferry large payloads to and from Martian orbit using a highly efficient VAriable Specific Impulse Magnetoplasma Rocket (VASIMR). The design of PARTS focuses on balancing cost and minimizing transit time for a chosen payload consisting of vehicles, satellites, and other components provided by interested parties.

  11. Designing reliability into accelerators

    NASA Astrophysics Data System (ADS)

    Hutton, A.

    1992-07-01

    Future accelerators will have to provide a high degree of reliability. Quality must be designed in right from the beginning and must remain a central theme throughout the project. The problem is similar to the problems facing US industry today, and examples of the successful application of quality engineering will be given. Different aspects of an accelerator project will be addressed: Concept, Design, Motivation, Management Techniques, and Fault Diagnosis. The importance of creating and maintaining a coherent team will be stressed.

  12. Microgravity Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Microgravity Acceleration Measurement System (MAMS) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  13. CEBAF Accelerator Achievements

    NASA Astrophysics Data System (ADS)

    Chao, Y. C.; Drury, M.; Hovater, C.; Hutton, A.; Krafft, G. A.; Poelker, M.; Reece, C.; Tiefenback, M.

    2011-05-01

    In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

  14. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema

    None

    2016-07-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  15. Rolamite acceleration sensor

    DOEpatents

    Abbin, Joseph P.; Briner, Clifton F.; Martin, Samuel B.

    1993-01-01

    A rolamite acceleration sensor which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently.

  16. Rolamite acceleration sensor

    DOEpatents

    Abbin, J.P.; Briner, C.F.; Martin, S.B.

    1993-12-21

    A rolamite acceleration sensor is described which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently. 6 figures.

  17. Collective field accelerator

    DOEpatents

    Luce, John S.

    1978-01-01

    A collective field accelerator which operates with a vacuum diode and utilizes a grooved cathode and a dielectric anode that operates with a relativistic electron beam with a .nu./.gamma. of .about. 1, and a plurality of dielectric lenses having an axial magnetic field thereabout to focus the collectively accelerated electrons and ions which are ejected from the anode. The anode and lenses operate as unoptimized r-f cavities which modulate and focus the beam.

  18. Accelerators for America's Future

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  19. Biomedical accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  20. Accelerated cleanup risk reduction

    SciTech Connect

    Knapp, R.B.; Aines, R.M.; Blake, R.G.; Copeland, A.B.; Newmark, R.L.; Tompson, A.F.B.

    1998-02-01

    There is no proven technology for remediating contaminant plume source regions in a heterogeneous subsurface. This project is an interdisciplinary effort to develop the requisite new technologies so that will be rapidly accepted by the remediation community. Our technology focus is hydrous pyrolysis/oxidation (HPO) which is a novel in situ thermal technique. We have expanded this core technology to leverage the action of steam injection and place an in situ microbial filter downstream to intercept and destroy the accelerated movement of contaminated groundwater. Most contaminant plume source regions, including the chlorinated solvent plume at LLNL, are in subsurface media characterized by a wide range in hydraulic conductivity. At LLNL, the main conduits for contaminant transport are buried stream channels composed of gravels and sands; these have a hydraulic conductivity in the range of 10{sup -1} to 10{sup -2} cm/s. Clay and silt units with a hydraulic conductivity of 10{sup -1} to 10{sup -6} cm/s bound these buried channels; these are barriers to groundwater movement and contain the highest contaminant concentrations in the source region. New remediation technologies are required because the current ones preferentially access the high conductivity units. HPO is an innovative process for the in situ destruction of contaminants in the entire subsurface. It operates by the injection of steam. We have demonstrated in laboratory experiments that many contaminants rapidly oxidize to harmless compounds at temperatures easily achieved by injecting steam, provided sufficient dissolved oxygen is present. One important challenge in a heterogeneous source region is getting heat, contaminants, and an oxidizing agent in the same place at the same time. We have used the NUFT computer program to simulate the cyclic injection of steam into a contaminated aquifer for design of a field demonstration. We used an 8 hour, steam/oxygen injection cycle followed by a 56 hour relaxation

  1. Accelerator Technology Program. Progress report, January-June 1980

    SciTech Connect

    Knapp, E.A.; Jameson, R.A.

    1980-03-01

    The activities of Los Alamos Scientific Laboratory's (LASL) Accelerator Technology (AT) Division during the first six months of calendar 1980 are discussed. This report is organized around major projects of the Division, reflecting a wide variety of applications and sponsors. The first section summarizes progress on the Proton Storage Ring to be located between LAMPF and the LASL Pulsed Neutron Research facility, followed by a section on the gyrocon, a new type of high-power, high-efficiency radio-frequency (rf) amplifier. The third section discusses the racetrack microtron being developed jointly by AT Division and the National Bureau of Standards; the fourth section concerns the free-electron studies. The fifth section covers the radio-frequency quadrupole linear accelerator, a new concept for the acceleration of low-velocity particles; this section is followed by a section discussing heavy ion fusion accelerator development. The next section reports activities in the Fusion Materials Irradiation Test program, a collaborative effort with the Hanford Engineering Development Laboratory. The final section deals first with development of H/sup -/ ion sources and injectors, then with accelerator instrumentation and beam dynamics.

  2. Spring operated accelerator and constant force spring mechanism therefor

    NASA Technical Reports Server (NTRS)

    Shillinger, G. L., Jr. (Inventor)

    1977-01-01

    A spring assembly consisting of an elongate piece of flat spring material formed into a spiral configuration and a free running spool in circumscribing relation to which this spring is disposed was developed. The spring has a distal end that is externally accessible so that when the distal end is drawn along a path, the spring unwinds against a restoring force present in the portion of the spring that resides in a transition region between a relatively straight condition on the path and a fully wound condition on the spool. When the distal end is released, the distal end is accelerated toward the spool by the force existing at the transition region which force is proportional to the cross-sectional area of the spring.

  3. PARTICLE ACCELERATION IN SUPERLUMINAL STRONG WAVES

    SciTech Connect

    Teraki, Yuto; Ito, Hirotaka; Nagataki, Shigehiro

    2015-06-01

    We calculate the electron acceleration in random superluminal strong waves (SLSWs) and radiation from them using numerical methods in the context of the termination shocks of pulsar wind nebulae. We pursue the orbit of electrons by solving the equation of motion in the analytically expressed electromagnetic turbulences. These consist of a primary SLS and isotropically distributed secondary electromagnetic waves. Under the dominance of the secondary waves, all electrons gain nearly equal energy. On the other hand, when the primary wave is dominant, selective acceleration occurs. The phase of the primary wave for electrons moving nearly along the wavevector changes very slowly compared with the oscillation of the wave, which is “phase-locked,” and such electrons are continuously accelerated. This acceleration by SLSWs may play a crucial role in pre-shock acceleration. In general, the radiation from the phase-locked population is different from the synchro-Compton radiation. However, when the amplitude of the secondary waves is not extremely weaker than that of the primary wave, the typical frequency can be estimated from synchro-Compton theory using the secondary waves. The primary wave does not contribute to the radiation because the SLSW accelerates electrons almost linearly. This radiation can be observed as a radio knot at the upstream of the termination shocks of the pulsar wind nebulae without counterparts in higher frequency ranges.

  4. Accelerated Molecular Dynamics Simulations of Reactive Hydrocarbon Systems

    SciTech Connect

    Stuart, Steven J.

    2014-02-25

    The research activities in this project consisted of four different sub-projects. Three different accelerated dynamics techniques (parallel replica dynamics, hyperdynamics, and temperature-accelerated dynamics) were applied to the modeling of pyrolysis of hydrocarbons. In addition, parallel replica dynamics was applied to modeling of polymerization.

  5. An inverse free electron laser accelerator experiment

    SciTech Connect

    Wernick, I.; Marshall, T.C.

    1992-12-31

    A free electron laser was configured as an autoaccelerator to test the principle of accelerating electrons by stimulated absorption of radiation ({lambda} = 1.65mm) by an electron beam (750kV) traversing an undulator. Radiation is produced in the first section of a constant period undulator (1{sub w1} = 1.43cm) and then absorbed ({approximately} 40%) in a second undulator, having a tapered period (1{sub w2} = 1.8 {minus} 2.25cm), which results in the acceleration of a subgroup ({approximately} 9%) of electrons to {approximately} 1MeV.

  6. An inverse free electron laser accelerator experiment

    SciTech Connect

    Wernick, I.; Marshall, T.C.

    1992-01-01

    A free electron laser was configured as an autoaccelerator to test the principle of accelerating electrons by stimulated absorption of radiation ([lambda] = 1.65mm) by an electron beam (750kV) traversing an undulator. Radiation is produced in the first section of a constant period undulator (1[sub w1] = 1.43cm) and then absorbed ([approximately] 40%) in a second undulator, having a tapered period (1[sub w2] = 1.8 [minus] 2.25cm), which results in the acceleration of a subgroup ([approximately] 9%) of electrons to [approximately] 1MeV.

  7. Accelerator/Experiment Operations - FY 2007

    SciTech Connect

    Brice, S.; Buchanan, N.; Coleman, R.; Convery, M.; Denisov, D.; Ginther, G.; Habig, A.; Holmes, S.; Kissel, W.; Lee, W.; Nakaya, T.; /Fermilab

    2007-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2007. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2007 Run II at the Tevatron Collider, the MiniBooNE and SciBooNE experiments running in the Booster Neutrino Beam (BNB), MINOS using the Main Injector Neutrino Beam (NuMI), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120). Each section was prepared by the relevant authors, and was somewhat edited for inclusion in this summary.

  8. Accelerator/Experiment Operations - FY 2009

    SciTech Connect

    Andrews, M.N; Appel, J.A.; Brice, S.; Casarsa, M.; Coleman, R.; Denisov, d.; Ginther, G.; Gruenendahl, S.; Holmes, S.; Kissel, W.; Lee, W.M.; /Fermilab

    2009-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2009. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2009 Run II at the Tevatron Collider, MINOS using the Main Injector Neutrino Beam (NuMI), the MiniBooNE experiment running in the Booster Neutrino Beam (BNB), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120). Each section was prepared by the relevant authors, and was somewhat edited for inclusion in this summary.

  9. Accelerator/Experiment Operations - FY 2010

    SciTech Connect

    Adamson, M.; Appel, J.A.; Casarsa, M.; Coleman, R.; Denisov, D.; Dixon, R.; Escobar, C.; Ginther, G.; Gruenendahl, S.; Harris, D.; Henderson, S.; /Fermilab

    2010-11-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2010. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2010 Run II at the Tevatron Collider, the MINOS and MINER?A experiments using the Main Injector Neutrino Beam (NuMI), the MiniBooNE experiment running in the Booster Neutrino Beam (BNB), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120). Each section was prepared by the relevant authors, and was somewhat edited for inclusion in this summary.

  10. Accelerator/Experiment Operations - FY 2014

    SciTech Connect

    Czarapata, P.; Geer, S.; Geesaman, D.; Harris, D.; Lang, K.; McFarland, K.; Moore, C. D.; Nagaitsev, S.; Plunkett, R.; Reimer, P.; Schmidt, J. J.; Soha, A. K.; Tayloe, R.; Thomas, J.; Torretta, D.; Van de Water, R.

    2014-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2014. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2014 MINOS and MINERvA experiments using the Main Injector Neutrino Beam (NuMI), the MiniBooNE experiment running in the Booster Neutrino Beam (BNB), and the SeaQuest experiment and Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120). Each section was prepared by the relevant authors, and was somewhat edited for inclusion in this summary.

  11. Ion Acceleration in Solar Flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.; Weir, Sue B.

    1996-01-01

    Solar flares are among the most energetic and interesting phenomena in the Solar system, releasing up to 1032 ergs of energy on timescales of several tens of seconds to several tens of minutes. Much of this energy is in the form of suprathermal electrons and ions, which remain trapped at the Sun and produce a wide variety of radiations, as well as escape into interplanetary space, where they can be directly observed. The radiation from trapped particles consists in general of (1) continuum emission; (2) narrow gamma-ray nuclear deexcitation lines; and (3) high-energy neutrons observed in space or by ground-based neutron monitors. The particles that escape into space consist of both electrons and ions, which often have compositions quite different than that of the ambient solar atmosphere. Flares thus present many diagnostics of the particle acceleration mechanism(s), the identification of which is the ultimate goal of flare research. Moreover, flares in fact offer the only opportunity in astrophysics to study the simultaneous energization of both electrons and ions. Hopefully, an understanding of flares with their wealth of diagnostic data will lead to a better understanding of particle acceleration at other sites in the Universe. It is now generally accepted that flares are roughly divided into two classes: impulsive and gradual. Gradual events are large, occur high in the corona, have long-duration soft and hard X-rays and gamma rays, are electron poor, are associated with Type II radio emission and coronal mass ejections (CMEs), and produce energetic ions with coronal abundance ratios. Impulsive events are more compact, occur lower in the corona, produce short-duration radiation, and exhibit dramatic abundance enhancements in the energetic ions. Their He-3/He-4 ratio is - 1, which is a huge increase over the coronal value of about 5 x 10(exp -4), and they also posses smaller but still significant enhancements of Ne, Mg, Si, and Fe relative to He-4, C, N, and O

  12. Acceleration of positrons in supernova shocks

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.

    1992-01-01

    During this project we investigated the acceleration of leptons (electrons and positrons) in collisionless shock waves. In particular, we were interested in how leptons are accelerated in the blast waves existing in the remnants of supernova explosions. Supernova remnants (SNRs) have long been considered as the most likely source of galactic cosmic rays but no definite connection between SNRs and the cosmic rays seen at earth can be made. Only by understanding lepton acceleration in shocks can the rich SNR data base be properly used to understand cosmic ray origins. Our project was directed at the neglected aspects of lepton acceleration. We showed that the efficiency of lepton acceleration depended critically on the lepton injection energy. We showed that, even when infection effects are not important, that proton and lepton distribution functions produced by shocks are quite different in the critical energy range for producing the observed synchrotron emission. We also showed that transrelativistic effects produced proton spectra that were not in agreement with standard results from radio observations, but that the lepton spectra were, in fact, consistent with observations. We performed simulations of relativistic shocks (shocks where the flow speed is a sizable fraction of the speed of light) and discovered some interesting effects. We first demonstrated the power of the Monte Carlo technique by determining the shock jump conditions in relativistic shocks. We then proceeded to determine how relativistic shocks accelerate particles. We found that nonlinear relativistic shocks treat protons and leptons even more differently than nonrelativistic shocks. The transrelativistic effects on the shock structure from the heavy ion component reduces the lepton acceleration to a tiny fraction of the ion acceleration. This effect is dramatic even if high energy leptons (many times thermal energy) are injected, and was totally unexpected. Our results have important

  13. Laser Ion Acceleration Control

    NASA Astrophysics Data System (ADS)

    Kawata, Shigeo; Nagashima, T.; Izumiyama, T.; Sato, D.; Takano, M.; Barada, D.; Ma, Y. Y.; Gu, Y. J.; Kong, Q.; Wang, P. X.; Wang, W. M.

    2013-10-01

    An intense femtosecond pulsed laser is employed to accelerate ions. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching, the ion particle energy control, etc. In the study particle computer simulations were performed to solve the issues, and each component was designed to control the ion beam quality. When an intense laser illuminates a target, electrons in the target are accelerated and leave from the target; temporarily a strong electric field is formed between the high-energy electrons and the target ions, and the target ions are accelerated. The energy efficiency from the laser to ions was improved by using a solid target with a fine sub-wavelength structure or by a near critical density gas plasma. The ion beam collimation was realized by holes behind the solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching were successfully realized by a multi-stage laser-target interaction. The present study proposed a novel concept for a future compact laser ion accelerator, based on each component study required to control the ion beam quality and parameters. Partly supported by JSPS, MEXT, CORE, Japan/US Cooperation program, ASHULA and ILE/Osaka University.

  14. Electrostatic Plasma Accelerator (EPA)

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1989-01-01

    The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass. The goal of the present program is to demonstrate feasibility of the EPA thruster concept through experimental and theoretical investigations of the EPA acceleration mechanism and discharge chamber performance. Experimental investigations will include operating the test bed ion (TBI) engine as an EPA thruster and parametrically varying the thruster geometry and operating conditions to quantify the electrostatic plasma acceleration effect. The theoretical investigations will include the development of a discharge chamber model which describes the relationships between the engine size, plasma properties, and overall performance. For the EPA thruster to be a viable propulsion concept, overall thruster efficiencies approaching 30% with specific impulses approaching 1000 s must be achieved.

  15. Advanced accelerator theory development

    SciTech Connect

    Sampayan, S.E.; Houck, T.L.; Poole, B.; Tishchenko, N.; Vitello, P.A.; Wang, I.

    1998-02-09

    A new accelerator technology, the dielectric wall accelerator (DWA), is potentially an ultra compact accelerator/pulsed power driver. This new accelerator relies on three new components: the ultra-high gradient insulator, the asymmetric Blumlein and low jitter switches. In this report, we focused our attention on the first two components of the DWA system the insulators and the asymmetric Blumlein. First, we sought to develop the necessary design tools to model and scale the behavior of the high gradient insulator. To perform this task we concentrated on modeling the discharge processes (i.e., initiation and creation of the surface discharge). In addition, because these high gradient structures exhibit favorable microwave properties in certain accelerator configurations, we performed experiments and calculations to determine the relevant electromagnetic properties. Second, we performed circuit modeling to understand energy coupling to dynamic loads by the asymmetric Blumlein. Further, we have experimentally observed a non-linear coupling effect in certain asymmetric Blumlein configurations. That is, as these structures are stacked into a complete module, the output voltage does not sum linearly and a lower than expected output voltage results. Although we solved this effect experimentally, we performed calculations to understand this effect more fully to allow better optimization of this DWA pulse-forming line system.

  16. Centrifuge Study of Pilot Tolerance to Acceleration and the Effects of Acceleration on Pilot Performance

    NASA Technical Reports Server (NTRS)

    Creer, Brent Y.; Smedal, Harald A.; Wingrove, Rodney C.

    1960-01-01

    A research program the general objective of which was to measure the effects of various sustained accelerations on the control performance of pilots, was carried out on the Aviation Medical Acceleration Laboratory centrifuge, U.S. Naval Air Development Center, Johnsville, PA. The experimental setup consisted of a flight simulator with the centrifuge in the control loop. The pilot performed his control tasks while being subjected to acceleration fields such as might be encountered by a forward-facing pilot flying an atmosphere entry vehicle. The study was divided into three phases. In one phase of the program, the pilots were subjected to a variety of sustained linear acceleration forces while controlling vehicles with several different sets of longitudinal dynamics. Here, a randomly moving target was displayed to the pilot on a cathode-ray tube. For each combination of acceleration field and vehicle dynamics, pilot tracking accuracy was measured and pilot opinion of the stability and control characteristics was recorded. Thus, information was obtained on the combined effects of complexity of control task and magnitude and direction of acceleration forces on pilot performance. These tests showed that the pilot's tracking performance deteriorated markedly at accelerations greater than about 4g when controlling a lightly damped vehicle. The tentative conclusion was also reached that regardless of the airframe dynamics involved, the pilot feels that in order to have the same level of control over the vehicle, an increase in the vehicle dynamic stability was required with increases in the magnitudes of the acceleration impressed upon the pilot. In another phase, boundaries of human tolerance of acceleration were established for acceleration fields such as might be encountered by a pilot flying an orbital vehicle. A special pilot restraint system was developed to increase human tolerance to longitudinal decelerations. The results of the tests showed that human tolerance

  17. Arc-driven rail accelerator research

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1987-01-01

    Arc-driven rail accelerator research is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time and rate of ablation. Locations of two simultaneously accelerating arcs were determined by optical and magnetic probes and fron streak camera photographs. All three measurements provide consistent results.

  18. Plasma-based accelerator structures

    SciTech Connect

    Schroeder, Carl B.

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  19. Perturbations for transient acceleration

    SciTech Connect

    Vargas, Cristofher Zuñiga; Zimdahl, Winfried; Hipólito-Ricaldi, Wiliam S. E-mail: hipolito@ceunes.ufes.br

    2012-04-01

    According to the standard ΛCDM model, the accelerated expansion of the Universe will go on forever. Motivated by recent observational results, we explore the possibility of a finite phase of acceleration which asymptotically approaches another period of decelerated expansion. Extending an earlier study on a corresponding homogeneous and isotropic dynamics, in which interactions between dark matter and dark energy are crucial, the present paper also investigates the dynamics of the matter perturbations both on the Newtonian and General Relativistic (GR) levels and quantifies the potential relevance of perturbations of the dark-energy component. In the background, the model is tested against the Supernova type Ia (SNIa) data of the Constitution set and on the perturbative level against growth rate data, among them those of the WiggleZ survey, and the data of the 2dFGRS project. Our results indicate that a transient phase of accelerated expansion is not excluded by current observations.

  20. Uniform acceleration in general relativity

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov; Scarr, Tzvi

    2015-10-01

    We extend de la Fuente and Romero's (Gen Relativ Gravit 47:33, 2015) defining equation for uniform acceleration in a general curved spacetime from linear acceleration to the full Lorentz covariant uniform acceleration. In a flat spacetime background, we have explicit solutions. We use generalized Fermi-Walker transport to parallel transport the Frenet basis along the trajectory. In flat spacetime, we obtain velocity and acceleration transformations from a uniformly accelerated system to an inertial system. We obtain the time dilation between accelerated clocks. We apply our acceleration transformations to the motion of a charged particle in a constant electromagnetic field and recover the Lorentz-Abraham-Dirac equation.

  1. Measurement of Electron Clouds in Large Accelerators by Microwave Dispersion

    SciTech Connect

    De Santis, S.; Byrd, J.M.; Caspers, F.; Krasnykh, A.; Kroyer, T.; Pivi, M.T.F.; Sonnad, K.G.; /LBL, Berkeley

    2008-03-19

    Clouds of low energy electrons in the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation at high currents. Furthermore, it is difficult to probe their density over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave transmitted over a section of the accelerator and used it to measure the average electron cloud density over a 50 m section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center.

  2. Measurement of electron clouds in large accelerators by microwave dispersion.

    PubMed

    De Santis, S; Byrd, J M; Caspers, F; Krasnykh, A; Kroyer, T; Pivi, M T F; Sonnad, K G

    2008-03-07

    Clouds of low energy electrons in the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation at high currents. Furthermore, it is difficult to probe their density over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave transmitted over a section of the accelerator and used it to measure the average electron cloud density over a 50 m section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center.

  3. Pulsed electron accelerator for radiation technologies in the enviromental applications

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  4. Microelectromechanical acceleration-sensing apparatus

    DOEpatents

    Lee, Robb M.; Shul, Randy J.; Polosky, Marc A.; Hoke, Darren A.; Vernon, George E.

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  5. Stochastic Particle Acceleration in Impulsive Solar Flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    2001-01-01

    The acceleration of a huge number of electrons and ions to relativistic energies over timescales ranging from several seconds to several tens of seconds is the fundamental problem in high-energy solar physics. The cascading turbulence model we have developed has been shown previously (e.g., Miller 2000; Miller & Roberts 1995; Miner, LaRosa, & Moore 1996) to account for all the bulk features (such as acceleration timescales, fluxes, total number of energetic particles, and maximum energies) of electron and proton acceleration in impulsive solar flares. While the simulation of this acceleration process is involved, the essential idea of the model is quite simple, and consists of just a few parts: 1. During the primary flare energy release phase, we assume that low-amplitude MHD Alfven and fast mode waves are excited at long wavelengths, say comparable to the size of the event (although the results are actually insensitive to this initial wavelength). While an assumption, this appears reasonable in light of the likely highly turbulent nature of the flare. 2. These waves then cascade in a Kolmogorov-like fashion to smaller wavelengths (e.g., Verma et al. 1996), forming a power-law spectral density in wavenumber space through the inertial range. 3. When the mean wavenumber of the fast mode waves has increased sufficiently, the transit-time acceleration rate (Miller 1997) for superAlfvenic electrons can overcome Coulomb energy losses, and these electrons are accelerated out of the thermal distribution and to relativistic energies (Miller et al. 1996). As the Alfven waves cascade to higher wavenumbers, they can cyclotron resonate with progressively lower energy protons. Eventually, they will resonate with protons in the tail of the thermal distribution, which will then be accelerated to relativistic energies as well (Miller & Roberts 1995). Hence, both ions and electrons are stochastically accelerated, albeit by different mechanisms and different waves. 4. When the

  6. Diffusive Shock Acceleration

    NASA Astrophysics Data System (ADS)

    Baring, Matthew

    2003-04-01

    The process of diffusive acceleration of charged particles in shocked plasmas is widely invoked in astrophysics to account for the ubiquitous presence of signatures of non-thermal relativistic electrons and ions in the universe. This statistical energization mechanism, manifested in turbulent media, was first posited by Enrico Fermi in 1949 to explain the observed cosmic ray population, which exhibits an almost power-law distribution in rigidity. The absence of a momentum scale is a key characteristic of diffusive shock acceleration, and astrophysical systems generally only impose scales at the injection (low energy) and loss (high energy) ends of the particle spectrum. The existence of structure in the cosmic ray spectrum (the "knee") at around 3000 TeV has promoted contentions that there are at least two origins for cosmic rays, a galactic one supplying those up to the knee, and perhaps an extragalactic one that can explain even the ultra-high energy cosmic rays (UHECRs) seen at 1-300 EeV. Accounting for the UHECRs with familiar astrophysical sites of acceleration has historically proven difficult due to the need to assume high magnetic fields in order to reduce the shortest diffusive acceleration timescale, the ion gyroperiod, to meaningful values. Yet active galaxies and gamma-ray bursts remain strong and interesting candidate sources for UHECRs, turning the theoretical focus to relativistic shocks. This review summarizes properties of diffusive shock acceleration that are salient to the issue of UHECR generation. These include spectral indices, anisotropies, acceleration efficencies and timescales, as functions of the shock speed and mean field orientation, and also the degree of field turbulence. Astrophysical sites for UHECR production are also critiqued.

  7. Floor Plans: Section "AA", Section "BB"; Floor Framing Plans: Section ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Floor Plans: Section "A-A", Section "B-B"; Floor Framing Plans: Section "A-A", Section "B-B" - Fort Washington, Fort Washington Light, Northeast side of Potomac River at Fort Washington Park, Fort Washington, Prince George's County, MD

  8. 'Light Sail' Acceleration Reexamined

    SciTech Connect

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for 'optimal' values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple 'light sail' model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  9. HIGH GRADIENT INDUCTION ACCELERATOR

    SciTech Connect

    Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2007-06-21

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.

  10. "Light sail" acceleration reexamined.

    PubMed

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for "optimal" values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple "light sail" model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  11. Relativistic klystrons for high-gradient accelerators

    SciTech Connect

    Westenskow, G.A.; Aalberts, D.P.; Boyd, J.K.; Deis, G.A.; Houck, T.L.; Orzechowski, T.J.; Ryne, R.D.; Yu, S.S. ); Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Miller, R.H.; Ruth, R.D.; Vlieks, A.E.; Wang, J.W. ); Haimson, J.; Mecklen

    1990-09-05

    Experimental work is being performed by collaborators at LLNL, SLAC, and LBL to investigate relativistic klystrons as a possible rf power source for future high-gradient accelerators. We have learned how to overcome or previously reported problem of high power rf pulse shortening and have achieved peak rf power levels of 330 MW using an 11.4-GHz high-gain tube with multiple output structures. In these experiments the rf pulse is of the same duration as the beam current pulse. In addition, experiments have been performed on two short sections of a high-gradient accelerator using the rf power from a relativistic klystron. An average accelerating gradient of 84 MV/m has been achieved with 80-MW of rf power.

  12. The EMMA Accelerator, a Diagnostic Systems Overview

    SciTech Connect

    Kalinin, A.; Berg, J.; Bliss, N. Cox, G.; Dufau, M.; Gallagher, A.; Hill, C.; Jones, J.; Ma, L.; McIntosh, P.; Muratori, B.; Oates, A.; Shepherd B.; Smith, R.; Hock, K.; Holder, D.; Ibison, M., Kirkman I.; Borrell, R.; Crisp, J.; Fellenz, B.; Wendt, M.

    2011-09-04

    The 'EMMA' Non-Scaling Fixed Field Alternating Gradient (ns-FFAG) international project is currently being commissioned at Daresbury Laboratory, UK. This accelerator has been equipped with a number of diagnostic systems to facilitate this. These systems include a novel time-domain-multiplexing BPM system, moveable screen systems, a time-of-flight instrument, Faraday cups, and injection/extraction tomography sections to analyze the single bunch beams. An upgrade still to implement includes the installation of wall current monitors. This paper gives an overview of these systems and shows some data and results from the diagnostics that have contributed to the successful demonstration of a serpentine acceleration by this novel accelerator.

  13. Consistently Showing Your Best Side? Intra-individual Consistency in #Selfie Pose Orientation

    PubMed Central

    Lindell, Annukka K.

    2017-01-01

    Painted and photographic portraits of others show an asymmetric bias: people favor their left cheek. Both experimental and database studies confirm that the left cheek bias extends to selfies. To date all such selfie studies have been cross-sectional; whether individual selfie-takers tend to consistently favor the same pose orientation, or switch between multiple poses, remains to be determined. The present study thus examined intra-individual consistency in selfie pose orientations. Two hundred selfie-taking participants (100 male and 100 female) were identified by searching #selfie on Instagram. The most recent 10 single-subject selfies for the each of the participants were selected and coded for type of selfie (normal; mirror) and pose orientation (left, midline, right), resulting in a sample of 2000 selfies. Results indicated that selfie-takers do tend to consistently adopt a preferred pose orientation (α = 0.72), with more participants showing an overall left cheek bias (41%) than would be expected by chance (overall right cheek bias = 31.5%; overall midline bias = 19.5%; no overall bias = 8%). Logistic regression modellng, controlling for the repeated measure of participant identity, indicated that sex did not affect pose orientation. However, selfie type proved a significant predictor when comparing left and right cheek poses, with a stronger left cheek bias for mirror than normal selfies. Overall, these novel findings indicate that selfie-takers show intra-individual consistency in pose orientation, and in addition, replicate the previously reported left cheek bias for selfies and other types of portrait, confirming that the left cheek bias also presents within individuals’ selfie corpora. PMID:28270790

  14. Association of acceleration with spatiotemporal variables in maximal sprinting.

    PubMed

    Nagahara, R; Naito, H; Morin, J-B; Zushi, K

    2014-08-01

    This study clarified the association between acceleration and the rates of changes in spatiotemporal variables on a step-to-step basis during the entire acceleration phase of maximal sprinting. 21 male sprinters performed a 60-m sprint, during which step-to-step acceleration and rates of changes in step length (RSL) and step frequency (RSF) were calculated. The coefficients of correlation between acceleration and other variables were tested at each step. There were positive correlations between acceleration and the RSF up to the second step. Acceleration was positively correlated with the RSL from the 5(th) to the 19(th) step. At the third and from the 16(th) to the 22(nd) step and from the 20(th) to the 21(st) step, there was no significant correlation, but weak relationships were found between acceleration and the RSF and RSL. The results suggest that the acceleration phase can be divided into 3 sections, and for sprinting to be effective, it is important to accelerate by increasing the step frequency to the third step, increasing the step length from the 5(th) to the 15(th) step, and increasing the step length or frequency (no systematic relative importance of step length or frequency) from the 16(th) step in the entire acceleration phase.

  15. [Consistent presentation of medical images based on CPI integration profile].

    PubMed

    Jiang, Tao; An, Ji-ye; Chen, Zhong-yong; Lu, Xu-dong; Duan, Hui-long

    2007-11-01

    Because of different display parameters and other factors, digital medical images present different display states in different section offices of a hospital. Based on CPI integration profile of IHE, this paper implements the consistent presentation of medical images, and it is helpful for doctors to carry out medical treatments of teamwork.

  16. 50 CFR 38.8 - Consistency with Federal law.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Consistency with Federal law. 38.8 Section 38.8 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM MIDWAY ATOLL NATIONAL WILDLIFE REFUGE Prohibitions §...

  17. 50 CFR 38.8 - Consistency with Federal law.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Consistency with Federal law. 38.8 Section 38.8 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM MIDWAY ATOLL NATIONAL WILDLIFE REFUGE Prohibitions §...

  18. 50 CFR 38.8 - Consistency with Federal law.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Consistency with Federal law. 38.8 Section 38.8 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM MIDWAY ATOLL NATIONAL WILDLIFE REFUGE Prohibitions §...

  19. 50 CFR 38.8 - Consistency with Federal law.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Consistency with Federal law. 38.8 Section 38.8 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM MIDWAY ATOLL NATIONAL WILDLIFE REFUGE Prohibitions §...

  20. 50 CFR 38.8 - Consistency with Federal law.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Consistency with Federal law. 38.8 Section 38.8 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM MIDWAY ATOLL NATIONAL WILDLIFE REFUGE Prohibitions §...

  1. 43 CFR 1610.3-2 - Consistency requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Consistency requirements. 1610.3-2 Section 1610.3-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR GENERAL MANAGEMENT (1000) PLANNING, PROGRAMMING, BUDGETING...

  2. Bulk Acceleration of Electrons in Solar Flares?

    NASA Astrophysics Data System (ADS)

    Holman, Gordon D.

    2014-06-01

    In two recent papers it has been argued that RHESSI observations of two coronal “above-the-loop-top” hard X-ray sources, together with EUV observations, show that ALL the electrons in the source volumes must have been accelerated. I will briefly review these papers and show that the interpretation most consistent with the combined flare observations is multi-thermal, with hot, thermal plasma in the “above-the-loop-top” sources and only a fraction, albeit a substantial fraction, of the electrons accelerated. Thus, there is no credible scientific evidence for bulk acceleration of electrons in flares. Differential emission measure (DEM) models deduced from SDO/AIA and RHESSI data, including the inversion of the AIA data to determine DEM, will be discussed as part of this analysis.

  3. Probing gravitation, dark energy, and acceleration

    SciTech Connect

    Linder, Eric V.

    2004-02-20

    The acceleration of the expansion of the universe arises from unknown physical processes involving either new fields in high energy physics or modifications of gravitation theory. It is crucial for our understanding to characterize the properties of the dark energy or gravity through cosmological observations and compare and distinguish between them. In fact, close consistencies exist between a dark energy equation of state function w(z) and changes to the framework of the Friedmann cosmological equations as well as direct spacetime geometry quantities involving the acceleration, such as ''geometric dark energy'' from the Ricci scalar. We investigate these interrelationships, including for the case of super acceleration or phantom energy where the fate of the universe may be more gentle than the Big Rip.

  4. Enhancing proton acceleration by using composite targets

    SciTech Connect

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-07-10

    Efficient laser ion acceleration requires high laser intensities, which can only be obtained by tightly focusing laser radiation. In the radiation pressure acceleration regime, where the tightly focused laser driver leads to the appearance of the fundamental limit for the maximum attainable ion energy, this limit corresponds to the laser pulse group velocity as well as to another limit connected with the transverse expansion of the accelerated foil and consequent onset of the foil transparency. These limits can be relaxed by using composite targets, consisting of a thin foil followed by a near critical density slab. Such targets provide guiding of a laser pulse inside a self-generated channel and background electrons, being snowplowed by the pulse, compensate for the transverse expansion. The use of composite targets results in a significant increase in maximum ion energy, compared to a single foil target case.

  5. Early life stress accelerates behavioral and neural maturation of the hippocampus in male mice

    PubMed Central

    Bath, K.G.; Manzano-Nieves, G.; Goodwill, H.

    2017-01-01

    Early life stress (ELS) increases the risk for later cognitive and emotional dysfunction. ELS is known to truncate neural development through effects on suppressing cell birth, increasing cell death, and altering neuronal morphology, effects that have been associated with behavioral profiles indicative of precocious maturation. However, how earlier silencing of growth drives accelerated behavioral maturation has remained puzzling. Here, we test the novel hypothesis that, ELS drives a switch from growth to maturation to accelerate neural and behavioral development. To test this, we used a mouse model of ELS, fragmented maternal care, and a cross-sectional dense sampling approach focusing on hippocampus and measured effects of ELS on the ontogeny of behavioral development and biomarkers of neural maturation. Consistent with previous work, ELS was associated with an earlier developmental decline in expression of markers of cell proliferation (Ki-67) and differentiation (doublecortin). However, ELS also led to a precocious arrival of Parvalbumin-positive cells, led to an earlier switch in NMDA receptor subunit expression (marker of synaptic maturity), and was associated with an earlier rise in myelin basic protein expression (key component of the myelin sheath). In addition, in a contextual fear-conditioning task, ELS accelerated the timed developmental suppression of contextual fear. Together, these data provide support for the hypothesis that ELS serves to switch neurodevelopment from processes of growth to maturation and promotes accelerated development of some forms of emotional learning. PMID:27155103

  6. Early life stress accelerates behavioral and neural maturation of the hippocampus in male mice.

    PubMed

    Bath, K; Manzano-Nieves, G; Goodwill, H

    2016-06-01

    Early life stress (ELS) increases the risk for later cognitive and emotional dysfunction. ELS is known to truncate neural development through effects on suppressing cell birth, increasing cell death, and altering neuronal morphology, effects that have been associated with behavioral profiles indicative of precocious maturation. However, how earlier silencing of growth drives accelerated behavioral maturation has remained puzzling. Here, we test the novel hypothesis that, ELS drives a switch from growth to maturation to accelerate neural and behavioral development. To test this, we used a mouse model of ELS, fragmented maternal care, and a cross-sectional dense sampling approach focusing on hippocampus and measured effects of ELS on the ontogeny of behavioral development and biomarkers of neural maturation. Consistent with previous work, ELS was associated with an earlier developmental decline in expression of markers of cell proliferation (Ki-67) and differentiation (doublecortin). However, ELS also led to a precocious arrival of Parvalbumin-positive cells, led to an earlier switch in NMDA receptor subunit expression (marker of synaptic maturity), and was associated with an earlier rise in myelin basic protein expression (key component of the myelin sheath). In addition, in a contextual fear-conditioning task, ELS accelerated the timed developmental suppression of contextual fear. Together, these data provide support for the hypothesis that ELS serves to switch neurodevelopment from processes of growth to maturation and promotes accelerated development of some forms of emotional learning.

  7. Radioisotope Dating with Accelerators.

    ERIC Educational Resources Information Center

    Muller, Richard A.

    1979-01-01

    Explains a new method of detecting radioactive isotopes by counting their accelerated ions rather than the atoms that decay during the counting period. This method increases the sensitivity by several orders of magnitude, and allows one to find the ages of much older and smaller samples. (GA)

  8. FPGA Verification Accelerator (FVAX)

    NASA Technical Reports Server (NTRS)

    Oh, Jane; Burke, Gary

    2008-01-01

    Is Verification Acceleration Possible? - Increasing the visibility of the internal nodes of the FPGA results in much faster debug time - Forcing internal signals directly allows a problem condition to be setup very quickly center dot Is this all? - No, this is part of a comprehensive effort to improve the JPL FPGA design and V&V process.

  9. Is cosmic acceleration slowing down?

    SciTech Connect

    Shafieloo, Arman; Sahni, Varun; Starobinsky, Alexei A.

    2009-11-15

    We investigate the course of cosmic expansion in its recent past using the Constitution SN Ia sample, along with baryon acoustic oscillations (BAO) and cosmic microwave background (CMB) data. Allowing the equation of state of dark energy (DE) to vary, we find that a coasting model of the universe (q{sub 0}=0) fits the data about as well as Lambda cold dark matter. This effect, which is most clearly seen using the recently introduced Om diagnostic, corresponds to an increase of Om and q at redshifts z < or approx. 0.3. This suggests that cosmic acceleration may have already peaked and that we are currently witnessing its slowing down. The case for evolving DE strengthens if a subsample of the Constitution set consisting of SNLS+ESSENCE+CfA SN Ia data is analyzed in combination with BAO+CMB data. The effect we observe could correspond to DE decaying into dark matter (or something else)

  10. Neurodegeneration in accelerated aging.

    PubMed

    Scheibye-Knudsen, Moren

    2016-11-01

    The growing proportion of elderly people represents an increasing economic burden, not least because of age-associated diseases that pose a significant cost to the health service. Finding possible interventions to age-associated disorders therefore have wide ranging implications. A number of genetically defined accelerated aging diseases have been characterized that can aid in our understanding of aging. Interestingly, all these diseases are associated with defects in the maintenance of our genome. A subset of these disorders, Cockayne syndrome, Xeroderma pigmentosum group A and ataxia-telangiectasia, show neurological involvement reminiscent of what is seen in primary human mitochondrial diseases. Mitochondria are the power plants of the cells converting energy stored in oxygen, sugar, fat, and protein into ATP, the energetic currency of our body. Emerging evidence has linked this organelle to aging and finding mitochondrial dysfunction in accelerated aging disorders thereby strengthens the mitochondrial theory of aging. This theory states that an accumulation of damage to the mitochondria may underlie the process of aging. Indeed, it appears that some accelerated aging disorders that show neurodegeneration also have mitochondrial dysfunction. The mitochondrial alterations may be secondary to defects in nuclear DNA repair. Indeed, nuclear DNA damage may lead to increased energy consumption, alterations in mitochondrial ATP production and defects in mitochondrial recycling, a term called mitophagy. These changes may be caused by activation of poly-ADP-ribose-polymerase 1 (PARP1), an enzyme that responds to DNA damage. Upon activation PARP1 utilizes key metabolites that attenuate pathways that are normally protective for the cell. Notably, pharmacological inhibition of PARP1 or reconstitution of the metabolites rescues the changes caused by PARP1 hyperactivation and in many cases reverse the phenotypes associated with accelerated aging. This implies that modulation

  11. Menopause accelerates biological aging

    PubMed Central

    Levine, Morgan E.; Lu, Ake T.; Chen, Brian H.; Hernandez, Dena G.; Singleton, Andrew B.; Ferrucci, Luigi; Bandinelli, Stefania; Salfati, Elias; Manson, JoAnn E.; Quach, Austin; Kusters, Cynthia D. J.; Kuh, Diana; Wong, Andrew; Teschendorff, Andrew E.; Widschwendter, Martin; Ritz, Beate R.; Absher, Devin; Assimes, Themistocles L.; Horvath, Steve

    2016-01-01

    Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the “epigenetic clock”), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Women's Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinson's disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further. PMID:27457926

  12. The Adaptive Basis of Psychosocial Acceleration: Comment on beyond Mental Health, Life History Strategies Articles

    ERIC Educational Resources Information Center

    Nettle, Daniel; Frankenhuis, Willem E.; Rickard, Ian J.

    2012-01-01

    Four of the articles published in this special section of "Developmental Psychology" build on and refine psychosocial acceleration theory. In this short commentary, we discuss some of the adaptive assumptions of psychosocial acceleration theory that have not received much attention. Psychosocial acceleration theory relies on the behavior of…

  13. The FRC Acceleration Space Thruster (FAST) Experiment

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, Richard; Houts, Mike; Slough, John; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The objective of the FRC (Field Reversed Configuration) Acceleration Space Thruster (FAST) Experiment is to investigate the use of a repetitive FRC source as a thruster, specifically for an NEP (nuclear electric propulsion) system. The Field Reversed Configuration is a plasmoid with a closed poloidal field line structure, and has been extensively studied as a fusion reactor core. An FRC thruster works by repetitively producing FRCs and accelerating them to high velocity. An FRC thruster should be capable of I(sub sp)'s in the range of 5,000 - 25,000 seconds and efficiencies in the range of 60 - 80 %. In addition, they can have thrust densities as high as 10(exp 6) N/m2, and as they are inductively formed, they do not suffer from electrode erosion. The jet-power should be scalable from the low to the high power regime. The FAST experiment consists of a theta-pinch formation chamber, followed by an acceleration stage. Initially, we will produce and accelerate single FRCs. The initial focus of the experiment will be on the ionization, formation and acceleration of a single plasmoid, so as to determine the likely efficiency and I(sub sp). Subsequently, we will modify the device for repetitive burst-mode operation (5-10 shots). A variety of diagnostics are or will be available for this work, including a HeNe interferometer, high-speed cameras, and a Thomson-scattering system. The status of the experiment will be described.

  14. 75 FR 80492 - Petition for Rulemaking To Establish Procedures Consistent With Section 1010 of the 1988...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... rulemaking, clear and equitable procedures for notice and comment on the Agency's pesticide effects...-line instructions for submitting comments. Mail: Office of Pesticide Programs (OPP) Regulatory Public... telephone number is (703) 305-5805. FOR FURTHER INFORMATION CONTACT: Catherine Eiden, Pesticide...

  15. Newton's Laws: A Very Persistent Consistency

    ERIC Educational Resources Information Center

    Viennot, Laurence

    2012-01-01

    This note is a response to a recent paper by McClelland (2011 "Phys. Educ." 46 469-471). The situation of a person who is walking horizontally along the ground is examined, and the statement "The person is accelerated by a net force from the Earth" is considered invalid. A key point in McClelland's analysis is his claim that: "The force…

  16. Stacked insulator induction accelerator gaps

    SciTech Connect

    Houck, T.I.; Westenskow, G.A.; Kim, J.S.; Eylon, S.; Henestroza, E.; Yu, S.S.; Vanecek, D.

    1997-05-01

    Stacked insulators, with alternating layers of insulating material and conducting film, have been shown to support high surface electrical field stresses. We have investigated the application of the stacked insulator technology to the design of induction accelerator modules for the Relativistic-Klystron Two-Beam Accelerator program. The rf properties of the accelerating gaps using stacked insulators, particularly the impedance at frequencies above the beam pipe cutoff frequency, are investigated. Low impedance is critical for Relativistic-Klystron Two-Beam Accelerator applications where a high current, bunched beam is trsnsported through many accelerating gaps. An induction accelerator module designs using a stacked insulator is presented.

  17. Transversely accelerated ions in the topside ionosphere

    NASA Technical Reports Server (NTRS)

    Retterer, John M.; Chang, Tom; Jasperse, J. R.

    1994-01-01

    Data from the rocket campaigns Mechanism in the Auroral Region for Ion Energization (MARIE) and TOpside Probe of the Auroral Zone (TOPAZ) III, within regions of low-altitude transversely accelerated ions, are interpreted to explain the acceleration of the ions. Using the Monte Carlo kinetic technique to evaluate the ion heating produced by the simultaneously observed lower hybrid waves, we find that their observed electric field amplitudes are sufficient to explain the observed ion energies in the MARIE event. Much of the uncertainty in evaluating the efficiency of a plasma wave induced particle heating process which is dependent on a velocity resonance comes from the lack of information on the phase velocities of the waves. In the case of the MARIE observations, our modeling efforts show that features in the ion velocity distribution are consistent with the wave phase velocities inferred from interferometer measurements of wavelengths. The lower hybrid waves with which low-altitude transversely accelerated ions are associated are frequently observed to be concentrated in small-scale wave packets called 'spikelets'. We demonstrate through the scaling of the size of these wave packets that they are consistent with the theory of lower hybrid collapse. Using the Monte Carlo technique, we find that if the lower hybrid field energy is concentrated in these wave packets, it is still adequate to accelerate the ionospheric ions to the observed energies.

  18. Mass spectrometry with accelerators.

    PubMed

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  19. Accelerator-based neutrino oscillation experiments

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2007-12-01

    Neutrino oscillations were first discovered by experiments looking at neutrinos coming from extra-terrestrial sources, namely the sun and the atmosphere, but we will be depending on earth-based sources to take many of the next steps in this field. This article describes what has been learned so far from accelerator-based neutrino oscillation experiments, and then describe very generally what the next accelerator-based steps are. In section 2 the article discusses how one uses an accelerator to make a neutrino beam, in particular, one made from decays in flight of charged pions. There are several different neutrino detection methods currently in use, or under development. In section 3 these are presented, with a description of the general concept, an example of such a detector, and then a brief discussion of the outstanding issues associated with this detection technique. Finally, section 4 describes how the measurements of oscillation probabilities are made. This includes a description of the near detector technique and how it can be used to make the most precise measurements of neutrino oscillations.

  20. Double layers acting as particles accelerators

    SciTech Connect

    Sanduloviciu, M.; Lozneanu, E.

    1995-12-31

    It is shown that self-consistent stable and unstable double layers generated in plasma after a self-organisation process are able to accelerate charged particles. The implication of cosmic double layers (Dls) in the acceleration of electrical charged particles long been advocated by Alfven and his Stockholm school is today disputed by argument that static electric fields associated with Dls are conservative and consequently the line integral of the electric field outside the DL balances the line integral inside it. Related with this dispute we will evidence some, so far not considered, facts which are in our opinion arguments that aurora Dls are able to energize particles. For justifying this assertion we start from recent experimental results concerning the phenomenology of self-consistent Dls whose generation involve beside ionisations the neutrals excitations which are at tile origin of the light phenomena as those observed in auroras.

  1. Review of ion accelerators

    SciTech Connect

    Alonso, J.

    1990-06-01

    The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here.

  2. Commissioning the GTA accelerator

    SciTech Connect

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P. Stevens, R.R. Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V.; Connolly, R.; Weiss, R.; Saadatmand, K.

    1992-09-01

    The Ground Test Accelerator (GTA) is supported by the Strategic Defense command as part of their Neutral Particle Beam (NPB) program. Neutral particles have the advantage that in space they are unaffected by the earth`s magnetic field and travel in straight lines unless they enter the earth`s atmosphere and become charged by stripping. Heavy particles are difficult to stop and can probe the interior of space vehicles; hence, NPB can function as a discriminator between warheads and decoys. We are using GTA to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H{sup -} beam and then neutralizing it. Our immediate goal is to produce a 24-MeV, 50mA device with a 2% duty factor.

  3. Commissioning the GTA accelerator

    SciTech Connect

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P. Stevens, R.R. Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V. ); Connolly, R.; Weiss, R. (Gr

    1992-01-01

    The Ground Test Accelerator (GTA) is supported by the Strategic Defense command as part of their Neutral Particle Beam (NPB) program. Neutral particles have the advantage that in space they are unaffected by the earth's magnetic field and travel in straight lines unless they enter the earth's atmosphere and become charged by stripping. Heavy particles are difficult to stop and can probe the interior of space vehicles; hence, NPB can function as a discriminator between warheads and decoys. We are using GTA to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H{sup -} beam and then neutralizing it. Our immediate goal is to produce a 24-MeV, 50mA device with a 2% duty factor.

  4. Auroral ion acceleration

    NASA Astrophysics Data System (ADS)

    Shalimov, S. L.

    From the altitude of 500 km to 15 R sub E everywhere conic like distributions of H+, O+, He+ ions are moving upwards from the ionosphere along the geomagnetic field lines in the auroral zone. The distributed ions suggest the existence of ion transverse acceleration mechanisms (ITAM) acting below the observation point. The more plausible mechanisms are connected with the resonance of the type wave particle between ions and the observed EIC and LH waves and are also due to the existence of the local transverse electric fields in the ionoshere and the magnetosphere. The known ion transverse acceleration mechanisms were complemented by new results. The conical distributions of ionospheric ions at different altitudes in the auroral zone are pointed out.

  5. Review of accelerator instrumentation

    SciTech Connect

    Pellegrin, J.L.

    1980-05-01

    Some of the problems associated with the monitoring of accelerator beams, particularly storage rings' beams, are reviewed along with their most common solutions. The various electrode structures used for the measurement of beam current, beam position, and the detection of the bunches' transverse oscillations, yield pulses with sub-nanosecond widths. The electronics for the processing of these short pulses involves wide band techniques and circuits usually not readily available from industry or the integrated circuit market: passive or active, successive integrations, linear gating, sample-and-hold circuits with nanosecond acquisition time, etc. This report also presents the work performed recently for monitoring the ultrashort beams of colliding linear accelerators or single-pass colliders. To minimize the beam emittance, the beam position must be measured with a high resolution, and digitized on a pulse-to-pulse basis. Experimental results obtained with the Stanford two-mile Linac single bunches are included.

  6. Hardware Accelerated Simulated Radiography

    SciTech Connect

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-04-12

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists.

  7. Adaptive control for accelerators

    DOEpatents

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  8. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1971-01-01

    Experimental data were combined with one-dimensional conservation relations to yield information on the energy deposition ratio in a parallel-plate accelerator, where the downstream flow was confined to a constant area channel. Approximately 70% of the total input power was detected in the exhaust flow, of which only about 20% appeared as directed kinetic energy, thus implying that a downstream expansion to convert chamber enthalpy into kinetic energy must be an important aspect of conventional high power MPD arcs. Spectroscopic experiments on a quasi-steady MPD argon accelerator verified the presence of A(III) and the absence of A(I), and indicated an azimuthal structure in the jet related to the mass injection locations. Measurements of pressure in the arc chamber and impact pressure in the exhaust jet using a piezocrystal backed by a Plexiglas rod were in good agreement with the electromagnetic thrust model.

  9. Pulsed Drift Tube Accelerator

    SciTech Connect

    Faltens, A.

    2004-10-25

    The pulsed drift-tube accelerator (DTA) concept was revived by Joe Kwan and John Staples and is being considered for the HEDP/WDM application. It could be used to reach the full energy or as an intermediate accelerator between the diode and a high gradient accelerator such as multi-beam r.f. In the earliest LBNL HIF proposals and conceptual drivers it was used as an extended injector to reach energies where an induction linac with magnetic quadrupoles is the best choice. For HEDP, because of the very short pulse duration, the DTA could provide an acceleration rate of about 1MV/m. This note is divided into two parts: the first, a design based on existing experience; the second, an optimistic extrapolation. The first accelerates 16 parallel K{sup +} beams at a constant line charge density of 0.25{micro} C/m per beam to 10 MeV; the second uses a stripper and charge selector at around 4MeV followed by further acceleration to reach 40 MeV. Both benefit from more compact sources than the present 2MV injector source, although that beam is the basis of the first design and is a viable option. A pulsed drift-tube accelerator was the first major HIF experiment at LBNL. It was designed to produce a 2{micro}s rectangular 1 Ampere C{sub s}{sup +} beam at 2MeV. It ran comfortably at 1.6MeV for several years, then at lower voltages and currents for other experiments, and remnants of that experiment are in use in present experiments, still running 25 years later. The 1A current, completely equivalent to 1.8A K{sup +}, was chosen to be intermediate between the beamlets appropriate for a multi-beam accelerator, and a single beam of, say, 10A, at injection energies. The original driver scenarios using one large beam on each side of the reactor rapidly fell out of favor because of the very high transverse and longitudinal fields from the beam space charge, circa 1MV/cm and 250 kV/cm respectively, near the chamber and because of aberrations in focusing a large diameter beam down to a 1

  10. SUPERDIFFUSIVE SHOCK ACCELERATION

    SciTech Connect

    Perri, S.; Zimbardo, G.

    2012-05-10

    The theory of diffusive shock acceleration is extended to the case of superdiffusive transport, i.e., when the mean square deviation grows proportionally to t{sup {alpha}}, with {alpha} > 1. Superdiffusion can be described by a statistical process called Levy random walk, in which the propagator is not a Gaussian but it exhibits power-law tails. By using the propagator appropriate for Levy random walk, it is found that the indices of energy spectra of particles are harder than those obtained where a normal diffusion is envisaged, with the spectral index decreasing with the increase of {alpha}. A new scaling for the acceleration time is also found, allowing substantially shorter times than in the case of normal diffusion. Within this framework we can explain a number of observations of flat spectra in various astrophysical and heliospheric contexts, for instance, for the Crab Nebula and the termination shock of the solar wind.

  11. Accelerators for Cancer Therapy

    DOE R&D Accomplishments Database

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  12. Accelerated plate tectonics.

    PubMed

    Anderson, D L

    1975-03-21

    The concept of a stressed elastic lithospheric plate riding on a viscous asthenosphere is used to calculate the recurrence interval of great earthquakes at convergent plate boundaries, the separation of decoupling and lithospheric earthquakes, and the migration pattern of large earthquakes along an arc. It is proposed that plate motions accelerate after great decoupling earthquakes and that most of the observed plate motions occur during short periods of time, separated by periods of relative quiescence.

  13. Linear induction accelerator

    DOEpatents

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  14. Compact pulsed accelerator

    SciTech Connect

    Rhee, M.J.; Schneider, R.F.

    1983-01-01

    The formation of fast pulses from a current charged transmission line and opening switch is described. By employing a plasma focus as an opening switch and diode in the prototype device, a proton beam of peak energy 250 keV is produced. The time integrated energy spectrum of the beam is constructed from a Thomson spectrograph. Applications of this device as an inexpensive and portable charged particle accelerator are discussed. 7 refs., 5 figs., 1 tab.

  15. ION ACCELERATION SYSTEM

    DOEpatents

    Luce, J.S.; Martin, J.A.

    1960-02-23

    Well focused, intense ion beams are obtained by providing a multi- apertured source grid in front of an ion source chamber and an accelerating multi- apertured grid closely spaced from and in alignment with the source grid. The longest dimensions of the elongated apertures in the grids are normal to the direction of the magnetic field used with the device. Large ion currents may be withdrawn from the source, since they do not pass through any small focal region between the grids.

  16. Frontiers of accelerator instrumentation

    SciTech Connect

    Ross, M.

    1992-08-01

    New technology has permitted significant performance improvements of established instrumentation techniques including beam position and profile monitoring. Fundamentally new profile monitor strategies are required for the next generation of accelerators, especially linear colliders (LC). Beams in these machines may be three orders of magnitude smaller than typical beams in present colliders. In this paper we review both the present performance levels achieved by conventional systems and present some new ideas for future colliders.

  17. The 20 kilovolt rocket borne electron accelerator. [equipment specifications

    NASA Technical Reports Server (NTRS)

    Harrison, R.

    1973-01-01

    The accelerator system is a preprogrammed multi-voltage system capable of operating at a current level of 1/2 ampere at the 20 kilovolt level. The five major functional areas which comprise this system are: (1) Silver zinc battery packs; (2) the electron gun assembly; (3) gun control and opening circuits; (4) the telemetry conditioning section; and (5) the power conversion section.

  18. Likelihood analysis of the Local Group acceleration

    NASA Astrophysics Data System (ADS)

    Schmoldt, I.; Branchini, E.; Teodoro, L.; Efstathiou, G.; Frenk, C. S.; Keeble, O.; McMahon, R.; Maddox, S.; Oliver, S.; Rowan-Robinson, M.; Saunders, W.; Sutherland, W.; Tadros, H.; White, S. D. M.

    1999-04-01

    We compute the acceleration of the Local Group using 11 206 IRAS galaxies from the recently completed all-sky PSCz redshift survey. Measuring the acceleration vector in redshift space generates systematic uncertainties caused by the redshift-space distortions in the density field. We therefore assign galaxies to their real-space positions by adopting a non-parametric model for the velocity field that relies solely on the linear gravitational instability (GI) and linear biasing hypotheses. Remaining systematic contributions to the measured acceleration vector are corrected for by using PSCz mock catalogues from N-body experiments. The resulting acceleration vector points ~15 away from the CMB dipole apex, with a remarkable alignment between small- and large-scale contributions. A considerable fraction (~65 per cent) of the measured acceleration is generated within 40 h^-1 Mpc, with a non-negligible contribution from scales between 90 and 140 h^-1 Mpc, after which the acceleration amplitude seems to have converged. The local group acceleration from PSCz appears to be consistent with the one determined from the IRAS 1.2-Jy galaxy catalogue once the different contributions from shot noise have been taken into account. The results are consistent with the gravitational instability hypothesis and do not indicate any strong deviations from the linear biasing relation on large scales. A maximum-likelihood analysis of the cumulative PSCz dipole is performed within a radius of 150 h^-1 Mpc, in which we account for non-linear effects, shot noise and finite sample size. The aim is to constrain the beta=Omega^0.6/b parameter and the power spectrum of density fluctuations. We obtain beta=0.70^+0.35_-0.2 at 1sigma confidence level. The likelihood analysis is not very sensitive to the shape of the power spectrum, because of the rise in the amplitude of the dipole beyond 40 h^-1 Mpc and the increase in shot noise on large scales. There is, however, a weak indication that within the

  19. Accelerated Profile HMM Searches.

    PubMed

    Eddy, Sean R

    2011-10-01

    Profile hidden Markov models (profile HMMs) and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the "multiple segment Viterbi" (MSV) algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call "sparse rescaling". These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches.

  20. Acceleration during magnetic reconnection

    SciTech Connect

    Beresnyak, Andrey; Li, Hui

    2015-07-16

    The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipation in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.

  1. Accelerator mass spectrometry.

    PubMed

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples.

  2. Electrostatic Plasma Accelerator (EPA)

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1995-01-01

    The application of electric propulsion to communications satellites, however, has been limited to the use of hydrazine thrusters with electric heaters for thrust and specific impulse augmentation. These electrothermal thrusters operate at specific impulse levels of approximately 300 s with heater powers of about 500 W. Low power arcjets (1-3 kW) are currently being investigated as a way to increase specific impulse levels to approximately 500 s. Ion propulsion systems can easily produce specific impulses of 3000 s or greater, but have yet to be applied to communications satellites. The reasons most often given for not using ion propulsion systems are their high level of overall complexity, low thrust with long burn times, and the difficulty of integrating the propulsion system into existing commercial spacecraft busses. The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass.

  3. ACCELERATION INTEGRATING MEANS

    DOEpatents

    Wilkes, D.F.

    1961-08-29

    An acceleration responsive device is described. A housing has at one end normally open electrical contacts and contains a piston system with a first part of non-magnetic material having metering orifices in the side walls for forming an air bearing between it and the walls of the housing; this first piston part is normally held against the other end of the housing from the noted contacts by a second piston or reset part. The reset part is of partly magnetic material, is separable from the flrst piston part, and is positioned within the housing intermediate the contacts and the first piston part. A magnet carried by the housing imposes a retaining force upon the reset part, along with a helical compression spring that is between the reset part and the end with the contacts. When a predetermined acceleration level is attained, the reset part overcomes the bias or retaining force provided by the magnet and the spring'' snaps'' into a depression in the housing adjacent the contacts. The first piston part is then free to move toward the contacts with its movement responsive tc acceleration forces and the metering orifices. (AEC)

  4. Symplectic multiparticle tracking model for self-consistent space-charge simulation

    NASA Astrophysics Data System (ADS)

    Qiang, Ji

    2017-01-01

    Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.

  5. French nuclear physics accelerator opens

    NASA Astrophysics Data System (ADS)

    Dumé, Belle

    2016-12-01

    A new €140m particle accelerator for nuclear physics located at the French Large Heavy Ion National Accelerator (GANIL) in Caen was inaugurated last month in a ceremony attended by French president François Hollande.

  6. Ion acceleration by a double stage accelerating device for laser-induced plasma ions

    NASA Astrophysics Data System (ADS)

    Lorusso, A.; Siciliano, M. V.; Velardi, L.; Nassisi, V.

    2010-10-01

    A new laser ion source configuration was studied and realized in order to generate and accelerate ions of different elements. This ion source consisted of a laser-induced plasma from solid targets where the plume was made to expand before the action of the accelerating field. The accelerating field was reached by the application of two high voltage power supplies of different polarity. Therefore, the ions were made to undergo double acceleration that can imprint a maximum ion energy up to 160 keV per charge state. We analyzed the extracted charge from a Cu target as a function of the accelerating voltage at the laser fluences of 1.7 and 2.3 J/cm2. At 60 kV of total accelerating voltage and higher laser fluence, the maximum ion dose was 1012 ions/cm2. Under this last condition, the maximum output current was 5 mA and the emittance measured by the pepper pot method resulted in 0.22π mm mrad. With this machine, biomedical materials such as polyethylene were implanted with carbon and titanium ions. At doses of 6×1015 ions/cm2, the polyethylene surface increased its micro-hardness by about 3-fold, as measured by the scratch test.

  7. The effect of stochastic re-acceleration on the energy spectrum of shock-accelerated protons

    SciTech Connect

    Afanasiev, Alexandr; Vainio, Rami; Kocharov, Leon

    2014-07-20

    The energy spectra of particles in gradual solar energetic particle (SEP) events do not always have a power-law form attributed to the diffusive shock acceleration mechanism. In particular, the observed spectra in major SEP events can take the form of a broken (double) power law. In this paper, we study the effect of a process that can modify the power-law spectral form produced by the diffusive shock acceleration: the stochastic re-acceleration of energetic protons by enhanced Alfvénic turbulence in the downstream region of a shock wave. There are arguments suggesting that this process can be important when the shock propagates in the corona. We consider a coronal magnetic loop traversed by a shock and perform Monte Carlo simulations of interactions of shock-accelerated protons with Alfvén waves in the loop. The wave-particle interactions are treated self-consistently, so the finiteness of the available turbulent energy is taken into account. The initial energy spectrum of particles is taken to be a power law. The simulations reveal that the stochastic re-acceleration leads either to the formation of a spectrum that is described in a wide energy range by a power law (although the resulting power-law index is different from the initial one) or to a broken power-law spectrum. The resulting spectral form is determined by the ratio of the energy density of shock-accelerated protons to the wave energy density in the shock's downstream region.

  8. Consistent Data Assimilation of Isotopes: 242Pu and 105Pd

    SciTech Connect

    G. Palmiotti; H. Hiruta; M. Salvatores

    2012-09-01

    In this annual report we illustrate the methodology of the consistent data assimilation that allows to use the information coming from integral experiments for improving the basic nuclear parameters used in cross section evaluation. A series of integral experiments are analyzed using the EMPIRE evaluated files for 242Pu and 105Pd. In particular irradiation experiments (PROFIL-1 and -2, TRAPU-1, -2 and -3) provide information about capture cross sections, and a critical configuration, COSMO, where fission spectral indexes were measured, provides information about fission cross section. The observed discrepancies between calculated and experimental results are used in conjunction with the computed sensitivity coefficients and covariance matrix for nuclear parameters in a consistent data assimilation. The results obtained by the consistent data assimilation indicate that not so large modifications on some key identified nuclear parameters allow to obtain reasonable C/E. However, for some parameters such variations are outside the range of 1 s of their initial standard deviation. This can indicate a possible conflict between differential measurements (used to calculate the initial standard deviations) and the integral measurements used in the statistical data adjustment. Moreover, an inconsistency between the C/E of two sets of irradiation experiments (PROFIL and TRAPU) is observed for 242Pu. This is the end of this project funded by the Nuclear Physics Program of the DOE Office of Science. We can indicate that a proof of principle has been demonstrated for a few isotopes for this innovative methodology. However, we are still far from having explored all the possibilities and made this methodology to be considered proved and robust. In particular many issues are worth further investigation: • Non-linear effects • Flexibility of nuclear parameters in describing cross sections • Multi-isotope consistent assimilation • Consistency between differential and integral

  9. Plasma accelerator experiments in Yugoslavia

    NASA Astrophysics Data System (ADS)

    Purić, J.; Astashynski, V. M.; Kuraica, M. M.; Dojčinovié, I. P.

    2002-12-01

    An overview is given of the results obtained in the Plasma Accelerator Experiments in Belgrade, using quasi-stationary high current plasma accelerators constructed within the framework of the Yugoslavia-Belarus Joint Project. So far, the following plasma accelerators have been realized: Magnetoplasma Compressor type (MPC); MPC Yu type; one stage Erosive Plasma Dynamic System (EPDS) and, in final stage of construction two stage Quasi-Stationary High Current Plasma Accelerator (QHPA).

  10. Science and Technology of Accelerators

    NASA Astrophysics Data System (ADS)

    Valerio Lizarraga, Cristhian; Castilla Loaeza, Alejandro; Guillermo Cantón, Gerardo; Duarte, Carlos; Chavez Valenzuela, Daniel; Hernández Chahín, Karim; Cuna, Humberto Maury; Medina Medrano, Luis; Reyes Herrera, Juan; Sosa Güitrón, Salvador; Valdivia García, Alan; Rendón, Bruce Yee

    2016-10-01

    The Mexican Particle Accelerator Community (CMAP) was created in 2015 and currently its members participate in different experiments around the world. Using their expertise, they are working in the development of the particle accelerators area in Mexico. This paper provides a summary of the research done by its members and presents the preliminary design of an electron linear particle accelerator (eLINAC). This proposal will be the first accelerator designed and created in Mexico.

  11. Unified formulation for linear accelerator design

    SciTech Connect

    Farkas, Z.D.

    1986-05-01

    Expressions for peak and average powers required to produce a given average gradient in an accelerator section are given. They are valid for both lossy and lossless (superconducting) sections, for both traveling wave and standing wave sections, and for pulsed or continuous wave rf input. The expressions are given in terms of structure parameters that are equally applicable to traveling wave or standing wave. These parameters delineate the effect of wall losses and energy required to build up the field. For both traveling wave and standing wave sections it is possible to make the rf pulse length short enough to make the wall losses negligible at the expense of increased peak power requirement. Therefore the expressions will include the effects of pulse compression. 6 refs., 7 figs.

  12. ILC Reference Design Report: Accelerator Executive Summary

    SciTech Connect

    Phinney, Nan; /SLAC

    2007-12-14

    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radiofrequency (SCRF) accelerating cavities. The use of the SCRF technology was recommended by the International Technology Recommendation Panel (ITRP) in August 2004 [1], and shortly thereafter endorsed by the International Committee for Future Accelerators (ICFA). In an unprecedented milestone in high-energy physics, the many institutes around the world involved in linear collider R&D united in a common effort to produce a global design for the ILC. In November 2004, the 1st International Linear Collider Workshop was held at KEK, Tsukuba, Japan. The workshop was attended by some 200 accelerator physicists from around the world, and paved the way for the 2nd ILC Workshop in August 2005, held at Snowmass, Colorado, USA, where the ILC Global Design Effort (GDE) was officially formed. The GDE membership reflects the global nature of the collaboration, with accelerator experts from all three regions (Americas, Asia and Europe). The first major goal of the GDE was to define the basic parameters and layout of the machine--the Baseline Configuration. This was achieved at the first GDE meeting held at INFN, Frascati, Italy in December 2005 with the creation of the Baseline Configuration Document (BCD). During the next 14 months, the BCD was used as the basis for the detailed design work and value estimate (as described in section 1.6) culminating in the completion of the second major milestone, the publication of the draft ILC Reference Design Report (RDR). The technical design and cost estimate for the ILC is based on two decades of world-wide Linear Collider R&D, beginning with the construction and operation of the SLAC Linear Collider (SLC). The SLC is acknowledged as a proof-of-principle machine for the linear collider concept. The ILC SCRF linac technology was pioneered by the TESLA collaboration*, culminating in

  13. Acceleration of electrons using an inverse free electron laser auto- accelerator

    SciTech Connect

    Wernick, I.K.; Marshall, T.C.

    1992-07-01

    We present data from our study of a device known as the inverse free electron laser. First, numerical simulations were performed to optimize the design parameters for an experiment that accelerates electrons in the presence of an undulator by stimulated absorption of radiation. The Columbia free electron laser (FEL) was configured as an auto-accelerator (IFELA) system; high power (MW`s) FEL radiation at {approximately}1.65 mm is developed along the first section of an undulator inside a quasi-optical resonator. The electron beam then traverses a second section of undulator where a fraction of the electrons is accelerated by stimulated absorption of the 1.65 mm wavelength power developed in the first undulator section. The second undulator section has very low gain and does not generate power on its own. We have found that as much as 60% of the power generated in the first section can be absorbed in the second section, providing that the initial electron energy is chosen correctly with respect to the parameters chosen for the first and second undulators. An electron momentum spectrometer is used to monitor the distribution of electron energies as the electrons exit the IFELA. We have found; using our experimental parameters, that roughly 10% of the electrons are accelerated to energies as high as 1100 keV, in accordance with predictions from the numerical model. The appearance of high energy electrons is correlated with the abrupt absorption of millimeter power. The autoaccelerator configuration is used because there is no intense source of coherent power at the 1.65 mm design wavelength other than the FEL.

  14. Acceleration of electrons using an inverse free electron laser auto- accelerator

    SciTech Connect

    Wernick, I.K.; Marshall, T.C.

    1992-07-01

    We present data from our study of a device known as the inverse free electron laser. First, numerical simulations were performed to optimize the design parameters for an experiment that accelerates electrons in the presence of an undulator by stimulated absorption of radiation. The Columbia free electron laser (FEL) was configured as an auto-accelerator (IFELA) system; high power (MW's) FEL radiation at {approximately}1.65 mm is developed along the first section of an undulator inside a quasi-optical resonator. The electron beam then traverses a second section of undulator where a fraction of the electrons is accelerated by stimulated absorption of the 1.65 mm wavelength power developed in the first undulator section. The second undulator section has very low gain and does not generate power on its own. We have found that as much as 60% of the power generated in the first section can be absorbed in the second section, providing that the initial electron energy is chosen correctly with respect to the parameters chosen for the first and second undulators. An electron momentum spectrometer is used to monitor the distribution of electron energies as the electrons exit the IFELA. We have found; using our experimental parameters, that roughly 10% of the electrons are accelerated to energies as high as 1100 keV, in accordance with predictions from the numerical model. The appearance of high energy electrons is correlated with the abrupt absorption of millimeter power. The autoaccelerator configuration is used because there is no intense source of coherent power at the 1.65 mm design wavelength other than the FEL.

  15. Accelerator Science: Proton vs. Electron

    ScienceCinema

    Lincoln, Don

    2016-10-19

    Particle accelerators are one of the most powerful ways to study the fundamental laws that govern the universe. However, there are many design considerations that go into selecting and building a particular accelerator. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of building an accelerator that collides pairs of protons to one that collides electrons.

  16. Accelerator Science: Circular vs. Linear

    ScienceCinema

    Lincoln, Don

    2016-12-14

    Particle accelerator are scientific instruments that allow scientists to collide particles together at incredible energies to study the secrets of the universe. However, there are many manners in which particle accelerators can be constructed. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of circular and linear accelerators.

  17. Accelerator Science: Circular vs. Linear

    SciTech Connect

    Lincoln, Don

    2016-11-10

    Particle accelerator are scientific instruments that allow scientists to collide particles together at incredible energies to study the secrets of the universe. However, there are many manners in which particle accelerators can be constructed. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of circular and linear accelerators.

  18. Accelerator Science: Proton vs. Electron

    SciTech Connect

    Lincoln, Don

    2016-10-11

    Particle accelerators are one of the most powerful ways to study the fundamental laws that govern the universe. However, there are many design considerations that go into selecting and building a particular accelerator. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of building an accelerator that collides pairs of protons to one that collides electrons.

  19. Materials considerations in accelerator targets

    SciTech Connect

    Peacock, H.B. Jr.; Iyer, N.C.; Louthan, M.R. Jr.

    1994-08-01

    Future nuclear materials production and/or the burn-up of long lived radioisotopes may be accomplished through the capture of spallation produced neutrons in accelerators. Aluminum clad-lead and/or lead alloys has been proposed as a spallation target. Aluminum was the cladding choice because of the low neutron absorption cross section, fast radioactivity decay, high thermal conductivity, and excellent fabricability. Metallic lead and lead oxide powders were considered for the target core with the fabrication options being casting or powder metallurgy (PM). Scoping tests to evaluate gravity casting, squeeze casting, and casting and swaging processes showed that, based on fabricability and heat transfer considerations, squeeze casting was the preferred option for manufacture of targets with initial core cladding contact. Thousands of aluminum clad aluminum-lithium alloy core targets and control rods for tritium production have been fabricated by coextrusion processes and successfully irradiated in the SRS reactors. Tritium retention in, and release from the coextruded product was modeled from experimental and operational data. Newly produced tritium atoms were trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability was the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release was determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. The model can be used to calculate tritium release from aluminum clad, aluminum-lithium alloy targets during postulated accelerator operational and accident conditions. This paper describes the manufacturing technologies evaluated and presents the model for tritium retention in aluminum clad, aluminum-lithium alloy tritium production targets.

  20. Materials considerations in accelerator targets

    SciTech Connect

    Peacock, H. B. Jr.; Iyer, N. C.; Louthan, M. R. Jr.

    1995-09-15

    Future nuclear materials production and/or the burn-up of long lived radioisotopes may be accomplished through the capture of spallation produced neutrons in accelerators. Aluminum clad-lead and/or lead alloys has been proposed as a spallation target. Aluminum was the cladding choice because of the low neutron absorption cross section, fast radioactivity decay, high thermal conductivity, and excellent fabricability. Metallic lead and lead oxide powders were considered for the target core with the fabrication options being casting or powder metallurgy (PM). Scoping tests to evaluate gravity casting, squeeze casting, and casting and swaging processes showed that, based on fabricability and heat transfer considerations, squeeze casting was the preferred option for manufacture of targets with initial core cladding contact. Thousands of aluminum clad aluminum-lithium alloy core targets and control rods for tritium production have been fabricated by coextrusion processes and successfully irradiated in the SRS reactors. Tritium retention in, and release from, the coextruded product was modeled from experimental and operational data. The model assumed that tritium atoms, formed by the 6Li(n,a)3He reaction, were produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly became supersaturated in tritium. Newly produced tritium atoms were trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability was the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release was determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. The model can be used to calculate tritium release from aluminum clad, aluminum-lithium alloy targets during postulated accelerator operational and accident conditions. This paper describes

  1. Materials considerations in accelerator targets

    NASA Astrophysics Data System (ADS)

    Peacock, H. B.; Iyer, N. C.; Louthan, M. R.

    1995-09-01

    Future nuclear materials production and/or the burn-up of long lived radioisotopes may be accomplished through the capture of spallation produced neutrons in accelerators. Aluminum clad-lead and/or lead alloys has been proposed as a spallation target. Aluminum was the cladding choice because of the low neutron absorption cross section, fast radioactivity decay, high thermal conductivity, and excellent fabricability. Metallic lead and lead oxide powders were considered for the target core with the fabrication options being casting or powder metallurgy (PM). Scoping tests to evaluate gravity casting, squeeze casting, and casting and swaging processes showed that, based on fabricability and heat transfer considerations, squeeze casting was the preferred option for manufacture of targets with initial core cladding contact. Thousands of aluminum clad aluminum-lithium alloy core targets and control rods for tritium production have been fabricated by coextrusion processes and successfully irradiated in the SRS reactors. Tritium retention in, and release from, the coextruded product was modeled from experimental and operational data. The model assumed that tritium atoms, formed by the 6Li(n,a)3He reaction, were produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly became supersaturated in tritium. Newly produced tritium atoms were trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability was the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release was determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. The model can be used to calculate tritium release from aluminum clad, aluminum-lithium alloy targets during postulated accelerator operational and accident conditions. This paper describes

  2. Simulations of ion acceleration at non-relativistic shocks. I. Acceleration efficiency

    SciTech Connect

    Caprioli, D.; Spitkovsky, A.

    2014-03-10

    We use two-dimensional and three-dimensional hybrid (kinetic ions-fluid electrons) simulations to investigate particle acceleration and magnetic field amplification at non-relativistic astrophysical shocks. We show that diffusive shock acceleration operates for quasi-parallel configurations (i.e., when the background magnetic field is almost aligned with the shock normal) and, for large sonic and Alfvénic Mach numbers, produces universal power-law spectra ∝p {sup –4}, where p is the particle momentum. The maximum energy of accelerated ions increases with time, and it is only limited by finite box size and run time. Acceleration is mainly efficient for parallel and quasi-parallel strong shocks, where 10%-20% of the bulk kinetic energy can be converted to energetic particles and becomes ineffective for quasi-perpendicular shocks. Also, the generation of magnetic turbulence correlates with efficient ion acceleration and vanishes for quasi-perpendicular configurations. At very oblique shocks, ions can be accelerated via shock drift acceleration, but they only gain a factor of a few in momentum and their maximum energy does not increase with time. These findings are consistent with the degree of polarization and the morphology of the radio and X-ray synchrotron emission observed, for instance, in the remnant of SN 1006. We also discuss the transition from thermal to non-thermal particles in the ion spectrum (supra-thermal region) and we identify two dynamical signatures peculiar of efficient particle acceleration, namely, the formation of an upstream precursor and the alteration of standard shock jump conditions.

  3. Kinematics and hydrodynamics of linear acceleration in eels, Anguilla rostrata.

    PubMed

    Tytell, Eric D

    2004-12-22

    The kinematics and hydrodynamics of routine linear accelerations were studied in American eels, Anguilla rostrata, using high-speed video and particle image velocimetry. Eels were examined both during steady swimming at speeds from 0.6 to 1.9 body lengths (L) per second and during accelerations from -1.4 to 1.3 L s(-2). Multiple regression of the acceleration and steady swimming speed on the body kinematics suggests that eels primarily change their tail-tip velocity during acceleration. By contrast, the best predictor of steady swimming speed is body wave speed, keeping tail-tip velocity an approximately constant fraction of the swimming velocity. Thus, during steady swimming, Strouhal number does not vary with speed, remaining close to 0.32, but during acceleration, it deviates from the steady value. The kinematic changes during acceleration are indicated hydrodynamically by axial fluid momentum in the wake. During steady swimming, the wake consists of lateral jets of fluid and has minimal net axial momentum, which reflects a balance between thrust and drag. During acceleration, those jets rotate to point downstream, adding axial momentum to the fluid. The amount of added momentum correlates with the acceleration, but is greater than the necessary inertial force by 2.8+/-0.6 times, indicating a substantial acceleration reaction.

  4. Acceleration of clinician hand movements during spinal manipulative therapy.

    PubMed

    Gelley, Geoffrey M; Passmore, Steven R; MacNeil, Brian J

    2015-04-01

    This study used an observational design to examine the kinematics of spinal manipulative therapy (SMT) by determining the acceleration characteristics of the manipulative input at the cervical, thoracic, and lumbar spinal regions. Studies of SMT have been restricted to measuring the forces that result from the manipulative input. Several studies have indicated the rate of force development is a key parameter of clinically delivered SMT. Despite this, the movement strategies employed during SMT, including acceleration, have not been directly measured. Participants (n = 29) were recruited from a private practice chiropractic clinic. A wireless accelerometer attached to the clinician's hand was used to characterize the thrust phase of the SMT treatments. Significant differences were found across each spinal region for acceleration amplitude parameters (p < 0.0001). Post-hoc analysis indicated that amplitudes significantly increased in order from thoracic to cervical to lumbar regions (p < 0.0001). Spinal level was also a significant factor in determining the temporal parameters of hand acceleration during SMT (p < 0.0005). This study provides a description of the acceleration properties of clinically delivered SMT. Consistent with that reported for SMT forces, acceleration amplitudes varied significantly across spinal regions with relatively little differences in acceleration latencies. Notably, acceleration amplitudes and latencies were not associated with each other within spinal regions. These findings indicate that changes in acceleration amplitude, rather than latency, are used to tailor SMT to individuals.

  5. Kinematics and hydrodynamics of linear acceleration in eels, Anguilla rostrata.

    PubMed Central

    Tytell, Eric D.

    2004-01-01

    The kinematics and hydrodynamics of routine linear accelerations were studied in American eels, Anguilla rostrata, using high-speed video and particle image velocimetry. Eels were examined both during steady swimming at speeds from 0.6 to 1.9 body lengths (L) per second and during accelerations from -1.4 to 1.3 L s(-2). Multiple regression of the acceleration and steady swimming speed on the body kinematics suggests that eels primarily change their tail-tip velocity during acceleration. By contrast, the best predictor of steady swimming speed is body wave speed, keeping tail-tip velocity an approximately constant fraction of the swimming velocity. Thus, during steady swimming, Strouhal number does not vary with speed, remaining close to 0.32, but during acceleration, it deviates from the steady value. The kinematic changes during acceleration are indicated hydrodynamically by axial fluid momentum in the wake. During steady swimming, the wake consists of lateral jets of fluid and has minimal net axial momentum, which reflects a balance between thrust and drag. During acceleration, those jets rotate to point downstream, adding axial momentum to the fluid. The amount of added momentum correlates with the acceleration, but is greater than the necessary inertial force by 2.8+/-0.6 times, indicating a substantial acceleration reaction. PMID:15615678

  6. Consistency, Understanding and Truth in Educational Research

    ERIC Educational Resources Information Center

    Davis, Andrew

    2006-01-01

    What do Elliot Eisner's discussions of objectivity mean for the strength of the link between consistency and truth in educational research? Following his lead, I pursue this question by comparing aspects of qualitative educational research with appraising the arts. I argue that some departures from the highest levels of consistency in assessing…

  7. Categories Influence Predictions about Individual Consistency

    ERIC Educational Resources Information Center

    Rhodes, Marjorie; Gelman, Susan A.

    2008-01-01

    Predicting how people will behave in the future is a critical social-cognitive task. In four studies (N = 150, ages preschool to adult), young children (ages 4-5) used category information to guide their expectations about individual consistency. They predicted that psychological properties (preferences and fears) would remain consistent over time…

  8. Consistency and Enhancement Processes in Understanding Emotions

    ERIC Educational Resources Information Center

    Stets, Jan E.; Asencio, Emily K.

    2008-01-01

    Many theories in the sociology of emotions assume that emotions emerge from the cognitive consistency principle. Congruence among cognitions produces good feelings whereas incongruence produces bad feelings. A work situation is simulated in which managers give feedback to workers that is consistent or inconsistent with what the workers expect to…

  9. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines...

  10. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines...

  11. Managing consistency in collaborative design environments

    NASA Astrophysics Data System (ADS)

    Miao, Chunyan; Yang, Zhonghua; Goh, Angela; Sun, Chengzheng; Sattar, Abdul

    1999-08-01

    In today's global economy, there is a significant paradigm shift to collaborative engineering design environments. One of key issues in the collaborative setting is the consistency model, which governs how to coordinate the activities of collaborators to ensure that they do not make inconsistent changes or updates to the shared objects. In this paper, we present a new consistency model which requires that all update operations will be executed in the casual order (causality) and all participants have the same view on the operations on the shared objects (view synchrony). A simple multicast-based protocol to implement the consistency model is presented. By employing vector time and token mechanisms, the protocol brings the shared objects from one consistent state to another, thus providing collaborators with a consistent view of the shared objects. A CORBA-based on-going prototyping implementation is outlined. Some of the related work are also discussed.

  12. Gait analysis using gravitational acceleration measured by wearable sensors.

    PubMed

    Takeda, Ryo; Tadano, Shigeru; Todoh, Masahiro; Morikawa, Manabu; Nakayasu, Minoru; Yoshinari, Satoshi

    2009-02-09

    A novel method for measuring human gait posture using wearable sensor units is proposed. The sensor units consist of a tri-axial acceleration sensor and three gyro sensors aligned on three axes. The acceleration and angular velocity during walking were measured with seven sensor units worn on the abdomen and the lower limb segments (both thighs, shanks and feet). The three-dimensional positions of each joint are calculated from each segment length and joint angle. Joint angle can be estimated mechanically from the gravitational acceleration along the anterior axis of the segment. However, the acceleration data during walking includes three major components; translational acceleration, gravitational acceleration and external noise. Therefore, an optimization analysis was represented to separate only the gravitational acceleration from the acceleration data. Because the cyclic patterns of acceleration data can be found during constant walking, a FFT analysis was applied to obtain some characteristic frequencies in it. A pattern of gravitational acceleration was assumed using some parts of these characteristic frequencies. Every joint position was calculated from the pattern under the condition of physiological motion range of each joint. An optimized pattern of the gravitational acceleration was selected as a solution of an inverse problem. Gaits of three healthy volunteers were measured by walking for 20s on a flat floor. As a result, the acceleration data of every segment was measured simultaneously. The characteristic three-dimensional walking could be shown by the expression using a stick figure model. In addition, the trajectories of the knee joint in the horizontal plane could be checked by visual imaging on a PC. Therefore, this method provides important quantitive information for gait diagnosis.

  13. Neutrino mass and mixing, and non-accelerator experiments

    SciTech Connect

    Robertson, R.G.H.

    1992-01-01

    We review the current status of experimental knowledge about neutrinos derived from kinematic mass measurements, neutrino oscillation searches at reactors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indication that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing.

  14. 44 CFR 206.349 - Consistency determinations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... purpose of CBRA, as stated in section 2(b) of that statute, is to minimize the loss of human life... result from the proposed action: (1) Risks to human life; (2) Risks of damage to the facility...

  15. 44 CFR 206.349 - Consistency determinations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... purpose of CBRA, as stated in section 2(b) of that statute, is to minimize the loss of human life... result from the proposed action: (1) Risks to human life; (2) Risks of damage to the facility...

  16. A new limit on the time between the nucleosynthesis and the acceleration of cosmic rays in supernova remnants using the Co/Ni ratio

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Gupta, M.

    1990-01-01

    Using new cross section measurements of Ni into Co, data on the Co/Ni ratio in cosmic rays from the HEAO C spacecraft have been reinterpreted in terms of the time between nucleosynthesis and the acceleration of cosmic rays, delta t. The observed Co/Ni ratio is now consistent with interstellar fragmentation only, leading to a small or zero source abundance. In terms of the decay of e-process nucleosynthesis nuclides into Co after a supernova explosion, this permits an estimate of delta t = 4-30,000 yr for the time between nucleosynthesis and the acceleration of cosmic rays if supernovae are the direct progenitors of cosmic rays. These age limits are used in conjunction with models of the expansion of supernova remnants (SNRs), to estimate that cosmic rays are accelerated when the radius of these remnants is between 0.1 and 25 pc.

  17. APT accelerator. Topical report

    SciTech Connect

    Lawrence, G.; Rusthoi, D.

    1995-03-01

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  18. VLHC accelerator physics

    SciTech Connect

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  19. Recent Advances in Plasma Acceleration

    SciTech Connect

    Hogan, Mark

    2007-03-19

    The costs and the time scales of colliders intended to reach the energy frontier are such that it is important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators a drive beam, either laser or particle, produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultra-high accelerating fields over a substantial length to achieve a significant energy gain. More than 42 GeV energy gain was achieved in an 85 cm long plasma wakefield accelerator driven by a 42 GeV electron drive beam in the Final Focus Test Beam (FFTB) Facility at SLAC. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx}52 GV/m. This effectively doubles their energy, producing the energy gain of the 3 km long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. Prospects for a drive-witness bunch configuration and high-gradient positron acceleration experiments planned for the SABER facility will be discussed.

  20. Ion acceleration in electrodeless plasma thrusters

    NASA Astrophysics Data System (ADS)

    Lafleur, Trevor; Cannat, Felix; Jarrige, Julien; Elias, Paul-Quentin; Packan, Denis

    2016-09-01

    Since electrodeless plasma thrusters do not use biased electrodes or grids to accelerate ions, it is unclear what determines the magnitude of the ``accelerating voltage'' and hence what the ion beam energy is. In this work a combined theoretical/experimental study of the relationship between the electron temperature and the ion energy was performed to provide such an answer. Experimental measurements show that the ion energy and electron temperature are strongly correlated, and demonstrate that the driving force for the plasma expansion in magnetic nozzles is the electron pressure: in complete analogy to chemical rockets with physical nozzles. Because there are no electrodes or applied voltages, the plasma that exits the thruster must be current-free, and we show that this establishes a strong criterion that determines the maximum accelerating potential that self-forms in the plasma. This maximum accelerating potential (which is between about 4-6 times the electron temperature) is similar to that which develops for a floating sheath, and depends on the electron velocity distribution function. Based on plasma loss considerations inside the thruster cavity, and the drop-off of the ionization cross section for large electron energies in most gases, we predict a theoretical maximum achievable ion beam energy of about 400 eV for argon and xenon propellants.

  1. Accelerating Gallstone Dissolution

    PubMed Central

    Tao, J. C.; Cussler, E. L.; Evans, D. F.

    1974-01-01

    The dissolution rates of cholesterol in model bile salt solutions are controlled by diffusion in slowly flowing bile and by interfacial kinetics in rapidly flowing bile. At low flow, dissolution varies with the square root of bile flow and can be predicted, a priori, from existing correlations of mass transfer. At high bile flow, dissolution is independent of bile flow and is probably dominated by the rate of micelle adsorption. These results show that cholesterol gallstone dissolution, a potential nonsurgical therapy for cholelithiasis, can be accelerated little in slow bile, but more significantly in rapidly flowing bile. PMID:4530271

  2. Accelerating Commercial Remote Sensing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Visiting Investigator Program (VIP) at Stennis Space Center, Community Coffee was able to use satellites to forecast coffee crops in Guatemala. Using satellite imagery, the company can produce detailed maps that separate coffee cropland from wild vegetation and show information on the health of specific crops. The data can control coffee prices and eventually may be used to optimize application of fertilizers, pesticides and irrigation. This would result in maximal crop yields, minimal pollution and lower production costs. VIP is a mechanism involving NASA funding designed to accelerate the growth of commercial remote sensing by promoting general awareness and basic training in the technology.

  3. Accelerated Innovation Pilot

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey

    2012-01-01

    Opportunities: I. Engage NASA team (examples) a) Research and technology calls . provide suggestions to AES, HRP, OCT. b) Use NASA@Work to solicit other ideas; (possibly before R+D calls). II. Stimulate collaboration (examples) a) NHHPC. b) Wharton Mack Center for Technological Innovation (Feb 2013). c) International ] DLR ] :envihab (July 2013). d) Accelerated research models . NSF, Myelin Repair Foundation. III. Engage public Prizes (open platform: InnoCentive, yet2.com, NTL; Rice Business Plan, etc.) IV. Use same methods to engage STEM.

  4. The Accelerating Universe

    NASA Astrophysics Data System (ADS)

    Schmidt, Brian P.

    2012-05-01

    In 1998 two teams traced back the expansion of the universe over billions of years and discovered that it was accelerating, a startling discovery that suggests that more than 70% of the cosmos is contained in a previously unknown form of matter, called Dark Energy. The 2011 Nobel Laureate for Physics, Brian Schmidt, leader of the High-Redshift Supernova Search Team, will describe this discovery and explain how astronomers have used observations to trace our universe's history back more than 13 billion years, leading them to ponder the ultimate fate of the cosmos.

  5. The Status of Cross Section Measurements for Neutron-induced Reactions Needed for Cosmic Ray Studies

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.

    2003-01-01

    Cosmic ray interactions with lunar rocks and meteorites produce small amounts of radionuclides and stable isotopes. Advances in Accelerator Mass Spectrometry (AMS) allow production rates to be measured routinely in well-documented lunar rocks and meteorites. These measurements are analyzed using theoretical models to learn about the object itself and the history of the cosmic rays that fell on it. Good cross section measurements are essential input to the theoretical calculations. Most primary cosmic ray particles are protons so reliable cross sections for proton-induced reactions are essential. A cross section is deemed accurate if measurements made by different experimenters using different techniques result in consistent values. Most cross sections for proton induced reactions are now well measured. However, good cross section measurements for neutron-induced reactions are still needed. These cross sections are required to fully account for all galactic cosmic ray interactions at depth in an extraterrestrial object. When primary galactic cosmic ray (GCR) particles interact with an object many secondary neutrons are produced, which also initiate spallation reactions. Thus, the total GCR contribution to the overall cosmogenic nuclide archive has to include the contribution from the secondary neutron interactions. Few relevant cross section measurements have been reported for neutron-induced reactions at neutron energies greater than approximately 20 MeV. The status of the cross section measurements using quasi-monoenergetic neutron energies at iThemba LABS, South Africa and white neutron beams at Los Alamos Neutron Science Center (LANSCE), Los Alamos are reported here.

  6. Pellet acceleration using an ablation-controlled electrothermal launcher

    SciTech Connect

    Kincaid, R.W.; Bourham, M.A.; Gilligan, J.G.

    1995-12-31

    The NCSU ablation-controlled electrothermal launcher SIRENS has been used to accelerate plastic (Lexan polycarbonate) pellets to investigate the possibility of using electrothermal launchers as frozen pellet injectors for tokamak fueling. Successful installation of such a device would include a protective shell (sabot) to shield the hydrogenic pellet from ablation and allow it to maintain its integrity throughout the acceleration. The SIRENS device has been modified to include specially designed barrel sections equipped with diagnostic ports.

  7. Remote sensing of plasma injection and acceleration phenomena

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1985-01-01

    Dynamics Explorer-1 High Altitude Plasma Instrument data have been used to investigate the injection of magnetosheath plasma into the polar cusp, the injection of auroral ion beams into the magnetosphere, and the acceleration of electrons transverse to the magnetic field direction, and the results are discussed. In the case of polar cusp plasmas, it is found that injection occurs at the high-latitude magnetopause, at geocentric distances near eight earth radii. In the case of auroral ion beams it is determined that ion bands are not produced by equatorial injection from the plasma sheet, but by the upward acceleration of ions from auroral acceleration regions. Finally, conical electron distributions are found to be consistent with transverse acceleration at altitudes of a thousand or more km, within or below the magnetic-field-aligned potential drops of the auroral acceleration regions.

  8. The electron accelerator for the AWAKE experiment at CERN

    NASA Astrophysics Data System (ADS)

    Pepitone, K.; Doebert, S.; Burt, G.; Chevallay, E.; Chritin, N.; Delory, C.; Fedosseev, V.; Hessler, Ch.; McMonagle, G.; Mete, O.; Verzilov, V.; Apsimon, R.

    2016-09-01

    The AWAKE collaboration prepares a proton driven plasma wakefield acceleration experiment using the SPS beam at CERN. A long proton bunch extracted from the SPS interacts with a high power laser and a 10 m long rubidium vapour plasma cell to create strong wakefields allowing sustained electron acceleration. The electron bunch to probe these wakefields is supplied by a 20 MeV electron accelerator. The electron accelerator consists of an RF-gun and a short booster structure. This electron source should provide beams with intensities between 0.1 and 1 nC, bunch lengths between 0.3 and 3 ps and an emittance of the order of 2 mm mrad. The wide range of parameters should cope with the uncertainties and future prospects of the planned experiments. The layout of the electron accelerator, its instrumentation and beam dynamics simulations are presented.

  9. Shock Acceleration of Solar Energetic Protons: The First 10 Minutes

    NASA Technical Reports Server (NTRS)

    Ng, Chee K.; Reames, Donald V.

    2008-01-01

    Proton acceleration at a parallel coronal shock is modeled with self-consistent Alfven wave excitation and shock transmission. 18 - 50 keV seed protons at 0.1% of plasma proton density are accelerated in 10 minutes to a power-law intensity spectrum rolling over at 300 MeV by a 2500km s-1 shock traveling outward from 3.5 solar radius, for typical coronal conditions and low ambient wave intensities. Interaction of high-energy protons of large pitch-angles with Alfven waves amplified by low-energy protons of small pitch angles is key to rapid acceleration. Shock acceleration is not significantly retarded by sunward streaming protons interacting with downstream waves. There is no significant second-order Fermi acceleration.

  10. Effect of gasoline octane quality on vehicle acceleration performance

    SciTech Connect

    Not Available

    1991-07-01

    A study was conducted under the auspices of the Coordinating Research Council, Inc. (CRC) to assess the potential effects of gasoline octane quality on vehicle acceleration performance. Twelve participating laboratories, representing both the oil and the automotive industries, tested a total of 182 vehicles as part of the 1989 CRC Octane Number Requirement Survey. The vehicles consisted of 78 with electronic knock control systems and 104 without. All testing was performed using the 1989/1990 CRC FBRU fuel series. The results showed that acceleration performance of vehicles with knock sensors was significantly affected by gasoline octane quality. Octane effects on acceleration performance were most pronounced at maximum-throttle (detent) conditions and at octane levels below the vehicles' octane requirements; however, some knock-sensor vehicles did show improved acceleration performance with fuels at octane levels above the octane number requirement. Acceleration performance in non-knock sensor vehicles was unaffected by octane quality.

  11. Effects of changing from non-accelerated to accelerated MRI for follow-up in brain atrophy measurement.

    PubMed

    Leung, Kelvin K; Malone, Ian M; Ourselin, Sebastien; Gunter, Jeffrey L; Bernstein, Matt A; Thompson, Paul M; Jack, Clifford R; Weiner, Michael W; Fox, Nick C

    2015-02-15

    Stable MR acquisition is essential for reliable measurement of brain atrophy in longitudinal studies. One attractive recent advance in MRI is to speed up acquisition using parallel imaging (e.g. reducing volumetric T1-weighted acquisition scan times from around 9 to 5 min). In some studies, a decision to change to an accelerated acquisition may have been deliberately taken, while in others repeat scans may occasionally be accidentally acquired with an accelerated acquisition. In ADNI, non-accelerated and accelerated scans were acquired in the same scanning session on each individual. We investigated the impact on brain atrophy as measured by k-means normalized boundary shift integral (KN-BSI) and deformation-based morphometry when changing from non-accelerated to accelerated MRI acquisitions over a 12-month interval using scans of 422 subjects from ADNI. KN-BSIs were calculated using both a non-accelerated baseline scan and non-accelerated 12-month scans (i.e. consistent acquisition), and a non-accelerated baseline scan and an accelerated 12-month scan (i.e. changed acquisition). Fluid-based non-rigid registration was also performed on those scans to estimate the brain atrophy rate. We found that the effect on KN-BSI and fluid-based non-rigid registration depended on the scanner manufacturer. For KN-BSI, in Philips and Siemens scanners, the change had very little impact on the measured atrophy rate (increase of 0.051% in Philips and -0.035% in Siemens from consistent acquisition to changed acquisition), whereas, in GE, the change caused a mean reduction of 0.65% in the brain atrophy rate. This is likely due to the difference in tissue contrast between gray matter and cerebrospinal fluid in the non-accelerated and accelerated scans in GE, which uses IR-FSPGR instead of MP-RAGE. For fluid-based non-rigid registration, the change caused a mean increase of 0.29% in the brain atrophy rate in the changed acquisition compared with consistent acquisition in Philips

  12. Ensuring the Consistency of Silicide Coatings

    NASA Technical Reports Server (NTRS)

    Ramani, V.; Lampson, F. K.

    1982-01-01

    Diagram specifies optimum fusing time for given thicknesses of refractory metal-silicide coatings on columbium C-103 substrates. Adherence to indicated fusion times ensures consistent coatings and avoids underdiffusion and overdiffusion. Accuracy of diagram has been confirmed by tests.

  13. On the initial state and consistency relations

    SciTech Connect

    Berezhiani, Lasha; Khoury, Justin E-mail: jkhoury@sas.upenn.edu

    2014-09-01

    We study the effect of the initial state on the consistency conditions for adiabatic perturbations. In order to be consistent with the constraints of General Relativity, the initial state must be diffeomorphism invariant. As a result, we show that initial wavefunctional/density matrix has to satisfy a Slavnov-Taylor identity similar to that of the action. We then investigate the precise ways in which modified initial states can lead to violations of the consistency relations. We find two independent sources of violations: i) the state can include initial non-Gaussianities; ii) even if the initial state is Gaussian, such as a Bogoliubov state, the modified 2-point function can modify the q-vector → 0 analyticity properties of the vertex functional and result in violations of the consistency relations.

  14. Safety performance functions incorporating design consistency variables.

    PubMed

    Montella, Alfonso; Imbriani, Lella Liana

    2015-01-01

    Highway design which ensures that successive elements are coordinated in such a way as to produce harmonious and homogeneous driver performances along the road is considered consistent and safe. On the other hand, an alignment which requires drivers to handle high speed gradients and does not meet drivers' expectancy is considered inconsistent and produces higher crash frequency. To increase the usefulness and the reliability of existing safety performance functions and contribute to solve inconsistencies of existing highways as well as inconsistencies arising in the design phase, we developed safety performance functions for rural motorways that incorporate design consistency measures. Since the design consistency variables were used only for curves, two different sets of models were fitted for tangents and curves. Models for the following crash characteristics were fitted: total, single-vehicle run-off-the-road, other single vehicle, multi vehicle, daytime, nighttime, non-rainy weather, rainy weather, dry pavement, wet pavement, property damage only, slight injury, and severe injury (including fatal). The design consistency parameters in this study are based on operating speed models developed through an instrumented vehicle equipped with a GPS continuous speed tracking from a field experiment conducted on the same motorway where the safety performance functions were fitted (motorway A16 in Italy). Study results show that geometric design consistency has a significant effect on safety of rural motorways. Previous studies on the relationship between geometric design consistency and crash frequency focused on two-lane rural highways since these highways have the higher crash rates and are generally characterized by considerable inconsistencies. Our study clearly highlights that the achievement of proper geometric design consistency is a key design element also on motorways because of the safety consequences of design inconsistencies. The design consistency measures

  15. Path-consistency: When space misses time

    SciTech Connect

    Chmeiss, A.; Jegou, P.

    1996-12-31

    Within the framework of constraint programming, particulary concerning the Constraint Satisfaction Problems (CSPs), the techniques of preprocessing based on filtering algorithms were shown to be very important for the search phase. In particular, two filtering methods have been studied, these methods exploit two properties of local consistency: arc- and path-consistency. Concerning the arc-consistency methods, there is a linear time algorithm (in the size of the problem) which is efficient in practice. But the limitations of the arc-consistency algorithms requires often filtering methods with higher order like path-consistency filterings. The best path-consistency algorithm proposed is PC-6, a natural generalization of AC-6 to path-consistency. Its time complexity is O(n{sup 3}d{sup 4}) and its space complexity is O(n{sup 3}d{sup 4}), where n is the number of variables and d is the size of domains. We have remarked that PC-6, though it is widely better than PC-4, was not very efficient in practice, specially for those classes of problems that require an important space to be run. Therefore, we propose here a new path-consistency algorithm called PC-7, its space complexity is O(n{sup 3}d{sup 4}) but its time complexity is O(n{sup 3}d{sup 4}) i.e. worse than that of PC-6. However, the simplicity of PC-7 as well as the data structures used for its implementation offer really a higher performance than PC-6. Furthermore, it turns out that when the size of domains is a constant of the problems, the time complexity of PC-7 becomes. like PC-6, optimal i.e. O(n{sup 3}).

  16. Projectile Combustion Effects on Ram Accelerator Performance

    NASA Astrophysics Data System (ADS)

    Chitale, Saarth Anjali

    University of Washington Abstract Projectile Combustion Effects on Ram Accelerator Performance Saarth Anjali Chitale Chair of the Supervisory Committee: Prof. Carl Knowlen William E. Boeing Department of Aeronautics and Astronautics The ram accelerator facility at the University of Washington is used to propel projectiles at supersonic velocities. This concept is similar to an air-breathing ramjet engine in that sub-caliber projectiles, shaped like the ramjet engine center-body, are shot through smooth-bore steel-walled tubes having an internal diameter of 38 mm. The ram accelerator propulsive cycles operate between Mach 2 to 10 and have the potential to accelerate projectile to velocities greater than 8 km/s. The theoretical thrust versus Mach number characteristics can be obtained using knowledge of gas dynamics and thermodynamics that goes into the design of the ram accelerator. The corresponding velocity versus distance profiles obtained from the test runs at the University of Washington, however, are often not consistent with the theoretical predictions after the projectiles reach in-tube Mach numbers greater than 4. The experimental velocities are typically greater than the expected theoretical predictions; which has led to the proposition that the combustion process may be moving up onto the projectile. An alternative explanation for higher than predicted thrust, which is explored here, is that the performance differences can be attributed to the ablation of the projectile body which results in molten metal being added to the flow of the gaseous combustible mixture around the projectile. This molten metal is assumed to mix uniformly and react with the gaseous propellant; thereby enhancing the propellant energy release and altering the predicted thrust-Mach characteristics. This theory predicts at what Mach number the projectile will first experience enhanced thrust and the corresponding velocity-distance profile. Preliminary results are in good agreement

  17. Oblique Shock Wave Effects on Impulsively Accelerated Heavy Gas Column

    NASA Astrophysics Data System (ADS)

    Olmstead, Dell T.

    An experimental study was performed to elucidate the fundamental physics of shock-induced mixing for a simple three-dimensional interface. The interface studied consists of a gravity stabilized SF6-based heavy gas jet that produced a circular column with a diffuse interface into the surrounding air. The effects of density gradient (Atwood number, A), shock strength (Mach number, M), and column inclination angle (theta) were examined. Concentration was measured using Planar Laser Induced Fluorescence (PLIF) of an acetone vapor tracer mixed with the heavy gas jet and illuminated by a pulsed Nd-YAG laser. Shocks with Mach numbers of 1.13, 1.5, 1.7, and 2.0 were used for inclinations of 0° (planar normal shock wave), 20° and 30°. Columns with Atwood numbers of 0.25, 0.4, and 0.60 were tested at Mach 1.7 for inclinations of 0° and 20°. The oblique shock-accelerated cylindrical interface produced a typical Richtmyer-Meshkov instability (RMI) consisting of a primary counter-rotating vortices. The streamwise extent of the vortex pair in the centerline plane (cross-section) images of the column is proportional to √A/√ M, regardless of oblique shock angle for theta < 20. A heretofore unseen manifestation of Kelvin-Helmholtz (K-H) waves on the upstream edge of the column appear for oblique shock acceleration. The upstream edge K-H waves were observed in images from a vertical plane through the center of the column. The wavelength of the upstream edge K-H waves is proportional to theta/M ˙ √A. This upstream edge K-H instability (KHI) caused earlier onset of secondary instabilities in the primary RMI vortices seen in the centerline plane images. The combination of more rapid onset of secondary instabilities in the RMI and upstream edge KHI accelerated transition to turbulence and thus reduced the time to achieve well-mixed flow. Time to reach well-mixed flow was inversely related to Atwood number, and had a weak correlation with Mach number for M>1.13. Transition to

  18. Acceleration in Linear and Circular Motion

    ERIC Educational Resources Information Center

    Kellington, S. H.; Docherty, W.

    1975-01-01

    Describes the construction of a simple accelerometer and explains its use in demonstrating acceleration, deceleration, constant speed, measurement of acceleration, acceleration and the inclined plane and angular and radial acceleration. (GS)

  19. Self-consistent asset pricing models

    NASA Astrophysics Data System (ADS)

    Malevergne, Y.; Sornette, D.

    2007-08-01

    We discuss the foundations of factor or regression models in the light of the self-consistency condition that the market portfolio (and more generally the risk factors) is (are) constituted of the assets whose returns it is (they are) supposed to explain. As already reported in several articles, self-consistency implies correlations between the return disturbances. As a consequence, the alphas and betas of the factor model are unobservable. Self-consistency leads to renormalized betas with zero effective alphas, which are observable with standard OLS regressions. When the conditions derived from internal consistency are not met, the model is necessarily incomplete, which means that some sources of risk cannot be replicated (or hedged) by a portfolio of stocks traded on the market, even for infinite economies. Analytical derivations and numerical simulations show that, for arbitrary choices of the proxy which are different from the true market portfolio, a modified linear regression holds with a non-zero value αi at the origin between an asset i's return and the proxy's return. Self-consistency also introduces “orthogonality” and “normality” conditions linking the betas, alphas (as well as the residuals) and the weights of the proxy portfolio. Two diagnostics based on these orthogonality and normality conditions are implemented on a basket of 323 assets which have been components of the S&P500 in the period from January 1990 to February 2005. These two diagnostics show interesting departures from dynamical self-consistency starting about 2 years before the end of the Internet bubble. Assuming that the CAPM holds with the self-consistency condition, the OLS method automatically obeys the resulting orthogonality and normality conditions and therefore provides a simple way to self-consistently assess the parameters of the model by using proxy portfolios made only of the assets which are used in the CAPM regressions. Finally, the factor decomposition with the

  20. SLIM, Short-pulse Technology for High Gradient Induction Accelerators

    SciTech Connect

    Arntz, Floyd; Kardo-Sysoev, A.; Krasnykh, A.; /SLAC

    2008-12-16

    A novel short-pulse concept (SLIM) suited to a new generation of a high gradient induction particle accelerators is described herein. It applies advanced solid state semiconductor technology and modern microfabrication techniques to a coreless induction method of charged particle acceleration first proven on a macro scale in the 1960's. Because this approach avoids use of magnetic materials there is the prospect of such an accelerator working efficiently with accelerating pulses in the nanosecond range and, potentially, at megahertz pulse rates. The principal accelerator section is envisioned as a stack of coreless induction cells, the only active element within each being a single, extremely fast (subnanosecond) solid state opening switch: a Drift Step Recovery Diode (DSRD). Each coreless induction cell incorporates an electromagnetic pulse compressor in which inductive energy developed within a transmission-line feed structure over a period of tens of nanoseconds is diverted to the acceleration of the passing charge packet for a few nanoseconds by the abrupt opening of the DSRD switch. The duration of this accelerating output pulse--typically two-to-four nanoseconds--is precisely determined by a microfabricated pulse forming line connected to the cell. Because the accelerating pulse is only nanoseconds in duration, longitudinal accelerating gradients approaching 100 MeV per meter are believed to be achievable without inciting breakdown. Further benefits of this approach are that, (1) only a low voltage power supply is required to produce the high accelerating gradient, and, (2) since the DSRD switch is normally closed, voltage stress is limited to a few nanoseconds per period, hence the susceptibility to hostile environment conditions such as ionizing radiation, mismatch (e.g. in medical applications the peak beam current may be low), strong electromagnetic noise levels, etc is expected to be minimal. Finally, we observe the SLIM concept is not limited to linac

  1. Self-Consistent Non-Stationary Theory of Multipactor in DLA Structures

    SciTech Connect

    Sinitsyn, O. V.; Nusinovich, G. S.; Antonsen, T. M.; Kishek, R.

    2009-01-22

    In this paper a non-stationary self-consistent theoretical model of multipactor in dielectric loaded accelerator structures is proposed. In comparison with our previous work, the effects of the cylindricity are included. The corresponding numerical implementation of the model is described and some simulation results are shown.

  2. MHD turbulence, reconnection, and test-particle acceleration

    NASA Technical Reports Server (NTRS)

    Gray, Perry C.; Matthaeus, William H.

    1992-01-01

    We examine homogeneous MHD turbulence and turbulent magnetic reconnection as possible mechanisms for accelerating cosmic ray particles. Test particle calculations are performed using fields from MHD simulations, and initially Maxwellian particle distributions are shown to evolve into power-law distributions. Simple estimates for both the maximum energy attainable and the mean energies of the accelerated particles are fairly successful and are consistent with timescales for flares and cosmic rays.

  3. ACCELERATING AND COLLIDING POLARIZED PROTONS IN RHIC WITH SIBERIAN SNAKES.

    SciTech Connect

    ROSER,T.; AHRENS,L.; ALESSI,J.; BAI,M.; BEEBE - WANG,J.; BRENNAN,J.M.; BROWN,K.A.; BUNCE,G.; CAMERON,P.; COURANT,E.D.; DREES,A.; FISCHER,W.; ET AL

    2002-06-02

    We successfully injected polarized protons in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. Each snake consists of four helical superconducting dipoles which rotate the polarization by 180{sup o} about a horizontal axis. This is the first time that polarized protons have been accelerated to 100 GeV. We report on our experiences during commissioning and operation of collider with polarized protons.

  4. An objective determination of +Gz acceleration tolerance

    NASA Technical Reports Server (NTRS)

    Sandler, H.; Rositano, S. A.; McCutcheon, E. P.

    1977-01-01

    Until recently, human +Gz acceleration tolerance has relied solely on subjective criteria relating to loss of vision. By use of newly developed noninvasive instrumentation using a transcutaneous Doppler flow system, objective end point criteria have been developed based on measured blood flow to the head. The system consists of miniature 8 MHz Doppler sensors (2 x 1 x 0.5 cm) placed on the forehead over both frontal branches of the temporal arteries to detect blood flow velocity from back scattered ultrasound. Its use has allowed for correlation of altered, decreased and actual reversal of eye level blood flow with subsequent central light loss. Over 100 subjects have now been studied during more than 2,000 centrifuge runs. Objective changes in temporal artery flow velocity consistently preceded visual degradation for each subject during all acceleration profiles. No subject has gone unconscious without first exhibiting a minimum 6 sec of total flow cessation. Retrograde flow followed by complete flow cessation always preceded central light loss. Results indicate that this method can be successfully used with a wide variety of tasks during exposure to +Gz acceleration. It is recommended for use during evaluation of protective maneuvers or devices on the centrifuge or during actual flight in high performance aircraft. It may also serve as a potential safety monitor during space Shuttle re-entry if there is doubt about a passenger's cardiovascular status.

  5. Commissioning of the Ground Test Accelerator RFQ

    SciTech Connect

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Connolly, R.; Garnett, R.; Gilpatrick, J.D.; Guy, F.W.; Ingalls, W.B.; Little, C.; Lohson, R.A.; Lloyd, S.; Neuschaefer, G.; Power, J.; Saadatmand, K.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-01-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H{sup {minus}} beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 key H{sup {minus}} injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2{beta}{gamma} Drift Tube Linac (DTL-1) module, the 8.7 MeV 2{beta}{gamma} DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the RFQ beam experiments will be presented along with comparisons to simulations.

  6. Commissioning of the Ground Test Accelerator RFQ

    SciTech Connect

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Connolly, R.; Garnett, R.; Gilpatrick, J.D.; Guy, F.W.; Ingalls, W.B.; Little, C.; Lohson, R.A.; Lloyd, S.; Neuschaefer, G.; Power, J.; Saadatmand, K.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-09-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H{sup {minus}} beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 key H{sup {minus}} injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2{beta}{gamma} Drift Tube Linac (DTL-1) module, the 8.7 MeV 2{beta}{gamma} DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the RFQ beam experiments will be presented along with comparisons to simulations.

  7. Entropy-based consistent model driven architecture

    NASA Astrophysics Data System (ADS)

    Niepostyn, Stanisław Jerzy

    2016-09-01

    A description of software architecture is a plan of the IT system construction, therefore any architecture gaps affect the overall success of an entire project. The definitions mostly describe software architecture as a set of views which are mutually unrelated, hence potentially inconsistent. Software architecture completeness is also often described in an ambiguous way. As a result most methods of IT systems building comprise many gaps and ambiguities, thus presenting obstacles for software building automation. In this article the consistency and completeness of software architecture are mathematically defined based on calculation of entropy of the architecture description. Following this approach, in this paper we also propose our method of automatic verification of consistency and completeness of the software architecture development method presented in our previous article as Consistent Model Driven Architecture (CMDA). The proposed FBS (Functionality-Behaviour-Structure) entropy-based metric applied in our CMDA approach enables IT architects to decide whether the modelling process is complete and consistent. With this metric, software architects could assess the readiness of undergoing modelling work for the start of IT system building. It even allows them to assess objectively whether the designed software architecture of the IT system could be implemented at all. The overall benefit of such an approach is that it facilitates the preparation of complete and consistent software architecture more effectively as well as it enables assessing and monitoring of the ongoing modelling development status. We demonstrate this with a few industry examples of IT system designs.

  8. Symmetric smoothing filters from global consistency constraints.

    PubMed

    Haque, Sheikh Mohammadul; Pai, Gautam P; Govindu, Venu Madhav

    2015-05-01

    Many patch-based image denoising methods can be viewed as data-dependent smoothing filters that carry out a weighted averaging of similar pixels. It has recently been argued that these averaging filters can be improved using their doubly stochastic approximation, which are symmetric and stable smoothing operators. In this paper, we introduce a simple principle of consistency that argues that the relative similarities between pixels as imputed by the averaging matrix should be preserved in the filtered output. The resultant consistency filter has the theoretically desirable properties of being symmetric and stable, and is a generalized doubly stochastic matrix. In addition, we can also interpret our consistency filter as a specific form of Laplacian regularization. Thus, our approach unifies two strands of image denoising methods, i.e., symmetric smoothing filters and spectral graph theory. Our consistency filter provides high-quality image denoising and significantly outperforms the doubly stochastic version. We present a thorough analysis of the properties of our proposed consistency filter and compare its performance with that of other significant methods for image denoising in the literature.

  9. Ion Accelerator With Negatively Biased Decelerator Grid

    NASA Technical Reports Server (NTRS)

    Brophy, John R.

    1994-01-01

    Three-grid ion accelerator in which accelerator grid is biased at negative potential and decelerator grid downstream of accelerator grid biased at smaller negative potential. This grid and bias arrangement reduces frequency of impacts, upon accelerator grid, of charge-exchange ions produced downstream in collisions between accelerated ions and atoms and molecules of background gas. Sputter erosion of accelerator grid reduced.

  10. Optimizing laser-driven proton acceleration from overdense targets

    PubMed Central

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range. PMID:27435449

  11. Optimizing laser-driven proton acceleration from overdense targets.

    PubMed

    Stockem Novo, A; Kaluza, M C; Fonseca, R A; Silva, L O

    2016-07-20

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range.

  12. Personalized recommendation based on unbiased consistence

    NASA Astrophysics Data System (ADS)

    Zhu, Xuzhen; Tian, Hui; Zhang, Ping; Hu, Zheng; Zhou, Tao

    2015-08-01

    Recently, in physical dynamics, mass-diffusion-based recommendation algorithms on bipartite network provide an efficient solution by automatically pushing possible relevant items to users according to their past preferences. However, traditional mass-diffusion-based algorithms just focus on unidirectional mass diffusion from objects having been collected to those which should be recommended, resulting in a biased causal similarity estimation and not-so-good performance. In this letter, we argue that in many cases, a user's interests are stable, and thus bidirectional mass diffusion abilities, no matter originated from objects having been collected or from those which should be recommended, should be consistently powerful, showing unbiased consistence. We further propose a consistence-based mass diffusion algorithm via bidirectional diffusion against biased causality, outperforming the state-of-the-art recommendation algorithms in disparate real data sets, including Netflix, MovieLens, Amazon and Rate Your Music.

  13. Quantifying the Consistency of Scientific Databases

    PubMed Central

    Šubelj, Lovro; Bajec, Marko; Mileva Boshkoska, Biljana; Kastrin, Andrej; Levnajić, Zoran

    2015-01-01

    Science is a social process with far-reaching impact on our modern society. In recent years, for the first time we are able to scientifically study the science itself. This is enabled by massive amounts of data on scientific publications that is increasingly becoming available. The data is contained in several databases such as Web of Science or PubMed, maintained by various public and private entities. Unfortunately, these databases are not always consistent, which considerably hinders this study. Relying on the powerful framework of complex networks, we conduct a systematic analysis of the consistency among six major scientific databases. We found that identifying a single "best" database is far from easy. Nevertheless, our results indicate appreciable differences in mutual consistency of different databases, which we interpret as recipes for future bibliometric studies. PMID:25984946

  14. Accelerator simulation of astrophysical processes

    NASA Technical Reports Server (NTRS)

    Tombrello, T. A.

    1983-01-01

    Phenomena that involve accelerated ions in stellar processes that can be simulated with laboratory accelerators are described. Stellar evolutionary phases, such as the CNO cycle, have been partially explored with accelerators, up to the consumption of He by alpha particle radiative capture reactions. Further experimentation is indicated on reactions featuring N-13(p,gamma)O-14, O-15(alpha, gamma)Ne-19, and O-14(alpha,p)F-17. Accelerated beams interacting with thin foils produce reaction products that permit a determination of possible elemental abundances in stellar objects. Additionally, isotopic ratios observed in chondrites can be duplicated with accelerator beam interactions and thus constraints can be set on the conditions producing the meteorites. Data from isotopic fractionation from sputtering, i.e., blasting surface atoms from a material using a low energy ion beam, leads to possible models for processes occurring in supernova explosions. Finally, molecules can be synthesized with accelerators and compared with spectroscopic observations of stellar winds.

  15. Laser acceleration and its future

    PubMed Central

    Tajima, Toshiki

    2010-01-01

    Laser acceleration is based on the concept to marshal collective fields that may be induced by laser. In order to exceed the material breakdown field by a large factor, we employ the broken-down matter of plasma. While the generated wakefields resemble with the fields in conventional accelerators in their structure (at least qualitatively), it is their extreme accelerating fields that distinguish the laser wakefield from others, amounting to tiny emittance and compact accelerator. The current research largely falls on how to master the control of acceleration process in spatial and temporal scales several orders of magnitude smaller than the conventional method. The efforts over the last several years have come to a fruition of generating good beam properties with GeV energies on a table top, leading to many applications, such as ultrafast radiolysis, intraoperative radiation therapy, injection to X-ray free electron laser, and a candidate for future high energy accelerators. PMID:20228616

  16. Accelerating Spectrum Sharing Technologies

    SciTech Connect

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.

  17. Accelerated Decay of Radioisotopes

    DTIC Science & Technology

    2013-01-01

    00-01 -2013 Technical June20 l l-June 2012 4 . TITLE AND SUBTITLE Sa. CONTRACT NUMBER DTRA MIPR 11-2362M Accelerated Decay of Radioisotopes Sb...268 x E +2 4.788 026 x E -2 6.894 757 4.535 924 x E -1 4.214 011 x E -2 1.601 846 x E +1 1.000 000 x E -2 2.579 760 x E - 4 1.000 000 x E -8...c a y o f R a d i o i s o t o p e s " P r o p o s a l # B R C A L L 0 7 - N - 2 - 0 0 4 7 I l l u s t r a t i o n o f \\ P F R P a s p o

  18. Understanding projectile acceleration.

    PubMed

    Hecht, H; Bertamini, M

    2000-04-01

    Throwing and catching balls or other objects is a generally highly practiced skill; however, conceptual as well as perceptual understanding of the mechanics that underlie this skill is surprisingly poor. In 5 experiments, we investigated conceptual and perceptual understanding of simple ballistic motion. Paper-and-pencil tests revealed that up to half of all participants mistakenly believed that a ball would continue to accelerate after it left the thrower's hand. Observers also showed a remarkable tolerance for anomalous trajectory shapes. Perceptual judgments based on graphics animations replicated these erroneous beliefs for shallow release angles. Observers' tolerance for anomalies tended to decrease with their distance from the actor. The findings are at odds with claims of the naive physics literature that liken intuitive understanding to Aristotelian or medieval physics theories. Instead, observers seem to project their intentions to the ball itself (externalization) or even feel that they have power over the ball when it is still close.

  19. Pulsed electromagnetic acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1973-01-01

    Direct measurements of the power deposited in the anode of a multimegawatt MPD accelerator using thermocouples attached to a thin shell anode reveal a dramatic decrease in the fractional anode power from 50% at 200 KW input power to less than 10% at 20 MW power. The corresponding local power flux peak at a value of 10,000 W/sq cm at the lip of the anode exhaust orifice, a distribution traced to a corresponding peak in the local current density at the anode. A comparison of voltage-current characteristics and spectral photographs of the MPD discharge using quartz, boron nitride and plexiglas insulators with various mass injection configurations led to the identification of different voltage modes and regions of ablation free operation. The technique of piezoelectric impact pressure measurement in the MPD exhaust flow was refined to account for the effects due to probe yaw angle.

  20. Linac-accelerator-radiosurgery.

    PubMed

    Sturm, V; Schlegel, W; Pastyr, O; Treuer, H; Voges, J; Müller, R P; Lorenz, W J

    1993-01-01

    A survey is given of the actual possibilities and limitations of the use of linear accelerators (Linac radiosurgery systems) for intra = cranial radiosurgery. Depending on the collimator size, spherical fields from 5-54 mm in diameter can be irradiated with dose gradients from 10% (large fields) to 20% (small fields) per millimeter distance between surface and treatment volume. This is comparable to the possibilities of Gamma-Knife and Proton-irradiation. Optimal mechanical adjustment of gantry and linac table are necessary for the required stability of the isocenter. Mechanical inaccuracy should be smaller than 0.8 mm. Advanced computerized 3D-treatment planning systems are indispensable prerequisites for accurate treatment and use of the flexibility of the linac system. Future developments are outlined.

  1. Network acceleration techniques

    NASA Technical Reports Server (NTRS)

    Crowley, Patricia (Inventor); Awrach, James Michael (Inventor); Maccabe, Arthur Barney (Inventor)

    2012-01-01

    Splintered offloading techniques with receive batch processing are described for network acceleration. Such techniques offload specific functionality to a NIC while maintaining the bulk of the protocol processing in the host operating system ("OS"). The resulting protocol implementation allows the application to bypass the protocol processing of the received data. Such can be accomplished this by moving data from the NIC directly to the application through direct memory access ("DMA") and batch processing the receive headers in the host OS when the host OS is interrupted to perform other work. Batch processing receive headers allows the data path to be separated from the control path. Unlike operating system bypass, however, the operating system still fully manages the network resource and has relevant feedback about traffic and flows. Embodiments of the present disclosure can therefore address the challenges of networks with extreme bandwidth delay products (BWDP).

  2. Paraelectric gas flow accelerator

    NASA Technical Reports Server (NTRS)

    Sherman, Daniel M. (Inventor); Wilkinson, Stephen P. (Inventor); Roth, J. Reece (Inventor)

    2001-01-01

    A substrate is configured with first and second sets of electrodes, where the second set of electrodes is positioned asymmetrically between the first set of electrodes. When a RF voltage is applied to the electrodes sufficient to generate a discharge plasma (e.g., a one-atmosphere uniform glow discharge plasma) in the gas adjacent to the substrate, the asymmetry in the electrode configuration results in force being applied to the active species in the plasma and in turn to the neutral background gas. Depending on the relative orientation of the electrodes to the gas, the present invention can be used to accelerate or decelerate the gas. The present invention has many potential applications, including increasing or decreasing aerodynamic drag or turbulence, and controlling the flow of active and/or neutral species for such uses as flow separation, altering heat flow, plasma cleaning, sterilization, deposition, etching, or alteration in wettability, printability, and/or adhesion.

  3. Lectures in accelerator theory

    SciTech Connect

    Month, M

    1980-01-01

    Lecture I deals with the behavior of particles in the nonlinear field arising from the electromagnetic interaction of colliding beams. The case treated, that of counter-rotating proton beams crossing each other at a non-zero angle, has the simple feature that the force between the beam is one dimensional. In lecture II, an analysis of the development of traveling waves on particle beams is presented. The situation studied is that of a uniform beam current in a circular accelerator and the excitation for the coherent motion is induced by the resistivity of the vacuum chamber wall. Finally, in lecture III, a description of the current accumulation process used at the proton storage rings at CERN (The ISR) is given. Particle pulses of rather low average current are injected and stored along the length and width of the vacuum chamber. The efficiency is very high and large currents (over 40 amperes) have been achieved.

  4. HIGH ENERGY PARTICLE ACCELERATOR

    DOEpatents

    Courant, E.D.; Livingston, M.S.; Snyder, H.S.

    1959-04-14

    An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

  5. The gravitational acceleration of antimatter

    SciTech Connect

    Holzscheiter, M.H.

    1994-06-01

    We have proposed measuring the acceleration of antiprotons in the Earth`s gravitational field by launching antiprotons from a thermal distribution at 4 K upwards against the force of gravity and measuring their time-of-flight (TOF). The TOF distribution thus obtained will exhibit a cut-off representing the minimum kinetic energy necessary to reach the detector at the top of the experiment. The cut-off time is independent of the inertial mass of the particles and is a direct measure of g for the particles studied. We propose to compare the cut-off time, and thereby g, of negative hydrogen ions and antiprotons. The single most difficult problem to be solved for this method consists of shielding all stray-electric fields to a level where the force of gravity is dominating force acting on the particle. Alternative methods for reducing the effect of stray-electric fields are discussed and a brief analysis of experimental possibilities using neutral antihydrogen atoms is presented.

  6. Dynamically consistent Jacobian inverse for mobile manipulators

    NASA Astrophysics Data System (ADS)

    Ratajczak, Joanna; Tchoń, Krzysztof

    2016-06-01

    By analogy to the definition of the dynamically consistent Jacobian inverse for robotic manipulators, we have designed a dynamically consistent Jacobian inverse for mobile manipulators built of a non-holonomic mobile platform and a holonomic on-board manipulator. The endogenous configuration space approach has been exploited as a source of conceptual guidelines. The new inverse guarantees a decoupling of the motion in the operational space from the forces exerted in the endogenous configuration space and annihilated by the dual Jacobian inverse. A performance study of the new Jacobian inverse as a tool for motion planning is presented.

  7. Brane assisted quintessential inflation with transient acceleration

    SciTech Connect

    Bento, M. C.; Santos, N. M. C.; Gonzalez Felipe, R.

    2008-06-15

    A simple model of quintessential inflation with the modified exponential potential e{sup -{alpha}}{sup {phi}}[A+({phi}-{phi}{sub 0}){sup 2}] is analyzed in the braneworld context. Considering reheating via instant preheating, it is shown that the evolution of the scalar field {phi} from inflation to the present epoch is consistent with the observational constraints in a wide region of the parameter space. The model exhibits transient acceleration at late times for 0.96 < or approx. A{alpha}{sup 2} < or approx. 1.26 and 271 < or approx. {phi}{sub 0}{alpha} < or approx. 273, while permanent acceleration is obtained for 2.3x10{sup -8} < or approx. A{alpha}{sup 2} < or approx. 0.98 and 255 < or approx. {phi}{sub 0}{alpha} < or approx. 273. The steep parameter {alpha} is constrained to be in the range 5.3 < or approx. {alpha} < or approx. 10.8.

  8. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Obayashi, Tatsuzo

    1988-01-01

    The purpose of Space Experiments with Particle Accelerators (SEPAC) on the Atmospheric Laboratory for Applications and Science (ATLAS 1) mission, is to carry out active and interactive experiments on and in the earth's ionosphere, atmosphere, and magnetosphere. The instruments to be used are an electron beam accelerator (EBA), plasma contactor, and associated instruments the purpose of which is to perform diagnostic, monitoring, and general data taking functions. Four major classes of investigations are to be performed by SEPAC. They are: beam plasma physics, beam-atmosphere interactions, the use of modulated electron beams as transmitting antennas, and the use of electron beams for remote sensing of electric and magnetic fields. The first class consists mainly of onboard plasma physics experiments to measure the effects of phenomena in the vicinity of the shuttle. The last three are concerned with remote effects and are supported by other ATLAS 1 investigations as well as by ground-based observations.

  9. Is schizophrenia a syndrome of accelerated aging?

    PubMed

    Kirkpatrick, Brian; Messias, Erick; Harvey, Philip D; Fernandez-Egea, Emilio; Bowie, Christopher R

    2008-11-01

    Schizophrenia is associated with a number of anatomical and physiological abnormalities outside of the brain, as well as with a decrease in average life span estimated at 20% in the United States. Some studies suggest that this increased mortality is not entirely due to associated causes such as suicide and the use of psychotropic medications. In this article, in order to focus greater attention on the increased mortality associated with schizophrenia, we present a special case of the hypothesis that physiological abnormalities associated with schizophrenia make a contribution to the increased mortality of schizophrenia: specifically, the hypothesis that schizophrenia is a syndrome of accelerated aging. Evidence consistent with this hypothesis comes from several areas. The biological plausibility of the hypothesis is supported by the existence of established syndromes of accelerated aging and by the sharing of risk factors between schizophrenia and other age-related conditions. We propose methods for testing the hypothesis.

  10. Cast dielectric composite linear accelerator

    DOEpatents

    Sanders, David M.; Sampayan, Stephen; Slenes, Kirk; Stoller, H. M.

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  11. NIIEFA accelerators for applied purposes

    NASA Astrophysics Data System (ADS)

    Vorogushin, M. F.; Strokach, A. P.; Filatov, O. G.

    2016-12-01

    Since the foundation of the institute, we have designed and delivered more than three hundred different accelerators to Russia and abroad: cyclotrons, linear accelerators, and neutron generators. The technical characteristics of our equipment makes it competitive on the international market. Here we present the application, main parameters, and status of accelerators manufactured by NIIEFA, as well as prospects for the development of electrophysical systems for applied purposes.

  12. Collective accelerator for electron colliders

    SciTech Connect

    Briggs, R.J.

    1985-05-13

    A recent concept for collective acceleration and focusing of a high energy electron bunch is discussed, in the context of its possible applicability to large linear colliders in the TeV range. The scheme can be considered to be a member of the general class of two-beam accelerators, where a high current, low voltage beam produces the acceleration fields for a trailing high energy bunch.

  13. Basic concepts in plasma accelerators.

    PubMed

    Bingham, Robert

    2006-03-15

    In this article, we present the underlying physics and the present status of high gradient and high-energy plasma accelerators. With the development of compact short pulse high-brightness lasers and electron and positron beams, new areas of studies for laser/particle beam-matter interactions is opening up. A number of methods are being pursued vigorously to achieve ultra-high-acceleration gradients. These include the plasma beat wave accelerator (PBWA) mechanism which uses conventional long pulse ( approximately 100 ps) modest intensity lasers (I approximately 10(14)-10(16) W cm(-2)), the laser wakefield accelerator (LWFA) which uses the new breed of compact high-brightness lasers (<1 ps) and intensities >10(18) W cm(-2), self-modulated laser wakefield accelerator (SMLWFA) concept which combines elements of stimulated Raman forward scattering (SRFS) and electron acceleration by nonlinear plasma waves excited by relativistic electron and positron bunches the plasma wakefield accelerator. In the ultra-high intensity regime, laser/particle beam-plasma interactions are highly nonlinear and relativistic, leading to new phenomenon such as the plasma wakefield excitation for particle acceleration, relativistic self-focusing and guiding of laser beams, high-harmonic generation, acceleration of electrons, positrons, protons and photons. Fields greater than 1 GV cm(-1) have been generated with monoenergetic particle beams accelerated to about 100 MeV in millimetre distances recorded. Plasma wakefields driven by both electron and positron beams at the Stanford linear accelerator centre (SLAC) facility have accelerated the tail of the beams.

  14. ADVANCED X-BAND TEST ACCELERATOR FOR HIGH BRIGHTNESS ELECTRON AND GAMMA RAY BEAMS

    SciTech Connect

    Marsh, R A; Anderson, S G; Barty, C P; Chu, T S; Ebbers, C A; Gibson, D J; Hartemann, F V; Adolphsen, C; Jongewaard, E N; Raubenheimer, T; Tantawi, S G; Vlieks, A E; Wang, J W

    2010-05-12

    In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

  15. Advanced X-Band Test Accelerator for High Brightness Electron and Gamma Ray Beams

    SciTech Connect

    Marsh, Roark; Anderson, Scott; Barty, Christopher; Chu, Tak Sum; Ebbers, Chris; Gibson, David; Hartemann, Fred; Adolphsen, Chris; Jongewaard, Erik; Raubenheimer, Tor; Tantawi, Sami; Vlieks, Arnold; Wang, Juwen; /SLAC

    2012-07-03

    In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

  16. Compact accelerator for medical therapy

    DOEpatents

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  17. Accelerator based epithermal neutron source

    NASA Astrophysics Data System (ADS)

    Taskaev, S. Yu.

    2015-11-01

    We review the current status of the development of accelerator sources of epithermal neutrons for boron neutron capture therapy (BNCT), a promising method of malignant tumor treatment. Particular attention is given to the source of epithermal neutrons on the basis of a new type of charged particle accelerator: tandem accelerator with vacuum insulation and lithium neutron-producing target. It is also shown that the accelerator with specialized targets makes it possible to generate fast and monoenergetic neutrons, resonance and monoenergetic gamma-rays, alpha-particles, and positrons.

  18. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  19. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  20. Accelerators for research and applications

    SciTech Connect

    Alonso, J.R.

    1990-06-01

    The newest particle accelerators are almost always built for extending the frontiers of research, at the cutting edge of science and technology. Once these machines are operating and these technologies mature, new applications are always found, many of which touch our lives in profound ways. The evolution of accelerator technologies will be discussed, with descriptions of accelerator types and characteristics. The wide range of applications of accelerators will be discussed, in fields such as nuclear science, medicine, astrophysics and space-sciences, power generation, airport security, materials processing and microcircuit fabrication. 13 figs.