Science.gov

Sample records for acceleration takes place

  1. Does olfactory specific satiety take place in a natural setting?

    PubMed

    Fernandez, P; Bensafi, M; Rouby, C; Giboreau, A

    2013-01-01

    Olfactory-specific satiety (OSS) is characterized by a specific decrease in the odor pleasantness of a food eaten to satiety or smelled without ingestion. The usual protocol for studying OSS takes place in laboratory, a setting rather removed from the real world. Here, we set out to examine OSS in a natural setting: during a meal in a restaurant. We hypothesized that an aroma contained in a food that is eaten at the beginning of a meal decreases the pleasantness of the flavor of a food with the same aroma eaten at the end of the meal. In the first experiment (Experiment 1), a test group received an appetizer flavored with a test aroma (anise) at the beginning of the meal. After the main dish, they received a dessert flavored with the same aroma. A control group received the same aromatized dessert, but after a non-aromatized appetizer. This experiment was replicated (Experiment 2) using verbena as the test aroma. For both experiments, results revealed that aroma pleasantness, but not intensity or familiarity, significantly decreased in the test groups vs. the control groups. These findings extend the concept of OSS to a realistic eating context. PMID:23079143

  2. 49 CFR 40.221 - Where does an alcohol test take place?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Where does an alcohol test take place? 40.221... WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Testing Sites, Forms, Equipment and Supplies Used in Alcohol Testing § 40.221 Where does an alcohol test take place? (a) A DOT alcohol test must take place at...

  3. 49 CFR 40.221 - Where does an alcohol test take place?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Where does an alcohol test take place? 40.221... WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Testing Sites, Forms, Equipment and Supplies Used in Alcohol Testing § 40.221 Where does an alcohol test take place? (a) A DOT alcohol test must take place at...

  4. 49 CFR 40.221 - Where does an alcohol test take place?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Where does an alcohol test take place? 40.221... WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Testing Sites, Forms, Equipment and Supplies Used in Alcohol Testing § 40.221 Where does an alcohol test take place? (a) A DOT alcohol test must take place at...

  5. Kiwifruit: taking its place in the global fruit bowl.

    PubMed

    Ward, Carol; Courtney, David

    2013-01-01

    While the world total production of kiwifruit has increased by over 50% during the last decade, the kiwifruit remains a niche fruit, taking up an estimated 0.22% of the global fruit bowl, which is dominated by apples, oranges, and bananas. Even though kiwifruit's share of the global fruit bowl has remained largely unchanged over the past 15 years, the scope for growth in the category is significant, with the nutritional and production characteristics of kiwifruit being on the right side of key global consumer trends around health and sustainability. Taking advantage of these consumer trends is one of two key challenges for the global kiwifruit industry. The second challenge is to harness the diverse natural and cultivated range of kiwifruit varieties (colors, flavors, sizes, and shapes) to stimulate the interest of consumers and grow the share of kiwifruit in the fruit basket through selecting cultivars that can develop meaningful market segments and meet consumer demand.

  6. Kiwifruit: taking its place in the global fruit bowl.

    PubMed

    Ward, Carol; Courtney, David

    2013-01-01

    While the world total production of kiwifruit has increased by over 50% during the last decade, the kiwifruit remains a niche fruit, taking up an estimated 0.22% of the global fruit bowl, which is dominated by apples, oranges, and bananas. Even though kiwifruit's share of the global fruit bowl has remained largely unchanged over the past 15 years, the scope for growth in the category is significant, with the nutritional and production characteristics of kiwifruit being on the right side of key global consumer trends around health and sustainability. Taking advantage of these consumer trends is one of two key challenges for the global kiwifruit industry. The second challenge is to harness the diverse natural and cultivated range of kiwifruit varieties (colors, flavors, sizes, and shapes) to stimulate the interest of consumers and grow the share of kiwifruit in the fruit basket through selecting cultivars that can develop meaningful market segments and meet consumer demand. PMID:23394979

  7. 2012 CCCC Chair's Address: Stories Take Place--A Performance in One Act

    ERIC Educational Resources Information Center

    Powell, Malea

    2012-01-01

    This is a written version of the address that Malea Powell gave at the Conference on College Composition and Communication (CCCC) Convention in St. Louis, Missouri, on Thursday, March 22, 2012. This address is a collection of stories. According to her, stories take place. Stories practice place into space. Stories produce habitable spaces. She…

  8. Studying Activities That Take Place in Speech Interactions: A Theoretical and Methodological Framework

    ERIC Educational Resources Information Center

    Saint-Dizier de Almeida, Valérie; Colletta, Jean-Marc; Auriac-Slusarczyk, Emmanuelle; Specogna, Antonietta; Simon, Jean-Pascal; Fiema, Gabriela; Luxembourger, Christophe

    2016-01-01

    The paper proposes a theoretical and methodological framework based on a pluralistic, concerted approach to the study of activities that take place in and through speech interactions. The framework has a general scope, applying to any collective activity taking form through language interactions. It contributes to a fuller understanding of the…

  9. Questions and Answers Regarding Actions to Take When Ending Shelter-in-Place

    SciTech Connect

    Shumpert, B.

    2003-12-30

    Shelter-in-place has found increasing acceptance as an effective protective action option for communities participating in the Chemical Stockpile Emergency Preparedness Program. Studies have confirmed that it can provide optimum protection under certain accident conditions. However, emergency managers and planners, as well as the public, continue to be troubled by the need to end sheltering when the plume has passed in order to avoid sustained exposure to the small amount of agent that has penetrated the shelter. One of the concerns posed by this necessity is uncertainty regarding what hazards will then be faced in the environment outside the shelter and what actions can be taken to avoid those hazards. This report attempts to address those uncertainties. It recognizes that there is an extremely low probability that the environment outside the shelter will be contaminated with chemical agent residue. However, as people comply with an official recommendation to leave their shelters, they probably can't be certain that the environment is free from contamination. Therefore, this report identifies and explains specific and simple actions they can take to avoid the possibility of exposure to chemical agent hazards outside their shelters. It addresses such issues as the actions people should take upon ending shelter-in-place, what clothing they should wear, how they should handle animals, and what they should do about food in their homes and produce in their gardens.

  10. 23 CFR 636.402 - What types of information exchange may take place after the release of the RFP document?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false What types of information exchange may take place after... What types of information exchange may take place after the release of the RFP document? Certain types.... These communication methods are optional. Type of information exchange When Purpose Parties involved...

  11. 49 CFR 40.41 - Where does a urine collection for a DOT drug test take place?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Where does a urine collection for a DOT drug test... in DOT Urine Collections § 40.41 Where does a urine collection for a DOT drug test take place? (a) A urine collection for a DOT drug test must take place in a collection site meeting the requirements...

  12. 49 CFR 40.41 - Where does a urine collection for a DOT drug test take place?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Where does a urine collection for a DOT drug test... in DOT Urine Collections § 40.41 Where does a urine collection for a DOT drug test take place? (a) A urine collection for a DOT drug test must take place in a collection site meeting the requirements...

  13. 49 CFR 40.41 - Where does a urine collection for a DOT drug test take place?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Where does a urine collection for a DOT drug test... in DOT Urine Collections § 40.41 Where does a urine collection for a DOT drug test take place? (a) A urine collection for a DOT drug test must take place in a collection site meeting the requirements...

  14. 23 CFR 636.402 - What types of information exchange may take place after the release of the RFP document?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false What types of information exchange may take place after... What types of information exchange may take place after the release of the RFP document? Certain types.... The following table summarizes the types of communications that will be discussed in this...

  15. 23 CFR 636.402 - What types of information exchange may take place after the release of the RFP document?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false What types of information exchange may take place after... What types of information exchange may take place after the release of the RFP document? Certain types.... The following table summarizes the types of communications that will be discussed in this...

  16. 23 CFR 636.402 - What types of information exchange may take place after the release of the RFP document?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false What types of information exchange may take place after... What types of information exchange may take place after the release of the RFP document? Certain types.... The following table summarizes the types of communications that will be discussed in this...

  17. [Marketing approval and market surveillance of medical devices in Germany: Where does policy integration take place?].

    PubMed

    Lang, Achim

    2014-01-01

    Since 2011 new regulatory measures regarding medical devices have been set up with the aim to eliminate obstacles to innovations and to find more coordinated ways to marketing authorisation and market surveillance. This essay investigates whether these new and existing coordination mechanisms build up to a Joined-up Government approach. The analysis shows that the regulatory process should be adjusted along several dimensions. First, many organisations lack awareness regarding their stakeholders and focus solely on their immediate organisational activities. Second, the regulatory process (marketing authorisation and market surveillance) is too fragmented for an effective communication to take place. Finally, the underlying strategy process is an ad-hoc approach lacking continuity and continued involvement of, in particular, the responsible federal ministries.

  18. [Marketing approval and market surveillance of medical devices in Germany: Where does policy integration take place?].

    PubMed

    Lang, Achim

    2014-01-01

    Since 2011 new regulatory measures regarding medical devices have been set up with the aim to eliminate obstacles to innovations and to find more coordinated ways to marketing authorisation and market surveillance. This essay investigates whether these new and existing coordination mechanisms build up to a Joined-up Government approach. The analysis shows that the regulatory process should be adjusted along several dimensions. First, many organisations lack awareness regarding their stakeholders and focus solely on their immediate organisational activities. Second, the regulatory process (marketing authorisation and market surveillance) is too fragmented for an effective communication to take place. Finally, the underlying strategy process is an ad-hoc approach lacking continuity and continued involvement of, in particular, the responsible federal ministries. PMID:25066351

  19. The 'taking place' of health and wellbeing: towards non-representational theory.

    PubMed

    Andrews, Gavin J; Chen, Sandra; Myers, Samantha

    2014-05-01

    For the last two decades health geography has focused on the dynamics between health and place. Although the social constructivist perspective of much research has provided many insights into the meanings of health and health care arguably, mirroring progress in the parent discipline of human geography, there could be a far more serious engagement with non-representational theory and the 'taking place' of health and health care. To showcase the importance and potential of this broadly, the idea of wellbeing is re-approached. The paper reflects on the ways wellbeing has been treated in research primarily as a meaningful and relatively prescribed state of life, to the neglect of process. Based on this critique, a qualitative study then illustrates the most immediate and everyday ways wellbeing might arise through 'affect'; the pre-personal mobile energies and intensities that result from physical encounters within assemblages of bodies and objects. Indeed, theoretically the findings support the proposition that, at one level, wellbeing might not be taken from environment but instead might emerge as the affective environment. They certainly raise awareness of how much in health might originate at the surface, prior to meaning, within life's infinite spatial doings, and thus they launch some final thoughts on the wider challenges and opportunities for non-representational health geographies.

  20. What it Takes to Successfully Implement Technology for Aging in Place: Focus Groups With Stakeholders

    PubMed Central

    Wouters, Eveline JM; Luijkx, Katrien G; Vrijhoef, Hubertus JM

    2016-01-01

    Background There is a growing interest in empowering older adults to age in place by deploying various types of technology (ie, eHealth, ambient assisted living technology, smart home technology, and gerontechnology). However, initiatives aimed at implementing these technologies are complicated by the fact that multiple stakeholder groups are involved. Goals and motives of stakeholders may not always be transparent or aligned, yet research on convergent and divergent positions of stakeholders is scarce. Objective To provide insight into the positions of stakeholder groups involved in the implementation of technology for aging in place by answering the following questions: What kind of technology do stakeholders see as relevant? What do stakeholders aim to achieve by implementing technology? What is needed to achieve successful implementations? Methods Mono-disciplinary focus groups were conducted with participants (n=29) representing five groups of stakeholders: older adults (6/29, 21%), care professionals (7/29, 24%), managers within home care or social work organizations (5/29, 17%), technology designers and suppliers (6/29, 21%), and policy makers (5/29, 17%). Transcripts were analyzed using thematic analysis. Results Stakeholders considered 26 different types of technologies to be relevant for enabling independent living. Only 6 out of 26 (23%) types of technology were mentioned by all stakeholder groups. Care professionals mentioned fewer different types of technology than other groups. All stakeholder groups felt that the implementation of technology for aging in place can be considered a success when (1) older adults’ needs and wishes are prioritized during development and deployment of the technology, (2) the technology is accepted by older adults, (3) the technology provides benefits to older adults, and (4) favorable prerequisites for the use of technology by older adults exist. While stakeholders seemed to have identical aims, several underlying

  1. Makro- and micromorphological evidence of processes taking place during Albeluvisol development in S Norway

    NASA Astrophysics Data System (ADS)

    Sauer, Daniela; Schülli-Maurer, Isabelle; Sperstad, Ragnhild; Sørensen, Rolf

    2014-05-01

    We studied two soil chronosequences in S Norway to identify processes involved in Albeluvisol formation. For this purpose, field observation of vertical and horizontal sections of soil profiles, soil chemical and mineralogical analyses were carried out, and in particular, micromorphological analysis was applied. The study area is located at the western and eastern side of the Oslofjord, S Norway, in the counties Vestfold and Østfold. This region is characterized by continuous glacio-isostatic uplift over the entire Holocene. Hence, the age of the land surface continuously increases from the coast towards higher elevations. Twelve soil profiles in loamy marine sediments were studied. Based on macro- and micromorphological observations and analytical data progressive soil formation is characterized as follows: As soon as the land surface is raised above sea level, five major processes are initiated: 1) development of deep desiccation cracks, forming a polygonal pattern; 2) compaction, taking place as soon as the coarse pores have been drained; 3) pyrite oxidation and release of sulfuric acid; 4) carbonate dissolution by acids from pyrite and iron oxidation resulting in rapid decarbonatization of the originally calcareous sediments; 5) precipitation of iron hypocoatings and coatings in the capillary fringe Soon after these very early processes have taken place, limited water permeability of the fine-textured sediments leads to horizon differentiation into Ah, Eg and Btg horizons within less than 2.1 ka. Eg horizons become lighter in colour with time. Also illuvial clay is already observed in the 2.1 ka-old soil. Soil pH in the upper part of the E horizon of this soil is already too low for significant clay mobilization. Clay illuviation is still active in all soils studied, but the upper boundary of the zone where pH favours clay mobilization is at 20-50 cm depth. Progressive clay illuviation over time is recorded in increasing thickness of clay coatings and

  2. OECD Global Science Forum's Astronomy Workshop to take place in Munich

    NASA Astrophysics Data System (ADS)

    2003-11-01

    members of the national astronomical community. The International Astronomical Union (IAU) and the European Southern Observatory (ESO) are explicitly represented. Experts from the world-wide astronomy community have been invited to set the stage and provide input for the discussions. The choice by Germany and the OECD to make Munich the venue of this Global Science Forum Workshop is no coincidence. It is a recognition of the important role played by many institutions in the Munich region in the field of Astronomy and Astrophysics. They include the Ludwig-Maximilians-Universität where the Workshop will take place, the Max-Planck-Institut für Astrophysik, the Max-Planck Institut für Extraterrestrische Physik and the European Southern Observatory. These institutions are all participating in large programmes and projects in astronomy. ESO, for its part, is at the leading edge of world astronomy with its flagship facility, the Very Large Telescope in Paranal (Chile) and the newly started ALMA project at Chajnantor (Chile), being carried out in partnership between Europe and North America. Public Talks (Munich) on December 1, 2003 As a prelude to the Workshop, two public keynote presentations will take place on December 1 at the Deutsches Museum in Munich at 18:00 CET. The speakers are Malcolm Longair, Jacksonian Professor of Natural Philosophy and Head of Laboratory, Cavendish Laboratory, Cambridge (UK) and Martin Harwit, Professor Emeritus of Astronomy, Cornell University, and former Director of the National Air and Space Museum, Washington, DC (USA). The talks will be given in English and the entry to this public event is free. Professor Longair will speak on "Astrophysics and Cosmology in the Twenty-First Century" and Professor Harwit will speak on "The Growth of Understanding of our Universe". You can find more informaton on the Public Talks web page.

  3. "Why Are We Here?" Taking "Place" into Account in UK Outdoor Environmental Education

    ERIC Educational Resources Information Center

    Harrison, Sam

    2010-01-01

    "Place" is an under-researched and poorly documented element of UK outdoor environmental education. In the international literature, North American and Australian researchers and practitioners show considerable attention to "place". Yet UK outdoor environmental educators and researchers seem to have neglected this area despite calls for increased…

  4. A Reaction that Takes Place in Beakers but not in Conical Flasks

    ERIC Educational Resources Information Center

    White, Colin; Ophardt, Charles

    2004-01-01

    Inductors are substances that undergo a reaction and in so doing markedly accelerate or induce a simultaneous reaction. An experiment showing a reaction involving the oxidation of iodide to iodine by chromium (VI) found to be slow in the absence of acid, but which proceeded rapidly when iron (II) was induced is demonstrated.

  5. An Experimental Investigation of the Process of Isotope Exchange that Takes Place when Heavy Water Is Exposed to the Atmosphere

    ERIC Educational Resources Information Center

    Deeney, F. A.; O'Leary, J. P.

    2009-01-01

    We have used the recently developed method for rapid measurement of maximum density temperature to determine the rate at which hydrogen and deuterium isotope exchange takes place when a sample of heavy water is exposed to the atmosphere. We also provide a simple explanation for the observed linear rate of transition. (Contains 2 figures.)

  6. 23 CFR 636.402 - What types of information exchange may take place after the release of the RFP document?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false What types of information exchange may take place after the release of the RFP document? 636.402 Section 636.402 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Exchanges § 636.402 What types of information exchange may...

  7. Taking the High Ground: Geothermal's Place in the Revolving Energy Market

    SciTech Connect

    Jaros, Richard

    1992-03-24

    It's a genuine privilege for me to be here today. As Dr. Mock mentioned, I have been President of California Energy for not yet three months and have a total tenure in the industry of only one year. As a newcomer to the industry, I am honored to address this group and share my views on ''The Opportunities and Challenges for Expanding Geothermal Energy''. You will see that my outlook for our industry is generally optimistic, shaped in part, perhaps by a newcomer's enthusiasm, but largely I think by my analysis of the opportunities which are open to us as an industry. Many of you and your predecessors over the last 20 years pioneered the geothermal industry in the United States. The risks were great, the results sometimes rewarding, sometimes disappointing. Government and the private sector forged an alliance that moved the industry ahead. Developers, utilities and federal land managers worked together to bring projects on line. Government helped identify geothermal areas, in many cases doing exploration work. The geothermal pioneers had to form entirely new, multi-disciplinary teams to solve problems unique to this resource. From discovery of fields, to environmental mitigation, to management of reservoirs and all of the steps in between, new teams had to be assembled. Geologists, geochemists, hydrologists, reservoir engineers and drilling technologists now apply their skills. Even anthropologists and biologists routinely get into the act in the environmental assessment phase of development. The care that our industry is taking today to do the job right reflects a maturing industry with high standards of performance. To be sure, mistakes were made in the early years, but the industry learned from them. We all know the value of responsible development and resource management to the long-term future of our industry. Improvements in technology and more efficient operations have helped lower our costs and improve our competitiveness. Our industry's progress has also

  8. 23 CFR 636.401 - What types of information exchange may take place prior to the release of the RFP document?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false What types of information exchange may take place prior... What types of information exchange may take place prior to the release of the RFP document? Verbal or written information exchanges (such as in the first-phase of a two-phase selection procedure) must...

  9. LIDAR for remote sensing of contaminations on water and earth surfaces taking place during oil-gas production

    NASA Astrophysics Data System (ADS)

    Pashayev, A.; Tagiyev, B.; Allahverdiyev, K.; Musayev, A.; Sadikhov, I.

    2015-12-01

    Remote sensing of contaminations on water and earth surfaces (oil spills, films) taking place during oil-gas extraction is an interesting and actual problem. This problem may be solved by using different methods of optical spectroscopy, including: •Raman scattering; •light induced breakdown spectroscopy (LIBS); •fluorescence spectroscopy. Fluorescence Light Detection and Ranging (LIDAR) LIDARs are successfully used for remote sensing of chemical and biological substances at atmosphere. A new laser induced fluorescence (LIF) KA-14 LIDAR system for detecting of oil spills on the sea surface was employed at the National Aviation Academy of Azerbaijan. LIDAR's parameters are as follows: •laser CFR 200- type QUANTEL, λ = 355 nm, beam Ø = 5.35 mm, f = 20 Hz, pulse duration τ = 7 ns, pulse power 60 mJ; •diameter of Newtonian- type telescope is 200 mm; •collimator expansion of the laser beam diameter- not less than 3; •angle range of telescope measurements relative to horizon: from -20 to +20 degree; •spectral range of measurements: from 380 to 750 nm, number of spectral channels- 32; •maximum range of measurements- not less than 250 m. This LIDAR is the first performing these kind of research not only on the Azerbaijan beach of Caspian sea, but also on the earth places of Absheron peninsula, where oil-gas production takes place. We hope that the performance of LIDAR will have an International recognition and will make noticeable input on the International Research of Caspian sea surfaces.

  10. Do Explicit Number Names Accelerate Pre-Kindergarteners' Numeracy and Place Value Acquisition?

    ERIC Educational Resources Information Center

    Magargee, Suzanne D.; Beauford, Judith E.

    2016-01-01

    The purpose of this longitudinal study is to investigate whether an early childhood intervention using an explicit and transparent number naming system will have a lasting benefit to English and Spanish speaking children in their mathematics achievement related to number sense by accelerating their acquisition of concepts of numeracy and place…

  11. Investigation of the Characteristics of an Acceleration-Type Take-Off Indicator in a Large Jet Airplane

    NASA Technical Reports Server (NTRS)

    Kolnick, Joseph J.; Rind, Emanuel

    1959-01-01

    The characteristics of a proposed acceleration-type take-off indicator were observed during take-off runs of a large jet airplane. The instrument performed its function satisfactorily. It showed an essentially constant reading, which agreed closely with the predicted value, throughout the take-off except for about the first 135 feet of the ground roll during which the starting windup of the indicator pointer occurred. Although oscillating longitudinal accelerations at the instrument location were as much as +/- 50 percent of the steady-state acceleration, the instrument showed only small excursions from the mean reading equivalent to not more than +/- 5 percent of the mean reading and was considered to be satisfactorily readable.

  12. Structural and functional changes in the olfactory pathway of adult Drosophila take place at a critical age.

    PubMed

    Devaud, Jean-Marc; Acebes, Angel; Ramaswami, Mani; Ferrús, Alberto

    2003-07-01

    The olfactory system of several holometabolous insect species undergoes anatomical changes after eclosion of the imago, following those occurring during metamorphosis. In parallel, odor experience and learning performance also evolve with age. Here, we analyze the case of adult Drosophila females. Synaptogenesis in the antennal lobe (AL) starts in late pupa and continues during the first days of adult life, at the same time as the behavioral response to odors matures. Individual olfactory glomeruli (DM6, DM2, and V) display specific growth patterns between days 1 and 12 of adult life. Experience can modify the olfactory pathway both structurally and functionally as shown by adaptation experiments. The modifications associated with this form of nonassociative learning seem to take place at a critical age. Exposure to benzaldehyde at days 2-5 of adult life, but not at 8-11, causes behavioral adaptation as well as structural changes in DM2 and V glomeruli. Altered levels in intracellular cAMP, caused by dunce and rutabaga mutants, do not affect the normal changes in glomerular size, at least at day 6 of development, but they prevent those elicited by experience, establishing a molecular difference between glomerular changes of intrinsic versus environmental origin. Taken together, these data demonstrate an imprinting-like phenomenon in the olfactory pathway of young Drosophila adults, and illustrate its glomerulus-specific dynamics.

  13. Effects of Early Acceleration of Students in Mathematics on Taking Advanced Mathematics Coursework in High School

    ERIC Educational Resources Information Center

    Ma, Xin

    2010-01-01

    Based on data from the Longitudinal Study of American Youth (LSAY), students were classified into high-, middle-, and low-ability students. The effects of early acceleration in mathematics on the most advanced mathematics coursework (precalculus and calculus) in high school were examined in each category. Results showed that although early…

  14. Young People Take Their Rightful Places as Full and Contributing Members of a World Class Workforce: Philadelphia Youth Network Annual Report 2006

    ERIC Educational Resources Information Center

    Philadelphia Youth Network, 2006

    2006-01-01

    The title of this year's annual report has particular meaning for all of the staff at the Philadelphia Youth Network. The phrase derives from Philadelphia Youth Network's (PYN's) new vision statement, developed as part of its recent strategic planning process, which reads: All of our city's young people take their rightful places as full and…

  15. What will it take for laser driven proton accelerators to be applied to tumor therapy?

    NASA Astrophysics Data System (ADS)

    Linz, Ute; Alonso, Jose

    2007-09-01

    After many years on the periphery of cancer therapy, the successes of proton and ion beams in tumor therapy are gradually receiving a higher degree of recognition. The considerable construction and acquisition costs are usually invoked to explain the slow market penetration of this favorable treatment modality. Recently, high-intensity lasers have been suggested as a potential, cost-saving alternative to cyclotrons or synchrotrons for oncology. This article will detail the technical requirements necessary for successful implementation of ion beam therapy (IBT)—the general term for proton and heavier-ion therapy. It will summarize the current state of laser acceleration of protons and will outline the very substantial developments still necessary for this technology to be successfully applied to IBT.

  16. Taking Control of Castleman Disease: Leveraging Precision Medicine Technologies to Accelerate Rare Disease Research

    PubMed Central

    Newman, Samantha Kass; Jayanthan, Raj K.; Mitchell, Grant W.; Carreras Tartak, Jossie A.; Croglio, Michael P.; Suarez, Alexander; Liu, Amy Y.; Razzo, Beatrice M.; Oyeniran, Enny; Ruth, Jason R.; Fajgenbaum, David C.

    2015-01-01

    Castleman disease (CD) is a rare and heterogeneous disorder characterized by lymphadenopathy that may occur in a single lymph node (unicentric) or multiple lymph nodes (multicentric), the latter typically occurring secondary to excessive proinflammatory hypercytokinemia. While a cohort of multicentric Castleman disease (MCD) cases are caused by Human Herpes Virus-8 (HHV-8), the etiology of HHV-8 negative, idiopathic MCD (iMCD), remains unknown. Breakthroughs in “omics” technologies that have facilitated the development of precision medicine hold promise for elucidating disease pathogenesis and identifying novel therapies for iMCD. However, in order to leverage precision medicine approaches in rare diseases like CD, stakeholders need to overcome several challenges. To address these challenges, the Castleman Disease Collaborative Network (CDCN) was founded in 2012. In the past 3 years, the CDCN has worked to transform the understanding of the pathogenesis of CD, funded and initiated genomics and proteomics research, and united international experts in a collaborative effort to accelerate progress for CD patients. The CDCN’s collaborative structure leverages the tools of precision medicine and serves as a model for both scientific discovery and advancing patient care. PMID:26604862

  17. Placing the power of real options analysis into the hands of natural resource managers - taking the next step.

    PubMed

    Nelson, Rohan; Howden, Mark; Hayman, Peter

    2013-07-30

    This paper explores heuristic methods with potential to place the analytical power of real options analysis into the hands of natural resource managers. The complexity of real options analysis has led to patchy or ephemeral adoption even by corporate managers familiar with the financial-market origins of valuation methods. Intuitively accessible methods for estimating the value of real options have begun to evolve, but their evaluation has mostly been limited to researcher-driven applications. In this paper we work closely with Bush Heritage Australia to evaluate the potential of real options analysis to support the intuitive judgement of conservation estate managers in covenanting land with uncertain future conservation value due to climate change. The results show that modified decision trees have potential to estimate the option value of covenanting individual properties while time and ongoing research resolves their future conservation value. Complementing this, Luehrman's option space has potential to assist managers with limited budgets to increase the portfolio value of multiple properties with different conservation attributes.

  18. Placing the power of real options analysis into the hands of natural resource managers - taking the next step.

    PubMed

    Nelson, Rohan; Howden, Mark; Hayman, Peter

    2013-07-30

    This paper explores heuristic methods with potential to place the analytical power of real options analysis into the hands of natural resource managers. The complexity of real options analysis has led to patchy or ephemeral adoption even by corporate managers familiar with the financial-market origins of valuation methods. Intuitively accessible methods for estimating the value of real options have begun to evolve, but their evaluation has mostly been limited to researcher-driven applications. In this paper we work closely with Bush Heritage Australia to evaluate the potential of real options analysis to support the intuitive judgement of conservation estate managers in covenanting land with uncertain future conservation value due to climate change. The results show that modified decision trees have potential to estimate the option value of covenanting individual properties while time and ongoing research resolves their future conservation value. Complementing this, Luehrman's option space has potential to assist managers with limited budgets to increase the portfolio value of multiple properties with different conservation attributes. PMID:23702285

  19. Assessing the Impact of Continuous Quality Improvement on Clinical Practice: What It Will Take to Accelerate Progress

    PubMed Central

    Shortell, Stephen M.; Bennett, Charles L.; Byck, Gayle R.

    1998-01-01

    The literature on continuous quality improvement (CQI) has produced some evidence, based on nonrandomized studies, that its clinical application can improve outcomes of care while reducing costs. Its effectiveness is enhanced by a nucleus of physician involvement, individual practitioner feedback, and a supportive organizational culture. The few randomized studies, however, suggest no impact of CQI on clinical outcomes and no evidence to date of organization-wide improvement in clinical performance. Further, most studies address misuse issues and avoid examining overuse or underuse of services. The clinical application of CQI is more likely to have a pervasive impact when it takes place within a supportive regulatory and competitive environment, when it is aligned with financial incentives, and when it is under the direction of an organizational leadership that is committed to integrating all aspects of the work. PMID:9879304

  20. Assembly of the ligand-binding conformation of Mr 46,000 mannose 6- phosphate-specific receptor takes place before reaching the Golgi complex

    PubMed Central

    1990-01-01

    The early steps in the biosynthesis of Mr 46,000 mannose 6-phosphate- specific receptor (MPR 46) have been studied by in vivo labeling of transfected BHK cells. The acquisition of phosphomannan-binding activity was compared with changes in protein structure and posttranslational modifications of MPR 46. Intramolecular disulfide bonds were formed before MPR 46 acquired a ligand-binding conformation. A conformational change that resulted in increased trypsin resistance, formation of highly immunogenic epitopes and assembly to noncovalently linked homodimers was observed almost simultaneously with the acquisition of ligand-binding activity. MPR 46 was shown to acquire ligand-binding activity before N-linked oligosaccharides were processed to complex-type forms. Maturation of the ligand-binding conformation was observed under conditions where transport to the Golgi was blocked by lowering the temperature to 16 degrees C, or by addition of brefeldin A or dinitrophenol to the medium at 37 degrees C. This suggests that receptor maturation and assembly take place before reaching the Golgi complex. The affinity towards phosphomannan- containing ligands was shown to be similar for the high-mannose and complex-glycosylated forms of MPR 46. PMID:2157722

  1. Places for Children - Children's Places

    ERIC Educational Resources Information Center

    Rasmussen, Kim

    2004-01-01

    In their everyday lives, children largely stay within and relate to three settings - their homes, schools and recreational institutions. These environments have been created by adults and designated by them as "places for children". A more differentiated picture of children's spatial culture emerges when children discuss and take photographs of…

  2. Wheel running can accelerate or delay extinction of conditioned place preference for cocaine in male C57BL/6J mice, depending on timing of wheel access.

    PubMed

    Mustroph, Martina L; Stobaugh, Derrick J; Miller, Daniel S; DeYoung, Erin K; Rhodes, Justin S

    2011-10-01

    Aerobic exercise may represent a useful intervention for drug abuse in predisposed individuals. Exercise increases plasticity in the brain that could be used to reverse learned drug associations. Previous studies have reported that exposing mice to a complex environment including running wheels after drug conditioning abolishes conditioned place preference (CPP) for cocaine, whereas running can enhance CPP when administered before conditioning. The purpose of the present study was to test the hypothesis that timing of exercise relative to conditioning has opposing effects on cocaine CPP. Male C57BL/6J mice experienced 30 days of running or sedentary treatments either before or after cocaine conditioning. Control animals always received saline and never cocaine, but otherwise underwent the same conditioning and exercise treatments. Animals were given bromodeoxyuridine injections at the onset of conditioning or exercise, and euthanized at the end of the study to quantify survival of new neurons in the hippocampus as a marker of plasticity. Wheel running accelerated extinction of CPP when running occurred entirely after drug conditioning, whereas running delayed extinction when administered before conditioning. A single conditioning day after running was sufficient to abolish the accelerated extinction observed when all conditioning preceded running. Running approximately doubled adult hippocampal neurogenesis, whereas cocaine had no effect. These results suggest that exercise-induced plasticity can facilitate learning that context is no longer associated with drug. However, if drug exposure occurs after exercise, running-induced plasticity may strengthen drug associations. The results provide insights into the interaction between exercise and drug conditioning that could have implications for drug abuse treatments.

  3. Place and Being

    ERIC Educational Resources Information Center

    Cannatella, Howard

    2007-01-01

    Do places matter educationally? When Edward Casey remarks: "The world is, minimally and forever, a place-world", we might take this statement as presupposing without argument that places exist as a given, that we know what a place is, a point that Aristotle would have never taken for granted and in fact neither does Casey. I find Casey's remark…

  4. Place-focused physical activity research, human agency, and social justice in public health: taking agency seriously in studies of the built environment.

    PubMed

    Blacksher, Erika; Lovasi, Gina S

    2012-03-01

    Built environment characteristics have been linked to health outcomes and health disparities. However, the effects of an environment on behavior may depend on human perception, interpretation, motivation, and other forms of human agency. We draw on epidemiological and ethical concepts to articulate a critique of research on the built environment and physical activity. We identify problematic assumptions and enumerate both scientific and ethical reasons to incorporate subjective perspectives and public engagement strategies into built environment research and interventions. We maintain that taking agency seriously is essential to the pursuit of health equity and the broader demands of social justice in public health, an important consideration as studies of the built environment and physical activity increasingly focus on socially disadvantaged communities. Attention to how people understand their environment and navigate competing demands can improve the scientific value of ongoing efforts to promote active living and health, while also better fulfilling our ethical obligations to the individuals and communities whose health we strive to protect.

  5. Observations of particle acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.

    1979-01-01

    Solar flares provide several examples of nonthermal particle acceleration. The paper reviews the information gained about these processes via X-ray and gamma-ray astronomy, which can presently distinguish among three separate particle-acceleration processes at the sun: an impulsive accelerator of more than 20 keV electrons, a gradual accelerator of more than 20 keV electrons, and a gradual accelerator of more than 10 MeV ions. The acceleration energy efficiency (total particle energy divided by total flare energy) of any of these mechanisms cannot be less than about 0.1%, although the gradual acceleration does not occur in every flare. The observational material suggests that both the impulsive and gradual accelerations take place preferentially in closed magnetic-field structures, but that the electrons decay in these traps before they can escape. The ions escape very efficiently.

  6. Effects of proton irradiation on a gas phase in which condensation takes place. I Negative Mg-26 anomalies and Al-26. [applied to solar and meteoritic composition

    NASA Technical Reports Server (NTRS)

    Heymann, D.; Dziczkaniec, M.; Walker, A.; Huss, G.; Morgan, J. A.

    1978-01-01

    In the present paper, isotopic effects in magnesium generated in a proton-irradiated gas phase are examined, taking only (p,n), (p,d), and (p, alpha) reactions in magnesium, aluminum, and silicon into consideration. In the presence of proton radiation, the three elements are 'removed' from the gas phase by condensation. It is required that a value of Al-26/Al-27 greater than 6 times 10 to the -5th must be reached, consistent with the value deduced by Lee Papanastassiou, and Wasserburg (1976) from their studies of the Allende meteorite. The calculations show that fast aluminum condensation reduces the required proton fluence substantially, that a significant fraction of aluminum remains uncondensed when the above value of the Al-26/Al-27 ratio is reached, that a detectable MG-24 excess is very likely to occur, that detectable negative MG-28 anomalies can be generated, and that proton fluxes and irradiation times can be varied simultaneously, and over a wide range of values, without significant changes in the required proton fluence.

  7. Leaf processing behaviour in Atta leafcutter ants: 90% of leaf cutting takes place inside the nest, and ants select pieces that require less cutting.

    PubMed

    Garrett, Ryan W; Carlson, Katherine A; Goggans, Matthew Scott; Nesson, Michael H; Shepard, Christopher A; Schofield, Robert M S

    2016-01-01

    Leafcutter ants cut trimmings from plants, carry them to their underground nests and cut them into smaller pieces before inoculating them with a fungus that serves as a primary food source for the colony. Cutting is energetically costly, so the amount of cutting is important in understanding foraging energetics. Estimates of the cutting density, metres of cutting per square metre of leaf, were made from samples of transported leaf cuttings and of fungal substrate from field colonies of Atta cephalotes and Atta colombica. To investigate cutting inside the nest, we made leaf-processing observations of our laboratory colony, A. cephalotes. We did not observe the commonly reported reduction of the leaf fragments into a pulp, which would greatly increase the energy cost of processing. Video clips of processing behaviours, including behaviours that have not previously been described, are linked. An estimated 2.9 (±0.3) km of cutting with mandibles was required to reduce a square metre of leaf to fungal substrate. Only about 12% (±1%) of this cutting took place outside of the nest. The cutting density and energy cost is lower for leaf material with higher ratios of perimeter to area, so we tested for, and found that the laboratory ants had a preference for leaves that were pre-cut into smaller pieces. Estimates suggest that the energy required to transport and cut up the leaf material is comparable to the metabolic energy available from the fungus grown on the leaves, and so conservation of energy is likely to be a particularly strong selective pressure for leafcutter ants. PMID:26909161

  8. Leaf processing behaviour in Atta leafcutter ants: 90% of leaf cutting takes place inside the nest, and ants select pieces that require less cutting

    PubMed Central

    Garrett, Ryan W.; Carlson, Katherine A.; Goggans, Matthew Scott; Nesson, Michael H.; Shepard, Christopher A.; Schofield, Robert M. S.

    2016-01-01

    Leafcutter ants cut trimmings from plants, carry them to their underground nests and cut them into smaller pieces before inoculating them with a fungus that serves as a primary food source for the colony. Cutting is energetically costly, so the amount of cutting is important in understanding foraging energetics. Estimates of the cutting density, metres of cutting per square metre of leaf, were made from samples of transported leaf cuttings and of fungal substrate from field colonies of Atta cephalotes and Atta colombica. To investigate cutting inside the nest, we made leaf-processing observations of our laboratory colony, A. cephalotes. We did not observe the commonly reported reduction of the leaf fragments into a pulp, which would greatly increase the energy cost of processing. Video clips of processing behaviours, including behaviours that have not previously been described, are linked. An estimated 2.9 (±0.3) km of cutting with mandibles was required to reduce a square metre of leaf to fungal substrate. Only about 12% (±1%) of this cutting took place outside of the nest. The cutting density and energy cost is lower for leaf material with higher ratios of perimeter to area, so we tested for, and found that the laboratory ants had a preference for leaves that were pre-cut into smaller pieces. Estimates suggest that the energy required to transport and cut up the leaf material is comparable to the metabolic energy available from the fungus grown on the leaves, and so conservation of energy is likely to be a particularly strong selective pressure for leafcutter ants. PMID:26909161

  9. Phase precession through acceleration of local theta rhythm: a biophysical model for the interaction between place cells and local inhibitory neurons.

    PubMed

    Castro, Luísa; Aguiar, Paulo

    2012-08-01

    Phase precession is one of the most well known examples within the temporal coding hypothesis. Here we present a biophysical spiking model for phase precession in hippocampal CA1 which focuses on the interaction between place cells and local inhibitory interneurons. The model's functional block is composed of a place cell (PC) connected with a local inhibitory cell (IC) which is modulated by the population theta rhythm. Both cells receive excitatory inputs from the entorhinal cortex (EC). These inputs are both theta modulated and space modulated. The dynamics of the two neuron types are described by integrate-and-fire models with conductance synapses, and the EC inputs are described using non-homogeneous Poisson processes. Phase precession in our model is caused by increased drive to specific PC/IC pairs when the animal is in their place field. The excitation increases the IC's firing rate, and this modulates the PC's firing rate such that both cells precess relative to theta. Our model implies that phase coding in place cells may not be independent from rate coding. The absence of restrictive connectivity constraints in this model predicts the generation of phase precession in any network with similar architecture and subject to a clocking rhythm, independently of the involvement in spatial tasks.

  10. Ion wave breaking acceleration

    NASA Astrophysics Data System (ADS)

    Liu, B.; Meyer-ter-Vehn, J.; Bamberg, K.-U.; Ma, W. J.; Liu, J.; He, X. T.; Yan, X. Q.; Ruhl, H.

    2016-07-01

    Laser driven ion wave breaking acceleration (IWBA) in plasma wakefields is investigated by means of a one-dimensional (1D) model and 1D/3D particle-in-cell (PIC) simulations. IWBA operates in relativistic transparent plasma for laser intensities in the range of 1020- 1023 W /cm2 . The threshold for IWBA is identified in the plane of plasma density and laser amplitude. In the region just beyond the threshold, self-injection takes place only for a fraction of ions and in a limited time period. This leads to well collimated ion pulses with peaked energy spectra, in particular for 3D geometry.

  11. Test stands for testing serial XFEL accelerator modules

    NASA Astrophysics Data System (ADS)

    Bozhko, Yury; Anashin, Vadim; Belova, Lyudmila; Boeckmann, Torsten Axel; Kholopov, Michail; Konstantinov, Valeriy; Petersen, Bernd; Pivovarov, Sergey; Pyata, Eugeny; Sellmann, Detlef; Wang, Xilong; Zhirnov, Anatoly; Zolotov, Anatoly

    2012-06-01

    The superconducting accelerator module is the key component of the European X-ray Free Electron Laser (XFEL) project to be built at DESY Hamburg. The XFEL linear accelerator will consist of 100 accelerator modules in order to produce pulsed electron beam with the energy of 17.5 GeV. All accelerator modules have to be tested after the assembly and before being installed in the accelerator tunnel. The tests will take place in the Accelerator Module Test Facility (AMTF) being constructed at DESY. Besides test stands for testing superconducting cavities and magnets constituting the accelerator modules, AMTF will come with three test stands for testing the completed accelerator modules. This paper describes layout of the test stands within the AMTF, cryogenic design of the test stand, design issues of principal components and schedule.

  12. Trading Places

    ERIC Educational Resources Information Center

    Michie, Gregory

    2005-01-01

    Golden Apple Teacher Education (GATE), which began as a partnership between the nonprofit Golden Apple Foundation and Northwestern University and later expanded to other Chicago-area university sites, provides an accelerated path for career-changing professionals to become teachers in Chicago schools. Such programs, which have multiplied…

  13. Places to Go: Moodle

    ERIC Educational Resources Information Center

    Downes, Stephen

    2006-01-01

    Educators are becoming increasingly interested in alternatives to learning management systems (LMS) Blackboard and WebCT. Stephen Downes's column Places to Go turns to one internationally popular open source LMS--Moodle. Downes takes the reader through Moodle's Web site, which is simultaneously a Web site about its LMS and an example of what its…

  14. Acceleration: It's Elementary

    ERIC Educational Resources Information Center

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  15. TeV/m Nano-Accelerator: Current Status of CNT-Channeling Acceleration Experiment

    SciTech Connect

    Shin, Young Min; Lumpkin, Alex H.; Thangaraj, Jayakar Charles; Thurman-Keup, Randy Michael; Shiltsev, Vladimir D.

    2014-09-17

    Crystal channeling technology has offered various opportunities in the accelerator community with a viability of ultrahigh gradient (TV/m) acceleration for future HEP collider. The major challenge of channeling acceleration is that ultimate acceleration gradients might require a high power driver in the hard x-ray regime (~ 40 keV). This x-ray energy exceeds those for x-rays as of today, although x-ray lasers can efficiently excite solid plasma and accelerate particles inside a crystal channel. Moreover, only disposable crystal accelerators are possible at such high externally excited fields which would exceed the ionization thresholds destroying the atomic structure, so acceleration will take place only in a short time before full dissociation of the lattice. Carbon-based nanostructures have great potential with a wide range of flexibility and superior physical strength, which can be applied to channeling acceleration. This paper presents a beam- driven channeling acceleration concept with CNTs and discusses feasible experiments with the Advanced Superconducting Test Accelerator (ASTA) in Fermilab.

  16. Kinetic Simulations of Particle Acceleration at Shocks

    SciTech Connect

    Caprioli, Damiano; Guo, Fan

    2015-07-16

    Collisionless shocks are mediated by collective electromagnetic interactions and are sources of non-thermal particles and emission. The full particle-in-cell approach and a hybrid approach are sketched, simulations of collisionless shocks are shown using a multicolor presentation. Results for SN 1006, a case involving ion acceleration and B field amplification where the shock is parallel, are shown. Electron acceleration takes place in planetary bow shocks and galaxy clusters. It is concluded that acceleration at shocks can be efficient: >15%; CRs amplify B field via streaming instability; ion DSA is efficient at parallel, strong shocks; ions are injected via reflection and shock drift acceleration; and electron DSA is efficient at oblique shocks.

  17. NaCl-induced accelerated oxidation of chromium

    SciTech Connect

    Shinata, Y.; Nishi, Y.

    1986-10-01

    This paper describes new phenomena about chloride-induced ;accelerated oxidation of chromium. Thermal analysis was adopted to examine the oxidation, which was studied particularly in the case of NaCl. The presence of NaCl remarkably accelerates the oxidation of chromium. The process occurs below the melting point of NaCl, and the main reaction product is Cr/sub 2/O/sub 3/. In the accelerated oxidation NaCl plays a catalytic role because it is not consumed significantly in the process. DTA analysis reveals that the heat of reaction also accelerates the rate of oxidation, especially at an early stage of the reaction. The accelerated oxidation takes place similarly under the presence of chlorides other than NaCl, but the oxidation rate depends on the kind of salt. Therefore the Cl/sup -/ anion plays an important role in the process, while the nature of the cation affects the rate of acceleration.

  18. Evolution Takes a Leap

    ERIC Educational Resources Information Center

    Sloan, Bernie

    2005-01-01

    Thirty years ago most resource sharing took place between libraries, with a few formal organizations (library consortia) providing logistical support. Today there are hundreds, perhaps thousands, of organizations around the world facilitating resource sharing. Automation has greatly accelerated the growth of resource sharing. As access to…

  19. Privileged Girls: The Place of Femininity and Femininity in Place

    ERIC Educational Resources Information Center

    Fahey, Johannah

    2014-01-01

    Constructions of femininity and attendant notions of feminism are being produced in different ways in different places around the world. This is a complicated global process that cannot be reduced to analyses that take place in nation states. This paper seeks to respond to and enhance Angela McRobbie's compelling argument about understandings…

  20. Analysis of accelerated motion in the theory of relativity

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    Conventional treatments of accelerated motion in the theory of relativity have led to certain difficulties of interpretation. Certain reversals in the apparent gravitational field of an accelerated body may be avoided by simpler analysis based on the use of restricted conformal transformations. In the conformal theory the velocity of light remains constant even for experimenters in accelerated motion. The problem considered is that of rectilinear motion with a variable velocity. The motion takes place along the x or x' axis of two coordinate systems.

  1. Plasma Beat-Wave Acceleration

    NASA Astrophysics Data System (ADS)

    Clayton, Christopher E.

    2002-04-01

    Among all the advanced accelerator concepts that use lasers as the power source, most of the effort to date has been with the idea of using a laser pulse to excite a accelerating mode in a plasma. Within this area, there are a variety of approaches for creating the accelerating mode, as indicated by the other talks in this session. What is common to these approaches is the physics of how a laser pulse pushes on plasma electrons to organize electron-density perturbations, the sources of the ultra-high (> GeV/M) accelerating gradients. It is the "ponderomotive force", proportional to the local gradient of the of the laser intensity, that pushes plasma electrons forward (on the leading edge of the pulse) and backwards (on the trailing edge) which leads to harmonic motion of the electrons. As the laser pulse moves through the plasma at group velocity Vg c, the oscillating electrons show up macroscopically as a plasma mode or wave with frequency w equal to the plasma frequency and k = w/Vg. For short laser pulses, this is the Laser Wakefield Accelerator (LWFA) concept. Closely related is the Plasma Beat-Wave Acceleration (PBWA) concept. Here, the laser pulse that perturbs the plasma is composed of two closely-spaced frequencies that "beat", i.e., periodically constructively and destructively interfere, forming an electromagnetic beat wave. One can visualize this as a train of short pulses. If this beating frequency is set to the plasma frequency, then each pulse in the train will reinforce the density perturbation caused by the previous pulse. The principal advantage of multiple pulses driving up the plasma wave as opposed to a single pulse is in efficiency, allowing for the production of relatively large diameter (more 1-D like) accelerating modes. In this talk I will discuss past, current and planned PBWA experiments which are taking place at UCLA, RAL in England, and LULI in France.

  2. The insanity of place.

    PubMed

    Scull, Andrew

    2004-12-01

    This paper uses English examples to scrutinize the complex interrelations of insanity and place over the past three centuries, taking as its starting point the late Erving Goffman's paper of the same title. From eighteenth-century Bedlam and the emerging trade in lunacy, through the county asylums and licensed madhouses of the nineteenth century to the return of the the mentally ill to the 'community' in the last half of the twentieth century, the place occupied by insanity has varied sharply, symbolically as well as concretely. These various techniques of containment and damage limitation must be understood as a response to the threats, symbolic and practical, that serious mental illness poses to the social order, at both the micro- and macroscopic levels of analysis.

  3. Electron acceleration driven by ultrashort and nonparaxial radially polarized laser pulses.

    PubMed

    Marceau, Vincent; April, Alexandre; Piché, Michel

    2012-07-01

    Exact closed-form solutions to Maxwell's equations are used to investigate the acceleration of electrons in vacuum driven by ultrashort and nonparaxial radially polarized laser pulses. We show that the threshold power above which significant acceleration takes place is greatly reduced by using a tighter focus. Moreover, electrons accelerated by tightly focused single-cycle laser pulses may reach around 80% of the theoretical energy gain limit, about twice the value previously reported with few-cycle paraxial pulses. Our results demonstrate that the direct acceleration of electrons in vacuum is well within reach of current laser technology.

  4. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  5. Taking Risks.

    ERIC Educational Resources Information Center

    Merson, Martha, Ed.; Reuys, Steve, Ed.

    1999-01-01

    Following an introduction on "Taking Risks" (Martha Merson), this journal contains 11 articles on taking risks in teaching adult literacy, mostly by educators in the Boston area. The following are included: "My Dreams Are Bigger than My Fears Now" (Sharon Carey); "Making a Pitch for Poetry in ABE [Adult Basic Education]" (Marie Hassett); "Putting…

  6. Mountain Hike North of Big Cottonwood Canyon Road, Begining at the S-Turn at Mill B., Near Hidden Falls, and Taking Trail Leading to Mt. Raymond and Other Intersting Places.

    NASA Astrophysics Data System (ADS)

    McDonald, Keith L.

    2004-11-01

    Our first objective is to leave the highway via Mill B North Fork by taking the Big Cottonwood Canyon trail that leads to Maxfield Basin, where 3 trails intersect, just s. of Mount Raymond (Elev. 10,241 ft.) the n. trail takes us down to the Mill Creek Canyon Road, at about 1 mi. (+) east of intersection with Church Park Picnic Ground road. At Maxfield Basin, again, the east trail skirts around Mt. Raymond and has another intersection with a trail running n. thru the area of Gobblers Knob (elev. 10,246 ft.), to White Fir Pass and turns w. at Bowman Fk. until it connects with Porter Fork and then the Mill Creek Road. The remaining trail at Mill A Basin, just e. of Mount Raymond, long before Gobblers Knob is seen, runs east past a spring, and connects to Butler Fork (which begins at 3.775 mi., measured along highway from Mill B, North Fork), which leads directly to Dog Lake. Evidently both Dog Lake and Lake Desolation (changing U.S. Geological Survey maps from Mount Aire, Utah to Park City West, Utah) have connected outlets, at least during certain times of the year. Following the trail s. e. (down) that follows near Summit Co. and Salt Lake County, we pass by the radio transmitters shown on Park City, West, Utah, map and finally enter the Brighton, Utah map with Scott Hill, Scott Pass, the important highway leading to Midway Reservoir, and beyond, Bloods Lake ( 9500 ft.), Clayton Peak (10,721 ft.) and Lake Lackawaxen ( 9980 ft.), our final destination showing through. One may easily walk the distance to lake Lackawaxen from Bloods Lake by staying south of the ridgecrest and by following the hollow down for a while. This completes our destination. Recall that the main roadway here was already passed over about 1/2 mile n. of Bloods Lake; this thoroughfare has its beginning at about 0.4 miles below (or North) of the Brighton Loop, where the road to city of Midway leaves the main Big Cottonwood Highway going n. and runs e., on the average, going past Midway Reservoir

  7. Taking antacids

    MedlinePlus

    ... magnesium may cause diarrhea. Brands with calcium or aluminum may cause constipation. Rarely, brands with calcium may ... you take large amounts of antacids that contain aluminum, you may be at risk for calcium loss, ...

  8. Modelling socio-metabolic transitions: The historical take-off, the acceleration of fossil fuel use, and the 1970s oil price shock - the first trigger of a future decline?

    NASA Astrophysics Data System (ADS)

    Wiedenhofer, Dominik; Rovenskaya, Elena; Krausmann, Fridolin; Haas, Willi; Fischer-Kowalski, Marina

    2013-04-01

    By talking about socio-metabolic transitions, we talk about changes in the energy base of socio-economic systems, leading to fundamental changes in social and environmental relations. This refers to the historical shift from a biomass-based (agrarian) economy to a fossil fuel based (industrial) economy just as much as to a future shift from fossil fuels to renewable energy carriers. In our presentation, • We will first show that this pattern of transition can be identified for most high income industrial countries: the later the transition started, the faster it proceeded, and the turning point to stabilization of metabolic rates in all of them happened in the early 1970ies. Due to the inherent non-linearity of this process, two approaches will be aplied to estimate parameters for the starting point, transition speed and saturation level: firstly a combination of an expontential and a generalized logistic function and secondly a Gompertz function. For both an iterative test procedure is applied to find the global minimum of the residual error for the whole function and all its parameters. This theory-based approach allows us to apply a robust methodology across all cases, thereby yielding results which can be generalized. • Next, we will show that this was not just a "historical" socio-ecological transition, however. Currently, a substantial number of countries comprising more than half of the world's population are following a similar transitional pathway at an ever accelerating pace. Based on empirical data on physical resource use and the above sketched methodology, we can show that these so-called emerging economies are currently in the take-off or acceleration phase of the very same transition. • Apart from these "endogenous" processes of socio-metabolic transition, we will investigate the effect of external shocks and their impact on the dynamics of energy and materials use. The first such shock we will explore is the oil crisis of 1972 that possibly

  9. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  10. Can Accelerators Accelerate Learning?

    SciTech Connect

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-10

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  11. What is taking place in science classrooms?: A case study analysis of teaching and learning in seventh-grade science of one Alabama school and its impact on African American student learning

    NASA Astrophysics Data System (ADS)

    Norman, Lashaunda Renea

    This qualitative case study investigated the teaching strategies that improve science learning of African American students. This research study further sought the extent the identified teaching strategies that are used to improve African American science learning reflect culturally responsive teaching. Best teaching strategies and culturally responsive teaching have been researched, but there has been minimal research on the impact that both have on science learning, with an emphasis on the African American population. Consequently, the Black-White achievement gap in science persists. The findings revealed the following teaching strategies have a positive impact on African American science learning: (a) lecture-discussion, (b) notetaking, (c) reading strategies, (d) graphic organizers, (e) hands-on activities, (f) laboratory experiences, and (g) cooperative learning. Culturally responsive teaching strategies were evident in the seventh-grade science classrooms observed. Seven themes emerged from this research data: (1) The participating teachers based their research-based teaching strategies used in the classroom on all of the students' learning styles, abilities, attitudes towards science, and motivational levels about learning science, with no emphasis on the African American student population; (2) The participating teachers taught the state content standards simultaneously using the same instructional model daily, incorporating other content areas when possible; (3) The participating African American students believed their seventh-grade science teachers used a variety of teaching strategies to ensure science learning took place, that science learning was fun, and that science learning was engaging; (4) The participating African American students genuinely liked their teacher; (5) The participating African American students revealed high self-efficacy; (6) The African American student participants' parents value education and moved to Success Middle School

  12. Microelectromechanical acceleration-sensing apparatus

    DOEpatents

    Lee, Robb M.; Shul, Randy J.; Polosky, Marc A.; Hoke, Darren A.; Vernon, George E.

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  13. Combined generating-accelerating buncher for compact linear accelerators

    NASA Astrophysics Data System (ADS)

    Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Sokolov, I. D.; Zavadtsev, A. A.

    2016-09-01

    Described in the previous article [1] method of the power extraction from the modulated electron beam has been applied to the compact standing wave electron linear accelerator feeding system, which doesnt require any connection waveguides between the power source and the accelerator itself [2]. Generating and accelerating bunches meet in the hybrid accelerating cell operating at TM020 mode, thus the accelerating module is placed on the axis of the generating module, which consists from the pulsed high voltage electron sources and electrons dumps. This combination makes the accelerator very compact in size which is very valuable for the modern applications such as portable inspection sources. Simulations and geometry cold tests are presented.

  14. Taking Turns

    ERIC Educational Resources Information Center

    Hopkins, Brian

    2010-01-01

    Two people take turns selecting from an even number of items. Their relative preferences over the items can be described as a permutation, then tools from algebraic combinatorics can be used to answer various questions. We describe each person's optimal selection strategies including how each could make use of knowing the other's preferences. We…

  15. Double Take

    ERIC Educational Resources Information Center

    Educational Leadership, 2011

    2011-01-01

    This paper begins by discussing the results of two studies recently conducted in Australia. According to the two studies, taking a gap year between high school and college may help students complete a degree once they return to school. The gap year can involve such activities as travel, service learning, or work. Then, the paper presents links to…

  16. Observational Evidence for Small Scale Distributed Energy Release and Acceleration

    NASA Astrophysics Data System (ADS)

    Vilmer, Nicole

    Particle acceleration in solar flares is a challenging issue. Not only, is it necessary to convert a large fraction of the free magnetic energy to supra-thermal particles on relatively short time scales, but it is also required to produce in some flares ultra-relativistic particles on timescales of a few tens of seconds. Several approaches have been considered in the solar physics literature for acceleration models: either the acceleration takes place in large scale features (shocks or current sheets) or it occurs in small scale distributed energy release sites. I shall review here some of the observations which support the scenario of spatially distributed energy release and acceleration sites: existence of narrow-band millisecond bursts in the radio range and spatial distributions of these emissions, distribution of time scales of energy release, statistical properties of flares and HXR pulses, waiting time distributions in flares,. . .

  17. Brazilian physicists take centre stage

    NASA Astrophysics Data System (ADS)

    Curtis, Susan

    2014-06-01

    With the FIFA World Cup taking place in Brazil this month, Susan Curtis travels to South America's richest nation to find out how its physicists are exploiting recent big increases in science funding.

  18. Initiation of combustion in the thermally choked ram accelerator

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Burnham, E. A.; Knowlen, C.; Hertzberg, A.; Bogdanoff, D. W.

    1992-01-01

    The methodology for initiating stable combustion in a ram accelerator operating in the thermally choked mode is presented in this paper. The ram accelerator is a high velocity ramjet-in-tube projectile launcher whose principle of operation is similar to that of an airbreathing ramjet. The subcaliber projectile travels supersonically through a stationary tube filled with a premixed combustible gas mixture. In the thermally choked propulsion mode subsonic combustion takes place behind the base of the projectile and leads to thermal choking, which stabilizes a normal shock system on the projectile, thus producing forward thrust. Projectiles with masses in the 45-90 g range have been accelerated to velocities up to 2650 m/sec in a 38 mm bore, 16 m long accelerator tube. Operation of the ram accelerator is started by injecting the projectile into the accelerator tube at velocities in the 700 - 1300 m/sec range by means of a conventional gas gun. A specially designed obturator, which seals the bore of the gun during this initial acceleration, enters the ram accelerator together with the projectile. The interaction of the obturator with the propellant gas ignites the gas mixture and establishes stable combustion behind the projectile.

  19. A Case Study of How Teaching Practice Process Takes Place

    ERIC Educational Resources Information Center

    Yalin Ucar, Meltem

    2012-01-01

    The process of "learning" carries an important role in the teaching practice which provides teacher candidates with professional development. Being responsible for the learning experiences in that level, cooperating teacher, teacher candidate, mentor and practice school are the important variables which determine the quality of the teaching…

  20. Using Personalized Education to Take the Place of Standardized Education

    ERIC Educational Resources Information Center

    Gao, Pengyu

    2014-01-01

    Economic model has been greatly shifted from labor demanding to innovation demanding, which requires education system has to produce creative people. This paper illustrates how traditional education model accrued and developed based on satisfying the old economic model for labor demanding but did not meet the new social requirement for innovation…

  1. Places for Pedagogies, Pedagogies for Places

    ERIC Educational Resources Information Center

    Duhn, Iris

    2012-01-01

    Working with an understanding of assemblage as the ad hoc groupings of vibrant materials and elements, this article argues that conceptualizing place as an assemblage opens possibilities for bridging the gap between subjects and objects that continue to structure pedagogy. Considering "place" as an assemblage of humans and their multiple "others"…

  2. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  3. Electron acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Droge, Wolfgang; Meyer, Peter; Evenson, Paul; Moses, Dan

    1989-01-01

    For the period Spetember 1978 to December 1982, 55 solar flare particle events for which the instruments on board the ISEE-3 spacecraft detected electrons above 10 MeV. Combining data with those from the ULEWAT spectrometer electron spectra in the range from 0.1 to 100 MeV were obtained. The observed spectral shapes can be divided into two classes. The spectra of the one class can be fit by a single power law in rigidity over the entire observed range. The spectra of the other class deviate from a power law, instead exhibiting a steepening at low rigidities and a flattening at high rigidities. Events with power-law spectra are associated with impulsive (less than 1 hr duration) soft X-ray emission, whereas events with hardening spectra are associated with long-duration (more than 1 hr) soft X-ray emission. The characteristics of long-duration events are consistent with diffusive shock acceleration taking place high in the corona. Electron spectra of short-duration flares are well reproduced by the distribution functions derived from a model assuming simultaneous second-order Fermi acceleration and Coulomb losses operating in closed flare loops.

  4. Re(Place) Your Typical Writing Assignment: An Argument for Place-Based Writing

    ERIC Educational Resources Information Center

    Jacobs, Elliot

    2011-01-01

    Place-based writing affords students an opportunity to write meaningfully about themselves, grounded in a place that they know. Place-based writing is versatile and can be additive--taking just a week or two within a semester of different projects--or transformative, if positioned as the theme for an entire course. If students can learn to write…

  5. New directions in linear accelerators

    SciTech Connect

    Jameson, R.A.

    1984-01-01

    Current work on linear particle accelerators is placed in historical and physics contexts, and applications driving the state of the art are discussed. Future needs and the ways they may force development are outlined in terms of exciting R and D challenges presented to today's accelerator designers. 23 references, 7 figures.

  6. Electron acceleration by few-cycle laser pulses with single-wavelength spot size.

    PubMed

    Dudnikova, G I; Bychenkov, V Yu; Maksimchuk, A; Mourou, G; Nees, J; Bochkarev, S G; Vshivkov, V A

    2003-02-01

    Generation of relativistic electrons from the interaction of a laser pulse with a high density plasma foil, accompanied by an underdense preplasma in front of it, has been studied with two-dimensional particle-in-cell (PIC) simulations for pulse durations comparable to a single cycle and for single-wavelength spot size. The electrons are accelerated predominantly in forward direction for a preplasma longer than the pulse length. Otherwise, both forward and backward electron accelerations occur. The primary mechanism responsible for electron acceleration is identified. Simulations show that the energy of the accelerated electrons has a maximum versus the pulse duration for relativistic laser intensities. The most effective electron acceleration takes place when the preplasma scale length is comparable to the pulse duration. Electron distribution functions have been found from PIC simulations. Their tails are well approximated by Maxwellian distributions with a hot temperature in the MeV range.

  7. How to Cope with Sheltering in Place

    MedlinePlus

    ... your own or a relative’s home, school, or work. Sheltering in place may be required because of an emergency such ... things to keep yourself calm while sheltering in place. Relax your body often by doing things that work for you—take deep breaths, stretch, meditate or ...

  8. Place and Pedagogy

    ERIC Educational Resources Information Center

    Orr, David

    2013-01-01

    David Orr's classic article links education to living in the outdoors and studying all disciplines through the unifying lens of place. Pedagogy of place counters abstraction, it is the natural world embodying principles of learning that involve direct observation, investigation, experimentation, and manual skills. Place is the laboratory providing…

  9. A woman's rightful place?

    PubMed

    1993-04-01

    Rural development projects in sub-Saharan Africa tend not to succeed because they do not consider women's role and their significance, even though women constitute 70% of agricultural workers, 80% of food producers, 100% of people who prepare meals, and 60-90% do food marketing. Development specialists ignore women because they are not involved in political activities and in decision making. As long as women and women's contributions are not considered, rural development projects will remain inefficient and development will not take place. Thus, projects must include women as agents and beneficiaries of development in key sectors of the economy. Rural development specialists must also consider the effect male labor emigration has on rural women. For example, drought has forced many men to leave their villages, leaving a work force consisting of 95% women to fight desertification. All too often, women have no or limited land ownership rights, thereby keeping them from improving the land, e.g., planting perennial fruit crops. They also tend to be hired hands rather than food producers. They cannot obtain bank loans because they do not own land, and because they are often illiterate (over 90% female illiteracy in 28 African countries), they can neither understand nor complete bank loan forms. Rural development projects further alienate women by aiming training programs to men or by using male agricultural extension agents. Women react to this alienation by rejecting projects that do not benefit them and follow more profitable activities which sometimes interfere with projects. Thus, rural development programs need to invest in women to ensure viable and efficient sustainable development.

  10. Voltage regulation in linear induction accelerators

    DOEpatents

    Parsons, W.M.

    1992-12-29

    Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

  11. Voltage regulation in linear induction accelerators

    DOEpatents

    Parsons, William M.

    1992-01-01

    Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

  12. Muon Acceleration - RLA and FFAG

    SciTech Connect

    Bogacz, Alex

    2011-10-01

    Various acceleration schemes for muons are presented. The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and 'beam shaping' can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a non-scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. The RLAs offer very efficient usage of high gradient superconducting RF and ability to adjust path-length after each linac pass through individual return arcs with uniformly periodic FODO optics suitable for chromatic compensation of emittance dilution with sextupoles. However, they require spreaders/recombiners switchyards at both linac ends and significant total length of the arcs. The non-scaling Fixed Field Alternating Gradient (FFAG) ring combines compactness with very large chromatic acceptance (twice the injection energy) and it allows for large number of passes through the RF (at least eight, possibly as high as 15).

  13. The value of place

    NASA Astrophysics Data System (ADS)

    Dentzau, Michael W.

    2014-03-01

    This commentary seeks to expand the dialogue on place-based science education presented in Katie Lynn Brkich's article, where the connections fifth grade students make between their formal earth science curriculum and their lived experiences are highlighted. The disconnect between the curriculum the students are offered and their immediate environment is clear, and we are presented with examples of how they strive to make connections between the content and what they are familiar with—namely their surroundings. "Place" is identified as a term with complex meanings and interpretations, even in the scope of place-based science education, and understanding how the term is used in any given scenario is essential to understanding the implications of place-based education. Is place used as a location, locale or a sense of place? To understand "place" is to acknowledge that for the individual, it is highly situational, cultural and personal. It is just such attributes that make place-based education appealing, and potentially powerful, pedagogically on one hand, yet complex for implementation on the other. The argument is posed that place is particularly important in the context of education about the environment, which in its simplest manifestation, connects formal science curriculum to resources that are local and tangible to students. The incorporation of place in such a framework seeks to bridge the gap between formal school science subjects and students' lived experiences, yet acknowledges the tensions that can arise between accommodating place meanings and the desire to acculturate students into the language of the scientific community. The disconnect between guiding policy frameworks and the reality of the Next Generation Science Standards is addressed opening an avenue for further discussion of the importance of socio-cultural frameworks of science learning in an ever increasing era of accountability.

  14. Wakefield accelerators

    SciTech Connect

    Simpson, J.D.

    1990-01-01

    The search for new methods to accelerate particle beams to high energy using high gradients has resulted in a number of candidate schemes. One of these, wakefield acceleration, has been the subject of considerable R D in recent years. This effort has resulted in successful proof of principle experiments and in increased understanding of many of the practical aspects of the technique. Some wakefield basics plus the status of existing and proposed experimental work is discussed, along with speculations on the future of wake field acceleration. 10 refs., 6 figs.

  15. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  16. Place as Library?

    ERIC Educational Resources Information Center

    Davenport, Nancy

    2006-01-01

    Digital technology is redrawing the library's blueprint. Planners are thinking in new ways about how to design libraries as places for learning rather than primarily as storehouses of information. This thinking has given rise to much discussion--and to many publications--about the "library as place." In this article, the author asks why not also…

  17. The Case for Place

    ERIC Educational Resources Information Center

    Thomas, Lisa Carlucci

    2012-01-01

    Bookstores, record stores, libraries, Facebook: these places--both physical and virtual--demonstrate an established and essential purpose as centers of community, expertise, convenience, immediacy, and respect. Yet as digital, mobile, and social shifts continue to transform culture and interactions, these spaces and places transform, too.…

  18. Teaching Bodies in Place

    ERIC Educational Resources Information Center

    Jones, Stephanie; Woglom, James F.

    2013-01-01

    Background/Context: This piece draws on literature in justice-oriented teacher education, feminist pedagogy, and postmodern notions of bodies and place to make sense of data generated from a three-year study of an undergraduate teacher education course. A feminist lens was used to engage a body- and place-focused pedagogy that aimed to engage…

  19. Understanding Place Value

    ERIC Educational Resources Information Center

    Cooper, Linda L.; Tomayko, Ming C.

    2011-01-01

    Developing an understanding of place value and the base-ten number system is considered a fundamental goal of the early primary grades. For years, teachers have anecdotally reported that students struggle with place-value concepts. Among the common errors cited are misreading such numbers as 26 and 62 by seeing them as identical in meaning,…

  20. Schooling Out of Place

    ERIC Educational Resources Information Center

    McConaghy, Cathryn

    2006-01-01

    Education in rural communities is an interesting site for an analysis of the relationship between place and the cultural politics of schooling. In particular the movements of people, ideas and practices to and from, and also within, rural places suggest the need for theorizing on rural education to consider the relevance of new mobility…

  1. Accelerators for Discovery Science and Security applications

    NASA Astrophysics Data System (ADS)

    Todd, A. M. M.; Bluem, H. P.; Jarvis, J. D.; Park, J. H.; Rathke, J. W.; Schultheiss, T. J.

    2015-05-01

    Several Advanced Energy Systems (AES) accelerator projects that span applications in Discovery Science and Security are described. The design and performance of the IR and THz free electron laser (FEL) at the Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin that is now an operating user facility for physical chemistry research in molecular and cluster spectroscopy as well as surface science, is highlighted. The device was designed to meet challenging specifications, including a final energy adjustable in the range of 15-50 MeV, low longitudinal emittance (<50 keV-psec) and transverse emittance (<20 π mm-mrad), at more than 200 pC bunch charge with a micropulse repetition rate of 1 GHz and a macropulse length of up to 15 μs. Secondly, we will describe an ongoing effort to develop an ultrafast electron diffraction (UED) source that is scheduled for completion in 2015 with prototype testing taking place at the Brookhaven National Laboratory (BNL) Accelerator Test Facility (ATF). This tabletop X-band system will find application in time-resolved chemical imaging and as a resource for drug-cell interaction analysis. A third active area at AES is accelerators for security applications where we will cover some top-level aspects of THz and X-ray systems that are under development and in testing for stand-off and portal detection.

  2. Plasma acceleration in the Martian magnetotail

    NASA Astrophysics Data System (ADS)

    Esteban Hernandez, Rosa; Modolo, Ronan; Leblanc, François; Chaufray, Jean-Yves; Curry, Shannon M.; Steckiewicz, Morgane; Connerney, John E. P.; McFadden, James P.; Jakosky, Bruce M.; Brain, David A.; DiBraccio, Gina A.; Romanelli, Norberto; Halekas, Jasper S.; Mitchell, David L.

    2016-04-01

    Since November 2014, the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has been collecting data from Mars's upper atmosphere and induced magnetosphere (Jakosky et al., 2015). Evidences of escaping planetary ions have been reported from earlier missions as Mars-Express (Barabash et al., 2007) and more recently from MAVEN (e.g. Dong et al., 2015, Brain et al., 2015). Our goal is to determine the acceleration mechanism responsible for the energization of planetary ions in the Martian plasma sheet. MAVEN has a full plasma package with a magnetometer and plasma particles instruments, which allow to address the question of plasma particle acceleration. According to Dubinin et al. (2011), the j x B force due to magnetic shear stresses of the draped field lines is expected to play a major role in such energization process. On MAVEN data, we have first identified and characterized current sheet crossings taking place in Mars' magnetotail and then tested the Walén relation to infer the significance of the j x B force in the particle's energization. To characterize the plasma sheet crossing we have worked with MAVEN magnetometer (MAG, Connerney et al., SSR, 2015) and mass spectrometer (STATIC, McFadden et al., SSR, 2015) data, focusing on a particular event. We have performed a minimum variance analysis, on the magnetic field observations which allows to characterize the current sheet. We present results of the Walén test and our conclusions on planetary plasma acceleration in the plasma sheet region.

  3. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  4. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  5. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  6. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  7. Sharing Knowledge About Places as Community Building

    NASA Astrophysics Data System (ADS)

    Willis, Katharine S.; O'Hara, Kenton; Giles, Thierry; Marianek, Mike

    Our experience of places is one that goes hand-in-hand with social exchange. It is rare that we visit a place purely to experience it as an isolated encounter with a physical setting. Instead, we visit places in groups, use a myriad of ways to tell others about the experience, and we often seek out and take pleasure from encounters with local people in the setting. Our experience of place is embedded within a social framework for sharing knowledge. In this chapter, we discuss the motivations for sharing place-based knowledge and how this can contribute to community building. We then proceed to review three projects that create platforms for knowledge exchange and discuss their different approaches. This is followed by a discussion on the range of practices for sharing knowledge about places and in particular those that support social frameworks in a community setting. In conclusion, we propose directions for future work in the area.

  8. AKR breakup and auroral particle acceleration at substorm onset

    NASA Astrophysics Data System (ADS)

    Morioka, A.; Miyoshi, Y.; Tsuchiya, F.; Misawa, H.; Yumoto, K.; Parks, G. K.; Anderson, R. R.; Menietti, J. D.; Donovan, E. F.; Honary, F.; Spanswick, E.

    2008-09-01

    The dynamical behavior of auroral kilometric radiation (AKR) is investigated in connection with auroral particle acceleration at substorm onsets using high-time-resolution wave spectrograms provided by Polar/PWI electric field observations. AKR develops explosively at altitudes above a preexisting low-altitude AKR source at substorm onsets. This "AKR breakup" suggests an abrupt formation of a new field-aligned acceleration region above the preexisting acceleration region. The formation of the new acceleration region is completed in a very short time (amplitude increases 10,000 times in 30 seconds), suggesting that the explosive development is confined to a localized region. AKR breakups are usually preceded (1-3 minutes) by the appearance and/or gradual enhancement of the low-altitude AKR. This means that the explosive formation of the high-altitude electric field takes place in the course of the growing low-altitude acceleration. The development of the low-altitude acceleration region is thus a necessary condition for the ignition of the high-altitude bursty acceleration. The dH/dt component from a search-coil magnetometer at ground shows that a few minutes prior to substorm onsets, the quasi-DC component begins a negative excursion that is nearly synchronized with the start of the gradual enhancement of the low-altitude AKR, indicating a precursor-like behavior for the substorm. This negative variation of dH/dt suggests an exponentially increasing ionospheric current induced by the upward field-aligned current. At substorm onsets, the decrease in the quasi-DC variation of dH/dt further accelerates, indicating a sudden reinforcement of the field-aligned current.

  9. About Maggie's Place.

    ERIC Educational Resources Information Center

    Emmens, Carol E.

    1982-01-01

    Describes "Maggie's Place," the library computer system of the Pikes Peak Library District, Colorado Springs, Colorado, noting its use as an electronic card catalog and community information file, accessibility by home users and library users, and terminal considerations. (EJS)

  10. Artist Place Settings

    ERIC Educational Resources Information Center

    Pellegrino, Linda

    2009-01-01

    Art history can be a little dry at times, but the author is always trying to incorporate new ways of teaching it. In this article, she describes a project in which students were to create a place setting out of clay that had to be unified through a famous artist's style. This place setting had to consist of at least five pieces (dinner plate, cup…

  11. Explaining the accelerated expansion of the Universe by particle creation

    NASA Astrophysics Data System (ADS)

    Singh, Ibotombi N.; Devi, Bembem Y.

    2016-04-01

    A spatially flat FRW Universe in the context of particle creation has been discussed by assuming a variable deceleration parameter which is a function of scale factor. A dust model in which creation of particles giving a negative creation pressure has been studied. Treating the Universe as an open adiabatic system, it is supposed that matter creation takes place out of gravitational energy. In this model, the Universe shows an accelerating phase of its expansion. Total number of particles increases while number of particle density decreases. Some physical implications of this model are investigated.

  12. Spatial mapping takes time.

    PubMed

    Whishaw, I Q

    1998-01-01

    The experiment tested the prediction that spatial mapping takes time and asked whether time use is reflected in the overt behavior of a performing animal. The study examines this question by exploiting the expected behavioral differences of control rats and rats with hippocampal formation damage induced with fimbria-fornix (FF) lesions on a spatial navigation task. Previous studies have shown that control rats use a mapping strategy, in which they use the relative positions of environmental cues to reach places in space, whereas FF rats use a cue-based strategy, in which they are guided by a single cue or their own body orientation. Therefore, control and FF rats were overtrained on a complex foraging task in which they left a burrow to retrieve eight food pellets hidden around the perimeter of a circular table. The control rats retrieved the food pellets in order of their distance from the burrow, took direct routes to the food, and made few errors, all of which suggested they used a spatial strategy. The FF rats were less likely to retrieve food as a function of its distance, took a circular path around the perimeter of the table, and made many errors, suggesting they used a cue-based strategy. Despite taking shorter routes than the FF rats, the control rats had proportionally slower response speeds. Their slow response speeds support the hypothesis that spatial mapping takes time and that mapping time is reflected in behavior. The results are discussed in relation to their relevance to spatial mapping theory, hippocampal function, and the evolution of foraging strategies.

  13. Extremely fast acceleration of cosmic rays in a supernova remnant.

    PubMed

    Uchiyama, Yasunobu; Aharonian, Felix A; Tanaka, Takaaki; Takahashi, Tadayuki; Maeda, Yoshitomo

    2007-10-01

    Galactic cosmic rays (CRs) are widely believed to be accelerated by shock waves associated with the expansion of supernova ejecta into the interstellar medium. A key issue in this long-standing conjecture is a theoretical prediction that the interstellar magnetic field can be substantially amplified at the shock of a young supernova remnant (SNR) through magnetohydrodynamic waves generated by cosmic rays. Here we report a discovery of the brightening and decay of X-ray hot spots in the shell of the SNR RX J1713.7-3946 on a one-year timescale. This rapid variability shows that the X-rays are produced by ultrarelativistic electrons through a synchrotron process and that electron acceleration does indeed take place in a strongly magnetized environment, indicating amplification of the magnetic field by a factor of more than 100. The X-ray variability also implies that we have witnessed the ongoing shock-acceleration of electrons in real time. Independently, broadband X-ray spectrometric measurements of RX J1713.7-3946 indicate that electron acceleration proceeds in the most effective ('Bohm-diffusion') regime. Taken together, these two results provide a strong argument for acceleration of protons and nuclei to energies of 1 PeV (10(15) eV) and beyond in young supernova remnants.

  14. Particle Acceleration, Magnetic Field Generation in Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2005-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  15. Extremely Fast Acceleration of Cosmic Rays in a Supernova Remnant

    SciTech Connect

    Uchiyama, Y.; Aharonian, F.A.; Tanaka, T.; Takahashi, T.; Maeda, Y.; /JAERI, Tokai /Dublin Inst. /Heidelberg, Max Planck Inst. /SLAC

    2007-10-23

    Galactic cosmic rays (CRs) are widely believed to be accelerated by shock waves associated with the expansion of supernova ejecta into the interstellar medium. A key issue in this long-standing conjecture is a theoretical prediction that the interstellar magnetic field can be substantially amplified at the shock of a young supernova remnant (SNR) through magnetohydrodynamic waves generated by cosmic rays. Here we report a discovery of the brightening and decay of X-ray hot spots in the shell of theSNRRXJ1713.723946 on a one-year timescale. This rapid variability shows that the X-rays are produced by ultrarelativistic electrons through a synchrotron process and that electron acceleration does indeed take place in a strongly magnetized environment, indicating amplification of the magnetic field by a factor of more than 100. The X-ray variability also implies that we have witnessed the ongoing shock-acceleration of electrons in real time. Independently, broadband X-ray spectrometric measurements of RXJ1713.723946 indicate that electron acceleration proceeds in the most effective ('Bohm-diffusion') regime. Taken together, these two results provide a strong argument for acceleration of protons and nuclei to energies of 1 PeV (10{sup 15} eV) and beyond in young supernova remnants.

  16. Vanguard industrial linear accelerator rapid product development

    NASA Astrophysics Data System (ADS)

    Harroun, Jim

    1994-07-01

    Siemens' ability to take the VanguardTM Industrial Linear Accelerator from the development stage to the market place in less than two years is described. Emphasis is on the development process, from the business plan through the shipment of the first commercial sale. Included are discussions on the evolution of the marketing specifications, with emphasis on imaging system requirements, as well as flexibility for expansion into other markets. Requirements used to create the engineering specifications, how they were incorporated into the design, and lessons learned from the demonstration system are covered. Some real-life examples of unanticipated problems are presented, as well as how they were resolved, including some discussion of the special problems encountered in developing a user interface and a training program for an international customer.

  17. Development of a 20 MeV Dielectric-Loaded Accelerator Test Facility

    SciTech Connect

    Gold, Steven H.; Fliflet, Arne W.; Kinkead, Allen K.; Gai Wei; Power, John G.; Konecny, Richard; Jing Chunguang; Tantawi, Sami G.; Nantista, Christopher D.; Hu, Y.; Chen, H.; Tang, C.; Lin, Y.; Bruce, Ralph W.; Bruce, Robert L.; Lewis, David III

    2004-12-07

    This paper describes a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the StanFord Linear Accelerator Center (SLAC), to develop a dielectric-loaded accelerator (DLA) test facility powered by a high-power 11.424-GHz magnicon amplifier. The magnicon can presently produce 25 MW of output power in a 250-ns pulse at 10 Hz, and efforts are in progress to increase this to 50 MW. The facility will include a 5 MeV electron injector being developed by the Accelerator Laboratory of Tsinghua University in Beijing, China. The DLA test structures are being developed by ANL, and some have undergone testing at NRL at gradients up to {approx}8 MV/m. SLAC is developing a means to combine the two magnicon output arms, and to drive an injector and accelerator with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, is developing a means to join short ceramic sections into a continuous accelerator tube by ceramic brazing using an intense millimeter-wave beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year. The facility will be used for testing DLA structures using a variety of materials and configurations, and also for testing other X-band accelerator concepts. The initial goal is to produce a compact 20 MeV dielectric-loaded test accelerator.

  18. Development of a 20-MeV Dielectric-Loaded Accelerator Test Facility

    SciTech Connect

    Gold, S.H.; Kinkead, A.K.; Gai, W.; Power, J.G.; Konecny, R.; Jing, C.G.; Tantawi, S.G.; Nantista, C.D.; Hu, Y.; Chen, H.; Tang, C.; Lin, Y.; Bruce, R.W.; Bruce, R.L.; Fliflet, A.W.; Lewis, D.; /Naval Research Lab, Wash., D.C. /LET Corp., Washington /Argonne /SLAC /Tsinghua U., Beijing

    2005-06-22

    This paper describes a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded accelerator (DLA) test facility powered by a high-power 11.424-GHz magnicon amplifier. The magnicon can presently produce 25 MW of output power in a 250-ns pulse at 10 Hz, and efforts are in progress to increase this to 50 MW. The facility will include a 5 MeV electron inector being developed by the Accelerator Laboratory of Tsinghua University in Beijing, China. The DLA test structures are being developed by ANL, and some have undergone testing at NRL at gradients up to {approx} 8 MV/m. SLAC is developing a means to combine the two magnicon output arms, and to drive an injector and accelerator with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRl, is developing a means to join short ceramic sections into a continuous accelerator tube by ceramic brazing using an intense millimeter-wave beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year. The facility will be used for testing DLA structures using a variety of materials and configurations, and also for testing other X-band accelerator concepts. The initial goal is to produce a compact 20 MeV dielectric-loaded test accelerator.

  19. Gateway to New Atlantis Attraction Takes Shape

    NASA Video Gallery

    The home of space shuttle Atlantis continues taking shape at the Kennedy Space Center Visitor Complex. Crews placed the nose cone atop the second of a replica pair of solid rocket boosters. A life-...

  20. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  1. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  2. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  3. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  4. Finding Place in Education

    ERIC Educational Resources Information Center

    Peters, Chris

    2011-01-01

    As a society, we are less and less comfortable in our localities. We have embraced the idea of a globalized placelessness, where everything, everywhere, resonates with a sameness. What do we lose, educationally and in society at large, when we reduce our inhabited places to those components that provide material wealth alone? If students and…

  5. Schools as Dangerous Places

    ERIC Educational Resources Information Center

    Potts, Anthony

    2006-01-01

    When students set off for school each day how many of them or their caregivers consider for a moment that they will spend the day at a potentially dangerous place? On the contrary, students and caregivers probably view schools as safe havens, and official research suggests that this is the case for the majority of teachers and pupils. However,…

  6. Tracking Self into Place

    ERIC Educational Resources Information Center

    Piersol, Laura

    2010-01-01

    In an effort to figure out what it means to educate "ecologically," I decided to track down some of the stories that I was living, telling and making as an educator. I ended up lost in the house of environmental education, stuck within the rooms of ecological science and political advocacy. Outside on the lawn sat the story of place based…

  7. Teaching With Historic Places.

    ERIC Educational Resources Information Center

    Greenberg, Ronald M., Ed.

    1993-01-01

    Designed for social studies educators, this theme issue presents 11 articles about historic places that feature a variety of ideas for elementary and secondary lesson plans, curricula, and program development. The articles are: (1) "Where did History Happen?" (Beth M. Boland); (2) "Creating a Partnership" (Carol D. Shull); (3) "Heritage Education:…

  8. The Value of Place

    ERIC Educational Resources Information Center

    Dentzau, Michael W.

    2014-01-01

    This commentary seeks to expand the dialogue on place-based science education presented in Katie Lynn Brkich's article, where the connections fifth grade students make between their formal earth science curriculum and their lived experiences are highlighted. The disconnect between the curriculum the students are offered and their immediate…

  9. Designing Places for Learning.

    ERIC Educational Resources Information Center

    Meek, Anne, Ed.

    This book presents information about the condition of schools around the United States. It also describes the link between architecture and academic success and offers suggestions for improving the design of existing and future school buildings. Eleven articles look at schools as places of deep meaning and show how that view can alter approaches…

  10. Creativity: Does Place Matter?

    ERIC Educational Resources Information Center

    Bradley, Finbarr

    2012-01-01

    This article argues that creativity has the greatest potential to flourish if a learning environment is embedded within a community that emphasises a deep sense of place. Yet in a globalised world, rootedness is often regarded as antithetical to creativity. But far from representing dead artefacts that are anti-modern and non-economic, culture and…

  11. Universities Are Funny Places!

    ERIC Educational Resources Information Center

    Lawless, Ann

    2006-01-01

    Universities are funny places. They have a strong sense of hierarchy and rank. They have an amazing disparity in salary levels and status between staff, are class conscious, and are run by a large bureaucracy that oils and keeps the machinery going. They operate as educational institutions and yet also are entrepreneurial, marketing themselves in…

  12. Systematic Risk-Taking.

    ERIC Educational Resources Information Center

    Neihart, Maureen

    1999-01-01

    Describes systematic risk-taking, a strategy designed to develop skills and increase self-esteem, confidence, and courage in gifted youth. The steps of systematic risk-taking include understanding the benefits, initial self-assessment for risk-taking categories, identifying personal needs, determining a risk to take, taking the risk, and…

  13. Particle Acceleration at Corotating Interaction Regions in the Heliosphere

    NASA Astrophysics Data System (ADS)

    Tsubouchi, K.

    2014-11-01

    Hybrid simulations are performed to investigate the dynamics of both solar wind protons and interplanetary pickup ions (PUIs) around the corotating interaction region (CIR). The one-dimensional system is applied in order to focus on processes in the direction of CIR propagation. The CIR is bounded by forward and reverse shocks, which are responsible for particle acceleration. The effective acceleration of solar wind protons takes place when the reverse shock (fast wind side) favors a quasi-parallel regime. The diffusive process accounts for this acceleration, and particles can gain energy in a suprathermal range (on the order of 10 keV). In contrast, the PUI acceleration around the shock differs from the conventional model in which the motional electric field along the shock surface accelerates particles. Owing to their large gyroradius, PUIs can gyrate between the upstream and downstream, several proton inertial lengths away from the shock. This "cross-shock" gyration results in a net velocity increase in the field-aligned component, indicating that the magnetic mirror force is responsible for acceleration. The PUIs that remain in the vicinity of the shock for a long duration (tens of gyroperiods) gain much energy and are reflected back toward the upstream. These reflected energetic PUIs move back and forth along the magnetic field between a pair of CIRs that are magnetically connected. The PUIs are repeatedly accelerated in each reflection, leading to a maximum energy gain close to 100 keV. This mechanism can be evaluated in terms of "preacceleration" for the generation of anomalous cosmic rays.

  14. Particle acceleration at corotating interaction regions in the heliosphere

    SciTech Connect

    Tsubouchi, K.

    2014-11-01

    Hybrid simulations are performed to investigate the dynamics of both solar wind protons and interplanetary pickup ions (PUIs) around the corotating interaction region (CIR). The one-dimensional system is applied in order to focus on processes in the direction of CIR propagation. The CIR is bounded by forward and reverse shocks, which are responsible for particle acceleration. The effective acceleration of solar wind protons takes place when the reverse shock (fast wind side) favors a quasi-parallel regime. The diffusive process accounts for this acceleration, and particles can gain energy in a suprathermal range (on the order of 10 keV). In contrast, the PUI acceleration around the shock differs from the conventional model in which the motional electric field along the shock surface accelerates particles. Owing to their large gyroradius, PUIs can gyrate between the upstream and downstream, several proton inertial lengths away from the shock. This 'cross-shock' gyration results in a net velocity increase in the field-aligned component, indicating that the magnetic mirror force is responsible for acceleration. The PUIs that remain in the vicinity of the shock for a long duration (tens of gyroperiods) gain much energy and are reflected back toward the upstream. These reflected energetic PUIs move back and forth along the magnetic field between a pair of CIRs that are magnetically connected. The PUIs are repeatedly accelerated in each reflection, leading to a maximum energy gain close to 100 keV. This mechanism can be evaluated in terms of 'preacceleration' for the generation of anomalous cosmic rays.

  15. Hypervelocity plate acceleration

    SciTech Connect

    Marsh, S.P.; Tan, T.H.

    1991-01-01

    Shock tubes have been used to accelerate 1.5-mm-thick stainless steel plates to high velocity while retaining their integrity. The fast shock tubes are 5.1-cm-diameter, 15.2-cm-long cylinders of PBX-9501 explosive containing a 1.1-cm-diameter cylindrical core of low-density polystyrene foam. The plates have been placed directly in contact with one face of the explosive system. Plane-wave detonation was initiated on the opposite face. A Mach disk was formed in the imploding styrofoam core, which provided the impulse required to accelerate the metal plate to high velocity. Parametric studies were made on this system to find the effect of varying plate metal, plate thickness, foam properties, and addition of a barrel. A maximum plate velocity of 9.0 km/s has been observed. 6 refs., 17 figs.

  16. Settings: In a Variety of Place. . .

    ERIC Educational Resources Information Center

    Cairo, Peter; And Others

    This document consists of the fourth section of a book of readings on issues related to adult career development. The four chapters in this fourth section focus on settings in which adult career development counseling may take place. "Career Planning and Development in Organizations" (Peter Cairo) discusses several concepts and definitions…

  17. The Right Place, The Right Time

    ERIC Educational Resources Information Center

    O'Callaghan, William G.; Irish, Charles M.

    2006-01-01

    Superintendents are in the right place at the right time to take advantage of a golden opportunity to reverse a trend that threatens the nation's schools and communities. They are now uniquely positioned to stop the retreat of good-hearted, well-intentioned citizens from public life. In this article, the authors present perpetual traps that…

  18. Superdiffusive shock acceleration and short acceleration times at interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Perri, Silvia; Zimbardo, Gaetano

    2016-04-01

    The analysis of time profiles of particles accelerated at interplanetary shock waves has shown evidence for superdiffusive transport in the upstream region. Superdiffusive transport is characterized by a mean square displacement that grows faster than linearly in time and by non Gaussian statistics for the distribution of the particle jump lengths. In the superdiffusive framework it has been shown that particle time profiles upstream of a planar shock decay as power laws, at variance with exponential particle time profiles predicted in the case of diffusive transport. A large number of interplanetary shocks, including coronal mass ejection driven shocks, exhibit energetic particle time profiles that decay as power laws far upstream. In order to take this evidence into account, we have extended the standard theory of diffusive shock acceleration to the case of particle superdiffusive transport (superdiffusive shock acceleration). This has allowed us to derive both hard energy spectral indices and short acceleration times. This new theory has been tested for a number of interplanetary shock waves, observed by the Ulysses and the ACE spacecraft, and for the termination shock. The superdiffusive shock acceleration leads to a strong reduction of the acceleration times (even of about one order of magnitude) with respect to the diffusive shock acceleration. Thus, this new framework provides a substantial advancement in the understanding of the processes of particle acceleration and particle transport, which are among the main objectives of the new Solar Probe and Solar Orbiter space missions.

  19. Accelerated carbonation of cement pastes in situ monitored by neutron diffraction

    SciTech Connect

    Castellote, M. Andrade, C.; Turrillas, X.; Campo, J.; Cuello, G.J.

    2008-12-15

    In-situ monitoring of the changes that take place in the phase composition of cement pastes during accelerated carbonation (100% CO{sub 2}) for different binders, has been carried out, by taking Neutron Diffraction patterns in parallel with the carbonation experiments. The variation of the intensity of chosen reflections for each phase along the experiment has been used to monitor concentration changes and has supplied data, in real time, for fractional conversion of different phases (Portlandite, Ettringite and CSH gel) of the hydrated cement pastes. Fitting of these results has allowed to make a qualitative approach to the kinetics of the carbonation of the different phases and extracting conclusions on the microstructural changes that takes place during the carbonation of cement pastes.

  20. Hardware Accelerated Simulated Radiography

    SciTech Connect

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-04-12

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists.

  1. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  2. Space Place Prime

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Austin J.; Novati, Alexander; Fisher, Diane K.; Leon, Nancy J.; Netting, Ruth

    2013-01-01

    Space Place Prime is public engagement and education software for use on iPad. It targets a multi-generational audience with news, images, videos, and educational articles from the Space Place Web site and other NASA sources. New content is downloaded daily (or whenever the user accesses the app) via the wireless connection. In addition to the Space Place Web site, several NASA RSS feeds are tapped to provide new content. Content is retained for the previous several days, or some number of editions of each feed. All content is controlled on the server side, so features about the latest news, or changes to any content, can be made without updating the app in the Apple Store. It gathers many popular NASA features into one app. The interface is a boundless, slidable- in-any-direction grid of images, unique for each feature, and iconized as image, video, or article. A tap opens the feature. An alternate list mode presents menus of images, videos, and articles separately. Favorites can be tagged for permanent archive. Face - book, Twitter, and e-mail connections make any feature shareable.

  3. Take Steps Toward a Healthier Life | Poster

    Cancer.gov

    The National Institutes of Health (NIH) is promoting wellness by encouraging individuals to take the stairs. In an effort to increase participation in this program, NIH has teamed up with Occupational Health Services (OHS). OHS is placing NIH-sponsored “Take the Stairs” stickers on stair entrances, stair exits, and elevators.

  4. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  5. Development of a Compact Dielectric-Loaded Test Accelerator at 11.4 GHz

    SciTech Connect

    Gold, S. H.; Fliflet, A. W.; Kinkead, A. K.; Gai, W.; Power, J. G.; Konecny, R.; Jing, C.

    2009-01-22

    This paper presents a progress report on the development of a dielectric-loaded test accelerator in the Magnicon Facility at the Naval Research Laboratory (NRL). The accelerator will be powered by an 11.4-GHz magnicon amplifier that provides up to 25 MW of output power in a {approx}250-ns pulse at up to 10 Hz. The accelerator includes a 5-MeV electron injector originally developed at the Tsinghua University in Beijing, China, and can incorporate dielectric-loaded accelerating (DLA) structures of up to 0.5 m in length. The DLA structures are being developed by Argonne National Laboratory and Euclid Techlabs, and shorter test structures fabricated from a variety of dielectric materials have undergone rf testing at NRL at accelerating gradients up to 15 MV/m. The first stage of the accelerator, including the 5-MeV injector, has recently begun operation, and initial operation of the complete dielectric-loaded test accelerator, including injector, DLA test structure, and spectrometer, should take place within the next year.

  6. Development of a 20 MeV Dielectric-Loaded Test Accelerator

    SciTech Connect

    Gold, S.H.; Kinkead, A.K.; Gai, W.; Power, J.G.; Konecny, R.; Jing, C.; Long, J.; Tantawi, S.G.; Nantista, C.D.; Fliflet, A.W.; Lombardi, M.; Lewis, D.; Bruce, R.W.; /Unlisted

    2007-04-13

    This paper presents a progress report on a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded test accelerator in the magnicon facility at NRL. The accelerator will be powered by an experimental 11.424-GHz magnicon amplifier that presently produces 25 MW of output power in a {approx}250-ns pulse at up to 10 Hz. The accelerator will include a 5-MeV electron injector originally developed at the Tsinghua University in Beijing, China, and can incorporate DLA structures up to 0.5 m in length. The DLA structures are being developed by ANL, and shorter test structures fabricated from a variety of dielectric materials have undergone testing at NRL at gradients up to {approx}8 MV/m. SLAC has developed components to distribute the power from the two magnicon output arms to the injector and to the DLA accelerating structure with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, has investigated means to join short ceramic sections into a continuous accelerator tube by a brazing process using an intense 83-GHz beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA test structure, and spectrometer, should take place within the next year.

  7. Development of a 20 MeV Dielectric-Loaded Test Accelerator

    SciTech Connect

    Gold, Steven H.; Fliflet, Arne W.; Lombardi, Marcie; Kinkead, Allen K.; Gai, Wei; Power, John G.; Konecny, Richard; Long, Jidong; Jing, Chunguang; Tantawi, Sami G.; Nantista, Christopher D.; Bruce, Ralph W.; Lewis, David III

    2006-11-27

    This paper presents a progress report on a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded test accelerator in the magnicon facility at NRL. The accelerator will be powered by an experimental 11.424-GHz magnicon amplifier that presently produces 25 MW of output power in a {approx}250-ns pulse at up to 10 Hz. The accelerator will include a 5-MeV electron injector originally developed at the Tsinghua University in Beijing, China, and can incorporate DLA structures up to 0.5 m in length. The DLA structures are being developed by ANL, and shorter test structures fabricated from a variety of dielectric materials have undergone testing at NRL at gradients up to {approx}8 MV/m. SLAC has developed components to distribute the power from the two magnicon output arms to the injector and to the DLA accelerating structure with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, has investigated means to join short ceramic sections into a continuous accelerator tube by a brazing process using an intense 83-GHz beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA test structure, and spectrometer, should take place within the next year.

  8. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  9. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  10. The Take Action Project

    ERIC Educational Resources Information Center

    Boudreau, Sue

    2010-01-01

    The Take Action Project (TAP) was created to help middle school students take informed and effective action on science-related issues. The seven steps of TAP ask students to (1) choose a science-related problem of interest to them, (2) research their problem, (3) select an action to take on the problem, (4) plan that action, (5) take action, (6)…

  11. Abrupt plate accelerations shape rifted continental margins

    NASA Astrophysics Data System (ADS)

    Brune, Sascha; Williams, Simon E.; Butterworth, Nathaniel P.; Müller, R. Dietmar

    2016-08-01

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth’s major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength–velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time.

  12. Abrupt plate accelerations shape rifted continental margins.

    PubMed

    Brune, Sascha; Williams, Simon E; Butterworth, Nathaniel P; Müller, R Dietmar

    2016-08-11

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth's major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength--velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time.

  13. Solar Cosmic Ray Acceleration and Propagation

    NASA Astrophysics Data System (ADS)

    Podgorny, I. M.; Podgorny, A. I.

    2016-05-01

    The GOES data for emission of flare protons with the energies of 10 - 100 MeV are analyzed. Proton fluxes of ~1032 accelerated particles take place at the current sheet decay. Proton acceleration in a flare occurs along a singular line of the current sheet by the Lorentz electric field, as in the pinch gas discharge. The duration of proton flux measured on the Earth orbit is by 2 - 3 orders of magnitude longer than the duration of flares. The high energy proton flux from the flares that appear on the western part of the solar disk arrives to Earth with the time of flight. These particles propagate along magnetic lines of the Archimedes spiral connecting the flare with the Earth. Protons from the flare on the eastern part of the solar disk begin to register with a delay of several hours. Such particles cannot get on the magnetic field line connecting the flare with the Earth. These protons reach the Earth, moving across the interplanetary magnetic field. The particles captured by the magnetic field in the solar wind are transported with solar wind and due to diffusion across the magnetic field. The patterns of solar cosmic rays generation demonstrated in this paper are not always observed in the small ('1 cm-2 s-1 ster-1) proton events.

  14. Abrupt plate accelerations shape rifted continental margins.

    PubMed

    Brune, Sascha; Williams, Simon E; Butterworth, Nathaniel P; Müller, R Dietmar

    2016-08-11

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth's major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength--velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time. PMID:27437571

  15. RHIC sextant test: Accelerator systems and performance

    SciTech Connect

    Pilat, F.; Trbojevic, D.; Ahrens, L.

    1997-08-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning.

  16. Superdiffusion of cosmic rays: Implications for cosmic ray acceleration

    SciTech Connect

    Lazarian, A.; Yan, Huirong

    2014-03-20

    Diffusion of cosmic rays (CRs) is the key process for understanding their propagation and acceleration. We employ the description of spatial separation of magnetic field lines in magnetohydrodynamic turbulence in Lazarian and Vishniac to quantify the divergence of the magnetic field on scales less than the injection scale of turbulence and show that this divergence induces superdiffusion of CR in the direction perpendicular to the mean magnetic field. The perpendicular displacement squared increases, not as the distance x along the magnetic field, which is the case for a regular diffusion, but as the x {sup 3} for freely streaming CRs. The dependence changes to x {sup 3/2} for the CRs propagating diffusively along the magnetic field. In the latter case, we show that it is important to distinguish the perpendicular displacement with respect to the mean field and to the local magnetic field. We consider how superdiffusion changes the acceleration of CRs in shocks and show how it decreases efficiency of the CRs acceleration in perpendicular shocks. We also demonstrate that in the case when the small-scale magnetic field is generated in the pre-shock region, an efficient acceleration can take place for the CRs streaming without collisions along the magnetic loops.

  17. In-place HEPA filter penetration test

    SciTech Connect

    Bergman, W.; Wilson, kK.; Elliott, J.; Bettencourt, B.; Slawski, J.W.

    1997-01-01

    We have demonstrated the feasibility of conducting penetration tests on high efficiency particulate air (HEPA) filters as installed in nuclear ventilation systems. The in-place penetration test, which is designed to yield equivalent penetration measurements as the standard DOP efficiency test, is based on measuring the aerosol penetration of the filter installation as a function of particle size using a portable laser particle counter. This in-place penetration test is compared to the current in-place leak test using light scattering photometers for single HEPA filter installations and for HEPA filter plenums using the shroud method. Test results show the in-place penetration test is more sensitive than the in-place leak test, has a similar operating procedure, but takes longer to conduct. Additional tests are required to confirm that the in-place penetration test yields identical results as the standard dioctyl phthalate (DOP) penetration test for HEPA filters with controlled leaks in the filter and gasket and duct by-pass leaks. Further development of the procedure is also required to reduce the test time before the in- place penetration test is practical.

  18. In-place HEPA filter penetration test

    SciTech Connect

    Bergman, W.; Wilson, K.; Elliott, J.

    1997-08-01

    We have demonstrated the feasibility of conducting penetration tests on high efficiency particulate air (HEPA) filters as installed in nuclear ventilation systems. The in-place penetration test, which is designed to yield equivalent penetration measurements as the standard DOP efficiency test, is based on measuring the aerosol penetration of the filter installation as a function of particle size using a portable laser particle counter. This in-place penetration test is compared to the current in-place leak test using light scattering photometers for single HEPA filter installations and for HEPA filter plenums using the shroud method. Test results show the in-place penetration test is more sensitive than the in-place leak test, has a similar operating procedure, but takes longer to conduct. Additional tests are required to confirm that the in-place penetration test yields identical results as the standard dioctyl phthalate (DOP) penetration test for HEPA filters with controlled leaks in the filter and gasket and duct by-pass leaks. Further development of the procedure is also required to reduce the test time before the in-place penetration test is practical. 14 refs., 14 figs., 3 tabs.

  19. Breastfeeding in public places.

    PubMed

    McIntyre, E; Turnbull, D; Hiller, J E

    1999-06-01

    This study reports the results of a survey of restaurant and shopping center managers concerning breastfeeding in their facilities. Managers from 66 restaurants and 27 shopping centers were interviewed by telephone. One-third of the restaurant managers and 48% of the shopping center managers stated that a mother could breastfeed anywhere in their facility regardless of what other customers might say. The remaining managers would either discourage breastfeeding anywhere in their facility, suggest a mother move to a more secluded area if she wished to breastfeed, or were unsure how they would react. The variability in support for breastfeeding by managers of restaurants and shopping centers will continue to create uncertainty for mothers wishing to breastfeed in these public places.

  20. Place memory in crickets

    PubMed Central

    Wessnitzer, Jan; Mangan, Michael; Webb, Barbara

    2008-01-01

    Certain insect species are known to relocate nest or food sites using landmarks, but the generality of this capability among insects, and whether insect place memory can be used in novel task settings, is not known. We tested the ability of crickets to use surrounding visual cues to relocate an invisible target in an analogue of the Morris water maze, a standard paradigm for spatial memory tests on rodents. Adult female Gryllus bimaculatus were released into an arena with a floor heated to an aversive temperature, with one hidden cool spot. Over 10 trials, the time taken to find the cool spot decreased significantly. The best performance was obtained when a natural scene was provided on the arena walls. Animals can relocate the position from novel starting points. When the scene is rotated, they preferentially approach the fictive target position corresponding to the rotation. We note that this navigational capability does not necessarily imply the animal has an internal spatial representation. PMID:18230590

  1. Design of an accelerating cavity for the Superconducting Super Collider Low-Energy Booster

    SciTech Connect

    Friedrichs, C.C.; Walling, L. ); Campbell, B.M. )

    1991-01-01

    This paper presents the history and current status of the design of the accelerator cavity to be incorporated into the Low-Energy Booster (LEB) of the Superconducting Super Collider (SSC). The LEB is a proton synchrotron, 540 meters in circumference, and having 108 buckets around the ring. Acceleration programs, each 50 msec long, take place at a rate of 10 per second. The beta change of the particles from injection to extraction is from 0.8 to 0.997. Since the rf excitation frequency must track beta, the rf frequency must shift from 47.5 to 60 MHz over the 50-msec acceleration program. The cavity will use ferrite in a perpendicular control bias mode to effect the require tuning. 4 refs., 1 fig.

  2. Stochastic acceleration and charge change of helium ions in the solar flare plasma.

    NASA Astrophysics Data System (ADS)

    Kartavykh, Yu. Yu.; Ostryakov, V. M.; Stepanov, I. Yu.; Yoshimori, M.

    1998-10-01

    In order to explain the energy spectra and abundances of the He+ and He++ solar flare ions measured in some works, the authors calculated the behavior of these ions in solar plasma, taking into account both their stochastic acceleration by Alfvén waves and the possibility of charge exchange with the surrounding plasma. The results agree with the experiments if the plasma in the regions where acceleration takes place has a concentration and temperature on the order of N = 2×107 cm-3 and T = 6.31×104K, respectively. Recent observations of solar flares onboard the Yohkoh satellite have demonstrated that it is apparently impractical to expect the existence of such rarefied and low-temperature plasma in the flare loops. The calculations indicate that the high abundance of He+ is most likely due to its nonsolar origin. Some possibilities of enrichment of energetic particle fluxes by He+ ions are briefly discussed.

  3. Development of a Dielectric-Loaded Accelerator Test Facility Based on an X-Band Magnicon Amplifier

    SciTech Connect

    Gold, S. H.; Fliflet, A. W.; Kinkead, A. K.; Gai, W.; Power, J. G.; Konecny, R.; Jing, C.; Tantawi, S. G.; Nantista, C. D.; Hu, Y.; Du, X.; Tang, C.; Lin, Y.; Bruce, R. W.; Bruce, R. L.; Lewis, D. III

    2006-01-03

    The Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), are developing a dielectric-loaded accelerator (DLA) test facility powered by the 11.424-GHz magnicon amplifier that was developed jointly by NRL and Omega-P, Inc. Thus far, DLA structures developed by ANL have been tested at the NRL Magnicon Facility without injected electrons, including tests of alumina and magnesium calcium titanate structures at gradients up to {approx}8 MV/m. The next step is to inject electrons in order to build a compact DLA test accelerator. The Accelerator Laboratory of Tsinghua University in Beijing, China has developed a 5-MeV electron injector for the accelerator, and SLAC is developing a means to combine the two magnicon output arms, and to drive the injector and an accelerator section with separate control of the power ratio and relative phase. Also, RWBruce Associates, working with NRL, is developing a means to join ceramic tubes to produce long accelerating sections using a microwave brazing process. The installation and commissioning of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year.

  4. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  5. The Accelerator Production of Tritium (APT) Project*

    NASA Astrophysics Data System (ADS)

    Lisowski, Paul W.

    1997-05-01

    A reliable supply of tritium is necessary to maintain the United States' nuclear defense capability. Because tritium decays to ^3He at the rate of 5.5 percent per year, it must be replenished continously. To make the required amount of tritium using an accelerator, neutrons will be generated by high-energy proton reactions with tungsten and lead, moderated in light water, and captured in ^3He. The plant will be operational in 2007 at the Department of Energy's Savannah River Site in South Carolina. It will consist of a proton linear accelerator, tritium-production target/blankets, tritium-extraction, and conventional balance-of-plant systems. The accelerator will be a radio-frequency linac operating at 100 percent duty factor. It will have a combination of normal-conducting copper structures to accelerate a 100-mA beam to 217 MeV followed by superconducting niobium cavities to boost the beam energy to 1700 MeV. After acceleration, a high-energy transport system will expand the beam to a rectangular, 16-cm wide by 160-cm high distribution and deliver it to one of two identical target/blanket assemblies where tritium production and extraction will take place. Inside a target/blanket the proton beam will strike heavy-water cooled tungsten rods to produce neutrons. The tungsten will be surrounded by a decoupler consisting of aluminum tubes containing ^3He to reduce parasitic capture. Additional lead modules with aluminum tubes containing ^3He will lie outside the central region. The lead will produce additional neutrons from spallation and (n,xn) reactions. Light water coolant continuously circulated through the lead will moderate the neutrons to low energy, where they will be efficiently captured by ^3He gas to produce tritium. Tritium will be removed by continuous separation using permeation through a heated palladium-silver alloy membrane. Once separated, standard cryogenic distillation techniques will be used to isotopically purify the tritium. This presentation

  6. Rover Takes a Sunday Drive

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation, made with images from the Mars Exploration Rover Spirit hazard-identification camera, shows the rover's perspective of its first post-egress drive on Mars Sunday. Engineers drove Spirit approximately 3 meters (10 feet) toward its first rock target, a football-sized, mountain-shaped rock called Adirondack. The drive took approximately 30 minutes to complete, including time stopped to take images. Spirit first made a series of arcing turns totaling approximately 1 meter (3 feet). It then turned in place and made a series of short, straightforward movements totaling approximately 2 meters (6.5 feet).

  7. The Greenhouse: A Place for Year-Round Plant Investigations.

    ERIC Educational Resources Information Center

    Hanif, Muhammad

    1989-01-01

    Activities that may take place in a greenhouse are discussed. Included are learning how to grow plants, plant growth, soil, vegetative reproduction, and plant habitat adaptations. Materials, procedures, and results are presented for the activities. (CW)

  8. Acceleration of Pickup Ions between the Magnetically-Connected Corotating Interaction Regions

    NASA Astrophysics Data System (ADS)

    Tsubouchi, K.

    2014-12-01

    We perform hybrid simulations to investigate the acceleration process of pickup ions (PUIs) at corotating interaction regions (CIRs) bounded by forward and reverse shocks. It has conventionally been supposed that PUIs accelerate in the direction of the motional electric field along the shock surface via a shock-drift or shock-surfing process. In contrast, we identify a different process that the efficient PUI acceleration takes place in the field-aligned component, as long as the magnetic field is oblique to the shock. This is due to the magnetic mirror effect at the shock, indicating adiabatic acceleration. The PUIs accelerated via this process are reflected back toward the shock upstream. These reflected energetic PUIs can move back and forth along the magnetic field between a pair of CIRs that are magnetically connected. The PUIs are repeatedly accelerated in each reflection, leading to a maximum energy gain close to 100 keV. The results are partly consistent with the observations recently reported by Wu et al. (2014). Furthermore, this mechanism well accounts for the "preacceleration" for the generation of ACRs.

  9. Properties of acceleration sites in active regions as derived from heavy ion charge states

    NASA Astrophysics Data System (ADS)

    Kartavykh, Y.; Dröge, W.; Klecker, B.; Möbius, E.; Popecki, M.; Mason, G.; Krucker, S.

    Charge states of heavy ions in solar energetic particle SEP events are determined by both the plasma conditions in the acceleration region and propagation effects The steep increase of the ionic charge of heavy ions as observed in all 3He- and Fe-rich SEP events suggests that stripping in a dense environment in the low corona is important in all these events The observed charge states and energy spectra of iron ions are used to infer the plasma conditions in the acceleration region by modelling the observations with a combined acceleration and propagation model that includes charge stripping acceleration coulomb losses and recombination in the corona and interplanetary propagation The interplanetary propagation includes anisotropic pitch-angle scattering on magnetic irregularities as well as magnetic focusing convection and adiabatic deceleration in the expanding solar wind To accurately derive the value of the scattering mean free path of particles the intensity profiles and anisotropy data from ACE and Wind spacecraft were used The comparison of the deduced parameters of the acceleration region with coronal density profiles shows that the acceleration of these ions takes place in closed magnetic structures in the low corona

  10. Elementary principles of linear accelerators

    NASA Astrophysics Data System (ADS)

    Loew, G. A.; Talman, R.

    1983-09-01

    A short chronology of important milestones in the field of linear accelerators is presented. Proton linacs are first discussed and elementary concepts such as transit time, shunt impedance, and Q are introduced. Critical issues such as phase stability and transverse forces are addressed. An elementary discussion of waveguide acclerating structures is also provided. Finally, electron accelerators addressed. Taking SLAC as an exmple, various topics are discussed such as structure design, choice of parameters, frequency optmization, beam current, emittance, bunch length and beam loading. Recent developments and future challenges are mentioned briefly.

  11. Electron trapping and acceleration by kinetic Alfvén waves in solar flares

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Zimovets, I. V.; Rankin, R.

    2016-05-01

    Context. Theoretical models and spacecraft observations of solar flares highlight the role of wave-particle interaction for non-local electron acceleration. In one scenario, the acceleration of a large electron population up to high energies is due to the transport of electromagnetic energy from the loop-top region down to the footpoints, which is then followed by the energy being released in dense plasma in the lower atmosphere. Aims: We consider one particular mechanism of non-linear electron acceleration by kinetic Alfvén waves. Here, waves are generated by plasma flows in the energy release region near the loop top. We estimate the efficiency of this mechanism and the energies of accelerated electrons. Methods: We use analytical estimates and test-particle modelling to investigate the effects of electron trapping and acceleration by kinetic Alfvén waves in the inhomogeneous plasma of the solar corona. Results: We demonstrate that, for realistic wave amplitudes, electrons can be accelerated up to 10-1000 keV during their propagation along magnetic field lines. Here the electric field that is parallel to the direction of the background magnetic field is about 10 to 103 times the amplitude of the Dreicer electric field. The acceleration mechanism strongly depends on electron scattering which is due to collisions that only take place near the loop footpoints. Conclusions: The non-linear wave-particle interaction can play an important role in the generation of relativistic electrons within flare loops. Electron trapping and coherent acceleration by kinetic Alfvén waves represent the energy cascade from large-scale plasma flows that originate at the loop-top region down to the electron scale. The non-diffusive character of the non-linear electron acceleration may be responsible for the fast generation of high-energy particles.

  12. GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK

    SciTech Connect

    Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Dandouras, Iannis E-mail: Kis.Arpad@csfk.mta.hu

    2013-07-01

    It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Cluster spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.

  13. High-sensitivity mass spectrometry with a tandem accelerator

    SciTech Connect

    Henning, W.

    1983-01-01

    The characteristic features of accelerator mass spectrometry are discussed. A short overview is given of the current status of mass spectrometry with high-energy (MeV/nucleon) heavy-ion accelerators. Emphasis is placed on studies with tandem accelerators and on future mass spectrometry of heavier isotopes with the new generation of higher-voltage tandems.

  14. Taking centre stage...

    NASA Astrophysics Data System (ADS)

    1998-11-01

    HAMLET (Highly Automated Multimedia Light Enhanced Theatre) was the star performance at the recent finals of the `Young Engineer for Britain' competition, held at the Commonwealth Institute in London. This state-of-the-art computer-controlled theatre lighting system won the title `Young Engineers for Britain 1998' for David Kelnar, Jonathan Scott, Ramsay Waller and John Wyllie (all aged 16) from Merchiston Castle School, Edinburgh. HAMLET replaces conventional manually-operated controls with a special computer program, and should find use in the thousands of small theatres, schools and amateur drama productions that operate with limited resources and without specialist expertise. The four students received a £2500 prize between them, along with £2500 for their school, and in addition they were invited to spend a special day with the Royal Engineers. A project designed to improve car locking systems enabled Ian Robinson of Durham University to take the `Working in industry award' worth £1000. He was also given the opportunity of a day at sea with the Royal Navy. Other prizewinners with their projects included: Jun Baba of Bloxham School, Banbury (a cardboard armchair which converts into a desk and chair); Kobika Sritharan and Gemma Hancock, Bancroft's School, Essex (a rain warning system for a washing line); and Alistair Clarke, Sam James and Ruth Jenkins, Bishop of Llandaff High School, Cardiff (a mechanism to open and close the retractable roof of the Millennium Stadium in Cardiff). The two principal national sponsors of the competition, which is organized by the Engineering Council, are Lloyd's Register and GEC. Industrial companies, professional engineering institutions and educational bodies also provided national and regional prizes and support. During this year's finals, various additional activities took place, allowing the students to surf the Internet and navigate individual engineering websites on a network of computers. They also visited the

  15. Creating Sacred Places for Students in Grades 9-12.

    ERIC Educational Resources Information Center

    Fox, Sandra J.

    This guide attempts to help teachers of American Indian students in grades 9-12 provide a culturally relevant education that takes place in the regular classroom, includes content related to Indian students' lives, makes students proud, expands to other experiences, and enhances learning. Creating sacred places means responding appropriately to…

  16. Creating Sacred Places for Students in Grades 7&8.

    ERIC Educational Resources Information Center

    Fox, Sandra J.

    This guide attempts to help teachers of American Indian students in grades 7-8 provide a culturally relevant education that takes place in the regular classroom, includes content related to Indian students' lives, makes students proud, expands to other experiences, and enhances learning. Creating sacred places means responding appropriately to…

  17. Creating Sacred Places for Children in Grades 4-6.

    ERIC Educational Resources Information Center

    Fox, Sandra J.

    This guide attempts to help teachers of American Indian children in grades 4-6 provide a culturally relevant education that takes place in the regular classroom, includes content related to Indian students' lives, makes students proud, expands to other experiences, and enhances learning. Creating sacred places means responding appropriately to…

  18. COBRA accelerator for Sandia ICF diode research at Cornell University

    SciTech Connect

    Smith, D.L.; Ingwersen, P.; Bennett, L.F.; Boyes, J.D.; Anderson, D.E.; Greenly, J.B.; Sudan, R.N.

    1995-05-01

    The new COBRA accelerator is being built in stages at the Laboratory of Plasma Studies in Cornell University where its applications will include extraction diode and ion beam research in support of the light ion inertial confinement fusion (ICF) program at Sandia National Laboratories. The 4- to 5-MV, 125- to 250-kA accelerator is based on a four-cavity inductive voltage adder (IVA) design. It is a combination of new ferromagnetically-isolated cavities and self magnetically insulated transmission line (MITL) hardware and components from existing Sandia and Cornell facilities: Marx generator capacitors, hardware, and power supply from the DEMON facility; water pulse forming lines (PFL) and gas switch from the Subsystem Test Facility (STF); a HERMES-III intermediate store capacitor (ISC); and a modified ion diode from Cornell`s LION. The present accelerator consists of a single modified cavity similar to those of the Sandia SABRE accelerator and will be used to establish an operating system for the first stage initial lower voltage testing. Four new cavities will be fabricated and delivered in the first half of FY96 to complete the COBRA accelerator. COBRA is unique in the sense that each cavity is driven by a single pulse forming line, and the IVA output polarity may be reversed by rotating the cavities 180{degrees} about their vertical axis. The site preparations, tank construction, and diode design and development are taking place at Cornell with growing enthusiasm as this machine becomes a reality. Preliminary results with the single cavity and short positive inner cylinder MITL configuration will soon be available.

  19. The Efficacy of Academic Acceleration for Gifted Minority Students

    ERIC Educational Resources Information Center

    Lee, Seon-Young; Olszewski-Kubilius, Paula; Peternel, George

    2010-01-01

    This study supported the use of acceleration for gifted minority students in math. The gifted minority students in this study viewed taking accelerated math courses as exciting and beneficial for preparation for high school and college and particularly liked the challenges they encountered while taking advanced classes. They enjoyed working ahead…

  20. Pros and Cons of the Acceleration Scheme (NF-IDS)

    SciTech Connect

    Bogacz, Alex; Bogacz, Slawomir

    2008-07-01

    The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and beam shaping can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a nonâ scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. Pros and cons of various stages are discussed here in detail. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. Close proximity of strong solenoids and superc

  1. Electrochemical migration technique to accelerate ageing of cementitious materials

    NASA Astrophysics Data System (ADS)

    Babaahmadi, A.; Tang, L.; Abbas, Z.

    2013-07-01

    Durability assessment of concrete structures for constructions in nuclear waste repositories requires long term service life predictions. As deposition of low and intermediate level radioactive waste (LILW) takes up to 100 000 years, it is necessary to analyze the service life of cementitious materials in this time perspective. Using acceleration methods producing aged specimens would decrease the need of extrapolating short term data sets. Laboratory methods are therefore, needed for accelerating the ageing process without making any influencing distortion in the properties of the materials. This paper presents an electro-chemical migration method to increase the rate of calcium leaching from cementitious specimens. This method is developed based on the fact that major long term deterioration process of hardened cement paste in concrete structures for deposition of LILW is due to slow diffusion of calcium ions. In this method the cementitious specimen is placed in an electrochemical cell as a porous path way through which ions can migrate at a rate far higher than diffusion process. The electrical field is applied to the cell in a way to accelerate the ion migration without making destructions in the specimen's micro and macroscopic properties. The anolyte and catholyte solutions are designed favoring dissolution of calcium hydroxide and compensating for the leached calcium ions with another ion like lithium.

  2. Reproduction of natural corrosion by accelerated laboratory testing methods

    SciTech Connect

    Luo, J.S.; Wronkiewicz, D.J.; Mazer, J.J.; Bates, J.K.

    1996-05-01

    Various laboratory corrosion tests have been developed to study the behavior of glass waste forms under conditions similar to those expected in an engineered repository. The data generated by laboratory experiments are useful for understanding corrosion mechanisms and for developing chemical models to predict the long-term behavior of glass. However, it is challenging to demonstrate that these test methods produce results that can be directly related to projecting the behavior of glass waste forms over time periods of thousands of years. One method to build confidence in the applicability of the test methods is to study the natural processes that have been taking place over very long periods in environments similar to those of the repository. In this paper, we discuss whether accelerated testing methods alter the fundamental mechanisms of glass corrosion by comparing the alteration patterns that occur in naturally altered glasses with those that occur in accelerated laboratory environments. This comparison is done by (1) describing the alteration of glasses reacted in nature over long periods of time and in accelerated laboratory environments and (2) establishing the reaction kinetics of naturally altered glass and laboratory reacted glass waste forms.

  3. Taking the Long View

    ERIC Educational Resources Information Center

    Bennett, Robert B., Jr.

    2010-01-01

    Legal studies faculty need to take the long view in their academic and professional lives. Taking the long view would seem to be a cliched piece of advice, but too frequently legal studies faculty, like their students, get focused on meeting the next short-term hurdle--getting through the next class, grading the next stack of papers, making it…

  4. Abrupt acceleration of a 'cold' ultrarelativistic wind from the Crab pulsar.

    PubMed

    Aharonian, F A; Bogovalov, S V; Khangulyan, D

    2012-02-23

    Pulsars are thought to eject electron-positron winds that energize the surrounding environment, with the formation of a pulsar wind nebula. The pulsar wind originates close to the light cylinder, the surface at which the pulsar co-rotation velocity equals the speed of light, and carries away much of the rotational energy lost by the pulsar. Initially the wind is dominated by electromagnetic energy (Poynting flux) but later this is converted to the kinetic energy of bulk motion. It is unclear exactly where this takes place and to what speed the wind is accelerated. Although some preferred models imply a gradual acceleration over the entire distance from the magnetosphere to the point at which the wind terminates, a rapid acceleration close to the light cylinder cannot be excluded. Here we report that the recent observations of pulsed, very high-energy γ-ray emission from the Crab pulsar are explained by the presence of a cold (in the sense of the low energy of the electrons in the frame of the moving plasma) ultrarelativistic wind dominated by kinetic energy. The conversion of the Poynting flux to kinetic energy should take place abruptly in the narrow cylindrical zone of radius between 20 and 50 light-cylinder radii centred on the axis of rotation of the pulsar, and should accelerate the wind to a Lorentz factor of (0.5-1.0) × 10(6). Although the ultrarelativistic nature of the wind does support the general model of pulsars, the requirement of the very high acceleration of the wind in a narrow zone not far from the light cylinder challenges current models. PMID:22343893

  5. Abrupt acceleration of a 'cold' ultrarelativistic wind from the Crab pulsar.

    PubMed

    Aharonian, F A; Bogovalov, S V; Khangulyan, D

    2012-02-15

    Pulsars are thought to eject electron-positron winds that energize the surrounding environment, with the formation of a pulsar wind nebula. The pulsar wind originates close to the light cylinder, the surface at which the pulsar co-rotation velocity equals the speed of light, and carries away much of the rotational energy lost by the pulsar. Initially the wind is dominated by electromagnetic energy (Poynting flux) but later this is converted to the kinetic energy of bulk motion. It is unclear exactly where this takes place and to what speed the wind is accelerated. Although some preferred models imply a gradual acceleration over the entire distance from the magnetosphere to the point at which the wind terminates, a rapid acceleration close to the light cylinder cannot be excluded. Here we report that the recent observations of pulsed, very high-energy γ-ray emission from the Crab pulsar are explained by the presence of a cold (in the sense of the low energy of the electrons in the frame of the moving plasma) ultrarelativistic wind dominated by kinetic energy. The conversion of the Poynting flux to kinetic energy should take place abruptly in the narrow cylindrical zone of radius between 20 and 50 light-cylinder radii centred on the axis of rotation of the pulsar, and should accelerate the wind to a Lorentz factor of (0.5-1.0) × 10(6). Although the ultrarelativistic nature of the wind does support the general model of pulsars, the requirement of the very high acceleration of the wind in a narrow zone not far from the light cylinder challenges current models.

  6. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered

  7. Orion Spacecraft Takes Shape

    NASA Video Gallery

    Technicians move the two halves of the Orion crew exploration vehicle's crew module into place to fuse them together at NASA's Michoud Assembly Facility in New Orleans, La. The Lockheed Martin Orio...

  8. Give/Take

    SciTech Connect

    2007-09-12

    Give and Take are set of companion utilities that allow a secure transfer of files from one user to another without exposing the files to third parties. The named files are copied to a spool area. The reciever can retrieve the files by running the "take" program. Ownership of the files remains with the giver until they are taken. Certain users may be limited to take files only from specific givers. For these users, files may only be taken from givers who are members of the gt-uid-group where uid is the UNIX id of the limited user.

  9. Give/Take

    2007-09-12

    Give and Take are set of companion utilities that allow a secure transfer of files from one user to another without exposing the files to third parties. The named files are copied to a spool area. The reciever can retrieve the files by running the "take" program. Ownership of the files remains with the giver until they are taken. Certain users may be limited to take files only from specific givers. For these users, filesmore » may only be taken from givers who are members of the gt-uid-group where uid is the UNIX id of the limited user.« less

  10. Continuing u.s. participation in the lhc accelerator program

    SciTech Connect

    Syphers, M.J.; /Fermilab

    2005-12-01

    The U.S. LHC Accelerator Research Program (LARP) was established to enable U.S. accelerator specialists to take on active and important roles in the LHC accelerator project during its commissioning and early operations, and to be a major collaborator in future LHC performance upgrades. It is hoped that this follow-on effort to the U.S. contributions to the LHC accelerator project will improve the capabilities of the U.S. accelerator community in accelerator science and technology in order to more effectively use, develop, and preserve unique U.S. resources and capabilities during the LHC era.

  11. Teachable Moment: Google Earth Takes Us There

    ERIC Educational Resources Information Center

    Williams, Ann; Davinroy, Thomas C.

    2015-01-01

    In the current educational climate, where clearly articulated learning objectives are required, it is clear that the spontaneous teachable moment still has its place. Authors Ann Williams and Thomas Davinroy think that instructors from almost any discipline can employ Google Earth as a tool to take advantage of teachable moments through the…

  12. Taking a Pulse on Your Practice.

    PubMed

    Hoagland-Smith, Leanne

    2015-01-01

    Each medical practice, like a living organism, occasionally requires reading of its vital signs. As with human beings, one of those vital signs is the pulse. For your medical practice, just like your patients, there are numerous places from which to take that reading. This article reviews seven key pulses that provide insight into what is happening within the workplace culture of your practice.

  13. Take Your Medicines Safely

    MedlinePlus Videos and Cool Tools

    ... better, the antibiotic is working in killing the bacteria, but it might not completely give what they call a "bactericidal effect." That means taking the bacteria completely out of the system. It might be ...

  14. Adjusting to New Places: International Student Adjustment and Place Attachment

    ERIC Educational Resources Information Center

    Terrazas-Carrillo, Elizabeth C.; Hong, Ji Y.; Pace, Terry M.

    2014-01-01

    Using data obtained from in-depth semistructured interviews, we examined international students' attachments to place in the local American Midwestern community where they have attended college for at least 2 years. The results of this study suggest that participants engage in a process of renegotiation of meanings attached to new places in…

  15. Particle accelerator employing transient space charge potentials

    DOEpatents

    Post, Richard F.

    1990-01-01

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles.

  16. Model experiment of cosmic ray acceleration due to an incoherent wakefield induced by an intense laser pulse

    SciTech Connect

    Kuramitsu, Y.; Sakawa, Y.; Takeda, K.; Tampo, M.; Takabe, H.; Nakanii, N.; Kondo, K.; Tsuji, K.; Kimura, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Kodama, R.; Mima, K.; Tanaka, K. A.; Mori, Y.; Miura, E.; Kitagawa, Y.

    2011-01-15

    The first report on a model experiment of cosmic ray acceleration by using intense laser pulses is presented. Large amplitude light waves are considered to be excited in the upstream regions of relativistic astrophysical shocks and the wakefield acceleration of cosmic rays can take place. By substituting an intense laser pulse for the large amplitude light waves, such shock environments were modeled in a laboratory plasma. A plasma tube, which is created by imploding a hollow polystyrene cylinder, was irradiated by an intense laser pulse. Nonthermal electrons were generated by the wakefield acceleration and the energy distribution functions of the electrons have a power-law component with an index of {approx}2. The maximum attainable energy of the electrons in the experiment is discussed by a simple analytic model. In the incoherent wakefield the maximum energy can be much larger than one in the coherent field due to the momentum space diffusion or the energy diffusion of electrons.

  17. Particle acceleration in three-dimensional reconnection of flux-tube disconnection

    NASA Astrophysics Data System (ADS)

    Akbari, Z.; Hosseinpour, M.; Mohammadi, M. A.

    2016-11-01

    "Flux-tube disconnection" is a type of steady-state three-dimensional magnetic reconnection with O-point at the origin of the resistive diffusion region. Magnetic reconnection is accepted as a potential mechanism for particle acceleration in astrophysical and space plasmas, especially in solar flares. By using the static magnetic and electric fields for flux-tube disconnection, features of test particle acceleration with input parameters for the solar corona are investigated. We show that a proton injected close to origin of the diffusion region can be accelerated to a very high kinetic energy along the magnetic field lines. The efficient acceleration takes place at the radial point where the electric drift velocity has its maximum magnitude. However, a proton injected at radial distances far away from the origin is not accelerated efficiently and even may be trapped in the field lines. The final kinetic energy of the particle depends significantly on the amplitude of the electric field rather than the amplitude of magnetic field.

  18. Millisecond newly born pulsars as efficient accelerators of electrons.

    PubMed

    Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino

    2015-01-01

    The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 10(18) eV for parameters characteristic of a young star.

  19. Millisecond newly born pulsars as efficient accelerators of electrons

    NASA Astrophysics Data System (ADS)

    Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino

    2015-09-01

    The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 1018 eV for parameters characteristic of a young star.

  20. Millisecond newly born pulsars as efficient accelerators of electrons

    PubMed Central

    Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino

    2015-01-01

    The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 1018 eV for parameters characteristic of a young star. PMID:26403155

  1. Millisecond newly born pulsars as efficient accelerators of electrons.

    PubMed

    Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino

    2015-01-01

    The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 10(18) eV for parameters characteristic of a young star. PMID:26403155

  2. Nonlinear electromagnetic fields as a source of universe acceleration

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2016-04-01

    A model of nonlinear electromagnetic fields with a dimensional parameter β is proposed. From PVLAS experiment the bound on the parameter β was obtained. Electromagnetic fields are coupled with the gravitation field and we show that the universe accelerates due to nonlinear electromagnetic fields. The magnetic universe is considered and the stochastic magnetic field is a background. After inflation the universe decelerates and approaches to the radiation era. The range of the scale factor, when the causality of the model and a classical stability take place, was obtained. The spectral index, the tensor-to-scalar ratio, and the running of the spectral index were estimated which are in approximate agreement with the Planck, WMAP, and BICEP2 data.

  3. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  4. Ultimate gradient in solid-state accelerators

    SciTech Connect

    Whittum, D.H.

    1999-07-01

    We recall the motivation for research in high-gradient acceleration and the problems posed by a compact collider. We summarize the phenomena known to appear in operation of a solid-state structure with large fields, and research relevant to the question of the ultimate gradient. We take note of new concepts, and examine one in detail, a miniature particle accelerator based on an active millimeter-wave circuit and parallel particle beams. {copyright} {ital 1999 American Institute of Physics.}

  5. Ultimate gradient in solid-state accelerators

    SciTech Connect

    Whittum, D.H.

    1998-08-01

    The authors recall the motivation for research in high-gradient acceleration and the problems posed by a compact collider. They summarize the phenomena known to appear in operation of a solid-state structure with large fields, and research relevant to the question of the ultimate gradient. They take note of new concepts, and examine one in detail, a miniature particle accelerator based on an active millimeter-wave circuit and parallel particle beams.

  6. Ultimate gradient in solid-state accelerators

    SciTech Connect

    Whittum, David H.

    1999-07-12

    We recall the motivation for research in high-gradient acceleration and the problems posed by a compact collider. We summarize the phenomena known to appear in operation of a solid-state structure with large fields, and research relevant to the question of the ultimate gradient. We take note of new concepts, and examine one in detail, a miniature particle accelerator based on an active millimeter-wave circuit and parallel particle beams.

  7. PLACE NAMES IN THE CLASSROOM.

    ERIC Educational Resources Information Center

    HARDER, KELSIE B.

    ALTHOUGH "PLACE-NAMING" IS A BASIC HUMAN FUNCTION, THE STUDY OF THE ORIGIN OF PROPER NAMES OF PERSONS AND PLACES (ONOMASTICS) HAS BEEN LARGELY IGNORED BY AMERICAN PHILOLOGISTS AND TEACHERS OF ENGLISH. DESPITE A PAUCITY OF RESEARCH, HOWEVER, ANY ENGLISH TEACHER WHO WANTS TO INTEREST STUDENTS IN ONOMASTIC INVESTIGATION CAN EXPLOIT THE GREAT BODY OF…

  8. Cosmic acceleration and Brans-Dicke theory

    SciTech Connect

    Sharif, M. Waheed, S.

    2012-10-15

    We study the accelerated expansion of the universe by exploring the Brans-Dicke parameter in different eras. For this, we take the FRW universe model with a viscous fluid (without potential) and the Bianchi type-I universe model with a barotropic fluid (with and without a potential). We evaluate the deceleration parameter and the Brans-Dicke parameter to explore cosmic acceleration. It is concluded that accelerated expansion of the universe can also be achieved for higher values of the Brans-Dicke parameter in some cases.

  9. Taking a Broader View

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    2005-01-01

    A study on stem cells is presented by understanding the environment in which they are found, the support cells and blood vessels as well as the protein scaffolds and other molecules. Researchers found that stem cells in reproductive tissue are surrounded by a pocket of support cells that hold them in place and align them to divide properly, so…

  10. Harmonic ratcheting for fast acceleration

    NASA Astrophysics Data System (ADS)

    Cook, N.; Brennan, J. M.; Peggs, S.

    2014-04-01

    A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.

  11. Transverse ion acceleration by localized lower hybrid waves in the topside auroral ionosphere

    NASA Technical Reports Server (NTRS)

    Vago, J. L.; Kintner, P. M.; Chesney, S. W.; Arnoldy, R. L.; Lynch, K. A.; Moore, T. E.; Pollock, C. J.

    1992-01-01

    Up to now, observations had been unable to show conclusively a one-to-one correspondence between perpendicular ion acceleration and a particular type of plasma wave within the O(+) source region below 2000 km. In this paper we demonstrate that intense (100-300 mV/m) lower hybrid waves are responsible for transversely accelerating H(+) and O(+) ions to characteristic energies of up to 6 eV. This wave-particle interaction takes place in thin filamentary density cavities oriented along geomagnetic field lines. The measurements we discuss were conducted in the nightside auroral zone at latitudes between 500 km and 1100 km. Our results are consistent with theories of lower hybrid wave condensation and collapse.

  12. Multi-probing of the auroral acceleration region by Cluster (Invited)

    NASA Astrophysics Data System (ADS)

    Marklund, G. T.; Sadeghi, S.; Karlsson, R.; Lindqvist, P.; Nilsson, H.; Pickett, J.; Fazakerley, A. N.; Forsyth, C.; Masson, A.

    2010-12-01

    Multi-probe in situ measurements in the auroral acceleration region became a reality in November 2008, when the orbit of the European Space Agency Cluster satellites, was lowered to cover this region, typically located between 5000 and 12000 km altitude above the polar atmosphere. Results are presented from Cluster crossings of this region, at different altitudes and with time separations of a few minutes between the spacecraft. The unique observations allow us to address the spatial and temporal properties of this region, such as the morphology and stability in space and time of the associated quasi-static electric potential structures. The formation of such acceleration structures is a fundamental and ubiquitous space plasma process, taking place not only around Earth, but around many other solar system planets, such as Mars, Jupiter, and Saturn.

  13. Standing-Wave Free-Electron Laser Two-Beam Accelerator

    SciTech Connect

    Sessler, Andrew M.; Whittum, D.H.; Wurtele, Jonathan S.; Sharp, W.M.; Makowski, M.A.

    1991-02-01

    A free-electron laser (FEL) two-beam accelerator (TBA) is proposed, in which the FEL interaction takes place in a series of drive cavities, rather than in a waveguide. Each drive cavity is 'beat-coupled' to a section of the accelerating structure. This standing-wave TBA is investigated theoretically and numerically, with analyses included of microwave extraction, growth of the FEL signal through saturation, equilibrium longitudinal beam dynamics following saturation, and sensitivity of the microwave amplitude and phase to errors in current and energy. It is found that phase errors due to current jitter are substantially reduced from previous versions of the TBA. Analytic scalings and numerical simulations are used to obtain an illustrative TBA parameter set.

  14. A role for pectin de-methylesterification in a developmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls.

    PubMed

    Pelletier, Sandra; Van Orden, Jürgen; Wolf, Sebastian; Vissenberg, Kris; Delacourt, Julien; Ndong, Yves Assoumou; Pelloux, Jérôme; Bischoff, Volker; Urbain, Aurélie; Mouille, Grégory; Lemonnier, Gaëtan; Renou, Jean-Pierre; Höfte, Herman

    2010-11-01

    • We focused on a developmentally regulated growth acceleration in the dark-grown Arabidopsis hypocotyl to study the role of changes in cell wall metabolism in the control of cell elongation. • To this end, precise transcriptome analysis on dissected dark-grown hypocotyls, Fourier transform infrared (FT-IR) microspectroscopy and kinematic analysis were used. • Using a cellulose synthesis inhibitor, we showed that the growth acceleration marks a developmental transition during which growth becomes uncoupled from cellulose synthesis. We next investigated the cellular changes that take place during this transition. FT-IR microspectroscopy revealed significant changes in cell wall composition during, but not after, the growth acceleration. Transcriptome analysis suggested a role for cell wall remodeling, in particular pectin modification, in this growth acceleration. This was confirmed by the overexpression of a pectin methylesterase inhibitor, which caused a delay in the growth acceleration. • This study shows that the acceleration of cell elongation marks a developmental transition in dark-grown hypocotyl cells and supports a role for pectin de-methylesterification in the timing of this event.

  15. SR-71 Taking Off

    NASA Technical Reports Server (NTRS)

    1990-01-01

    One of three U.S. Air Force SR-71 reconnaissance aircraft originally retired from operational service and loaned to NASA for a high-speed research program retracts its landing gear after taking off from NASA's Ames-Dryden Flight Research Facility (later Dryden Flight Research Center), Edwards, California, on a 1990 research flight. One of the SR-71As was later returned to the Air Force for active duty in 1995. Data from the SR-71 high-speed research program will be used to aid designers of future supersonic/hypersonic aircraft and propulsion systems. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of

  16. Simulating Price-Taking

    ERIC Educational Resources Information Center

    Engelhardt, Lucas M.

    2015-01-01

    In this article, the author presents a price-takers' market simulation geared toward principles-level students. This simulation demonstrates that price-taking behavior is a natural result of the conditions that create perfect competition. In trials, there is a significant degree of price convergence in just three or four rounds. Students find this…

  17. Take Pride in America.

    ERIC Educational Resources Information Center

    Indiana State Dept. of Education, Indianapolis. Center for School Improvement and Performance.

    During the 1987-88 school year the Indiana Department of Education assisted the United States Department of the Interior and the Indiana Department of Natural Resources with a program which asked students to become involved in activities to maintain and manage public lands. The 1987 Take Pride in America (TPIA) school program encouraged volunteer…

  18. Take a Bow

    ERIC Educational Resources Information Center

    Spitzer, Greg; Ogurek, Douglas J.

    2009-01-01

    Performing-arts centers can provide benefits at the high school and collegiate levels, and administrators can take steps now to get the show started. When a new performing-arts center comes to town, local businesses profit. Events and performances draw visitors to the community. Ideally, a performing-arts center will play many roles: entertainment…

  19. Take-off mechanics in hummingbirds (Trochilidae).

    PubMed

    Tobalske, Bret W; Altshuler, Douglas L; Powers, Donald R

    2004-03-01

    Initiating flight is challenging, and considerable effort has focused on understanding the energetics and aerodynamics of take-off for both machines and animals. For animal flight, the available evidence suggests that birds maximize their initial flight velocity using leg thrust rather than wing flapping. The smallest birds, hummingbirds (Order Apodiformes), are unique in their ability to perform sustained hovering but have proportionally small hindlimbs that could hinder generation of high leg thrust. Understanding the take-off flight of hummingbirds can provide novel insight into the take-off mechanics that will be required for micro-air vehicles. During take-off by hummingbirds, we measured hindlimb forces on a perch mounted with strain gauges and filmed wingbeat kinematics with high-speed video. Whereas other birds obtain 80-90% of their initial flight velocity using leg thrust, the leg contribution in hummingbirds was 59% during autonomous take-off. Unlike other species, hummingbirds beat their wings several times as they thrust using their hindlimbs. In a phylogenetic context, our results show that reduced body and hindlimb size in hummingbirds limits their peak acceleration during leg thrust and, ultimately, their take-off velocity. Previously, the influence of motivational state on take-off flight performance has not been investigated for any one organism. We studied the full range of motivational states by testing performance as the birds took off: (1) to initiate flight autonomously, (2) to escape a startling stimulus or (3) to aggressively chase a conspecific away from a feeder. Motivation affected performance. Escape and aggressive take-off featured decreased hindlimb contribution (46% and 47%, respectively) and increased flight velocity. When escaping, hummingbirds foreshortened their body movement prior to onset of leg thrust and began beating their wings earlier and at higher frequency. Thus, hummingbirds are capable of modulating their leg and

  20. TURBULENT SHEAR ACCELERATION

    SciTech Connect

    Ohira, Yutaka

    2013-04-10

    We consider particle acceleration by large-scale incompressible turbulence with a length scale larger than the particle mean free path. We derive an ensemble-averaged transport equation of energetic charged particles from an extended transport equation that contains the shear acceleration. The ensemble-averaged transport equation describes particle acceleration by incompressible turbulence (turbulent shear acceleration). We find that for Kolmogorov turbulence, the turbulent shear acceleration becomes important on small scales. Moreover, using Monte Carlo simulations, we confirm that the ensemble-averaged transport equation describes the turbulent shear acceleration.

  1. The direction of acceleration

    NASA Astrophysics Data System (ADS)

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.

  2. Proton Beams from Nanotube Accelerator

    NASA Astrophysics Data System (ADS)

    Murakami, Masakatsu; Tanaka, Motohiko

    2013-10-01

    A carbon nanotube (CNT) is known to have extraordinary material and mechanical properties. Here we propose a novel ion acceleration scheme with nanometer-size CNT working at such an extreme circumstance as temperatures higher than billions of degree and durations shorter than tens of femtosecond, dubbed as nanotube accelerator, with which quasimonoenergetic and collimated MeV-order proton beams are generated. In nanotube accelerators, CNTs with fragments of a hydrogen compound embedded inside are irradiated by an ultrashort ultraintense laser. Under such laser and target conditions, low-Z materials such as hydrogen and carbon will be fully ionized. Substantial amount of electrons of the system are then blown off by the brutal laser electric field within only a few laser cycles. This leads to a new type of ion acceleration, in which the nanotube and embedded materials play the roles of a gun barrel and bullets, respectively, to produce highly collimated and quasimonoenergetic proton beams. Three-dimensional particle simulations, that take all the two-body Coulomb interactions into account, demonstrate generation of quasimonoenergetic 1.5-MeV proton beams under a super-intense electrostatic field ~ 1014 V m-1.

  3. Place recognition using batlike sonar.

    PubMed

    Vanderelst, Dieter; Steckel, Jan; Boen, Andre; Peremans, Herbert; Holderied, Marc W

    2016-01-01

    Echolocating bats have excellent spatial memory and are able to navigate to salient locations using bio-sonar. Navigating and route-following require animals to recognize places. Currently, it is mostly unknown how bats recognize places using echolocation. In this paper, we propose template based place recognition might underlie sonar-based navigation in bats. Under this hypothesis, bats recognize places by remembering their echo signature - rather than their 3D layout. Using a large body of ensonification data collected in three different habitats, we test the viability of this hypothesis assessing two critical properties of the proposed echo signatures: (1) they can be uniquely classified and (2) they vary continuously across space. Based on the results presented, we conclude that the proposed echo signatures satisfy both criteria. We discuss how these two properties of the echo signatures can support navigation and building a cognitive map. PMID:27481189

  4. Place recognition using batlike sonar.

    PubMed

    Vanderelst, Dieter; Steckel, Jan; Boen, Andre; Peremans, Herbert; Holderied, Marc W

    2016-01-01

    Echolocating bats have excellent spatial memory and are able to navigate to salient locations using bio-sonar. Navigating and route-following require animals to recognize places. Currently, it is mostly unknown how bats recognize places using echolocation. In this paper, we propose template based place recognition might underlie sonar-based navigation in bats. Under this hypothesis, bats recognize places by remembering their echo signature - rather than their 3D layout. Using a large body of ensonification data collected in three different habitats, we test the viability of this hypothesis assessing two critical properties of the proposed echo signatures: (1) they can be uniquely classified and (2) they vary continuously across space. Based on the results presented, we conclude that the proposed echo signatures satisfy both criteria. We discuss how these two properties of the echo signatures can support navigation and building a cognitive map.

  5. Hardware-Accelerated Simulated Radiography

    SciTech Connect

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-08-04

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32-bit floating point texture capabilities to obtain solutions to the radiative transport equation for X-rays. The hardware accelerated solutions are accurate enough to enable scientists to explore the experimental design space with greater efficiency than the methods currently in use. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedral meshes that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester.

  6. Elementary principles of linear accelerators

    SciTech Connect

    Loew, G.A.; Talman, R.

    1983-09-01

    These lectures come in five sections. The first is this introduction. The second is a short chronology of what are viewed as important milestones in the field. The third covers proton linacs. It introduces elementary concepts such as transit time, shunt impedance, and Q. Critical issues such as phase stability and transverse forces are discussed. The fourth section contains an elementary discussion of waveguide accelerating structures. It can be regarded as an introduction to some of the more advanced treatments of the subject. The final section is devoted to electron accelerators. Taking SLAC as an example, various topics are discussed such as structure design, choice of parameters, frequency optimization, beam current, emittance, bunch length and beam loading. Recent developments and future challenges are mentioned briefly. 41 figures, 4 tables.

  7. Accelerating Particles with Plasma

    SciTech Connect

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  8. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  9. Linear accelerator: A concept

    NASA Technical Reports Server (NTRS)

    Mutzberg, J.

    1972-01-01

    Design is proposed for inexpensive accelerometer which would work by applying pressure to fluid during acceleration. Pressure is used to move shuttle, and shuttle movement is sensed and calibrated to give acceleration readings.

  10. Improved plasma accelerator

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  11. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered

  12. Take the "C" Train

    ERIC Educational Resources Information Center

    Lawton, Rebecca

    2008-01-01

    In this essay, the author recalls several of her experiences in which she successfully pulled her boats out of river holes by throwing herself to the water as a sea-anchor. She learned this trick from her senior guides at a spring training. Her guides told her, "When you're stuck in a hole, take the "C" train."" "Meaning?" The author asked her…

  13. John Dewey and a Pedagogy of Place

    ERIC Educational Resources Information Center

    Jayanandhan, Stephanie Raill

    2009-01-01

    If asked to define the idea of "place" one might struggle. Yet people across time and cultures readily share examples of important places or safe places or "foreign" places with one another and offer heartfelt descriptions in literature and art of childhood places, favorite places, strange places. Akinbola Akinwumi, paraphrasing Yi-Fu Tuan,…

  14. MEQALAC rf accelerating structure

    SciTech Connect

    Keane, J.; Brodowski, J.

    1981-01-01

    A prototype MEQALAC capable of replacing the Cockcroft Walton pre-injector at BNL is being fabricated. Ten milliamperes of H/sup -/ beam supplied from a source sitting at a potential of -40 kilovolt is to be accelerated to 750 keV. This energy gain is provided by a 200 Megahertz accelerating system rather than the normal dc acceleration. Substantial size and cost reduction would be realized by such a system over conventional pre-accelerator systems.

  15. Gravity Acceleration Measurements Using a Soundcard

    ERIC Educational Resources Information Center

    Abellan-Garcia, Francisco J.; Garcia-Gamuz, Jose Antonio; Valerdi-Perez, Ramon P.; Ibanez-Mengual, Jose A.

    2012-01-01

    The aim of this paper is to determine the acceleration due to gravity "g", using a simple and low-cost experimental device. The time taken for a metallic ball to travel a predetermined distance is measured and recorded by a series of optical sensors. Four pairs of sensors are placed along the external surface of a vertical methacrylate tube at…

  16. Acceleration gradient of a plasma wakefield accelerator

    SciTech Connect

    Uhm, Han S.

    2008-02-25

    The phase velocity of the wakefield waves is identical to the electron beam velocity. A theoretical analysis indicates that the acceleration gradient of the wakefield accelerator normalized by the wave breaking amplitude is K{sub 0}({xi})/K{sub 1}({xi}), where K{sub 0}({xi}) and K{sub 1}({xi}) are the modified Bessel functions of the second kind of order zero and one, respectively and {xi} is the beam parameter representing the beam intensity. It is also shown that the beam density must be considerably higher than the diffuse plasma density for the large radial velocity of plasma electrons that are required for a high acceleration gradient.

  17. Far field acceleration

    SciTech Connect

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

  18. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  19. Multileaf collimator for Coline medical accelerators

    NASA Astrophysics Data System (ADS)

    Harasimowicz, Janusz; Plebański, Grzegorz; Sajna, Krzysztof

    2008-01-01

    Multileaf collimator (MLC) allows advanced field shaping for radiation therapy delivered with medical accelerators. In this paper theoretical considerations and scientific studies of a new MLC design are described. Considered multileaf collimator model comprises of a multiplicity of tungsten leaves of 1 cm width projected at isocenter plane. To ensure compatibility of a new MLC solution with different accelerator types as well as to assure high reliability in irradiated environment and presence of strong magnetic field, a complex and independent control system had to be developed. It comprises of two modules - one placed in the accelerator treatment head and the other one placed in the control room. Both of them ensure high reliability and treatment quality while working in harsh conditions. Mechanical design and leaf shape optimization algorithm based on a ray tracing method are also described in details. Adapted solutions allowed providing minimized and uniform radiation penumbrae in the full range of leaves positions which is crucial for modern advanced radiotherapy.

  20. Progress Towards Doubling the Beam Power at Fermilab's Accelerator Complex

    SciTech Connect

    Kourbanis, ioanis

    2014-06-01

    After a 14 month shutdown accelerator modifications and upgrades are in place to allow us doubling of the Main Injector beam power. We will discuss the past MI high power operation and the current progress towards doubling the power.

  1. The Path Is Place: Skateboarding, Graffiti and Performances of Place

    ERIC Educational Resources Information Center

    Ong, Adelina

    2016-01-01

    This article reflects on two performances of place involving graffiti and skateboarding: the first looks at a graffiti intervention by SKL0, an urban artist in Singapore, and the second examines the "Long Live Southbank" ("LLSB") campaign to resist the relocation of Southbank's Undercroft, an appropriated skate space in London.…

  2. 76 FR 58473 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... area in less than 1.8 m of water. The proposed survey will take place on Apache's leases in Cook Inlet... in deeper water is called Ocean Bottom Receiver Location, which uses a small volume air gun (10 in\\3... terms of SEL than from the single water gun impulse (estimated at 188 dB re 1 Pa\\2\\-s) in...

  3. Treatment Facility F: Accelerated Removal and Validation Project

    SciTech Connect

    Sweeney, J.J.; Buettner, M.H.; Carrigan, C.R.

    1994-04-01

    The Accelerated Removal and Validation (ARV) phase of remediation at the Treatment Facility F (TFF) site at Lawrence Livermore National Laboratory (LLNL) was designed to accelerate removal of gasoline from the site when compared to normal, single shift, pump-and-treat operations. The intent was to take advantage of the in-place infrastructure plus the increased underground temperatures resulting from the Dynamic Underground Stripping Demonstration Project (DUSDP). Operations continued 24-hours (h) per day between October 4 and December 12, 1993. Three contaminant removal rate enhancement approaches were explored during the period of continuous operation. First, we tried several configurations of the vapor pumping system to maximize the contaminant removal rate. Second, we conducted two brief trials of air injection into the lower steam zone. Results were compared with computer models, and the process was assessed for contaminant removal rate enhancement. Third, we installed equipment to provide additional electrical heating of contaminated low-permeability soil. Four new electrodes were connected into the power system. Diagnostic capabilities at the TFF site were upgraded so that we could safely monitor electrical currents, soil temperatures, and water treatment system processes while approximately 300 kW of electrical energy was being applied to the subsurface.

  4. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  5. Communicating with Accelerated Observers in Minkowski Spacetime

    ERIC Educational Resources Information Center

    FLores, F. J.

    2008-01-01

    Our goal here is to determine the spatial and temporal constraints on communication between two observers at least one of which moves with constant proper acceleration in two-dimensional Minkowski spacetime. We take as a simplified model of communication one observer bouncing a light signal off another observer. Our derivations use only elementary…

  6. Accelerator Center: National symbol or white elephant?

    SciTech Connect

    1995-06-02

    This article discusses the possible future of the National Accelerator Center facility in South Africa. This state of the art facility with a 200-megaelectrol-volt proton cyclotron, carries out important nuclear physics research but takes a huge part of South Africa`s total science research budget.

  7. Computing tools for accelerator design calculations

    SciTech Connect

    Fischler, M.; Nash, T.

    1984-01-01

    This note is intended as a brief, summary guide for accelerator designers to the new generation of commercial and special processors that allow great increases in computing cost effectiveness. New thinking is required to take best advantage of these computing opportunities, in particular, when moving from analytical approaches to tracking simulations. In this paper, we outline the relevant considerations.

  8. Physics Take-Outs

    NASA Astrophysics Data System (ADS)

    Riendeau, Diane; Hawkins, Stephanie; Beutlich, Scott

    2016-03-01

    Most teachers want students to think about their course content not only during class but also throughout their day. So, how do you get your students to see how what they learn in class applies to their lives outside of class? As physics teachers, we are fortunate that our students are continually surrounded by our content. How can we get them to notice the physics around them? How can we get them to make connections between the classroom content and their everyday lives? We would like to offer a few suggestions, Physics Take-Outs, to solve this problem.

  9. Why It Takes Prevention, Not Detection, to Fight Bioterrorism

    ERIC Educational Resources Information Center

    Janata, Jiri (Art)

    2005-01-01

    Following the events which took place on September 11, 2001, and the anthrax attacks which occurred after that date, US authorities became concerned with the idea that an assault with chemical or biological weapons could take place on American territory or in American ships or planes. A worrisome model for such an assault was the 1995 terrorist…

  10. Accelerator Mass Spectrometry (AMS) 1977-1987

    NASA Astrophysics Data System (ADS)

    Gove, H. E.; Purser, K. H.; Litherland, A. E.

    2010-04-01

    The eleventh Accelerator Mass Spectrometry (AMS 11) Conference took place in September 2008, the Thirtieth Anniversary of the first Conference. That occurred in 1978 after discoveries with nuclear physics accelerators in 1977. Since the first Conference there have now been ten further conferences on the development and applications of what has become known as AMS. This is the accepted acronym for the use of accelerators, together with nuclear and atomic physics techniques, to enhance the performance of mass spectrometers for the detection and measurement of rare long-lived radioactive elements such as radiocarbon. This paper gives an outline of the events that led to the first conference together with a brief account of the first four conferences before the introduction of the second generation of accelerator mass spectrometers at AMS 5.

  11. OpenMM accelerated MMTK

    NASA Astrophysics Data System (ADS)

    Bishop, Kevin P.; Constable, Steve; Faruk, Nabil F.; Roy, Pierre-Nicholas

    2015-06-01

    In this work, we provide an interface developed to link the Molecular Modelling toolkit (MMTK) with OpenMM in order to take advantage of the fast evaluation techniques of OpenMM. This interface allows MMTK scripts using the Langevin dynamics integrator, for both classical and path integral simulations, to be executed on a variety of hardware including graphical processing units via OpenMM. The interface has been developed using Python and Cython to take advantage of the high level abstraction thanks to the MMTK and OpenMM software packages. We have tested the interface on a number of systems to observe which systems benefit most from the acceleration libraries of OpenMM.

  12. Exploration of Solar Wind Acceleration Region Using Interplanetary Scintillation of Water Vapor Maser Source and Quasars

    NASA Technical Reports Server (NTRS)

    Tokumaru, Munetoshi; Yamauchi, Yohei; Kondo, Tetsuro

    2001-01-01

    Single-station observations of interplanetary scintillation UPS) at three microwave frequencies 2, 8, and 22GHz, were carried out between 1989 and 1998 using a large (34-micro farad) radio telescope at the Kashima Space Research Center of the Communications Research Laboratory. The aim of these observations was to explore the near-sun solar wind, which is the key region for the study of the solar wind acceleration mechanism. Strong quasars, 3C279 and 3C273B, were used for the Kashima IPS observations at 2 and 8GHz, and a water-vapor maser source, IRC20431, was used for the IPS observations at 22GHz. Solar wind speeds derived from Kashima IPS data suggest that the solar wind acceleration takes place at radial distances between 10 and 30 solar radii (Rs) from the sun. The properties of the turbulence spectrum (e.g. anisotropy, spectral index, inner scale) inferred from the Kashima data were found to change systematically in the solar wind acceleration region. While the solar wind in the maximum phase appears to be dominated by the slow wind, fast and rarefied winds associated with the coronal holes were found to develop significantly at high latitudes as the solar activity declined. Nevertheless, the Kashima data suggests that the location of the acceleration region is stable throughout the solar cycle.

  13. Exploration of Solar Wind Acceleration Region Using Interplanetary Scintillation of Water Vapor Maser Source and Quasars

    NASA Technical Reports Server (NTRS)

    Tokumaru, Munetoshi; Yamauchi, Yohei; Kondo, Tetsuro

    2001-01-01

    Single-station observations of interplanetary scintillation (IPS) at three microwave frequencies; 2 GHz, 8 GHz and 22 GHz have been carried out between 1989 and 1998 using a large (34 m farad) radio telescope at the Kashima Space Research Center of the Communications Research Laboratory. The aim of these observations is to explore the near-sun solar wind, which is the key region for the study of the solar wind acceleration mechanism. Strong quasars; 3C279 and 3C273B were used for Kashima IPS observations at 2 GHz and 8 GHz, and a water vapor maser source, IRC20431 was used for the IPS observations at 22 GHz. Solar wind velocities derived from Kashima IPS data suggest that the solar wind acceleration takes place at radial distances between 10 and 30 solar radii (R(sub s)) from the sun. Properties of the turbulence spectrum (e.g. anisotropy, spectral index, inner scale) inferred from Kashima data are found to change systematically in the solar wind acceleration region. While the solar wind in the maximum phase appears to be dominated by the slow wind, fast and rarefied winds associated with coronal holes are found to develop significantly at high latitudes as the solar activity declines. Nevertheless, Kashima data suggests that the location of the acceleration region is stable throughout the solar cycle.

  14. Comparison of test particle acceleration in torsional spine and fan reconnection regimes

    SciTech Connect

    Hosseinpour, M. Mehdizade, M.; Mohammadi, M. A.

    2014-10-15

    Magnetic reconnection is a common phenomenon taking place in astrophysical and space plasmas, especially in solar flares which are rich sources of highly energetic particles. Torsional spine and fan reconnections are important mechanisms proposed for steady-state three-dimensional null-point reconnection. By using the magnetic and electric fields for these regimes, we numerically investigate the features of test particle acceleration in both regimes with input parameters for the solar corona. By comparison, torsional spine reconnection is found to be more efficient than torsional fan reconnection in an acceleration of a proton to a high kinetic energy. A proton can gain as high as 100 MeV of relativistic kinetic energy within only a few milliseconds. Moreover, in torsional spine reconnection, an accelerated particle can escape either along the spine axis or on the fan plane depending on its injection position. However, in torsional fan reconnection, the particle is only allowed to accelerate along the spine axis. In addition, in both regimes, the particle's trajectory and final kinetic energy depend on the injection position but adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory.

  15. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  16. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  17. Is the 3-D magnetic null point with a convective electric field an efficient particle accelerator?

    NASA Astrophysics Data System (ADS)

    Guo, J.-N.; Büchner, J.; Otto, A.; Santos, J.; Marsch, E.; Gan, W.-Q.

    2010-04-01

    simulations are blind to microscopic magnetic structures where more non-adiabatic processes might be taking place. In the real solar corona, we expect that particles could have a higher probability to experience a de-magnetization process and get accelerated. To trigger a significant acceleration of electrons and even higher energetic protons, however, the existence of a resistive electric field mainly parallel to the magnetic field is required. A physically reasonable resistivity model included in resistive MHD simulations is direly needed for the further investigations of electron acceleration by parallel electric fields.

  18. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  19. Correlates of Intellectual Risk Taking in Elementary School Science

    ERIC Educational Resources Information Center

    Beghetto, Ronald A.

    2009-01-01

    This study had the goal of exploring factors associated with elementary students' (N = 585) reports of intellectual risk taking in science. Intellectual risk taking (IRT) was defined as engaging in adaptive learning behaviors (sharing tentative ideas, asking questions, attempting to do and learn new things) that placed the learner at risk of…

  20. A Place on the Shelf

    ERIC Educational Resources Information Center

    Thomas, Devon

    2007-01-01

    If we read to discover new worlds, we also read to find ourselves. For gays and lesbians, this act of discovery can be problematic: literature has so often excluded them. In the last decades, as gays and lesbians have grown increasingly vocal in the effort to secure their rightful place in society, a broad range of fiction has emerged that…

  1. Creative Teaching with Historic Places.

    ERIC Educational Resources Information Center

    Greenberg, Ronald M., Ed.

    2000-01-01

    This journal contains articles and materials to help teachers instruct students about U.S. historical and cultural heritage. Articles and teaching materials are: "History in the Hands of Tomorrow's Citizens" (C. D. Shull; B. M. Boland); "On-Site Learning--The Power of Historic Places" (J. O. Horton); "Visualizing History--Inquiring Minds Want To…

  2. Place learning by mechanical contact.

    PubMed

    Harrison, Steven J; Turvey, Michael T

    2010-05-01

    For some animals (e.g. the night-active wandering spider) the encounters with the habitat that result in place learning are predominantly mechanical. We asked whether place learning limited to mechanical contact, like place learning in general, entails vectors tied to individual landmarks and relations between landmarks. We constructed minimal environments for blindfolded human participants. Landmarks were raised steps. 'Home' was a mechanically indistinct location. Travel was linear. The mechanical contacts were those of walking, stepping, and probing with a soft-tipped cane. Home-orienting activities preceded tests of finding home from a given location with landmarks unchanged or (unbeknown to participants) shifted. In a one-landmark environment, perceived home shifted in the same direction, with the same magnitude, as the shifted landmark. In an environment of two landmarks located in the same direction from home, shifting the further landmark toward home resulted in a change in home's perceived location that preserved the original ratio of distances separating home, nearer landmark, and further landmark. Both findings were invariant over the travel route to the test location and repetitions of testing. It seems, therefore, that for humans (and, perhaps, for wandering spiders), mechanical contact can reveal the vectors and relations specifying places.

  3. The Mushroom Place. Part III.

    ERIC Educational Resources Information Center

    Schlichter, Carol

    1978-01-01

    The final installment of a series of articles on the "Mushroom Place" learning center program, which involves creative thinking activities for young, gifted students, describes "Doing It the Hard Way," a performance task which involves the actual construction of objects from a selected set of materials in the absence of the usual project tools.…

  4. Sense of Place in Appalachia.

    ERIC Educational Resources Information Center

    Arnow, Pat, Ed.

    1989-01-01

    This journal issue contains interviews, essays, short stories, and poetry focusing on sense of place in Appalachia. In interviews, author Wilma Dykeman discussed past and recent novels set in Appalachia with interviewer Sandra L. Ballard; and novelist Lee Smith spoke with interviewer Pat Arnow about how Appalachia has shaped her writing. Essays…

  5. Place recognition using batlike sonar

    PubMed Central

    Vanderelst, Dieter; Steckel, Jan; Boen, Andre; Peremans, Herbert; Holderied, Marc W

    2016-01-01

    Echolocating bats have excellent spatial memory and are able to navigate to salient locations using bio-sonar. Navigating and route-following require animals to recognize places. Currently, it is mostly unknown how bats recognize places using echolocation. In this paper, we propose template based place recognition might underlie sonar-based navigation in bats. Under this hypothesis, bats recognize places by remembering their echo signature - rather than their 3D layout. Using a large body of ensonification data collected in three different habitats, we test the viability of this hypothesis assessing two critical properties of the proposed echo signatures: (1) they can be uniquely classified and (2) they vary continuously across space. Based on the results presented, we conclude that the proposed echo signatures satisfy both criteria. We discuss how these two properties of the echo signatures can support navigation and building a cognitive map. DOI: http://dx.doi.org/10.7554/eLife.14188.001 PMID:27481189

  6. Physical activities to enhance an understanding of acceleration

    NASA Astrophysics Data System (ADS)

    Lee, S. A.

    2006-03-01

    On the basis of their everyday experiences, students have developed an understanding of many of the concepts of mechanics by the time they take their first physics course. However, an accurate understanding of acceleration remains elusive. Many students have difficulties distinguishing between velocity and acceleration. In this report, a set of physical activities to highlight the differences between acceleration and velocity are described. These activities involve running and walking on sand (such as an outdoor volleyball court).

  7. Beam Position Monitoring in the CSU Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Einstein, Joshua; Vankeuren, Max; Watras, Stephen

    2014-03-01

    A Beam Position Monitoring (BPM) system is an integral part of an accelerator beamline, and modern accelerators can take advantage of newer technologies and designs when creating a BPM system. The Colorado State University (CSU) Accelerator Facility will include four stripline detectors mounted around the beamline, a low-noise analog front-end, and digitization and interface circuitry. The design will support a sampling rate greater than 10 Hz and sub-100 μm accuracy.

  8. Laser driven acceleration in vacuum and gases

    SciTech Connect

    Sprangle, P.; Esarey, E.; Hafizi, B.; Hubbard, R.; Krall, J.; Ting, A.

    1997-03-01

    Several important issues pertaining to particle acceleration in vacuum and gases are discussed. The limitations of laser vacuum acceleration as they relate to electron slippage, laser diffraction, material damage, and electron aperture effects are presented. Limitations on the laser intensity and particle self-fields due to material breakdown are quantified. In addition, the reflection of the self-fields associated with the accelerated particles places a limit on the number of particles. Two configurations for the inverse Cherenkov accelerator (ICA) are considered, in which the electromagnetic driver is propagated in a waveguide that is (i) lined with a dielectric material or (ii) filled with a neutral gas. The acceleration gradient in the ICA is limited by tunneling and collisional ionization in the dielectric liner or gas. Ionization can lead to significant modification of the optical properties of the waveguide, altering the phase velocity and causing particle slippage, thus disrupting the acceleration process. Maximum accelerating gradients and pulse durations are presented for a 10 {mu}m and a 1 mm wavelength driver. We show that the use of an unguided Bessel (axicon) beam can enhance the energy gain compared to a higher order Gaussian beam. The enhancement factor is N{sup 1/2}, where N is the number of lobes in the Bessel beam. {copyright} {ital 1997 American Institute of Physics.}

  9. ESS Accelerator Cryoplant Process Design

    NASA Astrophysics Data System (ADS)

    Wang, X. L.; Arnold, P.; Hees, W.; Hildenbeutel, J.; Weisend, J. G., II

    2015-12-01

    The European Spallation Source (ESS) is a neutron-scattering facility being built with extensive international collaboration in Lund, Sweden. The ESS accelerator will deliver protons with 5 MW of power to the target at 2.0 GeV, with a nominal current of 62.5 mA. The superconducting part of the accelerator is about 300 meters long and contains 43 cryomodules. The ESS accelerator cryoplant (ACCP) will provide the cooling for the cryomodules and the cryogenic distribution system that delivers the helium to the cryomodules. The ACCP will cover three cryogenic circuits: Bath cooling for the cavities at 2 K, the thermal shields at around 40 K and the power couplers thermalisation with 4.5 K forced helium cooling. The open competitive bid for the ACCP took place in 2014 with Linde Kryotechnik AG being selected as the vendor. This paper summarizes the progress in the ACCP development and engineering. Current status including final cooling requirements, preliminary process design, system configuration, machine concept and layout, main parameters and features, solution for the acceptance tests, exergy analysis and efficiency is presented.

  10. Analytical tools in accelerator physics

    SciTech Connect

    Litvinenko, V.N.

    2010-09-01

    This paper is a sub-set of my lectures presented in the Accelerator Physics course (USPAS, Santa Rosa, California, January 14-25, 2008). It is based on my notes I wrote during period from 1976 to 1979 in Novosibirsk. Only few copies (in Russian) were distributed to my colleagues in Novosibirsk Institute of Nuclear Physics. The goal of these notes is a complete description starting from the arbitrary reference orbit, explicit expressions for 4-potential and accelerator Hamiltonian and finishing with parameterization with action and angle variables. To a large degree follow logic developed in Theory of Cyclic Particle Accelerators by A.A.Kolmensky and A.N.Lebedev [Kolomensky], but going beyond the book in a number of directions. One of unusual feature is these notes use of matrix function and Sylvester formula for calculating matrices of arbitrary elements. Teaching the USPAS course motivated me to translate significant part of my notes into the English. I also included some introductory materials following Classical Theory of Fields by L.D. Landau and E.M. Liftsitz [Landau]. A large number of short notes covering various techniques are placed in the Appendices.

  11. [Risk-taking behaviors among young people].

    PubMed

    Le Breton, David

    2004-01-01

    Risk-taking behaviors are often an ambivalent way of calling for help from close friends or family - those who count. It is an ultimate means of finding meaning and a system of values; it is a sign of an adolescent's active resistance and attempts to re-establish his or her place in the world. It contrasts with the far more incisive risk of depression and the radical collapse of meaning. In spite of the suffering it engenders, risk-taking nevertheless has a positive side, fostering independence in adolescents and a search for reference points. It leads to a better self-image and is a means of developing one's identity. It is nonetheless painful in terms of its repercussions in terms of injuries, death or addiction. The turbulence caused by risk-taking behaviors illustrates a determination to be rid of one's suffering and to fight on so that life can, at last, be lived. PMID:15918660

  12. The place of care in ethical theory.

    PubMed

    Veatch, R M

    1998-04-01

    The concept of care and a related ethical theory of care have emerged as increasingly important in biomedical ethics. This essay outlines a series of questions about the conceptualization of care and its place in ethical theory. First, it considers the possibility that care should be conceptualized as an alternative principle of right action; then as a virtue, a cluster of virtues, or as a synonym for virtue theory. The implications for various interpretations of the debate of the relation of care and justice are then explored, suggesting three possible meanings for that contrast. Next, the possibility that care theorists are taking up the debate over the relation between principles and cases is considered. Finally, it is suggested that care theorists may be pressing for consideration of an entirely new question in moral theory: the assessment of the normative appropriateness of relationships. Issues needing to be addressed in an ethic of relationships are suggested.

  13. The Magical Place Called Opera.

    ERIC Educational Resources Information Center

    Raplenovich, Kay

    1996-01-01

    "Create Your Own," month-long "Artist in Education" residencies sponsored by the Ohio Arts Council, are used to guide students and teachers through the process of taking the vision of an original opera conceived by students and turning it into a reality. A local opera company is actually created. "Create Your Own" shows children that opera can be…

  14. There's No Place Like School.

    ERIC Educational Resources Information Center

    Fagan, Juanita

    2001-01-01

    In 1998, the principal of a rural Oregon elementary school used a 21st Century Community Learning Centers grant and Title I funds to design a program to address homeless children's personal and social well-being. Kids eat a nutritious breakfast, take showers, get clothes washed, receive positive feedback, and participate in after-school…

  15. Accelerated Reader[TM]. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2010

    2010-01-01

    "Accelerated Reader"[TM] is a guided reading intervention used to supplement regular reading instruction in K-12 classrooms. Its aim is to improve students' reading skills through reading practice and quizzes on the books students read. The "Accelerated Reader"[TM] program calls for students to select and read a book and then take a computerized…

  16. Microgravity Smoldering Combustion Takes Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Microgravity Smoldering Combustion (MSC) experiment lifted off aboard the Space Shuttle Endeavour in September 1995 on the STS-69 mission. This experiment is part of series of studies focused on the smolder characteristics of porous, combustible materials in a microgravity environment. Smoldering is a nonflaming form of combustion that takes place in the interior of combustible materials. Common examples of smoldering are nonflaming embers, charcoal briquettes, and cigarettes. The objective of the study is to provide a better understanding of the controlling mechanisms of smoldering, both in microgravity and Earth gravity. As with other forms of combustion, gravity affects the availability of air and the transport of heat, and therefore, the rate of combustion. Results of the microgravity experiments will be compared with identical experiments carried out in Earth's gravity. They also will be used to verify present theories of smoldering combustion and will provide new insights into the process of smoldering combustion, enhancing our fundamental understanding of this frequently encountered combustion process and guiding improvement in fire safety practices.

  17. Particle acceleration during interactions between transient ion foreshock phenomena and Earth's bow shock

    NASA Astrophysics Data System (ADS)

    Turner, Drew; Angelopoulos, Vassilis; Wilson, Lynn; Hietala, Heli; Omidi, Nick; Masters, Adam

    2014-05-01

    Foreshocks are regions upstream of supercritical astrophysical shock waves that are in communication with the shock via suprathermal charged particles that have been energized and reflected by the shock and are counter-streaming into the incident plasma. These regions form upstream of the quasi-parallel region of the shock, in which the angle between the magnetic field in the incident plasma and the shock normal direction is less than ~40 deg. The relative drift between the reflected suprathermal particles and the incident bulk flow is a source of free energy, which is capable of producing a variety of kinetic plasma instabilities and enhanced wave activity. Simulations and observations of Earth's and other planetary foreshocks have shown that large-scale transient phenomena can also develop due to nonlinear processes and interactions between foreshock particles and discontinuities in the incident solar wind. Several of these transient ion foreshock phenomena (TIFP), such as short large-amplitude magnetic structures (SLAMS), hot flow anomalies (HFAs), and foreshock bubbles (FBs), can result in the development of nonlinear wave activity and additional shocks upstream of the main bow shock. We present in situ observations, made by NASA's THEMIS mission, of ion and electron distributions from within and without SLAMS, HFAs, and FBs, examining the particle heating and acceleration taking place within those TIFP. The observations are compared to theoretical expectations for shock-drift acceleration, Fermi acceleration, and energy diffusion via wave-particle interactions. Our preliminary results show that SLAMS, HFAs, and FBs can be ideal particle accelerators. Finally, we develop an understanding for the upper energy limits for ion and electron acceleration in each of these TIFP at Earth's bow shock and use this to investigate how TIFP may accelerate particles at other astrophysical shocks, such as planetary and astrospherical bow shocks, shocks in stellar winds, and

  18. Particle acceleration in the dynamic magnetotail: Orbits in self-consistent three-dimensional MHD fields

    NASA Technical Reports Server (NTRS)

    Birn, Joachim; Hesse, Michael

    1994-01-01

    The acceleration of protons in a dynamically evolving magnetotail is investigated by tracing particles in the fields obtained from a three-dimensional resistive magnetohydrodynamic (MHD) simulation. The MHD simulation, representing plasmoid formation and ejection through a near-Earth reconnection process, leads to cross-tail electric fields of up to approximately 4 mV/m with integrated voltages across the tail of up to approximately 200 kV. Energization of particles takes place over a wide range along the tail, due to the large spatial extent of the increased electric field together with the finite cross-tail extent of the electric field region. Such accelerated particles appear earthward of the neutral line over a significant portion of the closed field line region inside of the separatrix, not just in the vicinity of the separatrix. Two different acceleration processes are identified: a 'quasi-potential' acceleration, due to particle motion in the direction of the cross-tail electric field, and a 'quasi-betatron' effect, which consists of multiple energy gains from repeated crossings of the acceleration region, mostly on Speiser-type orbits, in the spatially varying induced electric field. The major source region for accelerated particles in the hundreds of keV range is the central plasma sheet at the dawn flank outside the reconnection site. Since this source plasma is already hot and dense, its moderate energization by a factor of approximately 2 may be sufficient to explain the observed increases in the energetic particle fluxes. Particles from the tail are the source of beams at the plasma sheet/lobe boundary. The temporal increase in the energetic particle fluxes, estimated from the increase in energy gain, occurs on a fast timescale of a few minutes, coincident with a strong increase in B(sub z), despite the fact that the inner boundary ('injection boundary') of the distribution of energized particles is fairly smooth.

  19. After Dark in the Antipodes: Pedagogy, Place and Queer Phenomenology

    ERIC Educational Resources Information Center

    Crowley, Vicki; Rasmussen, Mary Lou

    2010-01-01

    This paper pursues issues of pedagogy, place and queer phenomenology in the context of what might be meant by the term "after-queer" or "what falls outside queer" as we currently theorise, practice and locate queer. Inspired by Sara Ahmed's account of how bodies become oriented by the ways in which they take up time and space, this paper…

  20. Places to Go: Google's Search Results for "Net Generation"

    ERIC Educational Resources Information Center

    Downes, Stephen

    2007-01-01

    In his Places to Go column for a special issue on the Net Generation, Stephen Downes takes an unexpected trip--to Google. According to Downes, Google epitomizes the essence of the Net Generation. Infinitely searchable and adaptable, Google represents the spirit of a generation raised in the world of the Internet, a generation that adapts…

  1. Descending the Watershed: Rethinking the "Place" of Curriculum.

    ERIC Educational Resources Information Center

    Brody, Michael

    1997-01-01

    Employs a first-person phenomenological approach to describe an expedition for teachers from the uppermost beginning of a Northern Rocky Mountain watershed to its river output at the bottom. Focuses on the roles of people and place in the construction of new knowledge about the environment. Takes traditional curriculum theory a step beyond simple…

  2. Taking human life.

    PubMed

    Brock, Dan W

    1985-07-01

    Alan Donagan's position regarding the morality of taking innocent human life, that it is impermissible regardless of the wishes of the victim, is criticized by Brock who argues for a rights-based alternative. His argument appeals to the nature of persons' actual interest in life and gives them an additional element of control which they lack if a nonwaivable moral duty not to kill prevails. The author rejects Donagan's view that stopping a life-sustaining treatment, even when a competent patient has consented, is morally wrong and that there is no moral difference between killing and allowing to die. A rights-based position permits stopping treatment of incompetent patients based on what the patient would have wanted or what is in his or her best interest, and allows the withholding of treatment from a terminally ill person, with the patient's consent and for a benevolent motive, to be evaluated as morally different from killing that patient.

  3. Compensation Techniques in Accelerator Physics

    SciTech Connect

    Sayed, Hisham Kamal

    2011-05-01

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  4. Slow and fast capacitive process taking place at the ionic liquid/electrode interface.

    PubMed

    Roling, Bernhard; Drüschler, Marcel; Huber, Benediki

    2012-01-01

    Electrochemical impedance spectroscopy was used to characterise the interface between the ultrapure room temperature ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate and a Au(111) working electrode at electrode potentials more positive than the open circuit potential (-0.14 V vs. Pt pseudo-reference). Plots of the potential-dependent data in the complex capacitance plane reveal the existence of a fast and a slow capacitive process. In order to derive the contribution of both processes to the overall capacitance, the complex capacitance data were fitted using an empirical Cole-Cole equation. The differential capacitance of the fast process is almost constant between -0.14 V and +0.2 V (vs. Pt pseudo-reference) and decreases at more positive potentials, while the differential capacitance of the slower process exhibits a maximum at +0.2 V. This maximum leads to a maximum in the overall differential capacitance. We attribute the slow process to charge redistributions in the innermost ion layer, which require an activation energy in excess of that for ion transport in the room temperature ionic liquid. The differential capacitance maximum of the slow process at +0.2 V is most likely caused by reorientations of the 1-butyl-1l-methylpyrrolidinium cations in the innermost layer with the positively charged ring moving away from the Au(111) surface and leaving behind voids which are then occupied by anions. In a recent Monte Carlo simulation by Federov, Georgi and Kornyshev (Electrochem. Commun. 2010, 12, 296), such a process was identified as the origin of a differential capacitance maximum in the anodic regime. Our results suggest that the time scales of capacitive processes at the ionic liquid/metal interface are an important piece of information and should be considered in more detail in future experimental and theoretical studies.

  5. To impose enhanced penalties for certain drug offense that take place on Federal property.

    THOMAS, 113th Congress

    Rep. Nunes, Devin [R-CA-22

    2013-06-05

    07/15/2013 Referred to the Subcommittee on Crime, Terrorism, Homeland Security, and Investigations. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  6. Pairing K-12 Teachers with Geographic Researchers: Why It Should Take Place and How It Can.

    ERIC Educational Resources Information Center

    Orvis, Kenneth H.; Horn, Sally P.; Jumper, Sidney R.

    1999-01-01

    Contends that excitement can be infused into the K-12 geography curriculum by involving teachers in real research projects led by professional geographers. Describes a project where K-12 teachers and geographers participated in geography field research in the mountain highlands of the Valle Nuevo Scientific Reserve of the Dominican Republic. (CMK)

  7. When Private Schools Take Public Dollars: What's the Place of Accountability in School Voucher Programs?

    ERIC Educational Resources Information Center

    Finn, Chester E., Jr.; Hentges, Christina M.; Petrilli, Michael J.; Winkler, Amber M.

    2009-01-01

    Critics of school voucher programs argue that private schools that receive taxpayer dollars should be held accountable to the same standards as public schools. School choice supporters counter that private schools should be left alone to answer to the parents of their students. The authors advocate for a re-visit to the discussion of…

  8. Translational Science at the National Institute of Mental Health: Can Social Work Take Its Rightful Place?

    ERIC Educational Resources Information Center

    Brekke, John S.; Ell, Kathleen; Palinkas, Lawrence A.

    2007-01-01

    Several recent national reports have noted that there is a 20-year gap between knowledge generated from our best clinical research and the utilization of that knowledge in our health and mental health care sectors. One solution to this dilemma has been the emergence of translational science. Translational science has become a top priority of the…

  9. Does Reflective Learning Take Place in Online MBA Introductory Quantitative Courses?

    ERIC Educational Resources Information Center

    Frank, Blake A.; Walsh, Robert J.

    2012-01-01

    Online education has grown dramatically over the past 15 years. At the university level, researchers have shown that online education has both its advantages--greater flexibility and access to student--and disadvantages--like disconnection with other students and faculty. Another possible drawback for the students enrolled in an online course is…

  10. In what time scale proton transfer takes place in a live CHO cell?

    NASA Astrophysics Data System (ADS)

    Mojumdar, Supratik Sen; Chowdhury, Rajdeep; Mandal, Amit Kumar; Bhattacharyya, Kankan

    2013-06-01

    Excited state proton transfer (ESPT) of pyranine (8-hydroxypyrene-1,3,6-trisulfonate, HPTS) in a live Chinese hamster ovary (CHO) cell is studied by time resolved confocal microscopy. The cytoplasm region of the cell is stained by a photoacid, HPTS (HA). The time constant of initial proton transfer (τPT) in the cell is found to be ˜10 times longer than that in bulk water, while the time constants of recombination (τrec) and dissociation (τdiss) in the cell are ˜3 times and ˜2 times longer, respectively. The slower rate of proton transfer (˜10 times) inside the CHO cell compared to that in bulk water is ascribed to slower solvation dynamics, lower availability of free water molecules, and disruption of hydrogen-bond network inside the cell. Translational and rotational diffusion of HPTS inside a single CHO cell have been investigated by fluorescence correlation spectroscopy (FCS) and picosecond anisotropy measurement, respectively. Both the translational and rotational diffusion slow down inside the live cell. FCS studies indicate that HPTS remains tightly bound to a macromolecule inside the cell.

  11. Look What I Am Doing: Does Observational Learning Take Place in Evocative Task-Sharing Situations?

    PubMed Central

    Ferraro, Luca; Iani, Cristina; Mariani, Michele; Nicoletti, Roberto; Gallese, Vittorio; Rubichi, Sandro

    2012-01-01

    Two experiments were conducted to investigate whether physical and observational practice in task-sharing entail comparable implicit motor learning. To this end, the social-transfer-of-learning (SToL) effect was assessed when both participants performed the joint practice task (Experiment 1 – complete task-sharing), or when one participant observed the other performing half of the practice task (Experiment 2 – evocative task-sharing). Since the inversion of the spatial relations between responding agent and stimulus position has been shown to prevent SToL, in the present study we assessed it in both complete and evocative task-sharing conditions either when spatial relations were kept constant or changed from the practice to the transfer session. The same pattern of results was found for both complete and evocative task-sharing, thus suggesting that implicit motor learning in evocative task-sharing is equivalent to that obtained in complete task-sharing. We conclude that this motor learning originates from the simulation of the complementary (rather than the imitative) action. PMID:22905256

  12. Where Does the Transformation of Precipitated Ceria Nanoparticles in Hydroponic Plants Take Place?

    PubMed

    Ma, Yuhui; Zhang, Peng; Zhang, Zhiyong; He, Xiao; Zhang, Junzhe; Ding, Yayun; Zhang, Jing; Zheng, Lirong; Guo, Zhi; Zhang, Lijuan; Chai, Zhifang; Zhao, Yuliang

    2015-09-01

    Cerium oxide nanoparticles (CeO2 NPs) have been found to be partly biotransformed from Ce(IV) to Ce(III) in plants, yet the transformation process and mechanism are not fully understood. Here, we try to clarify the specific site and necessary conditions for the transformation of precipitated CeO2 NPs in hydroponic cucumber plants. Three different treatment modes were adopted according to whether the NPs were incubated with roots all the time or not. Results showed that exposure modes significantly affect the translocation and transformation of CeO2 NPs. In the normal exposure mode, Ce was present as a Ce(IV) and Ce(III) mixture in the roots and shoots, and the proportion of Ce(III) in the shoots was enhanced obviously with the increase of exposure time. The results of short-time incubation and petiole exposure modes suggested that CeO2 NPs could not be reduced within a short incubation time (3 h) or be further reduced inside the plant tissues. It was deduced that root surfaces are the sites, and the physicochemical interaction between the NPs and root exudates at the nanobio interface is the necessary condition for the transformation of CeO2 NPs in plant systems. These results will contribute to understanding the transformation mechanism of CeO2 and other metal-based NPs and properly evaluate their ecological effects. PMID:26237071

  13. Where Does the Transformation of Precipitated Ceria Nanoparticles in Hydroponic Plants Take Place?

    PubMed

    Ma, Yuhui; Zhang, Peng; Zhang, Zhiyong; He, Xiao; Zhang, Junzhe; Ding, Yayun; Zhang, Jing; Zheng, Lirong; Guo, Zhi; Zhang, Lijuan; Chai, Zhifang; Zhao, Yuliang

    2015-09-01

    Cerium oxide nanoparticles (CeO2 NPs) have been found to be partly biotransformed from Ce(IV) to Ce(III) in plants, yet the transformation process and mechanism are not fully understood. Here, we try to clarify the specific site and necessary conditions for the transformation of precipitated CeO2 NPs in hydroponic cucumber plants. Three different treatment modes were adopted according to whether the NPs were incubated with roots all the time or not. Results showed that exposure modes significantly affect the translocation and transformation of CeO2 NPs. In the normal exposure mode, Ce was present as a Ce(IV) and Ce(III) mixture in the roots and shoots, and the proportion of Ce(III) in the shoots was enhanced obviously with the increase of exposure time. The results of short-time incubation and petiole exposure modes suggested that CeO2 NPs could not be reduced within a short incubation time (3 h) or be further reduced inside the plant tissues. It was deduced that root surfaces are the sites, and the physicochemical interaction between the NPs and root exudates at the nanobio interface is the necessary condition for the transformation of CeO2 NPs in plant systems. These results will contribute to understanding the transformation mechanism of CeO2 and other metal-based NPs and properly evaluate their ecological effects.

  14. When Private Schools Take Public Dollars: What's the Place of Accountability in School Voucher Programs?

    ERIC Educational Resources Information Center

    Finn, Chester E., Jr.; Hentges, Christina M.; Petrilli, Michael J.; Winkler, Amber M.

    2009-01-01

    Of all the arguments that critics of school voucher programs advance, the one that may resonate loudest with the public concerns school accountability. Opponents say it's not fair to hold public schools accountable for their results (under No Child Left Behind and similar systems) and then let private schools receive taxpayer dollars--however…

  15. Golgi and endoplasmic reticulum functions take place in different subcellular compartments of Entamoeba histolytica.

    PubMed

    Bredeston, Luis M; Caffaro, Carolina E; Samuelson, John; Hirschberg, Carlos B

    2005-09-16

    Entamoeba histolytica is a protozoan parasite that causes dysentery in developing countries of Africa, Asia, and Latin America. The lack of a defined Golgi apparatus in E. histolytica as well as in other protists led to the hypothesis that they had evolved prior to the acquisition of such organelle even though glycoproteins, glycolipids, and antigens have been detected, the latter of which react with antibodies against Golgi apparatus proteins of higher eukaryotes. We here provide direct evidence for Golgi apparatus-like functions in E. histolytica as well as for components of glycoprotein folding quality control. Using a combination of bioinformatic, cell biological, and biochemical approaches we have (a) cloned and expressed the E. histolytica UDP-galactose transporter in Saccharomyces cerevisiae; its K(m) for UDP-galactose is 2.9 microm; (b) characterized vesicles in an extract of the above protist, which transport UDP-galactose into their lumen with a K(m) of 2.7 microm;(c) detected galactosyltransferase activity(ies) in the lumen of the above vesicles with the K(m) for UDP-galactose, using endogenous acceptors, being 93 microm;(d) measured latent apyrase activities in the above vesicles, suggesting they are in the lumen; (e) characterized UDP-glucose transport activities in Golgi apparatus and endoplasmic reticulum-like vesicles with K(m)s for UDP-glucose of approximately 2-4 microm. Although the endoplasmic reticulum-like fraction showed UDP-glucose: glycoprotein glucosyltransferase activity, the Golgi apparatus-like fraction did not. This fraction contained other glucosyltransferases. Together, these studies demonstrate that E. histolytica has different vesicles that play a role in protein glycosylation and folding quality control, analogous to the above organellar functions of higher eukaryotes.

  16. Systemic analysis of desertification processes taking place in the Limpopo river basin

    NASA Astrophysics Data System (ADS)

    Messina, Mario; Attorre, Fabio; Vitale, Marcello

    2016-04-01

    Desertification and land degradation are phenomena that ranks among the greatest environmental challenges of our time. Desertification is a global issue, with serious implications worldwide for biodiversity, socio-economic stability and sustainable development. Biophysical indicators of land degradation and desertification, like Net Primary Productivity (NPP) and Total Ecosystem Respiration (Reco) were provided by remote sensing technology (MODIS). The study aims to evaluate the dynamical changes of NPP and Reco in the Limpopo river basin, a Southern African region that includes, Botswana, Mozambique, South Africa and Zimbabwe, during the time period 2001-2010. In particular, the relations between NPP, Reco, environmental, physiological and land use parameters have been widely investigated through the application of a new and powerful statistical classifier, the Random Forest Analysis (RFA), and a general non-linear model, the Response Surface Regression Model (GRM). RFA highlighted that Temperature is one of the most important predictors affecting NPP and Reco in the Limpopo river basin. Conversely, other environmental parameters like, Precipitation, Evapotranspiration and Vegetation cover rarely influence NPP and Reco. Our results provide information on desertification and land degradation phenomena and a first step for identifying practices to mitigate their negative impacts. However, it must be taken into account that NPP and Reco depend by a multitude of factors (e.g. human activities, socio-economic policies) and can vary in relation to spatial and temporal scale. In order to achieve a better understanding of land degradation and desertification processes, land use and socio-economic variables should be considered.

  17. Look what I am doing: does observational learning take place in evocative task-sharing situations?

    PubMed

    Ferraro, Luca; Iani, Cristina; Mariani, Michele; Nicoletti, Roberto; Gallese, Vittorio; Rubichi, Sandro

    2012-01-01

    Two experiments were conducted to investigate whether physical and observational practice in task-sharing entail comparable implicit motor learning. To this end, the social-transfer-of-learning (SToL) effect was assessed when both participants performed the joint practice task (Experiment 1--complete task-sharing), or when one participant observed the other performing half of the practice task (Experiment 2--evocative task-sharing). Since the inversion of the spatial relations between responding agent and stimulus position has been shown to prevent SToL, in the present study we assessed it in both complete and evocative task-sharing conditions either when spatial relations were kept constant or changed from the practice to the transfer session. The same pattern of results was found for both complete and evocative task-sharing, thus suggesting that implicit motor learning in evocative task-sharing is equivalent to that obtained in complete task-sharing. We conclude that this motor learning originates from the simulation of the complementary (rather than the imitative) action.

  18. 49 CFR 40.221 - Where does an alcohol test take place?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... alcohol testing site, you must ensure that it provides visual and aural privacy to the employee being tested, sufficient to prevent unauthorized persons from seeing or hearing test results. (d) If you are... privacy requirements of paragraph (c) is not readily available, this part allows a reasonable suspicion...

  19. Operation of the accelerator

    SciTech Connect

    Pardo, R.C.; Batzka, B.; Billquist, P.J.

    1995-08-01

    Fiscal Year 1994 was the first year of seven-day operation since ATLAS became a national user facility in 1985. ATLAS made the most of the opportunity this year by providing 5200 hours of beam on-target to the research program. A record number of 60 experiments were completed and the {open_quotes}facility reliability{close_quotes} remained near the 90% level. Seven-day operation was made possible with the addition to the staff of two operator positions providing single-operator coverage during the weekend period. The normally scheduled coverage was augmented by an on-call list of system experts who respond to emergencies with phone-in advice and return to the Laboratory when necessary. This staffing approach continues but we rearranged our staffing patterns so that we now have one cryogenics engineer working a shift pattern which includes 8-hour daily coverage during the weekend. ATLAS provided a beam mix to users consisting of 26 different isotopic species, 23% of which were for A>100 in FY 1994. Approximately 60% of the beam time was provided by the Positive Ion Injector, slightly less than the usage rate of FY 1993. Experiments using uranium or lead beams accounted for 16.4% of the total beam time. The ECR ion source and high-voltage platform functioned well throughout the year. A new technique for solid material production in the source was developed which uses a sputtering process wherein the sample of material placed near the plasma chamber wall is biased negatively. Plasma ions are accelerated into the sample and material is sputtered from the surface into the plasma. This technique is now used routinely for many elements. Runs of calcium, germanium, nickel, lead, tellurium, and uranium were carried out with this technique.

  20. ELIMED, future hadrontherapy applications of laser-accelerated beams

    NASA Astrophysics Data System (ADS)

    Cirrone, Giuseppe A. P.; Carpinelli, Massimo; Cuttone, Giacomo; Gammino, Santo; Bijan Jia, S.; Korn, Georg; Maggiore, Mario; Manti, Lorenzo; Margarone, Daniele; Prokupek, Jan; Renis, Marcella; Romano, Francesco; Schillaci, Francesco; Tomasello, Barbara; Torrisi, Lorenzo; Tramontana, Antonella; Velyhan, Andriy

    2013-12-01

    Laser-ion acceleration has recently gained a great interest as an alternative to conventional and more expensive acceleration techniques. These ion beams have desirable qualities such as small source size, high luminosity and small emittance to be used in different fields as Nuclear Physics, Medical Physics, etc. This is very promising specially for the future perspective of a new concept of hadrontherapy based on laser-based devices could be developed, replacing traditional accelerating machines. Before delivering laser-driven beams for treatments they have to be handled, cleaned from unwanted particles and characterized in order to have the clinical requirements. In fact ion energy spectra have exponential trend, almost 100% energy spread and a wide angular divergence which is the biggest issue in the beam transport and, hence, in a wider use of this technology. In order to demonstrate the clinical applicability of laser-driven beams new collaboration between ELI-Beamlines project researchers from Prague (Cz) and a INFN-LNS group from Catania (I) has been already launched and scientists from different countries have already express their will in joining the project. This cooperation has been named ELIMED (MEDical application at ELIBeamlines) and will take place inside the ELI-Beamlines infrastructure located in Prague. This work describes the schedule of the ELIMED project and the design of the energy selector which will be realized at INFN-LNS. The device is an important part of the whole transport beam line which will be realised in order to make the ion beams suitable for medical applications.

  1. Place prioritization for biodiversity content.

    PubMed

    Sarkar, Sahotra; Aggarwal, Anshu; Garson, Justin; Margules, Chris R; Zeidler, Juliane

    2002-07-01

    The prioritization of places on the basis of biodiversity content is part of any systematic biodiversity conservation planning process. The place prioritization procedure implemented in the ResNet software package is described. This procedure is primarily based on the principles of rarity and complementarity. Application of the procedure is demonstrated with two analyses, one data set consisting of the distributions of termite genera in Namibia, and the other consisting of the distributions of bird species in the Islas Malvinas/Falkland Islands. The attributes that data sets should have for the effective and reliable application of such procedures are discussed. The procedure used here is compared to some others that are also currently in use. PMID:12177533

  2. The Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  3. Switched matrix accelerator

    SciTech Connect

    Whittum, David H.; Tantawi, Sami G.

    2001-01-01

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We also provide an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392 GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium.

  4. Switched Matrix Accelerator

    SciTech Connect

    Whittum, David H

    2000-10-04

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm-wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We provide also an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392. GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high-power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium.

  5. Reducing the overheads of hardware acceleration through datapath integration

    NASA Astrophysics Data System (ADS)

    Jääskeläinen, Pekka; Kultala, Heikki; Pitkänen, Teemu; Takala, Jarmo

    2008-02-01

    Hardware accelerators are used to speed up execution of specific tasks such as video coding. Often the purpose of hardware acceleration is to be able to use a cheaper or, for example, more energy economical processor for executing the majority of the application in software. However, when using hardware acceleration, new overheads are produced mainly due to the need to transfer data to and from the accelerator and signaling the readiness of the accelerator computation to the processor. We find the traditional mechanisms suboptimal for fine-grain hardware acceleration, especially when energy efficiency is important. This paper explores a technique unique to Transport Triggered Architectures to interface with hardware accelerators. The proposed technique places hardware accelerators to the processor data path, making them visible as regular function units to the programmer. This way communication costs are reduced as data can be transferred directly to the accelerator from other processor data path components and synchronization can be done by polling a simple ready flag in the accelerator function unit. Additionally, this setup enables the instruction scheduler of the compiler to schedule the hardware accelerator like any other operation, thus partially hide its latency with other program operations. The paper presents a case study with an audio decoder application in which fine-grain and coarse-grain hardware accelerators are integrated to the processor data path as function units. The case is used to study several different synchronization, communication, and latency-hiding techniques enabled by this kind of setup.

  6. Wake field accelerators

    SciTech Connect

    Wilson, P.B.

    1986-02-01

    In a wake field accelerator a high current driving bunch injected into a structure or plasma produces intense induced fields, which are in turn used to accelerate a trailing charge or bunch. The basic concepts of wake field acceleration are described. Wake potentials for closed cavities and periodic structures are derived, as are wake potentials on a collinear path with a charge distribution. Cylindrically symmetric structures excited by a beam in the form of a ring are considered. (LEW)

  7. ACCELERATION RESPONSIVE SWITCH

    DOEpatents

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  8. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  9. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  10. There's no place like home.

    PubMed

    Hudson, T

    1996-02-01

    When the school system in tiny Colby, Kans., signed onto a health plan that excluded the only hospital in the entire county, its citizens learned an important lesson. ¿If we're not working together,¿ says the hospital's administrator, ¿health plans and medical centers are going to come in here and take business away from us.¿ Here's what they learned about keeping rural health care rural.

  11. There's no place like home.

    PubMed

    Hudson, T

    1996-02-01

    When the school system in tiny Colby, Kans., signed onto a health plan that excluded the only hospital in the entire county, its citizens learned an important lesson. ¿If we're not working together,¿ says the hospital's administrator, ¿health plans and medical centers are going to come in here and take business away from us.¿ Here's what they learned about keeping rural health care rural. PMID:8616497

  12. Acceleration of polarized protons in circular accelerators

    SciTech Connect

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  13. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  14. Particle acceleration in flares

    NASA Technical Reports Server (NTRS)

    Benz, Arnold O.; Kosugi, Takeo; Aschwanden, Markus J.; Benka, Steve G.; Chupp, Edward L.; Enome, Shinzo; Garcia, Howard; Holman, Gordon D.; Kurt, Victoria G.; Sakao, Taro

    1994-01-01

    Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, gamma-rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.

  15. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases.

  16. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. PMID:24365468

  17. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  18. RHIC Sextant Test - Accelerator Systems and Performance

    NASA Astrophysics Data System (ADS)

    Pilat, F.; Ahrens, L.; Brown, K.; Connolly, R.; dell, G. F.; Fischer, W.; Kewisch, J.; Mackay, W.; Mane, V.; Peggs, S.; Satogata, T.; Tepikian, S.; Thompson, P.; Trbojevic, D.; Tsoupas, N.; Wei, J.

    1997-05-01

    One sextant of the RHIC collider and the full AtR (AGS to RHIC) transfer line have been commissioned in early 1997 with beam. We describe here the design and performance of the accelerator systems during the test, such as the magnet and power supply systems, instrumentation subsystems and application software. After reviewing the main milestones of the commissioning we describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems preformance and their impact on the plannig for RHIC installation and commissioning.

  19. Accelerator/Experiment Operations - FY 2010

    SciTech Connect

    Adamson, M.; Appel, J.A.; Casarsa, M.; Coleman, R.; Denisov, D.; Dixon, R.; Escobar, C.; Ginther, G.; Gruenendahl, S.; Harris, D.; Henderson, S.; /Fermilab

    2010-11-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2010. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2010 Run II at the Tevatron Collider, the MINOS and MINER?A experiments using the Main Injector Neutrino Beam (NuMI), the MiniBooNE experiment running in the Booster Neutrino Beam (BNB), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120). Each section was prepared by the relevant authors, and was somewhat edited for inclusion in this summary.

  20. Accelerator/Experiment Operations - FY 2008

    SciTech Connect

    Brice, Stephen J.; Buehler, M.; Casarsa, M.; Coleman, R.; Denisov, D.; Ginther, G.; Grinstein, S.; Habig, A.; Holmes, S.; Hylen, J.; Kissel, W.; /Fermilab

    2008-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2008. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2008 Run II at the Tevatron Collider, MINOS using the Main Injector Neutrino Beam (NuMI), the MiniBooNE and SciBooNE experiments running in the Booster Neutrino Beam (BNB), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120).

  1. Accelerator/Experiment Operations - FY 2009

    SciTech Connect

    Andrews, M.N; Appel, J.A.; Brice, S.; Casarsa, M.; Coleman, R.; Denisov, d.; Ginther, G.; Gruenendahl, S.; Holmes, S.; Kissel, W.; Lee, W.M.; /Fermilab

    2009-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2009. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2009 Run II at the Tevatron Collider, MINOS using the Main Injector Neutrino Beam (NuMI), the MiniBooNE experiment running in the Booster Neutrino Beam (BNB), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120). Each section was prepared by the relevant authors, and was somewhat edited for inclusion in this summary.

  2. Accelerator/Experiment Operations - FY 2007

    SciTech Connect

    Brice, S.; Buchanan, N.; Coleman, R.; Convery, M.; Denisov, D.; Ginther, G.; Habig, A.; Holmes, S.; Kissel, W.; Lee, W.; Nakaya, T.; /Fermilab

    2007-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2007. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2007 Run II at the Tevatron Collider, the MiniBooNE and SciBooNE experiments running in the Booster Neutrino Beam (BNB), MINOS using the Main Injector Neutrino Beam (NuMI), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120). Each section was prepared by the relevant authors, and was somewhat edited for inclusion in this summary.

  3. Accelerator/Experiment Operations - FY 2011

    SciTech Connect

    Adamson, P.; Bernardi, G.; Casarsa, M.; Coleman, R.; Denisov, D.; Dixon, R.; Ginther, G.; Gruenendahl, S.; Hahn, S.; Harris, D.; Henderson, S.

    2011-11-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2011. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2011 Run II at the Tevatron Collider, the MINOS and MINERvA experiments using the Main Injector Neutrino Beam (NuMI), the MiniBooNE experiment running in the Booster Neutrino Beam (BNB), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120).

  4. Laser-ion acceleration through controlled surface contamination

    SciTech Connect

    Hou Bixue; Nees, John A.; He Zhaohan; Easter, James H.; Thomas, Alexander G. R.; Krushelnick, Karl M.; Petrov, George; Davis, Jack

    2011-04-15

    In laser-plasma ion accelerators, control of target contamination layers can lead to selection of accelerated ion species and enhancement of acceleration. To demonstrate this, deuterons up to 75 keV are accelerated from an intense laser interaction with a glass target simply by placing 1 ml of heavy water inside the experimental chamber prior to pumping to generate a deuterated contamination layer on the target. Using the same technique with a deuterated-polystyrene-coated target also enhances deuteron yield by a factor of 3 to 5, while increasing the maximum energy of the generated deuterons to 140 keV.

  5. Angular velocities, angular accelerations, and coriolis accelerations

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  6. An anthropologist in unexpected places

    PubMed Central

    Knutsen, Johan Henrik

    2014-01-01

    Much contemporary anthropology has turned away from exclusive focus on so-called “primitive” tribes in far-away places. The study of urban people has become more prominent, and some researchers have also turned their gaze towards marginalized minorities in their communities. Philippe Bourgois is an example of this. He is well known for studying crack dealers in East Harlem, New York ( In Search of Respect) and homeless heroin addicts in San Francisco (Righteous Dopefiend). Kula Kula was lucky enough to catch him in his office, and had a chat via skype. PMID:25436019

  7. Place of nutrition in yoga.

    PubMed

    Desai, B P

    1990-01-01

    Nutrition plays a very vital role in our life. Yoga and Ayurveda had laid down the foundations of dietetics. The valuable guidelines regarding various food articles and diet for Yoga Sadhaka, to achieve maximum benefits, are given in traditional yoga texts like Hatha Pradipika and Gheranda Samhitha. Now is the time to evaluate the place of nutrition in Yoga and to study how the dietetic principles in yoga will help to eradicate the national problem of Mal-nutrition and poverty which is the pressing need of the moment. PMID:22557690

  8. Multiway In-Place Merging

    NASA Astrophysics Data System (ADS)

    Geffert, Viliam; Gajdoš, Jozef

    We present an algorithm for asymptotically efficient k-way merging. Given an array A containing sorted subsequences A 1,...,A k of respective lengths n 1,...,n k , where sum_{i=1}kn_i = n, our algorithm merges A 1,...,A k in-place, into a single sorted sequence, performing lceil{lg k}rceil \\cdot n + o(n) element comparisons and 3·n + o(n) element moves. That is, our algorithm runs in linear time, with the number of moves independent of k, the number of input sequences.

  9. PLACE OF NUTRITION IN YOGA

    PubMed Central

    Desai, B.P.

    1990-01-01

    Nutrition plays a very vital role in our life. Yoga and Ayurveda had laid down the foundations of dietetics. The valuable guidelines regarding various food articles and diet for Yoga Sadhaka, to achieve maximum benefits, are given in traditional yoga texts like Hatha Pradipika and Gheranda Samhitha. Now is the time to evaluate the place of nutrition in Yoga and to study how the dietetic principles in yoga will help to eradicate the national problem of Mal-nutrition and poverty which is the pressing need of the moment. PMID:22557690

  10. A Place Pedagogy for "Global Contemporaneity"

    ERIC Educational Resources Information Center

    Somerville, Margaret J.

    2010-01-01

    Around the globe people are confronted daily with intransigent problems of space and place. Educators have historically called for place-based or place-conscious education to introduce pedagogies that will address such questions as how to develop sustainable communities and places. These calls for place-conscious education have included liberal…

  11. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  12. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph

    2010-07-29

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?.

  13. Accelerators (4/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  14. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  15. Accelerators (3/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  16. Accelerators (5/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  17. Accelerators (5/5)

    SciTech Connect

    2009-07-09

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  18. Accelerators (4/5)

    SciTech Connect

    2009-07-08

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  19. Accelerators (3/5)

    SciTech Connect

    2009-07-07

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  20. Ion Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Barnard, John J.; Horioka, Kazuhiko

    The description of beams in RF and induction accelerators share many common features. Likewise, there is considerable commonality between electron induction accelerators (see Chap. 7) and ion induction accelerators. However, in contrast to electron induction accelerators, there are fewer ion induction accelerators that have been operated as application-driven user facilities. Ion induction accelerators are envisioned for applications (see Chap. 10) such as Heavy Ion Fusion (HIF), High Energy Density Physics (HEDP), and spallation neutron sources. Most ion induction accelerators constructed to date have been limited scale facilities built for feasibility studies for HIF and HEDP where a large numbers of ions are required on target in short pulses. Because ions are typically non-relativistic or weakly relativistic in much of the machine, space-charge effects can be of crucial importance. This contrasts the situation with electron machines, which are usually strongly relativistic leading to weaker transverse space-charge effects and simplified longitudinal dynamics. Similarly, the bunch structure of ion induction accelerators relative to RF machines results in significant differences in the longitudinal physics.

  1. Particle Acceleration in Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi

    2005-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma ray burst (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments.

  2. Microscale acceleration history discriminators

    DOEpatents

    Polosky, Marc A.; Plummer, David W.

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  3. Diagnostics for induction accelerators

    SciTech Connect

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960`s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore`s Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail.

  4. KEK digital accelerator

    NASA Astrophysics Data System (ADS)

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  5. Controllable Laser Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Takano, M.; Barada, D.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Wang, W. M.; Limpouch, J.; Andreev, A.; Bulanov, S. V.; Sheng, Z. M.; Klimo, O.; Psikal, J.; Ma, Y. Y.; Li, X. F.; Yu, Q. S.

    2016-02-01

    In this paper a future laser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. Especially a collimation device is focused in this paper. The future laser ion accelerator should have an ion source, ion collimators, ion beam bunchers, and ion post acceleration devices [Laser Therapy 22, 103(2013)]: the ion particle energy and the ion energy spectrum are controlled to meet requirements for a future compact laser ion accelerator for ion cancer therapy or for other purposes. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching would be successfully realized by a multistage laser-target interaction.

  6. Cascaded radiation pressure acceleration

    SciTech Connect

    Pei, Zhikun; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Zhang, Lingang; Yi, Longqing; Shi, Yin; Xu, Zhizhan

    2015-07-15

    A cascaded radiation-pressure acceleration scheme is proposed. When an energetic proton beam is injected into an electrostatic field moving at light speed in a foil accelerated by light pressure, protons can be re-accelerated to much higher energy. An initial 3-GeV proton beam can be re-accelerated to 7 GeV while its energy spread is narrowed significantly, indicating a 4-GeV energy gain for one acceleration stage, as shown in one-dimensional simulations and analytical results. The validity of the method is further confirmed by two-dimensional simulations. This scheme provides a way to scale proton energy at the GeV level linearly with laser energy and is promising to obtain proton bunches at tens of gigaelectron-volts.

  7. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  8. Hot Spot Cosmic Accelerators

    NASA Astrophysics Data System (ADS)

    2002-11-01

    The Universe is a violent place - as astronomers use increasingly sensitive means and methods to study the diverse processes out there, they become aware of the extraordinary forces acting in the space that surrounds us. With larger telescopes and ever-more sophisticated instruments, new information is gained about remote celestial objects and their behaviour. Among the most intriguing ones are the radio galaxies which emit prodiguous amounts of energy, in the form of fast-moving particles and intense electromagnetic radiation. One of these is known as 3C 445 ; it is located near the celestial equator within the zodiacal constellation Aquarius (The Waterman), at a distance of about 1 billion light-years. It most probably harbours a black hole at its centre, more massive than the one at the centre of our own galaxy, the Milky Way ( ESO PR 19/02 ). This galaxy was first observed from Cambridge (United Kingdom) in the 1950's and was listed as radio source no. 445 in the Third Cambridge Catalogue (1959), hence the name. Later observations revealed a strong outflow from this galaxy's active centre, visible on radio maps as two opposite plasma jets with strong synchrotron radiation ( [2]) originating from rapidly moving electrons in the associated magnetic field (image "a" in PR Photo 26/02 ). Now, a trio of European astronomers [1] have used two advanced instruments, ISAAC and FORS1 on the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory (Chile) to obtain near-infrared images of these jets (images "b" and "c" in PR Photo 26/02 ). As can be clearly seen on the radio picture of 3C 445 obtained with the NRAO Very Large Array (VLA) radio facility ("a"), the plasma jets of fast particles emanating from the galaxy ram into the surrounding intergalactic medium (mostly primordial hydrogen), thereby producing two "shocks" , both at a distance of approximately 1.5 million light-years from the central galaxy and with particularly strong synchrotron emission. With a total

  9. Taking Care of Your Vision

    MedlinePlus

    ... a Friend Who Cuts? Taking Care of Your Vision KidsHealth > For Teens > Taking Care of Your Vision ... are important parts of keeping your peepers perfect. Vision Basics One of the best things you can ...

  10. Large electrostatic accelerators

    SciTech Connect

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  11. Analyzing radial acceleration with a smartphone acceleration sensor

    NASA Astrophysics Data System (ADS)

    Vogt, Patrik; Kuhn, Jochen

    2013-03-01

    This paper continues the sequence of experiments using the acceleration sensor of smartphones (for description of the function and the use of the acceleration sensor, see Ref. 1) within this column, in this case for analyzing the radial acceleration.

  12. Ion Acceleration at the Quasi-parallel Bow Shock: Decoding the Signature of Injection

    NASA Astrophysics Data System (ADS)

    Sundberg, Torbjörn; Haynes, Christopher T.; Burgess, D.; Mazelle, Christian X.

    2016-03-01

    Collisionless shocks are efficient particle accelerators. At Earth, ions with energies exceeding 100 keV are seen upstream of the bow shock when the magnetic geometry is quasi-parallel, and large-scale supernova remnant shocks can accelerate ions into cosmic-ray energies. This energization is attributed to diffusive shock acceleration however, for this process to become active, the ions must first be sufficiently energized. How and where this initial acceleration takes place has been one of the key unresolved issues in shock acceleration theory. Using Cluster spacecraft observations, we study the signatures of ion reflection events in the turbulent transition layer upstream of the terrestrial bow shock, and with the support of a hybrid simulation of the shock, we show that these reflection signatures are characteristic of the first step in the ion injection process. These reflection events develop in particular in the region where the trailing edge of large-amplitude upstream waves intercept the local shock ramp and the upstream magnetic field changes from quasi-perpendicular to quasi-parallel. The dispersed ion velocity signature observed can be attributed to a rapid succession of ion reflections at this wave boundary. After the ions’ initial interaction with the shock, they flow upstream along the quasi-parallel magnetic field. Each subsequent wavefront in the upstream region will sweep the ions back toward the shock, where they gain energy with each transition between the upstream and the shock wave frames. Within three to five gyroperiods, some ions have gained enough parallel velocity to escape upstream, thus completing the injection process.

  13. Accelerator/Experiment operations - FY 2006

    SciTech Connect

    Brice, S.; Conrad, J.; Denisov, D.; Ginther, G.; Holmes, S.; James, C.; Lee, W.; Louis, W.; Moore, C.; Plunkett, R.; Raja, R.; /Fermilab

    2006-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and experiment operations for FY 2006. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2006 Run II at the Tevatron Collider, the MiniBooNE experiments running in the Booster Neutrino Beam in neutrino and antineutrino modes, MINOS using the Main Injector Neutrino Beam (NuMI), and SY 120 activities.

  14. Confronting Twin Paradox Acceleration

    NASA Astrophysics Data System (ADS)

    Murphy, Thomas W.

    2016-05-01

    The resolution to the classic twin paradox in special relativity rests on the asymmetry of acceleration. Yet most students are not exposed to a satisfactory analysis of what exactly happens during the acceleration phase that results in the nonaccelerated observer's more rapid aging. The simple treatment presented here offers both graphical and quantitative solutions to the problem, leading to the correct result that the acceleration-induced age gap is 2Lβ years when the one-way distance L is expressed in light-years and velocity β ≡v/c .

  15. Twisted waveguide accelerating structure.

    SciTech Connect

    Kang, Y. W.

    2000-08-15

    A hollow waveguide with a uniform cross section may be used for accelerating charged particles if the phase velocity of an accelerating mode is equal to or less than the free space speed of light. Regular straight hollow waveguides have phase velocities of propagating electromagnetic waves greater than the free-space speed of light. if the waveguide is twisted, the phase velocities of the waveguide modes become slower. The twisted waveguide structure has been modeled and computer simulated in 3-D electromagnetic solvers to show the slow-wave properties for the accelerating mode.

  16. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  17. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  18. High temperature experiment for accelerator inertial fusion

    SciTech Connect

    Lee, E.P.

    1985-05-01

    The High Temperature Experiment (HTE) is intended to produce temperatures of 50 to 100 eV in solid density targets driven by heavy ion beams from a multiple beam induction linac. The fundamental variables (particle species, energy, number of beamlets, current and pulse length) must be fixed to achieve the temperature at minimum cost, subject to criteria of technical feasibility and relevance to the development of a Fusion Driver. The conceptual design begins with an assumed (radiation-limited) target temperature and uses limitations due to particle range, beamlet perveance, and target disassembly to bound the allowable values of mass number (A) and energy (E). An accelerator model is then applied to determine the minimum length accelerator, which is a guide to total cost. The accelerator model takes into account limits on transportable charge, maximum gradient, core mass per linear meter, and head-to-tail momentum variation within a pulse.

  19. Proton acceleration in neutron star magnetospheres

    NASA Technical Reports Server (NTRS)

    Smith, I. A.; Katz, J. I.; Diamond, P. H.

    1992-01-01

    To explain the emission of TeV and PeV gamma rays from accreting X-ray binary sources, protons must be accelerated to several times the gamma-ray energy. It is shown here that at certain times, the plasma in the accretion column of the neutron star may form a deep enough pool that the top portion becomes unstable to convective motions in spite of the strong magnetic field. The resulting turbulence produces fluctuations in the strength of the magnetic field that travel up the accretion column, taking energy out to the region of the energetic protons. The protons resonantly absorb this energy and are accelerated to high energies. Including the synchrotron radiation losses of the protons, it is shown that they can be accelerated to energies that are high enough to explain the gamma-ray observations.

  20. Hippocampal place cell assemblies are speed-controlled oscillators.

    PubMed

    Geisler, Caroline; Robbe, David; Zugaro, Michaël; Sirota, Anton; Buzsáki, György

    2007-05-01

    The phase of spikes of hippocampal pyramidal cells relative to the local field theta oscillation shifts forward ("phase precession") over a full theta cycle as the animal crosses the cell's receptive field ("place field"). The linear relationship between the phase of the spikes and the travel distance within the place field is independent of the animal's running speed. This invariance of the phase-distance relationship is likely to be important for coordinated activity of hippocampal cells and space coding, yet the mechanism responsible for it is not known. Here we show that at faster running speeds place cells are active for fewer theta cycles but oscillate at a higher frequency and emit more spikes per cycle. As a result, the phase shift of spikes from cycle to cycle (i.e., temporal precession slope) is faster, yet spatial-phase precession stays unchanged. Interneurons can also show transient-phase precession and contribute to the formation of coherently precessing assemblies. We hypothesize that the speed-correlated acceleration of place cell assembly oscillation is responsible for the phase-distance invariance of hippocampal place cells.

  1. Acceleration and Transport Modeling of Solar Energetic Particle Charge States for the Event of 1998 September 9

    NASA Astrophysics Data System (ADS)

    Dröge, W.; Kartavykh, Y. Y.; Klecker, B.; Mason, G. M.

    2006-07-01

    The 1998 September 9 solar particle event was a 3He-rich solar particle event that showed a strong increase of Fe ionization states in the energy range below 1 MeV nucleon-1. We have investigated this event by fitting Wind and ACE observations using a model of acceleration and stripping near the Sun, followed by particle transport in the interplanetary medium taking into account particle focusing, pitch-angle scattering, adiabatic deceleration, and convection. The simulation provides a reconstruction of the injection function of the energetic particles released from the Sun and their time, energy, and charge dependence. We find that electrons and Fe ions are injected almost impulsively, whereas the injection of protons takes place on a much longer timescale or even consists of two distinct injection processes. We are able to obtain good overall fits to the observations. This suggests that our model can be used to obtain information about the conditions in the acceleration region such as density, temperature, and the timescales of the acceleration process, if sufficiently accurate modeling of the particle transport in the solar wind is possible.

  2. On-site installation and shielding of a mobile electron accelerator for radiation processing

    NASA Astrophysics Data System (ADS)

    Catana, Dumitru; Panaitescu, Julian; Axinescu, Silviu; Manolache, Dumitru; Matei, Constantin; Corcodel, Calin; Ulmeanu, Magdalena; Bestea, Virgil

    1995-05-01

    The development of radiation processing of some bulk products, e.g. grains or potatoes, would be sustained if the irradiation had been carried out at the place of storage, i.e. silo. A promising solution is proposed consisting of a mobile electron accelerator, installed on a couple of trucks and traveling from one customer to another. The energy of the accelerated electrons was chosen at 5 MeV, with 10 to 50 kW beam power. The irradiation is possible either with electrons or with bremsstrahlung. A major problem of the above solution is the provision of adequate shielding at the customer, with a minimum investment cost. Plans for a bunker are presented, which houses the truck carrying the radiation head. The beam is vertical downwards, through the truck floor, through a transport pipe and a scanning horn. The irradiation takes place in a pit, where the products are transported through a belt. The belt path is so chosen as to minimize openings in the shielding. Shielding calculations are presented supposing a working regime with 5 MeV bremsstrahlung. Leakage and scattered radiation are taken into account.

  3. Accelerated Adaptive MGS Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Lam, Raymond K.; Ohara, Catherine M.; Green, Joseph J.; Bikkannavar, Siddarayappa A.; Basinger, Scott A.; Redding, David C.; Shi, Fang

    2011-01-01

    The Modified Gerchberg-Saxton (MGS) algorithm is an image-based wavefront-sensing method that can turn any science instrument focal plane into a wavefront sensor. MGS characterizes optical systems by estimating the wavefront errors in the exit pupil using only intensity images of a star or other point source of light. This innovative implementation of MGS significantly accelerates the MGS phase retrieval algorithm by using stream-processing hardware on conventional graphics cards. Stream processing is a relatively new, yet powerful, paradigm to allow parallel processing of certain applications that apply single instructions to multiple data (SIMD). These stream processors are designed specifically to support large-scale parallel computing on a single graphics chip. Computationally intensive algorithms, such as the Fast Fourier Transform (FFT), are particularly well suited for this computing environment. This high-speed version of MGS exploits commercially available hardware to accomplish the same objective in a fraction of the original time. The exploit involves performing matrix calculations in nVidia graphic cards. The graphical processor unit (GPU) is hardware that is specialized for computationally intensive, highly parallel computation. From the software perspective, a parallel programming model is used, called CUDA, to transparently scale multicore parallelism in hardware. This technology gives computationally intensive applications access to the processing power of the nVidia GPUs through a C/C++ programming interface. The AAMGS (Accelerated Adaptive MGS) software takes advantage of these advanced technologies, to accelerate the optical phase error characterization. With a single PC that contains four nVidia GTX-280 graphic cards, the new implementation can process four images simultaneously to produce a JWST (James Webb Space Telescope) wavefront measurement 60 times faster than the previous code.

  4. Particle Acceleration and Magnetic Dissipation in Relativistic Current Sheet of Pair Plasmas

    NASA Astrophysics Data System (ADS)

    Zenitani, S.; Hoshino, M.

    2007-11-01

    We study linear and nonlinear development of relativistic and ultrarelativistic current sheets of pair (e+/-) plasmas with antiparallel magnetic fields. Two types of two-dimensional problems are investigated by particle-in-cell simulations. First, we present the development of relativistic magnetic reconnection, whose outflow speed is on the order of the light speed c. It is demonstrated that particles are strongly accelerated in and around the reconnection region and that most of the magnetic energy is converted into a ``nonthermal'' part of plasma kinetic energy. Second, we present another two-dimensional problem of a current sheet in a cross field plane. In this case, the relativistic drift kink instability (RDKI) occurs. Particle acceleration also takes place, but the RDKI quickly dissipates the magnetic energy into plasma heat. We discuss the mechanism of particle acceleration and the theory of the RDKI in detail. It is important that properties of these two processes are similar in the relativistic regime of T>~mc2, as long as we consider the kinetics. Comparison of the two processes indicates that magnetic dissipation by the RDKI is a more favorable process in the relativistic current sheet. Therefore, the striped pulsar wind scenario should be reconsidered by the RDKI.

  5. Are CME 'interactions' Really Important for Accelerating Major Solar Energetic Particle Events?

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Lawrence, G. R.; Haggerty, D. K.; Kucera, T.; Szabo, A.

    2002-01-01

    Recent studies have proposed that the presence or absence of an interaction with a preceding coronal mass ejection (CME) or other coronal structure within approximately 50R(sub s), of the Sun discriminates large, fast CMEs associated with major solar energetic particle (SEP) events from those that are not. We conclude that there is no compelling evidence that, if such interactions take place, they play an important role in SEP acceleration. Reasons include: The reported statistical results are consistent with a chance association between interacting CMEs and SEP events; Energetic SEPs are detected at Earth typically before or around the time when the primary CME enters the LASCO C2 field of view - interactions higher in the corona cannot play a role in acceleration of these particles; For approximately 60% of major SEP events in 1997-2001, the preceding CME fades into the background corona or is relatively narrow (less than 40 deg), suggesting any interaction will be weak; Radio signatures attributed to CME interaction occur after SEP acceleration has commenced.

  6. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    PubMed

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks.

  7. Results of Measurements of Accelerations of Technological Devices onboard the FotonSpacecraft

    NASA Astrophysics Data System (ADS)

    Barmin, I. V.; Volkov, M. V.; Egorov, A. V.; Reut, E. F.; Senchenkov, A. S.

    2001-07-01

    This paper generalizes the results of measuring the residual accelerations arising when investigations in space materials science are carried out onboard the unmanned Fotonspacecraft. The levels of vibroaccelerations are analyzed in the frequency band of 1 500 Hz for the technological devices UZ01, UZ04, and POLIZON, developed by the Federal Unitary State Enterprise “Barmin Design Bureau of General Machine Building” (V.P. Barmin KBOM). The levels of accelerations are estimated in the frequency band of 0 1 Hz in the zone of technological operations of these facilities. The basic sources of vibroaccelerations acting upon the frames of devices are determined in the capsule zone, where technological processes of producing new materials take place. In the frequency band of 1 500 Hz the vibroaccelerations are shown to be generated by the operation of Fotonspacecraft units and a drive of capsule translation during the technological process. On the capsule frame they reach the values of (1 3) × 10 3 g. The level of linear accelerations in the infralow-frequency band is determined by rotational motions of the Fotonspacecraft. It depends on the device location with respect to the spacecraft center of mass and does not exceed (1 7) × 10 6 gin the steady-state regime in the zone of technological activity.

  8. Accelerator on a Chip

    ScienceCinema

    England, Joel

    2016-07-12

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  9. Charged particle accelerator grating

    DOEpatents

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  10. Non-accelerator experiments

    SciTech Connect

    Goldhaber, M.

    1986-01-01

    This report discusses several topics which can be investigated without the use of accelerators. Topics covered are: (1) proton decay, (2) atmospheric neutrinos, (3) neutrino detection, (4) muons from Cygnus X-3, and (5) the double-beta decay.

  11. Dielectric assist accelerating structure

    NASA Astrophysics Data System (ADS)

    Satoh, D.; Yoshida, M.; Hayashizaki, N.

    2016-01-01

    A higher-order TM02 n mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

  12. CLASHING BEAM PARTICLE ACCELERATOR

    DOEpatents

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  13. Rare Isotope Accelerators

    NASA Astrophysics Data System (ADS)

    Savard, Guy

    2002-04-01

    The next frontier for low-energy nuclear physics involves experimentation with accelerated beams of short-lived radioactive isotopes. A new facility, the Rare Isotope Accelerator (RIA), is proposed to produce large amount of these rare isotopes and post-accelerate them to energies relevant for studies in nuclear physics, astrophysics and the study of fundamental interactions at low energy. The basic science motivation for this facility will be introduced. The general facility layout, from the 400 kW heavy-ion superconducting linac used for production of the required isotopes to the novel production and extraction schemes and the highly efficient post-accelerator, will be presented. Special emphasis will be put on a number of technical breakthroughs and recent R&D results that enable this new facility.

  14. Accelerator on a Chip

    SciTech Connect

    England, Joel

    2014-06-30

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  15. HEAVY ION LINEAR ACCELERATOR

    DOEpatents

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  16. Wake field acceleration experiments

    SciTech Connect

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics. I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs.

  17. Vibration control in accelerators

    SciTech Connect

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  18. In-place coating method

    SciTech Connect

    Not Available

    1986-07-01

    Fuel pipelines at military aviation facilities are critical to mission accomplishment. Clean aviation fuel, free from contamination, is a must for flight safety. Internal corrosion and pipeline leaks cannot be tolerated. Repairs to, and replacement of, pipelines that are often buried under thick, reinforced concrete, can be difficult, expensive, and time consuming. Excavations to uncover such lines can totally disrupt flight operations. An in-place pipeline internal rehabilitation service has been utilized recently to clean and internally coat three major military jet fuel pipelines serving military airfields in New Hampshire, North Carolina, and Florida. The rehabilitation projects were accomplished by UCISCO (Union Carbide Industrial Services Co.) with little or no disruptive excavation. The total process involves, first, thorough internal cleaning of the pipe using the SANDJET pipeline cleaning service to completely remove deposits and corrosion down to bare white metal and leave a clean blasted surface in a dry, inert nitrogen atmosphere - conditions ideal for application of a polyamide epoxy coating material. The epoxy coating provides a smooth, continuous inner surface that is free of holidays and helps improve the flow efficiency of the line as well as protecting products from possible corrosion contamination.

  19. The astrophysics of crowded places.

    PubMed

    Davies, Melvyn

    2002-12-15

    Today the Sun is in a relatively uncrowded place. The distance between it and the nearest other star is relatively large (about 200,000 times the Earth-Sun distance!). This is beneficial to life on Earth; a close encounter with another star is extremely unlikely. Such encounters would either remove the Earth from its orbit around the Sun or leave it on an eccentric orbit similar to a comet's. But the Sun was not formed in isolation. It was born within a more-crowded cluster of perhaps a few hundred stars. As the surrounding gas evaporated away, the cluster itself evaporated too, dispersing its stars into the Galaxy. Virtually all stars in the Galaxy share this history, and here I will describe the role of 'clusterness' in a star's life. Stars are often formed in larger stellar clusters (known as open and globular clusters), some of which are still around today. I will focus on stars in globular clusters and describe how the interactions between stars in these clusters may explain the zoo of stellar exotica which have recently been observed with instruments such as the Hubble Space Telescope and the X-ray telescopes XMM-Newton and Chandra. In recent years, myriad planets orbiting stars other than the Sun--the so-called 'extrasolar' planets--have been discovered. I will describe how a crowded environment will affect such planetary systems and may in fact explain some of their mysterious properties.

  20. The astrophysics of crowded places.

    PubMed

    Davies, Melvyn

    2002-12-15

    Today the Sun is in a relatively uncrowded place. The distance between it and the nearest other star is relatively large (about 200,000 times the Earth-Sun distance!). This is beneficial to life on Earth; a close encounter with another star is extremely unlikely. Such encounters would either remove the Earth from its orbit around the Sun or leave it on an eccentric orbit similar to a comet's. But the Sun was not formed in isolation. It was born within a more-crowded cluster of perhaps a few hundred stars. As the surrounding gas evaporated away, the cluster itself evaporated too, dispersing its stars into the Galaxy. Virtually all stars in the Galaxy share this history, and here I will describe the role of 'clusterness' in a star's life. Stars are often formed in larger stellar clusters (known as open and globular clusters), some of which are still around today. I will focus on stars in globular clusters and describe how the interactions between stars in these clusters may explain the zoo of stellar exotica which have recently been observed with instruments such as the Hubble Space Telescope and the X-ray telescopes XMM-Newton and Chandra. In recent years, myriad planets orbiting stars other than the Sun--the so-called 'extrasolar' planets--have been discovered. I will describe how a crowded environment will affect such planetary systems and may in fact explain some of their mysterious properties. PMID:12626265

  1. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema

    None

    2016-07-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  2. Collective field accelerator

    DOEpatents

    Luce, John S.

    1978-01-01

    A collective field accelerator which operates with a vacuum diode and utilizes a grooved cathode and a dielectric anode that operates with a relativistic electron beam with a .nu./.gamma. of .about. 1, and a plurality of dielectric lenses having an axial magnetic field thereabout to focus the collectively accelerated electrons and ions which are ejected from the anode. The anode and lenses operate as unoptimized r-f cavities which modulate and focus the beam.

  3. Rolamite acceleration sensor

    DOEpatents

    Abbin, Joseph P.; Briner, Clifton F.; Martin, Samuel B.

    1993-01-01

    A rolamite acceleration sensor which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently.

  4. Microgravity Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Microgravity Acceleration Measurement System (MAMS) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  5. Rolamite acceleration sensor

    DOEpatents

    Abbin, J.P.; Briner, C.F.; Martin, S.B.

    1993-12-21

    A rolamite acceleration sensor is described which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently. 6 figures.

  6. Microwave inverse Cerenkov accelerator

    NASA Astrophysics Data System (ADS)

    Zhang, T. B.; Marshall, T. C.; LaPointe, M. A.; Hirshfield, J. L.

    1997-03-01

    A Microwave Inverse Cerenkov Accelerator (MICA) is currently under construction at the Yale Beam Physics Laboratory. The accelerating structure in MICA consists of an axisymmetric dielectrically lined waveguide. For the injection of 6 MeV microbunches from a 2.856 GHz RF gun, and subsequent acceleration by the TM01 fields, particle simulation studies predict that an acceleration gradient of 6.3 MV/m can be achieved with a traveling-wave power of 15 MW applied to the structure. Synchronous injection into a narrow phase window is shown to allow trapping of all injected particles. The RF fields of the accelerating structure are shown to provide radial focusing, so that longitudinal and transverse emittance growth during acceleration is small, and that no external magnetic fields are required for focusing. For 0.16 nC, 5 psec microbunches, the normalized emittance of the accelerated beam is predicted to be less than 5πmm-mrad. Experiments on sample alumina tubes have been conducted that verify the theoretical dispersion relation for the TM01 mode over a two-to-one range in frequency. No excitation of axisymmetric or non-axisymmetric competing waveguide modes was observed. High power tests showed that tangential electric fields at the inner surface of an uncoated sample of alumina pipe could be sustained up to at least 8.4 MV/m without breakdown. These considerations suggest that a MICA test accelerator can be built to examine these predictions using an available RF power source, 6 MeV RF gun and associated beam line.

  7. Amps particle accelerator definition study

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1975-01-01

    The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.

  8. 75 FR 8652 - Incidental Takes of Marine Mammals During Specified Activities; Marine Geophysical Survey in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ....S. The survey will take place in the Exclusive Economic Zone (EEZ) of the U.S. in water depths... transect lines within the CNMI (see Figure 1 of L-DEO's application). The survey will take place in water... varies with water depth. The pulse interval is 1 s, but a common mode of operation is to broadcast...

  9. Laser Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Malka, Victor

    The continuing development of powerful laser systems has permitted to extend the interaction of laser beams with matter far into the relativistic domain, and to demonstrate new approaches for producing energetic particle beams. The extremely large electric fields, with amplitudes exceeding the TV/m level, that are produced in plasma medium are of relevance particle acceleration. Since the value of this longitudinal electric field, 10,000 times larger than those produced in conventional radio-frequency cavities, plasma accelerators appear to be very promising for the development of compact accelerators. The incredible progresses in the understanding of laser plasma interaction physic, allows an excellent control of electron injection and acceleration. Thanks to these recent achievements, laser plasma accelerators deliver today high quality beams of energetic radiation and particles. These beams have a number of interesting properties such as shortness, brightness and spatial quality, and could lend themselves to applications in many fields, including medicine, radio-biology, chemistry, physics and material science,security (material inspection), and of course in accelerator science.

  10. Biomedical accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  11. Accelerators for America's Future

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  12. Place-Identity in a School Setting: Effects of the Place Image

    ERIC Educational Resources Information Center

    Marcouyeux, Aurore; Fleury-Bahi, Ghozlane

    2011-01-01

    Studies on place identity show positive relationships between the evaluation of a place and mechanisms involved in place identification. However, individuals also identify with places of low social prestige (places that bear a negative social image). Few authors investigate the nature of place identity processes in this case. The goal of this…

  13. Development and Use of Mark Sense Record Cards for Recording Medical Data on Pilots Subjected to Acceleration Stress

    NASA Technical Reports Server (NTRS)

    Smedal, Harald A.; Havill, C. Dewey

    1962-01-01

    A TIME-HONORED system of recording medical histories and the data obtained on physical and laboratory examination has been that of writing the information on record sheets that go into a folder for each patient. In order to have information which would be more readily retrieved, 'a program was initiated in 1952 by the U. S. Naval School of Aviation Medicine in connection with their "Care of the Flyer" study to place this information on machine record cards. In 1958, a machine record card method was developed for recording medical data in connection with the astronaut selection program. Machine record cards were also developed by the Aero Medical Laboratory, Wright-Patterson AFB, Ohio, and the Aviation Medical Acceleration Laboratory, Naval Air Development Center, Johnsville, Pennsylvania, for use in connection with a variety of tests including acceleration stress.1 Therefore, a variety of systems resulted in which data of a medical nature could easily be recalled. During the NASA, Ames Research Center centrifuge studies/'S the pilot subjects were interviewed after each centrifuge run, or series of runs, and subjective information was recorded in a log book by the usual history taking methods referred to above. After the methods Were reviewed, it' was recognized that a card system would be very useful in recording data from our pilots after they had been exposed to acceleration stress. Since the acceleration stress cards already developed did not meet our requirements, it was decided a different card was needed.

  14. Oh, the Places They Went: SBOs Share Their Career Paths

    ERIC Educational Resources Information Center

    George, Patricia

    2013-01-01

    "Oh the Places You'll Go!" That Dr. Seuss book is a standard gift for graduates as they are sent out into the world-whether it's off to college or into the world of work. "You can steer yourself any direction you choose." What direction did school business officials take to get where they are today? The most recent…

  15. Diffusive Shock Acceleration and Reconnection Acceleration Processes

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.; Cummings, A.; Stone, E.; Decker, R.

    2015-12-01

    Shock waves, as shown by simulations and observations, can generate high levels of downstream vortical turbulence, including magnetic islands. We consider a combination of diffusive shock acceleration (DSA) and downstream magnetic-island-reconnection-related processes as an energization mechanism for charged particles. Observations of electron and ion distributions downstream of interplanetary shocks and the heliospheric termination shock (HTS) are frequently inconsistent with the predictions of classical DSA. We utilize a recently developed transport theory for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets. Particle energization associated with the anti-reconnection electric field, a consequence of magnetic island merging, and magnetic island contraction, are considered. For the former only, we find that (i) the spectrum is a hard power law in particle speed, and (ii) the downstream solution is constant. For downstream plasmoid contraction only, (i) the accelerated spectrum is a hard power law in particle speed; (ii) the particle intensity for a given energy peaks downstream of the shock, and the distance to the peak location increases with increasing particle energy, and (iii) the particle intensity amplification for a particular particle energy, f(x,c/{c}0)/f(0,c/{c}0), is not 1, as predicted by DSA, but increases with increasing particle energy. The general solution combines both the reconnection-induced electric field and plasmoid contraction. The observed energetic particle intensity profile observed by Voyager 2 downstream of the HTS appears to support a particle acceleration mechanism that combines both DSA and magnetic-island-reconnection-related processes.

  16. The evolution of high energy accelerators

    SciTech Connect

    Courant, E.D.

    1994-08-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet.

  17. Polling places, pharmacies, and public health: Vote & Vax 2012.

    PubMed

    Shenson, Douglas; Moore, Ryan T; Benson, William; Anderson, Lynda A

    2015-06-01

    US national elections, which draw sizable numbers of older voters, take place during flu-shot season and represent an untapped opportunity for large-scale delivery of vaccinations. In 2012, Vote & Vax deployed a total of 1585 clinics in 48 states; Washington, DC; Guam; Puerto Rico; and the US Virgin Islands. Approximately 934 clinics were located in pharmacies, and 651 were near polling places. Polling place clinics delivered significantly more vaccines than did pharmacies (5710 vs 3669). The delivery of vaccines was estimated at 9379, and approximately 45% of the recipients identified their race/ethnicity as African American or Hispanic. More than half of the White Vote & Vax recipients and more than two thirds of the non-White recipients were not regular flu shot recipients. PMID:25879150

  18. Polling places, pharmacies, and public health: Vote & Vax 2012.

    PubMed

    Shenson, Douglas; Moore, Ryan T; Benson, William; Anderson, Lynda A

    2015-06-01

    US national elections, which draw sizable numbers of older voters, take place during flu-shot season and represent an untapped opportunity for large-scale delivery of vaccinations. In 2012, Vote & Vax deployed a total of 1585 clinics in 48 states; Washington, DC; Guam; Puerto Rico; and the US Virgin Islands. Approximately 934 clinics were located in pharmacies, and 651 were near polling places. Polling place clinics delivered significantly more vaccines than did pharmacies (5710 vs 3669). The delivery of vaccines was estimated at 9379, and approximately 45% of the recipients identified their race/ethnicity as African American or Hispanic. More than half of the White Vote & Vax recipients and more than two thirds of the non-White recipients were not regular flu shot recipients.

  19. Polling Places, Pharmacies, and Public Health: Vote & Vax 2012

    PubMed Central

    Shenson, Douglas; Moore, Ryan T.; Benson, William; Anderson, Lynda A.

    2015-01-01

    US national elections, which draw sizable numbers of older voters, take place during flu-shot season and represent an untapped opportunity for large-scale delivery of vaccinations. In 2012, Vote & Vax deployed a total of 1585 clinics in 48 states; Washington, DC; Guam; Puerto Rico; and the US Virgin Islands. Approximately 934 clinics were located in pharmacies, and 651 were near polling places. Polling place clinics delivered significantly more vaccines than did pharmacies (5710 vs 3669). The delivery of vaccines was estimated at 9379, and approximately 45% of the recipients identified their race/ethnicity as African American or Hispanic. More than half of the White Vote & Vax recipients and more than two thirds of the non-White recipients were not regular flu shot recipients. PMID:25879150

  20. Effects of cosmic acceleration on black hole thermodynamics

    NASA Astrophysics Data System (ADS)

    Mandal, Abhijit; Biswas, Ritabrata

    2015-05-01

    Direct local impacts of cosmic acceleration upon a black hole are matters of interest. Babichev et al. had published before that the Friedmann equations which are prevailing the part of fluid filled up in the universe to lead (or to be very specific, `dominate') the other constituents of universe and are forcing the universe to undergo present-day accelerating phase (or to lead to violate the strong energy condition and latter the week energy condition), will themselves tell that the rate of change of mass of the central black hole due to such exotic fluid's accretion will essentially shrink the mass of the black hole. But this is a global impact indeed. The local changes in the space time geometry next to the black hole can be analysed from a modified metric governing the surrounding space time of a black hole. A charged de Sitter black hole solution encircled by quintessence field is chosen for this purpose. Different thermodynamic quantities are analysed for different values of quintessence equation of state parameter, ω q . Specific jumps in the nature of the thermodynamic space near to the quintessence or phantom barrier are noted and physically interpreted as far as possible. Nature of phase transitions and the situations at which these transitions are taking place are also explored. It is determined that before quintessence starts to work () it was preferable to have a small unstable black hole followed by a large stable one. But in quintessence (), black holes are destined to be unstable large ones pre-quelled by stable/unstable small/intermediate mass black holes.

  1. Effects of cosmic acceleration on black hole thermodynamics

    NASA Astrophysics Data System (ADS)

    Mandal, Abhijit

    2016-07-01

    Direct local impacts of cosmic acceleration upon a black hole are matters of interest. Babichev et. al. had published before that the Friedmann equations which are prevailing the part of fluid filled up in the universe to lead (or to be very specific, `dominate') the other constituents of universe and are forcing the universe to undergo present-day accelerating phase (or to lead to violate the strong energy condition and latter the week energy condition), will themselves tell that the rate of change of mass of the central black hole due to such exotic fluid's accretion will essentially shrink the mass of the black hole. But this is a global impact indeed. The local changes in the space time geometry next to the black hole can be analysed from a modified metric governing the surrounding space time of a black hole. A charged deSitter black hole solution encircled by quintessence field is chosen for this purpose. Different thermodynamic parameters are analysed for different values of quintessence equation of state parameter, ω_q. Specific jumps in the nature of the thermodynamic space near to the quintessence or phantom barrier are noted and physically interpreted as far as possible. Nature of phase transitions and the situations at which these transitions are taking place are also explored. It is determined that before quintessence starts to work (ω_q=-0.33>-1/3) it was preferable to have a small unstable black hole followed by a large stable one. But in quintessence (-1/3>ω_q>-1), black holes are destined to be unstable large ones pre-quelled by stable/ unstable small/ intermediate mass black holes.

  2. Relativistic Jets: Acceleration, Dissipation and Interactions with Ambient Gas

    NASA Astrophysics Data System (ADS)

    Giannois, Dimitrios

    Collimated, relativistic outflows, known as relativistic jets, originate from supermassive black holes in active galactic nuclei (AGN), solar-mass compact objects in x-ray binaries (XRBs), and gamma ray bursts (GRBs). Such jets are among the most well observed phenomena in astrophysics, in part because of NASA's continued commitment to funding missions that target compact objects and their outflows. Jets are thought to come from rotating objects (neutron stars, black holes, or accretion disks) that are threaded with strong magnetic fields. Despite recent progress in the field, we still lack a self-consistent model that connects the invisible processes -- jet launching, acceleration and energy dissipation -- to their observational manifestations: emission and interaction with the ambient medium. Our work over the past several years demonstrated that magnetic energy dissipation crucially affects how jets accelerate and radiate. Though still a major challenge, we believe that due to recent developments in theory and numerical simulations, we are now in a unique position, for the first time, to compute jet evolution and determine the locations at which dissipation and radiation takes place from first principles. To achieve this long-sought goal, we propose to carry out relativistic 3D magnetohydrodynamic (MHD) numerical simulations that follow jets from the central compact object out to their interactions with the ambient medium, in a variety of astrophysical contexts ranging from AGN to XRBs to GRBs. Then, using radiative transfer calculations, we will make direct connection to observations. We will complement the numerical work with analytical studies and develop a quantitative description of instabilities in the jet, and their connection to energy dissipation and emission. The MHD and radiative transfer experience of the PI Giannios and Co-I Barniol-Duran, combined with the numerical MHD expertise of the Co-I Tchekhovskoy make achieving the proposed goals realistic

  3. BOOK REVIEW: Electron acceleration in the aurora and beyond

    NASA Astrophysics Data System (ADS)

    McClements, K. G.

    1999-08-01

    Duncan Bryant is a retired space plasma physicist who spent most of his career at the Rutherford-Appleton Laboratory in Oxfordshire, England. For many years he has been challenging a widely accepted theory, that auroral electrons are accelerated by double layers, on the grounds that it contains a fundamental error (allegedly, an implicit assumption that charged particles can gain energy from conservative fields). It is, of course, right that models of particle acceleration in natural plasmas should be scrutinized carefully in terms of their consistency with basic physical principles, and I believe that Dr Bryant has performed a valuable service by highlighting this issue. He maintains that auroral electron acceleration by double layers is fundamentally untenable, and that acceleration takes place instead via resonant interactions with lower hybrid waves. In successive chapters, he asserts that essentially the same process can account for electron acceleration observed at the Earth's bow shock, in the neighbourhood of an `artificial comet' produced as part of the Active Magnetospheric Particle Explorers (AMPTE) space mission in 1984/85, in the solar wind, at the Earth's magnetopause, and in the Earth's magneto- sphere. The evidence for this is not always convincing: waves with frequencies of the order of the lower hybrid resonance are often observed in these plasma environments, but in general it is difficult to identify clearly which wave mode is being observed (whistlers, for example, have frequencies in approximately the same range as lower hybrid waves). Moreover, it is not at all clear that the waves which are observed, even if they were of the appropriate type, would have sufficient intensity to accelerate electrons to the extent observed. The author makes a persuasive case, however, that acceleration in the aurora, and in other plasma environments accessible to in situ measurements, involves some form of wave turbulence. In Chapter 2 it is pointed out that

  4. Electrostatic Plasma Accelerator (EPA)

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1989-01-01

    The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass. The goal of the present program is to demonstrate feasibility of the EPA thruster concept through experimental and theoretical investigations of the EPA acceleration mechanism and discharge chamber performance. Experimental investigations will include operating the test bed ion (TBI) engine as an EPA thruster and parametrically varying the thruster geometry and operating conditions to quantify the electrostatic plasma acceleration effect. The theoretical investigations will include the development of a discharge chamber model which describes the relationships between the engine size, plasma properties, and overall performance. For the EPA thruster to be a viable propulsion concept, overall thruster efficiencies approaching 30% with specific impulses approaching 1000 s must be achieved.

  5. Advanced accelerator theory development

    SciTech Connect

    Sampayan, S.E.; Houck, T.L.; Poole, B.; Tishchenko, N.; Vitello, P.A.; Wang, I.

    1998-02-09

    A new accelerator technology, the dielectric wall accelerator (DWA), is potentially an ultra compact accelerator/pulsed power driver. This new accelerator relies on three new components: the ultra-high gradient insulator, the asymmetric Blumlein and low jitter switches. In this report, we focused our attention on the first two components of the DWA system the insulators and the asymmetric Blumlein. First, we sought to develop the necessary design tools to model and scale the behavior of the high gradient insulator. To perform this task we concentrated on modeling the discharge processes (i.e., initiation and creation of the surface discharge). In addition, because these high gradient structures exhibit favorable microwave properties in certain accelerator configurations, we performed experiments and calculations to determine the relevant electromagnetic properties. Second, we performed circuit modeling to understand energy coupling to dynamic loads by the asymmetric Blumlein. Further, we have experimentally observed a non-linear coupling effect in certain asymmetric Blumlein configurations. That is, as these structures are stacked into a complete module, the output voltage does not sum linearly and a lower than expected output voltage results. Although we solved this effect experimentally, we performed calculations to understand this effect more fully to allow better optimization of this DWA pulse-forming line system.

  6. Method of accelerating photons by a relativistic plasma wave

    DOEpatents

    Dawson, John M.; Wilks, Scott C.

    1990-01-01

    Photons of a laser pulse have their group velocity accelerated in a plasma as they are placed on a downward density gradient of a plasma wave of which the phase velocity nearly matches the group velocity of the photons. This acceleration results in a frequency upshift. If the unperturbed plasma has a slight density gradient in the direction of propagation, the photon frequencies can be continuously upshifted to significantly greater values.

  7. A particle accelerator employing transient space charge potentials

    DOEpatents

    Post, R.F.

    1988-02-25

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles. 3 figs.

  8. Take Your Leadership Role Seriously.

    ERIC Educational Resources Information Center

    School Administrator, 1986

    1986-01-01

    The principal authors of a new book, "Profiling Excellence in America's Schools," state that leadership is the single most important element for effective schools. The generic skills of leaders are flexibility, autonomy, risk taking, innovation, and commitment. Exceptional principals and teachers take their leadership and management roles…

  9. Taking Over a Broken Program

    ERIC Educational Resources Information Center

    Grabowski, Carl

    2008-01-01

    Taking over a broken program can be one of the hardest tasks to take on. However, working towards a vision and a common goal--and eventually getting there--makes it all worth it in the end. In this article, the author shares the lessons she learned as the new director for the Bright Horizons Center in Ashburn, Virginia. She suggests that new…

  10. Taking Chances in Romantic Relationships

    ERIC Educational Resources Information Center

    Elliott, Lindsey; Knox, David

    2016-01-01

    A 64 item Internet questionnaire was completed by 381 undergraduates at a large southeastern university to assess taking chances in romantic relationships. Almost three fourths (72%) self-identified as being a "person willing to take chances in my love relationship." Engaging in unprotected sex, involvement in a "friends with…

  11. Test particle acceleration in a numerical MHD experiment of an anemone jet

    NASA Astrophysics Data System (ADS)

    Rosdahl, K. J.; Galsgaard, K.

    2010-02-01

    Aims: To use a 3D numerical MHD experiment representing magnetic flux emerging into an open field region as a background field for tracing charged particles. The interaction between the two flux systems generates a localised current sheet where MHD reconnection takes place. We investigate how efficiently the reconnection region accelerates charged particles and what kind of energy distribution they acquire. Methods: The particle tracing is done numerically using the Guiding Center Approximation on individual data sets from the numerical MHD experiment. Results: We derive particle and implied photon distribution functions having power law forms, and look at the impact patterns of particles hitting the photosphere. We find that particles reach energies far in excess of those seen in observations of solar flares. However the structure of the impact region in the photosphere gives a good representation of the topological structure of the magnetic field. Three movies are only available in electronic form at http://www.aanda.org

  12. Accelerated molecular dynamics and equation-free methods for simulating diffusion in solids.

    SciTech Connect

    Deng, Jie; Zimmerman, Jonathan A.; Thompson, Aidan Patrick; Brown, William Michael; Plimpton, Steven James; Zhou, Xiao Wang; Wagner, Gregory John; Erickson, Lindsay Crowl

    2011-09-01

    Many of the most important and hardest-to-solve problems related to the synthesis, performance, and aging of materials involve diffusion through the material or along surfaces and interfaces. These diffusion processes are driven by motions at the atomic scale, but traditional atomistic simulation methods such as molecular dynamics are limited to very short timescales on the order of the atomic vibration period (less than a picosecond), while macroscale diffusion takes place over timescales many orders of magnitude larger. We have completed an LDRD project with the goal of developing and implementing new simulation tools to overcome this timescale problem. In particular, we have focused on two main classes of methods: accelerated molecular dynamics methods that seek to extend the timescale attainable in atomistic simulations, and so-called 'equation-free' methods that combine a fine scale atomistic description of a system with a slower, coarse scale description in order to project the system forward over long times.

  13. Diffusion-synthetic acceleration given anisotropic scattering, general quadratures, and multidimensions

    SciTech Connect

    Adams, M.L. ); Wareing, T.A. )

    1993-01-01

    We study diffusion-synthetic acceleration (DSA) for within-group scattering iterations in discrete ordinates calculations. We consider analytic (not spatially discretized) equations in Cartesian coordinates with linearly anisotropic scattering. We place no restrictions on the discrete ordinates quadrature set. We assume an infinite homogeneous medium. Our main results are as follows: 1. DSA is unstable in two dimensions (2D) and three dimensions (3D), given forward-peaked scattering. It can be stabilized by taking extra transport sweeps each iteration. 2. Standard DSA is unstable, given any quadrature set that does not correctly integrate linear functions of angle. 3. Relative to one dimension (ID), DSA's performance is degraded in 2D and 3D.

  14. Experimental studies on ion acceleration and stream line detachment in a diverging magnetic field

    PubMed Central

    Terasaka, K.; Yoshimura, S.; Ogiwara, K.; Aramaki, M.; Tanaka, M. Y.

    2010-01-01

    The flow structure of ions in a diverging magnetic field has been experimentally studied in an electron cyclotron resonance plasma. The flow velocity field of ions has been measured with directional Langmuir probes calibrated with the laser induced fluorescence spectroscopy. For low ion-temperature plasmas, it is concluded that the ion acceleration due to the axial electric field is important compared with that of gas dynamic effect. It has also been found that the detachment of ion stream line from the magnetic field line takes place when the parameter |fciLB∕Vi| becomes order unity, where fci, LB, and Vi are the ion cyclotron frequency, the characteristic scale length of magnetic field inhomogeneity, and the ion flow velocity, respectively. In the detachment region, a radial electric field is generated in the plasma and the ions move straight with the E×B rotation driven by the radial electric field. PMID:20838424

  15. Plasma-based accelerator structures

    SciTech Connect

    Schroeder, Carl B.

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  16. Beamlets from stochastic acceleration.

    PubMed

    Perri, Silvia; Carbone, Vincenzo

    2008-09-01

    We investigate the dynamics of a realization of the stochastic Fermi acceleration mechanism. The model consists of test particles moving between two oscillating magnetic clouds and differs from the usual Fermi-Ulam model in two ways. (i) Particles can penetrate inside clouds before being reflected. (ii) Particles can radiate a fraction of their energy during the process. Since the Fermi mechanism is at work, particles are stochastically accelerated, even in the presence of the radiated energy. Furthermore, due to a kind of resonance between particles and oscillating clouds, the probability density function of particles is strongly modified, thus generating beams of accelerated particles rather than a translation of the whole distribution function to higher energy. This simple mechanism could account for the presence of beamlets in some space plasma physics situations.

  17. Perturbations for transient acceleration

    SciTech Connect

    Vargas, Cristofher Zuñiga; Zimdahl, Winfried; Hipólito-Ricaldi, Wiliam S. E-mail: hipolito@ceunes.ufes.br

    2012-04-01

    According to the standard ΛCDM model, the accelerated expansion of the Universe will go on forever. Motivated by recent observational results, we explore the possibility of a finite phase of acceleration which asymptotically approaches another period of decelerated expansion. Extending an earlier study on a corresponding homogeneous and isotropic dynamics, in which interactions between dark matter and dark energy are crucial, the present paper also investigates the dynamics of the matter perturbations both on the Newtonian and General Relativistic (GR) levels and quantifies the potential relevance of perturbations of the dark-energy component. In the background, the model is tested against the Supernova type Ia (SNIa) data of the Constitution set and on the perturbative level against growth rate data, among them those of the WiggleZ survey, and the data of the 2dFGRS project. Our results indicate that a transient phase of accelerated expansion is not excluded by current observations.

  18. Acceleration radioisotope production simulations

    SciTech Connect

    Waters, L.S.; Wilson, W.B.

    1996-12-31

    We have identified 96 radionuclides now being used or under consideration for use in medical applications. Previously, we calculated the production of {sup 99}Mo from enriched and depleted uranium targets at the 800-MeV energy used in the LAMPF accelerator at Los Alamos. We now consider the production of isotopes using lower energy beams, which may become available as a result of new high-intensity spallation target accelerators now being planned. The production of four radionuclides ({sup 7}Be, {sup 67}Cu, {sup 99}Mo, and {sup 195m}Pt) in a simplified proton accelerator target design is being examined. The LAHET, MCNP, and CINDER90 codes were used to model the target, transport a beam of protons and secondary produced particles through the system, and compute the nuclide production from spallation and low-energy neutron interactions. Beam energies of 200 and 400 MeV were used, and several targets were considered for each nuclide.

  19. Laser acceleration with open waveguides

    SciTech Connect

    Xie, Ming

    1999-03-01

    A unified framework based on solid-state open waveguides is developed to overcome all three major limitations on acceleration distance and hence on the feasibility of two classes of laser acceleration. The three limitations are due to laser diffraction, acceleration phase slippage, and damage of waveguide structure by high power laser. The two classes of laser acceleration are direct-field acceleration and ponderomotive-driven acceleration. Thus the solutions provided here encompass all mainstream approaches for laser acceleration, either in vacuum, gases or plasmas.

  20. Uniform acceleration in general relativity

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov; Scarr, Tzvi

    2015-10-01

    We extend de la Fuente and Romero's (Gen Relativ Gravit 47:33, 2015) defining equation for uniform acceleration in a general curved spacetime from linear acceleration to the full Lorentz covariant uniform acceleration. In a flat spacetime background, we have explicit solutions. We use generalized Fermi-Walker transport to parallel transport the Frenet basis along the trajectory. In flat spacetime, we obtain velocity and acceleration transformations from a uniformly accelerated system to an inertial system. We obtain the time dilation between accelerated clocks. We apply our acceleration transformations to the motion of a charged particle in a constant electromagnetic field and recover the Lorentz-Abraham-Dirac equation.

  1. Diffusive Shock Acceleration

    NASA Astrophysics Data System (ADS)

    Baring, Matthew

    2003-04-01

    The process of diffusive acceleration of charged particles in shocked plasmas is widely invoked in astrophysics to account for the ubiquitous presence of signatures of non-thermal relativistic electrons and ions in the universe. This statistical energization mechanism, manifested in turbulent media, was first posited by Enrico Fermi in 1949 to explain the observed cosmic ray population, which exhibits an almost power-law distribution in rigidity. The absence of a momentum scale is a key characteristic of diffusive shock acceleration, and astrophysical systems generally only impose scales at the injection (low energy) and loss (high energy) ends of the particle spectrum. The existence of structure in the cosmic ray spectrum (the "knee") at around 3000 TeV has promoted contentions that there are at least two origins for cosmic rays, a galactic one supplying those up to the knee, and perhaps an extragalactic one that can explain even the ultra-high energy cosmic rays (UHECRs) seen at 1-300 EeV. Accounting for the UHECRs with familiar astrophysical sites of acceleration has historically proven difficult due to the need to assume high magnetic fields in order to reduce the shortest diffusive acceleration timescale, the ion gyroperiod, to meaningful values. Yet active galaxies and gamma-ray bursts remain strong and interesting candidate sources for UHECRs, turning the theoretical focus to relativistic shocks. This review summarizes properties of diffusive shock acceleration that are salient to the issue of UHECR generation. These include spectral indices, anisotropies, acceleration efficencies and timescales, as functions of the shock speed and mean field orientation, and also the degree of field turbulence. Astrophysical sites for UHECR production are also critiqued.

  2. Using Mnemonics to Learn Place Geography.

    ERIC Educational Resources Information Center

    Bednarz, Sarah W.

    1995-01-01

    Learning place geography is an important part of school geography. Reports on research findings addressing effective ways to teach place geography. Finds that research indicates significant differences between mnemonic and non-mnemonic treatment groups. (CFR)

  3. Secondary Lesson Plan: Place and Relative Location.

    ERIC Educational Resources Information Center

    Crawford, John

    1989-01-01

    Presents a secondary education geography lesson plan for teaching the theme of place and relative location. Provides samples of student materials. Using Japan as an example, shows how place and relative location can be used to study a country. (KO)

  4. Particle acceleration on a chip: A laser-driven micro-accelerator for research and industry

    NASA Astrophysics Data System (ADS)

    Yoder, R. B.; Travish, G.

    2013-03-01

    Particle accelerators are conventionally built from radio-frequency metal cavities, but this technology limits the maximum energy available and prevents miniaturization. In the past decade, laser-powered acceleration has been intensively studied as an alternative technology promising much higher accelerating fields in a smaller footprint and taking advantage of recent advances in photonics. Among the more promising approaches are those based on dielectric field-shaping structures. These ``dielectric laser accelerators'' (DLAs) scale with the laser wavelength employed and can be many orders of magnitude smaller than conventional accelerators; DLAs may enable the production of high-intensity, ultra-short relativistic electron bunches in a chip-scale device. When combined with a high- Z target or an optical-period undulator, these systems could produce high-brilliance x-rays from a breadbox-sized device having multiple applications in imaging, medicine, and homeland security. In our research program we have developed one such DLA, the Micro-Accelerator Platform (MAP). We describe the fundamental physics, our fabrication and testing program, and experimental results to date, along with future prospects for MAP-based light-sources and some remaining challenges. Supported in part by the Defense Threat Reduction Agency and National Nuclear Security Administration.

  5. The effect of stochastic re-acceleration on the energy spectrum of shock-accelerated protons

    SciTech Connect

    Afanasiev, Alexandr; Vainio, Rami; Kocharov, Leon

    2014-07-20

    The energy spectra of particles in gradual solar energetic particle (SEP) events do not always have a power-law form attributed to the diffusive shock acceleration mechanism. In particular, the observed spectra in major SEP events can take the form of a broken (double) power law. In this paper, we study the effect of a process that can modify the power-law spectral form produced by the diffusive shock acceleration: the stochastic re-acceleration of energetic protons by enhanced Alfvénic turbulence in the downstream region of a shock wave. There are arguments suggesting that this process can be important when the shock propagates in the corona. We consider a coronal magnetic loop traversed by a shock and perform Monte Carlo simulations of interactions of shock-accelerated protons with Alfvén waves in the loop. The wave-particle interactions are treated self-consistently, so the finiteness of the available turbulent energy is taken into account. The initial energy spectrum of particles is taken to be a power law. The simulations reveal that the stochastic re-acceleration leads either to the formation of a spectrum that is described in a wide energy range by a power law (although the resulting power-law index is different from the initial one) or to a broken power-law spectrum. The resulting spectral form is determined by the ratio of the energy density of shock-accelerated protons to the wave energy density in the shock's downstream region.

  6. 47 CFR 0.481 - Place of filing applications for radio authorizations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Place of filing applications for radio authorizations. 0.481 Section 0.481 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION... Taking Examinations § 0.481 Place of filing applications for radio authorizations. For locations...

  7. 29 CFR 780.140 - Place of performing the practice as a factor.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... STANDARDS ACT General Scope of Agriculture âsuch Farming Operationâ-of the Farmer § 780.140 Place of performing the practice as a factor. So long as the farming operations to which a farmer's practice pertains... altered by the fact that the farming operations take place on more than one farm or by the fact that...

  8. 29 CFR 780.140 - Place of performing the practice as a factor.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... STANDARDS ACT General Scope of Agriculture âsuch Farming Operationâ-of the Farmer § 780.140 Place of performing the practice as a factor. So long as the farming operations to which a farmer's practice pertains... altered by the fact that the farming operations take place on more than one farm or by the fact that...

  9. 29 CFR 780.140 - Place of performing the practice as a factor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... STANDARDS ACT General Scope of Agriculture âsuch Farming Operationâ-of the Farmer § 780.140 Place of performing the practice as a factor. So long as the farming operations to which a farmer's practice pertains... altered by the fact that the farming operations take place on more than one farm or by the fact that...

  10. 29 CFR 780.140 - Place of performing the practice as a factor.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... STANDARDS ACT General Scope of Agriculture âsuch Farming Operationâ-of the Farmer § 780.140 Place of performing the practice as a factor. So long as the farming operations to which a farmer's practice pertains... altered by the fact that the farming operations take place on more than one farm or by the fact that...

  11. 29 CFR 780.140 - Place of performing the practice as a factor.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... STANDARDS ACT General Scope of Agriculture âsuch Farming Operationâ-of the Farmer § 780.140 Place of performing the practice as a factor. So long as the farming operations to which a farmer's practice pertains... altered by the fact that the farming operations take place on more than one farm or by the fact that...

  12. 47 CFR 0.481 - Place of filing applications for radio authorizations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Place of filing applications for radio authorizations. 0.481 Section 0.481 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION... Taking Examinations § 0.481 Place of filing applications for radio authorizations. For locations...

  13. Thinking outside the Box: Placing Park and Recreation Professionals in K-12 Schools

    ERIC Educational Resources Information Center

    Dustin, Daniel; Hibbler, Dan; McKenney, Alexis; Blitzer, Laura

    2004-01-01

    The authors argue that it is time to place park and recreation professionals in K-12 schools on a permanent basis. Their proposal is based on the following observations: (1) school facilities are grossly underutilized; (2) the majority of a child's life takes place outside the classroom; (3) park and recreation programs are effective "hooks" for…

  14. 5 CFR 919.520 - Who places the information into the EPLS?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... List System § 919.520 Who places the information into the EPLS? Federal officials who take actions to... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Who places the information into the EPLS? 919.520 Section 919.520 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED)...

  15. 47 CFR 0.481 - Place of filing applications for radio authorizations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Place of filing applications for radio authorizations. 0.481 Section 0.481 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION... Taking Examinations § 0.481 Place of filing applications for radio authorizations. For locations...

  16. 47 CFR 0.481 - Place of filing applications for radio authorizations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Place of filing applications for radio authorizations. 0.481 Section 0.481 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION... Taking Examinations § 0.481 Place of filing applications for radio authorizations. For locations...

  17. 47 CFR 0.481 - Place of filing applications for radio authorizations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Place of filing applications for radio authorizations. 0.481 Section 0.481 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION... Taking Examinations § 0.481 Place of filing applications for radio authorizations. For locations...

  18. Sometimes, It Takes a Village

    ERIC Educational Resources Information Center

    Taylor, Gwen; Heflin, David

    2015-01-01

    In this article, Gwen Taylor describes the West Kentucky Community and Technical College (WKCTC) groundbreaking program, "Accelerating Opportunity" (AO), which targeted students who are deficient in math, reading, or writing. The program uses the Washington State Board for Community & Technical Colleges' (2013) Integrated Basic…

  19. Peak outward acceleration and ball release in cricket.

    PubMed

    Spratford, Wayne; Portus, Marc; Wixted, Andrew; Leadbetter, Raymond; James, Daniel A

    2015-01-01

    The purpose of this study was to investigate the utility of peak outward acceleration (POA) measured from an inertial sensor worn at the wrist as an indicator of the critical end point of the bowling action – ball release, a critical element when assessing illegal actions. Twenty-one finger-spin and fast bowlers from nine countries were recruited from the ICC under-19 Cricket World Cup to take part in this research. Bowlers delivered a cross section of their standard deliveries while wearing an inertial sensor placed on their wrists. Ball release was determined by a validated motional analysis ball release (MABR) protocol and compared to the simultaneously collected POA. POA was shown to be highly correlated with MABR (R(2) = 0.98) and a Bland-Altman plot indicated that all 148 trials were within the 3.42 frame (0.014 s) limits of agreement. POA when measured by an inertial sensor worn on the wrist during bowling had a close relationship with an established method of identifying ball release in a biomechanical laboratory regardless of bowler and delivery type. Further, accuracy can be achieved with the adoption of a simple regression equation applied to the POA and as such is a valid measure of ball release in cricket bowlers.

  20. Bmp2 and Bmp4 accelerate alveolar bone development.

    PubMed

    Ou, Mingming; Zhao, Yibing; Zhang, Fangming; Huang, Xiaofeng

    2015-06-01

    Alveolar bone remodeling is a continuous process that takes place during development and in response to various physiological and pathological stimuli. However, detailed knowledge regarding the underlying mechanisms involved in alveolar bone development is still lacking. This study aims at improving our understanding of alveolar bone formation and the role of bone morphogenetic proteins (Bmps) in this process. Mice at embryonic (E) day 13.5 to postnatal (PN) day 15.5 were selected to observe the process of alveolar bone development. Alveolar bone development was found to be morphologically observable at E14.5. Molar teeth isolated from mice at PN7.5 were pretreated with Bmp2, Bmp4, Noggin, or BSA, and grafted subcutaneously into mice. The subcutaneously implanted tooth germs formed alveolar bone indicating the role of the dental follicle in alveolar bone development. Alveolar bone formation was increased after pretreatment with Bmp2 and Bmp4, but not with Noggin. Gene expression levels in dental follicle cells from murine molars were also determined by real-time RT-PCR. The expression levels of Runx2, Bsp, and Ocn were significantly higher in dental follicle cells cultured with Bmp2 or Bmp4, and significantly lower in those cultured with Noggin when compared with that of the BSA controls. Our results suggest that the dental follicle participates in alveolar bone formation and Bmp2/4 appears to accelerate alveolar bone development.

  1. SLIM, Short-pulse Technology for High Gradient Induction Accelerators

    SciTech Connect

    Krasnykh, A.; Kardo-Sysoev, A.; Arntz, F.; /Diversified Tech., Bedford

    2009-12-09

    The conclusions of this paper are: (1) The gradient of the SLIM-based technology is believed to be achievable in the same range as it is for the gradient of a modern rf-linac technology ({approx}100 MeV per meter). (2) The SLIM concept is based on the nsec TEM pulse mode operation with no laser or rf systems. (3) Main components of SLIM are not stressed while the energy is pumped into the induction system. Components can accept the hard environment conditions such as a radiation dose, mismatch, hard electromagnetic nose level, etc. Only for several nanoseconds the switch is OFF and produces a stress in the induction system. At that time, the delivery of energy to the beam takes place. (4) The energy in the induction system initially is storied in the magnetic field when the switch is ON. That fact makes another benefit: a low voltage power supplies can be used. The reliability of a lower voltage power supply is higher and they are cheaper. (5) The coreless SLIM concept offers to work in the MHz range of repetition rate. The induction system has the high electric efficiency (much higher than the DWA). (6) The array of lined up and activated SLIM cells is believed to be a solid state structure of novel accelerating technology. The electron-hole plasma in the high power solid state structure is precisely controlled by the electromagnetic process of a pulsed power supply.

  2. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure is appropriate to the generation

  3. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-L.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at the comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform: small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure

  4. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This

  5. HIGH GRADIENT INDUCTION ACCELERATOR

    SciTech Connect

    Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2007-06-21

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.

  6. Photocathodes in accelerator applications

    SciTech Connect

    Fraser, J.S.; Sheffield, R.L.; Gray, E.R.; Giles, P.M.; Springer, R.W.; Loebs, V.A.

    1987-01-01

    Some electron accelerator applications require bursts of short pulses at high microscopic repetition rates and high peak brightness. A photocathode, illuminated by a mode-locked laser, is well suited to filling this need. The intrinsic brightness of a photoemitter beam is high; experiments are under way at Los Alamos to study the brightness of short bunches with high space charge after acceleration. A laser-illuminated Cs/sub 3/Sb photoemitter is located in the first rf cavity of an injector linac. Diagnostics include a pepper-pot emittance analyzer, a magnetic spectrometer, and a streak camera.

  7. Interfacing to accelerator instrumentation

    SciTech Connect

    Shea, T.J.

    1995-12-31

    As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed.

  8. Accelerated molecular dynamics methods

    SciTech Connect

    Perez, Danny

    2011-01-04

    The molecular dynamics method, although extremely powerful for materials simulations, is limited to times scales of roughly one microsecond or less. On longer time scales, dynamical evolution typically consists of infrequent events, which are usually activated processes. This course is focused on understanding infrequent-event dynamics, on methods for characterizing infrequent-event mechanisms and rate constants, and on methods for simulating long time scales in infrequent-event systems, emphasizing the recently developed accelerated molecular dynamics methods (hyperdynamics, parallel replica dynamics, and temperature accelerated dynamics). Some familiarity with basic statistical mechanics and molecular dynamics methods will be assumed.

  9. 'Light Sail' Acceleration Reexamined

    SciTech Connect

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for 'optimal' values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple 'light sail' model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  10. Hawaii Play Fairway Analysis: Hawaiian Place Names

    SciTech Connect

    Nicole Lautze

    2015-11-15

    Compilation of Hawaiian place names indicative of heat. Place names are from the following references: Pukui, M.K., and S.H. Elbert, 1976, Place Names of Hawaii, University of Hawaii Press, Honolulu, HI 96822, 289 pp. ; Bier, J. A., 2009, Map of Hawaii, The Big Island, Eighth Edition, University of Hawaii Press, Honolulu, HI  96822, 1 sheet.; and Reeve, R., 1993, Kahoolawe Place Names, Consultant Report No. 16, Kahoolawe Island Conveyance Commission, 259 pp.

  11. A Study of Taking off and Landing an Airplane

    NASA Technical Reports Server (NTRS)

    Carroll, T

    1923-01-01

    This report covers the results of an investigation carried on at the Langley Memorial Aeronautical Laboratory of the National Advisory Committee for Aeronautics for the purpose of discussing the various methods of effecting the take-off and the landing of an airplane, and to make a direct analysis of the control movements, the accelerations, and air speeds during these the maneuvers. The recording instruments developed at the laboratory were used in this test and the records obtained by them were made the basis for a comparative study of the two extreme methods of taking off (the tail-high and tail-low methods) and of various types of landings. The records should be of considerable value to a student pilot in enabling him to visualize the movements of the controls and the consequent effect upon the air speed and acceleration.

  12. Constraint on electromagnetic acceleration of highest energy cosmic rays.

    PubMed

    Medvedev, Mikhail V

    2003-04-01

    The energetics of electromagnetic acceleration of ultrahigh-energy cosmic rays (UHECRs) is constrained both by confinement of a particle within an acceleration site and by radiative energy losses of the particle in the confining magnetic fields. We demonstrate that the detection of approximately 3 x 10(20) eV events is inconsistent with the hypothesis that compact cosmic accelerators with high magnetic fields can be the sources of UHECRs. This rules out the most popular candidates, namely spinning neutron stars, active galactic nuclei (AGNs). Galaxy clusters and, perhaps, AGN radio lobes and gamma-ray burst blast waves remain the only possible (although not very strong) candidates for UHECR acceleration sites. Our analysis places no limit on linear accelerators. With the data from the future Auger experiment one should be able to answer whether a conventional theory works or some new physics is required to explain the origin of UHECRs. PMID:12786427

  13. High intensity proton operation at the Brookhaven AGS accelerator complex

    SciTech Connect

    Ahrens, L.A.; Blaskiewicz, M.; Bleser, E.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Onillon, E.; Reece, R.K.; Roser, T.; Soukas, A.

    1994-08-01

    With the completion of the AGS rf upgrade, and the implementation of a transition {open_quotes}jump{close_quotes}, all of accelerator systems were in place in 1994 to allow acceleration of the proton intensity available from the AGS Booster injector to AGS extraction energy and delivery to the high energy users. Beam commissioning results with these new systems are presented. Progress in identifying and overcoming other obstacles to higher intensity are given. These include a careful exploration of the stopband strengths present on the AGS injection magnetic porch, and implementation of the AGS single bunch transverse dampers throughout the acceleration cycle.

  14. Northwest Literature and a Sense of Place.

    ERIC Educational Resources Information Center

    Simonson, Harold P.

    Teachers should help students gain a sense of where they stand. It is difficult to imagine literature without a sense of place--places bridge time and evoke and recreate the past. To compose is to remember, to recreate, and a sense of place begins the composing. Some northwestern U.S. books illustrate the point. In a college literature class,…

  15. Anthropological Studies of Native American Place Names.

    ERIC Educational Resources Information Center

    Thornton, Thomas F.

    1997-01-01

    Traces development of Native American place name studies from Boas (1880s) to the present. Argues that place names convey information about physical environments but also reveal how people perceive, conceptualize, and utilize their environment. Suggests the utility of place names as a framework for cultural analysis and describes recent…

  16. Sense of Place in Environmental Education

    ERIC Educational Resources Information Center

    Kudryavtsev, Alex; Stedman, Richard C.; Krasny, Marianne E.

    2012-01-01

    Although environmental education research has embraced the idea of sense of place, it has rarely taken into account environmental psychology-based sense of place literature whose theory and empirical studies can enhance related studies in the education context. This article contributes to research on sense of place in environmental education from…

  17. Literacy, Place and the Digital World

    ERIC Educational Resources Information Center

    Green, Bill

    2012-01-01

    Observing that place may be understood in a range of sometimes conflicting ways, the paper picks up on recent work within literacy studies on notions of place-making and locational disadvantage to argue for increasingly sophisticated and reflexive uses of place in the field, as a counterpoint to both increasing educational standardisation and…

  18. Growth, Politics, and the Stratification of Places

    ERIC Educational Resources Information Center

    Logan, John R.

    1978-01-01

    Systematic inequalities among interdependent places are described as a dimension of stratification of persons and organizations. Concludes that territorial differentiation is influenced by political action, that place is often an important basis of collective action, and that places consciously attempt to influence growth in desired directions.…

  19. Using PlacesOnline in Instructional Activities

    ERIC Educational Resources Information Center

    Longan, Michael W.; Owusu, Francis; Roseman, Curtis C.

    2008-01-01

    PlacesOnLine.org is a Web portal that provides easy access to high quality Web sites that focus on places from around the world. It is intended for use by a wide range of people, including professional geographers, teachers and students at all levels, and the general public. This article explores the potential uses of PlacesOnLine as an…

  20. The Space Place: Adventures in Informal Education - and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Fisher, D.; Leon, N.

    2001-12-01

    products both economical and comprehensive. While the Space Place effort started as a New Millennium Program effort, it was quickly expanded to all NASA missions who wish to participate. The team soon realized that the informal education community wanted a variety of content - not just more and more information about a few missions, but rather a continuous infusion of new content from new missions. This expansion of the Space Place program allows any mission to take advantage of the existing Space Place infrastructure and alliances - and provides the much-needed variety of materials that the informal education community desires. This poster session will provide an overview of the Space Place effort within the informal education community, and will illustrate some of the valuable lessons learned by the team in working with this rich and varied community.

  1. Teaching Kids with Learning Disabilities to Take Public Transit

    ERIC Educational Resources Information Center

    Schoenfeld, Jane

    2009-01-01

    Taking public transit can make anyone nervous, especially in a large or medium-sized city where there are many different bus lines going many different places. The author's daughter, Anna, has multiple learning disabilities and may never learn to drive, but she wants to be as independent as possible so the author taught her to ride the bus. This…

  2. Taking Research into Schools: The West Lothian Action Enquiry Model

    ERIC Educational Resources Information Center

    Binnie, Lynne M.; Allen, Kristen; Beck, Elaine

    2008-01-01

    This paper outlines the efforts of an Educational Psychology Service (EPS) to develop its practice in the area of research. It will argue that the Action Enquiry model of service delivery can empower teaching staff and may allow an effective means of change and improvement to take place in schools. This model steers research towards providing…

  3. Pulsed Electromagnetic Acceleration of Plasmas

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, Jason T.; Markusic, Tom E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    A major shift in paradigm in driving pulsed plasma thruster is necessary if the original goal of accelerating a plasma sheet efficiently to high velocities as a plasma "slug" is to be realized. Firstly, the plasma interior needs to be highly collisional so that it can be dammed by the plasma edge layer not (upstream) adjacent to the driving 'vacuum' magnetic field. Secondly, the plasma edge layer needs to be strongly magnetized so that its Hall parameter is of the order of unity in this region to ensure excellent coupling of the Lorentz force to the plasma. Thirdly, to prevent and/or suppress the occurrence of secondary arcs or restrike behind the plasma, the region behind the plasma needs to be collisionless and extremely magnetized with sufficiently large Hall parameter. This places a vacuum requirement on the bore conditions prior to the shot. These requirements are quantified in the paper and lead to the introduction of three new design parameters corresponding to these three plasma requirements. The first parameter, labeled in the paper as gamma (sub 1), pertains to the permissible ratio of the diffusive excursion of the plasma during the course of the acceleration to the plasma longitudinal dimension. The second parameter is the required Hall parameter of the edge plasma region, and the third parameter the required Hall parameter of the region behind the plasma. Experimental research is required to quantify the values of these design parameters. Based upon fundamental theory of the transport processes in plasma, some theoretical guidance on the choice of these parameters are provided to help designing the necessary experiments to acquire these data.

  4. Wetland reclamation by accelerating succession

    SciTech Connect

    Rushton, B.T.

    1988-01-01

    This research analyzed mechanisms and processes for accelerating natural succession in order to restore soils and forests on clay setting areas left from phosphate mining in central Florida. Field measurements of succession on unreclaimed clay ponds showed wet sites dominated by dense stands of small shrubby willows even after 60 years with succession arrested because of a shortage of seeds for later stage trees. For drier sites an orderly procession of pioneer wetland trees colonized when wetland seed sources were within 20 meters. The first woody species were willows, myrtles, and baccharis followed in 5 to 10 years by red maple and elm. Oaks colonized slightly drier elevations. Hackberry, cherry, and sweetgum were also found. Experiments in which 3000 seedlings of 11 species were planted in six clay settling areas demonstrated succession can be accelerated. After the first growing season, results suggest that mixed swamp vegetation typical of floodplains may be the most suitable forested wetland community for settling pond reclamation. Percent survival was best for Carolina ash, American elm, and red maple. Some alluvial floodplain species were intermediate in success with 74% survival for baldcypress, 61% for sweetgum, and 61% for laurel oak. Trees from bayheads had the least survival with 52% for swampbay and 41% for loblolly bay. Poorest survival for all species planted (39%) was swamp tupelo. Floodplain species which required fairly dry conditions had poor survival, i.e., southern magnolia (53%) and cabbage palm (43%). Planted tree seedlings were more cost effective than placing seeds on the ground and covering them with litter. A simulation model with hydrologic regimes and outside seeding was used to summarize the operation of the successional system. Simulation that suggested trends for a longer time period than those observed in the field trials are yet to be confirmed.

  5. The accelerating universe and dark energy

    NASA Astrophysics Data System (ADS)

    Baltay, Charles

    2014-05-01

    The recent discovery by Riess et al.1 and Perlmutter et al.2 that the expansion of the universe is accelerating is one of the most significant discoveries in cosmology in the last few decades. To explain this acceleration a mysterious new component of the universe, dark energy, was hypothesized. Using general relativity (GR), the measured rate of acceleration translates to the present understanding that the baryonic matter, of which the familiar world is made of, is a mere 4% of the total mass-energy of the universe, with nonbaryonic dark matter making up 24% and dark energy making up the majority 72%. Dark matter, by definition, has attractive gravity, and even though we presently do not know what it is, it could be made of the next heavy particles discovered by particle physicists. Dark energy, however, is much more mysterious, in that even though we do not know what it is, it must have some kind of repulsive gravity and negative pressure, very unusual properties that are not part of the present understanding of physics. Investigating the nature of dark energy is therefore one of the most important areas of cosmology. In this review, the cosmology of an expanding universe, based on GR, is discussed. The methods of studying the acceleration of the universe, and the nature of dark energy, are presented. A large amount of experimentation on this topic has taken place in the decade since the discovery of the acceleration. These are discussed and the present state of knowledge of the cosmological parameters is summarized in Table 7 below. A vigorous program to further these studies is under way. These are presented and the expected results are summarized in Table 10 below. The hope is that at the end of this program, it would be possible to tell whether dark energy is due to Einstein's cosmological constant or is some other new constituent of the universe, or alternately the apparent acceleration is due to some modification of GR.

  6. Chirped pulse inverse free-electron laser vacuum accelerator

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  7. Presentation on a Space Acceleration Measurement System (SAMS)

    NASA Technical Reports Server (NTRS)

    Chase, Theodore L.

    1990-01-01

    The primary objective of the Space Acceleration Measurement Systems (SAMS) project is to provide an acceleration measurement system capable of serving a wide variety of space experiments. The design of the system being developed under this project takes into consideration requirements for experiments located in the middeck, in the orbiter bay, and in Spacelab. In addition to measuring, conditioning, and recording accelerations, the system will be capable of performing complex calculations and interactive control. The main components consist of a remote triaxial optical storage device. In operation, the triaxial sensor head produces output signals in response to acceleration inputs. These signals are preamplified, filtered and converted into digital data which is then transferred to optical memory. The system design is modular, facilitating both software and hardware upgrading as technology advances. Two complete acceleration measurement flight systems will be build and tested under this project.

  8. Prospects for Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  9. Radioisotope Dating with Accelerators.

    ERIC Educational Resources Information Center

    Muller, Richard A.

    1979-01-01

    Explains a new method of detecting radioactive isotopes by counting their accelerated ions rather than the atoms that decay during the counting period. This method increases the sensitivity by several orders of magnitude, and allows one to find the ages of much older and smaller samples. (GA)

  10. The neutrino electron accelerator

    SciTech Connect

    Shukla, P.K.; Stenflo, L.; Bingham, R.; Bethe, H.A.; Dawson, J.M.; Mendonca, J.T.

    1998-01-01

    It is shown that a wake of electron plasma oscillations can be created by the nonlinear ponderomotive force of an intense neutrino flux. The electrons trapped in the plasma wakefield will be accelerated to high energies. Such processes may be important in supernovas and pulsars. {copyright} {ital 1998 American Institute of Physics.}

  11. FPGA Verification Accelerator (FVAX)

    NASA Technical Reports Server (NTRS)

    Oh, Jane; Burke, Gary

    2008-01-01

    Is Verification Acceleration Possible? - Increasing the visibility of the internal nodes of the FPGA results in much faster debug time - Forcing internal signals directly allows a problem condition to be setup very quickly center dot Is this all? - No, this is part of a comprehensive effort to improve the JPL FPGA design and V&V process.

  12. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1974-01-01

    Detailed measurements of the axial velocity profile and electromagnetic structure of a high power, quasi-steady MPD discharge are used to formulate a gasdynamic model of the acceleration process. Conceptually dividing the accelerated plasma into an inner flow and an outer flow, it is found that more than two-thirds of the total power in the plasma is deposited in the inner flow, accelerating it to an exhaust velocity of 12.5 km/sec. The outer flow, which is accelerated to a velocity of only 6.2 km/sec, appears to provide a current conduction path between the inner flow and the anode. Related cathode studies have shown that the critical current for the onset of terminal voltage fluctuations, which was recently shown to be a function of the cathode area, appears to reach an asymptote for cathodes of very large surface area. Detailed floating potential measurements show that the fluctuations are confined to the vicinity of the cathode and hence reflect a cathode emission process rather than a fundamental limit on MPD performance.

  13. A consistent approach for the treatment of Fermi acceleration in time-dependent billiards

    NASA Astrophysics Data System (ADS)

    Karlis, A. K.; Diakonos, F. K.; Constantoudis, V.

    2012-06-01

    The standard description of Fermi acceleration, developing in a class of time-dependent billiards, is given in terms of a diffusion process taking place in momentum space. Within this framework, the evolution of the probability density function (PDF) of the magnitude of particle velocities as a function of the number of collisions n is determined by the Fokker-Planck equation (FPE). In the literature, the FPE is constructed by identifying the transport coefficients with the ensemble averages of the change of the magnitude of particle velocity and its square in the course of one collision. Although this treatment leads to the correct solution after a sufficiently large number of collisions have been reached, the transient part of the evolution of the PDF is not described. Moreover, in the case of the Fermi-Ulam model (FUM), if a standard simplification is employed, the solution of the FPE is even inconsistent with the values of the transport coefficients used for its derivation. The goal of our work is to provide a self-consistent methodology for the treatment of Fermi acceleration in time-dependent billiards. The proposed approach obviates any assumptions for the continuity of the random process and the existence of the limits formally defining the transport coefficients of the FPE. Specifically, we suggest, instead of the calculation of ensemble averages, the derivation of the one-step transition probability function and the use of the Chapman-Kolmogorov forward equation. This approach is generic and can be applied to any time-dependent billiard for the treatment of Fermi-acceleration. As a first step, we apply this methodology to the FUM, being the archetype of time-dependent billiards to exhibit Fermi acceleration.

  14. Installation of a cw radiofrequency quadrupole accelerator at Los Alamos National Laboratory

    SciTech Connect

    Schneider, J.D.; Bolme, J.; Brown, V.

    1994-09-01

    Chalk River Laboratories (CRL) has had a long history of cw proton beam development for production of intense neutron sources and fissile fuel breeders. In 1986 CRL and Los Alamos National Laboratory (LANL) entered into a collaborative effort to establish a base technologies program for the development of a cw radiofrequency quadrupole (RFQ). The initial cw RFQ design had 50-keV proton injection energy with 600-keV output energy. The 75-mA design current at 600-keV beam energy was obtained in 1990. Subsequently, the RFQ output energy was increased to 1250 keV by replacing the RFQ vanes, still maintaining the 75-m A design current. A new 250-kW cw klystrode rf power source at 267-MHz was installed at CRL. By April of 1993, 55-mA proton beams had been accelerated to 1250 keV. Concurrent developments were taking place on proton source development and on 50-keV low-energy beam transport (LEBT) systems. Development of a dc, high-proton fraction ({ge} 70%) microwave ion source led to utilization of a single-solenoid RFQ direct injection scheme. It was decided to continue this cw RFQ demonstration project at Los Alamos when the CRL project was terminated in April 1993. The LANL goals are to find the current limit of the 1250-keV RFQ, better understand the beam transport properties through the single-solenoid focusing LEBT, continue the application of the cw klystrode tube technology to accelerators, and develop a two-solenoid LEBT which could be the front end of an Accelerator-Driven Transmutation Technologies (ADTT) linear accelerator.

  15. Taking medicines to treat tuberculosis

    MedlinePlus

    ... drugs. This is called directly observed therapy. Side Effects and Other Problems Women who may be pregnant, who are pregnant, or who are breastfeeding should talk to their provider before taking these ...

  16. Taking Action for Healthy Kids.

    ERIC Educational Resources Information Center

    Kidd, Jill E.

    2003-01-01

    Summarizes research on relationship between physical activity, good nutrition, and academic performance. Offers several recommendations for how schools can take action to improve the nutrition and fitness of students. (PKP)

  17. LRO Takes the Moon's Temperature

    NASA Video Gallery

    During the December 2011 lunar eclipse, LRO's Diviner instrument will take the temperature on the lunar surface. Since different rock sizes cool at different rates, scientists will be able to infer...

  18. LRO Takes the Moon's Temperature

    NASA Video Gallery

    During the June 2011 lunar eclipse, scientists will be able to get a unique view of the moon. While the sun is blocked by the Earth, LRO's Diviner instrument will take the temperature on the lunar ...

  19. Taking America To New Heights

    NASA Video Gallery

    NASA's Commercial Crew Program (CCP) is taking America to new heights with its Commercial Crew Development Round 2 (CCDev2) partners. In 2011, NASA entered into funded Space Act Agreements (SAAs) w...

  20. Acceleration of energetic charged particles: Shocks, reconnection or turbulence?

    NASA Astrophysics Data System (ADS)

    Jokipii, J. R.

    2012-05-01

    Acceleration of energetic charged charged particles, most-often with power-law energy spectra occurs everywhere is space where particle-particle collision mean free paths are significantly larger than their gyro-radii. Shocks, reconnection events and turbulence have variously been proposed as acceleration mechanisms, and each must currently be considered a viable mechanism. Shocks have the advantage that they produce naturally power-law spectra in the observed range which are not very sensitive to the parameters. They are usually also fast accelerators. I first discuss the constraints which observations place on the acceleration mechanisms and show that there are both temporal and spatial constraints. Stochastic acceleration tends to be slow, so the rate of acceleration is important. In the inner heliosphere, this rate must exceed the rate of adiabatic cooling ~ 2Vw/r, where Vw is the radial solar-wind velocity. Acceleration of anomalous cosmic rays (ACR) in the heliosheath must occur on a time scale of on year to avoid producing too many multiply charged ACR. It is shown that here, stochastic acceleration has difficulties in the inner heliosheath. Reconnection events are essentially incompressible, so the divergence of the flow velocity is nearly zero, and the Parker equation would give little acceleration. Acceleration at reconnection therefore must go beyond the Parker equation - either by invoking large pitch-angle anisotropies or by extending the equation to higher order in the flow speed relative to the particle speed. An approach to using an extension of Parker's equation is discussed. Diffusive shock acceleration at the heliospheric termination shock is also discussed. It is suggested that inclusion of upstream turbulence and shock geometry provides reasonable solutions to the perceived problems with this mechanism. Finally, observation evidence is presented which suggests, strongly, that the acceleration of the ACR occurs in the inner heliosphere, not far

  1. National accelerated coated conductor initiative

    NASA Astrophysics Data System (ADS)

    Hawsey, Robert A.; Peterson, Dean E.

    2002-01-01

    The national Accelerated Coated Conductor Initiative (ACCI) is committed to assuring continued U.S. leadership in the development of high-temperature superconducting (HTS) wire for electric power and other applications of national interest. Increased energy efficiency, power density, and power-to-weight ratio are just a few of the tangible benefits that will be possible if today's meter lengths of HTS wire based upon the compound yttrium-barium-copper-oxygen (YBCO) can be scaled up by U.S. industry to kilometer lengths. This paper presents an evaluation of the current state of the development of coated conductor technology and a vision for its future. The challenges that U.S. Department of Energy (DOE) laboratories and their industrial and university partners face will be presented against the backdrop of the history of superconductivity program achievements. It is the purpose of this initiative to accelerate the development, commercialization, and application of high temperature superconductors through joint efforts among DOE laboratories, American industry, and universities, so that future challenges of the electric power industry can be met. Based on their advances in HTS coated conductor development in a program funded by the DOE's Office of Power Technologies, Los Alamos and Oak Ridge National Laboratories lead and support this effort by improving their own capabilities, including equipment, facilities, and technical expertise. Each laboratory has, in 2001, acquired new laboratory space, new capital equipment, and new personnel with the goal of working closely with U.S. companies to take technologies invented in the labs and demonstrated in 1-m lengths and transfer these technologies to the commercial sector. The present status of the performance of the second-generation YBCO wires will be described, and the future plans of the national laboratories will be presented. Opportunities for collaboration are discussed, as well. .

  2. Menopause accelerates biological aging.

    PubMed

    Levine, Morgan E; Lu, Ake T; Chen, Brian H; Hernandez, Dena G; Singleton, Andrew B; Ferrucci, Luigi; Bandinelli, Stefania; Salfati, Elias; Manson, JoAnn E; Quach, Austin; Kusters, Cynthia D J; Kuh, Diana; Wong, Andrew; Teschendorff, Andrew E; Widschwendter, Martin; Ritz, Beate R; Absher, Devin; Assimes, Themistocles L; Horvath, Steve

    2016-08-16

    Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the "epigenetic clock"), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Women's Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinson's disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further. PMID:27457926

  3. Designing high energy accelerators under DOE's New Culture'' for environment and safety: An example, the Fermilab 150 GeV Main Injector proton synchrotron

    SciTech Connect

    Fowler, W.B.

    1991-05-01

    Fermilab has initiated a design for a new Main Injector (150 GeV proton synchrotron) to take the place of the current Main Ring accelerator. New Culture'' environmental and safety questions are having to be addressed. The paper will detail the necessary steps that have to be taken in order to obtain the permits which control the start of construction. Obviously these depend on site-specific circumstances, however some steps are universally applicable. In the example, floodplains and wetlands are affected and therefore the National Environmental Policy Act (NEPA) compliance is a significant issue. The important feature is to reduce the relevant regulations to a concise set of easily understandable requirements. The effort required and the associated time line will be presented so that other new accelerator proposals can benefit from the experience gained from this example.

  4. UHECR acceleration at GRB internal shocks

    NASA Astrophysics Data System (ADS)

    Globus, N.; Allard, D.; Mochkovitch, R.; Parizot, E.

    2015-07-01

    Recent results from the Pierre Auger Observatory suggest that nuclei heavier than protons might be present in significant amounts among ultrahigh-energy cosmic rays (UHECRs). It is therefore interesting to investigate the acceleration both protons and nuclei in relativistic jets. We calculate the acceleration of a mixed composition of cosmic rays at Gamma-ray burst (GRB) internal shocks, taking into account the relevant energy loss processes. 3D trajectories during the relativistic Fermi cycles are simulated following previous works by Niemiec & Ostrowski. We use the internal shock model of Daigne & Mochkovitch to derive the evolution of the relevant physical quantities (magnetic fields, baryon and photon densities, shock velocity). We consider different phenomenological hypotheses about the sharing of the dissipated energy between accelerated cosmic rays, electrons and the magnetic field. For various choices of the parameters, we calculate the spectrum of cosmic rays escaping from the GRB environment as well as secondary particles produced either during the acceleration or extragalactic propagation of UHECRs. Only models where (i) the prompt emission represents only a small fraction of the energy dissipated at internal shocks and (ii) most of this dissipated energy is communicated to cosmic rays, are able to reproduce the magnitude of the UHECR flux observed on Earth. For these models, however, the observed shape of the UHECR spectrum can be well reproduced above the ankle, with an evolution of the composition compatible with the trend suggested by Auger, and associated diffuse fluxes of secondary particles which do not violate current observational limits.

  5. Accelerating artificial intelligence with reconfigurable computing

    NASA Astrophysics Data System (ADS)

    Cieszewski, Radoslaw

    Reconfigurable computing is emerging as an important area of research in computer architectures and software systems. Many algorithms can be greatly accelerated by placing the computationally intense portions of an algorithm into reconfigurable hardware. Reconfigurable computing combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be changed over the lifetime of the system. Similar to an ASIC, reconfigurable systems provide a method to map circuits into hardware. Reconfigurable systems therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Such a field, where there is many different algorithms which can be accelerated, is an artificial intelligence. This paper presents example hardware implementations of Artificial Neural Networks, Genetic Algorithms and Expert Systems.

  6. Enhanced dielectric-wall linear accelerator

    DOEpatents

    Sampayan, Stephen E.; Caporaso, George J.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  7. Enhanced dielectric-wall linear accelerator

    DOEpatents

    Sampayan, S.E.; Caporaso, G.J.; Kirbie, H.C.

    1998-09-22

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 6 figs.

  8. Propane Clathrate Hydrate Formation Accelerated by Methanol.

    PubMed

    Amtawong, Jaruwan; Guo, Jin; Hale, Jared S; Sengupta, Suvrajit; Fleischer, Everly B; Martin, Rachel W; Janda, Kenneth C

    2016-07-01

    The role of methanol as both an inhibitor and a catalyst for the formation of clathrate hydrates (CHs) has been a topic of intense study. We report a new quantitative study of the kinetics of propane CH formation at 253 K from the reaction of propane gas with <75 μm ice particles that have been doped with varying amounts of methanol. We find that methanol significantly accelerates the formation reaction with quite small doping quantities. Even for only 1 methanol molecule per 10 000 water molecules, the maximum uptake rate of propane into CHs is enhanced and the initiation pressure is reduced. These results enable more efficient production of CHs for gas storage. This remarkable acceleration of the CH formation reaction by small quantities of methanol may place constraints on the mechanism of the inhibition effect observed under other conditions, usually employing much larger quantities of methanol. PMID:27275862

  9. Spirit Takes a Turn for Adirondack

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This rear hazard-identification camera image looks back at the circular tracks made in the martian soil when the Mars Exploration Rover Spirit drove about 3 meters (10 feet) toward the mountain-shaped rock called Adirondack, Spirit's first rock target. Spirit made a series of arcing turns totaling approximately 1 meter (3 feet). It then turned in place and made a series of short, straightforward movements totaling approximately 2 meters (6.5 feet). The drive took about 30 minutes to complete, including time stopped to take images. The two rocks in the upper left corner of the image are called 'Sashimi' and 'Sushi.' In the upper right corner is a portion of the lander, now known as the Columbia Memorial Station.

  10. Mass spectrometry with accelerators.

    PubMed

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  11. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Obayashi, Tatsuzo

    1988-01-01

    The purpose of Space Experiments with Particle Accelerators (SEPAC) on the Atmospheric Laboratory for Applications and Science (ATLAS 1) mission, is to carry out active and interactive experiments on and in the earth's ionosphere, atmosphere, and magnetosphere. The instruments to be used are an electron beam accelerator (EBA), plasma contactor, and associated instruments the purpose of which is to perform diagnostic, monitoring, and general data taking functions. Four major classes of investigations are to be performed by SEPAC. They are: beam plasma physics, beam-atmosphere interactions, the use of modulated electron beams as transmitting antennas, and the use of electron beams for remote sensing of electric and magnetic fields. The first class consists mainly of onboard plasma physics experiments to measure the effects of phenomena in the vicinity of the shuttle. The last three are concerned with remote effects and are supported by other ATLAS 1 investigations as well as by ground-based observations.

  12. Accelerator research studies

    SciTech Connect

    Not Available

    1992-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the first year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams, TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams; TASK C, Study of a Gyroklystron High-power Microwave Source for Linear Colliders. In this report we document the progress that has been made during the past year for each of the three tasks.

  13. Accelerators for Cancer Therapy

    DOE R&D Accomplishments Database

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  14. SUPERDIFFUSIVE SHOCK ACCELERATION

    SciTech Connect

    Perri, S.; Zimbardo, G.

    2012-05-10

    The theory of diffusive shock acceleration is extended to the case of superdiffusive transport, i.e., when the mean square deviation grows proportionally to t{sup {alpha}}, with {alpha} > 1. Superdiffusion can be described by a statistical process called Levy random walk, in which the propagator is not a Gaussian but it exhibits power-law tails. By using the propagator appropriate for Levy random walk, it is found that the indices of energy spectra of particles are harder than those obtained where a normal diffusion is envisaged, with the spectral index decreasing with the increase of {alpha}. A new scaling for the acceleration time is also found, allowing substantially shorter times than in the case of normal diffusion. Within this framework we can explain a number of observations of flat spectra in various astrophysical and heliospheric contexts, for instance, for the Crab Nebula and the termination shock of the solar wind.

  15. Accelerated expansion through interaction

    SciTech Connect

    Zimdahl, Winfried

    2009-05-01

    Interactions between dark matter and dark energy with a given equation of state are known to modify the cosmic dynamics. On the other hand, the strength of these interactions is subject to strong observational constraints. Here we discuss a model in which the transition from decelerated to accelerated expansion of the Universe arises as a pure interaction phenomenon. Various cosmological scenarios that describe a present stage of accelerated expansion, like the {lambda}CDM model or a (generalized) Chaplygin gas, follow as special cases for different interaction rates. This unifying view on the homogeneous and isotropic background level is accompanied by a non-adiabatic perturbation dynamics which can be seen as a consequence of a fluctuating interaction rate.

  16. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1971-01-01

    Experimental data were combined with one-dimensional conservation relations to yield information on the energy deposition ratio in a parallel-plate accelerator, where the downstream flow was confined to a constant area channel. Approximately 70% of the total input power was detected in the exhaust flow, of which only about 20% appeared as directed kinetic energy, thus implying that a downstream expansion to convert chamber enthalpy into kinetic energy must be an important aspect of conventional high power MPD arcs. Spectroscopic experiments on a quasi-steady MPD argon accelerator verified the presence of A(III) and the absence of A(I), and indicated an azimuthal structure in the jet related to the mass injection locations. Measurements of pressure in the arc chamber and impact pressure in the exhaust jet using a piezocrystal backed by a Plexiglas rod were in good agreement with the electromagnetic thrust model.

  17. Commissioning the GTA accelerator

    SciTech Connect

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P. Stevens, R.R. Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V.; Connolly, R.; Weiss, R.; Saadatmand, K.

    1992-09-01

    The Ground Test Accelerator (GTA) is supported by the Strategic Defense command as part of their Neutral Particle Beam (NPB) program. Neutral particles have the advantage that in space they are unaffected by the earth`s magnetic field and travel in straight lines unless they enter the earth`s atmosphere and become charged by stripping. Heavy particles are difficult to stop and can probe the interior of space vehicles; hence, NPB can function as a discriminator between warheads and decoys. We are using GTA to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H{sup -} beam and then neutralizing it. Our immediate goal is to produce a 24-MeV, 50mA device with a 2% duty factor.

  18. Adaptive control for accelerators

    DOEpatents

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  19. Fever and Taking Your Child's Temperature

    MedlinePlus

    ... About Zika & Pregnancy Fever and Taking Your Child's Temperature KidsHealth > For Parents > Fever and Taking Your Child's ... a mercury thermometer.) previous continue Tips for Taking Temperatures As any parent knows, taking a squirming child's ...

  20. Modulational effects in accelerators

    SciTech Connect

    Satogata, T.

    1997-12-01

    We discuss effects of field modulations in accelerators, specifically those that can be used for operational beam diagnostics and beam halo control. In transverse beam dynamics, combined effects of nonlinear resonances and tune modulations influence diffusion rates with applied tune modulation has been demonstrated. In the longitudinal domain, applied RF phase and voltage modulations provide mechanisms for parasitic halo transport, useful in slow crystal extraction. Experimental experiences with transverse tune and RF modulations are also discussed.