Science.gov

Sample records for accelerations technique swat

  1. SWAT system performance predictions. Project report. [SWAT (Short-Wavelength Adaptive Techniques)

    SciTech Connect

    Parenti, R.R.; Sasiela, R.J.

    1993-03-10

    In the next phase of Lincoln Laboratory's SWAT (Short-Wavelength Adaptive Techniques) program, the performance of a 241-actuator adaptive-optics system will be measured using a variety of synthetic-beacon geometries. As an aid in this experimental investigation, a detailed set of theoretical predictions has also been assembled. The computational tools that have been applied in this study include a numerical approach in which Monte-Carlo ray-trace simulations of accumulated phase error are developed, and an analytical analysis of the expected system behavior. This report describes the basis of these two computational techniques and compares their estimates of overall system performance. Although their regions of applicability tend to be complementary rather than redundant, good agreement is usually obtained when both sets of results can be derived for the same engagement scenario.... Adaptive optics, Phase conjugation, Atmospheric turbulence Synthetic beacon, Laser guide star.

  2. Assessing subjective workload assessment - A comparison of SWAT and the NASA-bipolar methods. [Subjective Workload Assessment Technique

    NASA Technical Reports Server (NTRS)

    Vidulich, M. A.; Tsang, P. S.

    1985-01-01

    The Subjective Workload Assessment Technique (SWAT) and the NASA weighted-bipolar method used for evaluating subjective workload assessment are compared. The application of these methods to the rating of single- and dual-task trials of tracking and spatial transformation is described. The methods used to collect the ratings for the SWAT and bipolar technique are examined. Analysis of the transformation-tracking data reveal that the two assessment techniques produce similar results and both measure the differences in task difficulty. The positive and negative characteristics of each technique are analyzed.

  3. Network acceleration techniques

    NASA Technical Reports Server (NTRS)

    Crowley, Patricia (Inventor); Awrach, James Michael (Inventor); Maccabe, Arthur Barney (Inventor)

    2012-01-01

    Splintered offloading techniques with receive batch processing are described for network acceleration. Such techniques offload specific functionality to a NIC while maintaining the bulk of the protocol processing in the host operating system ("OS"). The resulting protocol implementation allows the application to bypass the protocol processing of the received data. Such can be accomplished this by moving data from the NIC directly to the application through direct memory access ("DMA") and batch processing the receive headers in the host OS when the host OS is interrupted to perform other work. Batch processing receive headers allows the data path to be separated from the control path. Unlike operating system bypass, however, the operating system still fully manages the network resource and has relevant feedback about traffic and flows. Embodiments of the present disclosure can therefore address the challenges of networks with extreme bandwidth delay products (BWDP).

  4. Classification and ordination of understory vegetation using multivariate techniques in the Pinus wallichiana forests of Swat Valley, northern Pakistan

    NASA Astrophysics Data System (ADS)

    Rahman, Inayat Ur; Khan, Nasrullah; Ali, Kishwar

    2017-04-01

    An understory vegetation survey of the Pinus wallichiana-dominated temperate forests of Swat District was carried out to inspect the structure, composition and ecological associations of the forest vegetation. A quadrat method of sampling was used to record the floristic and phytosociological data necessary for the analysis using 300 quadrats of 10 × 10 m each. Some vegetation parameters viz. frequency and density for trees (overstory vegetation) as well as for the understory vegetation were recorded. The results revealed that in total, 92 species belonging to 77 different genera and 45 families existed in the area. The largest families were Asteraceae, Rosaceae and Lamiaceae with 12, ten and nine species, respectively. Ward's agglomerative cluster analysis for tree species resulted in three floristically and ecologically distinct community types along different topographic and soil variables. Importance value indices (IVI) were also calculated for understory vegetation and were subjected to ordination techniques, i.e. canonical correspondence analysis (CCA) and detrended correspondence analysis (DCA). DCA bi-plots for stands show that most of the stands were scattered around the centre of the DCA bi-plot, identified by two slightly scattered clusters. DCA for species bi-plot clearly identified three clusters of species revealing three types of understory communities in the study area. Results of the CCA were somewhat different from the DCA showing the impact of environmental variables on the understory species. CCA results reveal that three environmental variables, i.e. altitude, slope and P (mg/kg), have a strong influence on distribution of stands and species. Impact of tree species on the understory vegetation was also tested by CCA which showed that four tree species, i.e. P. wallichiana A.B. Jackson, Juglans regia Linn., Quercus dilatata Lindl. ex Royle and Cedrus deodara (Roxb. ex Lamb.) G. Don, have strong influences on associated understory vegetation. It

  5. Compensation Techniques in Accelerator Physics

    SciTech Connect

    Sayed, Hisham Kamal

    2011-05-01

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  6. Classification and ordination of understory vegetation using multivariate techniques in the Pinus wallichiana forests of Swat Valley, northern Pakistan.

    PubMed

    Rahman, Inayat Ur; Khan, Nasrullah; Ali, Kishwar

    2017-04-01

    An understory vegetation survey of the Pinus wallichiana-dominated temperate forests of Swat District was carried out to inspect the structure, composition and ecological associations of the forest vegetation. A quadrat method of sampling was used to record the floristic and phytosociological data necessary for the analysis using 300 quadrats of 10 × 10 m each. Some vegetation parameters viz. frequency and density for trees (overstory vegetation) as well as for the understory vegetation were recorded. The results revealed that in total, 92 species belonging to 77 different genera and 45 families existed in the area. The largest families were Asteraceae, Rosaceae and Lamiaceae with 12, ten and nine species, respectively. Ward's agglomerative cluster analysis for tree species resulted in three floristically and ecologically distinct community types along different topographic and soil variables. Importance value indices (IVI) were also calculated for understory vegetation and were subjected to ordination techniques, i.e. canonical correspondence analysis (CCA) and detrended correspondence analysis (DCA). DCA bi-plots for stands show that most of the stands were scattered around the centre of the DCA bi-plot, identified by two slightly scattered clusters. DCA for species bi-plot clearly identified three clusters of species revealing three types of understory communities in the study area. Results of the CCA were somewhat different from the DCA showing the impact of environmental variables on the understory species. CCA results reveal that three environmental variables, i.e. altitude, slope and P (mg/kg), have a strong influence on distribution of stands and species. Impact of tree species on the understory vegetation was also tested by CCA which showed that four tree species, i.e. P. wallichiana A.B. Jackson, Juglans regia Linn., Quercus dilatata Lindl. ex Royle and Cedrus deodara (Roxb. ex Lamb.) G. Don, have strong influences on associated understory vegetation

  7. Techniques to accelerate dynamic psychotherapy.

    PubMed

    Fosha, D; Slowiaczek, M L

    1997-01-01

    The techniques described above outline specific ways to deepen the patient's affective experience within an emotionally close therapeutic relationship. When effective, they all enhance the patient/therapist bond, raise self-esteem, reduce defensiveness and anxiety, and facilitate emotional healing. Psychodynamic treatment, long or short, is a complex process uniquely constructed by each therapist/patient pair. AEDP strategies are not intended as recipes for treatment. Good dynamic work depends on the therapist's ability to grasp the patient's capacities and limitations, understand relational dynamics, and interact with the patient in an empathically attuned, emotionally receptive, and flexible way. In that context, these strategies can be helpful tools to facilitate and accelerate the process. The choices made by AEDP--privileging adaptive strivings over defensive reactions, the stance of emotional engagement rather than neutrality and abstinence, the focus on health and change over pathology and stasis--are informed by traditional STDP aims to maximize depth, effectiveness, and efficiency. AEDP's contribution is a set of techniques relying on a response repertoire that is available to a wide range of therapists. Therapists can use these techniques to be more effective while simultaneously retaining the experience of speaking with patients in an authentic voice.

  8. Force reconstruction using the sum of weighted accelerations technique -- Max-Flat procedure

    SciTech Connect

    Carne, T.G.; Mayes, R.L.; Bateman, V.I.

    1993-12-31

    Force reconstruction is a procedure in which the externally applied force is inferred from measured structural response rather than directly measured. In a recently developed technique, the response acceleration time-histories are multiplied by scalar weights and summed to produce the reconstructed force. This reconstruction is called the Sum of Weighted Accelerations Technique (SWAT). One step in the application of this technique is the calculation of the appropriate scalar weights. In this paper a new method of estimating the weights, using measured frequency response function data, is developed and contrasted with the traditional SWAT method of inverting the mode-shape matrix. The technique uses frequency response function data, but is not based on deconvolution. An application that will be discussed as part of this paper is the impact into a rigid barrier of a weapon system with an energy-absorbing nose. The nose had been designed to absorb the energy of impact and to mitigate the shock to the interior components.

  9. Enhancing healthcare education with accelerated learning techniques.

    PubMed

    Henry, S A; Swartz, R G

    1995-01-01

    In this article, the authors describe innovative teaching techniques that create a learning environment addressing nonverbal and verbal communication. The use of these accelerated learning techniques in a Basic Cardiac Dysrhythmia Course is discussed, and participant learning is measured and analyzed. When these methods, including relaxation, music, and subliminal messages were used, participant exam grades improved. The authors concluded that these simple procedures enhance learning and increase the effectiveness of teaching.

  10. Investigation of Accelerated Life Prediction Techniques

    DTIC Science & Technology

    1975-10-01

    1974, AD 784 188. 2. Rabinowicz , E., McEntire, R. H., and Shwalkar, B., A TECHNIQUE FOR ACCELERATED LIFE TESTING, Trans. ASME, August 1970, pp...706-710. 3. Rabinowicz , E., FRICTION AND WEAR OF MATERIALS, New York, John Wiley and Sons, 1966. 4. MacGregor, C. W. (ed), HANDBOOK OF

  11. On Convergence Acceleration Techniques for Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1998-01-01

    A discussion of convergence acceleration techniques as they relate to computational fluid dynamics problems on unstructured meshes is given. Rather than providing a detailed description of particular methods, the various different building blocks of current solution techniques are discussed and examples of solution strategies using one or several of these ideas are given. Issues relating to unstructured grid CFD problems are given additional consideration, including suitability of algorithms to current hardware trends, memory and cpu tradeoffs, treatment of non-linearities, and the development of efficient strategies for handling anisotropy-induced stiffness. The outlook for future potential improvements is also discussed.

  12. Analysis techniques for residual acceleration data

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Alexander, J. Iwan D.; Snyder, Robert S.

    1990-01-01

    Various aspects of residual acceleration data are of interest to low-gravity experimenters. Maximum and mean values and various other statistics can be obtained from data as collected in the time domain. Additional information may be obtained through manipulation of the data. Fourier analysis is discussed as a means of obtaining information about dominant frequency components of a given data window. Transformation of data into different coordinate axes is useful in the analysis of experiments with different orientations and can be achieved by the use of a transformation matrix. Application of such analysis techniques to residual acceleration data provides additional information than what is provided in a time history and increases the effectiveness of post-flight analysis of low-gravity experiments.

  13. Advance techniques for monitoring human tolerance to positive Gz accelerations

    NASA Technical Reports Server (NTRS)

    Pelligra, R.; Sandler, H.; Rositano, S.; Skrettingland, K.; Mancini, R.

    1973-01-01

    Tolerance to positive g accelerations was measured in ten normal male subjects using both standard and advanced techniques. In addition to routine electrocardiogram, heart rate, respiratory rate, and infrared television, monitoring techniques during acceleration exposure included measurement of peripheral vision loss, noninvasive temporal, brachial, and/or radial arterial blood flow, and automatic measurement of indirect systolic and diastolic blood pressure at 60-sec intervals. Although brachial and radial arterial flow measurements reflected significant cardiovascular changes during and after acceleration, they were inconsistent indices of the onset of grayout or blackout. Temporal arterial blood flow, however, showed a high correlation with subjective peripheral light loss.

  14. A new acceleration technique for the design of fibre gratings.

    PubMed

    Carvalho, J C C; Sousa, M J; Sales Júnior, C S; Costa, J C W A; Francês, C R L; Segatto, M E V

    2006-10-30

    In this paper we propose a novel acceleration technique for the design of fibre gratings based on Genetic Algorithm (GA). It is shown that with an appropriate reformulation of the wavelength sampling scheme it is possible to design high quality optical filters with low computational effort. Our results will show that the proposed technique can reduce significantly the GA's processing time.

  15. Accelerator based techniques for contraband detection

    NASA Astrophysics Data System (ADS)

    Vourvopoulos, George

    1994-05-01

    It has been shown that narcotics, explosives, and other contraband materials, contain various chemical elements such as H, C, N, O, P, S, and Cl in quantities and ratios that differentiate them from each other and from other innocuous substances. Neutrons and γ-rays have the ability to penetrate through various materials at large depths. They are thus able, in a non-intrusive way, to interrogate volumes ranging from suitcases to Sea-Land containers, and have the ability to image the object with an appreciable degree of reliability. Neutron induced reactions such as (n, γ), (n, n') (n, p) or proton induced γ-resonance absorption are some of the reactions currently investigated for the identification of the chemical elements mentioned above. Various DC and pulsed techniques are discussed and their advantages, characteristics, and current progress are shown. Areas where use of these methods is currently under evaluation are detection of hidden explosives, illicit drug interdiction, chemical war agents identification, nuclear waste assay, nuclear weapons destruction and others.

  16. Advance techniques for monitoring human tolerance to +Gz accelerations.

    NASA Technical Reports Server (NTRS)

    Pelligra, R.; Sandler, H.; Rositano, S.; Skrettingland, K.; Mancini, R.

    1972-01-01

    Standard techniques for monitoring the acceleration-stressed human subject have been augmented by measuring (1) temporal, brachial and/or radial arterial blood flow, and (2) indirect systolic and diastolic blood pressure at 60-sec intervals. Results show that the response of blood pressure to positive accelerations is complex and dependent on an interplay of hydrostatic forces, diminishing venous return, redistribution of blood, and other poorly defined compensatory reflexes.

  17. ACCELERATORS: Alignment techniques for DRAGON-I LIA

    NASA Astrophysics Data System (ADS)

    Dai, Zhi-Yong; Xie, Yu-Tong; Li, Hong; Zhang, Wen-Wei; Liu, Yun-Long; Pan, Hai-Feng; Zhang, Lin-Wen; Deng, Jian-Jun

    2009-09-01

    DRAGON-I designed and manufactured by CAEP is a linear induction accelerator which can produce a 20 MeV-3 kA-60 ns electron beam. The high performance required for the machine is determined by the beam quality and thus is greatly dependent on the accelerator alignment. In order to reduce the chromatic effect of the beam, the stretched wire technique has been developed to measure magnetic axes of the cells precisely, and the dipole steering magnets have been equipped into each cell to correct its magnetic axis misalignment. Finally, the laser tracker has been used to examine the installation error of the accelerator. In this paper, different alignment techniques and the primary results are presented and discussed.

  18. GPU accelerating technique for rendering implicitly represented vasculatures.

    PubMed

    Hong, Qingqi; Wang, Beizhan; Li, Qingde; Li, Yan; Wu, Qingqiang

    2014-01-01

    With the flooding datasets of medical Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), implicit modeling techniques are increasingly applied to reconstruct the human organs, especially the vasculature. However, displaying implicitly represented geometric objects arises heavy computational burden. In this study, a Graphics Processing Unit (GPU) accelerating technique was developed for high performance rendering of implicitly represented objects, especially the vasculatures. The experimental results suggested that the rendering performance was greatly enhanced via exploiting the advantages of modern GPUs.

  19. Accelerated Peer-Review Journal Usage Technique for Undergraduates

    ERIC Educational Resources Information Center

    Wallace, J. D.

    2008-01-01

    The internet has given undergraduate students ever-increasing access to academic journals via search engines and online databases. However, students typically do not have the ability to use these journals effectively. This often poses a dilemma for instructors. The accelerated peer-review journal usage (APJU) technique provides a way for…

  20. Statistical Modeling of Photovoltaic Reliability Using Accelerated Degradation Techniques (Poster)

    SciTech Connect

    Lee, J.; Elmore, R.; Jones, W.

    2011-02-01

    We introduce a cutting-edge life-testing technique, accelerated degradation testing (ADT), for PV reliability testing. The ADT technique is a cost-effective and flexible reliability testing method with multiple (MADT) and Step-Stress (SSADT) variants. In an environment with limited resources, including equipment (chambers), test units, and testing time, these techniques can provide statistically rigorous prediction of lifetime and other interesting parameters, such as failure rate, warranty time, mean time to failure, degradation rate, activation energy, acceleration factor, and upper limit level of stress. J-V characterization can be used for degradation data and the generalized Eyring model can be used for the thermal-humidity stress condition. The SSADT model can be constructed based on the cumulative damage model (CEM), which assumes that the remaining test united are failed according to cumulative density function of current stress level regardless of the history on previous stress levels.

  1. ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES

    SciTech Connect

    Sampayan, S; Caporaso, G; Chen, Y; Carazo, V; Falabella, S; Guethlein, G; Guse, S; Harris, J R; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Paul, A C; Pearson, D; Poole, B; Schmidt, R; Sanders, D; Selenes, K; Sitaraman, S; Sullivan, J; Wang, L; Watson, J

    2009-06-11

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve {approx}10 MV/m gradients for 10s of nanoseconds pulses and to {approx}100 MV/m gradients for {approx}1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We detail the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  2. ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES

    SciTech Connect

    Sampayan, S.; Caporaso, G.; Chen, Y.-J.; Falabella, S.; Guethlein, G.; Harris, J. R.; Hawkins, S.; Holmes, C.; Nelson, S.; Paul, A. C.; Poole, B.; Sanders, D.; Sitaraman, S.; Sullivan, J.; Wang, L.; Watson, J.; Carazo, V.; Guse, S.; Pearson, D.; Schmidt, R.

    2009-12-02

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve approx10 MV/m gradients for 10 s of nanoseconds pulses and approx100 MV/m gradients for approx1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We describe the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  3. Analysis of Cultural Heritage by Accelerator Techniques and Analytical Imaging

    NASA Astrophysics Data System (ADS)

    Ide-Ektessabi, Ari; Toque, Jay Arre; Murayama, Yusuke

    2011-12-01

    In this paper we present the result of experimental investigation using two very important accelerator techniques: (1) synchrotron radiation XRF and XAFS; and (2) accelerator mass spectrometry and multispectral analytical imaging for the investigation of cultural heritage. We also want to introduce a complementary approach to the investigation of artworks which is noninvasive and nondestructive that can be applied in situ. Four major projects will be discussed to illustrate the potential applications of these accelerator and analytical imaging techniques: (1) investigation of Mongolian Textile (Genghis Khan and Kublai Khan Period) using XRF, AMS and electron microscopy; (2) XRF studies of pigments collected from Korean Buddhist paintings; (3) creating a database of elemental composition and spectral reflectance of more than 1000 Japanese pigments which have been used for traditional Japanese paintings; and (4) visible light-near infrared spectroscopy and multispectral imaging of degraded malachite and azurite. The XRF measurements of the Japanese and Korean pigments could be used to complement the results of pigment identification by analytical imaging through spectral reflectance reconstruction. On the other hand, analysis of the Mongolian textiles revealed that they were produced between 12th and 13th century. Elemental analysis of the samples showed that they contained traces of gold, copper, iron and titanium. Based on the age and trace elements in the samples, it was concluded that the textiles were produced during the height of power of the Mongol empire, which makes them a valuable cultural heritage. Finally, the analysis of the degraded and discolored malachite and azurite demonstrates how multispectral analytical imaging could be used to complement the results of high energy-based techniques.

  4. New modes of particle accelerations techniques and sources. Formal report

    SciTech Connect

    Parsa, Z.

    1996-12-31

    This Report includes copies of transparencies and notes from the presentations made at the Symposium on New Modes of Particle Accelerations - Techniques and Sources, August 19-23, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report.

  5. FEM Techniques for High Stress Detection in Accelerated Fatigue Simulation

    NASA Astrophysics Data System (ADS)

    Veltri, M.

    2016-09-01

    This work presents the theory and a numerical validation study in support to a novel method for a priori identification of fatigue critical regions, with the aim to accelerate durability design in large FEM problems. The investigation is placed in the context of modern full-body structural durability analysis, where a computationally intensive dynamic solution could be required to identify areas with potential for fatigue damage initiation. The early detection of fatigue critical areas can drive a simplification of the problem size, leading to sensible improvement in solution time and model handling while allowing processing of the critical areas in higher detail. The proposed technique is applied to a real life industrial case in a comparative assessment with established practices. Synthetic damage prediction quantification and visualization techniques allow for a quick and efficient comparison between methods, outlining potential application benefits and boundaries.

  6. R-SWAT-FME user's guide

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shu-Guang

    2012-01-01

    R program language-Soil and Water Assessment Tool-Flexible Modeling Environment (R-SWAT-FME) (Wu and Liu, 2012) is a comprehensive modeling framework that adopts an R package, Flexible Modeling Environment (FME) (Soetaert and Petzoldt, 2010), for the Soil and Water Assessment Tool (SWAT) model (Arnold and others, 1998; Neitsch and others, 2005). This framework provides the functionalities of parameter identifiability, model calibration, and sensitivity and uncertainty analysis with instant visualization. This user's guide shows how to apply this framework for a customized SWAT project.

  7. Fast Imaging Technique for fMRI: Consecutive Multishot Echo Planar Imaging Accelerated with GRAPPA Technique.

    PubMed

    Kang, Daehun; Sung, Yul-Wan; Kang, Chang-Ki

    2015-01-01

    This study was to evaluate the proposed consecutive multishot echo planar imaging (cmsEPI) combined with a parallel imaging technique in terms of signal-to-noise ratio (SNR) and acceleration for a functional imaging study. We developed cmsEPI sequence using both consecutively acquired multishot EPI segments and variable flip angles to minimize the delay between segments and to maximize the SNR, respectively. We also combined cmsEPI with the generalized autocalibrating partially parallel acquisitions (GRAPPA) method. Temporal SNRs were measured at different acceleration factors and number of segments for functional sensitivity evaluation. We also examined the geometric distortions, which inherently occurred in EPI sequence. The practical acceleration factors, R = 2 or R = 3, of the proposed technique improved the temporal SNR by maximally 18% in phantom test and by averagely 8.2% in in vivo experiment, compared to cmsEPI without parallel imaging. The data collection time was decreased in inverse proportion to the acceleration factor as well. The improved temporal SNR resulted in better statistical power when evaluated on the functional response of the brain. In this study, we demonstrated that the combination of cmsEPI with the parallel imaging technique could provide the improved functional sensitivity for functional imaging study, compensating for the lower SNR by cmsEPI.

  8. Fast Imaging Technique for fMRI: Consecutive Multishot Echo Planar Imaging Accelerated with GRAPPA Technique

    PubMed Central

    Kang, Daehun; Sung, Yul-Wan; Kang, Chang-Ki

    2015-01-01

    This study was to evaluate the proposed consecutive multishot echo planar imaging (cmsEPI) combined with a parallel imaging technique in terms of signal-to-noise ratio (SNR) and acceleration for a functional imaging study. We developed cmsEPI sequence using both consecutively acquired multishot EPI segments and variable flip angles to minimize the delay between segments and to maximize the SNR, respectively. We also combined cmsEPI with the generalized autocalibrating partially parallel acquisitions (GRAPPA) method. Temporal SNRs were measured at different acceleration factors and number of segments for functional sensitivity evaluation. We also examined the geometric distortions, which inherently occurred in EPI sequence. The practical acceleration factors, R = 2 or R = 3, of the proposed technique improved the temporal SNR by maximally 18% in phantom test and by averagely 8.2% in in vivo experiment, compared to cmsEPI without parallel imaging. The data collection time was decreased in inverse proportion to the acceleration factor as well. The improved temporal SNR resulted in better statistical power when evaluated on the functional response of the brain. In this study, we demonstrated that the combination of cmsEPI with the parallel imaging technique could provide the improved functional sensitivity for functional imaging study, compensating for the lower SNR by cmsEPI. PMID:26413518

  9. Grid based calibration of SWAT hydrological models

    NASA Astrophysics Data System (ADS)

    Gorgan, D.; Bacu, V.; Mihon, D.; Rodila, D.; Abbaspour, K.; Rouholahnejad, E.

    2012-07-01

    The calibration and execution of large hydrological models, such as SWAT (soil and water assessment tool), developed for large areas, high resolution, and huge input data, need not only quite a long execution time but also high computation resources. SWAT hydrological model supports studies and predictions of the impact of land management practices on water, sediment, and agricultural chemical yields in complex watersheds. The paper presents the gSWAT application as a web practical solution for environmental specialists to calibrate extensive hydrological models and to run scenarios, by hiding the complex control of processes and heterogeneous resources across the grid based high computation infrastructure. The paper highlights the basic functionalities of the gSWAT platform, and the features of the graphical user interface. The presentation is concerned with the development of working sessions, interactive control of calibration, direct and basic editing of parameters, process monitoring, and graphical and interactive visualization of the results. The experiments performed on different SWAT models and the obtained results argue the benefits brought by the grid parallel and distributed environment as a solution for the processing platform. All the instances of SWAT models used in the reported experiments have been developed through the enviroGRIDS project, targeting the Black Sea catchment area.

  10. Improved simulation of edaphic and manure phosphorus loss in SWAT and TopoSWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watershed models such as the Soil Water Assessment Tool (SWAT) and (APEX) are widely used to assess the consequences of agricultural nutrient management practices on soluble and particulate phosphorus (P) loss in runoff. Soil P cycling routines used in SWAT2012, however, do not simulate the short-te...

  11. Fastest Electropolishing Technique on Niobium for Particle Accelerators

    SciTech Connect

    A.T. Wu, S. Jin, R.A. Rimmer, X.Y. Lu, K. Zhao

    2011-09-01

    Field emission on the inner surfaces of niobium (Nb) superconducting radio frequency (SRF) cavities is still one of the major obstacles for reaching high accelerating gradients for SRF community. Our previous experimental results [1] seemed to imply that the threshold of field emission was related to the thickness of Nb surface oxide layers. In this contribution, a more detailed study on the influences of the surface oxide layers on the field emission on Nb surfaces will be reported. By anodization technique, the thickness of the surface pentoxide layer was artificially fabricated from 3nm up to 460nm. A home-made scanning field emission microscope (SFEM) was employed to perform the scans on the surfaces. Emitters were characterized using a scanning electron microscope together with an energy dispersive x-ray analyzer. The experimental results could be understood by a simple model calculation based on classic electromagnetic theory as shown in Ref.1. Possibly implications for Nb SRF cavity applications from this study will be discussed.

  12. Erosion and runoff evaluation using the SWAT-T model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural terraces are an effective conservation practice to reduce concentrated flow erosion. Researchers have simulated terrace effects using the Soil and Water Assessment Tool (SWAT) by adjusting the slope length and the USLE Practice P-factor. An algorithm was incorporated into SWAT (SWAT-Ter...

  13. A fully integrated SWAT-MODFLOW hydrologic model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil and Water Assessment Tool (SWAT) and MODFLOW models are being used worldwide for managing surface and groundwater water resources. The SWAT models hydrological processes occurring at the surface including shallow aquifers, while MODFLOW simulate groundwater processes. However, neither SWAT ...

  14. Novel production techniques of radioisotopes using electron accelerators

    NASA Astrophysics Data System (ADS)

    Lowe, Daniel Robert

    Non-traditional radioisotope production techniques using a compact, high power linear electron accelerator have been demonstrated and characterized for the production of 18F, 47Sc, 147 Pm, and 99mTc from a variety of target candidates. These isotopes are used extensively in the medical field as diagnostic and therapy radioisotopes, as well as the space industry as RTG's. Primary focus was placed on 99mTc as it constitutes approximately 80% of all diagnostic procedures in the medical community that use radioactive tracers. It was also the prime focus due to recent events at the Chalk River nuclear reactor, which caused global shortages of this isotope a few years ago. A Varian K15 LINAC was first used to show proof of principle in Las Vegas. Various samples were then taken to the Idaho Accelerator Center where they were activated using an electron LINAC capable of electron energies from 4 to 25 MeV at a beam power of approximately 1 kW. Production rates, cross sections, and viability studies were then performed and conducted to assess the effectiveness of the candidate target and the maximum production rate for each radioisotope. Production rates for 18F from lithium fluoride salts were shown to be ideal at 21MeV, namely 1.7 Ci per kg of LiF salt, per kW of beam current, per 10 hour irradiation time. As the typical hospital consumption of 18F is around 500 mCi per day, it is clear that a large amount of 18F can be made from a small (300 gram) sample of LiF salt. However, since there is no current separation process for 18F from 19F, the viability of this technique is limited until a separations technique is developed. Furthermore, the calculated cross section for this reaction is in good agreement with literature, which supports the techniques for the isotopes mentioned below. Production rates for 47Sc from vanadium oxide targets were shown to be a maximum at 25 MeV with a production rate of 2 mCi per day, assuming a 2 kW beam and a 10 kg target. While this

  15. Techniques for increasing the reliability of accelerator control system electronics

    SciTech Connect

    Utterback, J.

    1993-09-01

    As the physical size of modern accelerators becomes larger and larger, the number of required control system circuit boards increases, and the probability of one of those circuit boards failing while in service also increases. In order to do physics, the experimenters need the accelerator to provide beam reliably with as little down time as possible. With the advent of colliding beams physics, reliability becomes even more important due to the fact that a control system failure can cause the loss of painstakingly produced antiprotons. These facts prove the importance of keeping reliability in mind when designing and maintaining accelerator control system electronics.

  16. Some acceleration techniques for calculating the eigenvalues of normal Toeplitz matrices

    NASA Astrophysics Data System (ADS)

    Abdikalykov, A. K.; Ikramov, Kh. D.; Chugunov, V. N.

    2014-12-01

    Certain techniques that can be used for accelerating the calculation of the eigenvalues of normal Toeplitz matrices are described. The run times of the standard Matlab procedure eig with and without the use of these techniques are compared.

  17. Hydrological Modelling of Small Catchments Using Swat

    NASA Astrophysics Data System (ADS)

    Kannan, N.; White, S. M.; Worrall, F.; Groves, S.

    The data from a 142ha catchment in Eastern England(Colworth, Bedfordshire)are be- ing used to investigate the performance of the USDA SWAT software for modelling hydrology of small catchments. Stream flow at the catchment outlet has been mon- itored since October 1999. About 50% of the total catchment is directly controlled within one farm and a rotation of wheat, oil seed rape, grass, linseed, beans and peas is grown. Three years of stream flow and climate data are available. Calibration and validation of stream flow was carried out with both runoff modelling options in the SWAT model (USDA curve number method and the Green and Ampt method). The Nash and Sutcliffe efficiencies for the calibration period were 66% and 63% respec- tively. The performance of SWAT was better in the validation period as a whole, with regard to timing of peaks, baseflow values and Nash and Sutcliffe efficiency. An ef- ficiency of 70% was obtained using the curve number method, which is comparable with the efficiencies obtainable with more complex models. Despite this performance, SWAT is under predicting stream flow peaks. A detailed investigation of important model components, has allowed us to identify some of the reasons for under predic- tion of stream flow peaks.

  18. Surface Soil Moisture Assimilation with SWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture is one of the most critical state variables in hydrologic modeling. Certain studies have demonstrated that assimilating observed surface soil moisture into a hydrologic model results in improved predictions of profile soil water content. With the Soil and Water Assessment Tool (SWAT), ...

  19. Accelerated corneal collagen crosslinking: Technique, efficacy, safety, and applications.

    PubMed

    Medeiros, Carla S; Giacomin, Natalia T; Bueno, Renata L; Ghanem, Ramon C; Moraes, Haroldo V; Santhiago, Marcony R

    2016-12-01

    Corneal collagen crosslinking (CXL) is an approach used to increase the biomechanical stability of the stromal tissue. Over the past 10 years, it has been used to halt the progression of ectatic diseases. According to the photochemical law of reciprocity, the same photochemical effect is achieved with reduced illumination time and correspondingly increased irradiation intensity. Several new CXL devices offer high ultraviolet-A irradiation intensity with different time settings. The main purpose of this review was to discuss the current use of different protocols of accelerated CXL and compare the efficacy and safety of accelerated CXL with the efficacy and safety of the established conventional method. Accelerated CXL proved to be safe and effective in halting progression of corneal ectasia. Corneal shape responses varied considerably, as did the demarcation line at different irradiance settings; the shorter the exposure time, the more superficial the demarcation line.

  20. Artifical intelligence techniques for tuning linear induction accelerators

    SciTech Connect

    Lager, D.; Brand, H.; Chambers, F.; Coffield, F.; Maurer, W.; Turner, W.

    1991-05-01

    We developed an expert system that acts as an intelligent assistant for tuning particle beam generators called MAESTRO, Model and Expert System Resource for Operators. MAESTRO maintains a knowledge base of the accelerator containing not only the interconnections of the beamline components, but also their physical attributes such as measured magnetic tilts, offsets, and field profiles. MAESTRO incorporates particle trajectory and beam envelope models which are coupled to the knowledge base permitting large numbers of real-time orbit and envelope calculations in the control-room environment. To date we have used this capability in three ways: First, to implement a tuning algorithm for minimizing transverse beam motion. Second, to produce a beam waist with arbitrary radius at the entrance to a brightness diagnostic. And finally, to measure beam energy along the accelerator by fitting orbits to focusing and steering sweeps.

  1. Electrochemical migration technique to accelerate ageing of cementitious materials

    NASA Astrophysics Data System (ADS)

    Babaahmadi, A.; Tang, L.; Abbas, Z.

    2013-07-01

    Durability assessment of concrete structures for constructions in nuclear waste repositories requires long term service life predictions. As deposition of low and intermediate level radioactive waste (LILW) takes up to 100 000 years, it is necessary to analyze the service life of cementitious materials in this time perspective. Using acceleration methods producing aged specimens would decrease the need of extrapolating short term data sets. Laboratory methods are therefore, needed for accelerating the ageing process without making any influencing distortion in the properties of the materials. This paper presents an electro-chemical migration method to increase the rate of calcium leaching from cementitious specimens. This method is developed based on the fact that major long term deterioration process of hardened cement paste in concrete structures for deposition of LILW is due to slow diffusion of calcium ions. In this method the cementitious specimen is placed in an electrochemical cell as a porous path way through which ions can migrate at a rate far higher than diffusion process. The electrical field is applied to the cell in a way to accelerate the ion migration without making destructions in the specimen's micro and macroscopic properties. The anolyte and catholyte solutions are designed favoring dissolution of calcium hydroxide and compensating for the leached calcium ions with another ion like lithium.

  2. Acceleration techniques in the univariate Lipschitz global optimization

    NASA Astrophysics Data System (ADS)

    Sergeyev, Yaroslav D.; Kvasov, Dmitri E.; Mukhametzhanov, Marat S.; De Franco, Angela

    2016-10-01

    Univariate box-constrained Lipschitz global optimization problems are considered in this contribution. Geometric and information statistical approaches are presented. The novel powerful local tuning and local improvement techniques are described in the contribution as well as the traditional ways to estimate the Lipschitz constant. The advantages of the presented local tuning and local improvement techniques are demonstrated using the operational characteristics approach for comparing deterministic global optimization algorithms on the class of 100 widely used test functions.

  3. Rotational Acceleration during Head Impact Resulting from Different Judo Throwing Techniques

    PubMed Central

    MURAYAMA, Haruo; HITOSUGI, Masahito; MOTOZAWA, Yasuki; OGINO, Masahiro; KOYAMA, Katsuhiro

    2014-01-01

    Most severe head injuries in judo are reported as acute subdural hematoma. It is thus necessary to examine the rotational acceleration of the head to clarify the mechanism of head injuries. We determined the rotational acceleration of the head when the subject is thrown by judo techniques. One Japanese male judo expert threw an anthropomorphic test device using two throwing techniques, Osoto-gari and Ouchigari. Rotational and translational head accelerations were measured with and without an under-mat. For Osoto-gari, peak resultant rotational acceleration ranged from 4,284.2 rad/s2 to 5,525.9 rad/s2 and peak resultant translational acceleration ranged from 64.3 g to 87.2 g; for Ouchi-gari, the accelerations respectively ranged from 1,708.0 rad/s2 to 2,104.1 rad/s2 and from 120.2 g to 149.4 g. The resultant rotational acceleration did not decrease with installation of an under-mat for both Ouchi-gari and Osoto-gari. We found that head contact with the tatami could result in the peak values of translational and rotational accelerations, respectively. In general, because kinematics of the body strongly affects translational and rotational accelerations of the head, both accelerations should be measured to analyze the underlying mechanism of head injury. As a primary preventative measure, throwing techniques should be restricted to participants demonstrating ability in ukemi techniques to avoid head contact with the tatami. PMID:24477065

  4. Rotational acceleration during head impact resulting from different judo throwing techniques.

    PubMed

    Murayama, Haruo; Hitosugi, Masahito; Motozawa, Yasuki; Ogino, Masahiro; Koyama, Katsuhiro

    2014-01-01

    Most severe head injuries in judo are reported as acute subdural hematoma. It is thus necessary to examine the rotational acceleration of the head to clarify the mechanism of head injuries. We determined the rotational acceleration of the head when the subject is thrown by judo techniques. One Japanese male judo expert threw an anthropomorphic test device using two throwing techniques, Osoto-gari and Ouchi-gari. Rotational and translational head accelerations were measured with and without an under-mat. For Osoto-gari, peak resultant rotational acceleration ranged from 4,284.2 rad/s(2) to 5,525.9 rad/s(2) and peak resultant translational acceleration ranged from 64.3 g to 87.2 g; for Ouchi-gari, the accelerations respectively ranged from 1,708.0 rad/s(2) to 2,104.1 rad/s(2) and from 120.2 g to 149.4 g. The resultant rotational acceleration did not decrease with installation of an under-mat for both Ouchi-gari and Osoto-gari. We found that head contact with the tatami could result in the peak values of translational and rotational accelerations, respectively. In general, because kinematics of the body strongly affects translational and rotational accelerations of the head, both accelerations should be measured to analyze the underlying mechanism of head injury. As a primary preventative measure, throwing techniques should be restricted to participants demonstrating ability in ukemi techniques to avoid head contact with the tatami.

  5. SWAT-CS(enm): Enhancing SWAT nitrate module for a Canadian Shield catchment.

    PubMed

    Zhang, Dejian; Chen, Xingwei; Yao, Huaxia

    2016-04-15

    Nonpoint source modeling using hydrological models has been extensively studied at agriculture and urban watersheds; however, this has not been well addressed in forested ones where agricultural sources are comparatively minimal and nitrogen deposition exerts remarkable impacts on the nutrient cycles of a catchment. Thus it is critically important for hydrological models to incorporate the dynamics of nitrogen deposition and its transport processes, for reasonable nitrogen modeling. This is especially so for the Canadian Shield, which is characterized by a cold climate and special physiographic features. A revision of Soil and Water Assessment Tool for Canadian Shield (SWAT-CS) was proposed by Fu et al. (2014) to better characterize the hydrological features. In this study, more revisions were added to better simulate processes of nitrate by: 1) incorporating the dynamics of nitrogen deposition; and 2) allowing the deposition to distribute along with rapid-moving macropore flows. The newly revised model, SWAT-CS(enm) (SWAT-CS with an Enhanced Nitrate Module), and SWAT-CS were calibrated and tested with data of a subbasin of Harp Lake in south-central Ontario for 1990 to 2007. Modeling performance of nitrate flux rate in the stream for SWAT-CS(enm) was nearly acceptable with maximum daily Nash-Sutcliffe efficiencies (ENSs) for calibration and validation periods of 0.66 and 0.43, respectively; whereas the result of SWAT-CS was generally unsatisfied with maximum daily ENSs of 0.16 and 0.07, respectively. An uncertainty analysis using GLUE (generalized likelihood uncertainty estimation) showed a modest performance as about 50% of observations can be incorporated by the 95% prediction range deriving from the behavioral solutions (ENS≥0.5) for both daily and monthly simulations. It is concluded that the enhanced nitrate module improved the model performance of SWAT-CS on nitrate modeling, since the previous SWAT-CS failed to consider the effect of dynamics of nitrogen

  6. Crystalline Indium Sulphide thin film by photo accelerated deposition technique

    NASA Astrophysics Data System (ADS)

    Dhanya, A. C.; Preetha, K. C.; Deepa, K.; Remadevi, T. L.

    2015-02-01

    Indium sulfide thin films deserve special attention because of its potential application as buffer layers in CIGS based solar cells. Highly transparent indium sulfide (InS) thin films were prepared using a novel method called photo accelerated chemical deposition (PCD). Ultraviolet source of 150 W was used to irradiate the solution. Compared to all other chemical methods, PCD scores its advantage for its low cost, flexible substrate and capable of large area of deposition. Reports on deposition of high quality InS thin films at room temperature are very rare in literature. The precursor solution was initially heated to 90°C for ten minutes and then deposition was carried out at room temperature for two hours. The appearance of the film changed from lemon yellow to bright yellow as the deposition time increased. The sample was characterized for its structural and optical properties. XRD profile showed the polycrystalline behavior of the film with mixed phases having crystallite size of 17 nm. The surface morphology of the films exhibited uniformly distributed honey comb like structures. The film appeared to be smooth and the value of extinction coefficient was negligible. Optical measurements showed that the film has more than 80% transmission in the visible region. The direct band gap energy was 2.47eV. This method is highly suitable for the synthesis of crystalline and transparent indium sulfide thin films and can be used for various photo voltaic applications.

  7. Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques

    PubMed Central

    Mohammed, Muzaffer; Clement, Travis C.; Aslan, Kadir

    2014-01-01

    In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400–800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72–24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally. PMID:25568813

  8. Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques.

    PubMed

    Mohammed, Muzaffer; Clement, Travis C; Aslan, Kadir

    2014-12-02

    In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400-800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72-24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally.

  9. Acceleration techniques for dependability simulation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Barnette, James David

    1995-01-01

    As computer systems increase in complexity, the need to project system performance from the earliest design and development stages increases. We have to employ simulation for detailed dependability studies of large systems. However, as the complexity of the simulation model increases, the time required to obtain statistically significant results also increases. This paper discusses an approach that is application independent and can be readily applied to any process-based simulation model. Topics include background on classical discrete event simulation and techniques for random variate generation and statistics gathering to support simulation.

  10. Kalman filter techniques for accelerated Cartesian dynamic cardiac imaging.

    PubMed

    Feng, Xue; Salerno, Michael; Kramer, Christopher M; Meyer, Craig H

    2013-05-01

    In dynamic MRI, spatial and temporal parallel imaging can be exploited to reduce scan time. Real-time reconstruction enables immediate visualization during the scan. Commonly used view-sharing techniques suffer from limited temporal resolution, and many of the more advanced reconstruction methods are either retrospective, time-consuming, or both. A Kalman filter model capable of real-time reconstruction can be used to increase the spatial and temporal resolution in dynamic MRI reconstruction. The original study describing the use of the Kalman filter in dynamic MRI was limited to non-Cartesian trajectories because of a limitation intrinsic to the dynamic model used in that study. Here the limitation is overcome, and the model is applied to the more commonly used Cartesian trajectory with fast reconstruction. Furthermore, a combination of the Kalman filter model with Cartesian parallel imaging is presented to further increase the spatial and temporal resolution and signal-to-noise ratio. Simulations and experiments were conducted to demonstrate that the Kalman filter model can increase the temporal resolution of the image series compared with view-sharing techniques and decrease the spatial aliasing compared with TGRAPPA. The method requires relatively little computation, and thus is suitable for real-time reconstruction.

  11. Accelerated Learning Techniques for the Foreign Language Class: A Personal View.

    ERIC Educational Resources Information Center

    Bancroft, W. Jane

    Foreign language instructors cope with problems of learner anxiety in the classroom, fossilization of language use and language skill loss. Relaxation and concentration techniques can alleviate stress and fatigue and improve students' capabilities. Three categories of accelerated learning techniques are: (1) those that serve as a preliminary to…

  12. Extraction of organochlorine pesticides in sediments using soxhlet, ultrasonic and accelerated solvent extraction techniques

    NASA Astrophysics Data System (ADS)

    Lang, Yinhai; Cao, Zhengmei; Nie, Xinhua

    2005-04-01

    The application of soxhlet, ultrasonic and accelerated solvent extraction techniques to the analysis of six organochlorine pesticides (α-HCH, β-HCH, γ-HCH, o, p‧-DDT, p, p‧-DDT and p, p‧-DDE) in Taihu Lake sediment samples is described. It was found that the limits of quantification ranged from 0.002 µgg-1 to 0.004 µgg-1, and the recoveries of organochlorine pesticides with the three extraction techniques were acceptable (>80.7%). With a mass selective detector, better results were obtained by accelerated solvent extraction using hexane-acetone (1:1) as compared with soxhlet and ultrasonic extraction. It was shown that the accelerated solvent extraction was the optimum technique for the analysis of organochlorine pesticides in sediments. The general features of the three extraction techniques are also presented.

  13. Advances in water resources assessment with SWAT - an overview

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper introduces a Special Issue containing 12 research articles which present current applications of the Soil and Water Assessment Tool (SWAT) for water resources assessment. Firstly, an overview of selected recently published articles with application of SWAT is given. The articles address ...

  14. An integrated hydrologic modeling framework for coupling SWAT with MODFLOW

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil and Water Assessment Tool (SWAT), MODFLOW, and Energy Balance based Evapotranspiration (EB_ET) models are extensively used to estimate different components of the hydrological cycle. Surface and subsurface hydrological processes are modeled in SWAT but limited to the extent of shallow aquif...

  15. The LeRC rail accelerators: Test designs and diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.; Sturman, J. C.; Wang, S. Y.; Terdan, F. F.

    1983-01-01

    The feasibility of using rail accelerators for various in-space and to-space propulsion applications was investigated. A 1 meter, 24 sq mm bore accelerator was designed with the goal of demonstrating projectile velocities of 15 km/sec using a peak current of 200 kA. A second rail accelerator, 1 meter long with a 156.25 sq mm bore, was designed with clear polycarbonate sidewalls to permit visual observation of the plasma arc. A study of available diagnostic techniques and their application to the rail accelerator is presented. Specific topics of discussion include the use of interferometry and spectroscopy to examine the plasma armature as well as the use of optical sensors to measure rail displacement during acceleration. Standard diagnostics such as current and voltage measurements are also discussed.

  16. SDMProjectBuilder: SWAT Simulation and Calibration for Nutrient Fate and Transport

    EPA Science Inventory

    This tutorial reviews screens, icons, and basic functions for downloading flow, sediment, and nutrient observations for a watershed of interest; how to prepare SWAT-CUP input files for SWAT parameter calibration; and how to perform SWAT parameter calibration with SWAT-CUP. It dem...

  17. The evolution of tooling, techniques, and quality control for accelerator dipole magnet cables

    SciTech Connect

    Scanlan, R.M.

    1992-08-01

    The present generation of particle accelerators are utilizing the flattened, compacted, single layer cable design introduced nearly 20 years ago at Rutherford Laboratory. However, the requirements for current density, filament size, dimensional control long lengths, and low current degradation are much more stringent for the present accelerators compared with the earlier Tevatron and HERA accelerators. Also, in order to achieve higher field strengths with efficient use of superconductor, the new designs require wider cables with more strands. These requirements have stimulated an active research effort which has led to significant improvements in critical current density and conductor manufacturing. In addition they have stimulated the development of new cabling techniques, improved tooling, and better measurement techniques. The need to produce over 20 million meters of cable has led to the development of high speed cabling machines and on-line quality assurance measurements. These new developments will be discussed, and areas still requiring improvement will be identified.

  18. Soil Water and Temperature System (SWATS) Handbook

    SciTech Connect

    Bond, D

    2005-01-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the SGP climate research site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  19. Total-body irradiation on an isocentric linear accelerator: a radiation output compensation technique.

    PubMed

    Hugtenburg, R P; Turner, J R; Baggarley, S P; Pinchin, D A; Oien, N A; Atkinson, C H; Tremewan, R N

    1994-05-01

    A treatment technique for total-body irradiation (TBI) is proposed that combines arc therapy with dynamic output control to achieve high-grade dose uniformity. The patient lies on a low couch and receives exposure in the prone and supine positions from a modulated arcing beam. The technique has been validated using a personal computer to control the linear accelerator and we demonstrate that only minor alterations to current dynamic therapy systems would be required. We have examined the practical application of this treatment with emphasis on methods of conformal therapy where an optimized dose distribution is prepared from a matrix of caliper measurements taken from the patient. This technique provides a means for regular TBI treatment on a computer-controlled linear accelerator that is easy to set up, requires short exposure times and is comfortable for the patient.

  20. SWAT-CS: Revision and testing of SWAT for Canadian Shield catchments

    NASA Astrophysics Data System (ADS)

    Fu, Congsheng; James, April L.; Yao, Huaxia

    2014-04-01

    Canadian Shield catchments are under increasing pressure from various types of development (e.g., mining and increased cottagers) and changing climate. Within the southern part of the Canadian Shield, catchments are generally characterized by shallow forested soils with high infiltration rates and low bedrock infiltration, generating little overland flow, and macropore and subsurface flow are important streamflow generation processes. Large numbers of wetlands and lakes are also key physiographic features, and snow-processes are critical to catchment modeling in this climate. We have revised the existing, publicly available SWAT (version 2009.10.1 Beta 3) to create SWAT-CS, a version representing hydrological processes dominating Canadian Shield catchments, where forest extends over Precambrian Shield bedrock. Prior to this study, very few studies applying SWAT to Canadian Shield catchments exist (we have found three). We tested SWAT-CS using the Harp Lake catchment dataset, an Ontario Ministry of Environment research station located in south-central Ontario. Simulations were evaluated against 30 years of observational data, including streamflow from six headwater sub-catchments (0.1-1.9 km2), outflow from Harp Lake (5.4 km2) and five years of weekly snow water equivalent (SWE). The best Nash-Sutcliffe efficiency (NSE) results for daily streamflow calibration, daily streamflow validation, and SWE were 0.60, 0.65, and 0.87, respectively, for sub-catchment HP4 (with detailed land use and soil data). For this range of catchment scales, land cover and soil properties were found to be transferable across sub-catchments with similar physiographic features, namely streamflow from the remaining five sub-catchments could be modeled well using sub-catchment HP4 parameterization. The Harp Lake outflow was well modeled using the existing reservoir-based target release method, generating NSEs of 0.72 and 0.67 for calibration and verification periods respectively. With

  1. SWAT Model Configuration, Calibration and Validation for Lake Champlain Basin

    EPA Pesticide Factsheets

    The Soil and Water Assessment Tool (SWAT) model was used to develop phosphorus loading estimates for sources in the Lake Champlain Basin. This document describes the model setup and parameterization, and presents calibration results.

  2. Application of real-time digitization techniques in beam measurement for accelerators

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Zhan, Lin-Song; Gao, Xing-Shun; Liu, Shu-Bin; An, Qi

    2016-04-01

    Beam measurement is very important for accelerators. In this paper, modern digital beam measurement techniques based on IQ (In-phase & Quadrature-phase) analysis are discussed. Based on this method and high-speed high-resolution analog-to-digital conversion, we have completed three beam measurement electronics systems designed for the China Spallation Neutron Source (CSNS), Shanghai Synchrotron Radiation Facility (SSRF), and Accelerator Driven Sub-critical system (ADS). Core techniques of hardware design and real-time system calibration are discussed, and performance test results of these three instruments are also presented. Supported by National Natural Science Foundation of China (11205153, 10875119), Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N27), and the Fundamental Research Funds for the Central Universities (WK2030040029),and the CAS Center for Excellence in Particle Physics (CCEPP).

  3. Solving radiative transfer problems in highly heterogeneous media via domain decomposition and convergence acceleration techniques.

    PubMed

    Previti, Alberto; Furfaro, Roberto; Picca, Paolo; Ganapol, Barry D; Mostacci, Domiziano

    2011-08-01

    This paper deals with finding accurate solutions for photon transport problems in highly heterogeneous media fastly, efficiently and with modest memory resources. We propose an extended version of the analytical discrete ordinates method, coupled with domain decomposition-derived algorithms and non-linear convergence acceleration techniques. Numerical performances are evaluated using a challenging case study available in the literature. A study of accuracy versus computational time and memory requirements is reported for transport calculations that are relevant for remote sensing applications.

  4. Realistically Predicting Saturation-Excess Runoff With El-SWAT

    NASA Astrophysics Data System (ADS)

    Hoang, L.; Schneiderman, E. M.; Steenhuis, T. S.; Moore, K. E.; Owens, E. M.

    2015-12-01

    Saturation excess runoff (SER) is without doubt the major runoff mechanism in the humid well vegetated areas where infiltration rates often exceed the medium rainfall intensity. Despite its preponderance, incorporating SER in the distributed models has been slow and fraught with difficulties. The short term objective of this paper to adjust the generally used Soil and Water Assessment Tool (SWAT) to include SER and test the results in the Catskill Mountains that is the source of most of New York City's water. The long term goal is to use the adjusted distributed runoff mechanism in water quality models to aid in the design of effective management practices. The current version of SWAT uses information of soil plant characteristics and hydrologic condition to predict runoff and thus is implicitly based on infiltration-excess runoff. Previous attempts to incorporate SER mechanism in SWAT fell short because they were unable to distribute water from a Hydrological Response Unit (HRU) to another. In the current version called El-SWAT, this shortcoming has been overcome by redefining HRU to include landscape position through the topographic index, grouping the newly defined HRU into wetness classes and by introducing a perched water table with the ability to route interflow from "dryer" to "wetter" HRU wetness classes. Mathematically, the perched aquifer is a non-linear reservoir that generates rapid subsurface stormflow as the perched water table rises. The El-SWAT model was tested in the Town Brook watershed in the upper reaches of the West Branch of the Delaware in the Catskill Mountains. The results showed that El-SWAT could predict discharge well with Nash-Sutcliffe Efficiency of 0.69 and 0.84 for daily and monthly time steps. Compared to the original SWAT model, El-SWAT predicted less surface runoff and groundwater flow and a greater lateral flow component. The saturated areas in El-SWAT were concentrated in locations with high topographic index and was in

  5. A technique for modeling the Earth's gravity field on the basis of satellite accelerations

    NASA Astrophysics Data System (ADS)

    Ditmar, P.; Sluijs, A. A. Van Eck Van Der

    2004-09-01

    A technique is proposed for Earth’s gravity field modeling on the basis of satellite accelerations that are derived from precise orbit data. The functional model rests on Newton’s second law. The computational procedure is based on the pre-conditioned conjugate-gradient (PCCG) method. The data are treated as weighted average accelerations rather than as point-wise ones. As a result, a simple three-point numerical differentiation scheme can be used to derive them. Noise in the orbit-derived accelerations is strongly dependent on frequency. Therefore, the key element of the proposed technique is frequency-dependent data weighting. Fast convergence of the PCCG procedure is ensured by a block-diagonal pre-conditioner (approximation of the normal matrix), which is derived under the so-called Colombo assumptions. Both uninterrupted data sets and data with gaps can be handled. The developed technique is compared with other approaches: (1) the energy balance approach (based on the energy conservation law) and (2) the traditional approach (based on the integration of variational equations). Theoretical considerations, supported by a numerical study, show that the proposed technique is more accurate than the energy balance approach and leads to approximately the same results as the traditional one. The former finding is explained by the fact that the energy balance approach is only sensitive to the along-track force component. Information about the cross-track and the radial component of the gravitational potential gradient is lost because the corresponding force components do no work and do not contribute to the energy balance. Furthermore, it is shown that the proposed technique is much (possibly, orders of magnitude) faster than the traditional one because it does not require the computation of the normal matrix. Hints are given on how the proposed technique can be adapted to the explicit assembling of the normal matrix if the latter is needed for the computation of

  6. Simulation of a Heavily Buffered Watershed Using the SWAT Landscape Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate representation of landscape processes in natural resource models requires distributed representation of basin hydrology and transport processes. To better represent these processes, SWAT was modified to represent runoff processes occurring in different parts of the landscape. The SWAT land...

  7. Prompt nuclear analytical techniques for material research in accelerator driven transmutation technologies: Prospects and quantitative analyses

    NASA Astrophysics Data System (ADS)

    Vacík, J.; Hnatowicz, V.; Červená, J.; Peřina, V.; Mach, R.; Peka, I.

    1998-04-01

    Accelerator driven transmutation technology (ADTT) is a promissing way toward liquidation of spent nuclear fuel, nuclear wastes and weapon grade Pu. The ADTT facility comprises a high current (proton) accelerator supplying a subcritical reactor assembly with spallation neutrons. The reactor part is supposed to be cooled by molten fluorides or metals which serve, at the same time, as a carrier of nuclear fuel. Assumed high working temperature (400-600°C) and high radiation load in the subcritical reactor and spallation neutron source put forward the problem of optimal choice of ADTT construction materials, especially from the point of their radiation and corrosion resistance when in contact with liquid working media. The use of prompt nuclear analytical techniques in ADTT related material research is considered and examples of preliminary analytical results obtained using neutron depth profiling method are shown for illustration.

  8. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  9. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  10. Introducing a new open source GIS user interface for the SWAT model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil and Water Assessment Tool (SWAT) model is a robust watershed modelling tool. It typically uses the ArcSWAT interface to create its inputs. ArcSWAT is public domain software which works in the licensed ArcGIS environment. The aim of this paper was to develop an open source user interface ...

  11. Evaluation of alternative surface runoff accounting procedures using the SWAT model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For surface runoff estimation in the Soil and Water Assessment Tool (SWAT) model, the curve number (CN) procedure is commonly adopted to calculate surface runoff by utilizing antecedent soil moisture condition (SCSI) in field. In the recent version of SWAT (SWAT2005), an alternative approach is ava...

  12. Introduction to SWAT+, a completely restructured version of the soil and water assessment tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SWAT+ is a completely revised version of SWAT that was developed to face present and future challenges in water resources modeling and management and to meet the needs of the growing worldwide user community. SWAT+ addresses several of the limitations of the model reported in the large body of peer...

  13. Comparison of Acceleration Techniques for Selected Low-Level Bioinformatics Operations

    PubMed Central

    Langenkämper, Daniel; Jakobi, Tobias; Feld, Dustin; Jelonek, Lukas; Goesmann, Alexander; Nattkemper, Tim W.

    2016-01-01

    Within the recent years clock rates of modern processors stagnated while the demand for computing power continued to grow. This applied particularly for the fields of life sciences and bioinformatics, where new technologies keep on creating rapidly growing piles of raw data with increasing speed. The number of cores per processor increased in an attempt to compensate for slight increments of clock rates. This technological shift demands changes in software development, especially in the field of high performance computing where parallelization techniques are gaining in importance due to the pressing issue of large sized datasets generated by e.g., modern genomics. This paper presents an overview of state-of-the-art manual and automatic acceleration techniques and lists some applications employing these in different areas of sequence informatics. Furthermore, we provide examples for automatic acceleration of two use cases to show typical problems and gains of transforming a serial application to a parallel one. The paper should aid the reader in deciding for a certain techniques for the problem at hand. We compare four different state-of-the-art automatic acceleration approaches (OpenMP, PluTo-SICA, PPCG, and OpenACC). Their performance as well as their applicability for selected use cases is discussed. While optimizations targeting the CPU worked better in the complex k-mer use case, optimizers for Graphics Processing Units (GPUs) performed better in the matrix multiplication example. But performance is only superior at a certain problem size due to data migration overhead. We show that automatic code parallelization is feasible with current compiler software and yields significant increases in execution speed. Automatic optimizers for CPU are mature and usually no additional manual adjustment is required. In contrast, some automatic parallelizers targeting GPUs still lack maturity and are limited to simple statements and structures. PMID:26904094

  14. Comparison of Acceleration Techniques for Selected Low-Level Bioinformatics Operations.

    PubMed

    Langenkämper, Daniel; Jakobi, Tobias; Feld, Dustin; Jelonek, Lukas; Goesmann, Alexander; Nattkemper, Tim W

    2016-01-01

    Within the recent years clock rates of modern processors stagnated while the demand for computing power continued to grow. This applied particularly for the fields of life sciences and bioinformatics, where new technologies keep on creating rapidly growing piles of raw data with increasing speed. The number of cores per processor increased in an attempt to compensate for slight increments of clock rates. This technological shift demands changes in software development, especially in the field of high performance computing where parallelization techniques are gaining in importance due to the pressing issue of large sized datasets generated by e.g., modern genomics. This paper presents an overview of state-of-the-art manual and automatic acceleration techniques and lists some applications employing these in different areas of sequence informatics. Furthermore, we provide examples for automatic acceleration of two use cases to show typical problems and gains of transforming a serial application to a parallel one. The paper should aid the reader in deciding for a certain techniques for the problem at hand. We compare four different state-of-the-art automatic acceleration approaches (OpenMP, PluTo-SICA, PPCG, and OpenACC). Their performance as well as their applicability for selected use cases is discussed. While optimizations targeting the CPU worked better in the complex k-mer use case, optimizers for Graphics Processing Units (GPUs) performed better in the matrix multiplication example. But performance is only superior at a certain problem size due to data migration overhead. We show that automatic code parallelization is feasible with current compiler software and yields significant increases in execution speed. Automatic optimizers for CPU are mature and usually no additional manual adjustment is required. In contrast, some automatic parallelizers targeting GPUs still lack maturity and are limited to simple statements and structures.

  15. Pesticide modelling for a small catchment using SWAT-2000.

    PubMed

    Kannan, Narayanan; White, Sue M; Worrall, Fred; Whelan, Mick J

    2006-01-01

    Pesticides in stream flow from the 142 ha Colworth catchment in Bedfordshire, UK were monitored from October 1999 to December 2000. About 47% of the catchment is tile-drained and different pesticides and cropping patterns have recently been evaluated in terms of their effect on nutrient and pesticide losses to the stream. The data from Colworth were used to test soil and water assessment tool (SWAT) 2000 predictions of pesticide concentrations at the catchment outlet. A sound model set-up to carry out pesticide modelling was created by means of hydrological modelling with proper simulation of crop growth and evapotranspiration. The pesticides terbuthylazine, terbutryn, cyanazine and bentazone were modelled. There was close agreement between SWAT-predicted pesticide concentration values and observations. Scenario trials were conducted to explore management options for reducing pesticide loads arriving at the catchment outlet. The results obtained indicate that SWAT can be used as a tool to understand pesticide behavior at the catchment scale.

  16. Estimation of Ground Water Recharge Using SWAT Model

    NASA Astrophysics Data System (ADS)

    Lee, D.; Chung, I.

    2006-12-01

    In this study the SWAT model was applied to estimate a shallow groundwater recharge at the watershed scale. The SWAT model is a semi-distributed comprehensive surface and subsurface flow model with the capability of simulating sediment and agricultural chemicals. The study site is Bocheongcheon watershed which is one of IHP experimental watersheds in Korea and the rainfall and stream flow have been monitored since 1984. The dominant land use types of the watershed are the mixed forest and agricultural land. The input data for SWAT model were prepared using the digital land use and soil maps with daily rainfall measured at ten rain gauge stations and the meteorological variables such as daily wind speed, relative humidity, solar radiation, and temperature collected within the watershed. The SWAT model was calibrated based on four years of daily stream flow data using the shuffled complex evolution global optimization method. Since there was no information for soil hydraulic properties, the various published pedotransfer functions were used for the specification of soil hydraulic conductivity. The annual recharge calculated from SWAT model ranged from 125 mm to 191 mm depending on the selected pedotransfer functions. Although the estimates of the regional groundwater recharge vary with the selection of pedotransfer functions, the performance measures between the simulated and measured daily stream flow are appeared to be similar. The result indicates that it is very difficult to identify a unique parameter set and the proper identification of spatially consistent soil hydraulic conductivity has an important implication for modeling groundwater recharge at the watershed scale using the spatially distributed watershed model such as SWAT.

  17. Predicting the temporal variation of flow contributing areas using SWAT

    NASA Astrophysics Data System (ADS)

    Golmohammadi, Golmar; Rudra, Ramesh; Dickinson, Trevor; Goel, Pradeep; Veliz, Mari

    2017-04-01

    This study assessed the capability of soil and water assessment tool (SWAT) to identify areas contributing to flow in the Gully Creek Watershed in Ontario. The SWAT model predicted the streamflow at the outlet of the watershed, with monthly and daily Nash-Sutcliffe efficiencies of 0.75 and 0.60 during the validation period. In addition to the daily streamflow data, the flow was also observed at 16 monitoring stations during 6 different events. The validated model was then used to simulate flow at the monitoring stations. The effect of watershed delineation on streamflow and events at 16 monitoring station were then examined by SWAT. The delineation of 99 subbasins, with highest efficiency was selected for the purpose of predicting the potential flow contributing areas with the model. Overall, the flow events were overestimated by SWAT. Temporal variations in the potential flow contributing areas during each event were then analyzed. Flow contributing areas during each event was predicted by the model first and the results showed a good agreement with available information. A current precipitation index was used to simulate the continuous change of soil water content during each rainstorm, and the modeling results of the individual events were used to explore the capability of the model to predict the temporal variation of flow contributing areas during each event. The results revealed that the SWAT model over-predicted the areas contributing flow for events with lower rainfall; while for the events with higher rainfall amount the model closely simulated the time-varying contributing area. The results of this study provide some insight into the possible capability of SWAT model to predict the temporal variations in potential contributing area, and therefore provide an important contribution to the modeling of runoff generation in watersheds, a vital aspect in the evaluation and planning of best management practices.

  18. [Dosimetric comparison of different techniques for external beam accelerated partial breast irradiation].

    PubMed

    Stelczer, Gábor; Major, Tibor; Mészáros, Norbert; Polgár, Csaba; Pesznyák, Csilla

    2016-11-29

    The aim of this article is to evaluate and compare four different radiotherapy techniques of accelerated partial breast irradiation (APBI) considering planning quality, dosimetric and practical aspects. The investigated techniques are three dimensional conformal radiotherapy (3D-CRT), "step and shoot" (SS) and "sliding window" (SW) intensity-modulated radiotherapy, intensity-modulated arc therapy (RA). CT scans of 10 patients previously treated with APBI were selected for the study. Surgical clips were placed on the borders of the tumour bed during breast conserving surgery. Target volume (PTV) was defined as enlarged CTV, which was created from the tumour bed through volume expansion using individual margins. Planning objectives were set up according to the international recommendations. Non-coplanar fields were used only for the 3D-CRT plans. For each plan homogeneity, conformity and plan quality indices were calculated from volumetric and dosimetric parameters of target volumes and organs at risk. The total monitor units and feasibility were also investigated. There was no significant difference in the coverage of the target volume by the prescribed dose between the techniques. SW plans were significantly more homogeneous (HI=0.033) than the 3D-CRT (HI=0.057) and the RA (HI=0.073) plans. The homogeneity of the SS technique (HI=0.053) did not differ significantly compared to others. The conformity of the 3D-CRT technique was significantly worse (CN=0.62) than that of SS (CN=0.85), SW (CN=0.85) and RA (CN=0.86) plans. There was a significant difference between RA (29.4%) and 3D-CRT (44.1%) and SW (35.6%) plans in the V50% of the ipsilateral breast. Mean V10% of the ipsilateral lung in 3D-CRT (10.1%) plans was significantly lower than in SS (34.3%), SW (34.3%) and RA (35.3%) plans. 3D-CRT technique provided the best heart protection. The shortest treatment times were achieved with RA technique. Good target volume coverage and tolerable dose to the organs at risk

  19. Interactive Data Coupler for SWAT Using Open Source Components

    NASA Astrophysics Data System (ADS)

    Muste, M.; Kim, D.; Arnold, N.

    2010-12-01

    Modeling water quality and quantity using Soil and Water Assessment Tool (SWAT) public domain model can be a time consuming and complex task involving multiple inputs from various data sources. Discovering and collecting this input data can be time expensive given the disparate and non-uniform nature of the data collected by a wide range of entities, from water resources management agencies to scientists. This task is greatly facilitates by the software components developed by the Consortium of Universities for the Advancement of Hydrologic Science Inc. Hydrologic Information System (CUAHSI-HIS) national project. The project team makes available a standard relational database schema for storing observations, web services for publishing stored observations, and tools for handling multi-process data and the ancillary metadata. With minimum additional software development the CUAHSI-HIS components can be customized to create workflows that allow ingestion of the data in numerical models for further investigation. In order to minimize the barrier that exists between doing science and preparing to do science (i.e., finding and accessing the data needed for further analysis or ingestion in the numerical simulations) we have created customized software that couples CUAHSI HIS web services with SWAT. The SWAT Data Assimilation Tool (labeled herein for convenience SWATDAT) is a preprocessing tool for the SWAT model that facilitates automatic loading of environmental time series measurement data into the model’s simulation directory. This software couples any CUAHSI HIS WaterOneFlow (WOF) web service with SWAT in order to allow users to seamlessly discover time series point data (e.g., precipitation provided by tipping buckets) within a user-specified watershed and ingest that data directly into the SWAT model without the need of lengthy preprocessing or data transformation steps. SWATDAT is also fit with capabilities to couple spatially-distributed precipitation data from

  20. Accelerated Evaluation of Automated Vehicles Safety in Lane-Change Scenarios Based on Importance Sampling Techniques.

    PubMed

    Zhao, Ding; Lam, Henry; Peng, Huei; Bao, Shan; LeBlanc, David J; Nobukawa, Kazutoshi; Pan, Christopher S

    2016-08-05

    Automated vehicles (AVs) must be thoroughly evaluated before their release and deployment. A widely used evaluation approach is the Naturalistic-Field Operational Test (N-FOT), which tests prototype vehicles directly on the public roads. Due to the low exposure to safety-critical scenarios, N-FOTs are time consuming and expensive to conduct. In this paper, we propose an accelerated evaluation approach for AVs. The results can be used to generate motions of the other primary vehicles to accelerate the verification of AVs in simulations and controlled experiments. Frontal collision due to unsafe cut-ins is the target crash type of this paper. Human-controlled vehicles making unsafe lane changes are modeled as the primary disturbance to AVs based on data collected by the University of Michigan Safety Pilot Model Deployment Program. The cut-in scenarios are generated based on skewed statistics of collected human driver behaviors, which generate risky testing scenarios while preserving the statistical information so that the safety benefits of AVs in nonaccelerated cases can be accurately estimated. The cross-entropy method is used to recursively search for the optimal skewing parameters. The frequencies of the occurrences of conflicts, crashes, and injuries are estimated for a modeled AV, and the achieved accelerated rate is around 2000 to 20 000. In other words, in the accelerated simulations, driving for 1000 miles will expose the AV with challenging scenarios that will take about 2 to 20 million miles of real-world driving to encounter. This technique thus has the potential to greatly reduce the development and validation time for AVs.

  1. Accelerated Evaluation of Automated Vehicles Safety in Lane-Change Scenarios Based on Importance Sampling Techniques

    PubMed Central

    Zhao, Ding; Lam, Henry; Peng, Huei; Bao, Shan; LeBlanc, David J.; Nobukawa, Kazutoshi; Pan, Christopher S.

    2016-01-01

    Automated vehicles (AVs) must be thoroughly evaluated before their release and deployment. A widely used evaluation approach is the Naturalistic-Field Operational Test (N-FOT), which tests prototype vehicles directly on the public roads. Due to the low exposure to safety-critical scenarios, N-FOTs are time consuming and expensive to conduct. In this paper, we propose an accelerated evaluation approach for AVs. The results can be used to generate motions of the other primary vehicles to accelerate the verification of AVs in simulations and controlled experiments. Frontal collision due to unsafe cut-ins is the target crash type of this paper. Human-controlled vehicles making unsafe lane changes are modeled as the primary disturbance to AVs based on data collected by the University of Michigan Safety Pilot Model Deployment Program. The cut-in scenarios are generated based on skewed statistics of collected human driver behaviors, which generate risky testing scenarios while preserving the statistical information so that the safety benefits of AVs in nonaccelerated cases can be accurately estimated. The cross-entropy method is used to recursively search for the optimal skewing parameters. The frequencies of the occurrences of conflicts, crashes, and injuries are estimated for a modeled AV, and the achieved accelerated rate is around 2000 to 20 000. In other words, in the accelerated simulations, driving for 1000 miles will expose the AV with challenging scenarios that will take about 2 to 20 million miles of real-world driving to encounter. This technique thus has the potential to greatly reduce the development and validation time for AVs. PMID:27840592

  2. Microwave-accelerated bioassay technique for rapid and quantitative detection of biological and environmental samples.

    PubMed

    Mohammed, Muzaffer; Syed, Maleeha F; Aslan, Kadir

    2016-01-15

    Quantitative detection of molecules of interest from biological and environmental samples in a rapid manner, particularly with a relevant concentration range, is imperative to the timely assessment of human diseases and environmental issues. In this work, we employed the microwave-accelerated bioassay (MAB) technique, which is based on the combined use of circular bioassay platforms and microwave heating, for rapid and quantitative detection of Glial Fibrillary Acidic Protein (GFAP) and Shiga like toxin (STX 1). The proof-of-principle use of the MAB technique with the circular bioassay platforms for the rapid detection of GFAP in buffer based on colorimetric and fluorescence readouts was demonstrated with a 900W kitchen microwave. We also employed the MAB technique with a new microwave system (called the iCrystal system) for the detection of GFAP from mice with brain injuries and STX 1 from a city water stream. Control bioassays included the commercially available gold standard bioassay kits run at room temperature. Our results show that the lower limit of detection (LLOD) of the colorimetric and fluorescence based bioassays for GFAP was decreased by ~1000 times using the MAB technique and our circular bioassay platforms as compared to the commercially available bioassay kits. The overall bioassay time for GFAP and STX 1 was reduced from 4h using commercially available bioassay kits to 10min using the MAB technique.

  3. Microwave-Accelerated Bioassay Technique for Rapid and Quantitative Detection of Biological and Environmental Samples

    PubMed Central

    Mohammed, Muzaffer; Syed, Maleeha F.; Aslan, Kadir

    2015-01-01

    Quantitative detection of molecules of interest from biological and environmental samples in a rapid manner, particularly with a relevant concentration range, is imperative to the timely assessment of human diseases and environmental issues. In this work, we employed the microwave-accelerated bioassay (MAB) technique, which is based on the combined use of circular bioassay platforms and microwave heating, for rapid and quantitative detection of Glial Fibrillary Acidic Protein (GFAP) and Shiga like toxin (STX 1). The proof-of-principle use of the MAB technique with the circular bioassay platforms for the rapid detection of GFAP in buffer based on colorimetric and fluorescence readouts was demonstrated with a 900 W kitchen microwave. We also employed the MAB technique with a new microwave system (called the iCrystal system) for the detection of GFAP from mice with brain injuries and STX 1 from a city water stream. Control bioassays included the commercially available gold standard bioassay kits run at room temperature. Our results show that the lower limit of detection (LLOD) of the colorimetric and fluorescence based bioassays for GFAP was decreased by ~1,000 times using the MAB technique and our circular bioassay platforms as compared to the commercially available bioassay kits. The overall bioassay time for GFAP and STX 1 was reduced from 4 hours using commercially available bioassay kits to 10 minutes using the MAB technique. PMID:26356762

  4. Useful technique for analysis and control of the acceleration beam phase in the azimuthally varying field cyclotron

    NASA Astrophysics Data System (ADS)

    Kurashima, Satoshi; Yuyama, Takahiro; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Fukuda, Mitsuhiro

    2010-03-01

    We have developed a new technique for analysis and control of the acceleration beam phase in the cyclotron. In this technique, the beam current pattern at a fixed radius r is measured by slightly scanning the acceleration frequency in the cyclotron. The acceleration beam phase is obtained by analyzing symmetry of the current pattern. Simple procedure to control the acceleration beam phase by changing coil currents of a few trim coils was established. The beam phase width is also obtained by analyzing gradient of the decreasing part of the current pattern. We verified reliability of this technique with 260 MeV N20e7+ beams which were accelerated on different tuning condition of the cyclotron. When the acceleration beam phase was around 0°, top of the energy gain of cosine wave, and the beam phase width was about 6° in full width at half maximum, a clear turn pattern of the beam was observed with a differential beam probe in the extraction region. Beam phase widths of ion beams at acceleration harmonics of h =1 and h =2 were estimated without beam cutting by phase-defining slits. We also calculated the beam phase widths roughly from the beam current ratio between the injected beam and the accelerated beam in the cyclotron without operating the beam buncher. Both beam phase widths were almost the same for h =1, while phase compressions by a factor of about 3 were confirmed for h =2.

  5. Useful technique for analysis and control of the acceleration beam phase in the azimuthally varying field cyclotron

    SciTech Connect

    Kurashima, Satoshi; Yuyama, Takahiro; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Fukuda, Mitsuhiro

    2010-03-15

    We have developed a new technique for analysis and control of the acceleration beam phase in the cyclotron. In this technique, the beam current pattern at a fixed radius r is measured by slightly scanning the acceleration frequency in the cyclotron. The acceleration beam phase is obtained by analyzing symmetry of the current pattern. Simple procedure to control the acceleration beam phase by changing coil currents of a few trim coils was established. The beam phase width is also obtained by analyzing gradient of the decreasing part of the current pattern. We verified reliability of this technique with 260 MeV {sup 20}Ne{sup 7+} beams which were accelerated on different tuning condition of the cyclotron. When the acceleration beam phase was around 0 deg., top of the energy gain of cosine wave, and the beam phase width was about 6 deg. in full width at half maximum, a clear turn pattern of the beam was observed with a differential beam probe in the extraction region. Beam phase widths of ion beams at acceleration harmonics of h=1 and h=2 were estimated without beam cutting by phase-defining slits. We also calculated the beam phase widths roughly from the beam current ratio between the injected beam and the accelerated beam in the cyclotron without operating the beam buncher. Both beam phase widths were almost the same for h=1, while phase compressions by a factor of about 3 were confirmed for h=2.

  6. Note: Matching index technique for avoiding higher order mode resonance in accelerators: INDUS-2 accelerator as a case study

    SciTech Connect

    Jain, V.; Joshi, S. C.; Bhandarkar, U. V.; Krishnagopal, S.

    2013-08-15

    Resonance between circulating beam frequencies and RF cavity Higher Order Modes (HOMs) of accelerators can lead to coupled-bunch instabilities. Shifting these HOMs to avoid the resonance is a topic of active interest. A study has been carried out for the accelerating cavities of the INDUS-2. For quantitative measure of deciding which modes have to be moved and by how much, we introduce a new index called the matching index (I{sub M}), as a measure of how close a HOM is to the nearest beam mode. Depending on the value of I{sub M}, the operating scenarios are classified as safe and unsafe.

  7. SDMProjectBuilder: SWAT Setup for Nutrient Fate and Transport

    EPA Science Inventory

    This tutorial reviews some of the screens, icons, and basic functions of the SDMProjectBuilder (SDMPB) and explains how one uses SDMPB output to populate the Soil and Water Assessment Tool (SWAT) input files for nutrient fate and transport modeling in the Salt River Basin. It dem...

  8. A process-based algorithm for simulating terraces in SWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Terraces in crop fields are one of the most important soil and water conservation measures that affect runoff and erosion processes in a watershed. In large hydrological programs such as the Soil and Water Assessment Tool (SWAT), terrace effects are simulated by adjusting the slope length and the US...

  9. Improved simulation of edaphic and manure phosphorus loss in SWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watershed models such as the Soil Water Assessment Tool (SWAT) are widely used to assess the consequences of agricultural nutrient management practices on phosphorus (P) loss in runoff. Soil P cycling routines used in such models, however, do not simulate the short-term effects of applying a concent...

  10. Validating soil phosphorus routines in the SWAT model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus transfer from agricultural soils to surface waters is an important environmental issue. Commonly used models like SWAT have not always been updated to reflect improved understanding of soil P transformations and transfer to runoff. Our objective was to validate the ability of the P routin...

  11. Acceleration of FDTD mode solver by high-performance computing techniques.

    PubMed

    Han, Lin; Xi, Yanping; Huang, Wei-Ping

    2010-06-21

    A two-dimensional (2D) compact finite-difference time-domain (FDTD) mode solver is developed based on wave equation formalism in combination with the matrix pencil method (MPM). The method is validated for calculation of both real guided and complex leaky modes of typical optical waveguides against the bench-mark finite-difference (FD) eigen mode solver. By taking advantage of the inherent parallel nature of the FDTD algorithm, the mode solver is implemented on graphics processing units (GPUs) using the compute unified device architecture (CUDA). It is demonstrated that the high-performance computing technique leads to significant acceleration of the FDTD mode solver with more than 30 times improvement in computational efficiency in comparison with the conventional FDTD mode solver running on CPU of a standard desktop computer. The computational efficiency of the accelerated FDTD method is in the same order of magnitude of the standard finite-difference eigen mode solver and yet require much less memory (e.g., less than 10%). Therefore, the new method may serve as an efficient, accurate and robust tool for mode calculation of optical waveguides even when the conventional eigen value mode solvers are no longer applicable due to memory limitation.

  12. Acceleration and motion-correction techniques for high-resolution intravascular MRI

    PubMed Central

    Hegde, Shashank Sathyanarayana; Zhang, Yi; Bottomley, Paul A.

    2014-01-01

    Purpose High-resolution intravascular (IV) MRI is susceptible to degradation from physiological motion and requires high frame-rates for true endoscopy. Traditional cardiac-gating techniques compromise efficiency by reducing the effective scan rate. Here we test whether compressed sensing (CS) reconstruction and ungated motion-compensation employing projection shifting, could provide faster motion-suppressed, IVMRI. Theory and Methods CS reconstruction is developed for under-sampled Cartesian and radial imaging using a new IVMRI-specific cost function to effectively increase imaging speed. A new motion correction method is presented wherein individual IVMRI projections are shifted based on the IVMRI detector's intrinsic amplitude and phase properties. The methods are tested at 3T in fruit, human vessel specimens, and a rabbit aorta in vivo. Images are compared using Structural-Similarity and ‘Spokal-Variation’ indices. Results Although some residual artifacts persisted, CS acceleration and radial motion compensation strategies reduced motion artefact in vitro and in vivo, allowing effective accelerations of up to eightfold at 200-300μm resolution. Conclusion 3T IVMRI detectors are well-suited to CS and motion correction strategies based on their intrinsic radially-sparse sensitivity profiles and high signal-to-noise ratios. While benefits of faster free-breathing high-resolution IVMRI and reduced motion sensitivity are realized, there are costs to spatial resolution, and some motion artifacts may persist. PMID:25163750

  13. Improvements of the boundary projection acceleration technique applied to the discrete-ordinates transport solver in XYZ geometries

    SciTech Connect

    Masiello, E.; Rossi, T.

    2013-07-01

    In this paper we discuss the latest upgrades of the Boundary Projection Acceleration (BPA) applied to the XYZ transport solver of APOLLO3, namely IDT. The acceleration method is a well-known effective technique for the speed-up of the source iterations of the discrete-ordinates method. The BPA in IDT has been improved in three aspects: the taking into account of the residue on boundary conditions as a boundary source for the acceleration problem, the extension of the method to higher order angular moments in the case of anisotropic scattering and, finally, the application of the method to the multigroup iterations for the acceleration of the fission source and k-effective. The spectrum of the method has been Fourier-analyzed to explore the effectiveness. The 3D mock-up geometry of the ZPPR is presented as final study to test the performances of the acceleration on a realistic whole-core 3D calculation. (authors)

  14. Use of delayed addition techniques to accelerate integer and floating-point calculations in configurable hardware

    NASA Astrophysics Data System (ADS)

    Luo, Zhen; Martonosi, Margaret

    1998-10-01

    This paper proposes and evaluates an approach for improving the performance of arithmetic calculations via delayed addition. Our approach employs the idea used in Wallace trees to delay addition until the end of a repeated calculation such as accumulation or dot-product; this effectively removes carry propagation overhead from the calculation's critical path. We present imager and floating- point designs that use this technique. Our pipelined integer multiply-accumulate design is based on a fairly traditional multiplier design, but with delayed addition as well. This design achieves a 37 MHz clock rate on an XC4036XL-2 FPGA. Next, we present a 32-bit floating-point accumulator based on delayed addition. Here delayed addition requires a novel alignment technique that decouples the incoming operands from the accumulated result. A conservative version of this design achieves a 33 MHz clock rate. Finally, we also present a more aggressive 32-bit floating-point accumulator design that achieves a 66 MHz clock rate. These designs demonstrate the utility of delayed addition for accelerating FPGA calculations in both the integer and floating-point domains.

  15. Visualization of TlBr ionic transport mechanism by the Accelerated Device Degradation technique

    NASA Astrophysics Data System (ADS)

    Datta, Amlan; Becla, Piotr; Motakef, Shariar

    2015-06-01

    Thallium Bromide (TlBr) is a promising gamma radiation semiconductor detector material. However, it is an ionic semiconductor and suffers from polarization. As a result, TlBr devices degrade rapidly at room temperature. Polarization is associated with the flow of ionic current in the crystal under electrical bias, leading to the accumulation of charged ions at the device's electrical contacts. We report a fast and reliable direct characterization technique to identify the effects of various growth and post-growth process modifications on the polarization process. The Accelerated Device Degradation (ADD) characterization technique allows direct observation of nucleation and propagation of ionic transport channels within the TlBr crystals under applied bias. These channels are observed to be initiated both directly under the electrode as well as away from it. The propagation direction is always towards the anode indicating that Br- is the mobile diffusing species within the defect channels. The effective migration energy of the Br- ions was calculated to be 0.33±0.03 eV, which is consistent with other theoretical and experimental results.

  16. SWAT Ungauged: Hydrological Budget and Crop Yield Predictions in the Upper Mississippi River Basin

    SciTech Connect

    R. Srinivasan,; X. Zhang,; J. Arnold,

    2010-01-01

    Physically based, distributed hydrologic models are increasingly used in assessments of water resources, best management practices, and climate and land use changes. Model performance evaluation in ungauged basins is an important research topic. In this study, we propose a framework for developing Soil and Water Assessment Tool (SWAT) input data, including hydrography, terrain, land use, soil, tile, weather, and management practices, for the Upper Mississippi River basin (UMRB). We also present a performance evaluation of SWAT hydrologic budget and crop yield simulations in the UMRB without calibration. The uncalibrated SWAT model ably predicts annual streamflow at 11 USGS gauges and crop yield at a four-digit hydrologic unit code (HUC) scale. For monthly streamflow simulation, the performance of SWAT is marginally poor compared with that of annual flow, which may be due to incomplete information about reservoirs and dams within the UMRB. Further validation shows that SWAT can predict base flow contribution ratio reasonably well. Compared with three calibrated SWAT models developed in previous studies of the entire UMRB, the uncalibrated SWAT model presented here can provide similar results. Overall, the SWAT model can provide satisfactory predictions on hydrologic budget and crop yield in the UMRB without calibration. The results emphasize the importance and prospects of using accurate spatial input data for the physically based SWAT model. This study also examines biofuel-biomass production by simulating all agricultural lands with switchgrass, producing satisfactory results in estimating biomass availability for biofuel production.

  17. Closing the gap: accelerating the translational process in nanomedicine by proposing standardized characterization techniques.

    PubMed

    Khorasani, Ali A; Weaver, James L; Salvador-Morales, Carolina

    2014-01-01

    On the cusp of widespread permeation of nanomedicine, academia, industry, and government have invested substantial financial resources in developing new ways to better treat diseases. Materials have unique physical and chemical properties at the nanoscale compared with their bulk or small-molecule analogs. These unique properties have been greatly advantageous in providing innovative solutions for medical treatments at the bench level. However, nanomedicine research has not yet fully permeated the clinical setting because of several limitations. Among these limitations are the lack of universal standards for characterizing nanomaterials and the limited knowledge that we possess regarding the interactions between nanomaterials and biological entities such as proteins. In this review, we report on recent developments in the characterization of nanomaterials as well as the newest information about the interactions between nanomaterials and proteins in the human body. We propose a standard set of techniques for universal characterization of nanomaterials. We also address relevant regulatory issues involved in the translational process for the development of drug molecules and drug delivery systems. Adherence and refinement of a universal standard in nanomaterial characterization as well as the acquisition of a deeper understanding of nanomaterials and proteins will likely accelerate the use of nanomedicine in common practice to a great extent.

  18. Closing the gap: accelerating the translational process in nanomedicine by proposing standardized characterization techniques

    PubMed Central

    Khorasani, Ali A; Weaver, James L; Salvador-Morales, Carolina

    2014-01-01

    On the cusp of widespread permeation of nanomedicine, academia, industry, and government have invested substantial financial resources in developing new ways to better treat diseases. Materials have unique physical and chemical properties at the nanoscale compared with their bulk or small-molecule analogs. These unique properties have been greatly advantageous in providing innovative solutions for medical treatments at the bench level. However, nanomedicine research has not yet fully permeated the clinical setting because of several limitations. Among these limitations are the lack of universal standards for characterizing nanomaterials and the limited knowledge that we possess regarding the interactions between nanomaterials and biological entities such as proteins. In this review, we report on recent developments in the characterization of nanomaterials as well as the newest information about the interactions between nanomaterials and proteins in the human body. We propose a standard set of techniques for universal characterization of nanomaterials. We also address relevant regulatory issues involved in the translational process for the development of drug molecules and drug delivery systems. Adherence and refinement of a universal standard in nanomaterial characterization as well as the acquisition of a deeper understanding of nanomaterials and proteins will likely accelerate the use of nanomedicine in common practice to a great extent. PMID:25525356

  19. Incorporating rainfall uncertainty in a SWAT model: the river Zenne basin (Belgium) case study

    NASA Astrophysics Data System (ADS)

    Tolessa Leta, Olkeba; Nossent, Jiri; van Griensven, Ann; Bauwens, Willy

    2013-04-01

    The European Union Water Framework Directive (EU-WFD) called its member countries to achieve a good ecological status for all inland and coastal water bodies by 2015. According to recent studies, the river Zenne (Belgium) is far from this objective. Therefore, an interuniversity and multidisciplinary project "Towards a Good Ecological Status in the river Zenne (GESZ)" was launched to evaluate the effects of wastewater management plans on the river. In this project, different models have been developed and integrated using the Open Modelling Interface (OpenMI). The hydrologic, semi-distributed Soil and Water Assessment Tool (SWAT) is hereby used as one of the model components in the integrated modelling chain in order to model the upland catchment processes. The assessment of the uncertainty of SWAT is an essential aspect of the decision making process, in order to design robust management strategies that take the predicted uncertainties into account. Model uncertainty stems from the uncertainties on the model parameters, the input data (e.g, rainfall), the calibration data (e.g., stream flows) and on the model structure itself. The objective of this paper is to assess the first three sources of uncertainty in a SWAT model of the river Zenne basin. For the assessment of rainfall measurement uncertainty, first, we identified independent rainfall periods, based on the daily precipitation and stream flow observations and using the Water Engineering Time Series PROcessing tool (WETSPRO). Secondly, we assigned a rainfall multiplier parameter for each of the independent rainfall periods, which serves as a multiplicative input error corruption. Finally, we treated these multipliers as latent parameters in the model optimization and uncertainty analysis (UA). For parameter uncertainty assessment, due to the high number of parameters of the SWAT model, first, we screened out its most sensitive parameters using the Latin Hypercube One-factor-At-a-Time (LH-OAT) technique

  20. Impacts of DEM uncertainties on critical source areas identification for non-point source pollution control based on SWAT model

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Dong, Guangxia; Wang, Qingrui; Liu, Lumeng; Yu, Wenwen; Men, Cong; Liu, Ruimin

    2016-09-01

    The impacts of different digital elevation model (DEM) resolutions, sources and resampling techniques on nutrient simulations using the Soil and Water Assessment Tool (SWAT) model have not been well studied. The objective of this study was to evaluate the sensitivities of DEM resolutions (from 30 m to 1000 m), sources (ASTER GDEM2, SRTM and Topo-DEM) and resampling techniques (nearest neighbor, bilinear interpolation, cubic convolution and majority) to identification of non-point source (NPS) critical source area (CSA) based on nutrient loads using the SWAT model. The Xiangxi River, one of the main tributaries of Three Gorges Reservoir in China, was selected as the study area. The following findings were obtained: (1) Elevation and slope extracted from the DEMs were more sensitive to DEM resolution changes. Compared with the results of the 30 m DEM, 1000 m DEM underestimated the elevation and slope by 104 m and 41.57°, respectively; (2) The numbers of subwatersheds and hydrologic response units (HRUs) were considerably influenced by DEM resolutions, but the total nitrogen (TN) and total phosphorus (TP) loads of each subwatershed showed higher correlations with different DEM sources; (3) DEM resolutions and sources had larger effects on CSAs identifications, while TN and TP CSAs showed different response to DEM uncertainties. TN CSAs were more sensitive to resolution changes, exhibiting six distribution patterns at all DEM resolutions. TP CSAs were sensitive to source and resampling technique changes, exhibiting three distribution patterns for DEM sources and two distribution patterns for DEM resampling techniques. DEM resolutions and sources are the two most sensitive SWAT model DEM parameters that must be considered when nutrient CSAs are identified.

  1. MULTI-BAND DIPOLE AND MULTIPOLE WAKEFIELDS IN NLC TRAVELING WAVE ACCELERATORS USING A WIRE MEASUREMENT TECHNIQUE

    SciTech Connect

    Jones, Roger M

    2002-06-20

    Dipole wakefields in NLC (Next Linear Collider) structures have been measured with ASSET [1] and well predicted by a circuit model [2]. However, the experimental technique is both time-consuming and expensive. Here, we report on kick factor and synchronous frequency determination for 1st and higher order dipole bands for TW (Traveling Wave) accelerators via a wire measurement technique. This stand-alone technique is relatively inexpensive and may lead to an efficient determination of wakefield parameters. The perturbative effect of the wire on the dipole band is pointed out and a two-wire scheme with a limited perturbative effect is also discussed.

  2. SWAT - CS: Revision and testing of SWAT (Soil and Water Assessment Tool) for forested Canadian Shield watersheds

    NASA Astrophysics Data System (ADS)

    Fu, C.; James, A. L.; Yao, H.

    2012-12-01

    The widely-used SWAT (Soil and Water Assessment Tool) model was originally developed for agricultural landscapes but recent applications are expanding its use to new landscapes and diverse landuse (including urban, forest, grasslands). In this study, we revise the existing, publicly available SWAT (version2009.10.1 Beta3) to create SWAT-CS, a version representing hydrological and biogeochemical processes dominating Boreal Shield watersheds, where boreal forest extends over Precambrian Shield bedrock. In different parts of Canada's Boreal Shield, watersheds are under increasing pressure from various types of development (e.g. mining, increased cottagers) and changing climate. Boreal Shield watersheds are generally characterized by shallow forested soils with high infiltration rates and low bedrock infiltration, generating little overland flow and where macropore and subsurface flow are important streamflow generation processes. Large numbers of wetlands and lakes are also key physiographic features, and snow-processes are critical to watershed modeling in this climate. Very few studies applying SWAT to Boreal Shield watersheds exist (we have found one). In this study we present hydrologic simulation results using SWAT-CS as a first step towards large scale water quality modeling in Boreal watersheds. We test SWAT-CS using the Harp Lake catchment dataset, an Ontario Ministry of Environment research station located in central Ontario. Simulations are evaluated against 30 years of observational data, including streamflow from six headwater sub-catchments (0.1 to 1.9 km2), outflow from Harp Lake (5.4 km2) and five years of weekly snow water equivalent (SWE). For sub-catchment HP4 (with detailed land use and soil data) results show best daily streamflow Nash-Sutcliffe efficiency (NSE) of 0.60 and 0.65, for calibration and verification periods, respectively. Best NSE for SWE was 0.87. For this range of scales, land cover and soil properties were found to be transferable

  3. Development of cropland management dataset to support U.S. SWAT assessments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil and Water Assessment Tool (SWAT) is a widely used hydrologic/water quality simulation model in the U.S. Process-based models like SWAT require a great deal of data to accurately represent the natural world, including topography, landuse, soils, weather, and management. With the exception ...

  4. Assessing applicability of SWAT calibrated at multiple spatial scales from field to stream

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The capability of SWAT for simulating long-term hydrology and water quality was evaluated using data collected in subwatershed K of the Little River Experimental watershed located in South Atlantic Coastal Plain of the USA. The SWAT model was calibrated to measurements made at various spatial scales...

  5. SWAT Check: A screening tool to assist users in the identification of potential model application problems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil and Water Assessment Tool (SWAT) is a basin scale hydrologic model developed by the US Department of Agriculture-Agricultural Research Service. SWAT's broad applicability, user friendly model interfaces, and automatic calibration software have led to a rapid increase in the number of new u...

  6. Overview and insights regarding the JEQ soil and water assessment tool (SWAT) special issue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil and Water Assessment Tool (SWAT) model has emerged as one of the most widely used water quality watershed- and river basin-scale models worldwide, and has been extensively applied for a broad range of hydrologic and/or environmental problems. Factors driving the international use of SWAT i...

  7. Calibration of Uncertainty Analysis of the SWAT Model Using Genetic Algorithms and Bayesian Model Averaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, the Genetic Algorithms (GA) and Bayesian model averaging (BMA) were combined to simultaneously conduct calibration and uncertainty analysis for the Soil and Water Assessment Tool (SWAT). In this hybrid method, several SWAT models with different structures are first selected; next GA i...

  8. Including Sediment-Associated Bacteria Resuspension and Settling in SWAT Predictions of Microbial Water Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streambed sediments have been shown to serve as environmental reservoirs for bacteria, including pathogenic strains. The Soil and Water Assessment Tool (SWAT) has been augmented with bacteria subroutine in 2005. Bacteria die-off is the only in-stream process considered in the current SWAT. The purpo...

  9. Estimating evapotranspiration for dryland cropping systems in the semiarid Texas High Plains using SWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Water Assessment Tool (SWAT) is a widely used watershed model for simulating stream flow, overland flow, sediment, pesticide, and bacterial loading in response to management practices. All SWAT processes are directly dependent upon the accurate representation of hydrology. Evapotranspiratio...

  10. Application of the new modular SWAT code to three watersheds in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the integration of new variables and subroutines over the past two decades since the release of the first version of the Soil and Water Assessment Tool (SWAT), the model has become difficult to manipulate and maintain. Therefore, the SWAT code and the input and output file structure have rece...

  11. The Pennsylvania Phosphorus Index and TopoSWAT: A comparison of transport components and approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The regional Chesapeake Bay Conservation Innovation Grant Initiative includes comparison of TopoSWAT results and Phosphorus Index (P Index) evaluations of eight study watersheds throughout the Chesapeake Bay watershed. While similarities exist between the P Index and TopoSWAT, further comparison of ...

  12. Modeling the impact of nitrogen fertilizer application and tile drain configuration on nitrate leaching using SWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, the Soil and Water Assessment Tool (SWAT) was revised to improve the partitioning of runoff and tile drainage in poorly drained soils by modifying the algorithm for computing the soil moisture retention parameter. In this study, the revised SWAT model was used to evaluate the sensitivity a...

  13. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    SciTech Connect

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  14. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion

    SciTech Connect

    Kojima, A. Hanada, M.; Tobari, H.; Nishikiori, R.; Hiratsuka, J.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K.; Yamano, Y.; Grisham, L. R.

    2016-02-15

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  15. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion.

    PubMed

    Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  16. Squad Weapons Analytical Trainer (SWAT) M-16 Version.

    DTIC Science & Technology

    1980-07-01

    AD-A91 077 OFFICE OF THE PROJECT MANAGER FOR TRAINING DEVICES O--ETC F/G 5/9 SQUAD WEAPONS ANALYTICAL TRAINER (SWAT) M-16 VERSION.(U) JUL AO A...AN ANRSAS m ... POJC.TS AMAUSWRUNT UMES 1.CONTROLLING OFFICE NAME AND ADDRES U.S. Army (DRCPM-TND-RE) /1 Ju 1088f Project Manager for Training Devices...optic based, microcomputer controlled, training device that enables tactical infantry - weapons training with a M-16 rifle, under a simulated high

  17. Techniques for correcting velocity and density fluctuations of ion beams in ion inducti on accelerators

    NASA Astrophysics Data System (ADS)

    Woo, K. M.; Yu, S. S.; Barnard, J. J.

    2013-06-01

    It is well known that the imperfection of pulse power sources that drive the linear induction accelerators can lead to time-varying fluctuation in the accelerating voltages, which in turn leads to longitudinal emittance growth. We show that this source of emittance growth is correctable, even in space-charge dominated beams with significant transients induced by space-charge waves. Two correction methods are proposed, and their efficacy in reducing longitudinal emittance is demonstrated with three-dimensional particle-in-cell simulations.

  18. Human Short-Latency Somatosensory Evoked Potentials in Impact Acceleration Research: Equipment, Procedures and Techniques

    DTIC Science & Technology

    1990-10-01

    Instrumentation Data Sheet .......................... 10 Figure 8. Human Physiology Screen One ....................................... 1I1 Figure 9. Human ... Physiology Screen Two...................................... 12 Figure 10. Human Physiology Screen Three ..................................... 12 Figure...Short-Latency Somatosensory Evoked Potentials in Impact Acceleration Research ***** HUMAN PHYSIOLOGY SCREEN***** Please Read First To move from one

  19. Disk-loaded RF waveguide matching techniques applied to silicon woodpile accelerator

    SciTech Connect

    Wu Ziran; England, Joel; Ng, Cho; Tantawi, Sami

    2012-12-21

    Silicon woodpile photonic crystal provides a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. The woodpile waveguide is periodically loaded in the longitudinal direction; therefore simple cross-sectional mode profile matching is not sufficient to launch the accelerating mode appropriately and will result in significant scattering loss. Hinted by the common nature of longitudinal periodicity between disk-loaded waveguide and woodpile waveguide, several coupler design schemes developed for multi-cell RF cavity are implemented in the woodpile accelerator design. Among them there are the travelling-wave match method based on S-matrix, the periodic VSWR method, and the TE-to-TM coupling iris design. This paper presents design procedures and simulation results using these methods. According to simulations, nearly 100% power transmission between SOI and woodpile waveguides with a travelling-wave match is achieved with a specially designed mode-launching coupler. Constructed by silicon rods extruding into the defect waveguide, the coupling iris provides necessary transition from TE mode to TM accelerating mode, also with negligible coupling loss.

  20. Accelerating rate calorimetry: A new technique for safety studies in lithium systems

    NASA Technical Reports Server (NTRS)

    Ebner, W. B.

    1982-01-01

    The role of exothermic reactions in battery test modes is discussed. The exothermic reactions are characterized with respect to their time-temperature and time-pressure behavior. Reactions occuring for any major exotherm were examined. The accelerating rate calorimetry methods was developed to study lithium cells susceptibility to thermal runaway reactions following certain abuse modes such as forced discharge into reversal and charging.

  1. Streamflow data assimilation in SWAT model using Extended Kalman Filter

    NASA Astrophysics Data System (ADS)

    Sun, Leqiang; Nistor, Ioan; Seidou, Ousmane

    2015-12-01

    The Extended Kalman Filter (EKF) is coupled with the Soil and Water Assessment Tools (SWAT) model in the streamflow assimilation of the upstream Senegal River in West Africa. Given the large number of distributed variables in SWAT, only the average watershed scale variables are included in the state vector and the Hydrological Response Unit (HRU) scale variables are updated with the a posteriori/a priori ratio of their watershed scale counterparts. The Jacobian matrix is calculated numerically by perturbing the state variables. Both the soil moisture and CN2 are significantly updated in the wet season, yet they have opposite update patterns. A case study for a large flood forecast shows that for up to seven days, the streamflow forecast is moderately improved using the EKF-subsequent open loop scheme but significantly improved with a newly designed quasi-error update scheme. The former has better performances in the flood rising period while the latter has better performances in the recession period. For both schemes, the streamflow forecast is improved more significantly when the lead time is shorter.

  2. Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: A systematic review

    NASA Astrophysics Data System (ADS)

    Francesconi, Wendy; Srinivasan, Raghavan; Pérez-Miñana, Elena; Willcock, Simon P.; Quintero, Marcela

    2016-04-01

    SWAT, a watershed modeling tool has been proposed to help quantify ecosystem services. The concept of ecosystem services incorporates the collective benefits natural systems provide primarily to human beings. It is becoming increasingly important to track the impact that human activities have on the environment in order to determine its resilience and sustainability. The objectives of this paper are to provide an overview of efforts using SWAT to quantify ecosystem services, to determine the model's capability examining various types of services, and to describe the approach used by various researchers. A literature review was conducted to identify studies in which SWAT was explicitly used for quantifying ecosystem services in terms of provisioning, regulating, supporting, and cultural aspects. A total of 44 peer reviewed publications were identified. Most of these used SWAT to quantify provisioning services (34%), regulating services (27%), or a combination of both (25%). While studies using SWAT for evaluating ecosystem services are limited (approximately 1% of SWAT's peered review publications), and usage (vs. potential) of services by beneficiaries is a current model limitation, the available literature sets the stage for the continuous development and potential of SWAT as a methodological framework for quantifying ecosystem services to assist in decision-making.

  3. Concepts and techniques: Active electronics and computers in safety-critical accelerator operation

    SciTech Connect

    Frankel, R.S.

    1995-12-31

    The Relativistic Heavy Ion Collider (RHIC) under construction at Brookhaven National Laboratory, requires an extensive Access Control System to protect personnel from Radiation, Oxygen Deficiency and Electrical hazards. In addition, the complicated nature of operation of the Collider as part of a complex of other Accelerators necessitates the use of active electronic measurement circuitry to ensure compliance with established Operational Safety Limits. Solutions were devised which permit the use of modern computer and interconnections technology for Safety-Critical applications, while preserving and enhancing, tried and proven protection methods. In addition a set of Guidelines, regarding required performance for Accelerator Safety Systems and a Handbook of design criteria and rules were developed to assist future system designers and to provide a framework for internal review and regulation.

  4. Accelerator-based analytical technique in the evaluation of some Nigeria’s natural minerals: Fluorite, tourmaline and topaz

    NASA Astrophysics Data System (ADS)

    Olabanji, S. O.; Ige, O. A.; Mazzoli, C.; Ceccato, D.; Akintunde, J. A.; De Poli, M.; Moschini, G.

    2005-10-01

    For the first time, the complementary accelerator-based analytical technique of PIXE and electron microprobe analysis (EMPA) were employed for the characterization of some Nigeria's natural minerals namely fluorite, tourmaline and topaz. These minerals occur in different areas in Nigeria. The minerals are mainly used as gemstones and for other scientific and technological applications and therefore are very important. There is need to characterize them to know the quality of these gemstones and update the geochemical data on them geared towards useful applications. PIXE analysis was carried out using the 1.8 MeV collimated proton beam from the 2.5 MV AN 2000 Van de Graaff accelerator at INFN, LNL, Legnaro, Padova, Italy. The novel results which show many elements at different concentrations in these minerals are presented and discussed.

  5. Design and development of a novel nuclear magnetic resonance detection for the gas phase ions by magnetic resonance acceleration technique

    NASA Astrophysics Data System (ADS)

    Fuke, K.; Tona, M.; Fujihara, A.; Sakurai, M.; Ishikawa, H.

    2012-08-01

    Nuclear magnetic resonance (NMR) technique is a well-established powerful tool to study the physical and chemical properties of a wide range of materials. However, presently, NMR applications are essentially limited to materials in the condensed phase. Although magnetic resonance was originally demonstrated in gas phase molecular beam experiments, no application to gas phase molecular ions has yet been demonstrated. Here, we present a novel principle of NMR detection for gas phase ions based on a "magnetic resonance acceleration" technique and describe the design and construction of an apparatus which we are developing. We also present an experimental technique and some results on the formation and manipulation of cold ion packets in a strong magnetic field, which are the key innovations to detect NMR signal using the present method. We expect this novel method to lead new realm for the study of mass-selected gas-phase ions with interesting applications in both fundamental and applied sciences.

  6. Ultra-High Sensitivity Techniques for the Determination of 3 He /4 He Abundances in Helium by Accelerator Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mumm, H. P.; Huber, M.; Bauder, W.; Abrams, N.; Deibel, C.; Huffer, C.; Huffman, P.; Schelhammer, K.; Janssens, R.; Jiang, C.; Scott, R.; Pardo, R.; Rehm, K.; Vondrasek, R.; Swank, C.; O'Shaughnessy, C.; Paul, M.; Yang, L.

    2017-01-01

    We report the development of an Accelerator Mass Spectrometry technique to measure the 3He/4He isotopic ratio using a radio frequency (RF) discharge source and the ATLAS facility at Argonne National Laboratory. Control over 3He/4He ratio in helium several orders of magnitude lower than natural abundance is critical for neutron lifetime and source experiments using liquid helium. Due to low ultimate beam currents, the ATLAS accelerator and beam line were tuned using a succession of species of the same M/q. A unique RF source was developed for the experiment due to large natural 3He backgrounds. Analog H_3 + and DH + molecular ions are eliminated by dissociation via a gold stripper foil near the detector. The stripped ions were dispersed in a magnetic spectrograph and 3He2 + ions counted in the focal plane detector. This technique is sensitive to 3 He /4 He ratios in the regime of 10-12 with backgrounds that appear to be below 10-14. The techniques used to reduce the backgrounds and remaining outstanding problems will be presented along with results from measurements on high purity 4He samples.

  7. Development of a grid-based version of the SWAT landscape model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integrated river basin models should provide a spatially distributed representation of basin hydrology and transport processes to allow for spatially implementing specific management and conservation measures. To accomplish this, the Soil and Water Assessment Tool (SWAT) was modified by integrating...

  8. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    SciTech Connect

    Yang, Qichun; Zhang, Xuesong

    2016-11-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio_E), large leaf to biomass fraction (Bio_LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWAT model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT’s performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests.

  9. Advances in the application of the SWAT model for water resources management

    NASA Astrophysics Data System (ADS)

    Jayakrishnan, R.; Srinivasan, R.; Santhi, C.; Arnold, J. G.

    2005-02-01

    Developments in computer technology have revolutionized the study of hydrologic systems and water resources management. Several computer-based hydrologic/water quality models have been developed for applications in hydrologic modelling and water resources studies. Distributed parameter models, necessary for basin-scale studies, have large input data requirements. Geographic information systems (GIS) and model-GIS interfaces aid the efficient creation of input data files required by such models. One such model available for the water resources professional is the Soil and Water Assessment Tool (SWAT), a distributed parameter model developed by the United States Department of Agriculture. This paper describes some recent advances made in the application of SWAT and the SWAT-GIS interface for water resources management. Four case studies are presented. The Hydrologic Unit Model for the United States (HUMUS) project used SWAT to conduct a national-scale analysis of the effect of management scenarios on water quantity and quality. Integration of the SWAT model with rainfall data available from the WSR-88D radar network helps us to incorporate the spatial variability of rainfall into the modelling process. This study demonstrates the usefulness of radar rainfall data in distributed hydrologic studies and the potential of SWAT for application in flood analysis and prediction. A hydrologic modelling study of the Sondu river basin in Kenya using SWAT indicates the potential for application of the model in African watersheds and points to the need for development of better model input data sets in Africa, which are critical for detailed water resources studies. The application of SWAT for water quality analysis in the Bosque river basin, Texas demonstrates the strength of the model for analysing different management scenarios to minimize point and non-point pollution, and its potential for application in total maximum daily load (TMDL) studies.

  10. Accelerated partial breast irradiation with brachytherapy: patient selection and technique considerations

    PubMed Central

    Trifiletti, Daniel M; Romano, Kara D; Showalter, Shayna L; Reardon, Kelli A; Libby, Bruce; Showalter, Timothy N

    2015-01-01

    Accelerated partial breast irradiation (APBI) through breast brachytherapy is a relatively recent development in breast radiotherapy that has gained international favor because of its reduction in treatment duration and normal tissue irradiation while maintaining favorable cancer-specific and cosmetic outcomes. Despite the fact that several large national trials have not reported final results yet, many providers are currently offering APBI to select patients and APBI is listed as a treatment option for selecting patients in the National Comprehensive Cancer Network guidelines. Multiple consensus guidelines exist in selecting patients for APBI, some with conflicting recommendations. In this review, the existing patient selection guidelines are reported, compared, and critiqued, grouping them in helpful subcategories. Unique patient and technical selection factors for APBI with brachytherapy are explored. PMID:26251627

  11. NOVEL TECHNIQUE OF POWER CONTROL IN MAGNETRON TRANSMITTERS FOR INTENSE ACCELERATORS

    SciTech Connect

    Kazakevich, G.; Johnson, R.; Neubauer, M.; Lebedev, V.; Schappert, W.; Yakovlev, V.

    2016-10-21

    A novel concept of a high-power magnetron transmitter allowing dynamic phase and power control at the frequency of locking signal is proposed. The transmitter compensating parasitic phase and amplitude modulations inherent in Superconducting RF (SRF) cavities within closed feedback loops is intended for powering of the intensity-frontier superconducting accelerators. The con- cept uses magnetrons driven by a sufficient resonant (in- jection-locking) signal and fed by the voltage which can be below the threshold of self-excitation. This provides an extended range of power control in a single magnetron at highest efficiency minimizing the cost of RF power unit and the operation cost. Proof-of-principle of the proposed concept demonstrated in pulsed and CW regimes with 2.45 GHz, 1kW magnetrons is discussed here. A conceptual scheme of the high-power transmitter allowing the dynamic wide-band phase and y power controls is presented and discussed.

  12. Use of the SWAT model to evaluate the sustainability of bioenergy production at a National scale

    SciTech Connect

    Baskaran, Latha Malar; Jager, Yetta; Schweizer, Peter E; Srinivasan, Raghavan

    2009-01-01

    As the US begins to integrate biomass crops and residues into its mix of energy feedstocks, tools are needed to measure the long-term sustainability of these feedstocks. Two aspects of sustainability are long-term potential for profitably producing energy and protection of ecosystems influenced by energy-related activities. The Soil and Water Assessment Tool (SWAT) is an important model used in the efforts to quantify both aspects. To quantify potential feedstock production, they used SWAT to estimate switchgrass yields at a national scale. The results from this analysis produced a map of the potential switchgrass yield along its natural eastern range. To quantify ecological protection, they are using the SWAT model to forecast changes in water quality and fish richness as a result of landscape alterations due to incorporating bioenergy crops. They have implemented the SWAT model in the Arkansas-Red-White region, which drains into the Mississippi River, and they present their methods here. They identified two sub-watersheds for sensitivity analysis and calibration of the water quality results, and then, explored ways to apply the calibration results to the whole region and validate the model setup. They also present an overview of their research in which results from the calibrated regional SWAT model were used to analyze potential changes in fish biodiversity. Only by evaluating the energy and environmental implications of landscape changes can we make informed decisions about bioenergy at the national scale, and the SWAT model will enable us to reach that goal.

  13. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  14. Continuous Surveillance Technique for Flow Accelerated Corrosion of Pipe Wall Using Electromagnetic Acoustic Transducer

    NASA Astrophysics Data System (ADS)

    Kojima, F.; Kosaka, D.; Umetani, K.

    2011-06-01

    In this paper, we propose a on-line monitoring technique using electromagnetic acoustic transducer (EMAT). In the series of laboratory experiments, carbon steel pipes were used and each sample was fabricated to simulate FAC. Electromagnetic acoustic resonance method (EMAR) is successfully tested for pipe wall thickness measurements. The validity and the feasibility of our method are also demonstrated through the laboratory experiments.

  15. Acceleration Techniques for Recombination of Gases in Electrolysis Microactuators with Nafion®-Coated Electrocatalyst.

    PubMed

    Sheybani, Roya; Meng, Ellis

    2015-12-31

    Recombination of electrolysis gases (oxidation of hydrogen and reduction of oxygen) is an important factor in operation efficiency of devices employing electrolysis such as actuators and also unitized regenerative fuel cells. Several methods of improving recombination speed and repeatability were developed for application to electrolysis microactuators with Nafion®-coated catalytic electrodes. Decreasing the electrolysis chamber volume increased the speed, consistency, and repeatability of the gas recombination rate. To further improve recombination performance, methods to increase the catalyst surface area, hydrophobicity, and availability were developed and evaluated. Of these, including in the electrolyte pyrolyzed-Nafion®-coated Pt segments contained in the actuator chamber accelerated recombination by increasing the catalyst surface area and decreasing the gas transport diffusion path. This approach also reduced variability in recombination encountered under varying actuator orientation (resulting in differing catalyst/gas bubble proximity) and increased the rate of recombination by 2.3 times across all actuator orientations. Repeatability of complete recombination for different generated gas volumes was studied through cycling.

  16. Sizing of single globular DNA molecules by using a circular acceleration technique with laser trapping.

    PubMed

    Hirano, Ken; Nagata, Hideya; Ishido, Tomomi; Tanaka, Yoshio; Baba, Yoshinobu; Ishikawa, Mitsuru

    2008-07-01

    We describe a method for in situ sizing individual huge DNA molecules by laser trapping. Single DNA molecules are reversibly transformed, without mechanical fragmentation of fragile huge-sized DNA, from their random coil state into their globular state induced by condensing agents poly(ethylene glycol) and Mg(2+). With the use of a globular DNA molecule folded by condensation, the critical velocity of the circularly accelerated single globular DNA molecule by laser trapping was found to be proportional to the size of the DNA. Yeast, Saccharomyces cerevisiae, chromosome III (285 kbp) was successfully sized (281 +/- 40 kbp) from a calibration curve scaled using lambda, T4, and yeast chromosome VI (48.5, 166, and 385 kbp, respectively). The use of critical velocity as a sizing parameter makes it possible to size single DNA molecules without prior conformational information, i.e., the radius of a single globular huge DNA molecule as a nanoparticle. A sized single globular DNA molecule could be trapped again for subsequent manipulation, such as transportation of it anywhere. We also investigated a possibility of reusing the globular DNA molecules condensed by PEG and Mg(2+) for PCR and found that PCR efficiency was not deteriorated in the presence of the condensation agents.

  17. Acceleration Techniques for Recombination of Gases in Electrolysis Microactuators with Nafion®-Coated Electrocatalyst

    PubMed Central

    Sheybani, Roya; Meng, Ellis

    2015-01-01

    Recombination of electrolysis gases (oxidation of hydrogen and reduction of oxygen) is an important factor in operation efficiency of devices employing electrolysis such as actuators and also unitized regenerative fuel cells. Several methods of improving recombination speed and repeatability were developed for application to electrolysis microactuators with Nafion®-coated catalytic electrodes. Decreasing the electrolysis chamber volume increased the speed, consistency, and repeatability of the gas recombination rate. To further improve recombination performance, methods to increase the catalyst surface area, hydrophobicity, and availability were developed and evaluated. Of these, including in the electrolyte pyrolyzed-Nafion®-coated Pt segments contained in the actuator chamber accelerated recombination by increasing the catalyst surface area and decreasing the gas transport diffusion path. This approach also reduced variability in recombination encountered under varying actuator orientation (resulting in differing catalyst/gas bubble proximity) and increased the rate of recombination by 2.3 times across all actuator orientations. Repeatability of complete recombination for different generated gas volumes was studied through cycling. PMID:26251561

  18. The cell-in-series method: A technique for accelerated electrode degradation in redox flow batteries

    SciTech Connect

    Pezeshki, Alan M.; Sacci, Robert L.; Veith, Gabriel M.; Zawodzinski, Thomas A.; Mench, Matthew M.

    2015-11-21

    Here, we demonstrate a novel method to accelerate electrode degradation in redox flow batteries and apply this method to the all-vanadium chemistry. Electrode performance degradation occurred seven times faster than in a typical cycling experiment, enabling rapid evaluation of materials. This method also enables the steady-state study of electrodes. In this manner, it is possible to delineate whether specific operating conditions induce performance degradation; we found that both aggressively charging and discharging result in performance loss. Post-mortem x-ray photoelectron spectroscopy of the degraded electrodes was used to resolve the effects of state of charge (SoC) and current on the electrode surface chemistry. For the electrode material tested in this work, we found evidence that a loss of oxygen content on the negative electrode cannot explain decreased cell performance. Furthermore, the effects of decreased electrode and membrane performance on capacity fade in a typical cycling battery were decoupled from crossover; electrode and membrane performance decay were responsible for a 22% fade in capacity, while crossover caused a 12% fade.

  19. The cell-in-series method: A technique for accelerated electrode degradation in redox flow batteries

    DOE PAGES

    Pezeshki, Alan M.; Sacci, Robert L.; Veith, Gabriel M.; ...

    2015-11-21

    Here, we demonstrate a novel method to accelerate electrode degradation in redox flow batteries and apply this method to the all-vanadium chemistry. Electrode performance degradation occurred seven times faster than in a typical cycling experiment, enabling rapid evaluation of materials. This method also enables the steady-state study of electrodes. In this manner, it is possible to delineate whether specific operating conditions induce performance degradation; we found that both aggressively charging and discharging result in performance loss. Post-mortem x-ray photoelectron spectroscopy of the degraded electrodes was used to resolve the effects of state of charge (SoC) and current on the electrodemore » surface chemistry. For the electrode material tested in this work, we found evidence that a loss of oxygen content on the negative electrode cannot explain decreased cell performance. Furthermore, the effects of decreased electrode and membrane performance on capacity fade in a typical cycling battery were decoupled from crossover; electrode and membrane performance decay were responsible for a 22% fade in capacity, while crossover caused a 12% fade.« less

  20. Decrystallization of Crystals Using Gold "Nano-Bullets" and the Metal-Assisted and Microwave-Accelerated Decrystallization Technique.

    PubMed

    Thompson, Nishone; Boone-Kukoyi, Zainab; Shortt, Raquel; Lansiquot, Carisse; Kioko, Bridgit; Bonyi, Enock; Toker, Salih; Ozturk, Birol; Aslan, Kadir

    2016-10-18

    Gout is caused by the overproduction of uric acid and the inefficient metabolism of dietary purines in humans. Current treatments of gout, which include anti-inflammatory drugs, cyclooxygenase-2 inhibitors, and systemic glucocorticoids, have harmful side-effects. Our research laboratory has recently introduced an innovative approach for the decrystallization of biological and chemical crystals using the Metal-Assisted and Microwave-Accelerated Evaporative Decrystallization (MAMAD) technique. In the MAMAD technique, microwave energy is used to heat and activate gold nanoparticles that behave as "nano-bullets" to rapidly disrupt the crystal structure of biological crystals placed on planar surfaces. In this study, crystals of various sizes and compositions were studied as models for tophaceous gout at different stages (i.e., uric acid as small crystals (~10-100 μm) and l-alanine as medium (~300 μm) and large crystals (~4400 μm). Our results showed that the use of the MAMAD technique resulted in the reduction of the size and number of uric acid and l-alanine crystals up to >40% when exposed to intermittent microwave heating (up to 20 W power at 8 GHz) in the presence of 20 nm gold nanoparticles up to 120 s. This study demonstrates that the MAMAD technique can be potentially used as an alternative therapeutic method for the treatment of gout by effective decrystallization of large crystals, similar in size to those that often occur in gout.

  1. Accelerating atomic-level protein simulations by flat-histogram techniques

    NASA Astrophysics Data System (ADS)

    Jónsson, Sigurður Ć.; Mohanty, Sandipan; Irbäck, Anders

    2011-09-01

    Flat-histogram techniques provide a powerful approach to the simulation of first-order-like phase transitions and are potentially very useful for protein studies. Here, we test this approach by implicit solvent all-atom Monte Carlo (MC) simulations of peptide aggregation, for a 7-residue fragment (GIIFNEQ) of the Cu/Zn superoxide dismutase 1 protein (SOD1). In simulations with 8 chains, we observe two distinct aggregated/non-aggregated phases. At the midpoint temperature, these phases coexist, separated by a free-energy barrier of height 2.7 kBT. We show that this system can be successfully studied by carefully implemented flat-histogram techniques. The frequency of barrier crossing, which is low in conventional canonical simulations, can be increased by turning to a two-step procedure based on the Wang-Landau and multicanonical algorithms.

  2. Differences in Effective Target Volume Between Various Techniques of Accelerated Partial Breast Irradiation

    SciTech Connect

    Shaitelman, Simona F.; Vicini, Frank A.; Grills, Inga S.; Martinez, Alvaro A.; Yan Di; Kim, Leonard H.

    2012-01-01

    Purpose: Different cavity expansions are used to define the clinical target volume (CTV) for accelerated partial breast irradiation (APBI) delivered via balloon brachytherapy (1 cm) vs. three-dimensional conformal radiotherapy (3D-CRT) (1.5 cm). Previous studies have argued that the CTVs generated by these different margins are effectively equivalent. In this study, we use deformable registration to assess the effective CTV treated by balloon brachytherapy on clinically representative 3D-CRT planning images. Methods and Materials: Ten patients previously treated with the MammoSite were studied. Each patient had two computed tomography (CT) scans, one acquired before and one after balloon implantation. In-house deformable registration software was used to deform the MammoSite CTV onto the balloonless CT set. The deformed CTV was validated using anatomical landmarks common to both CT scans. Results: The effective CTV treated by the MammoSite was on average 7% {+-} 10% larger and 38% {+-} 4% smaller than 3D-CRT CTVs created using uniform expansions of 1 and 1.5 cm, respectively. The average effective CTV margin was 1.0 cm, the same as the actual MammoSite CTV margin. However, the effective CTV margin was nonuniform and could range from 5 to 15 mm in any given direction. Effective margins <1 cm were attributable to poor cavity-balloon conformance. Balloon size relative to the cavity did not significantly correlate with the effective margin. Conclusion: In this study, the 1.0-cm MammoSite CTV margin treated an effective volume that was significantly smaller than the 3D-CRT CTV based on a 1.5-cm margin.

  3. Minimally Invasive Techniques to Accelerate the Orthodontic Tooth Movement: A Systematic Review of Animal Studies

    PubMed Central

    Qamruddin, Irfan; Alam, Mohammad Khursheed; Khamis, Mohd Fadhli; Husein, Adam

    2015-01-01

    Objective. To evaluate various noninvasive and minimally invasive procedures for the enhancement of orthodontic tooth movement in animals. Materials and Methods. Literature was searched using NCBI (PubMed, PubMed Central, and PubMed Health), MedPilot (Medline, Catalogue ZB MED, Catalogue Medicine Health, and Excerpta Medica Database (EMBASE)), and Google Scholar from January 2009 till 31 December 2014. We included original articles related to noninvasive and minimally invasive procedures to enhance orthodontic tooth movement in animals. Extraction of data and quality assessments were carried out by two observers independently. Results. The total number of hits was 9195 out of which just 11 fulfilled the inclusion criteria. Nine articles were good and 5 articles were moderate in quality. Low level laser therapy (LLLT) was among the most common noninvasive techniques whereas flapless corticision using various instruments was among the commonest minimally invasive procedures to enhance velocity of tooth movement. Conclusions. LLLT, low intensity pulsed ultrasound (LIPUS), mechanical vibration, and flapless corticision are emerging noninvasive and minimally invasive techniques which need further researches to establish protocols to use them clinically with conviction. PMID:26881201

  4. Accelerator-based analytical technique in the study of some anti-diabetic medicinal plants of Nigeria

    NASA Astrophysics Data System (ADS)

    Olabanji, S. O.; Omobuwajo, O. R.; Ceccato, D.; Adebajo, A. C.; Buoso, M. C.; Moschini, G.

    2008-05-01

    Diabetes mellitus, a clinical syndrome characterized by hyperglycemia due to deficiency of insulin, is a disease involving the endocrine pancreas and causes considerable morbidity and mortality in the world. In Nigeria, many plants, especially those implicated in herbal recipes for the treatment of diabetes, have not been screened for their elemental constituents while information on phytochemistry of some of them is not available. There is therefore the need to document these constituents as some of these plants are becoming increasingly important as herbal drugs or food additives. The accelerator-based technique PIXE, using the 1.8 MeV collimated proton beam from the 2.5 MV AN 2000 Van de Graaff accelerator at INFN, LNL, Legnaro (Padova) Italy, was employed in the determination of the elemental constituents of these anti-diabetic medicinal plants. Leaves of Gardenia ternifolia, Caesalpina pulcherrima, Solemostenon monostachys, whole plant of Momordica charantia and leaf and stem bark of Hunteria umbellata could be taken as vegetables, neutraceuticals, food additives and supplements in the management of diabetes. However, Hexabolus monopetalus root should be used under prescription.

  5. Aluminum diffusion in Al-implanted AISI 321 stainless steel using accelerator-based characterization techniques

    NASA Astrophysics Data System (ADS)

    Noli, F.; Misaelides, P.; Bethge, K.

    1998-04-01

    The aluminum diffusion in near-surface layers of Al-implanted AISI 321 austenitic stainless steel (Fe/Cr18/Ni8/Ti) was studied using ion beam analysis techniques. The implanted samples were investigated at temperatures between 450°C and 650°C (treatment times up to 144 h in vacuum and in air). The Al-profiles were determined by the 992 keV resonance of the 27Al(p,γ) 28Si nuclear reaction as well as by 4He +-Rutherford Backscattering Spectrometry (RBS). The experimental diffusion coefficients, obtained during this study using Fick's second law, were compared with corresponding literature concerning the aluminum diffusion in other relevant metallic materials. The determination of the depth profiles contributes to the interpretation of the high temperature oxidation behavior of Al-implanted stainless steel surfaces.

  6. Dengue Epidemic in Postconflict Swat District, Khyber Pakhtunkhwa, Pakistan, 2013.

    PubMed

    Chaudhry, Mamoona; Ahmad, Saeed; Rashid, Hamad Bin; Din, Iftikhar Ud

    2017-01-16

    Swat, a lush green valley of 1.3 million persons, remained under militant insurgency from 2007 to 2009, which damaged the health infrastructure. An outbreak of dengue fever (DF) was declared in the valley in 2013. To investigate this outbreak, we established active surveillance of national hospitals and private clinics, reviewed available clinical and laboratory records, and conducted entomological survey. From August to November 2013, 16,000 suspected patients with acute febrile illness were presented to health facilities. Among those, 9,036 were confirmed positive for DF by clinical manifestation and presence of NS1-soluble antigen. Of 9,036 patients, majority were men and aged 21-40. The epidemic peaked in September 2013 (N = 6,487). The attack rate was 7.18/1,000 populations. Among the confirmed case-patients, 36 deaths were reported, and proportion of mortality was 0.4%. Each year, increase in age was significantly associated with risk of complication due to DF leading to death (P < 0.001).

  7. Optimization of Drive-Bunch Current Profile for Enhanced Transformer Ratio in Beam-Driven Acceleration Techniques

    SciTech Connect

    Lemery, F.; Mihalcea, D.; Prokop, C.R.; Piot, P.; /Northern Illinois U. /Fermilab

    2012-07-08

    In recent years, wakefield acceleration has gained attention due to its high acceleration gradients and cost effectiveness. In beam-driven wakefield acceleration, a critical parameter to optimize is the transformer ratio. It has been shown that current shaping of electron beams allows for enhanced (> 2) transformer ratios. In this paper we present the optimization of the pulse shape of the drive bunch for dielectric-wakefield acceleration.

  8. Dosimetric comparison of 3D conformal, IMRT, and V-MAT techniques for accelerated partial-breast irradiation (APBI).

    PubMed

    Qiu, Jian-Jian; Chang, Zheng; Horton, Janet K; Wu, Qing-Rong Jackie; Yoo, Sua; Yin, Fang-Fang

    2014-01-01

    The purpose is to dosimetrically compare the following 3 delivery techniques: 3-dimensional conformal radiation therapy (3D-CRT), intensity-modulated arc therapy (IMRT), and volumetric-modulated arc therapy (V-MAT) in the treatment of accelerated partial-breast irradiation (APBI). Overall, 16 patients with T1/2N0 breast cancer were treated with 3D-CRT (multiple, noncoplanar photon fields) on the RTOG 0413 partial-breast trial. These cases were subsequently replanned using static gantry IMRT and V-MAT technology to understand dosimetric differences among these 3 techniques. Several dosimetric parameters were used in plan quality evaluation, including dose conformity index (CI) and dose-volume histogram analysis of normal tissue coverage. Quality assurance studies including gamma analysis were performed to compare the measured and calculated dose distributions. The IMRT and V-MAT plans gave more conformal target dose distributions than the 3D-CRT plans (p < 0.05 in CI). The volume of ipsilateral breast receiving 5 and 10Gy was significantly less using the V-MAT technique than with either 3D-CRT or IMRT (p < 0.05). The maximum lung dose and the ipsilateral lung volume receiving 10 (V10) or 20Gy (V20) were significantly less with both V-MAT and IMRT (p < 0.05). The IMRT technique was superior to 3D-CRT and V-MAT of low dose distributions in ipsilateral lung (p < 0.05 in V5 and D5). The total mean monitor units (MUs) for V-MAT (621.0 ± 111.9) were 12.2% less than those for 3D-CRT (707.3 ± 130.9) and 46.5% less than those for IMRT (1161.4 ± 315.6) (p < 0.05). The average machine delivery time was 1.5 ± 0.2 minutes for the V-MAT plans, 7.0 ± 1.6 minutes for the 3D-CRT plans, and 11.5 ± 1.9 minutes for the IMRT plans, demonstrating much less delivery time for V-MAT. Based on this preliminary study, V-MAT and IMRT techniques offer improved dose conformity as compared with 3D-CRT techniques without increasing dose to the ipsilateral lung. In terms of MU and delivery

  9. SWAT (Student Weekend Arborist Team): A Model for Land Grant Institutions and Cooperative Extension Systems to Conduct Street Tree Inventories

    ERIC Educational Resources Information Center

    Cowett, F.D.; Bassuk, N.L.

    2012-01-01

    SWAT (Student Weekend Arborist Team) is a program affiliated with Cornell University and Extension founded to conduct street tree inventories in New York State communities with 10,000 residents or fewer, a group of communities underserved in community forestry planning. Between 2002 and 2010, SWAT conducted 40 inventories, and data from these…

  10. Application of SWAT to assess the effects of land use change in the Murchison Bay catchment in Uganda

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil and Water Assessment Tool (SWAT) is a versatile model presently used worldwide to evaluate water quality and hydrological concerns under varying land use and environmental conditions. In this study, SWAT was used to simulate streamflow and to estimate sediment yield and nutrients loss from ...

  11. Regionalisation of parameters of a large-scale water quality model in Lithuania using PAIC-SWAT

    NASA Astrophysics Data System (ADS)

    Zarrineh, Nina; van Griensven, Ann; Sennikovs, Juris; Bekere, Liga; Plunge, Svajunas

    2015-04-01

    To comply with the EU Water Framework Directive, all water bodies need to achieve good ecological status. To reach these goals, the Environmental Protection Agency (AAA) has to elaborate river basin districts management plans and programmes of measures for all catchments in Lithuania. For this purpose, a Soil and Water Assessment Tool (SWAT) model was set up for all Lithuanian catchments using the most recent version of SWAT2012 rev627 implemented and imbedded in a Python workflow by the Center of Processes Analysis and Research (PAIC). The model was calibrated and evaluated using all monitoring data of river discharge, nitrogen and phosphorous concentrations and load. A regionalisation strategy has been set up by identifying 13 hydrological regions according to the runoff formation and hydrological conditions. In each region, a representative catchment was selected and calibrated using a combination of manual and automated calibration techniques. After final parameterization and fulfilling of calibrating and validating evaluation criteria, the same parameters sets have been extrapolated to other catchments within the same hydrological region. Multi variable cal/val strategy was implemented for the following variables: river flow and in-stream NO3, Total Nitrogen, PO4 and Total Phosphorous concentrations. The criteria used for calibration, validation and extrapolation are: Nash-Sutcliffe Efficiency (NSE) for flow and R-squared for water quality variables and PBIAS (percentage bias) for all variables. For the hydrological calibration, NSE values greater than 0.5 should be achieved, while for validation and extrapolation the threshold is respectively 0.4 and 0.3. PBIAS errors have to be less than 20% for calibration and for validation and extrapolation less than 25% and 30%, respectively. In water quality calibration, R-squared should be achieved to 0.5 for calibration and for validation and extrapolation to 0.4 and 0.3 respectively for nitrogen variables. Besides

  12. Impact of Spatial Scale on Calibration and Model Output for a Grid-based SWAT Model

    NASA Astrophysics Data System (ADS)

    Pignotti, G.; Vema, V. K.; Rathjens, H.; Raj, C.; Her, Y.; Chaubey, I.; Crawford, M. M.

    2014-12-01

    The traditional implementation of the Soil and Water Assessment Tool (SWAT) model utilizes common landscape characteristics known as hydrologic response units (HRUs). Discretization into HRUs provides a simple, computationally efficient framework for simulation, but also represents a significant limitation of the model as spatial connectivity between HRUs is ignored. SWATgrid, a newly developed, distributed version of SWAT, provides modified landscape routing via a grid, overcoming these limitations. However, the current implementation of SWATgrid has significant computational overhead, which effectively precludes traditional calibration and limits the total number of grid cells in a given modeling scenario. Moreover, as SWATgrid is a relatively new modeling approach, it remains largely untested with little understanding of the impact of spatial resolution on model output. The objective of this study was to determine the effects of user-defined input resolution on SWATgrid predictions in the Upper Cedar Creek Watershed (near Auburn, IN, USA). Original input data, nominally at 30 m resolution, was rescaled for a range of resolutions between 30 and 4,000 m. A 30 m traditional SWAT model was developed as the baseline for model comparison. Monthly calibration was performed, and the calibrated parameter set was then transferred to all other SWAT and SWATgrid models to focus the effects of resolution on prediction uncertainty relative to the baseline. Model output was evaluated with respect to stream flow at the outlet and water quality parameters. Additionally, output of SWATgrid models were compared to output of traditional SWAT models at each resolution, utilizing the same scaled input data. A secondary objective considered the effect of scale on calibrated parameter values, where each standard SWAT model was calibrated independently, and parameters were transferred to SWATgrid models at equivalent scales. For each model, computational requirements were evaluated

  13. Developing a Resource for Implementing ArcSWAT Using Global Datasets

    NASA Astrophysics Data System (ADS)

    Taggart, M.; Caraballo Álvarez, I. O.; Mueller, C.; Palacios, S. L.; Schmidt, C.; Milesi, C.; Palmer-Moloney, L. J.

    2015-12-01

    This project developed a comprehensive user manual outlining methods for adapting and implementing global datasets for use within ArcSWAT for international and worldwide applications. The Soil and Water Assessment Tool (SWAT) is a hydrologic model that looks at a number of hydrologic variables including runoff and the chemical makeup of water at a given location on the Earth's surface using Digital Elevation Models (DEM), land cover, soil, and weather data. However, the application of ArcSWAT for projects outside of the United States is challenging as there is no standard framework for inputting global datasets into ArcSWAT. This project aims to remove this obstacle by outlining methods for adapting and implementing these global datasets via the user manual. The manual takes the user through the processes of data conditioning while providing solutions and suggestions for common errors. The efficacy of the manual was explored using examples from watersheds located in Puerto Rico, Mexico and Western Africa. Each run explored the various options for setting up a ArcSWAT project as well as a range of satellite data products and soil databases. Future work will incorporate in-situ data for validation and calibration of the model and outline additional resources to assist future users in efficiently implementing the model for worldwide applications. The capacity to manage and monitor freshwater availability is of critical importance in both developed and developing countries. As populations grow and climate changes, both the quality and quantity of freshwater are affected resulting in negative impacts on the health of the surrounding population. The use of hydrologic models such as ArcSWAT can help stakeholders and decision makers understand the future impacts of these changes enabling informed and substantiated decisions.

  14. A new soil-temperature module for SWAT application in regions with seasonal snow cover

    NASA Astrophysics Data System (ADS)

    Qi, Junyu; Li, Sheng; Li, Qiang; Xing, Zisheng; Bourque, Charles P.-A.; Meng, Fan-Rui

    2016-07-01

    Accurate estimates of soil temperature are important for quantifying hydrological and biological processes in hydrological models. Soil temperature predictions in the widely used Soil and Water Assessment Tool (SWAT) have large prediction errors when applied to regions with significant snow cover during winter. In this study, a new physically-based soil-temperature module is developed as an alternative to the empirical soil-temperature module currently used in SWAT. The physically-based module ​simulates soil temperature in different soil layers as a result of energy transfer between the atmosphere and soil (or snow) interface. The modified version of SWAT with the new soil-temperature module in place, introduces only three new parameters over the original soil-temperature module. Both the original and new soil-temperature modules are tested against field data from the Black Brook Watershed, a small watershed in Atlantic Canada. The results indicate that both versions of soil-temperature module ​are able to provide acceptable predictions of temperature in different layers of the soil during non-winter seasons. However, the original module severely underestimates soil temperatures in winter (within -10 to -20 °C), while the new module produces results that are more consistent with field measurements (within -2 to 2 °C). In addition, unlike its counterpart, the new module ​is able to simulate freeze-thaw cycles in the soil profile. Ice-water content variations in winter are reasonably simulated by the new module for different snow cover scenarios. In general, modified-SWAT improves prediction accuracy on baseflow discharge compared with the original-SWAT, due to improved estimates of soil temperature during winter. The new physically-based soil-temperature module has greatly improved the ability of SWAT to predict soil temperatures under seasonal snow cover, which is essential to the application of the model in regions like Atlantic Canada.

  15. Nappe structure in a crustal scale duplex in Swat, Pakistan

    SciTech Connect

    Lawrence, R.D.; Snee, L.W.; Rosenberg, P.S.

    1985-01-01

    In the internal zone of thrust belts of continental collision orogens like the Himalaya metamorphic rocks of deep origin record penetrative ductile deformation. In Swat, Pakistan, this zone between the Indus suture and the sedimentary fold-and-thrust belt is narrower and tectonically simpler than elsewhere along the Himalayan orogenic belt. Here the authors have recognized large overturned, orthogneiss cored nappes of 15 km half wavelength. These are defined by para-amphibolite marker beds found in upright stratigraphic section above and in overturned section below the gneissic cores. They distinguish premetamorphic granite porphyry and tourmaline granite intruded into quartzose metasediments as gneissic cores of the nappes and a surrounding sequence of quartzites, amphibolites, and carbonates that were either deposited unconformably above the cores or premetamorphically thrust over them. Metamorphic isogrades cut across the nappe and /sup 40/Ar//sup 39/Ar hornblende dates indicate that metamorphic culmination occurred around 37-40 Ma at about 550/sup 0/C and at depths of about 20 km. These structures thus appear to predate the recognized age of metamorphism and thrusting of crystalline rocks on the MCT in the central Himalaya. They represent an early deep burial of the leading edge of the Indian shield by ophiolite slabs of oceanic lithosphere and/or the Kohistan island arc. By 30 Ma metamorphic temperatures (/sup 40/Ar//sup 39/Ar muscovite) had dropped to 320/sup 0/C, and the nappes were rising through the crust on underlying thrusts. The entire structure is very similar to that of the internal zone of the Alps, but such features have not previously been described in the Himalaya.

  16. Environmental gamma radiation measurement in district Swat, Pakistan.

    PubMed

    Jabbar, T; Khan, K; Subhani, M S; Akhter, P; Jabbar, A

    2008-01-01

    External exposure to environmental gamma ray sources is an important component of exposure to the public. A survey was carried out to determine activity concentration levels and associated doses from (226)Ra, (232)Th, (40)K and (137)Cs by means of high-resolution gamma ray spectrometry in the Swat district, famous for tourism. The mean concentrations for (226)Ra, (232)Th and (40)K were found to be 50.4 +/- 0.7, 34.8 +/- 0.7 and 434.5 +/- 7.4 Bq kg(-1), respectively, in soil samples, which are slightly more than the world average values. However, (137)Cs was only found in the soil sample of Barikot with an activity concentration of 34 +/- 1.2 Bq kg(-1). Only (40)K was determined in vegetation samples with an average activity of 172.2 +/- 1.7 Bq kg(-1), whereas in water samples, all radionuclides were found below lower limits of detection. The radium equivalent activity in all soil samples is lower than the limit set in the Organisation for Economic Cooperation and Development report (370 Bq kg(-1)). The value of the external exposure dose has been determined from the content of these radionuclides in soil. The average terrestrial gamma air absorbed dose rate was observed to be 62.4 nGy h(-1), which yields an annual effective dose of 0.08 mSv. The average value of the annual effective dose lies close to the global range of outdoor radiation exposure given in United Nations Scientific Committee on the Effects of Atomic Radiation. However, the main component of the radiation dose to the population residing in the study area arises from cosmic ray due to high altitude.

  17. SWAT2000: current capabilities and research opportunities in applied watershed modelling

    NASA Astrophysics Data System (ADS)

    Arnold, J. G.; Fohrer, N.

    2005-02-01

    SWAT (Soil and Water Assessment Tool) is a conceptual, continuous time model that was developed in the early 1990s to assist water resource managers in assessing the impact of management and climate on water supplies and non-point source pollution in watersheds and large river basins. SWAT is the continuation of over 30 years of model development within the US Department of Agriculture's Agricultural Research Service and was developed to scale up past field-scale models to large river basins. Model components include weather, hydrology, erosion/sedimentation, plant growth, nutrients, pesticides, agricultural management, stream routing and pond/reservoir routing. The latest version, SWAT2000, has several significant enhancements that include: bacteria transport routines; urban routines; Green and Ampt infiltration equation; improved weather generator; ability to read in daily solar radiation, relative humidity, wind speed and potential ET; Muskingum channel routing; and modified dormancy calculations for tropical areas. A complete set of model documentation for equations and algorithms, a user manual describing model inputs and outputs, and an ArcView interface manual are now complete for SWAT2000. The model has been recoded into Fortran 90 with a complete data dictionary, dynamic allocation of arrays and modular subroutines. Current research is focusing on bacteria, riparian zones, pothole topography, forest growth, channel downcutting and widening, and input uncertainty analysis.The model SWAT is meanwhile used in many countries all over the world. Recent developments in European Environmental Policy, such as the adoption of the European Water Framework directive in December 2000, demand tools for integrative river basin management. The model SWAT is applicable for this purpose. It is a flexible model that can be used under a wide range of different environmental conditions, as this special issue will show. The papers compiled here are the result of the first

  18. Hydrology and sediment yield calibration for the Barasona reservoir catchment (Spain) using SWAT

    NASA Astrophysics Data System (ADS)

    Palazón, Leticia; Navas, Ana

    2013-04-01

    Hydrological and soil erosion models, as Soil and Water Assessment Tool (SWAT), have become very useful tools and increasingly serve as vital components of integrated environmental assessments that provide information outside of direct field experiments and causal observation. The purpose of this study was to improve the calibration of SWAT model to use it in an alpine catchment as a simulator of processes related to water quality and soil erosion. SWAT is spatially semi-distributed, agro-hydrological model that operates on a daily time step (as a minimum) at basin scale. It is designed to predict the impact of management on water, sediment and agricultural chemical yields in ungaged catchments. SWAT provides physically based algorithms as an option to define many of the important components of the hydrologic cycle. The input requirements of the model are used to describe the climate, soil properties, topography, vegetation, and land management practices. SWAT analyzes small or large catchments by discretising into sub-basins, which are then further subdivided into hydrological response units (HRUs) with homogeneous land use, soil type and slope. SWAT model (SWAT2009) coupled with a GIS interface (ArcSWAT), was applied to the Barasona reservoir catchment located in the central Spanish Pyrenees. The 1509 km2 agro-forestry catchment presents a mountain type climate, an altitudinal range close to 3000 meters and a precipitation variation close to 1000 mm/km. The mountainous characteristics of the catchment, in addition to the scarcity of climate data in the region, require specific calibration for some processes. Snowfall and snowmelt are significant processes in the hydrologic regime of the area and were calibrated in a previous work. In this work some of the challenges of the catchment to model with SWAT which affected the hydrology and the sediment yield simulation were performed as improvement of the previous calibration. Two reservoirs, a karst system which

  19. Integrating Internet Video Conferencing Techniques and Online Delivery Systems with Hybrid Classes to Enhance Student Interaction and Learning in Accelerated Programs

    ERIC Educational Resources Information Center

    Beckwith, E. George; Cunniff, Daniel T.

    2009-01-01

    Online course enrollment has increased dramatically over the past few years. The authors cite the reasons for this rapid growth and the opportunities open for enhancing teaching/learning techniques such as video conferencing and hybrid class combinations. The authors outlined an example of an accelerated learning, eight-class session course…

  20. Study on interface and frame structure of SWAT and MODFLOW models coupling

    NASA Astrophysics Data System (ADS)

    Chu, Jinggang; Zhang, Chi; Zhou, Huicheng

    2010-05-01

    In recent years, water resources are increasingly affecting the global development of environment and economy. The temporal and spatial changes of water resources are directly dependent on the cognition of hydrological cycle laws. Watershed is the basic unit of natural water circulation, the basic system of water resources development and utilization, water environment preservation, water resources allocation and utilization. Based on the determination of the standard period of hydrological variation, the restoration of the natural runoff under the impact of human activities by the use of hydrological model through hydrology simulations, the quantitative evaluation of the impact of climate changes and human activities on watershed water sources variation and the obtainment of responding regularity and mechanism of watershed water circulation to climate changes and human activities are hotspots of the present hydrology research. The most widely used hydrological models are SWAT and MODFLOW. SWAT is the acronym for soil and water assessment tool, a watershed scale model developed by USDA Agricultural Research Service (ARS). SWAT was developed to simulate the quality and quantity of surface water and groundwater, predict the impact of land management practices on water, sediment and agriculture chemical yields in large complex watersheds with varying soils, land use and management conditions over long periods of time. The model is physically based, computationally efficient, and capable of continuous simulation over long time periods. The limitation of SWAT is its semi-distributed characteristics, which is the sub-watersheds divided in the model have distributed characteristics, and the hydrologic response units (HRUs) subdivided in the sub-watersheds do not have distributed characteristics. In order to improve the accuracy of the model simulations, especially the accuracy of daily/monthly average simulation in the plain areas with complex features of topography

  1. Spatial Mapping of Agricultural Water Productivity Using the SWAT Model

    NASA Astrophysics Data System (ADS)

    Thokal, Rajesh Tulshiram; Gorantiwar, S. D.; Kothari, Mahesh; Bhakar, S. R.; Nandwana, B. P.

    2015-03-01

    The Sina river basin is facing both episodic and chronic water shortages due to intensive irrigation development. The main objective of this study was to characterize the hydrologic processes of the Sina river basin and assess crop water productivity using the distributed hydrologic model, SWAT. In the simulation year (1998-1999), the inflow to reservoir from upstream side was the major contributor to the reservoir accounting for 92 % of the total required water release for irrigation purpose (119.5 Mm3), while precipitation accounted for 4.1 Mm3. Annual release of water for irrigation was 119.5 Mm3 out of which 54 % water was diverted for irrigation purpose, 26 % was wasted as conveyance loss, average discharge at the command outlet was estimated as 4 % and annual average ground-water recharge coefficient was in the range of 13-17 %. Various scenarios involving water allocation rule were tested with the goal of increasing economic water productivity values in the Sina Irrigation Scheme. Out of those, only most benefited allocation rule is analyzed in this paper. Crop yield varied from 1.98 to 25.9 t/ha, with the majority of the area between 2.14 and 2.78 t/ha. Yield and WP declined significantly in loamy soils of the irrigation command. Crop productivity in the basin was found in the lower range when compared with potential and global values. The findings suggested that there was a potential to improve further. Spatial variations in yield and WP were found to be very high for the crops grown during rabi season, while those were low for the crops grown during kharif season. The crop yields and WP during kharif season were more in the lower reach of the irrigation commands, where loamy soil is more concentrated. Sorghum in both seasons was most profitable. Sorghum fetched net income fivefold that of sunflower, two and half fold of pearl millet and one and half fold of mung beans as far as crop during kharif season were concerned and it fetched fourfold that of

  2. Improvement of the R-SWAT-FME framework to support multiple variables and multi-objective functions

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shu-Guang

    2014-01-01

    Application of numerical models is a common practice in the environmental field for investigation and prediction of natural and anthropogenic processes. However, process knowledge, parameter identifiability, sensitivity, and uncertainty analyses are still a challenge for large and complex mathematical models such as the hydrological/water quality model, Soil and Water Assessment Tool (SWAT). In this study, the previously developed R program language-SWAT-Flexible Modeling Environment (R-SWAT-FME) was improved to support multiple model variables and objectives at multiple time steps (i.e., daily, monthly, and annually). This expansion is significant because there is usually more than one variable (e.g., water, nutrients, and pesticides) of interest for environmental models like SWAT. To further facilitate its easy use, we also simplified its application requirements without compromising its merits, such as the user-friendly interface. To evaluate the performance of the improved framework, we used a case study focusing on both streamflow and nitrate nitrogen in the Upper Iowa River Basin (above Marengo) in the United States. Results indicated that the R-SWAT-FME performs well and is comparable to the built-in auto-calibration tool in multi-objective model calibration. Overall, the enhanced R-SWAT-FME can be useful for the SWAT community, and the methods we used can also be valuable for wrapping potential R packages with other environmental models.

  3. Hydrologic evaluation of a Mediterranean watershed using the SWAT model with multiple PET estimation methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Penman-Monteith method suggested by the Food Agricultural Organization in the Irrigation and drainage paper 56 (FAO-56 P-M) was used to evaluate surface runoff and sediment yield predictions by the Soil and Water Assessment Tool (SWAT) model at the outlet of an experimental watershed in Sicily. ...

  4. Pathogen Transport and Fate Modeling in the Upper Salem River Watershed using SWAT Model

    EPA Science Inventory

    SWAT (Soil and Water Assessment Tool) is a dynamic watershed model that is applied to simulate the impact of land management practices on water quality over a continuous period. The Upper Salem River, located in Salem County New Jersey, is listed by the New Jersey Department of ...

  5. Pathogen Transport and Fate Modeling in the Upper Salem River Watershed Using SWAT Model

    EPA Science Inventory

    SWAT (Soil and Water Assessment Tool) is a dynamic watershed model that is applied to simulate the impact of land management practices on water quality over a continuous period. The Upper Salem River, located in Salem County New Jersey, is listed by the New Jersey Department of ...

  6. Significance of uncertainty in evapotranspiration estimates on water balance modeling in SWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In water quality models, such as the Soil and Water Assessment Tool (or SWAT), accurate forcing of potential evapotranspiration (PET) is crucial for producing reasonable predictions of water budget components, sediment and other pollutant loads from larger river basins. Methods and data, needed to ...

  7. Evapotranspiration and Precipitation inputs for SWAT model using remotely sensed observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of numerical models, such as the Soil and Water Assessment Tool (or SWAT), to accurately represent the partition of the water budget and describe sediment loads and other pollutant conditions related to water quality strongly depends on how well spatiotemporal variability in precipitatio...

  8. Impact of DEM and soils on topographic index, as used in TopoSWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A topographic index (TI), comprised of slope and upstream contributing area, is used in TopoSWAT to help account for variable source runoff and soil moisture. The level of precision in the GIS input data layers can substantially impact the calculations of the topographic index layer and affect the a...

  9. SWAT ASSESSMENT OF MANAGEMENT PRACTICES ON ATRAZINE LOSS IN THE GOOD WATER CREEK EXPERIMENTAL WATERSHED.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Goodwater Creek Watershed is a subwatershed of the Mark Twain Lake watershed, an ARS-CEAP benchmark watershed in Northeast Missouri. This 7,250-ha watershed was selected for initial modeling because of its smaller size and the large hydrologic and climatologic dataset available. A SWAT model of ...

  10. Development and application of algorithms for simulating terraces practices within SWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Terraces have been proven to be an effective conservation practice for controlling high soil loss. In large hydrological programs such as Soil and Water Assessment Tool (SWAT), terrace effects are simulated by adjusting the slope length and the USLE P-factor. In this study, a process-based terrace a...

  11. Estimating plant available water for general crop simulations in ALMANAC/APEX/EPIC/SWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Process-based simulation models ALMANAC/APEX/EPIC/SWAT contain generalized plant growth subroutines to predict biomass and crop yield. Environmental constraints typically restrict plant growth and yield. Water stress is often an important limiting factor; it is calculated as the sum of water use f...

  12. Assimilating Remotely Sensed Surface Soil Moisture into SWAT using Ensemble Kalman Filter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, a 1-D Ensemble Kalman Filter has been used to update the soil moisture states of the Soil and Water Assessment Tool (SWAT) model. Experiments were conducted for the Cobb Creek Watershed in southeastern Oklahoma for 2006-2008. Assimilation of in situ data proved limited success in the ...

  13. Code modernization and modularization of APEX and SWAT watershed simulation models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SWAT (Soil and Water Assessment Tool) and APEX (Agricultural Policy / Environmental eXtender) are respectively large and small watershed simulation models derived from EPIC Environmental Policy Integrated Climate), a field-scale agroecology simulation model. All three models are coded in FORTRAN an...

  14. Comparison of SWAT Predictions with Stream Biological Integrity Observations in an Agricultural Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The SWAT model is calibrated with USGS data for an agricultural watershed located on the Eastern Shore of Maryland. Model predictions of runoff, sediment, nitrogen and phosphorus amounts, at the outlet of sub-watersheds, are compared to measurements of stream biological integrity conducted throughou...

  15. Use of natural gamma-ray geophysical logs for SWAT water table parameter estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preliminary soil and sub-soil hydraulic parameter estimates needed for SWAT simulations to determine sub-surface water movement were collected using downhole geophysical measurements. Gamma-ray logs are useful for distingishing sandstone from shales by measuring natural-gamma radiation emitted from ...

  16. Alternative Land-Use Method for Spatially Informed Watershed Management Decision Making Using SWAT

    EPA Science Inventory

    In this study, a modification is proposed to the Soil and Water Assessment Tool (SWAT) to enable identification of areas where the implementation of best management practices would likely result in the most significant improvement in downstream water quality. To geospatially link...

  17. Solute redistribution and constitutional supercooling effects in vertical Bridgman grown indium gallium antimonide by accelerated crucible rotation technique

    NASA Astrophysics Data System (ADS)

    Vogel, K. Juliet

    The ternary alloy, InxGa1- xSb, is a compound semiconducting material of compositionally tunable bandgap (0.18 - 0.72 eV), making it desirable for use in photovoltaic, photodetector, and other opto-electronic devices in the infra-red regime. In the past, this material has proven to be difficult to synthesize in bulk due to the large phase separation between the constituent binaries. In this work, InxGa1-xSb has been grown in a state-of-the-art, computer-controlled system based on vertical Bridgman technique designed to allow crucible rotation during solidification of the material to reincorporate excess solute and improve material quality. Independent thermocouples allow for in situ monitoring and maintenance of the temperature to 0.2°C precision during crystal growth, reducing compositional inhomogeneities caused by temperature fluctuations. A series of experiments has been performed to evaluate the effect of accelerated crucible rotation technique (ACRT) on the structural quality and compositional homogeneity of bulk-grown InxGa 1-xSb for a starting melt composition of x = 0.25. A lowering rate of 3 mm/hr has been employed, for an overall cooling rate of 5.1°C/hr, which deliberately exceeds the threshold for constitutional supercooling. Scanning electron microscopy (SEM) has been performed on samples of In0.18Ga0.82Sb revealing a 92% percent reduction in micro-cracking with the application of ACRT when compared to synthesis performed without rotation. Furthermore; electron probe microscopy (EPMA) indicates an order of magnitude improvement in compositional homogeneity in the direction of growth with the use of ACRT. Micro-cracking and compositional homogeneity throughout cross-sections of InxGa1-xSb material also indicate areas of improved mixing during solidification, which can be compared to existing models of fluid flow exhibited in ACRT. The boule synthesized with ACRT shows a decrease in compositional deviation of 62% in the first-to-freeze areas of the

  18. SWAT use of gridded observations for simulating runoff - a Vietnam river basin study

    NASA Astrophysics Data System (ADS)

    Vu, M. T.; Raghavan, S. V.; Liong, S. Y.

    2012-08-01

    Many research studies that focus on basin hydrology have applied the SWAT model using station data to simulate runoff. But over regions lacking robust station data, there is a problem of applying the model to study the hydrological responses. For some countries and remote areas, the rainfall data availability might be a constraint due to many different reasons such as lacking of technology, war time and financial limitation that lead to difficulty in constructing the runoff data. To overcome such a limitation, this research study uses some of the available globally gridded high resolution precipitation datasets to simulate runoff. Five popular gridded observation precipitation datasets: (1) Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources (APHRODITE), (2) Tropical Rainfall Measuring Mission (TRMM), (3) Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN), (4) Global Precipitation Climatology Project (GPCP), (5) a modified version of Global Historical Climatology Network (GHCN2) and one reanalysis dataset, National Centers for Environment Prediction/National Center for Atmospheric Research (NCEP/NCAR) are used to simulate runoff over the Dak Bla river (a small tributary of the Mekong River) in Vietnam. Wherever possible, available station data are also used for comparison. Bilinear interpolation of these gridded datasets is used to input the precipitation data at the closest grid points to the station locations. Sensitivity Analysis and Auto-calibration are performed for the SWAT model. The Nash-Sutcliffe Efficiency (NSE) and Coefficient of Determination (R2) indices are used to benchmark the model performance. Results indicate that the APHRODITE dataset performed very well on a daily scale simulation of discharge having a good NSE of 0.54 and R2 of 0.55, when compared to the discharge simulation using station data (0.68 and 0.71). The GPCP proved to be the

  19. Critical review of the application of SWAT in the upper Nile Basin countries

    NASA Astrophysics Data System (ADS)

    van Griensven, A.; Ndomba, P.; Yalew, S.; Kilonzo, F.

    2012-03-01

    The Soil and Water Assessment Tool (SWAT) is a hydrological simulation tool that is widely applied within the Nile basin. Up to date, more than 20 peer reviewed papers describe the use of SWAT for a variety of problems in the upper Nile basin countries, such as erosion modeling, land use modeling, climate change impact modeling and water resources management. The majority of the studies are clustered in the tropical highlands in Ethiopia and around Lake Victoria. The popularity of SWAT is attributed to the fact that the tool is freely available and that it is readily applicable through the development of Geographic Information System (GIS) based interfaces and its easy linkage to sensitivity, calibration and uncertainty analysis tools. The online and free availability of basic GIS data that are required for SWAT made its applicability more straight forward even in data scarce areas. However, the easy use of SWAT may not always lead to knowledgeable models. In this paper, we aim at critically reviewing the use of SWAT in the context of the modeling purpose and problem descriptions in the tropical highlands of the Nile Basin countries. A number of criteria are used to evaluate the model set-up, model performances, physical representation of the model parameters, and the correctness of the hydrological model balance. On the basis of performance indicators, the majority of the SWAT models were classified as giving satisfactory to very good results. Nevertheless, the hydrological mass balances as reported in several papers contained losses that might not be justified. Several papers also reported unrealistic parameter values. More worrying is that many papers lack this information. For this reason, it is difficult to give an overall positive evaluation to most of the reported SWAT models. An important gap is the lack of attention that is given to the vegetation and crop processes. None of the papers reported any adaptation to the crop parameters, or any crop related

  20. Critical review of SWAT applications in the upper Nile basin countries

    NASA Astrophysics Data System (ADS)

    van Griensven, A.; Ndomba, P.; Yalew, S.; Kilonzo, F.

    2012-09-01

    The Soil and Water Assessment Tool (SWAT) is an integrated river basin model that is widely applied within the Nile basin. Up to date, more than 20 peer-reviewed papers describe the use of SWAT for a variety of problems in the upper Nile basin countries, such as erosion modelling, land use and climate change impact modelling and water resources management. The majority of the studies are focused on locations in the tropical highlands in Ethiopia and around Lake Victoria. The popularity of SWAT is attributed to the fact that the tool is freely available and that it is readily applicable through the development of geographic information system (GIS) based interfaces and its easy linkage to sensitivity, calibration and uncertainty analysis tools. The online and free availability of basic GIS data that are required for SWAT made its applicability more straightforward even in data-scarce areas. However, the easy use of SWAT may not always lead to appropriate models which is also a consequence of the quality of the available free databases in these regions. In this paper, we aim at critically reviewing the use of SWAT in the context of the modelling purpose and problem descriptions in the tropical highlands of the Nile basin countries. To evaluate the models that are described in journal papers, a number of criteria are used to evaluate the model set-up, model performances, physical representation of the model parameters, and the correctness of the hydrological model balance. On the basis of performance indicators, the majority of the SWAT models were classified as giving satisfactory to very good results. Nevertheless, the hydrological mass balances as reported in several papers contained losses that might not be justified. Several papers also reported the use of unrealistic parameter values. More worrying is that many papers lack this information. For this reason, most of the reported SWAT models have to be evaluated critically. An important gap is the lack of

  1. A simple rule based model for scheduling farm management operations in SWAT

    NASA Astrophysics Data System (ADS)

    Schürz, Christoph; Mehdi, Bano; Schulz, Karsten

    2016-04-01

    For many interdisciplinary questions at the watershed scale, the Soil and Water Assessment Tool (SWAT; Arnold et al., 1998) has become an accepted and widely used tool. Despite its flexibility, the model is highly demanding when it comes to input data. At SWAT's core the water balance and the modeled nutrient cycles are plant growth driven (implemented with the EPIC crop growth model). Therefore, land use and crop data with high spatial and thematic resolution, as well as detailed information on cultivation and farm management practices are required. For many applications of the model however, these data are unavailable. In order to meet these requirements, SWAT offers the option to trigger scheduled farm management operations by applying the Potential Heat Unit (PHU) concept. The PHU concept solely takes into account the accumulation of daily mean temperature for management scheduling. Hence, it contradicts several farming strategies that take place in reality; such as: i) Planting and harvesting dates are set much too early or too late, as the PHU concept is strongly sensitivity to inter-annual temperature fluctuations; ii) The timing of fertilizer application, in SWAT this often occurs simultaneously on the same date in in each field; iii) and can also coincide with precipitation events. Particularly, the latter two can lead to strong peaks in modeled nutrient loads. To cope with these shortcomings we propose a simple rule based model (RBM) to schedule management operations according to realistic farmer management practices in SWAT. The RBM involves simple strategies requiring only data that are input into the SWAT model initially, such as temperature and precipitation data. The user provides boundaries of time periods for operation schedules to take place for all crops in the model. These data are readily available from the literature or from crop variety trials. The RBM applies the dates by complying with the following rules: i) Operations scheduled in the

  2. Identifying Patients Who Are Unsuitable for Accelerated Partial Breast Irradiation Using Three-dimensional External Beam Conformal Techniques

    SciTech Connect

    Shikama, Naoto; Nakamura, Naoki; Kunishima, Naoaki; Hatanaka, Shogo; Sekiguchi, Kenji

    2012-07-01

    Purpose: Several recent studies reported that severe late toxicities including soft-tissue fibrosis and fat necrosis are present in patients treated with accelerated partial breast irradiation (APBI) and that these toxicities are associated with the large volume of tissue targeted by high-dose irradiation. The present study was performed to clarify which patients are unsuitable for APBI to avoid late severe toxicities. Methods and Materials: Study subjects comprised 50 consecutive patients with Stage 0-II unilateral breast cancer who underwent breast-conserving surgery, and in whom five or six surgical clips were placed during surgery. All patients were subsequently replanned using three-dimensional conformal radiotherapy (3D-CRT) APBI techniques according to the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-39 and Radiation Therapy Oncology Group (RTOG) 0413 protocol. The beam arrangements included mainly noncoplanar four- or five-field beams using 6-MV photons alone. Results: Dose-volume histogram (DVH) constraints for normal tissues according to the NSABP/RTOG protocol were satisfied in 39 patients (78%). Multivariate analysis revealed that only long craniocaudal clip distance (CCD) was correlated with nonoptimal DVH constraints (p = 0.02), but that pathological T stage, anteroposterior clip distance (APD), site of ipsilateral breast (IB) (right/left), location of the tumor (medial/lateral), and IB reference volume were not. DVH constraints were satisfied in 20% of patients with a long CCD ({>=}5.5 cm) and 92% of those with a short CCD (p < 0.0001). Median IB reference volume receiving {>=}50% of the prescribed dose (IB-V{sub 50}) of all patients was 49.0% (range, 31.4-68.6). Multivariate analysis revealed that only a long CCD was correlated with large IB-V{sub 50} (p < 0.0001), but other factors were not. Conclusion: Patients with long CCDs ({>=}5.5 cm) might be unsuitable for 3D-CRT APBI because of nonoptimal DVH constraints and large IB

  3. One library to make them all: Streamlining yeast library creation by a SWAp-Tag (SWAT) strategy

    PubMed Central

    Zalckvar, Einat; Goldman, Omer; Ben-Dor, Shifra; Schütze, Conny; Wiedemann, Nils; Knop, Michael; Khmelinskii, Anton; Schuldiner, Maya

    2016-01-01

    The yeast Saccharomyces cerevisiae is ideal for systematic studies relying on collections of modified strains (libraries). Despite the significance of yeast libraries and the immense variety of available tags and regulatory elements, only a few such libraries exist as their construction is extremely expensive and laborious. To overcome these limitations we developed a SWAp-Tag method (SWAT), in which one parental library can be modified easily and efficiently to give rise to an endless variety of libraries of choice. We showcase the versatility of the SWAT approach by constructing and investigating a library of ~1,800 strains carrying a SWAT-GFP module at the amino termini of endomembrane proteins and then using it to create two new libraries (mCherry or seamless GFP). Our work demonstrates how the SWAT method enables fast and effortless creation of yeast libraries, opening the door for endless new ways to systematically study cell biology. PMID:26928762

  4. Development of an Improved Irrigation Subroutine in SWAT to Simulate the Hydrology of Rice Paddy Grown under Submerged Conditions

    NASA Astrophysics Data System (ADS)

    Muraleedharan, B. V.; Kathirvel, K.; Narasimhan, B.; Nallasamy, N. D.

    2014-12-01

    Soil Water Assessment Tool (SWAT) is a basin scale, distributed hydrological model commonly used to predict the effect of management decisions on the hydrologic response of watersheds. Hydrologic response is decided by the various components of water balance. In the case of watersheds located in south India as well as in several other tropical countries around the world, paddy is one of the dominant crop controlling the hydrologic response of a watershed. Hence, the suitability of SWAT in replicating the hydrology of paddy fields needs to be verified. Rice paddy fields are subjected to flooding method of irrigation, while the irrigation subroutines in SWAT are developed to simulate crops grown under non flooding conditions. Moreover irrigation is represented well in field scale models, while it is poorly represented within watershed models like SWAT. Reliable simulation of flooding method of irrigation and hydrology of the fields will assist in effective water resources management of rice paddy fields which are one of the major consumers of surface and ground water resources. The current study attempts to modify the irrigation subroutine in SWAT so as to simulate flooded irrigation condition. A field water balance study was conducted on representative fields located within Gadana, a subbasin located in Tamil Nadu (southern part of India) and dominated by rice paddy based irrigation systems. The water balance of irrigated paddy fields simulated with SWAT was compared with the water balance derived by rice paddy based crop growth model named ORYZA. The variation in water levels along with the soil moisture variation predicted by SWAT was evaluated with respect to the estimates derived from ORYZA. The water levels were further validated with field based water balance measurements taken on a daily scale. It was observed that the modified irrigation subroutine was able to simulate irrigation of rice paddy within SWAT in a realistic way compared to the existing method.

  5. Semantic Web applications and tools for the life sciences: SWAT4LS 2010.

    PubMed

    Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott; Splendiani, Andrea

    2012-01-25

    As Semantic Web technologies mature and new releases of key elements, such as SPARQL 1.1 and OWL 2.0, become available, the Life Sciences continue to push the boundaries of these technologies with ever more sophisticated tools and applications. Unsurprisingly, therefore, interest in the SWAT4LS (Semantic Web Applications and Tools for the Life Sciences) activities have remained high, as was evident during the third international SWAT4LS workshop held in Berlin in December 2010. Contributors to this workshop were invited to submit extended versions of their papers, the best of which are now made available in the special supplement of BMC Bioinformatics. The papers reflect the wide range of work in this area, covering the storage and querying of Life Sciences data in RDF triple stores, tools for the development of biomedical ontologies and the semantics-based integration of Life Sciences as well as clinicial data.

  6. Hydrological modelling of a small catchment using SWAT-2000 Ensuring correct flow partitioning for contaminant modelling

    NASA Astrophysics Data System (ADS)

    Kannan, N.; White, S. M.; Worrall, F.; Whelan, M. J.

    2007-02-01

    SummaryThe performance of the SWAT-2000 model was evaluated using stream flow at the outlet of the 142 ha Colworth catchment (Bedfordshire, UK). This catchment has been monitored since October 1999. The soil type consists of clay loam soil over stony calcareous clay and a rotation of wheat, oil seed rape, grass, beans and peas is grown. Much of the catchment is tile drained. Acceptable performance in hydrological modelling, along with correct simulation of the processes driving the water balance were essential first requirements for predicting contaminant transport. Initial results from SWAT-2000 identified some necessary modifications in the model source code for correct simulation of processes driving water balance. After modification of the code, hydrological simulation, crop growth and evapotranspiration (ET) patterns were realistic when compared with empirical data. Acceptable model performance (based on a number of error measures) was obtained in final model runs, with reasonable runoff partitioning into overland flow, tile drainage and base flow.

  7. Automating calibration, sensitivity and uncertainty analysis of complex models using the R package Flexible Modeling Environment (FME): SWAT as an example

    USGS Publications Warehouse

    Wu, Y.; Liu, S.

    2012-01-01

    Parameter optimization and uncertainty issues are a great challenge for the application of large environmental models like the Soil and Water Assessment Tool (SWAT), which is a physically-based hydrological model for simulating water and nutrient cycles at the watershed scale. In this study, we present a comprehensive modeling environment for SWAT, including automated calibration, and sensitivity and uncertainty analysis capabilities through integration with the R package Flexible Modeling Environment (FME). To address challenges (e.g., calling the model in R and transferring variables between Fortran and R) in developing such a two-language coupling framework, 1) we converted the Fortran-based SWAT model to an R function (R-SWAT) using the RFortran platform, and alternatively 2) we compiled SWAT as a Dynamic Link Library (DLL). We then wrapped SWAT (via R-SWAT) with FME to perform complex applications including parameter identifiability, inverse modeling, and sensitivity and uncertainty analysis in the R environment. The final R-SWAT-FME framework has the following key functionalities: automatic initialization of R, running Fortran-based SWAT and R commands in parallel, transferring parameters and model output between SWAT and R, and inverse modeling with visualization. To examine this framework and demonstrate how it works, a case study simulating streamflow in the Cedar River Basin in Iowa in the United Sates was used, and we compared it with the built-in auto-calibration tool of SWAT in parameter optimization. Results indicate that both methods performed well and similarly in searching a set of optimal parameters. Nonetheless, the R-SWAT-FME is more attractive due to its instant visualization, and potential to take advantage of other R packages (e.g., inverse modeling and statistical graphics). The methods presented in the paper are readily adaptable to other model applications that require capability for automated calibration, and sensitivity and uncertainty

  8. Pathogen transport and fate modeling in the Upper Salem River Watershed using SWAT model.

    PubMed

    Niazi, Mehran; Obropta, Christopher; Miskewitz, Robert

    2015-03-15

    Simulation of the fate and transport of pathogen contamination was conducted with SWAT for the Upper Salem River Watershed, located in Salem County, New Jersey. This watershed is 37 km(2) and land uses are predominantly agricultural. The watershed drains to a 32 km stretch of the Salem River upstream of the head of tide. This strech is identified on the 303(d) list as impaired for pathogens. The overall goal of this research was to use SWAT as a tool to help to better understand how two pathogen indicators (Escherichia coli and fecal coliform) are transported throughout the watershed, by determining the model parameters that control the fate and transport of these two indicator species. This effort was the first watershed modeling attempt with SWAT to successfully simulate E. coli and fecal coliform simultaneously. Sensitivity analysis has been performed for flow as well as fecal coliform and E. coli. Hydrologic calibration at six sampling locations indicate that the model provides a "good" prediction of watershed outlet flow (E = 0.69) while at certain upstream calibration locations predictions are less representative (0.32 < E < 0.70). Monthly calibration and validation of the pathogen transport and fate model was conducted for both fecal coliform (0.07 < E < 0.47 and -0.94 < E < 0.33) and E. coli (0.03 < E < 0.39 and -0.81 < E < 0.31) for the six sampling points. The fit of the model compared favorably with many similar pathogen modeling efforts. The research contributes new knowledge in E. coli and fecal coliform modeling and will help increase the understanding of sensitivity analysis and pathogen modeling with SWAT at the watershed scale.

  9. [Nitrogen non-point source pollution identification based on ArcSWAT in Changle River].

    PubMed

    Deng, Ou-Ping; Sun, Si-Yang; Lü, Jun

    2013-04-01

    The ArcSWAT (Soil and Water Assessment Tool) model was adopted for Non-point source (NPS) nitrogen pollution modeling and nitrogen source apportionment for the Changle River watershed, a typical agricultural watershed in Southeast China. Water quality and hydrological parameters were monitored, and the watershed natural conditions (including soil, climate, land use, etc) and pollution sources information were also investigated and collected for SWAT database. The ArcSWAT model was established in the Changle River after the calibrating and validating procedures of the model parameters. Based on the validated SWAT model, the contributions of different nitrogen sources to river TN loading were quantified, and spatial-temporal distributions of NPS nitrogen export to rivers were addressed. The results showed that in the Changle River watershed, Nitrogen fertilizer, nitrogen air deposition and nitrogen soil pool were the prominent pollution sources, which contributed 35%, 32% and 25% to the river TN loading, respectively. There were spatial-temporal variations in the critical sources for NPS TN export to the river. Natural sources, such as soil nitrogen pool and atmospheric nitrogen deposition, should be targeted as the critical sources for river TN pollution during the rainy seasons. Chemical nitrogen fertilizer application should be targeted as the critical sources for river TN pollution during the crop growing season. Chemical nitrogen fertilizer application, soil nitrogen pool and atmospheric nitrogen deposition were the main sources for TN exported from the garden plot, forest and residential land, respectively. However, they were the main sources for TN exported both from the upland and paddy field. These results revealed that NPS pollution controlling rules should focus on the spatio-temporal distribution of NPS pollution sources.

  10. SWAT model application in a data scarce tropical complex catchment in Tanzania

    NASA Astrophysics Data System (ADS)

    Ndomba, Preksedis; Mtalo, Felix; Killingtveit, Aanund

    This study intended to validate the Soil and Water Assessment Tool (SWAT) model in data scarce environment in a complex tropical catchment in the Pangani River Basin located in northeast Tanzania. The validation process involved the model initialization, calibration, verification and sensitivity analysis. Both manual and auto-calibration procedures were used to facilitate the comparison of the results with past studies in the same catchment. For this study, some model parameters including Soil depth (SOL_Z) and Saturated hydraulic conductivity (SOL_K) were assumed uniform within the study catchment and were therefore lumped comprising the huge computation resource requirement of the SWAT model. Results indicated that the same set of important parameters was identified with or without the use of observed flows data. Some of the parameters had physical interpretation and could therefore relate directly to hydrological controlling factors within the catchment. Despite swapping ranking importance of parameters, these results suggest the suitability of the SWAT model for identifying hydrological controlling factors/parameters in ungauged catchments. Results of calibration and validation at the daily timescale gave moderately satisfactory Nash-Sutcliffe Coefficient of Efficiency (CE) of 54.6% for calibration and 68% for validation while simulated and observed mean annual flow discharges gave an Index of Volumetric Fit (IVF) of 100%. The study further indicated the improvement of model estimation when more reliable spatial representation of rainfall was used. Although in this study SWAT model has performed satisfactorily in data poor and complex catchment, the authors recommend a wider validation effort of the model before it is adopted for operational purpose.

  11. Modeling nitrate-nitrogen load reduction strategies for the des moines river, iowa using SWAT

    USGS Publications Warehouse

    Schilling, K.E.; Wolter, C.F.

    2009-01-01

    The Des Moines River that drains a watershed of 16,175 km2 in portions of Iowa and Minnesota is impaired for nitrate-nitrogen (nitrate) due to concentrations that exceed regulatory limits for public water supplies. The Soil Water Assessment Tool (SWAT) model was used to model streamflow and nitrate loads and evaluate a suite of basin-wide changes and targeting configurations to potentially reduce nitrate loads in the river. The SWAT model comprised 173 subbasins and 2,516 hydrologic response units and included point and nonpoint nitrogen sources. The model was calibrated for an 11-year period and three basin-wide and four targeting strategies were evaluated. Results indicated that nonpoint sources accounted for 95% of the total nitrate export. Reduction in fertilizer applications from 170 to 50 kg/ha achieved the 38% reduction in nitrate loads, exceeding the 34% reduction required. In terms of targeting, the most efficient load reductions occurred when fertilizer applications were reduced in subbasins nearest the watershed outlet. The greatest load reduction for the area of land treated was associated with reducing loads from 55 subbasins with the highest nitrate loads, achieving a 14% reduction in nitrate loads achieved by reducing applications on 30% of the land area. SWAT model results provide much needed guidance on how to begin implementing load reduction strategies most efficiently in the Des Moines River watershed. ?? 2009 Springer Science+Business Media, LLC.

  12. Using the Soil and Water Assessment Tool (SWAT) to Simulate Runoff in Mustang Creek Basin, California

    USGS Publications Warehouse

    Saleh, Dina K.; Kratzer, Charles R.; Green, Colleen H.; Evans, David G.

    2009-01-01

    This study is an evaluation of the calibration and validation of the Soil and Water Assessment Tool (SWAT) version 2005 watershed model for the Mustang Creek Basin, San Joaquin Valley, California. The study is part of a national study on the process of agricultural chemical movement through the hydrologic system, which is being done by the U.S. Geological Survey (USGS) National Water-Quality Assessment program. The SWAT model was used to simulate streamflow in the Mustang Creek Basin on the basis of a set of model inputs derived and modified from various data sources. The 2005 version of the model was calibrated for 29 days in February 2004, and validated for 58 days in January and February 2005. Measured streamflow for a USGS gaging station was used for model calibration and validation. Results of the simulated monthly streamflow had a Nash Sutcliffe efficiency value of 0.72 during the calibration period. The 2005 version of the model was unsuccessful in simulating streamflow during the validation period, as indicated by a Nash Sutcliffe efficiency value of 0.33. This lack of a successful simulation probably is due to the limited amount of measured streamflow data available for calibration, the ephemeral nature of flows in Mustang Creek, and the fact that the SWAT model was developed primarily for long time period (2 years and more) simulations and not for limited monthly simulations as used in Mustang Creek.

  13. Spatial and temporal changes of water quality, and SWAT modeling of Vosvozis river basin, North Greece.

    PubMed

    Boskidis, Ioannis; Gikas, Georgios D; Pisinaras, Vassilios; Tsihrintzis, Vassilios A

    2010-09-01

    The results of an investigation of the quantitative and qualitative characteristics of Vosvozis river in Northern Greece is presented. For the purposes of this study, three gaging stations were installed along Vosvozis river, where water quantity and quality measurements were conducted for the period August 2005 to November 2006. Water discharge, temperature, pH, dissolved oxygen (DO) and electrical conductivity (EC) were measured in situ using appropriate equipment. The collected water samples were analyzed in the laboratory for the determination of nitrate, nitrite and ammonium nitrogen, total Kjeldalh nitrogen (TKN), orthophosphate (OP), total phosphorus (TP), COD, and BOD. Agricultural diffuse sources provided the major source of nitrate nitrogen loads during the wet period. During the dry period (from June to October), the major nutrient (N, P) and COD, BOD sources were point sources. The trophic status of Vosvozis river during the monitoring period was determined as eutrophic, based on Dodds classification scheme. Moreover, the SWAT model was used to simulate hydrographs and nutrient loads. SWAT was validated with the measured data. Predicted hydrographs and pollutographs were plotted against observed values and showed good agreement. The validated model was used to test eight alternative scenarios concerning different cropping management approaches. The results of these scenarios indicate that nonpoint source pollution is the prevailing type of pollution in the study area. The SWAT model was found to satisfactorily simulate processes in ephemeral river basins and is an effective tool in water resources management.

  14. SWAT application in intensive irrigation systems: Model modification, calibration and validation

    NASA Astrophysics Data System (ADS)

    Dechmi, Farida; Burguete, Javier; Skhiri, Ahmed

    2012-11-01

    SummaryThe Soil and Water Assessment Tool (SWAT) is a well established, distributed, eco-hydrologic model. However, using the study case of an agricultural intensive irrigated watershed, it was shown that all the model versions are not able to appropriately reproduce the total streamflow in such system when the irrigation source is outside the watershed. The objective of this study was to modify the SWAT2005 version for correctly simulating the main hydrological processes. Crop yield, total streamflow, total suspended sediment (TSS) losses and phosphorus load calibration and validation were performed using field survey information and water quantity and quality data recorded during 2008 and 2009 years in Del Reguero irrigated watershed in Spain. The goodness of the calibration and validation results was assessed using five statistical measures, including the Nash-Sutcliffe efficiency (NSE). Results indicated that the average annual crop yield and actual evapotranspiration estimations were quite satisfactory. On a monthly basis, the values of NSE were 0.90 (calibration) and 0.80 (validation) indicating that the modified model could reproduce accurately the observed streamflow. The TSS losses were also satisfactorily estimated (NSE = 0.72 and 0.52 for the calibration and validation steps). The monthly temporal patterns and all the statistical parameters indicated that the modified SWAT-IRRIG model adequately predicted the total phosphorus (TP) loading. Therefore, the model could be used to assess the impacts of different best management practices on nonpoint phosphorus losses in irrigated systems.

  15. SU-C-17A-07: The Development of An MR Accelerator-Enabled Planning-To-Delivery Technique for Stereotactic Palliative Radiotherapy Treatment of Spinal Metastases

    SciTech Connect

    Hoogcarspel, S J; Kontaxis, C; Velden, J M van der; Bol, G H; Vulpen, M van; Lagendijk, J J W; Raaymakers, B W

    2014-06-01

    Purpose: To develop an MR accelerator-enabled online planning-todelivery technique for stereotactic palliative radiotherapy treatment of spinal metastases. The technical challenges include; automated stereotactic treatment planning, online MR-based dose calculation and MR guidance during treatment. Methods: Using the CT data of 20 patients previously treated at our institution, a class solution for automated treatment planning for spinal bone metastases was created. For accurate dose simulation right before treatment, we fused geometrically correct online MR data with pretreatment CT data of the target volume (TV). For target tracking during treatment, a dynamic T2-weighted TSE MR sequence was developed. An in house developed GPU based IMRT optimization and dose calculation algorithm was used for fast treatment planning and simulation. An automatically generated treatment plan developed with this treatment planning system was irradiated on a clinical 6 MV linear accelerator and evaluated using a Delta4 dosimeter. Results: The automated treatment planning method yielded clinically viable plans for all patients. The MR-CT fusion based dose calculation accuracy was within 2% as compared to calculations performed with original CT data. The dynamic T2-weighted TSE MR Sequence was able to provide an update of the anatomical location of the TV every 10 seconds. Dose calculation and optimization of the automatically generated treatment plans using only one GPU took on average 8 minutes. The Delta4 measurement of the irradiated plan agreed with the dose calculation with a 3%/3mm gamma pass rate of 86.4%. Conclusions: The development of an MR accelerator-enabled planning-todelivery technique for stereotactic palliative radiotherapy treatment of spinal metastases was presented. Future work will involve developing an intrafraction motion adaptation strategy, MR-only dose calculation, radiotherapy quality-assurance in a magnetic field, and streamlining the entire treatment

  16. Evaluation of the applicability of SWAT in the Nile Basin countries: a review

    NASA Astrophysics Data System (ADS)

    van Griensven, A.; Ndomba, P. M.; Kilonzo, F.

    2012-04-01

    A plethora of hydrological modeling codes are nowadays available and many applications of these tools have been reported in peer reviewed journal papers. The hypothesis that the model is appropriate for the case study and the purpose of the study is however very often not questioned. We aim here at critically reviewing the use of a widely used hydrological simulation tool, the Soil and Water Assessment Tool (SWAT) in the context of the modeling purpose and problem descriptions in the tropical highlands of the Nile Basin countries. Up to date, more than 20 peer reviewed papers describe the use of SWAT in this region for a variety of problems, such as erosion modeling, land use modeling, climate change impact modeling and water resources management. The majority of the studies are clustered in the tropical highlands in Ethiopia and around Lake Victoria. A number of criteria are used to evaluate the model set-up, the performance, the physical representation of the model parameters, and the representativeness of the hydrological model balance. Here we evaluate the applications of within the Nile basin. On the basis of performance indicators, the majority of the SWAT models were classified as giving satisfactory to very good results. Nevertheless, the hydrological mass balances as reported in several papers contained several losses that might not be justified. More worrying is that many papers lack this information. For that reason, it is difficult to give an overall positive evaluation to most of the reported SWAT models. An important gap is the lack of attention that is given to the vegetation and crop processes. None of the papers reported any adaptation to the crop parameters, or any crop related output such as leaf area index, biomass or crop yields. A proper simulation of the land cover is important for obtaining correct evapotranspiration and erosion computations. It is also found that a comparison of SWAT applications on the same or similar case study but by

  17. Online Video-Based Training in the Use of Hydrologic Models: A Case Example Using SWAT

    NASA Astrophysics Data System (ADS)

    Frankenberger, J.

    2009-12-01

    Hydrologic models are increasingly important tools in public decision-making. For example, watershed models are used to develop Total Maximum Daily Load (TMDL) plans, quantify pollutant loads, and estimate the effects of watershed restoration efforts funded by the public. One widely-used tool is the Soil and Water Assessment Tool (SWAT), which has been applied by state and federal agencies, consultants, and university researchers to assess sources of nonpoint source pollution and the effects of potential solutions, and used in testimony in at least one lawsuit. The SWAT model has the capability to evaluate the relative effects of different management scenarios on water quality, sediment, and agricultural chemical yield at the watershed scale. As with all models, the model user and the decisions that s/he makes in the modeling process are important determinants of model performance. The SWAT model has an open structure, leaving most decisions up to the model user, which was especially appropriate when the model was primarily used in research by highly-experienced modelers. However, as the model has become more widely applied in planning and assessment, by people who may have limited hydrology background and modeling knowledge, the possibility that users may be using the model inconsistently or even incorrectly becomes a concern. Consistent training can lead to a minimum standard of knowledge that model users are expected to have, and therefore to higher use of best practices in modeling efforts. In addition, widespread availability of training can lead to better decisions about when and where using the model is appropriate, and what level of data needs to be available for confidence in predictions. Currently, most training in model use takes place in occasional face-to-face workshops, courses offered at a few universities, and a short tutorial available in the manual. Many new users simply acquire the model and learn from the manual, other users, trial and error

  18. Application of WRF - SWAT OpenMI 2.0 based models integration for real time hydrological modelling and forecasting

    NASA Astrophysics Data System (ADS)

    Bugaets, Andrey; Gonchukov, Leonid

    2014-05-01

    Intake of deterministic distributed hydrological models into operational water management requires intensive collection and inputting of spatial distributed climatic information in a timely manner that is both time consuming and laborious. The lead time of the data pre-processing stage could be essentially reduced by coupling of hydrological and numerical weather prediction models. This is especially important for the regions such as the South of the Russian Far East where its geographical position combined with a monsoon climate affected by typhoons and extreme heavy rains caused rapid rising of the mountain rivers water level and led to the flash flooding and enormous damage. The objective of this study is development of end-to-end workflow that executes, in a loosely coupled mode, an integrated modeling system comprised of Weather Research and Forecast (WRF) atmospheric model and Soil and Water Assessment Tool (SWAT 2012) hydrological model using OpenMI 2.0 and web-service technologies. Migration SWAT into OpenMI compliant involves reorganization of the model into a separate initialization, performing timestep and finalization functions that can be accessed from outside. To save SWAT normal behavior, the source code was separated from OpenMI-specific implementation into the static library. Modified code was assembled into dynamic library and wrapped into C# class implemented the OpenMI ILinkableComponent interface. Development of WRF OpenMI-compliant component based on the idea of the wrapping web-service clients into a linkable component and seamlessly access to output netCDF files without actual models connection. The weather state variables (precipitation, wind, solar radiation, air temperature and relative humidity) are processed by automatic input selection algorithm to single out the most relevant values used by SWAT model to yield climatic data at the subbasin scale. Spatial interpolation between the WRF regular grid and SWAT subbasins centroid (which are

  19. MO-F-CAMPUS-I-03: GPU Accelerated Monte Carlo Technique for Fast Concurrent Image and Dose Simulation

    SciTech Connect

    Becchetti, M; Tian, X; Segars, P; Samei, E

    2015-06-15

    Purpose: To develop an accurate and fast Monte Carlo (MC) method of simulating CT that is capable of correlating dose with image quality using voxelized phantoms. Methods: A realistic voxelized phantom based on patient CT data, XCAT, was used with a GPU accelerated MC code for helical MDCT. Simulations were done with both uniform density organs and with textured organs. The organ doses were validated using previous experimentally validated simulations of the same phantom under the same conditions. Images acquired by tracking photons through the phantom with MC require lengthy computation times due to the large number of photon histories necessary for accurate representation of noise. A substantial speed up of the process was attained by using a low number of photon histories with kernel denoising of the projections from the scattered photons. These FBP reconstructed images were validated against those that were acquired in simulations using many photon histories by ensuring a minimal normalized root mean square error. Results: Organ doses simulated in the XCAT phantom are within 10% of the reference values. Corresponding images attained using projection kernel smoothing were attained with 3 orders of magnitude less computation time compared to a reference simulation using many photon histories. Conclusion: Combining GPU acceleration with kernel denoising of scattered photon projections in MC simulations allows organ dose and corresponding image quality to be attained with reasonable accuracy and substantially reduced computation time than is possible with standard simulation approaches.

  20. Accelerators, Colliders, and Snakes

    NASA Astrophysics Data System (ADS)

    Courant, Ernest D.

    2003-12-01

    The author traces his involvement in the evolution of particle accelerators over the past 50 years. He participated in building the first billion-volt accelerator, the Brookhaven Cosmotron, which led to the introduction of the "strong-focusing" method that has in turn led to the very large accelerators and colliders of the present day. The problems of acceleration of spin-polarized protons are also addressed, with discussions of depolarizing resonances and "Siberian snakes" as a technique for mitigating these resonances.

  1. Advancing representation of hydrologic processes in the Soil and Water Assessment Tool (SWAT) through integration of the TOPographic MODEL (TOPMODEL) features

    USGS Publications Warehouse

    Chen, J.; Wu, Y.

    2012-01-01

    This paper presents a study of the integration of the Soil and Water Assessment Tool (SWAT) model and the TOPographic MODEL (TOPMODEL) features for enhancing the physical representation of hydrologic processes. In SWAT, four hydrologic processes, which are surface runoff, baseflow, groundwater re-evaporation and deep aquifer percolation, are modeled by using a group of empirical equations. The empirical equations usually constrain the simulation capability of relevant processes. To replace these equations and to model the influences of topography and water table variation on streamflow generation, the TOPMODEL features are integrated into SWAT, and a new model, the so-called SWAT-TOP, is developed. In the new model, the process of deep aquifer percolation is removed, the concept of groundwater re-evaporation is refined, and the processes of surface runoff and baseflow are remodeled. Consequently, three parameters in SWAT are discarded, and two new parameters to reflect the TOPMODEL features are introduced. SWAT-TOP and SWAT are applied to the East River basin in South China, and the results reveal that, compared with SWAT, the new model can provide a more reasonable simulation of the hydrologic processes of surface runoff, groundwater re-evaporation, and baseflow. This study evidences that an established hydrologic model can be further improved by integrating the features of another model, which is a possible way to enhance our understanding of the workings of catchments.

  2. Calibration and validation of the SWAT model for predicting daily ET for irrigated crops in the Texas High Plains using lysimetric data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil and Water Assessment Tool (SWAT) model has been used to assess the impacts of alternative agricultural management practices on non-point source pollution in watersheds of various topography and scale throughout the world. Water balance is the driving force behind all processes of SWAT, as i...

  3. Effect of streambed bacteria release on E. Coli concentrations: Monitoring and Modeling with the Modified Soil and Water Assessment Tool (SWAT)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streambed sediment has been increasingly attracting attention as the reservoir of bacteria, including pathogenic strains. Soil and Water Assessment Tool (SWAT) has been augmented with bacteria transport subroutine in SWAT2005 in which bacteria die-off is the only in-stream process. The purpose of th...

  4. Calibration and validation of the SWAT model for predicting daily ET over irrigated crops in the Texas High Plains using lysimetric data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Water Assessment Tool (SWAT) is a widely used watershed model for simulating stream flow, overland flow, sediment, pesticide, and bacterial loading in response to management practices. All SWAT processes are directly dependent upon the accurate representation of hydrology. Evapotranspiratio...

  5. Advancing representation of hydrologic processes in the Soil and Water Assessment Tool (SWAT) through integration of the TOPographic MODEL (TOPMODEL) features

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Wu, Yiping

    2012-02-01

    SummaryThis paper presents a study of the integration of the Soil and Water Assessment Tool (SWAT) model and the TOPographic MODEL (TOPMODEL) features for enhancing the physical representation of hydrologic processes. In SWAT, four hydrologic processes, which are surface runoff, baseflow, groundwater re-evaporation and deep aquifer percolation, are modeled by using a group of empirical equations. The empirical equations usually constrain the simulation capability of relevant processes. To replace these equations and to model the influences of topography and water table variation on streamflow generation, the TOPMODEL features are integrated into SWAT, and a new model, the so-called SWAT-TOP, is developed. In the new model, the process of deep aquifer percolation is removed, the concept of groundwater re-evaporation is refined, and the processes of surface runoff and baseflow are remodeled. Consequently, three parameters in SWAT are discarded, and two new parameters to reflect the TOPMODEL features are introduced. SWAT-TOP and SWAT are applied to the East River basin in South China, and the results reveal that, compared with SWAT, the new model can provide a more reasonable simulation of the hydrologic processes of surface runoff, groundwater re-evaporation, and baseflow. This study evidences that an established hydrologic model can be further improved by integrating the features of another model, which is a possible way to enhance our understanding of the workings of catchments.

  6. Evaluating the Efficiency of a Multi-core Aware Multi-objective Optimization Tool for Calibrating the SWAT Model

    SciTech Connect

    Zhang, X.; Izaurralde, R. C.; Zong, Z.; Zhao, K.; Thomson, A. M.

    2012-08-20

    The efficiency of calibrating physically-based complex hydrologic models is a major concern in the application of those models to understand and manage natural and human activities that affect watershed systems. In this study, we developed a multi-core aware multi-objective evolutionary optimization algorithm (MAMEOA) to improve the efficiency of calibrating a worldwide used watershed model (Soil and Water Assessment Tool (SWAT)). The test results show that MAMEOA can save about 1-9%, 26-51%, and 39-56% time consumed by calibrating SWAT as compared with sequential method by using dual-core, quad-core, and eight-core machines, respectively. Potential and limitations of MAMEOA for calibrating SWAT are discussed. MAMEOA is open source software.

  7. Ethiopian Central Rift Valley basin hydrologic modelling using HEC-HMS and ArcSWAT

    NASA Astrophysics Data System (ADS)

    Pascual-Ferrer, Jordi; Candela, Lucila; Pérez-Foguet, Agustí

    2013-04-01

    An Integrated Water Resources Management (IWRM) shall be applied to achieve a sustainable development, to increase population incomes without affecting lives of those who are highly dependent on the environment. First step should be to understand water dynamics at basin level, starting by modeling the basin water resources. For model implementation, a large number of data and parameters are required, but those are not always available, especially in some developing countries where different sources may have different data, there is lack of information on data collection, etc. The Ethiopian Central Rift Valley (CRV) is an endorheic basin covering an area of approximately 10,000 km2. For the period 1996-2005, the average annual volume of rainfall accounted for 9.1 Mm3, and evapotranspiration for 8 Mm3 (Jansen et al., 2007). From the environmental point of view, basin ecosystems are endangered due to human activities. Also, poverty is widespread all over the basin, with population mainly living from agriculture on a subsistence economy. Hence, there is an urgent need to set an IWRM, but datasets required for water dynamics simulation are not too reliable. In order to reduce uncertainty of numerical simulation, two semi-distributed open software hydrologic models were implemented: HEC-HMS and ArcSWAT. HEC-HMS was developed by the United States Army Corps of Engineers (USACoE) Hydrologic Engineering Center (HEC) to run precipitation-runoff simulations for a variety of applications in dendritic watershed systems. ArcSWAT includes the SWAT (Soil and Water Assessment Tool, Arnold et al., 1998) model developed for the USDA Agricultural Research Service into ArcGIS (ESRI®). SWAT was developed to assess the impact of land management practices on large complex watersheds with varying soils, land use and management conditions over long periods of time (Neitsch et al., 2005). According to this, ArcSWAT would be the best option for IWRM implementation in the basin. However

  8. Accelerating Monte Carlo image reconstruction of a PMMA phantom through variance reduction techniques for quality control in digital mammography.

    PubMed

    Ramos, M; Ferrer, S; Verdu, G

    2005-01-01

    Mammography is a non-invasive technique used for the detection of breast lesions. The use of this technique in a breast screening program requires a continuous quality control testing in mammography units for ensuring a minimum absorbed glandular dose without modifying image quality. Digital mammography has been progressively introduced in screening centers, since recent evolution of photostimulable phosphor detectors. The aim of this work is the validation of a methodology for reconstructing digital images of a polymethyl-methacrylate (PMMA) phantom (P01 model) under pure Monte Carlo techniques. A reference image has been acquired for this phantom under automatic exposure control (AEC) mode (28 kV and 14 mAs). Some variance reduction techniques (VRT) have been applied to improve the efficiency of the simulations, defined as the number of particles reaching the imaging system per starting particle. All images have been used and stored in DICOM format. The results prove that the signal-to-noise ratio (SNR) of the reconstructed images have been increased with the use of the VRT, showing similar values between different employed tallies. As a conclusion, these images could be used during quality control testing for showing any deviation of the exposition parameters from the desired reference level.

  9. A Fourier-based compressed sensing technique for accelerated CT image reconstruction using first-order methods.

    PubMed

    Choi, Kihwan; Li, Ruijiang; Nam, Haewon; Xing, Lei

    2014-06-21

    As a solution to iterative CT image reconstruction, first-order methods are prominent for the large-scale capability and the fast convergence rate [Formula: see text]. In practice, the CT system matrix with a large condition number may lead to slow convergence speed despite the theoretically promising upper bound. The aim of this study is to develop a Fourier-based scaling technique to enhance the convergence speed of first-order methods applied to CT image reconstruction. Instead of working in the projection domain, we transform the projection data and construct a data fidelity model in Fourier space. Inspired by the filtered backprojection formalism, the data are appropriately weighted in Fourier space. We formulate an optimization problem based on weighted least-squares in the Fourier space and total-variation (TV) regularization in image space for parallel-beam, fan-beam and cone-beam CT geometry. To achieve the maximum computational speed, the optimization problem is solved using a fast iterative shrinkage-thresholding algorithm with backtracking line search and GPU implementation of projection/backprojection. The performance of the proposed algorithm is demonstrated through a series of digital simulation and experimental phantom studies. The results are compared with the existing TV regularized techniques based on statistics-based weighted least-squares as well as basic algebraic reconstruction technique. The proposed Fourier-based compressed sensing (CS) method significantly improves both the image quality and the convergence rate compared to the existing CS techniques.

  10. SWAT use of gridded observations for simulating runoff - a Vietnam river basin study

    NASA Astrophysics Data System (ADS)

    Vu, M. T.; Raghavan, S. V.; Liong, S. Y.

    2011-12-01

    Many research studies that focus on basin hydrology have used the SWAT model to simulate runoff. One common practice in calibrating the SWAT model is the application of station data rainfall to simulate runoff. But over regions lacking robust station data, there is a problem of applying the model to study the hydrological responses. For some countries and remote areas, the rainfall data availability might be a constraint due to many different reasons such as lacking of technology, war time and financial limitation that lead to difficulty in constructing the runoff data. To overcome such a limitation, this research study uses some of the available globally gridded high resolution precipitation datasets to simulate runoff. Five popular gridded observation precipitation datasets: (1) Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources (APHRODITE), (2) Tropical Rainfall Measuring Mission (TRMM), (3) Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN), (4) Global Precipitation Climatology Project (GPCP), (5) modified Global Historical Climatology Network version 2 (GHCN2) and one reanalysis dataset National Centers for Environment Prediction/National Center for Atmospheric Research (NCEP/NCAR) are used to simulate runoff over the Dakbla River (a small tributary of the Mekong River) in Vietnam. Wherever possible, available station data are also used for comparison. Bilinear interpolation of these gridded datasets is used to input the precipitation data at the closest grid points to the station locations. Sensitivity Analysis and Auto-calibration are performed for the SWAT model. The Nash-Sutcliffe Efficiency (NSE) and Coefficient of Determination (R2) indices are used to benchmark the model performance. This entails a good understanding of the response of the hydrological model to different datasets and a quantification of the uncertainties in these datasets. Such a

  11. Optimization of in-cell accelerated solvent extraction technique for the determination of organochlorine pesticides in river sediments.

    PubMed

    Duodu, Godfred Odame; Goonetilleke, Ashantha; Ayoko, Godwin A

    2016-04-01

    Organochlorine pesticides (OCPs) are ubiquitous environmental contaminants with adverse impacts on aquatic biota, wildlife and human health even at low concentrations. However, conventional methods for their determination in river sediments are resource intensive. This paper presents an approach that is rapid and also reliable for the detection of OCPs. Accelerated Solvent Extraction (ASE) with in-cell silica gel clean-up followed by Triple Quadrupole Gas Chromatograph Mass Spectrometry (GCMS/MS) was used to recover OCPs from sediment samples. Variables such as temperature, solvent ratio, adsorbent mass and extraction cycle were evaluated and optimized for the extraction. With the exception of Aldrin, which was unaffected by any of the variables evaluated, the recovery of OCPs from sediment samples was largely influenced by solvent ratio and adsorbent mass and, to some extent, the number of cycles and temperature. The optimized conditions for OCPs extraction in sediment with good recoveries were determined to be 4 cycles, 4.5 g of silica gel, 105 °C, and 4:3 v/v DCM: hexane mixture. With the exception of two compounds (α-BHC and Aldrin) whose recoveries were low (59.73 and 47.66% respectively), the recovery of the other pesticides were in the range 85.35-117.97% with precision <10% RSD. The method developed significantly reduces sample preparation time, the amount of solvent used, matrix interference, and is highly sensitive and selective.

  12. Impact of Uncertainty in SWAT Model Simulations on Consequent Decisions on Optimal Crop Management Practices

    NASA Astrophysics Data System (ADS)

    Krishnan, N.; Sudheer, K. P.; Raj, C.; Chaubey, I.

    2015-12-01

    The diminishing quantities of non-renewable forms of energy have caused an increasing interest in the renewable sources of energy, such as biofuel, in the recent years. However, the demand for biofuel has created a concern for allocating grain between the fuel and food industry. Consequently, appropriate regulations that limit grain based ethanol production have been developed and are put to practice, which resulted in cultivating perennial grasses like Switch grass and Miscanthus to meet the additional cellulose demand. A change in cropping and management practice, therefore, is essential to cater the conflicting requirement for food and biofuel, which has a long-term impact on the downstream water quality. Therefore it is essential to implement optimal cropping practices to reduce the pollutant loadings. Simulation models in conjunction with optimization procedures are useful in developing efficient cropping practices in such situations. One such model is the Soil and Water Assessment Tool (SWAT), which can simulate both the water and the nutrient cycle, as well as quantify long-term impacts of changes in management practice in the watershed. It is envisaged that the SWAT model, along with an optimization algorithm, can be used to identify the optimal cropping pattern that achieves the minimum guaranteed grain production with less downstream pollution, while maximizing the biomass production for biofuel generation. However, the SWAT simulations do have a certain level of uncertainty that needs to be accounted for before making decisions. Therefore, the objectives of this study are twofold: (i) to understand how model uncertainties influence decision-making, and (ii) to develop appropriate management scenarios that account the uncertainty. The simulation uncertainty of the SWAT model is assessed using Shuffled Complex Evolutionary Metropolis Algorithm (SCEM). With the data collected from St. Joseph basin, IN, USA, the preliminary results indicate that model

  13. Assessing Runoff and Suspended Sediment Using SWAT Under Different Land Uses in Tapalpa, Jalisco, Mexico

    NASA Astrophysics Data System (ADS)

    Benavides-Solorio, J.; Flores-Garnica, J. G.; Moreno-Gonzalez, D. A.

    2007-05-01

    Runoff and erosion from different land uses within a watershed is one of the biggest concerns in Mexico. Different land uses affect the overall watershed, which may be observed by the amount and duration of runoff, erosion, pollution, and water quality. To understand the complex combination of land uses and analyze the results in hydrologic approach, different models may be used. One of them is the SWAT (Soil and Water Assessment Tool) model. For the purpose to understand the hydrologic cycle and the sediment yields over the entire Tapalpa watershed the SWAT model was used in this study. The Tapalpa watershed had different land uses such as pine forest, oak forest, shrubs, grass, agriculture and urban areas. The entire watershed is 21,000 ha and was subdivided into five subwatersheds, each one had different land use distribution. In one subwatershed the SWAT model was calibrated using two years of recorded runoff and precipitation data. The subwatershed El Carrizal had good results for the SWAT calibration, water yield had a high R2 of 0.85. The average rainfall from the subwatershed had 913 mm. During the first year, the runoff had a value of 90 mm or 9% of the rainfall, and the second year was 20 mm or 3% of the rainfall. Most of the runoff from this subwatershed came as subsurface flow; other subwatersheds with larger agricultural areas produce more surface runoff and more sediment. The suspended sediment were low for El Carrizal, the values were 0.23 t ha-1 yr-1 and 0.05 t ha-1 yr-1 for the first and second year respectively but other subwatersheds had high values up to 17 t ha-1 yr-1 of suspended sediment. Inside forested subwatersheds roads and grazing are the main source of sediment and need more understanding about the magnitude of the effects. Roads, agriculture lands and grazing areas need to be studied in detail to find better relationships among runoff, erosion, water quality and land use in order to suggest better management practices.

  14. The Soil and Water Assessment Tool (SWAT) Ecohydrological Model Circa 2015: Global Application Trends, Insights and Issues

    NASA Astrophysics Data System (ADS)

    Gassman, P. W.; Arnold, J. G.; Srinivasan, R.

    2015-12-01

    The Soil and Water Assessment Tool (SWAT) is one of the most widely used watershed-scale water quality models in the world. Over 2,000 peer-reviewed SWAT-related journal articles have been published and hundreds of other studies have been published in conference proceedings and other formats. The use of SWAT was initially concentrated in North America and Europe but has also expanded dramatically in other countries and regions during the past decade including Brazil, China, India, Iran, South Korea, Southeast Asia and eastern Africa. The SWAT model has proven to be a very flexible tool for investigating a broad range of hydrologic and water quality problems at different watershed scales and environmental conditions, and has proven very adaptable for applications requiring improved hydrologic and other enhanced simulation needs. We investigate here the various technological, networking, and other factors that have supported the expanded use of SWAT, and also highlight current worldwide simulation trends and possible impediments to future increased usage of the model. Examples of technological advances include easy access to web-based documentation, user-support groups, and SWAT literature, a variety of Geographic Information System (GIS) interface tools, pre- and post-processing calibration software and other software, and an open source code which has served as a model development catalyst for multiple user groups. Extensive networking regarding the use of SWAT has further occurred via internet-based user support groups, model training workshops, regional working groups, regional and international conferences, and targeted development workshops. We further highlight several important model development trends that have emerged during the past decade including improved hydrologic, cropping system, best management practice (BMP) and pollutant transport simulation methods. In addition, several current SWAT weaknesses will be addressed and key development needs will be

  15. Accelerator Diagnostic Techniques Using Time-Domain Data from a Bunch-by-bunch Longitudinal Feedback System

    SciTech Connect

    Teytelman, Dmitry

    2000-03-30

    A programmable DSP-based longitudinal damping system has been developed for the PEP-II/DAFNE/ALS machines. The DSP-based architecture allows feedback functions to coexist with data acquisition or instrumentation algorithms. The fast sampling rates in these systems (500 MHz) in conjunction with the large distributed memory of the DSP processors make possible several novel beam diagnostics complementary to traditional narrowband spectral measurements. Instantaneous spectral measurements of 250 MHz span with 70 Hz resolution can be made from 14 ms time domain data records captured by the DSP system. The authors present techniques developed for the measurement of modal growth and damping rates and other beam and system diagnostics (calibrations, measurements of the system noise floor). Results from the Advanced Light Source and PEP-II are presented to illustrate these techniques.

  16. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  17. Fielding the magnetically applied pressure-shear technique on the Z accelerator (completion report for MRT 4519).

    SciTech Connect

    Alexander, C. Scott; Haill, Thomas A.; Dalton, Devon Gardner; Rovang, Dean Curtis; Lamppa, Derek C.

    2013-09-01

    The recently developed Magnetically Applied Pressure-Shear (MAPS) experimental technique to measure material shear strength at high pressures on magneto-hydrodynamic (MHD) drive pulsed power platforms was fielded on August 16, 2013 on shot Z2544 utilizing hardware set A0283A. Several technical and engineering challenges were overcome in the process leading to the attempt to measure the dynamic strength of NNSA Ta at 50 GPa. The MAPS technique relies on the ability to apply an external magnetic field properly aligned and time correlated with the MHD pulse. The load design had to be modified to accommodate the external field coils and additional support was required to manage stresses from the pulsed magnets. Further, this represents the first time transverse velocity interferometry has been applied to diagnose a shot at Z. All subsystems performed well with only minor issues related to the new feed design which can be easily addressed by modifying the current pulse shape. Despite the success of each new component, the experiment failed to measure strength in the samples due to spallation failure, most likely in the diamond anvils. To address this issue, hydrocode simulations are being used to evaluate a modified design using LiF windows to minimize tension in the diamond and prevent spall. Another option to eliminate the diamond material from the experiment is also being investigated.

  18. Modeling seasonal variability of fecal coliform in natural surface waters using the modified SWAT

    NASA Astrophysics Data System (ADS)

    Cho, Kyung Hwa; Pachepsky, Yakov A.; Kim, Minjeong; Pyo, JongCheol; Park, Mi-Hyun; Kim, Young Mo; Kim, Jung-Woo; Kim, Joon Ha

    2016-04-01

    Fecal coliforms are indicators of pathogens and thereby, understanding of their fate and transport in surface waters is important to protect drinking water sources and public health. We compiled fecal coliform observations from four different sites in the USA and Korea and found a seasonal variability with a significant connection to temperature levels. In all observations, fecal coliform concentrations were relatively higher in summer and lower during the winter season. This could be explained by the seasonal dominance of growth or die-off of bacteria in soil and in-stream. Existing hydrologic models, however, have limitations in simulating the seasonal variability of fecal coliform. Soil and in-stream bacterial modules of the Soil and Water Assessment Tool (SWAT) model are oversimplified in that they exclude simulations of alternating bacterial growth. This study develops a new bacteria subroutine for the SWAT in an attempt to improve its prediction accuracy. We introduced critical temperatures as a parameter to simulate the onset of bacterial growth/die-off and to reproduce the seasonal variability of bacteria. The module developed in this study will improve modeling for environmental management schemes.

  19. Simulation Of Surface runoff For Upper Tapi Subcatchment Area (Burhanpur Watershed) Using SWAT

    NASA Astrophysics Data System (ADS)

    Shivhare, V.; Goel, M. K.; Singh, C. K.

    2014-11-01

    Water related activity that takes place in one part of a river basin may have consequence in the other part. Any plan related to inter basin transfer of water from a water surplus basin to a deficit basin has to take into account the water availability and demands under the present and future scenarios of water use. Watershed is a hydrologic unit where all stream exit from the common outlet. In the present study, Tapi subcatchment area (Burhanpur watershed) located in inter-state basin of Madhya Pradesh and Maharashtra, India, is selected for the estimation of surface runoff using SWAT model. The SWAT works in conjunction with Arc GIS 9.3. Various parameters Digital Elevation Model (DEM), slope derived from DEM, Landuse/Landcover (LULC) and NBSSLUP soil data and temporal data for temperature and precipitation was used as input for the model to predict runoff at the catchment outlet. The model was run from the year 1992 to 1997. The performance of the model in terms of simulated runoff was evaluated using statistical method and compared simulated monthly flow with the observed monthly flow values from 1992 to 1996 to a significant extent. The coefficient of determination (R2) for the monthly runoff values for 1992 to 1996 was observed to be 0.82, 0.68, 0.92, 0.69.

  20. Calibration and uncertainty issues of a hydrological model (SWAT) applied to West Africa

    NASA Astrophysics Data System (ADS)

    Schuol, J.; Abbaspour, K. C.

    2006-09-01

    Distributed hydrological models like SWAT (Soil and Water Assessment Tool) are often highly over-parameterized, making parameter specification and parameter estimation inevitable steps in model calibration. Manual calibration is almost infeasible due to the complexity of large-scale models with many objectives. Therefore we used a multi-site semi-automated inverse modelling routine (SUFI-2) for calibration and uncertainty analysis. Nevertheless, the question of when a model is sufficiently calibrated remains open, and requires a project dependent definition. Due to the non-uniqueness of effective parameter sets, parameter calibration and prediction uncertainty of a model are intimately related. We address some calibration and uncertainty issues using SWAT to model a four million km2 area in West Africa, including mainly the basins of the river Niger, Volta and Senegal. This model is a case study in a larger project with the goal of quantifying the amount of global country-based available freshwater. Annual and monthly simulations with the "calibrated" model for West Africa show promising results in respect of the freshwater quantification but also point out the importance of evaluating the conceptual model uncertainty as well as the parameter uncertainty.

  1. A Multidisciplinary Approach to the Characterisation and Accelerated Remediation of Nuclear Contaminated Sites: Less Intrusive Techniques and Better Use of Geographical Information System (GIS) Model Development

    SciTech Connect

    Brydie, J.R.; Hiller, P.; Mathers, D.; Gordon, R.

    2006-07-01

    Rapid, cost effective decommissioning and associated remediation of many nuclear licensed sites requires the physical and chemical characterisation of a range of bulk materials including natural soils, sediments, cementitious materials, miscellaneous historically buried waste and natural waters (surface and groundwaters). Conventional techniques (such as cable percussion drilling, rotary coring of building materials, extensive soil sampling campaigns and [ground]water sampling and analysis) tend to be expensive, time consuming, in many cases provide insufficient data and typically take several months to implement. The high level aim of the work is to reduce the overall time and cost of site characterisation, whilst maintaining quality of information and increasing the safety of field and laboratory personnel. We describe here the integrated technical approach being adopted and developed within Nexia Solutions Ltd. to provide a full in situ site characterisation and modelling capability, resulting in significantly reduced costs and acceleration of the Life Cycle Baseline (LCBL) of many United Kingdom (U. K.) nuclear licensed sites. The evolving technical toolbox includes many off-the-shelf technologies, as well as innovative technologies which have either been originally conceived or have been effectively adapted from a range of technical disciplines. All of the techniques here are either in use or are being actively developed and commissioned. All information gained via in situ techniques is used to iteratively update the Geographical Information System (GIS) conceptual model, allowing further targeted site investigation, informed decision making and optioneering. (authors)

  2. Assessment of terrain slope influence in SWAT modeling of Andean watersheds

    NASA Astrophysics Data System (ADS)

    Yacoub, C.; Pérez-Foguet, A.

    2009-04-01

    Hydrological processes in the Andean Region are difficult to model. Large range of altitudes involved (from over 4000 meters above sea level, masl, to zero) indicates the high variability of rainfall, temperature and other climate variables. Strong runoff and extreme events as landslides and floods are the consequence of high slopes of terrain, especially in the upper part of the basins. Strong seasonality of rain and complex ecosystems (vulnerable to climate changes and anthropogenic activities) helps these processes. Present study focuses in a particular watershed from Peruvian Andes, the Jequetepeque River. The distributed watershed simulation model, Soil and Water Assessment Tool (SWAT) is applied to model run-off and sediments transport through the basin with data from 1997 to 2006. Specifically, the study focuses in the assessment of the influence of considering terrain slope variation in the definition of Hydrographical Response Units within SWAT. The Jequetepeque watershed (4 372.5 km2) is located in the north part of Peru. River flows east to west, to the Pacific Ocean. Annual average precipitation ranges from 0 to 1100 mm and altitude from 0 to 4188 masl. The "Gallito Ciego" reservoir (400 masl) separates upper-middle part from lower part of the watershed. It stores water for supplying the people from the big cities on the coast and for extensive agriculture uses. Upper-middle part of the watershed covers 3564.8 km2. It ranges from 400 to 4188 masl in no more that 80 km, with slopes up to 20%. Main activities are agricultural and livestock and mining and about 80% of the population are rural. Annual mean temperature drops from 25.4 °C at the reservoir to less than 4 °C in the upper part. Also the highest rainfall variability is found in the upper-middle part of the watershed. Erosion produced by extreme events like 1997/98 "el Niño" Phenomenon is silting the reservoir faster than expected. Moreover, anthropogenic activities like agriculture and

  3. Global sensitivity analysis of a SWAT model: comparison of the variance-based and moment-independent approaches

    NASA Astrophysics Data System (ADS)

    Khorashadi Zadeh, Farkhondeh; Sarrazin, Fanny; Nossent, Jiri; Pianosi, Francesca; van Griensven, Ann; Wagener, Thorsten; Bauwens, Willy

    2015-04-01

    Uncertainty in parameters is a well-known reason of model output uncertainty which, undermines model reliability and restricts model application. A large number of parameters, in addition to the lack of data, limits calibration efficiency and also leads to higher parameter uncertainty. Global Sensitivity Analysis (GSA) is a set of mathematical techniques that provides quantitative information about the contribution of different sources of uncertainties (e.g. model parameters) to the model output uncertainty. Therefore, identifying influential and non-influential parameters using GSA can improve model calibration efficiency and consequently reduce model uncertainty. In this paper, moment-independent density-based GSA methods that consider the entire model output distribution - i.e. Probability Density Function (PDF) or Cumulative Distribution Function (CDF) - are compared with the widely-used variance-based method and their differences are discussed. Moreover, the effect of model output definition on parameter ranking results is investigated using Nash-Sutcliffe Efficiency (NSE) and model bias as example outputs. To this end, 26 flow parameters of a SWAT model of the River Zenne (Belgium) are analysed. In order to assess the robustness of the sensitivity indices, bootstrapping is applied and 95% confidence intervals are estimated. The results show that, although the variance-based method is easy to implement and interpret, it provides wider confidence intervals, especially for non-influential parameters, compared to the density-based methods. Therefore, density-based methods may be a useful complement to variance-based methods for identifying non-influential parameters.

  4. SU-E-T-226: Junction Free Craniospinal Irradiation in Linear Accelerator Using Volumetric Modulated Arc Therapy : A Novel Technique Using Dose Tapering

    SciTech Connect

    Sarkar, B; Roy, S; Paul, S; Munshi, A; Roy, Shilpi; Jassal, K; Ganesh, T; Mohanti, BK

    2014-06-01

    Purpose: Spatially separated fields are required for craniospinal irradiation due to field size limitation in linear accelerator. Field junction shits are conventionally done to avoid hot or cold spots. Our study was aimed to demonstrate the feasibility of junction free irradiation plan of craniospinal irradiation (CSI) for Meduloblastoma cases treated in linear accelerator using Volumetric modulated arc therapy (VMAT) technique. Methods: VMAT was planned using multiple isocenters in Monaco V 3.3.0 and delivered in Elekta Synergy linear accelerator. A full arc brain and 40° posterior arc spine fields were planned using two isocentre for short (<1.3 meter height ) and 3 isocentres for taller patients. Unrestricted jaw movement was used in superior-inferior direction. Prescribed dose to PTV was achieved by partial contribution from adjacent beams. A very low dose gradient was generated to taper the isodoses over a long length (>10 cm) at the conventional field junction. Results: In this primary study five patients were planned and three patients were delivered using this novel technique. As the dose contribution from the adjacent beams were varied (gradient) to create a complete dose distribution, therefore there is no specific junction exists in the plan. The junction were extended from 10–14 cm depending on treatment plan. Dose gradient were 9.6±2.3% per cm for brain and 7.9±1.7 % per cm for spine field respectively. Dose delivery error due to positional inaccuracy was calculated for brain and spine field for ±1mm, ±2mm, ±3mm and ±5 mm were 1%–0.8%, 2%–1.6%, 2.8%–2.4% and 4.3%–4% respectively. Conclusion: Dose tapering in junction free CSI do not require a junction shift. Therefore daily imaging for all the field is also not essential. Due to inverse planning dose to organ at risk like thyroid kidney, heart and testis can be reduced significantly. VMAT gives a quicker delivery than Step and shoot or dynamic IMRT.

  5. Groundwater conceptualization and modeling using distributed SWAT-based recharge for the semi-arid agricultural Neishaboor plain, Iran

    NASA Astrophysics Data System (ADS)

    Izady, A.; Davary, K.; Alizadeh, A.; Ziaei, A. N.; Akhavan, S.; Alipoor, A.; Joodavi, A.; Brusseau, M. L.

    2015-02-01

    Increased irrigation in the Neishaboor watershed, Iran, during the last few decades has caused serious groundwater depletion, making the development of comprehensive mitigation strategies and tools increasingly important. In this study, SWAT and MODFLOW were employed to integratively simulate surface-water and groundwater flows. SWAT and MODFLOW were iteratively executed to compute spatial and temporal distributions of hydrologic components. The combined SWAT-MODFLOW model was calibrated (2000-2010) and validated (2010-2012) based on streamflow, wheat yield, groundwater extraction, and groundwater-level data. This multi-criteria calibration procedure provided greater confidence for the partitioning of water between soil storage, actual evapotranspiration, and aquifer recharge. The SWAT model provided satisfactory predictions of the hydrologic budget for the watershed outlet. It also provided good predictions of irrigated wheat yield and groundwater extraction. The 10-year mean annual recharge rate estimated using the combined model varied greatly, ranging from 0 to 960 mm, with an average of 176 mm. This result showed good agreement with the independently estimated annual recharge rate from an earlier study. The combined model provides a robust tool for the sustainable planning and management of water resources for areas with stressed aquifers where interaction between groundwater and surface water cannot be easily assessed.

  6. The Impacts of Different Meteorology Data Sets on Nitrogen Fate and Transport in the SWAT Watershed Model

    EPA Science Inventory

    In this study, we investigated how different meteorology data sets impacts nitrogen fate and transport responses in the Soil and Water Assessment Tool (SWAT) model. We used two meteorology data sets: National Climatic Data Center (observed) and Mesoscale Model 5/Weather Research ...

  7. Identifying non-point source critical source areas based on multi-factors at a basin scale with SWAT

    NASA Astrophysics Data System (ADS)

    Liu, Ruimin; Xu, Fei; Zhang, Peipei; Yu, Wenwen; Men, Cong

    2016-02-01

    The identification of critical source areas (CSAs) is a precondition for non-point source (NPS) pollution control at a basin scale, especially in areas with limited resources. Based on the Soil and Water Assessment Tool (SWAT), nutrient loads coupled with population density and water quality requirements are regarded as multi-factors for CSAs identification in Xiangxi river watershed, the first tributary of the Yangtze River. The results based on the calibrated model found that the subbasins heavily and seriously polluted by nutrient loads were different from the subbasins identified as CSAs, demonstrating integrating socio-economic factors like population density and water quality requirements to identify CSAs is of much necessity. The CSAs occupied 19.7% of the total subbasins, and accounted for 53% total nitrogen loads, 54% total phosphorus loads and 36% of the total population. Considering the model calibration and validation will take a long time as well as data deficiency in some subbasins, the influence of uncalibrated SWAT on CSAs identifications was discussed. The comparative results between CSAs identification with calibrated and uncalibrated SWAT model revealed that model calibration had little effect on nutrients distribution and CSAs locations in the study area. Uncalibrated SWAT model may be applied when the research objective is less related to model calibration. The results will be greatly effective for CSAs identification and NPS pollution control at a basin scale.

  8. Evaluation of the Hooghoudt and Kirkham tile drain equations in SWAT to simulate tile flow and nitrate-nitrogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface tile drains in agricultural systems of Midwest U.S. are a major contributor of nitrate-N (NO3-N) loadings to hypoxic conditions in the Gulf of Mexico. Existing soil moisture retention parameter computation algorithm in the widely used Soil and Water Assessment Tool (SWAT) model is known t...

  9. Evaluation of SWAT for estimating ET in irrigated and dryland cropping systems in the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrologic models such as SWAT are used extensively for predicting water availability and water quality responses to alternative management practices. Modeling results have been used by regulatory agencies for developing remedial measures for impaired water bodies and for water planning purposes. Ho...

  10. Testing of SWAT for estimating ET in irrigated and dryland cropping systems in the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrologic models such as SWAT are used extensively for predicting water availability and water quality responses to alternative management practices. Modeling results have been used by regulatory agencies for developing remedial measures for impaired water bodies and for water planning purposes. Ho...

  11. PATHOGEN TRANSPORT AND FATE MODELING IN THE UPPER SALEM RIVER WATERSHED USING SWAT MODEL - PEER-REVIEWED JOURNAL ARTICLE

    EPA Science Inventory

    Simulation of the fate and transport of pathogen contamination was conducted with SWAT for the Upper Salem River Watershed, located in Salem County, New Jersey. This watershed is 37 km2 and land uses are predominantly agricultural. The watershed drains to a 32 km str...

  12. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  13. Accelerating orthodontic tooth movement: A new, minimally-invasive corticotomy technique using a 3D-printed surgical template

    PubMed Central

    Giansanti, Matteo

    2016-01-01

    Background A reduction in orthodontic treatment time can be attained using corticotomies. The aggressive nature of corticotomy due to the elevation of muco-periosteal flaps and to the duration of the surgery raised reluctance for its employ among patients and dental community. This study aims to provide detailed information on the design and manufacture of a 3D-printed CAD-CAM (computer-aided design and computer-aided manufacturing) surgical guide which can aid the clinician in achieving a minimally-invasive, flapless corticotomy. Material and Methods An impression of dental arches was created; the models were digitally-acquired using a 3D scanner and saved as STereoLithography ( STL ) files. The patient underwent cone beam computed tomography (CBCT): images of jaws and teeth were transformed into 3D models and saved as an STL file. An acrylic template with the design of a surgical guide was manufactured and scanned. The STLs of jaws, scanned casts, and acrylic templates were matched. 3D modeling software allowed the view of the 3D models from different perspectives and planes with perfect rendering. The 3D model of the acrylic template was transformed into a surgical guide with slots designed to guide, at first, a scalpel blade and then a piezoelectric cutting insert. The 3D STL model of the surgical guide was printed. Results This procedure allowed the manufacturing of a 3D-printed CAD/CAM surgical guide, which overcomes the disadvantages of the corticotomy, removing the need for flap elevation. No discomfort, early surgical complications or unexpected events were observed. Conclusions The effectiveness of this minimally-invasive surgical technique can offer the clinician a valid alternative to other methods currently in use. Key words:Corticotomy, orthodontics, CAD/CAM, minimally invasive, surgical template, 3D printer. PMID:27031067

  14. A Dosimetric Comparison of Accelerated Partial Breast Irradiation Techniques: Multicatheter Interstitial Brachytherapy, Three-Dimensional Conformal Radiotherapy, and Supine Versus Prone Helical Tomotherapy

    SciTech Connect

    Patel, Rakesh R. . E-mail: patel@humonc.wisc.edu; Becker, Stewart J.; Das, Rupak K.; Mackie, Thomas R.

    2007-07-01

    Purpose: To compare dosimetrically four different techniques of accelerated partial breast irradiation (APBI) in the same patient. Methods and Materials: Thirteen post-lumpectomy interstitial brachytherapy (IB) patients underwent imaging with preimplant computed tomography (CT) in the prone and supine position. These CT scans were then used to generate three-dimensional conformal radiotherapy (3D-CRT) and prone and supine helical tomotherapy (PT and ST, respectively) APBI plans and compared with the treated IB plans. Dose-volume histogram analysis and the mean dose (NTD{sub mean}) values were compared. Results: Planning target volume coverage was excellent for all methods. Statistical significance was considered to be a p value <0.05. The mean V100 was significantly lower for IB (12% vs. 15% for PT, 18% for ST, and 26% for 3D-CRT). A greater significant differential was seen when comparing V50 with mean values of 24%, 43%, 47%, and 52% for IB, PT, ST, and 3D-CRT, respectively. The IB and PT were similar and delivered an average lung NTD{sub mean} dose of 1.3 Gy{sub 3} and 1.2 Gy{sub 3}, respectively. Both of these methods were statistically significantly lower than the supine external beam techniques. Overall, all four methods yielded similar low doses to the heart. Conclusions: The use of IB and PT resulted in greater normal tissue sparing (especially ipsilateral breast and lung) than the use of supine external beam techniques of 3D-CRT or ST. However, the choice of APBI technique must be tailored to the patient's anatomy, lumpectomy cavity location, and overall treatment goals.

  15. Modeling Fate and Transport of Fecal Coliform Bacteria Using SWAT 2005 (Case Study: Jajrood River Watershed, Iran)

    NASA Astrophysics Data System (ADS)

    Maghrebi, M.; Tajrishy, M.

    2010-12-01

    Jajrood River watershed is one of the main drinking water resources of the capital city of Tehran, Iran. In addition it has been available as many recreational usages especially in the warm months. As a result of being located near one of the crowded cities of the world, a variety of microbial pollutions is commonly perceived in the Jajrood River. Among them, there are strong concerns about fecal coliform bacteria concentration. This article aimed to model fate and transport of fecal coliform bacteria in Jajrood River watershed using Soil and Water Assessment Tool (SWAT) model version 2005. Potential pollutant sources in the study area were detected and quantified for modeling purposes. In spite of being lack of knowledge about bacteria die-off rate in small river bodies, as well as in other watershed-based forms, fecal coliform bacteria die-off rates were estimated using both laboratory and field data investigations with some simplifications. The SWAT model was calibrated over an extended time period (1997-2002) for this watershed. The river flow calibrated using SUFI-2 software and resulted in a very good outputs (R2=0.82, E=0.81). Furthermore SWAT model was validated over January 2003 to September 2005 in the study area and has resulted in good outputs (R2=0.61, E=0.57). This research illustrates SWAT 2005 capability to model fecal coliform bacteria in a populated watershed, and deals with most of watershed microbial pollution sources that are usually observed in developing countries. Fecal coliform concentration simulation results were mostly in the same order in comparison with real data. However, Differences were judged to be related to lack of input data. In this article different aspects of SWAT capabilities for modeling of fecal coliform bacteria concentration will be reviewed and it will present new insights in bacteria modeling procedures especially for mountainous, high populated and small sized watersheds.

  16. Influence of Air Temperature Difference on the Snow Melting Simulation of SWAT Model

    NASA Astrophysics Data System (ADS)

    YAN, Y.; Onishi, T.

    2013-12-01

    The temperature-index models are commonly used to simulate the snowmelt process in mountain areas because of its good performance, low data requirements, and computational simplicity. Widely used distributed hydrological model: Soil and Water Assessment Tool (SWAT) model is also using a temperature-index module. However, the lack of monitoring air temperature data still involves uncertainties and errors in its simulation performance especially in data sparse area. Thus, to evaluate the different air temperature data influence on the snow melt of the SWAT model, five different air temperature data are applied in two different Russia basins (Birobidjan basin and Malinovka basin). The data include the monitoring air temperature data (TM), NCEP reanalysis data (TNCEP), the dataset created by inverse distance weighted interpolation (IDW) method (TIDW), the dataset created by improved IDW method considering the elevation influence (TIDWEle), and the dataset created by using linear regression and MODIS Land Surface Temperature (LST) data (TLST). Among these data, the TLST , the TIDW and TIDWEle data have the higher spatial density, while the TNCEP and TM DATA have the most valid monitoring value for daily scale. The daily simulation results during the snow melting seasons (March, April and May) showed reasonable results in both test basins for all air temperature data. While R2 and NSE in Birobidjan basin are around 0.6, these values in Malinovka basin are over 0.75. Two methods: Generalized Likelihood Uncertainty Estimation (GLUE) and Sequential Uncertainty Fitting, version. 2 (SUFI-2) were used for model calibration and uncertainty analysis. The evolution index is p-factor which means the percentage of measured data bracketed by the 95% Prediction Uncertainty (95PPU). The TLST dataset always obtained the best results in both basins compared with other datasets. On the other hand, the two IDW based method get the worst results among all the scenarios. Totally, the

  17. Diversity and use of ethno-medicinal plants in the region of Swat, North Pakistan

    PubMed Central

    2013-01-01

    Background Due to its diverse geographical and habitat conditions, northern Pakistan harbors a wealth of medicinal plants. The plants and their traditional use are part of the natural and cultural heritage of the region. This study was carried out to document which medicinal plant species and which plant parts are used in the region of Swat, which syndrome categories are particularly concerned, and which habitat spectrum is frequented by collectors. Finally, we assessed to which extent medicinal plants are vulnerable due to collection and habitat destruction. Methods An ethnobotanical survey was undertaken in the Miandam area of Swat, North Pakistan. Data were collected through field assessment as well as from traditional healers and locals by means of personal interviews and semi-structured questionnaires. Results A total of 106 ethno-medicinal plant species belonging to 54 plant families were recorded. The most common growth forms were perennial (43%) and short-lived herbs (23%), shrubs (16%), and trees (15%). Most frequently used plant parts were leaves (24%), fruits (18%) and subterranean parts (15%). A considerable proportion of the ethno-medicinal plant species and remedies concerns gastro-intestinal disorders. The remedies were mostly prepared in the form of decoction or powder and were mainly taken orally. Eighty out of 106 ethno-medicinal plants were indigenous. Almost 50% of the plants occurred in synanthropic vegetation while slightly more than 50% were found in semi-natural, though extensively grazed, woodland and grassland vegetation. Three species (Aconitum violaceum, Colchicum luteum, Jasminum humile) must be considered vulnerable due to excessive collection. Woodlands are the main source for non-synanthropic indigenous medicinal plants. The latter include many range-restricted taxa and plants of which rhizomes and other subterranean parts are dug out for further processing as medicine. Conclusion Medicinal plants are still widely used for treatment

  18. A comparison of force reconstruction methods for a lumped mass beam

    SciTech Connect

    Bateman, V.I.; Mayes, R.L.; Carne, T.G.

    1992-11-01

    Two extensions of the force reconstruction method, the Sum of Weighted Accelerations Technique (SWAT), are presented in this paper; and the results are compared to those obtained using SWAT. SWAT requires the use of the structure`s elastic mode shapes for reconstruction of the applied force. Although based on the same theory, the two, new techniques do not rely on mode shapes to reconstruct the applied force and may be applied to structures whose mode shapes are not available. One technique uses the measured force and acceleration responses with the rigid body mode shapes to calculate the scalar weighting vector, so the technique is called SWAT-CAL (SWAT using a CALibrated force input). The second technique uses only the free-decay time response of the structure with the rigid body mode shapes to calculate the scalar weighting vector and is called SWAT-TEEM (SWAT using Time Eliminated Elastic Modes).

  19. A comparison of force reconstruction methods for a lumped mass beam

    SciTech Connect

    Bateman, V.I.; Mayes, R.L.; Carne, T.G.

    1992-01-01

    Two extensions of the force reconstruction method, the Sum of Weighted Accelerations Technique (SWAT), are presented in this paper; and the results are compared to those obtained using SWAT. SWAT requires the use of the structure's elastic mode shapes for reconstruction of the applied force. Although based on the same theory, the two, new techniques do not rely on mode shapes to reconstruct the applied force and may be applied to structures whose mode shapes are not available. One technique uses the measured force and acceleration responses with the rigid body mode shapes to calculate the scalar weighting vector, so the technique is called SWAT-CAL (SWAT using a CALibrated force input). The second technique uses only the free-decay time response of the structure with the rigid body mode shapes to calculate the scalar weighting vector and is called SWAT-TEEM (SWAT using Time Eliminated Elastic Modes).

  20. Microwave Heating of Synthetic Skin Samples for Potential Treatment of Gout Using the Metal-Assisted and Microwave-Accelerated Decrystallization Technique

    PubMed Central

    2016-01-01

    Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 GHz, 2–20 W) up to 120 s. The extent of damage to synthetic skin samples, assessed by the change in the surface area of skin samples, was negligible for microwave power of ≤7 W and more extensive damage (>50%) to skin samples occurred when exposed to >7 W at initial temperature range of 20–39 °C. The initial temperature of synthetic skin samples significantly affected the extent of change in temperature of synthetic skin samples during their exposure to microwave heating. The proof of principle use of the MAMAD technique was demonstrated for the decrystallization of a model biological crystal (l-alanine) placed under synthetic skin samples in the presence of gold nanoparticles. Our results showed that the size (initial size ∼850 μm) of l-alanine crystals can be reduced up to 60% in 120 s without damage to synthetic skin samples using the MAMAD technique. Finite-difference time-domain-based simulations of the electric field distribution of an 8 GHz monomode microwave radiation showed that synthetic skin samples are predicted to absorb ∼92.2% of the microwave radiation. PMID:27917407

  1. Microwave Heating of Synthetic Skin Samples for Potential Treatment of Gout Using the Metal-Assisted and Microwave-Accelerated Decrystallization Technique.

    PubMed

    Toker, Salih; Boone-Kukoyi, Zainab; Thompson, Nishone; Ajifa, Hillary; Clement, Travis; Ozturk, Birol; Aslan, Kadir

    2016-11-30

    Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 GHz, 2-20 W) up to 120 s. The extent of damage to synthetic skin samples, assessed by the change in the surface area of skin samples, was negligible for microwave power of ≤7 W and more extensive damage (>50%) to skin samples occurred when exposed to >7 W at initial temperature range of 20-39 °C. The initial temperature of synthetic skin samples significantly affected the extent of change in temperature of synthetic skin samples during their exposure to microwave heating. The proof of principle use of the MAMAD technique was demonstrated for the decrystallization of a model biological crystal (l-alanine) placed under synthetic skin samples in the presence of gold nanoparticles. Our results showed that the size (initial size ∼850 μm) of l-alanine crystals can be reduced up to 60% in 120 s without damage to synthetic skin samples using the MAMAD technique. Finite-difference time-domain-based simulations of the electric field distribution of an 8 GHz monomode microwave radiation showed that synthetic skin samples are predicted to absorb ∼92.2% of the microwave radiation.

  2. A Validation Study of SWAT in an Urbanizing Multiuse Watershed in the Central U.S

    NASA Astrophysics Data System (ADS)

    Scollan, D. P.; Hubbart, J. A.

    2009-12-01

    Watershed-scale distributed hydrologic/water quality (H/WQ) models such as the Soil and Water Assessment Tool (SWAT) are increasingly important tools for land managers. They are powerful prediction tools, and are also useful to assess and develop Best Management Practices (BMP) and estimates of Total Maximum Daily Loads (TMDL). A major impediment to successful calibration and validation of H/WQ models is a general lack of distributed monitoring data including discharge, sediment yield and climate data. The current study evaluates SWAT model simulations of water and sediment yield using publically available meteorological and USGS flow data versus simulations developed using comprehensive data sets from a nested network of five hydroclimate stations collecting continuous discharge, sediment and climate data. This work is taking place in the Hinkson Creek Watershed (HCW, 230.8 km2) located in central Missouri. Elevation ranges from 170 m at the outlet to 287 m at the headwaters. Landuse in the upper HCW consists of rural pasture and wooded areas, while the lower HCW contains the city of Columbia. Soils in the upper HCW are characterized as loamy till with a well developed clay pan, and in the lower HCW as thin cherty clay and silty to sandy clay. The transitional climate of Missouri includes influences from winter dominant continental polar air masses, and summer prevalent maritime and continental tropical air masses. Average annual temperature and precipitation are 12.8 °C and 1016 mm, respectively. A USGS streamflow gauge (contributing area 179.5 km2) has been operating from 1966-1981, 1986-1991, and 03/2007 to the present. SWAT model inputs were configured for the HCW using ArcSWAT with six subcatchments corresponding to the contributing areas of each of the five gauge sites and the watershed outlet. Using 2001 National Land Cover Database (NLCD) landuse and State Soil Geographic Database (STATSGO) soils data, the model was parameterized for 26 hydrologic

  3. Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan.

    PubMed

    Khan, Kifayatullah; Lu, Yonglong; Khan, Hizbullah; Ishtiaq, Muhammad; Khan, Sardar; Waqas, Muhammad; Wei, Luo; Wang, Tieyu

    2013-08-01

    This study assessed the concentrations of heavy metals such as cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni) and zinc (Zn) in agricultural soils and crops (fruits, grains and vegetable) and their possible human health risk in Swat District, northern Pakistan. Cd concentration was found higher than the limit (0.05 mg/kg) set by world health organization in 95% fruit and 100% vegetable samples. Moreover, the concentrations of Cr, Cu, Mn, Ni and Zn in the soils were shown significant correlations with those in the crops. The metal transfer factor (MTF) was found highest for Cd followed by Cr>Ni>Zn>Cu>Mn, while the health risk assessment revealed that there was no health risk for most of the heavy metals except Cd, which showed a high level of health risk index (HRI⩾10E-1) that would pose a potential health risk to the consumers.

  4. Accelerator on a Chip

    SciTech Connect

    England, Joel

    2014-06-30

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  5. Accelerator on a Chip

    ScienceCinema

    England, Joel

    2016-07-12

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  6. Phytoecological evaluation with detail floristic appraisal of the vegetation arround Malam Jabba, Swat, Pakistan

    PubMed Central

    Rashid, Abdur; Swati, Mohammad Farooq; Sher, Hassan; Al-Yemeni, Mohammad N

    2011-01-01

    Objective To determine the present status of plant communities and their possible association with the habitat in Malam Jabba, Swat, Pakistan. Methods A study on the phytoecology was conducted in various ecologically important sites of Malam Jabba, Swat, Pakistan from 2002 to 2004. The altitude of these sites ranged from 1 200 m to 3 200 m. Quadrat method was used for evaluation of plants communities and the data on these attributes was converted to relative values. The plant communities were named after 3 leading species with highest importance values. Biological spectrum of the flora based on the life form was prepared by following Raunkiar's life form classes. Results The floristic composition and structure of the study area were found to be 200 species belonging to 75 families. Asteraceae, Lamiaceae and Poaceae were important families in the study area. The biological spectrum showed that therophytic and hemicrytophytic life form and micro-nonophyllous leaf sizes were dominant in the area. The air and soil temperatures were decreasing with increasing elevation. Both the air and soil temperatures were relatively higher in south slopes than on the northeast slopes. The vegetation analysis of the area indicated eleven plant communities around the area. The present vegetation is the relics of moist temperate coniferous forest in the area. The communities reflect highly deteriorated conditions. Both the structure and composition of the surrounding vegetation were associated with the types of habitats. Conclusions The conservation of the remaining populations of the reported communities will be best achieved by proper time of sustainable harvesting. It is only possible with the participation of local communities. PMID:23569814

  7. Testing the Addition of Topographic Features for Field Scale Infiltration Excess Water Quality Modeling in SWAT

    NASA Astrophysics Data System (ADS)

    Collick, A.; Easton, Z. M.; Kleinman, P. J. A.; Sommerlot, A.; White, M. J.; Harmel, D.; Fuka, D.

    2014-12-01

    Watershed planners and managers need reliable tools that can capture the spatial and temporal complexity of agricultural landscapes, and water quality models are increasingly relied upon to represent P loss from agricultural watersheds. While a significant amount of modeling work has attempted to incorporate factors controlling P loss (e.g. representing solubility, manure types, timing and application type), these models still typically require significant calibration and are thus difficult to apply meaningfully in areas without copious data with which to calibrate. This is partially because these models were never really intended as field scale tools, while we are trying to use them to define different hydrologic pathways, area weighted potential energy (slopes and saturated conductivities), and the resulting lag time of P in different transport states. The movement of water within the landscape as surface (or near-surface) storm runoff and interflow is driven by gravity, topography, contributing area and soil and landuse characteristics, which play roles in concentrating water flows. Soil surveys have played a key role in the development of pedology and spatially derived pedon soil maps have become valuable datasets for natural resource management. Unfortunately, the soil surveys, commonly available at ~1:20,000 scale, are not designed to provide the high-resolution models of the soil continuum required in field scale environmental modeling applications and site specific crop and water quality management. The goal of this project is to test a methodology designed initially for representing saturation excess hydrology in the SWAT model to incorporate topographic attributes, and resulting spatially explicit soil morphology, that are missing from standard SWAT model initializations.

  8. Assessment of NASA's Physiographic and Meteorological Datasets as Input to HSPF and SWAT Hydrological Models

    NASA Technical Reports Server (NTRS)

    Alacron, Vladimir J.; Nigro, Joseph D.; McAnally, William H.; OHara, Charles G.; Engman, Edwin Ted; Toll, David

    2011-01-01

    This paper documents the use of simulated Moderate Resolution Imaging Spectroradiometer land use/land cover (MODIS-LULC), NASA-LIS generated precipitation and evapo-transpiration (ET), and Shuttle Radar Topography Mission (SRTM) datasets (in conjunction with standard land use, topographical and meteorological datasets) as input to hydrological models routinely used by the watershed hydrology modeling community. The study is focused in coastal watersheds in the Mississippi Gulf Coast although one of the test cases focuses in an inland watershed located in northeastern State of Mississippi, USA. The decision support tools (DSTs) into which the NASA datasets were assimilated were the Soil Water & Assessment Tool (SWAT) and the Hydrological Simulation Program FORTRAN (HSPF). These DSTs are endorsed by several US government agencies (EPA, FEMA, USGS) for water resources management strategies. These models use physiographic and meteorological data extensively. Precipitation gages and USGS gage stations in the region were used to calibrate several HSPF and SWAT model applications. Land use and topographical datasets were swapped to assess model output sensitivities. NASA-LIS meteorological data were introduced in the calibrated model applications for simulation of watershed hydrology for a time period in which no weather data were available (1997-2006). The performance of the NASA datasets in the context of hydrological modeling was assessed through comparison of measured and model-simulated hydrographs. Overall, NASA datasets were as useful as standard land use, topographical , and meteorological datasets. Moreover, NASA datasets were used for performing analyses that the standard datasets could not made possible, e.g., introduction of land use dynamics into hydrological simulations

  9. Assessment of crop growth and soil water modules in SWAT2000 using extensive field experiment data in an irrigation district of the Yellow River Basin

    USGS Publications Warehouse

    Luo, Y.; He, C.; Sophocleous, M.; Yin, Z.; Hongrui, R.; Ouyang, Z.

    2008-01-01

    SWAT, a physically-based, hydrological model simulates crop growth, soil water and groundwater movement, and transport of sediment and nutrients at both the process and watershed scales. While the different versions of SWAT have been widely used throughout the world for agricultural and water resources applications, little has been done to test the performance, variability, and transferability of the parameters in the crop growth, soil water, and groundwater modules in an integrated way with multiple sets of field experimental data at the process scale. Using an multiple years of field experimental data of winter wheat (Triticum aestivum L.) in the irrigation district of the Yellow River Basin, this paper assesses the performance of the plant-soil-groundwater modules and the variability and transferability of SWAT2000. Comparison of the simulated results by SWAT to the observations showed that SWAT performed quite unsatisfactorily in LAI predictions during the senescence stage, in yield predictions, and in soil-water estimation under dry soil-profile conditions. The unsatisfactory performance in LAI prediction might be attributed to over-simplified senescence modeling; in yield prediction to the improper computation of the harvest index; and in soil water under dry conditions to the exclusion of groundwater evaporation from the soil water balance in SWAT. In this paper, improvements in crop growth, soil water, and groundwater modules in SWAT were implemented. The saturated soil profile was coupled to the oscillating groundwater table. A variable evaporation coefficient taking into account soil water deficit index, groundwater depth, and crop root depth was used to replace the fixed coefficient in computing groundwater evaporation. The soil water balance included the groundwater evaporation. The modifications improved simulations of crop evapotranspiration and biomass as well as soil water dynamics under dry soil-profile conditions. The evaluation shows that the

  10. Performance degradation studies on an poly 2,5-benzimidazole high-temperature proton exchange membrane fuel cell using an accelerated degradation technique

    NASA Astrophysics Data System (ADS)

    Jung, Guo-Bin; Chen, Hsin-Hung; Yan, Wei-Mon

    2014-02-01

    In this work, the performance degradation of a poly 2,5-benzimidazole (ABPBI) based high-temperature proton exchange membrane fuel cell (HT-PEMFC) was examined using an accelerated degradation technique (ADT). Experiments using an ADT with 30 min intervals were performed by applying 1.5 V to a membrane electrode assembly (MEA) with hydrogen and nitrogen feeding to the anode and cathode, respectively, to simulate the high voltage generated during fuel cell shutdown and restart. The characterization of the MEAs was performed using in-situ and ex-situ electrochemical methods, such as polarization curves, AC impedance, and cyclic voltammetry (CV), and TEM imaging before and after the ADT experiments. The measured results demonstrated that the ADT testing could be used to dramatically reduce the duration of the degradation. The current output at 0.4 V decreased by 48% after performing ADT testing for 30 min. From the AC impedance, CV and RTGA measurements, the decline in cell performance was found to be primarily due to corrosion and thinning of the catalyst layer (or carbon support) during the first 30 min, leading to the dissolution and agglomeration of the platinum catalyst.

  11. Studies on DNA adduction with heterocyclic amines by accelerator mass spectrometry: a new technique for tracing isotope-labelled DNA adduction.

    PubMed

    Turteltaub, K W; Vogel, J S; Frantz, C E; Fultz, E

    1993-01-01

    DNA adduction in rodents at doses equivalent to human dietary exposure (10(4)-10(6)-fold lower than laboratory studies) is being studied using accelerator mass spectrometry (AMS). AMS is a nuclear physics technique for detection of cosmogenic isotopes and has been used for specifically selecting and counting 14C. Using AMS, DNA adducts are detectable at levels of 1-10 adducts/10(12) nucleotides following acute and chronic dosing regimes with 14C-labelled carcinogens. The adduct detection limit has been imposed by the natural abundance of 14C in the samples and animal-to-animal variation. AMS is also being coupled to HPLC, multidimensional TLC and radio-immunoassay. In addition, AMS's great sensitivity makes it useful for demonstrating that drugs and chemicals do not bind to DNA. The use of AMS, however, is limited to situations where radiolabelled agents can be used. The data suggest that AMS is extremely useful in obtaining quantitative data on the effects of carcinogens on DNA at the low doses common for actual human exposures and may be useful in human studies.

  12. 3D motion adapted gating (3D MAG): a new navigator technique for accelerated acquisition of free breathing navigator gated 3D coronary MR-angiography.

    PubMed

    Hackenbroch, M; Nehrke, K; Gieseke, J; Meyer, C; Tiemann, K; Litt, H; Dewald, O; Naehle, C P; Schild, H; Sommer, T

    2005-08-01

    This study aimed to evaluate the influence of a new navigator technique (3D MAG) on navigator efficiency, total acquisition time, image quality and diagnostic accuracy. Fifty-six patients with suspected coronary artery disease underwent free breathing navigator gated coronary MRA (Intera, Philips Medical Systems, 1.5 T, spatial resolution 0.9x0.9x3 mm3) with and without 3D MAG. Evaluation of both sequences included: 1) navigator scan efficiency, 2) total acquisition time, 3) assessment of image quality and 4) detection of stenoses >50%. Average navigator efficiencies of the LCA and RCA were 43+/-12% and 42+/-12% with and 36+/-16% and 35+/-16% without 3D MAG (P<0.01). Scan time was reduced from 12 min 7 s without to 8 min 55 s with 3D MAG for the LCA and from 12 min 19 s to 9 min 7 s with 3D MAG for the RCA (P<0.01). The average scores of image quality of the coronary MRAs with and without 3D MAG were 3.5+/-0.79 and 3.46+/-0.84 (P>0.05). There was no significant difference in the sensitivity and specificity in the detection of coronary artery stenoses between coronary MRAs with and without 3D MAG (P>0.05). 3D MAG provides accelerated acquisition of navigator gated coronary MRA by about 19% while maintaining image quality and diagnostic accuracy.

  13. Stereotactic Irradiation of the Postoperative Resection Cavity for Brain Metastasis: A Frameless Linear Accelerator-Based Case Series and Review of the Technique

    SciTech Connect

    Kelly, Paul J.; Alexander, Brian M.; Hacker, Fred; Marcus, Karen J.; Weiss, Stephanie E.

    2012-01-01

    Purpose: Whole-brain radiation therapy (WBRT) is the standard of care after resection of a brain metastasis. However, concern regarding possible neurocognitive effects and the lack of survival benefit with this approach has led to the use of stereotactic radiosurgery (SRS) to the resection cavity in place of WBRT. We report our initial experience using an image-guided linear accelerator-based frameless stereotactic system and review the technical issues in applying this technique. Methods and Materials: We retrospectively reviewed the setup accuracy, treatment outcome, and patterns of failure of the first 18 consecutive cases treated at Brigham and Women's Hospital. The target volume was the resection cavity without a margin excluding the surgical track. Results: The median number of brain metastases per patient was 1 (range, 1-3). The median planning target volume was 3.49 mL. The median prescribed dose was 18 Gy (range, 15-18 Gy) with normalization ranging from 68% to 85%. In all cases, 99% of the planning target volume was covered by the prescribed dose. The median conformity index was 1.6 (range, 1.41-1.92). The SRS was delivered with submillimeter accuracy. At a median follow-up of 12.7 months, local control was achieved in 16/18 cavities treated. True local recurrence occurred in 2 patients. No marginal failures occurred. Distant recurrence occurred in 6/17 patients. Median time to any failure was 7.4 months. No Grade 3 or higher toxicity was recorded. A long interval between initial cancer diagnosis and the development of brain metastasis was the only factor that trended toward a significant association with the absence of recurrence (local or distant) (log-rank p = 0.097). Conclusions: Frameless stereotactic irradiation of the resection cavity after surgery for a brain metastasis is a safe and accurate technique that offers durable local control and defers the use of WBRT in select patients. This technique should be tested in larger prospective studies.

  14. Sensitivity of Different Satellites Gridded data over Brahmaputra Basin by using Soil and Water Assessment Tool (SWAT)

    NASA Astrophysics Data System (ADS)

    Paul, S.; Islam, A. S.; Hasan, M. A.

    2015-12-01

    More than half a billion people of India, China, Nepal, Bangladesh and Bhutan are directly or indirectly dependent on the water resources of the Brahmaputrariver. With climatic and anthropogenic change of this basin region is becoming a cause of concern for future water management and sharing with transboundary riparian nations. To address such issues, robust watershed runoff modeling of the basin is essential. Soil and Water Assessment Tool (SWAT) is a widely used semi-distributed watershed model that is capable of analyzing surface runoff, stream flow, water yield,sediment and nutrienttransport in a large river basin such as Brahmaputra, but the performance of runoff the model depends on the accuracy of input precipitation datasets. But for a transboundary basin like Brahmaputra, precipitation gauge data from upstream areas is either not available or not accessible to the scientific communities.Satellite rainfall products are very effective where radar datasets are absent and conventional rain gauges are sparse. However, the sensitivity of the SWAT model to different satellite data products as well as hydrologic parameters for the Brahmaputra Basin are largely unknown. Thus in this study, a comparative analysis with different satellite data product has been made to assess the runoff using SWAT model. Here, data from three sources: TRMM, APHRDOTIE and GPCP were used as input precipitation satellite data set and ERA-Interim was used as input temperature dataset from 1998 to 2009. The main methods used in modeling the hydrologic processes in SWAT were curve number method for runoff estimating, Penman-Monteith method for PET and Muskingum method for channel routing. Our preliminary results have revealed thatthe TRMM data product is more accurate than APHRODITE and GPCP for runoff analysis. The coefficient of determination (R2) and Nash-Sutcliffe efficiencies for both calibration and validation period from TRMM data are 0.83 and 0.72, respectively.

  15. Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige river basin (Italy).

    PubMed

    Tuo, Ye; Duan, Zheng; Disse, Markus; Chiogna, Gabriele

    2016-12-15

    Precipitation is often the most important input data in hydrological models when simulating streamflow. The Soil and Water Assessment Tool (SWAT), a widely used hydrological model, only makes use of data from one precipitation gauge station that is nearest to the centroid of each subbasin, which is eventually corrected using the elevation band method. This leads in general to inaccurate representation of subbasin precipitation input data, particularly in catchments with complex topography. To investigate the impact of different precipitation inputs on the SWAT model simulations in Alpine catchments, 13years (1998-2010) of daily precipitation data from four datasets including OP (Observed precipitation), IDW (Inverse Distance Weighting data), CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) and TRMM (Tropical Rainfall Measuring Mission) has been considered. Both model performances (comparing simulated and measured streamflow data at the catchment outlet) as well as parameter and prediction uncertainties have been quantified. For all three subbasins, the use of elevation bands is fundamental to match the water budget. Streamflow predictions obtained using IDW inputs are better than those obtained using the other datasets in terms of both model performance and prediction uncertainty. Models using the CHIRPS product as input provide satisfactory streamflow estimation, suggesting that this satellite product can be applied to this data-scarce Alpine region. Comparing the performance of SWAT models using different precipitation datasets is therefore important in data-scarce regions. This study has shown that, precipitation is the main source of uncertainty, and different precipitation datasets in SWAT models lead to different best estimate ranges for the calibrated parameters. This has important implications for the interpretation of the simulated hydrological processes.

  16. Modeling Miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop.

    PubMed

    Ng, Tze Ling; Eheart, J Wayland; Cai, Ximing; Miguez, Fernando

    2010-09-15

    There is increasing interest in perennial grasses as a renewable source of bioenergy and feedstock for second-generation cellulosic biofuels. The primary objective of this study is to estimate the potential effects on riverine nitrate load of cultivating Miscanthus x giganteus in place of conventional crops. In this study, the Soil and Water Assessment Tool (SWAT) is used to model miscanthus growth and streamwater quality in the Salt Creek watershed in Illinois. SWAT has a built-in crop growth component, but, as miscanthus is relatively new as a potentially commercial crop, data on the SWAT crop growth parameters for the crop are lacking. This leads to the second objective of this study, which is to estimate those parameters to facilitate the modeling of miscanthus in SWAT. Results show a decrease in nitrate load that depends on the percent land use change to miscanthus and the amount of nitrogen fertilizer applied to the miscanthus. Specifically, assuming a nitrogen fertilization rate for miscanthus of 90 kg-N/ha, a 10%, 25%, and 50% land use change to miscanthus will lead to decreases in nitrate load of about 6.4%, 16.5%, and 29.6% at the watershed outlet, respectively. Likewise, nitrate load may be reduced by lowering the fertilizer application rate, but not proportionately. When fertilization drops from 90 to 30 kg-N/ha the difference in nitrate load decrease is less than 1% when 10% of the watershed is miscanthus and less than 6% when 50% of the watershed is miscanthus. It is also found that the nitrate load decrease from converting less than half the watershed to miscanthus from corn and soybean in 1:1 rotation surpasses that from converting the whole watershed to just soybean.

  17. Value of bias-corrected satellite rainfall products in SWAT simulations and comparison with other models in the Mara basin

    NASA Astrophysics Data System (ADS)

    Serrat-Capdevila, A.; Abitew, T. A.; Roy, T.; van Griensven, A.; Valdes, J. B.; Bauwens, W.

    2015-12-01

    Hydrometeorological monitoring networks are often limited for basins located in the developing world such as the transboundary Mara Basin. The advent of earth observing systems have brought satellite rainfall and evapotranspiration products, which can be used to force hydrological models in data scarce basins. The objective of this study is to develop improved hydrologic simulations using distributed satellite rainfall products (CMORPH and TMPA) with a bias-correction, and compare the performance with different input data and models. The bias correction approach for the satellite-products (CMORPH and TMPA) involves the use of a distributed reference dataset (CHIRPS) and historical ground gauge records. We have applied the bias-corrected satellite products to force the Soil and Water Assessment Tool (SWAT) model for the Mara Basin. Firstly, we calibrate the SWAT parameters related to ET simulation using ET from remote sensing. Then, the SWAT parameters that control surface processes are calibrated using the available limited flow. From the analysis, we noted that not only the bias-corrected satellite rainfall but also augmenting limited flow data with monthly remote sensing ET improves the model simulation skill and reduces the parameter uncertainty to some extent. We have planned to compare these results from a lumped model forced by the same input satellite rainfall. This will shed light on the potential of satellite rainfall and remote sensing ET along with in situ data for hydrological processes modeling and the inherent uncertainty in a data scarce basin.

  18. Mould incidence and mycotoxin contamination in maize kernels from Swat Valley, North West Frontier Province of Pakistan.

    PubMed

    Shah, Hamid Ullah; Simpson, Thomas J; Alam, Sahib; Khattak, Khanzadi Fatima; Perveen, Sajida

    2010-04-01

    Mould incidence and aflatoxin B1 (AFB1) and ochratoxin A (OTA) contamination as well as proximate composition and minerals content of maize kernels from Swat Valley, North West Frontier Province of Pakistan was studied during the year, 2007. Results indicated that the mean moisture content of the kernels was within the recommended safe storage levels of 15%. Across the whole valley, Aspergillus, Fusarium, Penicillium and Rhizopus were the most predominant fungal genera identified and amongst the mycotoxigenic species, Aspergillus flavus had the highest incidence. AFB1 content ranged from none to 30.92 microg/kg with the average values of 14.94 and 16.22 microg/kg for Upper and Lower Swat regions, respectively. Similar trend was observed for OTA with the contamination level ranged from <0.001 to 7.32 microg/kg. A significant numbers of samples contained AFB1 and OTA levels above the safe limits as recommended by the USFDA and EU but on the average the results were within the safe limit. These results indicate that maize consumers in Swat Valley may be exposed to the danger of aflatoxins and ochratoxins poisoning. Thus, there is a need for policy makers to establish and enforce maize quality standards and regulations related to moulds and mycotoxins across the area.

  19. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  20. Hippocampal-Sparing Whole-Brain Radiotherapy: A 'How-To' Technique Using Helical Tomotherapy and Linear Accelerator-Based Intensity-Modulated Radiotherapy

    SciTech Connect

    Gondi, Vinai; Tolakanahalli, Ranjini; Mehta, Minesh P.; Tewatia, Dinesh; Rowley, Howard; Kuo, John S.; Khuntia, Deepak; Tome, Wolfgang A.

    2010-11-15

    Purpose: Sparing the hippocampus during cranial irradiation poses important technical challenges with respect to contouring and treatment planning. Herein we report our preliminary experience with whole-brain radiotherapy using hippocampal sparing for patients with brain metastases. Methods and Materials: Five anonymous patients previously treated with whole-brain radiotherapy with hippocampal sparing were reviewed. The hippocampus was contoured, and hippocampal avoidance regions were created using a 5-mm volumetric expansion around the hippocampus. Helical tomotherapy and linear accelerator (LINAC)-based intensity-modulated radiotherapy (IMRT) treatment plans were generated for a prescription dose of 30 Gy in 10 fractions. Results: On average, the hippocampal avoidance volume was 3.3 cm{sup 3}, occupying 2.1% of the whole-brain planned target volume. Helical tomotherapy spared the hippocampus, with a median dose of 5.5 Gy and maximum dose of 12.8 Gy. LINAC-based IMRT spared the hippocampus, with a median dose of 7.8 Gy and maximum dose of 15.3 Gy. On a per-fraction basis, mean dose to the hippocampus (normalized to 2-Gy fractions) was reduced by 87% to 0.49 Gy{sub 2} using helical tomotherapy and by 81% to 0.73 Gy{sub 2} using LINAC-based IMRT. Target coverage and homogeneity was acceptable with both IMRT modalities, with differences largely attributed to more rapid dose fall-off with helical tomotherapy. Conclusion: Modern IMRT techniques allow for sparing of the hippocampus with acceptable target coverage and homogeneity. Based on compelling preclinical evidence, a Phase II cooperative group trial has been developed to test the postulated neurocognitive benefit.

  1. Hydrologic Modeling of Urbanizing Oregon Basins for Water-Related Ecosystem Service Assessment using SWAT

    NASA Astrophysics Data System (ADS)

    Psaris, A. M.; Chang, H.; Winfield, T.; Lambrinos, J.

    2012-12-01

    Since humans rely on nature for certain goods and services, there should be accurate economic representations for them. These goods and services are commonly called ecosystem services. Our research seeks to investigate how water-related ecosystem services - water yield, sediment retention, and nutrient retention, can be measured and quantified spatially, and explores how the issue of scale affects these measurements. The water model of the ecosystem service evaluation tool Integrated Valuation of Ecosystem Services and Tradeoff (InVEST) is being tested against the well-known, physically based model, SWAT (Soil and Water Assessment Tool) in the Yamhill and Tualatin basins, located in Oregon, USA. Both models are being used to assess the potential hydrologic changes that may result from climate and land use changes in the middle of the 21st century. We build a total of five sub-basin models representing an urban-rural gradient, and use SWAT-CUP for calibration. Our study area contains a mixture of forested, agricultural, and developed land, and the Tualatin River is a regulated river with one dam and four wastewater treatment plants. Fanno Creek is a highly developed subwatershed of Tualatin and has the best model results with an NSE = 0.87 and a % BIAS = -1.15 after calibration for simulating monthly hydrograph. Dairy Creek is a forested sub-basin of the Tualatin and has an NSE = 0.72 and a % BIAS = 0.29. The upstream Tualatin gage (Dilley) has good results with an NSE = 0.77 and a % BIAS = 2.50 after calibration. While the Dilley results are acceptable, the monthly hydrograph shows clear problems during the summer due to water releases from Hagg Lake and Barney reservoirs which are not included in the model at this time. Yamhill basin has an NSE = 0.80 and a % BIAS = -13.0. This basin is mostly agricultural land which utilizes water withdrawls for irrigation. This may account for the consistent over estimation of flow. Finally, the whole Tualatin River basin has an

  2. Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan.

    PubMed

    Lu, Yonglong; Khan, Hizbullah; Zakir, Shahida; Ihsanullah; Khan, Sardar; Khan, Akbar Ali; Wei, Luo; Wang, Tieyu

    2013-10-01

    The concentrations of heavy metals such as Cd, Cr, Cu, Mn, Ni, Pb and Zn were investigated in drinking water sources (surface and groundwater) collected from Swat valley, Khyber Pakhtunkhwa, Pakistan. The potential health risks of heavy metals to the local population and their possible source apportionment were also studied. Heavy metal concentrations were analysed using atomic absorption spectrometer and compared with permissible limits set by Pakistan Environmental Protection Agency and World Health Organization. The concentrations of Cd, Cr, Ni and Pb were higher than their respective permissible limits, while Cu, Mn and Zn concentrations were observed within their respective limits. Health risk indicators such as chronic daily intake (CDI) and health risk index (HRI) were calculated for adults and children separately. CDIs and HRIs of heavy metals were found in the order of Cr > Mn > Ni > Zn > Cd > Cu > Pb and Cd > Ni > Mn > Cr > Cu > Pb > Zn, respectively. HRIs of selected heavy metals in the drinking water were less than 1, indicating no health risk to the local people. Multivariate and univariate statistical analyses showed that geologic and anthropogenic activities were the possible sources of water contamination with heavy metals in the study area.

  3. Assessment of the Environmental Fate of the Herbicides Flufenacet and Metazachlor with the SWAT Model.

    PubMed

    Fohrer, Nicola; Dietrich, Antje; Kolychalow, Olga; Ulrich, Uta

    2014-01-01

    This study aims to assess the environmental fate of the commonly used herbicides flufenacet and metazachlor in the Northern German Lowlands with the ecohydrological Soil and Water Assessment Tool (SWAT model) and to test the sensitivity of pesticide-related input parameters on the modeled transport dynamics. The river discharge of the Kielstau watershed was calibrated (Nash-Sutcliffe efficiency [NSE], 0.83; = 0.84) and validated (NSE, 0.76; = 0.77) for a daily time step. The environmental fate of metazachlor (NSE, 0.68; = 0.62) and flufenacet (NSE, 0.13; = 0.51) was simulated adequately. In comparison to metazachlor, the simulated flufenacet concentration and loads show a lower model efficiency due to the weaker simulation of the stream flow. The in-stream herbicide loads were less than 0.01% of the applied amount in the observed time period and thus not in conflict with European Environmental Legislation. The sensitivity analysis showed that, besides the accurate simulation of stream flow, the parameterization of the temporal and spatial distribution of the herbicide application throughout the watershed is the key factor for appropriate modeling results, whereas the physicochemical properties of the pesticides play a minor role in the modeling process.

  4. Watershed scale impacts bioenergy production on hydrology and water quality using SWAT model

    NASA Astrophysics Data System (ADS)

    RAJ, C.; Chaubey, I.; Engel, B.; Trybula, E.

    2011-12-01

    The currently enforced US biofuel scenario to meet the cap of 36 billion gallons of ethanol by 2022 can potentially alter existing land use and crop management practices. The crop residues, such as, corn stover and cellulosic perennial energy crops are expected to play a significant role in meeting ethanol production goals. The possible land use and land management practice changes induce concerns over the environmental impacts of these bioenergy crop production scenarios both in terms of water availability and water quality. This study aims to estimate potential impacts of various plausible land and crop management scenarios for biofuel production, on watershed scale hydrology and water quality. The scenarios for evaluation includes impacts of corn stover removal at different removal rates and likely energy crop scenarios such as, (1) energy crops in pasture and range land use areas (2) energy crops in highly erodible soils (3) energy crops in low row crop productive fields (marginal lands); and (4) combinations of these scenarios. The distributed hydrological model SWAT (Soil and Water Assessment Tool) will be used to simulate energy crops growth, hydrology and water quality. The watershed scale analysis will be done in Wildcat Creek basin, which is located in North-Central Indiana, USA.

  5. Economically and ecologically important plant communities in high altitude coniferous forest of Malam Jabba, Swat, Pakistan

    PubMed Central

    Sher, Hassan; Al_yemeni, Mohammad

    2010-01-01

    A study on the economically important plant communities was carried out during summer 2008 in various parts of Malam Jabba valley, Swat. The principal aim of the study was phytosociological evaluation with special reference to the occurrence of commercially important medicinal plant species in coniferous forest of the study area. Secondly to prepare ethnobotanical inventory of the plant resources of the area, as well as to evaluate the conservation status of important medicinal and aromatic plants (MAPs) through rapid vulnerable assessment (RVA) procedure. The study documented 90 species of ethnobotanical importance, out of these 71 spp used as medicinal plant, 20 spp fodder plant, 10 spp vegetables, 14 spp wild fruit, 18 spp fuel wood, 9 spp furniture and agricultural tools, 9 spp thatching, fencing and hedges, 4 spp honey bee, 2 spp evil eyes, 2 spp religious and 3 spp as poison. Phytosociologically six plant communities were found, comprising five herbs-shrubs-trees communities and one meadow community. Further study is, therefore, required to quantify the availability of species and to suggest suitable method for their production and conservation. Recommendations are also given in the spheres of training in identification, sustainable collection, value addition, trade monitoring and cooperative system of marketing. PMID:23961104

  6. Designing reliability into accelerators

    NASA Astrophysics Data System (ADS)

    Hutton, A.

    1992-07-01

    Future accelerators will have to provide a high degree of reliability. Quality must be designed in right from the beginning and must remain a central theme throughout the project. The problem is similar to the problems facing US industry today, and examples of the successful application of quality engineering will be given. Different aspects of an accelerator project will be addressed: Concept, Design, Motivation, Management Techniques, and Fault Diagnosis. The importance of creating and maintaining a coherent team will be stressed.

  7. Diagnostics for induction accelerators

    SciTech Connect

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960`s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore`s Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail.

  8. Advanced techniques in laser-ion acceleration: Conversion efficiency, beam distribution and energy scaling in the Break-Out Afterburner regime

    NASA Astrophysics Data System (ADS)

    Jung, Daniel; Yin, Lin; Albright, Brian; Gautier, Donald; Hoerlein, Rainer; Johnson, Randall; Kiefer, Daniel; Letzring, Sam; Shah, Rahul; Palaniyappan, Sasikumar; Shimada, Tsutomu; Habs, Dietrich; Fernandez, Juan; Hegelich, Manuel

    2011-10-01

    Recently, increasing laser intensities and contrast made acceleration mechanisms such as the radiation pressure acceleration or the Break-Out Afterburner (BOA) accessible. These mechanisms efficiently couple laser energy into all target ion species, making them a competitive alternative to conventional accelerators. We here present experimental data addressing conversion efficiency and ion distribution scaling for both carbon C6+ and protons within the BOA regime and the transit into the TNSA regime. Unique high resolution measurements of angularly resolved carbon C6+ and proton energy spectra for targets ranging from 30nm to 25microns - recorded with a novel ion wide angle spectrometer - are presented and used to derive thickness scaling estimates. While the measured conversion efficiency for C6+ reaches up to ~6%, peak energies of 1GeV and 120MeV have been measured for C6+ and protons, respectively.

  9. Analysis of large-leak test SWAT-3 Run-6 data by use of sodium-water-reaction analysis code SWAAM-I

    SciTech Connect

    Shin, Y.W.; Lin, H.C.

    1982-02-01

    The Sodium Water Advanced Analysis Method computer code (SWAAM-I) is used to analyze the large-leak test data SWAT-3 Run-6. The SWAT-3 is the mockup of the secondary system of the Japanese breeder-reactor demonstration plant Monju. The steam-generator design for the Monju reactor was a helical-coil-tube type with a cover-gas space, and the SWAT-3 Run-6 Test vessel simulates this design of the steam generator. The objectives of this work are: (1) to examine the adequacy of the SWAAM-I code for the helical-coil-tube steam-generator system, (2) to understand and confirm the understanding of phenomena that have major design implications, and (3) to define needs for additional development of SWAAM-I code capabilities.

  10. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices.

    PubMed

    Pilan, N; Antoni, V; De Lorenzi, A; Chitarin, G; Veltri, P; Sartori, E

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  11. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    SciTech Connect

    Pilan, N. Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E.

    2016-02-15

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF{sub 6} instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  12. A Comprehensive Entomological, Serological and Molecular Study of 2013 Dengue Outbreak of Swat, Khyber Pakhtunkhwa, Pakistan

    PubMed Central

    Khan, Jehangir; Khan, Inamullah; Amin, Ibne

    2016-01-01

    Background Aedes aegypti and Aedes albopictus play a fundamental role in transmission of dengue virus to humans. A single infected Aedes mosquito is capable to act as a reservoir/amplifier host for dengue virus and may cause epidemics via horizontal and vertical modes of dengue virus (DENV) transmission. The present and future dengue development can be clarified by understanding the elements which help the dissemination of dengue transmission. The current study deals with molecular surveillance of dengue in addition to ecological and social context of 2013 dengue epidemics in Swat, Pakistan. Methods Herein, we reported dengue vectors surveillance in domestic and peridomistic containers in public and private places in 7 dengue epidemic-prone sites in District Swat, Pakistan from July to November 2013. Using the Flaviviruses genus-specific reverse transcriptase (RT) semi nested-PCR assay, we screened blood samples (N = 500) of dengue positive patients, 150 adult mosquito pools and 25 larval pools. Results The 34 adult and 7 larval mosquito pools were found positive. The adult positive pools comprised 30 pools of Ae. aegypti and 4 pools of Ae. albopictus, while among the 7 larval pools, 5 pools of Ae. aegypti and 2 pools of Ae. albopictus were positive. The detected putative genomes of dengue virus were of DENV-2 (35% in 14 mosquito pools & 39% in serum) and DENV-3 (65% in 27 mosquito pools & 61% in serum). The higher vector density and dengue transmission rate was recorded in July and August (due to favorable conditions for vector growth). About 37% of Ae. aegpti and 34% Ae. albopictus mosquitoes were collected from stagnant water in drums, followed by drinking water tanks (23% & 26%), tires (20% & 18%) and discarded containers (10% & 6%). Among the surveyed areas, Saidu was heavily affected (26%) by dengue followed by Kanju (20% and Landikas (12%). The maximum infection was observed in the age group of <15 (40%) followed by 15–45 (35%) and >45 (25%) years and was

  13. SWATShare- A Platform for Collaborative Hydrology Research and Education with Cyber-enabled Sharing, Running and Visualization of SWAT Models

    NASA Astrophysics Data System (ADS)

    Rajib, M. A.; Merwade, V.; Song, C.; Zhao, L.; Kim, I. L.; Zhe, S.

    2014-12-01

    Setting up of any hydrologic model requires a large amount of efforts including compilation of all the data, creation of input files, calibration and validation. Given the amount of efforts involved, it is possible that models for a watershed get created multiple times by multiple groups or organizations to accomplish different research, educational or policy goals. To reduce the duplication of efforts and enable collaboration among different groups or organizations around an already existing hydrology model, a platform is needed where anyone can search for existing models, perform simple scenario analysis and visualize model results. The creator and users of a model on such a platform can then collaborate to accomplish new research or educational objectives. From this perspective, a prototype cyber-infrastructure (CI), called SWATShare, is developed for sharing, running and visualizing Soil Water Assessment Tool (SWAT) models in an interactive GIS-enabled web environment. Users can utilize SWATShare to publish or upload their own models, search and download existing SWAT models developed by others, run simulations including calibration using high performance resources provided by XSEDE and Cloud. Besides running and sharing, SWATShare hosts a novel spatio-temporal visualization system for SWAT model outputs. In temporal scale, the system creates time-series plots for all the hydrology and water quality variables available along the reach as well as in watershed-level. In spatial scale, the system can dynamically generate sub-basin level thematic maps for any variable at any user-defined date or date range; and thereby, allowing users to run animations or download the data for subsequent analyses. In addition to research, SWATShare can also be used within a classroom setting as an educational tool for modeling and comparing the hydrologic processes under different geographic and climatic settings. SWATShare is publicly available at https://www.water-hub.org/swatshare.

  14. An Ethnobotanical study of Medicinal Plants in high mountainous region of Chail valley (District Swat- Pakistan)

    PubMed Central

    2014-01-01

    Background This paper represents the first ethnobotanical study in Chail valley of district Swat-Pakistan and provides significant information on medicinal plants use among the tribal people of the area. The aim of this study was to document the medicinal uses of local plants and to develop an ethnobotanical inventory of the species diversity. Methods In present study, semi-structured interviews with 142 inhabitants (age range between 31–75 years) were conducted. Ethnobotanical data was analyzed using relative frequency of citation (RFC) to determine the well-known and most useful species in the area. Results Current research work reports total of 50 plant species belonging to 48 genera of 35 families from Chail valley. Origanum vulgare, Geranium wallichianum and Skimmia laureola have the highest values of relative frequency of citation (RFC) and are widely known by the inhabitants of the valley. The majority of the documented plants were herbs (58%) followed by shrubs (28%), trees (12%) and then climbers (2%). The part of the plant most frequently used was the leaves (33%) followed by roots (17%), fruits (14%), whole plant (12%), rhizomes (9%), stems (6%), barks (5%) and seeds (4%). Decoction was the most common preparation method use in herbal recipes. The most frequently treated diseases in the valley were urinary disorders, skin infections, digestive disorders, asthma, jaundice, angina, chronic dysentery and diarrhea. Conclusion This study contributes an ethnobotanical inventory of medicinal plants with their frequency of citations together with the part used, disease treated and methods of application among the tribal communities of Chail valley. The present survey has documented from this valley considerable indigenous knowledge about the local medicinal plants for treating number of common diseases that is ready to be further investigated for biological, pharmacological and toxicological screening. This study also provides some socio-economic aspects which

  15. Community Participation, Dengue Fever Prevention and Control Practices in Swat, Pakistan

    PubMed Central

    Zahir, Abdul; Ullah, Asad; Shah, Mussawar; Mussawar, Arsalan

    2016-01-01

    Background: The aim of this study was to determine the role of community participation in prevention of dengue fever in The Swat district located in the Northern area of Khyber Pakhtunkhwa, Pakistan, which experienced a dengue fever outbreak in August, 2013. A total number of 8,963 dengue cases with 0.4% case fatality ratio were registered during the outbreak. Methods: A sample size of 354 respondents were proportionally allocated to each residential colony and then randomly selected. The association of independent variable (Community participation) and dependent variable (practices for control) were tested by using Chi Square test. Results: Results regarding perception of practices for dengue control with community participation showed that: practices for control had significant association with organization of people to eradicate dengue mosquitoes (p=0.00), community leaders (p=0.04), community efforts (p≤0.01), use of insecticides by community people (p=0.00) and involvement of community people in awareness campaign (p=0.00). Similarly, significant associations were found between practices for control and community shared information during dengue outbreak (p=0.00), community link with health department, NGO, Other agencies (p=0.02). Conclusion and Global Health Implications: We conclude that the spread of dengue epidemic was aided by the ignorance, laziness of the community people and government agencies. However, the people, religious scholars, leaders and government agencies were not organized to participate in dengue prevention and eradication, hence, the chances of dengue infection increased in community. The study recommends mobilizing local communities and activating local leadership with active participation of Government and non-government organizations for initiation of preventive strategies. PMID:28058191

  16. Using NEXRAD and Rain Gauge Precipitation Data for Hydrologic Calibration of SWAT in a Northeastern Watershed

    SciTech Connect

    A. M. Sexton,; A. M. Sadeghi,; X. Zhang,; R. Srinivasan,; A. Shirmohammadi,

    2010-01-01

    The value of watershed-scale, hydrologic and water quality models to ecosystem management is increasingly evident as more programs adopt these tools to evaluate the effectiveness of different management scenarios and their impact on the environment. Quality of precipitation data is critical for appropriate application of watershed models. In small watersheds, where no dense rain gauge network is available, modelers are faced with a dilemma to choose between different data sets. In this study, we used the German Branch (GB) watershed (~50 km2), which is included in the USDA Conservation Effects Assessment Project (CEAP), to examine the implications of using surface rain gauge and next-generation radar (NEXRAD) precipitation data sets on the performance of the Soil and Water Assessment Tool (SWAT). The GB watershed is located in the Coastal Plain of Maryland on the eastern shore of Chesapeake Bay. Stream flow estimation results using surface rain gauge data seem to indicate the importance of using rain gauges within the same direction as the storm pattern with respect to the watershed. In the absence of a spatially representative network of rain gauges within the watershed, NEXRAD data produced good estimates of stream flow at the outlet of the watershed. Three NEXRAD datasets, including (1)*non-corrected (NC), (2) bias-corrected (BC), and (3) inverse distance weighted (IDW) corrected NEXRAD data, were produced. Nash-Sutcliffe efficiency coefficients for daily stream flow simulation using these three NEXRAD data ranged from 0.46 to 0.58 during calibration and from 0.68 to 0.76 during validation. Overall, correcting NEXRAD with rain gauge data is promising to produce better hydrologic modeling results. Given the multiple precipitation datasets and corresponding simulations, we explored the combination of the multiple simulations using Bayesian model averaging.

  17. Baseflow simulation of SWAT model in an inland river basin in Tianshan Mountains, Northwest China

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Arnold, J.; Allen, P.; Chen, X.

    2011-11-01

    Baseflow is an important component in hydrological modeling. Complex streamflow recession process complicates the baseflow simulation. In order to simulate the snow and/or glacier melt dominated streamflow receding quickly during high-flow period but very slowly during the low-flow period in rivers in arid and cold Northwest China, the current one-reservoir baseflow approach in SWAT (Soil Water Assessment Tool) model was extended by adding a slow reacting reservoir and applied to the Manas River basin in Tianshan Mountains. Meanwhile, a digital filter program was employed to separate baseflow from streamflow records for comparisons. Results indicated that the two-reservoir method yielded much better results than the one-reservoir one in reproducing streamflow processes, and the low-flow estimation was improved markedly. Nash-Sutcliff efficiency values at the calibration and validation stages are 0.68 and 0.62 for the one-reservoir case, and 0.76 and 0.69 for the two-reservoir case, respectively. The filter-based method estimated the baseflow index as 0.60, while the model-based as o.45. The filter-based baseflow responds almost immediately to surface runoff occurrence at onset of rising limb, while the model-based with a delay. In consideration of watershed surface storage retention and soil freezing/thawing effects on infiltration and recharge during initial snowmelt season, a delay response is considered to be more reasonable. However, a more detailed description of freezing/thawing processes should be included in soil modules so as to determine recharge to aquifer during these processes, and thus an accurate onset point of rising limb of the simulated baseflow.

  18. Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, Northwest China

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Arnold, J.; Allen, P.; Chen, X.

    2012-04-01

    Baseflow is an important component in hydrological modeling. The complex streamflow recession process complicates the baseflow simulation. In order to simulate the snow and/or glacier melt dominated streamflow receding quickly during the high-flow period but very slowly during the low-flow period in rivers in arid and cold northwest China, the current one-reservoir baseflow approach in SWAT (Soil Water Assessment Tool) model was extended by adding a slow- reacting reservoir and applying it to the Manas River basin in the Tianshan Mountains. Meanwhile, a digital filter program was employed to separate baseflow from streamflow records for comparisons. Results indicated that the two-reservoir method yielded much better results than the one-reservoir one in reproducing streamflow processes, and the low-flow estimation was improved markedly. Nash-Sutcliff efficiency values at the calibration and validation stages are 0.68 and 0.62 for the one-reservoir case, and 0.76 and 0.69 for the two-reservoir case. The filter-based method estimated the baseflow index as 0.60, while the model-based as 0.45. The filter-based baseflow responded almost immediately to surface runoff occurrence at onset of rising limb, while the model-based responded with a delay. In consideration of watershed surface storage retention and soil freezing/thawing effects on infiltration and recharge during initial snowmelt season, a delay response is considered to be more reasonable. However, a more detailed description of freezing/thawing processes should be included in soil modules so as to determine recharge to aquifer during these processes, and thus an accurate onset point of rising limb of the simulated baseflow.

  19. Free internet datasets for streamflow modelling using SWAT in the Johor river basin, Malaysia

    NASA Astrophysics Data System (ADS)

    Tan, M. L.

    2014-02-01

    Streamflow modelling is a mathematical computational approach that represents terrestrial hydrology cycle digitally and is used for water resources assessment. However, such modelling endeavours require a large amount of data. Generally, governmental departments produce and maintain these data sets which make it difficult to obtain this data due to bureaucratic constraints. In some countries, the availability and quality of geospatial and climate datasets remain a critical issue due to many factors such as lacking of ground station, expertise, technology, financial support and war time. To overcome this problem, this research used public domain datasets from the Internet as "input" to a streamflow model. The intention is simulate daily and monthly streamflow of the Johor River Basin in Malaysia. The model used is the Soil and Water Assessment Tool (SWAT). As input free data including a digital elevation model (DEM), land use information, soil and climate data were used. The model was validated by in-situ streamflow information obtained from Rantau Panjang station for the year 2006. The coefficient of determination and Nash-Sutcliffe efficiency were 0.35/0.02 for daily simulated streamflow and 0.92/0.21 for monthly simulated streamflow, respectively. The results show that free data can provide a better simulation at a monthly scale compared to a daily basis in a tropical region. A sensitivity analysis and calibration procedure should be conducted in order to maximize the "goodness-of-fit" between simulated and observed streamflow. The application of Internet datasets promises an acceptable performance of streamflow modelling. This research demonstrates that public domain data is suitable for streamflow modelling in a tropical river basin within acceptable accuracy.

  20. Uncertainty of SWAT model at different DEM resolutions in a large mountainous watershed.

    PubMed

    Zhang, Peipei; Liu, Ruimin; Bao, Yimeng; Wang, Jiawei; Yu, Wenwen; Shen, Zhenyao

    2014-04-15

    The objective of this study was to enhance understanding of the sensitivity of the SWAT model to the resolutions of Digital Elevation Models (DEMs) based on the analysis of multiple evaluation indicators. The Xiangxi River, a large tributary of Three Gorges Reservoir in China, was selected as the study area. A range of 17 DEM spatial resolutions, from 30 to 1000 m, was examined, and the annual and monthly model outputs based on each resolution were compared. The following results were obtained: (i) sediment yield was greatly affected by DEM resolution; (ii) the prediction of dissolved oxygen load was significantly affected by DEM resolutions coarser than 500 m; (iii) Total Nitrogen (TN) load was not greatly affected by the DEM resolution; (iv) Nitrate Nitrogen (NO₃-N) and Total Phosphorus (TP) loads were slightly affected by the DEM resolution; and (v) flow and Ammonia Nitrogen (NH₄-N) load were essentially unaffected by the DEM resolution. The flow and dissolved oxygen load decreased more significantly in the dry season than in the wet and normal seasons. Excluding flow and dissolved oxygen, the uncertainties of the other Hydrology/Non-point Source (H/NPS) pollution indicators were greater in the wet season than in the dry and normal seasons. Considering the temporal distribution uncertainties, the optimal DEM resolutions for flow was 30-200 m, for sediment and TP was 30-100 m, for dissolved oxygen and NO₃-N was 30-300 m, for NH₄-N was 30 to 70 m and for TN was 30-150 m.

  1. Wake field acceleration experiments

    SciTech Connect

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics. I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs.

  2. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  3. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  4. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  5. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  6. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  7. Spatial multiobjective optimization of agricultural conservation practices using a SWAT model and an evolutionary algorithm.

    PubMed

    Rabotyagov, Sergey; Campbell, Todd; Valcu, Adriana; Gassman, Philip; Jha, Manoj; Schilling, Keith; Wolter, Calvin; Kling, Catherine

    2012-12-09

    Finding the cost-efficient (i.e., lowest-cost) ways of targeting conservation practice investments for the achievement of specific water quality goals across the landscape is of primary importance in watershed management. Traditional economics methods of finding the lowest-cost solution in the watershed context (e.g.,(5,12,20)) assume that off-site impacts can be accurately described as a proportion of on-site pollution generated. Such approaches are unlikely to be representative of the actual pollution process in a watershed, where the impacts of polluting sources are often determined by complex biophysical processes. The use of modern physically-based, spatially distributed hydrologic simulation models allows for a greater degree of realism in terms of process representation but requires a development of a simulation-optimization framework where the model becomes an integral part of optimization. Evolutionary algorithms appear to be a particularly useful optimization tool, able to deal with the combinatorial nature of a watershed simulation-optimization problem and allowing the use of the full water quality model. Evolutionary algorithms treat a particular spatial allocation of conservation practices in a watershed as a candidate solution and utilize sets (populations) of candidate solutions iteratively applying stochastic operators of selection, recombination, and mutation to find improvements with respect to the optimization objectives. The optimization objectives in this case are to minimize nonpoint-source pollution in the watershed, simultaneously minimizing the cost of conservation practices. A recent and expanding set of research is attempting to use similar methods and integrates water quality models with broadly defined evolutionary optimization methods(3,4,9,10,13-15,17-19,22,23,25). In this application, we demonstrate a program which follows Rabotyagov et al.'s approach and integrates a modern and commonly used SWAT water quality model(7) with a

  8. Spatial Multiobjective Optimization of Agricultural Conservation Practices using a SWAT Model and an Evolutionary Algorithm

    PubMed Central

    Rabotyagov, Sergey; Campbell, Todd; Valcu, Adriana; Gassman, Philip; Jha, Manoj; Schilling, Keith; Wolter, Calvin; Kling, Catherine

    2012-01-01

    Finding the cost-efficient (i.e., lowest-cost) ways of targeting conservation practice investments for the achievement of specific water quality goals across the landscape is of primary importance in watershed management. Traditional economics methods of finding the lowest-cost solution in the watershed context (e.g.,5,12,20) assume that off-site impacts can be accurately described as a proportion of on-site pollution generated. Such approaches are unlikely to be representative of the actual pollution process in a watershed, where the impacts of polluting sources are often determined by complex biophysical processes. The use of modern physically-based, spatially distributed hydrologic simulation models allows for a greater degree of realism in terms of process representation but requires a development of a simulation-optimization framework where the model becomes an integral part of optimization. Evolutionary algorithms appear to be a particularly useful optimization tool, able to deal with the combinatorial nature of a watershed simulation-optimization problem and allowing the use of the full water quality model. Evolutionary algorithms treat a particular spatial allocation of conservation practices in a watershed as a candidate solution and utilize sets (populations) of candidate solutions iteratively applying stochastic operators of selection, recombination, and mutation to find improvements with respect to the optimization objectives. The optimization objectives in this case are to minimize nonpoint-source pollution in the watershed, simultaneously minimizing the cost of conservation practices. A recent and expanding set of research is attempting to use similar methods and integrates water quality models with broadly defined evolutionary optimization methods3,4,9,10,13-15,17-19,22,23,25. In this application, we demonstrate a program which follows Rabotyagov et al.'s approach and integrates a modern and commonly used SWAT water quality model7 with a

  9. Water Resources Management Plan for Ganga River using SWAT Modelling and Time series Analysis

    NASA Astrophysics Data System (ADS)

    Satish, L. N. V.

    2015-12-01

    Water resources management of the Ganga River is one of the primary objectives of National Ganga River Basin Environmental Management Plan. The present study aims to carry out water balance study and development of appropriate methodologies to compute environmental flow in the middle Ganga river basin between Patna-Farraka, India. The methodology adopted here are set-up a hydrological model to estimate monthly discharge at the tributaries under natural condition, hydrological alternation analysis of both observed and simulated discharge series, flow health analysis to obtain status of the stream health in the last 4 decades and estimating the e-flow using flow health indicators. ArcSWAT, was used to simulate 8 tributaries namely Kosi, Gandak and others. This modelling is quite encouraging and helps to provide the monthly water balance analysis for all tributaries for this study. The water balance analysis indicates significant change in surface and ground water interaction pattern within the study time period Indicators of hydrological alternation has been used for both observed and simulated data series to quantify hydrological alternation occurred in the tributaries and the main river in the last 4 decades,. For temporal variation of stream health, flow health tool has been used for observed and simulated discharge data. A detailed stream health analysis has been performed by considering 3 approaches based on i) observed flow time series, ii) observed and simulated flow time series and iii) simulated flow time series at small upland basin, major tributary and main Ganga river basin levels. At upland basin level, these approaches show that stream health and its temporal variations are good with non-significant temporal variation. At major tributary level, the stream health and its temporal variations are found to be deteriorating from 1970s. At the main Ganga reach level river health and its temporal variations does not show any declining trend. Finally, E- flows

  10. Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT

    NASA Astrophysics Data System (ADS)

    Holvoet, K.; van Griensven, A.; Seuntjens, P.; Vanrolleghem, P. A.

    The dynamic behaviour of pesticides in river systems strongly depends on varying climatological conditions and agricultural management practices. To describe this behaviour at the river-basin scale, integrated hydrological and water quality models are needed. A crucial step in understanding the various processes determining pesticide fate is to perform a sensitivity analysis. Sensitivity analysis for hydrology and pesticide supply in SWAT (Soil and Water Assessment Tool) will provide useful support for the development of a reliable hydrological model and will give insight in which parameters are most sensitive concerning pesticide supply towards rivers. The study was performed on the Nil catchment in Belgium. In this study we utilised an LH-OAT sensitivity analysis. The LH-OAT method combines the One-factor-At-a-Time (OAT) design and Latin Hypercube (LH) sampling by taking the Latin Hypercube samples as initial points for an OAT design. By means of the LH-OAT sensitivity analysis, the dominant hydrological parameters were determined and a reduction of the number of model parameters was performed. Dominant hydrological parameters were the curve number (CN2), the surface runoff lag (surlag), the recharge to deep aquifer (rchrg_dp) and the threshold depth of water in the shallow aquifer (GWQMN). Next, the selected parameters were estimated by manual calibration. Hereby, the Nash-Sutcliffe coefficient of efficiency improved from an initial value of -22.4 to +0.53. In the second part, sensitivity analyses were performed to provide insight in which parameters or model inputs contribute most to variance in pesticide output. The results of this study show that for the Nil catchment, hydrologic parameters are dominant in controlling pesticide predictions. The other parameter that affects pesticide concentrations in surface water is ‘apfp_pest’, which meaning was changed into a parameter that controls direct losses to the river system (e.g., through the clean up of spray

  11. SWAT Model Application to Assess the Impact of Intensive Corn‐farming on Runoff, Sediments and Phosphorous loss from an Agricultural Watershed in Wisconsin

    EPA Science Inventory

    The potential future increase in corn-based biofuel may be expected to have a negative impact on water quality in streams and lakes of the Midwestern US due to increased agricultural chemicals usage. This study used the SWAT model to assess the impact of continuous-corn farming o...

  12. Enhancing the USDA-ARS Soil and Water Assessment Tool (SWAT) with the in-stream bacteria fate and transport module including sediment bacteria resuspension and settling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streambed sediments have been shown to serve as environmental reservoirs for bacteria, including pathogenic strains. Although the Soil and Water Assessment Tool (SWAT), a watershed-scale, physically-based and continuous-time model, has been augmented with bacteria transport subroutine in 2005, the b...

  13. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs.

    PubMed

    Teshager, Awoke Dagnew; Gassman, Philip W; Secchi, Silvia; Schoof, Justin T; Misgna, Girmaye

    2016-04-01

    Applications of the Soil and Water Assessment Tool (SWAT) model typically involve delineation of a watershed into subwatersheds/subbasins that are then further subdivided into hydrologic response units (HRUs) which are homogeneous areas of aggregated soil, landuse, and slope and are the smallest modeling units used within the model. In a given standard SWAT application, multiple potential HRUs (farm fields) in a subbasin are usually aggregated into a single HRU feature. In other words, the standard version of the model combines multiple potential HRUs (farm fields) with the same landuse/landcover, soil, and slope, but located at different places of a subbasin (spatially non-unique), and considers them as one HRU. In this study, ArcGIS pre-processing procedures were developed to spatially define a one-to-one match between farm fields and HRUs (spatially unique HRUs) within a subbasin prior to SWAT simulations to facilitate input processing, input/output mapping, and further analysis at the individual farm field level. Model input data such as landuse/landcover (LULC), soil, crop rotation, and other management data were processed through these HRUs. The SWAT model was then calibrated/validated for Raccoon River watershed in Iowa for 2002-2010 and Big Creek River watershed in Illinois for 2000-2003. SWAT was able to replicate annual, monthly, and daily streamflow, as well as sediment, nitrate and mineral phosphorous within recommended accuracy in most cases. The one-to-one match between farm fields and HRUs created and used in this study is a first step in performing LULC change, climate change impact, and other analyses in a more spatially explicit manner.

  14. Modeling the Impacts of Spatial Heterogeneity in the Castor Watershed on Runoff, Sediment, and Phosphorus Loss Using SWAT: I. Impacts of Spatial Variability of Soil Properties.

    PubMed

    Boluwade, Alaba; Madramootoo, Chandra

    2013-01-01

    Spatial accuracy of hydrologic modeling inputs influences the output from hydrologic models. A pertinent question is to know the optimal level of soil sampling or how many soil samples are needed for model input, in order to improve model predictions. In this study, measured soil properties were clustered into five different configurations as inputs to the Soil and Water Assessment Tool (SWAT) simulation of the Castor River watershed (11-km(2) area) in southern Quebec, Canada. SWAT is a process-based model that predicts the impacts of climate and land use management on water yield, sediment, and nutrient fluxes. SWAT requires geographical information system inputs such as the digital elevation model as well as soil and land use maps. Mean values of soil properties are used in soil polygons (soil series); thus, the spatial variability of these properties is neglected. The primary objective of this study was to quantify the impacts of spatial variability of soil properties on the prediction of runoff, sediment, and total phosphorus using SWAT. The spatial clustering of the measured soil properties was undertaken using the regionalized with dynamically constrained agglomerative clustering and partitioning method. Measured soil data were clustered into 5, 10, 15, 20, and 24 heterogeneous regions. Soil data from the Castor watershed which have been used in previous studies was also set up and termed "Reference". Overall, there was no significant difference in runoff simulation across the five configurations including the reference. This may be attributable to SWAT's use of the soil conservation service curve number method in flow simulation. Therefore having high spatial resolution inputs for soil data may not necessarily improve predictions when they are used in hydrologic modeling.

  15. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs

    NASA Astrophysics Data System (ADS)

    Teshager, Awoke Dagnew; Gassman, Philip W.; Secchi, Silvia; Schoof, Justin T.; Misgna, Girmaye

    2016-04-01

    Applications of the Soil and Water Assessment Tool (SWAT) model typically involve delineation of a watershed into subwatersheds/subbasins that are then further subdivided into hydrologic response units (HRUs) which are homogeneous areas of aggregated soil, landuse, and slope and are the smallest modeling units used within the model. In a given standard SWAT application, multiple potential HRUs (farm fields) in a subbasin are usually aggregated into a single HRU feature. In other words, the standard version of the model combines multiple potential HRUs (farm fields) with the same landuse/landcover, soil, and slope, but located at different places of a subbasin (spatially non-unique), and considers them as one HRU. In this study, ArcGIS pre-processing procedures were developed to spatially define a one-to-one match between farm fields and HRUs (spatially unique HRUs) within a subbasin prior to SWAT simulations to facilitate input processing, input/output mapping, and further analysis at the individual farm field level. Model input data such as landuse/landcover (LULC), soil, crop rotation, and other management data were processed through these HRUs. The SWAT model was then calibrated/validated for Raccoon River watershed in Iowa for 2002-2010 and Big Creek River watershed in Illinois for 2000-2003. SWAT was able to replicate annual, monthly, and daily streamflow, as well as sediment, nitrate and mineral phosphorous within recommended accuracy in most cases. The one-to-one match between farm fields and HRUs created and used in this study is a first step in performing LULC change, climate change impact, and other analyses in a more spatially explicit manner.

  16. Acceleration Studies

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.

    1993-01-01

    Work to support the NASA MSFC Acceleration Characterization and Analysis Project (ACAP) was performed. Four tasks (analysis development, analysis research, analysis documentation, and acceleration analysis) were addressed by parallel projects. Work concentrated on preparation for and implementation of near real-time SAMS data analysis during the USMP-1 mission. User support documents and case specific software documentation and tutorials were developed. Information and results were presented to microgravity users. ACAP computer facilities need to be fully implemented and networked, data resources must be cataloged and accessible, future microgravity missions must be coordinated, and continued Orbiter characterization is necessary.

  17. Nitrate Sources and Transport in the Upper Illinois River Basin Evaluated with Stable Isotope Ratios and SWAT Modeling

    NASA Astrophysics Data System (ADS)

    Lin, J.; Demissie, Y.; Yan, E.; Bohlke, J. K.; Sturchio, N. C.

    2014-12-01

    Measurements of nitrate concentrations and δ15N and δ18O values in 450 surface-water samples from the Upper Illinois River Basin (UIRB) were combined with SWAT (Soil and Water Assessment Tool) modeling to study the influence of land use on nitrate sources, mixing, and transformation within the watershed. The samples were collected from the Illinois River and its tributaries, including effluent from Chicago's largest wastewater treatment plant (WTP), October 2004 through October 2008. The isotopic and concentration measurements indicated that WTP effluent and agricultural drainage waters were the two principal nitrate endmembers within the UIRB. Isotopic compositions indicated the source of nitrate during the annual spring flushing event was mostly derived from agriculture. An apparent denitrification trend was identified from spring through fall in tributaries draining agricultural subbasins and those having mixed urban-agricultural land use. Mass balance indicated that the fraction of nitrate from the WTP effluent was as low as 5 % or less during the spring flush (March-May) and much larger during late summer and fall. A SWAT model was constructed to evaluate effects of land use, fertilizer applications, and WTP point source discharge by coupling hydrologic processes with nutrient cycling and plant growth. The UIRB SWAT model was calibrated and validated with flow and nitrate measurements: the Nash-Sutcliffe efficiency (NSE) ranged from 0.60 to 0.83 and the determination coefficient (R2) ranged from 0.59 to 0.87. To explore the influence of fertilizer input on basin nitrate transport, the calibrated model was used to evaluate impacts of spring and fall fertilizer applications on stream nitrate loads. Simulations with a -50% change in the total fertilizer application rate (kg N/ha) resulted in as much as -42% change in basin nitrate export (kg N/month), while causing only -9% or less change in corn yield (kg N/ha). Decreased fertilizer application also led to

  18. [Impact of changes in land use and climate on the runoff in Liuxihe Watershed based on SWAT model].

    PubMed

    Yuan, Yu-zhi; Zhang, Zheng-dong; Meng, Jin-hua

    2015-04-01

    SWAT model, an extensively used distributed hydrological model, was used to quantitatively analyze the influences of changes in land use and climate on the runoff at watershed scale. Liuxihe Watershed' s SWAT model was established and three scenarios were set. The calibration and validation at three hydrological stations of Wenquan, Taipingchang and Nangang showed that the three factors of Wenquan station just only reached the standard in validated period, and the other two stations had relative error (RE) < 15%, correlation coefficient (R2) > 0.8 and Nash-Sutcliffe efficiency valve (Ens) > 0.75, suggesting that SWAT model was appropriate for simulating runoff response to land use change and climate variability in Liuxihe watershed. According to the integrated scenario simulation, the annual runoff increased by 11.23 m3 x s(-1) from 2001 to 2010 compared with the baseline period from 1991 to 2000, among which, the land use change caused an annual runoff reduction of 0.62 m3 x s(-1), whereas climate variability caused an annual runoff increase of 11.85 m3 x s(-1). Apparently, the impact of climate variability was stronger than that of land use change. On the other hand, the scenario simulation of extreme land use showed that compared with the land use in 2000, the annual runoff of the farmland scenario and the grassland scenario increased by 2.7% and 0.5% respectively, while that of the forest land scenario were reduced by 0.7%, which suggested that forest land had an ability of diversion closure. Furthermore, the scenario simulation of climatic variability indicated that the change of river runoff correlated positively with precipitation change (increase of 11.6% in annual runoff with increase of 10% in annual precipitation) , but negatively with air temperature change (reduction of 0.8% in annual runoff with increase of 1 degrees C in annual mean air temperature), which showed that the impact of precipitation variability was stronger than that of air temperature

  19. Assessing the capability of the SWAT model to simulate snow, snow melt and streamflow dynamics over an alpine watershed

    NASA Astrophysics Data System (ADS)

    Grusson, Youen; Sun, Xiaoling; Gascoin, Simon; Sauvage, Sabine; Raghavan, Srinivasan; Anctil, François; Sáchez-Pérez, José-Miguel

    2015-12-01

    Snow is an important hydrological reservoir within the water cycle, particularly when the watershed includes a mountainous area. Modellers often overlook water stocked in snow pack and its influence on water distribution, especially when only some portions of the watershed is snow dominated. Snow is usually considered to improve hydrological modelling statistics, but without any regard for the realism of its representation or its influence on the hydrological cycle. This is all the more true when semi-distributed models are used, often considered inadequate for spatially representing such phenomena. On the other hand, semi-distributed models are being increasingly used to realise water budget assessment at a regional scale and such studies should not be realised without a good representation of the snow pack. Lack of field measurements is also a frequent justification for avoiding validating simulated snow packs. In this study, remote sensing data provided by MODIS is combined with in situ data, enabling the validation of the snow pack simulated by the Soil and Water Assessment Tool (SWAT), a semi-distributed, physically-based model, implemented over a partly snow-dominated watershed. Snow simulation was performed without complex algorithms or calibration procedures, using the elevation bands option included in the model and related snow parameters. Representation of snow cover and hydrological simulation were achieved by a standard automatic calibration of the model, over the 2000-2010 period, performed by SWAT-Cup/SUFI2, using six hydrological gauging stations along the fluvial continuum downstream of the snow-dominated area. Results highlight three important points: (i) Set-up of elevation bands over mountainous headwater improved hydrological simulation performance, even well downstream of the snow-dominated area. (ii) SWAT produced a good spatial and temporal representation of the snow cover, using MODIS data, despite a slight overestimation at the end of the

  20. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  1. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  2. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  3. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  4. On the Helmert-blocking technique: its acceleration by block Choleski decomposition and formulae to insert observations into an adjusted network

    PubMed Central

    Del Rio, Eduardo; Oliveira, Leonardo

    2015-01-01

    The Helmert-blocking technique is a common approach to adjust large geodetic networks like Europeans and Brazilians. The technique is based upon a division of the network into partial networks called blocks. This way, the global network adjustment can be done by manipulating these blocks. Here we show alternatives to solve the block system that arises from the application of the technique. We show an alternative that optimizes its implementation as the elapsed processing time is decreased by about 33%. We also show that to insert observations into an adjusted network it is not necessary to readjust the whole network. We show the formulae to insert new observations into an adjusted network that are more efficient than simply readjusting the whole new network. PMID:26064634

  5. Modelling of point and non-point source pollution of nitrate with SWAT in the river Dill, Germany

    NASA Astrophysics Data System (ADS)

    Pohlert, T.; Huisman, J. A.; Breuer, L.; Frede, H.-G.

    2005-12-01

    We used the Soil and Water Assessment Tool (SWAT) to simulate point and non-point source pollution of nitrate in a mesoscale mountainous catchment. The results show that the model efficiency for daily discharge is 0.81 for the calibration period (November 1990 to December 1993) and 0.56 for the validation period (April 2000 to January 2003). The model efficiency for monthly nitrate load is 0.66 and 0.77 for the calibration period (April 2000 to March 2002) and validation period (April 2002 to January 2003), respectively. However, the model efficiency for daily loads is low (0.15), which cannot only be attributed to the quality of input data of point source effluents. An analysis of the internal fluxes and cycles of nitrogen pointed out considerable weaknesses in the models conceptualisation of the nitrogen modules which will be improved in future research.

  6. Evaluation of the Swat Model in a Small Watershed Representative of the Atlantic Forest Biome in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Marcon, I. R.; Cauduro Dias de Paiva, E. M.; Dias de Paiva, J.; Beling, F. A.; Heatwole, C.

    2011-12-01

    This study presents the results of simulations with the SWAT (Soil and Water Assessment Tool) model in a small watershed in Southern Brazil (latitude 29°38'37.5 " and longitude 53°48'2.2"), representative of the Atlantic Forest Biome. This area was monitored by two sequential stations, each with one rain gauge and one stage gauge, having contributing areas of 4.5 km2 and 12 km2 respectively. The altitudes in the basins range from 316 m to 431 m and vegetation is predominantly composed of native forest (55%) and native pasture (39%). The simulated period was from August 2007 to July 2011, corresponding to the period of monitoring. The temperature ranged from -2.2°C to 39.2°C, and annual rainfall ranged between 2005 mm and 2250 mm. For this application, a modification in the SWAT 2000 model algorithm was made, as proposed by Paiva and Paiva (2006), to adjust the rate of leaf area during the winter season of the region. The quality of the results was characterized by the Nash-Sutcliffe efficiency index (NSE) and by the coefficient of determination (R2). The model was evaluated in a monthly and daily scale. At the monthly scale, the values obtained for NSE in the calibration phase, were 0.73 and 0.81, respectively for the two sections. The values obtained for R2 were 0.77 and 0.83 in the same sections. At the daily scale, in the calibration phase NSE values were -0.44 and -0.31, respectively, for the two sections, while for R2, the values were 0.27 and 0.38 in the same sections. These results show that the fit was good for monthly values, but for daily values a proper adjustment was not possible. Due to the short period of monitoring, the validation of the model results was made with the observed data from first station with an area of 4.5 km2. The values obtained for the NSE in the validation phase were 0.73 and -0.33 for the monthly and daily scales respectively, and for R2, 0.77 and 0.27 for the monthly and daily values, thus confirming the quality of the fit

  7. Extraction of polycyclic aromatic hydrocarbons and organochlorine pesticides from soils: a comparison between Soxhlet extraction, microwave-assisted extraction and accelerated solvent extraction techniques.

    PubMed

    Wang, Wentao; Meng, Bingjun; Lu, Xiaoxia; Liu, Yu; Tao, Shu

    2007-10-29

    The methods of simultaneous extraction of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) from soils using Soxhlet extraction, microwave-assisted extraction (MAE) and accelerated solvent extraction (ASE) were established, and the extraction efficiencies using the three methods were systemically compared from procedural blank, limits of detection and quantification, method recovery and reproducibility, method chromatogram and other factors. In addition, soils with different total organic carbon contents were used to test the extraction efficiencies of the three methods. The results showed that the values obtained in this study were comparable with the values reported by other studies. In some respects such as method recovery and reproducibility, there were no significant differences among the three methods for the extraction of PAHs and OCPs. In some respects such as procedural blank and limits of detection and quantification, there were significant differences among the three methods. Overall, ASE had the best extraction efficiency compared to MAE and Soxhlet extraction, and the extraction efficiencies of MAE and Soxhlet extraction were comparable to each other depending on the property such as TOC content of the studied soil. Considering other factors such as solvent consumption and extraction time, ASE and MAE are preferable to Soxhlet extraction.

  8. Is structured observation a valid technique to measure handwashing behavior? Use of acceleration sensors embedded in soap to assess reactivity to structured observation.

    PubMed

    Ram, Pavani K; Halder, Amal K; Granger, Stewart P; Jones, Therese; Hall, Peter; Hitchcock, David; Wright, Richard; Nygren, Benjamin; Islam, M Sirajul; Molyneaux, John W; Luby, Stephen P

    2010-11-01

    Structured observation is often used to evaluate handwashing behavior. We assessed reactivity to structured observation in rural Bangladesh by distributing soap containing acceleration sensors and performing structured observation 4 days later. Sensors recorded the number of times soap was moved. In 45 participating households, the median number of sensor soap movements during the 5-hour time block on pre-observation days was 3.7 (range 0.3-10.6). During the structured observation, the median number of sensor soap movements was 5.0 (range 0-18.0), a 35% increase, P = 0.0004. Compared with the same 5-hour time block on pre-observation days, the number of sensor soap movements increased during structured observation by ≥ 20% in 62% of households, and by ≥ 100% in 22% of households. The increase in sensor soap movements during structured observation, compared with pre-observation days, indicates substantial reactivity to the presence of the observer. These findings call into question the validity of structured observation for measurement of handwashing behavior.

  9. Hydrological effects of the increased CO2 and climate change in the Upper Mississippi River Basin using a modified SWAT

    USGS Publications Warehouse

    Wu, Y.; Liu, S.; Abdul-Aziz, O. I.

    2012-01-01

    Increased atmospheric CO2 concentration and climate change may significantly impact the hydrological and meteorological processes of a watershed system. Quantifying and understanding hydrological responses to elevated ambient CO2 and climate change is, therefore, critical for formulating adaptive strategies for an appropriate management of water resources. In this study, the Soil and Water Assessment Tool (SWAT) model was applied to assess the effects of increased CO2 concentration and climate change in the Upper Mississippi River Basin (UMRB). The standard SWAT model was modified to represent more mechanistic vegetation type specific responses of stomatal conductance reduction and leaf area increase to elevated CO2 based on physiological studies. For estimating the historical impacts of increased CO2 in the recent past decades, the incremental (i.e., dynamic) rises of CO2 concentration at a monthly time-scale were also introduced into the model. Our study results indicated that about 1–4% of the streamflow in the UMRB during 1986 through 2008 could be attributed to the elevated CO2 concentration. In addition to evaluating a range of future climate sensitivity scenarios, the climate projections by four General Circulation Models (GCMs) under different greenhouse gas emission scenarios were used to predict the hydrological effects in the late twenty-first century (2071–2100). Our simulations demonstrated that the water yield would increase in spring and substantially decrease in summer, while soil moisture would rise in spring and decline in summer. Such an uneven distribution of water with higher variability compared to the baseline level (1961–1990) may cause an increased risk of both flooding and drought events in the basin.

  10. Hardware Accelerated Simulated Radiography

    SciTech Connect

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-04-12

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists.

  11. Particle Accelerators in China

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Fang, Shouxian

    As the special machines that can accelerate charged particle beams to high energy by using electromagnetic fields, particle accelerators have been widely applied in scientific research and various areas of society. The development of particle accelerators in China started in the early 1950s. After a brief review of the history of accelerators, this article describes in the following sections: particle colliders, heavy-ion accelerators, high-intensity proton accelerators, accelerator-based light sources, pulsed power accelerators, small scale accelerators, accelerators for applications, accelerator technology development and advanced accelerator concepts. The prospects of particle accelerators in China are also presented.

  12. Dosimetric comparison between intra-cavitary breast brachytherapy techniques for accelerated partial breast irradiation and a novel stereotactic radiotherapy device for breast cancer: GammaPod™

    NASA Astrophysics Data System (ADS)

    Ödén, Jakob; Toma-Dasu, Iuliana; Yu, Cedric X.; Feigenberg, Steven J.; Regine, William F.; Mutaf, Yildirim D.

    2013-07-01

    The GammaPod™ device, manufactured by Xcision Medical Systems, is a novel stereotactic breast irradiation device. It consists of a hemispherical source carrier containing 36 Cobalt-60 sources, a tungsten collimator with two built-in collimation sizes, a dynamically controlled patient support table and a breast immobilization cup also functioning as the stereotactic frame for the patient. The dosimetric output of the GammaPod™ was modelled using a Monte Carlo based treatment planning system. For the comparison, three-dimensional (3D) models of commonly used intra-cavitary breast brachytherapy techniques utilizing single lumen and multi-lumen balloon as well as peripheral catheter multi-lumen implant devices were created and corresponding 3D dose calculations were performed using the American Association of Physicists in Medicine Task Group-43 formalism. Dose distributions for clinically relevant target volumes were optimized using dosimetric goals set forth in the National Surgical Adjuvant Breast and Bowel Project Protocol B-39. For clinical scenarios assuming similar target sizes and proximity to critical organs, dose coverage, dose fall-off profiles beyond the target and skin doses at given distances beyond the target were calculated for GammaPod™ and compared with the doses achievable by the brachytherapy techniques. The dosimetric goals within the protocol guidelines were fulfilled for all target sizes and irradiation techniques. For central targets, at small distances from the target edge (up to approximately 1 cm) the brachytherapy techniques generally have a steeper dose fall-off gradient compared to GammaPod™ and at longer distances (more than about 1 cm) the relation is generally observed to be opposite. For targets close to the skin, the relative skin doses were considerably lower for GammaPod™ than for any of the brachytherapy techniques. In conclusion, GammaPod™ allows adequate and more uniform dose coverage to centrally and peripherally

  13. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  14. Frontiers of accelerator instrumentation

    SciTech Connect

    Ross, M.

    1992-08-01

    New technology has permitted significant performance improvements of established instrumentation techniques including beam position and profile monitoring. Fundamentally new profile monitor strategies are required for the next generation of accelerators, especially linear colliders (LC). Beams in these machines may be three orders of magnitude smaller than typical beams in present colliders. In this paper we review both the present performance levels achieved by conventional systems and present some new ideas for future colliders.

  15. Laser acceleration

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  16. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  17. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  18. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  19. WE-G-18C-07: Accelerated Water/fat Separation in MRI for Radiotherapy Planning Using Multi-Band Imaging Techniques

    SciTech Connect

    Crijns, S; Stemkens, B; Sbrizzi, A; Lagendijk, J; Berg, C van den; Andreychenko, A

    2014-06-15

    Purpose: Dixon sequences are used to characterize disease processes, obtain good fat or water separation in cases where fat suppression fails and to obtain pseudo-CT datasets. Dixon's method uses at least two images acquired with different echo times and thus requires prolonged acquisition times. To overcome associated problems (e.g., for DCE/cine-MRI), we propose to use a method for water/fat separation based on spectrally selective RF pulses. Methods: Two alternating RF pulses were used, that imposes a fat selective phase cycling over the phase encoding lines, which results in a spatial shift for fat in the reconstructed image, identical to that in CAIPIRINHA. Associated aliasing artefacts were resolved using the encoding power of a multi-element receiver array, analogous to SENSE. In vivo measurements were performed on a 1.5T clinical MR-scanner in a healthy volunteer's legs, using a four channel receiver coil. Gradient echo images were acquired with TE/TR = 2.3/4.7ms, flip angle 20°, FOV 45×22.5cm{sup 2}, matrix 480×216, slice thickness 5mm. Dixon images were acquired with TE,1/TE,2/TR=2.2/4.6/7ms. All image reconstructions were done in Matlab using the ReconFrame toolbox (Gyrotools, Zurich, CH). Results: RF pulse alternation yields a fat image offset from the water image. Hence the water and fat images fold over, which is resolved using in-plane SENSE reconstruction. Using the proposed technique, we achieved excellent water/fat separation comparable to Dixon images, while acquiring images at only one echo time. Conclusion: The proposed technique yields both inphase water and fat images at arbitrary echo times and requires only one measurement, thereby shortening the acquisition time by a factor 2. In future work the technique may be extended to a multi-band water/fat separation sequence that is able to achieve single point water/fat separation in multiple slices at once and hence yields higher speed-up factors.

  20. Impact accelerations

    NASA Technical Reports Server (NTRS)

    Vongierke, H. E.; Brinkley, J. W.

    1975-01-01

    The degree to which impact acceleration is an important factor in space flight environments depends primarily upon the technology of capsule landing deceleration and the weight permissible for the associated hardware: parachutes or deceleration rockets, inflatable air bags, or other impact attenuation systems. The problem most specific to space medicine is the potential change of impact tolerance due to reduced bone mass and muscle strength caused by prolonged weightlessness and physical inactivity. Impact hazards, tolerance limits, and human impact tolerance related to space missions are described.

  1. Evaluation of non-point source pollution reduction by applying best management practices using a SWAT model and QuickBird high resolution satellite imagery.

    PubMed

    Lee, MiSeon; Park, GeunAe; Park, MinJi; Park, JongYoon; Lee, JiWan; Kim, SeongJoon

    2010-01-01

    This study evaluated the reduction effect of non-point source pollution by applying best management practices (BMPs) to a 1.21 km2 small agricultural watershed using a SWAT (Soil and Water Assessment Tool) model. Two meter QuickBird land use data were prepared for the watershed. The SWAT was calibrated and validated using daily streamflow and monthly water quality (total phosphorus (TP), total nitrogen (TN), and suspended solids (SS)) records from 1999 to 2000 and from 2001 to 2002. The average Nash and Sutcliffe model efficiency was 0.63 for the streamflow and the coefficients of determination were 0.88, 0.72, and 0.68 for SS, TN, and TP, respectively. Four BMP scenarios viz. the application of vegetation filter strip and riparian buffer system, the regulation of Universal Soil Loss Equation P factor, and the fertilizing control amount for crops were applied and analyzed.

  2. Simulating Daily and Sub-daily Water Flow in Large, Semi-arid Watershed Using SWAT: A Case Study of Nueces River Basin, Texas

    NASA Astrophysics Data System (ADS)

    Bassam, S.; Ren, J.

    2015-12-01

    Runoff generated during heavy rainfall imposes quick, but often intense, changes in the flow of streams, which increase the chance of flash floods in the vicinity of the streams. Understanding the temporal response of streams to heavy rainfall requires a hydrological model that considers meteorological, hydrological, and geological components of the streams and their watersheds. SWAT is a physically-based, semi-distributed model that is capable of simulating water flow within watersheds with both long-term, i.e. annually and monthly, and short-term (daily and sub-daily) time scales. However, the capability of SWAT in sub-daily water flow modeling within large watersheds has not been studied much, compare to long-term and daily time scales. In this study we are investigating the water flow in a large, semi-arid watershed, Nueces River Basin (NRB) with the drainage area of 16950 mi2 located in South Texas, with daily and sub-daily time scales. The objectives of this study are: (1) simulating the response of streams to heavy, and often quick, rainfall, (2) evaluating SWAT performance in sub-daily modeling of water flow within a large watershed, and (3) examining means for model performance improvement during model calibration and verification based on results of sensitivity and uncertainty analysis. The results of this study can provide important information for water resources planning during flood seasons.

  3. NOTE: Elongated beamlets: a simple technique for segment and MU reduction for sMLC IMRT delivery on accelerators utilizing 5 mm leaf widths

    NASA Astrophysics Data System (ADS)

    Price, R. A., Jr.; Paskalev, K.; McNeeley, S.; Ma, C.-M.

    2005-10-01

    The focus of this work is to demonstrate the effects of using an elongated beamlet to achieve similar dose conformity as achieved with a square beamlet while reducing the number of segments and subsequent MU required. A series of 10 patients were planned for IMRT delivery to the prostate using minimum beamlet sizes of 5 × 5 mm2 (default scheme), 10 × 5 mm2 with the short axis parallel to the prostate rectum interface (scheme 1), and 10 × 5 mm2 with the short axis perpendicular to the prostate rectum interface (scheme 2). All other parameters between plans were left unchanged. Plans were appropriately normalized and evaluated for R65, R40, conformity index, total number of segments and MU. All plans were generated using the Corvus inverse planning system. The average number of segments in this study decreased by approximately 49% for both schemes 1 and 2. The subsequent number of MU required decreased by approximately 34.6%. The resultant modified modulation scaling factor (MSFmod) decreased by approximately 34.3%. Additionally, we found that each isodose distribution using scheme 2 would still meet our clinical acceptance criteria with no visible degradation in the dose distribution as compared with the default scheme. In conclusion, we have demonstrated that it is possible to achieve similar results as those obtained using a 5 × 5 mm2 beamlet with respect to target coverage and critical structure sparing by using strategically oriented elongated beamlets. This technique directly translates to a decreased MSFmod allowing for decreased leakage dose to the patient, a decreased risk of exceeding secondary shielding limits in pre-existing vaults, and shorter treatment times.

  4. Review of accelerator instrumentation

    SciTech Connect

    Pellegrin, J.L.

    1980-05-01

    Some of the problems associated with the monitoring of accelerator beams, particularly storage rings' beams, are reviewed along with their most common solutions. The various electrode structures used for the measurement of beam current, beam position, and the detection of the bunches' transverse oscillations, yield pulses with sub-nanosecond widths. The electronics for the processing of these short pulses involves wide band techniques and circuits usually not readily available from industry or the integrated circuit market: passive or active, successive integrations, linear gating, sample-and-hold circuits with nanosecond acquisition time, etc. This report also presents the work performed recently for monitoring the ultrashort beams of colliding linear accelerators or single-pass colliders. To minimize the beam emittance, the beam position must be measured with a high resolution, and digitized on a pulse-to-pulse basis. Experimental results obtained with the Stanford two-mile Linac single bunches are included.

  5. Accelerators for Cancer Therapy

    DOE R&D Accomplishments Database

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  6. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  7. The genesis of emeralds and their host rocks from Swat, northwestern Pakistan: a stable-isotope investigation

    NASA Astrophysics Data System (ADS)

    Arif, M.; Fallick, A. E.; Moon, C. J.

    1996-05-01

    Emerald deposits in Swat, northwestern Pakistan, occurring in talc-magnesite and quartz-magnesite assemblages, have been investigated through stable isotope studies. Isotopic analyses were performed on a total of seven emeralds, associated quartz (seven samples), fuchsite (three samples) and tourmaline (two samples) from the Mingora emerald mines. The oxygen isotopic composition (δ18O SMOW) of emeralds shows a strong enrichment in 18O and is remarkably uniform at +15.6±0.4‰ (1σ, n=7). Each of the two components of water in emerald (channel and inclusion) has a different range of hydrogen isotopic composition: the channel waters being distinctly isotopically heavier (δD=-51 to -32‰ SMOW) than the other inclusion waters (δD=-96 to -70‰ SMOW). Similarly the oxygen isotopic compositions of tourmaline and fuchsite are relatively constant (δ18O=+13 to +14‰ SMOW) and show enrichment in 18O. The δ18O values of quartz, ranging from +15.1 to +19.1‰ SMOW, are also high (+16.9±1.4‰; 1σ, n=7). The mean δD of channel waters measured from emerald (-42±6.6‰ SMOW) and that of fluid calculated from hydrous minerals δDcalculated (-47±7.1‰ SMOW) are consistent with both metamorphic and magmatic origin. However, the close similarity between the measured δD values of the hydroxyl hydrogen in fuchsite (-74 to -61‰ SMOW) and tourmaline (-84 and -69‰ SMOW) with pegmatitic muscovite and tourmaline suggests that the mineralization was probably caused by modified (18O-enriched) hydrothermal solutions derived from an S-type granitic magma. The variation in the carbon and oxygen isotopic composition of magnesite, locally associated with emerald mineralization, is also very restricted (δ13C˜-3.2±0.7‰ PDB; δ18O˜ +17.9±1.2‰ SMOW). On the basis of the isotopic composition of fluid (δ13C≈-1.8±0.7‰ PDB; δ18O≈+13.6±1.2‰ SMOW calculated for the 250 550 °C temperature), it is proposed that the Swat magnesites formed due to the carbonation of

  8. Simulation of surface runoff and soil erosion in small watersheds in Northern Ethiopia - application and verification of the SWAT model

    NASA Astrophysics Data System (ADS)

    Schiffer, Roman; Klik, Andreas; Strohmeier, Stefan; Srinivasan, Raghavan

    2015-04-01

    Degradation of arable land is a major issue in the Ethiopian Highlands. Deforestation leads to ongoing soil erosion during the rainy season and thus the hydrology of a watershed changes as high erosion rates and dense gully networks cause a direct drainage of rain water usable for crop production. The application of hydrological models can provide a link between local watershed characteristics and the generation of runoff and sediment loss in the watershed. Furthermore, they enable the impact assessment of soil conservation measures on these processes. Objective of this study was to apply the SWAT model to two small agricultural used watersheds in Northern Ethiopia to assess the impact of soil conservation measures on surface runoff and soil erosion. The watersheds are two small sub-watersheds of the Gumara-Maksegnit watershed. They are located close to each other with an area of 31 and 41 ha, respectively. 80% of the area is steeper than 10%. In one watershed soil conservation measures (stone bunds and trenches) were implemented in 2011 whereas the other watershed is untreated. Mean annual preciptation is about 1200 mm from which 90% rains between June and September. Soil textures range from clay loam to clay. Land use of both watersheds is similar with appr. 70% of agricultural land and 30% of grassland and open shrubland. Main crops grown are sorghum, teff, faba bean, barley, wheat and chickpea. Since 2011, an automatic weather station as well as weirs are installed in both watersheds to measure runoff. For each erosive event manual samples are taken in addition to a turbidity sensor to monitor sediment yield. Soil and land survey was carried out to derive a soil map and a digital elevation model. A site specific crop rotation was assumed. The SWAT model calibration was performed with measured data from 2012. The results for runoff as well as sediment yield show acceptable to satisfying performance. The Nash-Sutcliffe efficiency for surface runoff is 0.54 for

  9. Future integrated aquifer vulnerability assessment considering land use / land cover and climate change using DRASTIC and SWAT

    NASA Astrophysics Data System (ADS)

    Jang, W.; Engel, B.; Chaubey, I.

    2015-12-01

    Climate change causes significant changes to temperature regimes and precipitation patterns across the world. Such alterations in climate pose serious risks for not only inland freshwater ecosystems but also groundwater systems, and may adversely affect numerous critical services they provide to humans. All groundwater results from precipitation, and precipitation is affected by climate change. Climate change is also influenced by land use / land cover (LULC) change and vice versa. According to Intergovernmental Panel on Climate Change (IPCC) reports, climate change is caused by global warming which is generated by the increase of greenhouse gas (GHG) emissions in the atmosphere. LULC change is a major driving factor causing an increase in GHG emissions. LULC change data (years 2006-2100) will be produced by the Land Transformation Model (LTM) which simulates spatial patterns of LULC change over time. MIROC5 (years 2006-2100) will be obtained considering GCMs and ensemble characteristics such as resolution and trend of temperature and precipitation which is a consistency check with observed data from local weather stations and historical data from GCMs output data. Thus, MIROC5 will be used to account for future climate change scenarios and relationship between future climate change and alteration of groundwater quality in this study. For efficient groundwater resources management, integrated aquifer vulnerability assessments (= intrinsic vulnerability + hazard potential assessment) are required. DRASTIC will be used to evaluate intrinsic vulnerability, and aquifer hazard potential will be evaluated by Soil and Water Assessment Tool (SWAT) which can simulate pollution potential from surface and transport properties of contaminants. Thus, for effective integrated aquifer vulnerability assessment for LULC and climate change in the Midwestern United States, future projected LULC and climate data from the LTM and GCMs will be incorporated with DRASTIC and SWAT. It is

  10. SWAT and River-2D Modelling of Pinder River for Analysing Snow Trout Habitat under Different Flow Abstraction Scenarios

    NASA Astrophysics Data System (ADS)

    Nale, J. P.; Gosain, A. K.; Khosa, R.

    2015-12-01

    Pinder River, one of major headstreams of River Ganga, originates in Pindari Glaciers of Kumaon Himalayas and after passing through rugged gorges meets Alaknanda at Karanprayag forming one of the five celestial confluences of Upper Ganga region. While other sub-basins of Upper Ganga are facing severe ecological losses, Pinder basin is still in its virginal state and is well known for its beautiful valleys besides being host to unique and rare biodiversity. A proposed 252 MW run-of-river hydroelectric project at Devsari on this river has been a major concern on account of its perceived potential for egregious environmental and social impacts. In this context, the study presented tries to analyse the expected changes in aquatic habitat conditions after this project is operational (with different operation policies). SWAT hydrological modelling platform has been used to derive stream flow simulations under various scenarios ranging from the present to the likely future conditions. To analyse the habitat conditions, a two dimensional hydraulic-habitat model 'River-2D', a module of iRIC software, is used. Snow trout has been identified as the target keystone species and its habitat preferences, in the form of flow depths, flow velocity and substrate condition, are obtained from diverse sources of related literature and are provided as Habitat Suitability Indices to River-2D. Bed morphology constitutes an important River-2D input and has been obtained, for the designated 1 km long study reach of Pinder upto Karanprayag, from a combination of actual field observations and supplemented by SRTM 1 Arc-Second Global digital elevation data. Monthly Weighted Usable Area for three different life stages (Spawning, Juvenile and Adult) of Snow Trout are obtained corresponding to seven different flow discharges ranging from 10 cumec to 1000 cumec. Comparing the present and proposed future river flow conditions obtained from SWAT modelling, losses in Weighted Usable Area, for the

  11. High Transformer ratios in collinear wakefield accelerators.

    SciTech Connect

    Power, J. G.; Conde, M.; Yusof, Z.; Gai, W.; Jing, C.; Kanreykin, A.; Schoessow, P.; High Energy Physics; Euclid Techlabs, LLC

    2008-01-01

    Based on our previous experiment that successfully demonstrated wakefield transformer ratio enhancement in a 13.625 GHz dielectric-loaded collinear wakefield accelerator using the ramped bunch train technique, we present here a redesigned experimental scheme for even higher enhancement of the efficiency of this accelerator. Design of a collinear wakefield device with a transformer ratio R2, is presented. Using a ramped bunch train (RBT) rather than a single drive bunch, the enhanced transformer ratio (ETR) technique is able to increase the transformer ratio R above the ordinary limit of 2. To match the wavelength of the fundamental mode of the wakefield with the bunch length (sigmaz=2 mm) of the new Argonne wakefield accelerator (AWA) drive gun (where the experiment will be performed), a 26.625 GHz dielectric based accelerating structure is required. This transformer ratio enhancement technique based on our dielectric-loaded waveguide design will result in a compact, high efficiency accelerating structures for future wakefield accelerators.

  12. Mass spectrometry with accelerators.

    PubMed

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  13. Influence of internal spatial aggregation procedures of the SWAT model on the modelling of the rainfall runoff processes in the Dyle catchment at 2 different scales.

    NASA Astrophysics Data System (ADS)

    Romanowicz, A. A.; Vanclooster, M.; Rounsevell, M.; La Jeunesse, I.

    2003-04-01

    The sensitivity of the surface hydrological component of the spatially distributed hydrological model SWAT [1]( ARCVIEVTM version) to internal spatial aggregation procedures was tested for the Dyle catchment and for its subcatchment of the Thyle (Belgium). For this analysis, use was made of the generalised soil association map at the scale of 1:500.000 [3], and the land use map created in an earlier study [2]. Uncalibrated simulations were performed for both catchments using the same input and parameterisation, changing only the catchment size and thereby the creation of the Hydrological Response Units (HRU) , its distribution within the catchments and its parametrisation.. The results suggest that the SWAT model is very sensitive to the internal procedures defining the HRU size and distributions and also to the way how soil and land use are assigned to the HRU (using either the dominant or multiple class option). This also suggests that the use of the same underlying input data but for different catchment sizes will affect modelling performance. Internal GIS functions transform the basic soil and land use data prior to hydrological modelling. This will complicate the upscaling of hydrological processes by means of the SWAT model. Acknowledgements This research was carried out within the framework of the EU Mulino project (contract no. EVK1-2000-22089). The authors would also like to acknowledge the developers of the AvSwat interface. Reference [1]Arnold, J.G., Engel, B.A., Srinivasan, R., 1993, Continuous-time, grid cell watershed model. Proc.of the 18-19 June 1993 Conf. Spokane, Washington, 267-278 [2] Comité National de Géographie, Carte pédologique ( d’association des soil) de la Belgique ou 1:500 000 [3] Romanowicz, A. A., Vanclooster, M., Rounsevell, M. and La Jeunesse, I., Sensitivity of the SWAT model to soil parameterisation with different land use input maps: a case study of the Thyle catchment in Belgium [in preparation] [3] Van Orshoven, J

  14. Sensitivity of the SWAT model to soil parameterisation with different land use input maps: a case study of the Thyle catchment in Belgium

    NASA Astrophysics Data System (ADS)

    Romanowicz, A. A.; Vanclooster, M.; Rounsevell, M.; La Jeunesse, I.

    2003-04-01

    The sensitivity of the surface hydrological component of the spatially distributed hydrological model SWAT [1] to different input parametrisation schemes was tested for a small agricultural catchment of the Thyle in the central part of Belgium. For this analysis 2 different soil parametrisation schemes, 2 different soil maps, and 2 land use maps were used as input to the SWAT model. For generating the soil parametrisation schemes, use was made of the generalised soil association map at the scale of 1:500.000 [2], the detailed IRSIA soil map at the scale of 1:25.000 [3] and the soil profile analytical data base AARDEWERK[4]. Uncalibrated simulations were performed for two different periods (1977-1979 and 1999) for which a land use map was available and for which detailed hydrological data are available. The results are suggesting that the SWAT model is very sensitive to the soil parametrisation scheme and to the input data resolution. For both simulated time periods only one soil parametrisation scheme performed appropriately. However the use of a high resolution soil map will not always result in the best modelling performance. The use of detailed soil map in combination with detailed land use map performs well. However, the results obtained from the use of the detailed soil map in combination with a generic land use map are surprisingly poor. This can be explained by the equifinality problem of different parameters sets in distributed hydrological models. Therefore it is advice to use a similar resolution for the input maps and input data sets while applying the SWAT model. Acknowledgements This research was carried out within the framework of the EU Mulino project (contract no. EVK1-2000-22089). The authors would also like to acknowledge the developers of the AvSwat interface. Reference [1]Arnold, J.G., Engel, B.A., Srinivasan, R., 1993, Continuous-time, grid cell watershed model. Proc.of the 18-19 June 1993 Conf. Spokane, Washington, 267-278 [2] Comité National

  15. The acceleration sensitivity of quartz crystal oscillators: a review.

    PubMed

    Filler, R L

    1988-01-01

    A tutorial on navigation, radar, and identification systems is presented. The topics discussed are the consequences of acceleration sensitivity in crystal oscillators on the Allan variance, including the effects of sinusoidal and random vibration, phase noise and integrated phase jitter; the vector nature of quartz resonator sensitivity; the theoretical description of the cause of the acceleration sensitivity of quartz resonators; techniques for the measurement of acceleration sensitivity; and the effect of frequency multiplication on acceleration effect. Various techniques currently being used or developed for reducing the effective acceleration sensitivity are considered. The techniques fall into three general categories: reduction of the acceleration sensitivity of the resonator; passive techniques that use compensating elements in the oscillator feedback loop, e.g. a second resonator or an acceleration sensitivity capacitor; and active acceleration compensation schemes that sense the acceleration and feedback a compensating signal to a tuning network.

  16. Science Highlight: Researchers Demonstrate 'Accelerator on a Chip'

    SciTech Connect

    2013-01-01

    In an advance that could dramatically shrink particle accelerators for science and medicine, researchers at DOE's SLAC National Accelerator Laboratory used a laser to accelerate electrons at a rate 10 times higher than conventional technology in a nanostructured glass chip smaller than a grain of rice. This technique uses ultrafast lasers to drive the accelerator. (This achievement was reported in Nature, 27 Sept 2013)

  17. Accelerated learning approaches for maintenance training

    SciTech Connect

    Erickson, E.J.

    1991-01-01

    As a training tool, Accelerated Learning techniques have been in use since 1956. Trainers from a variety of applications and disciplines have found success in using Accelerated Learning approaches, such as training aids, positive affirmations, memory aids, room arrangement, color patterns, and music. Some have thought that maintenance training and Accelerated Learning have nothing in common. Recent training applications by industry and education of Accelerated Learning are proving very successful by several standards. This paper cites available resource examples and challenges maintenance trainers to adopt new ideas and concepts to accelerate learning in all training setting. 7 refs.

  18. Parallel beam dynamics simulation of linear accelerators

    SciTech Connect

    Qiang, Ji; Ryne, Robert D.

    2002-01-31

    In this paper we describe parallel particle-in-cell methods for the large scale simulation of beam dynamics in linear accelerators. These techniques have been implemented in the IMPACT (Integrated Map and Particle Accelerator Tracking) code. IMPACT is being used to study the behavior of intense charged particle beams and as a tool for the design of next-generation linear accelerators. As examples, we present applications of the code to the study of emittance exchange in high intensity beams and to the study of beam transport in a proposed accelerator for the development of accelerator-driven waste transmutation technologies.

  19. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  20. Simultaneous assimilation of in situ soil moisture and streamflow in the SWAT model using the Extended Kalman Filter

    NASA Astrophysics Data System (ADS)

    Sun, Leqiang; Seidou, Ousmane; Nistor, Ioan; Goïta, Kalifa; Magagi, Ramata

    2016-12-01

    The Extended Kalman Filter (EKF) is used to assimilate in situ surface soil moisture and streamflow observation at the outlet of an experimental watershed outlet into a semi-distributed SWAT (Soil and Water Assessment Tool) model. Watershed scale, instead of HRU scale soil moisture was used in state vector to reduce computational burden. Numerical experiments were designed to select the best state vector which consists of streamflow and soil moisture in all vertical soil layers. Compared to open-loop model and direct-insert method, the estimate of both soil moisture and streamflow has been improved by EKF assimilation. The combined assimilation of surface soil moisture and streamflow outperforms the assimilation with only surface soil moisture or streamflow especially in the estimate of full profile soil moisture. The NSC has been improved to 0.63 from -4.45 and the RMSE has been reduced to 12.34 mm from 47.44 mm in open-loop. Such improvement is also reflected in the short term forecast of soil moisture. The improvement of streamflow prediction is relatively moderate in both simulation and forecast mode compared to quality of the soil moisture prediction. The quantification of the model error, especially the error covariance between different state variables, was found to be critical to the estimate of the state variable corresponding to the error covariance.

  1. Combine the soil water assessment tool (SWAT) with sediment geochemistry to evaluate diffuse heavy metal loadings at watershed scale.

    PubMed

    Jiao, Wei; Ouyang, Wei; Hao, Fanghua; Huang, Haobo; Shan, Yushu; Geng, Xiaojun

    2014-09-15

    Assessing the diffuse pollutant loadings at watershed scale has become increasingly important when formulating effective watershed water management strategies, but the process was seldom achieved for heavy metals. In this study, the overall temporal-spatial variability of particulate Pb, Cu, Cr and Ni losses within an agricultural watershed was quantitatively evaluated by combining SWAT with sediment geochemistry. Results showed that the watershed particulate heavy metal loadings displayed strong variability in the simulation period 1981-2010, with an obvious increasing trend in recent years. The simulated annual average loadings were 20.21 g/ha, 21.75 g/ha, 47.35 g/ha and 21.27 g/ha for Pb, Cu, Cr and Ni, respectively. By comparison, these annual average values generally matched the estimated particulate heavy metal loadings at field scale. With spatial interpolation of field loadings, it was found that the diffuse heavy metal pollution mainly came from the sub-basins dominated with cultivated lands, accounting for over 70% of total watershed loadings. The watershed distribution of particulate heavy metal losses was very similar to that of soil loss but contrary to that of heavy metal concentrations in soil, highlighting the important role of sediment yield in controlling the diffuse heavy metal loadings.

  2. Temporal-spatial distribution of non-point source pollution in a drinking water source reservoir watershed based on SWAT

    NASA Astrophysics Data System (ADS)

    Wang, M.; Cheng, W.; Yu, B.-S.; Fang, Y.

    2015-05-01

    The conservation of drinking water source reservoirs has a close relationship between regional economic development and people's livelihood. Research on the non-point pollution characteristics in its watershed is crucial for reservoir security. Tang Pu Reservoir watershed was selected as the study area. The non-point pollution model of Tang Pu Reservoir was established based on the SWAT (Soil and Water Assessment Tool) model. The model was adjusted to analyse the temporal-spatial distribution patterns of total nitrogen (TN) and total phosphorus (TP). The results showed that the loss of TN and TP in the reservoir watershed were related to precipitation in flood season. And the annual changes showed an "M" shape. It was found that the contribution of loss of TN and TP accounted for 84.5% and 85.3% in high flow years, and for 70.3% and 69.7% in low flow years, respectively. The contributions in normal flow years were 62.9% and 63.3%, respectively. The TN and TP mainly arise from Wangtan town, Gulai town, and Wangyuan town, etc. In addition, it was found that the source of TN and TP showed consistency in space.

  3. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model.

    PubMed

    Rocha, João; Roebeling, Peter; Rial-Rivas, María Ermitas

    2015-12-01

    The extensive use of fertilizers has become one of the most challenging environmental issues in agricultural catchment areas. In order to reduce the negative impacts from agricultural activities and to accomplish the objectives of the European Water Framework Directive we must consider the implementation of sustainable agricultural practices. In this study, we assess sustainable agricultural practices based on reductions in N-fertilizer application rates (from 100% to 0%) and N-application methods (single, split and slow-release) across key agricultural land use classes in the Vouga catchment, Portugal. The SWAT model was used to relate sustainable agricultural practices, agricultural yields and N-NO3 water pollution deliveries. Results show that crop yields as well as N-NO3 exportation rates decrease with reductions in N-application rates and single N-application methods lead to lower crop yields and higher N-NO3 exportation rates as compared to split and slow-release N-application methods.

  4. Accelerator mass spectrometry.

    PubMed

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples.

  5. Accelerator structure work for NLC

    SciTech Connect

    Miller, R.H.; Adolphsen, C.; Bane, K.L.F.; Deruyter, H.; Farkas, Z.D.; Hoag, H.A.; Holtkamp, N.; Lavine, T.; Loew, G.A.; Nelson, E.M.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Thompson, K.A.; Vlieks, A.; Wang, J.W.; Wilson, P.B.; Gluckstern, R.; Ko, K.; Kroll, N. |

    1992-07-01

    The NLC design achieves high luminosity with multiple bunches in each RF pulse. Acceleration of a train of bunches without emittance growth requires control of long range dipole wakefields. SLAC is pursuing a structure design which suppresses the effect of wakefields by varying the physical dimensions of successive cells of the disk-loaded traveling wave structure in a manner which spreads the frequencies of the higher mode while retaining the synchronism between the electrons and the accelerating mode. The wakefields of structures incorporating higher mode detuning have been measured at the Accelerator Test Facility at Argonne. Mechanical design and brazing techniques which avoid getting brazing alloy into the interior of the accelerator are being studied. A test facility for high-power testing of these structures is complete and high power testing has begun.

  6. BIOCONAID System (Bionic Control of Acceleration Induced Dimming). Final Report.

    ERIC Educational Resources Information Center

    Rogers, Dana B.; And Others

    The system described represents a new technique for enhancing the fidelity of flight simulators during high acceleration maneuvers. This technique forces the simulator pilot into active participation and energy expenditure similar to the aircraft pilot undergoing actual accelerations. The Bionic Control of Acceleration Induced Dimming (BIOCONAID)…

  7. Progress on plasma accelerators

    SciTech Connect

    Chen, P.

    1986-05-01

    Several plasma accelerator concepts are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA) and the Plasma Wake Field Accelerator (PWFA). Various accelerator physics issues regarding these schemes are discussed, and numerical examples on laboratory scale experiments are given. The efficiency of plasma accelerators is then revealed with suggestions on improvements. Sources that cause emittance growth are discussed briefly.

  8. Model measurements for new accelerating techniques

    SciTech Connect

    Aronson, S.; Haseroth, H.; Knott, J.; Willis, W.

    1988-06-01

    We summarize the work carried out for the past two years, concerning some different ways for achieving high-field gradients, particularly in view of future linear lepton colliders. These studies and measurements on low power models concern the switched power principle and multifrequency excitation of resonant cavities. 15 refs., 12 figs.

  9. Evaluation of dynamically dimensioned search algorithm for optimizing SWAT by altering sampling distributions and searching range

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary advantage of Dynamically Dimensioned Search algorithm (DDS) is that it outperforms many other optimization techniques in both convergence speed and the ability in searching for parameter sets that satisfy statistical guidelines while requiring only one algorithm parameter (perturbation f...

  10. Detectors for Accelerator-Based Security Applications

    NASA Astrophysics Data System (ADS)

    Warren, Glen A.; Stave, Sean C.; Miller, Erin A.

    We present a review of detector systems used in accelerator-based security applications. The applications discussed span stockpile stewardship, material interdiction, treaty verification, and spent nuclear fuel assay. The challenge for detectors in accelerator-based applications is the separation of the desired signal from the background, frequently during high input count rates. Typical techniques to address the background challenge include shielding, timing, selection of sensitive materials, and choice of accelerator.

  11. Comparison of the Performances of APEX and SWAT Models in Simulating the Impacts of Alternate Grazing Management Practices on Hydrology and Water Quality

    NASA Astrophysics Data System (ADS)

    Ale, S.; Park, J.; Teague, W. R.

    2015-12-01

    Comparison of hydrologic and water quality models is useful to contrast merits and demerits of each model and enable user to select an appropriate model for an intended purpose. In this study, the performances of APEX and SWAT models in evaluating the effects of alternate grazing management practices on water balances, and sediment and nutrient losses in a rangeland-dominated Clear Creek watershed (763 km2) located in north central Texas, were compared. Three grazing management practices including the light continuous (LC), heavy continuous (HC) and planned multi-paddock (MP) grazing were simulated. Measured data on vegetation, soil physical and hydrological properties, and grazing management at four study ranches within the study watershed (two under planned MP and one each under LC and HC grazing management), was used to parameterize both APEX and SWAT models. Both models were calibrated and validated using the measured streamflow (1980-2013), sediment (1994-2009), total nitrogen (TN) and total phosphorous (TP) (1986-2009) load data at the watershed outlet. Preliminary results indicated that in general, both models performed equally well in terms of hydrology, but the APEX model performed better in predicting sediment and nutrient losses. At the watershed level, shifting grazing management from the baseline HC scenario to planned MP grazing decreased annual streamflow by 29% and 27%, and TN load by 47% and 35%, according to the APEX and SWAT models, respectively. The simulated reduction in sediment load with the change in grazing management from the baseline HC to the planned MP grazing was about the same (40%) according to both models.

  12. Hydrologic evaluation of the curve number and Green and Ampt infiltration methods by applying Hooghoudt and Kirkham tile drain equations using SWAT

    NASA Astrophysics Data System (ADS)

    Bauwe, Andreas; Kahle, Petra; Lennartz, Bernd

    2016-06-01

    Artificial drainage can contribute significantly to nutrient pollution in surface waters of tile-drained catchments. A realistic estimation of nutrient sources such as surface runoff, tile flow, and groundwater flow is essential in order to be able to predict nutrient loads realistically. The Soil and Water Assessment Tool (SWAT) provides two options for separating surface from subsurface flows, the empirical curve number and the physically based Green and Ampt method. In this study, we evaluated both infiltration models for a small tile-drained agricultural catchment in northeastern Germany using observed data from 2004-2013 and applying the recently introduced Hooghoudt and Kirkham tile drain equations. Model performance statistics indicated that the curve number method performed slightly better than the Green and Ampt method. Nash-Sutcliffe efficiencies (NSE) for discharge on a daily basis were 0.50 during calibration (0.42 during validation) for the curve number and 0.45 (0.39) for the Green and Ampt method. Tile flow was predicted with NSE values of 0.35 during calibration (0.36 during validation) for the curve number and 0.33 (0.62) for the Green and Ampt method, again on a daily basis. Discharge was mainly divided into tile flow and groundwater flow under both infiltration models. The only important difference with respect to flow components was related to surface runoff with negligible surface runoff using the Green and Ampt method and about 5% surface runoff using the curve number method. Greater tile drain depth and narrower spacing resulted in increased tile flow for both infiltration models, while total discharge remained unaffected by different drainage specifications. We conclude that both infiltration models have their justifications for other SWAT application projects in tile-drained catchments with similar characteristics. Overall, our study revealed that the physically based tile drainage routines which make use of the Hooghoudt and Kirkham tile

  13. Water quantity and quality optimization modeling of dams operation based on SWAT in Wenyu River Catchment, China.

    PubMed

    Zhang, Yongyong; Xia, Jun; Chen, Junfeng; Zhang, Minghua

    2011-02-01

    Water quantity and quality joint operation is a new mode in the present dams' operation research. It has become a hot topic in governmental efforts toward integrated basin improvement. This paper coupled a water quantity and quality joint operation model (QCmode) and genetic algorithm with Soil and Water Assessment Tool (SWAT). Together, these tools were used to explore a reasonable operation of dams and floodgates at the basin scale. Wenyu River Catchment, a key area in Beijing, was selected as the case study. Results showed that the coupled water quantity and quality model of Wenyu River Catchment more realistically simulates the process of water quantity and quality control by dams and floodgates. This integrated model provides the foundation for research of water quantity and quality optimization on dam operation in Wenyu River Catchment. The results of this modeling also suggest that current water quality of Wenyu River will improve following the implementation of the optimized operation of the main dams and floodgates. By pollution control and water quantity and quality joint operation of dams and floodgates, water quality of Wenyu river will change significantly, and the available water resources will increase by 134%, 32%, 17%, and 82% at the downstream sites of Sha River Reservoir, Lutong Floodgate, Xinpu Floodgate, and Weigou Floodgate, respectively. The water quantity and quality joint operation of dams will play an active role in improving water quality and water use efficiency in Wenyu River Basin. The research will provide the technical support for water pollution control and ecological restoration in Wenyu River Catchment and could be applied to other basins with large number of dams. Its application to the Wenyu River Catchment has a great significance for the sustainable economic development of Beijing City.

  14. The assessment of land use change impact on watersheds runoff using SWAT: case study of Urmia Lake in Iran

    NASA Astrophysics Data System (ADS)

    Jabbari, Anahita; Jarihani, Ben; Rezaie, Hossein

    2015-04-01

    Lake Urmia, long counted among the world's largest saltwater lakes, contains only 5% of the amount of water it did just 20 years ago. The decline is generally blamed on a combination of drought, increased water diversion for irrigated agriculture within the lake's watershed and land use mismanagement. It has been believed that land use changes in Lake Urmia basin is one of the most important factors in shrinkage of Urmia Lake in recent decades. Transforming the traditional agricultural practices (i.e., wheat) to the more water consuming practices (i.e., apple orchards) is one of the most important reasons increased agricultural water consumption in the watershed. In this study we assessed the effect of the land use changes of watershed in hydrological runoff processing in the Nazloo chai watershed, one of the most important river basins of the Urmia Lake basin. Actually the rapid and at the same time unreasonable transformations of land use in farm lands of Urmia lake sub basins, extremely has been raised the amount of blue water (surface or groundwater) consumption in watershed which leads to dramatic decrement of watershed runoff amounts. One of the most unfavorable consequences of land use change was changing the blue and green (rainwater insofar as it does not become runoff) water usage patterns in watershed, in addition to water use increment. The soil and water assessment tool (SWAT), one of the most important and reliable models which was used to model the rainfall runoff, has been used in current study. The land use maps were extracted from Landsat images archives for the most severe turning points in respect of land use change in the recent 30 years. After calibrating the model, several land use patterns of historical data were used in the model to produce the runoff. The results showed the strong relation between land use change and runoff reduction in the Lake Urmia basin.

  15. Spatiotemporal differences in nitrogen fate and transport with application of NCDC and WRF precipitation data in the SWAT watershed model

    NASA Astrophysics Data System (ADS)

    Gabriel, M. C.; Knightes, C. D.; Cooter, E. J.; Dennis, R. L.

    2011-12-01

    Watershed fate and transport models are widely used within the US Environmental Protection Agency's (USEPA) Office of Research and Development (ORD) as tools to forecast ecosystem services and evaluate future scenarios associated with land use, climate change and emissions regulation. A critical step in applying fate and transport models is understanding model sensitivity and function, particularly as new and innovative methods become available to apply forcing function data, e.g. precipitation data. Currently, multiple precipitation data sources are available for use in watershed modeling, two of which include National Climactic Data Center (NCDC) and Weather Research and Forecasting (WRF) data. As there are clear distinctions in how precipitation is determined for these precipitation sources (gauge vs. model simulated), there can also exist significant differences in precipitation frequency on a site-by-site basis. These differences may translate to large contrasts in nitrogen transport due to the sensitivity of surface biogeochemical processes to precipitation characteristics, namely those influenced by soil moisture content. The objective of this study is to investigate potential differences in the fate and transport of reactive nitrogen for two watersheds in the Neuse Basin, North Carolina, USA, after separately applying NCDC and WRF precipitation data sources into the Soil and Water Assessment Tool (SWAT) watershed model. The spatiotemporal variation of several nitrogen transport processes will be compared, e.g. reactive nitrogen fixation, plant uptake, overland delivery to streams, denitrification. Results from this research will advance exposure science by providing a greater understanding of the operation and function of watershed fate and transport models, which are primary tools used to assess ecosystem exposure.

  16. Process-based hydrological modeling using SWAT: The effect of permafrost on water resources in the large-scale river catchment Kharaa / Mongolia

    NASA Astrophysics Data System (ADS)

    Hülsmann, L.; Geyer, T.; Karthe, D.; Priess, J.; Schweitzer, C.

    2012-04-01

    In this study, the Soil Water Assessment Tool (SWAT) was applied to obtain a better understanding of hydrological processes in the semi-arid catchment of the Kharaa River in Northern Mongolia. The transient, physical-based model SWAT was set up using spatial datasets on soil, land use, climate, and stream network provided by the project "IWRM-MoMo" to (i.) simulate the water balance components of the basin and (ii.) to identify potential gaps in the input data. We found that the SWAT model satisfactorily reflects the hydrological processes in the catchment and simulates river runoff as a response to strong rainfall events as well as to snow and ice melt. To obtain correct runoff volumes during spring, permafrost has to be considered. Permafrost-influenced soils constrain water flow in the frozen layer, so that percolation out of the active layer is hampered (Woo 2011). This effect is reproduced in SWAT by assigning an impermeable layer in the subsurface to the areas dominated by permafrost. The simulations indicate that in these regions groundwater resources are limited as a consequence of impermeable ground ice. In addition, groundwater recharge rates in the catchment are generally low due to high evaporation rates (80-90 %). Consequently the base flow contribution is small. Further studies on the estimation of groundwater recharge rates should be carried out, since groundwater is an important resource for water supply. Model results indicate that the non-uniformity of the precipitation distribution was not sufficiently covered by the interpolated input data, so that precipitation and runoff volumes are partially over- or underestimated. Since precipitation defines the overall water availability in river catchments (Baumgartner 1982), additional climate records would considerably improve model outputs. As a consequence of large evapotranspiration losses, discharge as well as groundwater recharge estimates were identified to be highly sensitive to

  17. Accelerated dynamics simulations of nanotubes.

    SciTech Connect

    Uberuaga, B. P.; Stuart, S. J.; Voter, A. F.

    2002-01-01

    We report on the application of accelerated dynamics techniques to the study of carbon nanotubes. We have used the parallel replica method and temperature accelerated dynamics simulations are currently in progress. In the parallel replica study, we have stretched tubes at a rate significantly lower than that used in previous studies. In these preliminary results, we find that there are qualitative differences in the rupture of the nanotubes at different temperatures. We plan on extending this investigation to include nanotubes of various chiralities. We also plan on exploring unique geometries of nanotubes.

  18. Future accelerator technology

    SciTech Connect

    Sessler, A.M.

    1986-05-01

    A general discussion is presented of the acceleration of particles. Upon this foundation is built a categorization scheme into which all accelerators can be placed. Special attention is devoted to accelerators which employ a wake-field mechanism and a restricting theorem is examined. It is shown how the theorem may be circumvented. Comments are made on various acceleration schemes.

  19. ACCELERATION AND THE GIFTED.

    ERIC Educational Resources Information Center

    GIBSON, ARTHUR R.; STEPHANS, THOMAS M.

    ACCELERATION OF PUPILS AND SUBJECTS IS CONSIDERED A MEANS OF EDUCATING THE ACADEMICALLY GIFTED STUDENT. FIVE INTRODUCTORY ARTICLES PROVIDE A FRAMEWORK FOR THINKING ABOUT ACCELERATION. FIVE PROJECT REPORTS OF ACCELERATED PROGRAMS IN OHIO ARE INCLUDED. ACCELERATION IS NOW BEING REGARDED MORE FAVORABLY THAN FORMERLY, BECAUSE METHODS HAVE BEEN…

  20. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  1. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  2. New Techniques for Particle Acclerators

    SciTech Connect

    Sessler, Andrew M.

    1990-06-01

    A review is presented of the new techniques which have been proposed for use in particle accelerators. Attention is focused upon those areas where significant progress has been made in the last two years--in particular, upon two-beam accelerators, wakefield accelerators, and plasma focusers.

  3. Acceleration mapping on Consort 5

    NASA Astrophysics Data System (ADS)

    Naumann, Robert J.

    1994-09-01

    The Consort 5 rocket carrying a set of commercial low-gravity experiments experienced a significant side thrust from an apparent burn-through of the second-stage motor just prior to cut-off. The resulting angular momentum could not be removed by the attitude rate control system, thus the payload was left in an uncontrollable rocking/tumbling mode. Although the primary low-gravity emphasis mission requirements could not be met, it was hoped that some science could be salvaged by mapping the acceleration field over the vehicle so that each investigator could correlate his or her results with the acceleration environment at his or her experiment location. This required some detective work to obtain the body rates and moment of inertia ratios required to solve the full set of Euler equations for a tri-axial rigid body. The techniques for acceleration mapping described in this paper may be applicable to other low-gravity emphasis missions.

  4. Combining remote sensing, soft data and parameter transfer to enhance flood predictions in the Swat and Lower Kabul Rivers of Pakistan

    NASA Astrophysics Data System (ADS)

    Bouaziz, Laurène; Ismail, Fraz; Abbas, Yasir

    2015-04-01

    The Swat and Lower Kabul Rivers in Pakistan (23567 km2) recently experienced devastating floods due to monsoonal deluges in 2010. Development of flood forecasting models is challenging as these river basins are sparsely gauged; runoff data is only available for a small part of the basin, as well as precipitation and temperature data which are available at a limited number of sites. In this study we present a calibration method for a hydrological model (the distributed wflow model) using soft data, remote sensing and transfer of parameter values from gauged to ungauged sites to improve understanding of hydrological behaviour of the area and thereby allow better prediction of floods for the Swat and Lower Kabul Rivers. Data sources include MODIS remotely sensed snow cover areas to better constrain the snowmelt and accumulation dynamics. Parameter values obtained at the gauged locations based on topographic and climatic similarities are transferred to the areas with no runoff data. The model is further constrained by incorporating local expert knowledge on land-use and the occurrence of flash-floods. The Budyko framework is used as a reference to constrain long term average runoff. The model was validated using data from news articles and Youtube videos from the 2010 flooding. Overall the use of parameter transfer, remotely sensed data and various sources of soft data improved the model's capability to predict floods in these poorly gauged rivers of Pakistan.

  5. Modelling water, sediment and nutrient fluxes from a mixed land-use catchment in New Zealand: effects of hydrologic conditions on SWAT model performance

    NASA Astrophysics Data System (ADS)

    Me, W.; Abell, J. M.; Hamilton, D. P.

    2015-04-01

    The Soil Water Assessment Tool (SWAT) was configured for the Puarenga Stream catchment (77 km2), Rotorua, New Zealand. The catchment land use is mostly plantation forest, some of which is spray-irrigated with treated wastewater. A Sequential Uncertainty Fitting (SUFI-2) procedure was used to auto-calibrate unknown parameter values in the SWAT model which was applied to the Puarenga catchment. Discharge, sediment, and nutrient variables were then partitioned into two components (base flow and quick flow) based on hydrograph separation. A manual procedure (one-at a-time sensitivity analysis) was then used to quantify parameter sensitivity for the two hydrologically-separated regimes. Comparison of simulated daily mean discharge, sediment and nutrient concentrations with high-frequency, event-based measurements allowed the error in model predictions to be quantified. This comparison highlighted the potential for model error associated with quick-flow fluxes in flashy lower-order streams to be underestimated compared with low-frequency (e.g. monthly) measurements derived predominantly from base flow measurements. To overcome this problem we advocate the use of high-frequency, event-based monitoring data during calibration and dynamic parameter values with some dependence on discharge regime. This study has important implications for quantifying uncertainty in hydrological models, particularly for studies where model simulations are used to simulate responses of stream discharge and composition to changes in irrigation and land management.

  6. Pulsed electromagnetic acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1973-01-01

    Direct measurements of the power deposited in the anode of a multimegawatt MPD accelerator using thermocouples attached to a thin shell anode reveal a dramatic decrease in the fractional anode power from 50% at 200 KW input power to less than 10% at 20 MW power. The corresponding local power flux peak at a value of 10,000 W/sq cm at the lip of the anode exhaust orifice, a distribution traced to a corresponding peak in the local current density at the anode. A comparison of voltage-current characteristics and spectral photographs of the MPD discharge using quartz, boron nitride and plexiglas insulators with various mass injection configurations led to the identification of different voltage modes and regions of ablation free operation. The technique of piezoelectric impact pressure measurement in the MPD exhaust flow was refined to account for the effects due to probe yaw angle.

  7. A variable acceleration calibration system

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas H.

    2011-12-01

    A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.

  8. Superconducting cavities for particle accelerators

    NASA Astrophysics Data System (ADS)

    Padamsee, H.

    1992-02-01

    RF Superconductivity has become an important technology for particle accelerators for high energy physics, nuclear physics, and free electron lasers. More than 100 MVolts of Superconducting RF (SRF) cavities have been installed in accelerators for heavy ions and operated at gradients of 2-3 MV/m in excess of 105 hours. More than 500 MVolts are installed in electron accelerators and operated at gradients of 4-6 MV/m in excess of 104 hours. Encouraged by this success, another 500 meters of SRF cavities are in the production line. New applications for High Energy Physics are forthcoming for high current e+e- colliders in the B-quark energy range (B-factory). For the next linear collider in the TeV energy range, there are many compelling attractions to use SRF, if the gradients can be improved substantially and the costs lowered. Substantial progress has been made in understanding performance limitations and in inventing cures through better cavity geometries, materials, and processes. Techniques are now in hand to reach 15-20 MV/m accelerating. In light of this progress, the potential of high gradient SRF for a TeV Energy Superconducting Linear Accelerator (TESLA) will be explored.

  9. Accelerating Particles with Plasma

    ScienceCinema

    Litos, Michael; Hogan, Mark

    2016-07-12

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  10. Peak acceleration limiter

    NASA Technical Reports Server (NTRS)

    Chapman, C. P.

    1972-01-01

    Device is described that limits accelerations by shutting off shaker table power very rapidly in acceleration tests. Absolute value of accelerometer signal is used to trigger electronic switch which terminates test and sounds alarm.

  11. Linear Accelerator (LINAC)

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? A linear accelerator (LINAC) is the ... Therapy (SBRT) . top of page How does the equipment work? The linear accelerator uses microwave technology (similar ...

  12. Accelerating Particles with Plasma

    SciTech Connect

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  13. Improved plasma accelerator

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  14. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  15. Acceleration: It's Elementary

    ERIC Educational Resources Information Center

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  16. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  17. Accelerated test design

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1980-01-01

    The design of an accelerated life test program for electric batteries is discussed. A number of observations and suggestions on the procedures and objectives for conducting an accelerated life test program are presented. Equations based on nonlinear regression analysis for predicting the accelerated life test parameters are discussed.

  18. The effects of acceleration stress on human workload and manual control

    NASA Technical Reports Server (NTRS)

    Gill, R. T.; Albery, W. B.; Ward, S. L.

    1986-01-01

    The effects of +Gz stress on operator task performance and workload were assessed. Subjects were presented a two dimensional maze and were required to solve it as rapidly as possible (by moving a light dot through it via a trim switch on a control stick) while under G-stress at levels from +1 Gz to +6 Gz. The G-stress was provided by a human centrifuge. The effects of this stress were assessed by two techniques; (1) objective performance measures on the primary maze-solving task, and (2) subjective workload measures obtained using the subjective workload assessment technique (SWAT). It was found that while neither moderate (+3 Gz) nor high (+5 Gz and +6 Gz) levels of G-stress affected maze solving performance, the high G levels did increase significantly the subjective workload of the maze task.

  19. Operation of the accelerator

    SciTech Connect

    Pardo, R.C.; Batzka, B.; Billquist, P.J.

    1995-08-01

    Fiscal Year 1994 was the first year of seven-day operation since ATLAS became a national user facility in 1985. ATLAS made the most of the opportunity this year by providing 5200 hours of beam on-target to the research program. A record number of 60 experiments were completed and the {open_quotes}facility reliability{close_quotes} remained near the 90% level. Seven-day operation was made possible with the addition to the staff of two operator positions providing single-operator coverage during the weekend period. The normally scheduled coverage was augmented by an on-call list of system experts who respond to emergencies with phone-in advice and return to the Laboratory when necessary. This staffing approach continues but we rearranged our staffing patterns so that we now have one cryogenics engineer working a shift pattern which includes 8-hour daily coverage during the weekend. ATLAS provided a beam mix to users consisting of 26 different isotopic species, 23% of which were for A>100 in FY 1994. Approximately 60% of the beam time was provided by the Positive Ion Injector, slightly less than the usage rate of FY 1993. Experiments using uranium or lead beams accounted for 16.4% of the total beam time. The ECR ion source and high-voltage platform functioned well throughout the year. A new technique for solid material production in the source was developed which uses a sputtering process wherein the sample of material placed near the plasma chamber wall is biased negatively. Plasma ions are accelerated into the sample and material is sputtered from the surface into the plasma. This technique is now used routinely for many elements. Runs of calcium, germanium, nickel, lead, tellurium, and uranium were carried out with this technique.

  20. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  1. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  2. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  3. Thomas Jefferson National Accelerator Facility

    SciTech Connect

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    2010-09-08

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

  4. Genetic algorithms and their applications in accelerator physics

    SciTech Connect

    Hofler, Alicia S.

    2013-12-01

    Multi-objective optimization techniques are widely used in an extremely broad range of fields. Genetic optimization for multi-objective optimization was introduced in the accelerator community in relatively recent times and quickly spread becoming a fundamental tool in multi-dimensional optimization problems. This discussion introduces the basics of the technique and reviews applications in accelerator problems.

  5. Modeling future streamflow variability in the Mobile River watershed in the Southeastern United States using SWAT coupled with climate change projections

    NASA Astrophysics Data System (ADS)

    Chien, H.; Knouft, J.

    2013-12-01

    Ongoing changes in climate are having measurable impacts on the hydrology of aquatic systems and predicted changes in climate during the coming century are expected to intensify stresses on freshwater resources. Information on current spatial variation in streamflow and the assessment of the potential impacts of climate change on future streamflow regimes are critical for water resource management, particularly in the context of water quantity, quality, and aquatic ecosystem sustainability. The goal of this study is to predict spatial variation in streamflow under various climate change scenarios in the Alabama River watershed (ARW) and the Tombigbee River watershed (TRW), which are nested within the Mobile River watershed (MRW) in the Southeastern United States. The impacts of climate change on the hydrology of these systems were assessed using a distributed hydrologic model, the Soil and Water Assessment Tool (SWAT), with nine global climate models (GCM) under three SRES scenarios (A1B, A2, and B1). According to SWAT model outputs based on 26 GCM projections, annual streamflows from 2051-2060 are predicted to decrease by up to 50.4% and 50.0% in the ARW and TRW, respectively, while annual streamflows from 2086-2095 are predicted to decrease by up to 69.4% and 74.3%, respectively. In addition, streamflow variability is generally predicted to increase over time under the various climate change scenarios. Results suggest that high evapotranspiration induced by warmer temperatures is the dominant process responsible for the overall decrease in streamflow. Further, the ARW and TRW have varied responses to predicted changes in climate due to different dominant hydrologic processes in each watershed. As such, different adaptive management plans should be developed for each basin to mitigate the potential impacts of climate change on watershed resources and aquatic systems.

  6. Estimating spatiotemporal variability and sustainability of shallow groundwater in a well-irrigated plain of the Haihe River basin using SWAT model

    NASA Astrophysics Data System (ADS)

    Zhang, Xueliang; Ren, Li; Kong, Xiangbin

    2016-10-01

    Quantitatively estimating the spatiotemporal variability and sustainability of shallow groundwater with a distributed hydrological model could provide an important basis for proper groundwater management, especially in well-irrigated areas. In this study, the Soil and Water Assessment Tool (SWAT) model was modified and applied to a well-irrigated plain of the Haihe River basin. First, appropriate initial values of the parameters in the groundwater module were determined based on abundant hydrogeological investigations and assessment. Then, the model was satisfactorily calibrated and validated using shallow groundwater table data from 16 national wells monitored monthly from 1993 to 2010 and 148 wells investigated yearly from 2006 to 2012. To further demonstrate the model's rationality, the multi-objective validation was conducted by comparing the simulated groundwater balance components, actual evapotranspiration, and crop yields to multiple sources data. Finally, the established SWAT was used to estimate both shallow groundwater table fluctuation and shallow aquifer water storage change in time and space. Results showed that the average shallow groundwater table declined at a rate of 0.69-1.56 m a-1, which depleted almost 350 × 108 m3 of shallow aquifer water storage in the cropland during the period of 1993-2012. Because of the heterogeneity of the underlying surface and precipitation, these variations were spatiotemporally different. Generally, the shallow groundwater table declined 1.43-1.88 m during the winter wheat (Triticum aestivum L.) growing season, while it recovered 0.28-0.57 m during the summer maize (Zea mays L.) growing season except when precipitation was exceptionally scarce. According to the simulated depletion rate, the shallow aquifer in the study area may face a depletion crisis within the next 80 years. This study identified the regions where prohibitions or restrictions on shallow groundwater exploitation should be urgently carried out.

  7. On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the SWAT model

    SciTech Connect

    Zhang, Xuesong; Srinivasan, Raghavan; Van Liew, M.

    2010-04-15

    With the availability of spatially distributed data, distributed hydrologic models are increasingly used for simulation of spatially varied hydrologic processes to understand and manage natural and human activities that affect watershed systems. Multi-objective optimization methods have been applied to calibrate distributed hydrologic models using observed data from multiple sites. As the time consumed by running these complex models is increasing substantially, selecting efficient and effective multi-objective optimization algorithms is becoming a nontrivial issue. In this study, we evaluated a multi-algorithm, genetically adaptive multi-objective method (AMALGAM) for multi-site calibration of a distributed hydrologic model—Soil and Water Assessment Tool (SWAT), and compared its performance with two widely used evolutionary multi-objective optimization (EMO) algorithms (i.e. Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Non-dominated Sorted Genetic Algorithm II (NSGA-II)). In order to provide insights into each method’s overall performance, these three methods were tested in four watersheds with various characteristics. The test results indicate that the AMALGAM can consistently provide competitive or superior results compared with the other two methods. The multi-method search framework of AMALGAM, which can flexibly and adaptively utilize multiple optimization algorithms, makes it a promising tool for multi-site calibration of the distributed SWAT. For practical use of AMALGAM, it is suggested to implement this method in multiple trials with relatively small number of model runs rather than run it once with long iterations. In addition, incorporating different multiobjective optimization algorithms and multi-mode search operators into AMALGAM deserves further research.

  8. Comparison of streamflow prediction skills from NOAH-MP/RAPID, VIC/RAPID and SWAT toward an ensemble flood forecasting framework over large scales

    NASA Astrophysics Data System (ADS)

    Rajib, M. A.; Tavakoly, A. A.; Du, L.; Merwade, V.; Lin, P.

    2015-12-01

    Considering the differences in how individual models represent physical processes for runoff generation and streamflow routing, use of ensemble output is desirable in an operational streamflow estimation and flood forecasting framework. To enable the use of ensemble streamflow, comparison of multiple hydrologic models at finer spatial resolution over a large domain is yet to be explored. The objective of this work is to compare streamflow prediction skills from three different land surface/hydrologic modeling frameworks: NOAH-MP/RAPID, VIC/RAPID and SWAT, over the Ohio River Basin with a drainage area of 491,000 km2. For a uniform comparison, all the three modeling frameworks share the same setup with common weather inputs, spatial resolution, and gauge stations being employed in the calibration procedure. The runoff output from NOAH-MP and VIC land surface models is routed through a vector-based river routing model named RAPID, that is set up on the high resolution NHDPlus reaches and catchments. SWAT model is used with its default tightly coupled surface-subsurface hydrology and channel routing components to obtain streamflow for each NHDPlus reach. Model simulations are performed in two modes, including: (i) hindcasting/calibration mode in which the models are calibrated against USGS daily streamflow observations at multiple locations, and (ii) validation mode in which the calibrated models are executed at 3-hourly time interval for historical flood events. In order to have a relative assessment on the model-specific nature of biases during storm events as well as dry periods, time-series of surface runoff and baseflow components at the specific USGS gauging locations are extracted from corresponding observed/simulated streamflow data using a recursive digital filter. The multi-model comparison presented here provides insights toward future model improvements and also serves as the first step in implementing an operational ensemble flood forecasting framework

  9. Application accelerator system having bunch control

    DOEpatents

    Wang, D.; Krafft, G.A.

    1999-06-22

    An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig.

  10. Application accelerator system having bunch control

    DOEpatents

    Wang, Dunxiong; Krafft, Geoffrey Arthur

    1999-01-01

    An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.

  11. An introduction to acceleration mechanisms

    SciTech Connect

    Palmer, R.B.

    1987-05-01

    This paper discusses the acceleration of charged particles by electromagnetic fields, i.e., by fields that are produced by the motion of other charged particles driven by some power source. The mechanisms that are discussed include: Ponderamotive Forces, Acceleration, Plasma Beat Wave Acceleration, Inverse Free Electron Laser Acceleration, Inverse Cerenkov Acceleration, Gravity Acceleration, 2D Linac Acceleration and Conventional Iris Loaded Linac Structure Acceleration. (LSP)

  12. Schooling in Times of Acceleration

    ERIC Educational Resources Information Center

    Buddeberg, Magdalena; Hornberg, Sabine

    2017-01-01

    Modern societies are characterised by forms of acceleration, which influence social processes. Sociologist Hartmut Rosa has systematised temporal structures by focusing on three categories of social acceleration: technical acceleration, acceleration of social change, and acceleration of the pace of life. All three processes of acceleration are…

  13. Uniformly accelerated black holes

    NASA Astrophysics Data System (ADS)

    Letelier, Patricio S.; Oliveira, Samuel R.

    2001-09-01

    The static and stationary C metric are examined in a generic framework and their interpretations studied in some detail, especially those with two event horizons, one for the black hole and another for the acceleration. We find that (i) the spacetime of an accelerated static black hole is plagued by either conical singularities or a lack of smoothness and compactness of the black hole horizon, (ii) by using standard black hole thermodynamics we show that accelerated black holes have a higher Hawking temperature than Unruh temperature of the accelerated frame, and (iii) the usual upper bound on the product of the mass and acceleration parameters (<1/27) is just a coordinate artifact. The main results are extended to accelerated rotating black holes with no significant changes.

  14. The Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  15. Convex Accelerated Maximum Entropy Reconstruction

    PubMed Central

    Worley, Bradley

    2016-01-01

    Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm – called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm – is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra. PMID:26894476

  16. Hardware-Accelerated Simulated Radiography

    SciTech Connect

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-08-04

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32-bit floating point texture capabilities to obtain solutions to the radiative transport equation for X-rays. The hardware accelerated solutions are accurate enough to enable scientists to explore the experimental design space with greater efficiency than the methods currently in use. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedral meshes that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester.

  17. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  18. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  19. ACCELERATION RESPONSIVE SWITCH

    DOEpatents

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  20. The foxhole accelerating structure

    SciTech Connect

    Fernow, R.C.; Claus, J.

    1992-07-17

    This report examines some properties of a new type of open accelerating structure. It consists of a series of rectangular cavities, which we call foxholes, joined by a beam channel. The power for accelerating the particles comes from an external radiation source and enters the cavities through their open upper surfaces. Analytic and computer calculations are presented showing that the foxhole is a suitable structure for accelerating relativistic electrons.

  1. Particle acceleration in flares

    NASA Technical Reports Server (NTRS)

    Benz, Arnold O.; Kosugi, Takeo; Aschwanden, Markus J.; Benka, Steve G.; Chupp, Edward L.; Enome, Shinzo; Garcia, Howard; Holman, Gordon D.; Kurt, Victoria G.; Sakao, Taro

    1994-01-01

    Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, gamma-rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.

  2. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  3. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  4. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases.

  5. High Gradient Accelerator Research

    SciTech Connect

    Temkin, Richard

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  6. FFAGS for rapid acceleration

    SciTech Connect

    Carol J. Johnstone and Shane Koscielniak

    2002-09-30

    When large transverse and longitudinal emittances are to be transported through a circular machine, extremely rapid acceleration holds the advantage that the beam becomes immune to nonlinear resonances because there is insufficient time for amplitudes to build up. Uncooled muon beams exhibit large emittances and require fast acceleration to avoid decay losses and would benefit from this style of acceleration. The approach here employs a fixed-field alternating gradient or FFAG magnet structure and a fixed frequency acceleration system. Acceptance is enhanced by the use only of linear lattice elements, and fixed-frequency rf enables the use of cavities with large shunt resistance and quality factor.

  7. Acceleration of polarized protons in circular accelerators

    SciTech Connect

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  8. Accelerated Characterization of Polymer Properties

    SciTech Connect

    R. Wroczynski; l. Brewer; D. Buckley; M. Burrell; R. Potyrailo

    2003-07-30

    This report describes the efforts to develop a suite of microanalysis techniques that can rapidly measure a variety of polymer properties of industrial importance, including thermal, photo-oxidative, and color stability; as well as ductility, viscosity, and mechanical and antistatic properties. Additional goals of the project were to direct the development of these techniques toward simultaneous measurements of multiple polymer samples of small size in real time using non-destructive and/or parallel or rapid sequential measurements, to develop microcompounding techniques for preparing polymers with additives, and to demonstrate that samples prepared in the microcompounder could be analyzed directly or used in rapid off-line measurements. These enabling technologies are the crucial precursors to the development of high-throughput screening (HTS) methodologies for the polymer additives industry whereby the rate of development of new additives and polymer formulations can be greatly accelerated.

  9. Accelerated testing of space mechanisms

    NASA Technical Reports Server (NTRS)

    Murray, S. Frank; Heshmat, Hooshang

    1995-01-01

    This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.

  10. A variational perspective on accelerated methods in optimization.

    PubMed

    Wibisono, Andre; Wilson, Ashia C; Jordan, Michael I

    2016-11-22

    Accelerated gradient methods play a central role in optimization, achieving optimal rates in many settings. Although many generalizations and extensions of Nesterov's original acceleration method have been proposed, it is not yet clear what is the natural scope of the acceleration concept. In this paper, we study accelerated methods from a continuous-time perspective. We show that there is a Lagrangian functional that we call the Bregman Lagrangian, which generates a large class of accelerated methods in continuous time, including (but not limited to) accelerated gradient descent, its non-Euclidean extension, and accelerated higher-order gradient methods. We show that the continuous-time limit of all of these methods corresponds to traveling the same curve in spacetime at different speeds. From this perspective, Nesterov's technique and many of its generalizations can be viewed as a systematic way to go from the continuous-time curves generated by the Bregman Lagrangian to a family of discrete-time accelerated algorithms.

  11. Optical Phase Locking of Modelocked Lasers for Particle Accelerators

    SciTech Connect

    Plettner, T.; Sinha, S.; Wisdom, J.; Colby, E.R.; /SLAC

    2006-02-17

    Particle accelerators require precise phase control of the electric field through the entire accelerator structure. Thus a future laser driven particle accelerator will require optical synchronism between the high-peak power laser sources that power the accelerator. The precise laser architecture for a laser driven particle accelerator is not determined yet, however it is clear that the ability to phase-lock independent modelocked oscillators will be of crucial importance. We report the present status on our work to demonstrate long term phaselocking between two modelocked lasers to within one degree of optical phase and describe the optical synchronization techniques that we employ.

  12. Scaling FFAG accelerator for muon acceleration

    SciTech Connect

    Lagrange, JB.; Planche, T.; Mori, Y.

    2011-10-06

    Recent developments in scaling fixed field alternating gradient (FFAG) accelerators have opened new ways for lattice design, with straight sections, and insertions like dispersion suppressors. Such principles and matching issues are detailed in this paper. An application of these new concepts is presented to overcome problems in the PRISM project.

  13. Scaling FFAG accelerator for muon acceleration

    NASA Astrophysics Data System (ADS)

    Lagrange, JB.; Planche, T.; Mori, Y.

    2011-10-01

    Recent developments in scaling fixed field alternating gradient (FFAG) accelerators have opened new ways for lattice design, with straight sections, and insertions like dispersion suppressors. Such principles and matching issues are detailed in this paper. An application of these new concepts is presented to overcome problems in the PRISM project.

  14. Angular velocities, angular accelerations, and coriolis accelerations

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  15. Summary report: working group 2 on 'Plasma Based AccelerationConcepts'

    SciTech Connect

    Esarey, E.; Leemans, Wim

    1998-09-01

    A summary of the talks, papers and discussion sessions presented in the Working Group on Plasma Based Acceleration Concepts is given within the context of the progress towards a 1 GeV laser driven accelerator module. The topics covered within the Working Group were self-modulated laser wakefield acceleration, standard laser wakefield acceleration, plasma beatwave acceleration, laser guiding and wake excitation in plasma channels, plasma wakefield acceleration, plasma lenses and optical injection techniques for laser wakefield accelerators. An overview will be given of the present status of experimental and theoretical progress as well as an outlook towards the future physics and technological challenges for the development of an optimized accelerator module.

  16. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators

    PubMed Central

    O'Shea, B. D.; Andonian, G.; Barber, S. K.; Fitzmorris, K. L.; Hakimi, S.; Harrison, J.; Hoang, P. D.; Hogan, M. J.; Naranjo, B.; Williams, O. B.; Yakimenko, V.; Rosenzweig, J. B.

    2016-01-01

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m−1) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m−1 using a dielectric wakefield accelerator of 15 cm length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m−1. Both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons. PMID:27624348

  17. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators.

    PubMed

    O'Shea, B D; Andonian, G; Barber, S K; Fitzmorris, K L; Hakimi, S; Harrison, J; Hoang, P D; Hogan, M J; Naranjo, B; Williams, O B; Yakimenko, V; Rosenzweig, J B

    2016-09-14

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m(-1)) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m(-1) using a dielectric wakefield accelerator of 15 cm length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m(-1). Both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons.

  18. The Los Alamos Laser Acceleration of Particles Workshop and beginning of the advanced accelerator concepts field

    NASA Astrophysics Data System (ADS)

    Joshi, C.

    2012-12-01

    The first Advanced Acceleration of Particles-AAC-Workshop (actually named Laser Acceleration of Particles Workshop) was held at Los Alamos in January 1982. The workshop lasted a week and divided all the acceleration techniques into four categories: near field, far field, media, and vacuum. Basic theorems of particle acceleration were postulated (later proven) and specific experiments based on the four categories were formulated. This landmark workshop led to the formation of the advanced accelerator R&D program in the HEP office of the DOE that supports advanced accelerator research to this day. Two major new user facilities at Argonne and Brookhaven and several more directed experimental efforts were built to explore the advanced particle acceleration schemes. It is not an exaggeration to say that the intellectual breadth and excitement provided by the many groups who entered this new field provided the needed vitality to then recently formed APS Division of Beams and the new online journal Physical Review Special Topics-Accelerators and Beams. On this 30th anniversary of the AAC Workshops, it is worthwhile to look back at the legacy of the first Workshop at Los Alamos and the fine groundwork it laid for the field of advanced accelerator concepts that continues to flourish to this day.

  19. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators

    DOE PAGES

    O’Shea, B. D.; Andonian, G.; Barber, S. K.; ...

    2016-09-14

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m–1) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m–1 using a dielectric wakefield accelerator of 15 cm length, withmore » sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m–1. As a result, both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons.« less

  20. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators

    SciTech Connect

    O’Shea, B. D.; Andonian, G.; Barber, S. K.; Fitzmorris, K. L.; Hakimi, S.; Harrison, J.; Hoang, P. D.; Hogan, M. J.; Naranjo, B.; Williams, O. B.; Yakimenko, V.; Rosenzweig, J. B.

    2016-09-14

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m–1) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m–1 using a dielectric wakefield accelerator of 15 cm length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m–1. As a result, both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons.

  1. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  2. Accelerator Science: Why RF?

    SciTech Connect

    Lincoln, Don

    2016-12-21

    Particle accelerators can fire beams of subatomic particles at near the speed of light. The accelerating force is generated using radio frequency technology and a whole lot of interesting features. In this video, Fermilab’s Dr. Don Lincoln explains how it all works.

  3. Particle Acceleration in Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi

    2005-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma ray burst (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments.

  4. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  5. Accelerators (3/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  6. Accelerators (4/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  7. Measuring Model Rocket Acceleration.

    ERIC Educational Resources Information Center

    Jenkins, Randy A.

    1993-01-01

    Presents an experiment that measures the acceleration and velocity of a model rocket. Lift-off information is transmitted to a computer that creates a graph of the velocity. Discusses the analysis of the computer-generated data and differences between calculated and experimental velocity and acceleration of several rocket types. (MDH)

  8. Microscale acceleration history discriminators

    DOEpatents

    Polosky, Marc A.; Plummer, David W.

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  9. Accelerators (5/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  10. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph

    2010-07-29

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?.

  11. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  12. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin M.

    2007-08-22

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  13. Analytical tools in accelerator physics

    SciTech Connect

    Litvinenko, V.N.

    2010-09-01

    This paper is a sub-set of my lectures presented in the Accelerator Physics course (USPAS, Santa Rosa, California, January 14-25, 2008). It is based on my notes I wrote during period from 1976 to 1979 in Novosibirsk. Only few copies (in Russian) were distributed to my colleagues in Novosibirsk Institute of Nuclear Physics. The goal of these notes is a complete description starting from the arbitrary reference orbit, explicit expressions for 4-potential and accelerator Hamiltonian and finishing with parameterization with action and angle variables. To a large degree follow logic developed in Theory of Cyclic Particle Accelerators by A.A.Kolmensky and A.N.Lebedev [Kolomensky], but going beyond the book in a number of directions. One of unusual feature is these notes use of matrix function and Sylvester formula for calculating matrices of arbitrary elements. Teaching the USPAS course motivated me to translate significant part of my notes into the English. I also included some introductory materials following Classical Theory of Fields by L.D. Landau and E.M. Liftsitz [Landau]. A large number of short notes covering various techniques are placed in the Appendices.

  14. Plasma production for electron acceleration by resonant plasma wave

    NASA Astrophysics Data System (ADS)

    Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G. P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.

    2016-09-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10-100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC_LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.

  15. Design of a plasma discharge circuit for particle wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Anania, M. P.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Ferrario, M.; Flora, F.; Gallerano, G. P.; Ghigo, A.; Marocchino, A.; Massimo, F.; Mostacci, A.; Mezi, L.; Musumeci, P.; Serio, M.

    2014-03-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV m-1), enabling acceleration of electrons to GeV energy in few centimetres. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators; radiofrequency-based accelerators, in fact, are limited in the accelerating field (10-100 MV m-1) requiring therefore kilometric distances to reach the GeV energies, but can provide very bright electron bunches. Combining high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC-LAB [1,2]. In particular, here we focus on the ionization process; we show a simplified model to study the evolution of plasma induced by discharge, very useful to design the discharge circuit able to fully ionize the gas and bring the plasma at the needed temperature and density.

  16. Opportunities for TeV Laser Acceleration

    SciTech Connect

    Kando, M.; Kiriyama, H.; Koga, J.K.; Bulanov, S.; Chao, A.W.; Esirkepov, T.; Hajima, R.; Tajima, T.; /JAERI, Kyoto

    2008-06-02

    A set of ballpark parameters for laser, plasma, and accelerator technologies that define for electron energies reaching as high as TeV are identified. These ballpark parameters are carved out from the fundamental scaling laws that govern laser acceleration, theoretically suggested and experimentally explored over a wide range in the recent years. In the density regime on the order of 10{sup 16} cm{sup -3}, the appropriate laser technology, we find, matches well with that of a highly efficient high fluence LD driven Yb ceramic laser. Further, the collective acceleration technique applies to compactify the beam stoppage stage by adopting the beam-plasma wave deceleration, which contributes to significantly enhance the stopping power and energy recovery capability of the beam. Thus we find the confluence of the needed laser acceleration parameters dictated by these scaling laws and the emerging laser technology. This may herald a new technology in the ultrahigh energy frontier.

  17. Large electrostatic accelerators

    SciTech Connect

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  18. Vacuum Beat Wave Accelerator

    NASA Astrophysics Data System (ADS)

    Moore, C. I.; Hafizi, B.; Ting, A.; Burris, H. R.; Sprangle, P.; Esarey, E.; Ganguly, A.; Hirshfield, J. L.

    1997-11-01

    The Vacuum Beat Wave Accelerator (VBWA) is a particle acceleration scheme which uses the non-linear ponderomotive beating of two different frequency laser beams to accelerate electrons. A proof-of-principle experiment to demonstrate the VBWA is underway at the Naval Research Laboratory (NRL). This experiment will use the beating of a 1054 nm and 527 nm laser pulse from the NRL T-cubed laser to generate the beat wave and a 4.5 MeV RF electron gun as the electron source. Simulation results and the experimental design will be presented. The suitability of using axicon or higher order Gaussian laser beams will also be discussed.

  19. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  20. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  1. Accelerated Learning: Madness with a Method.

    ERIC Educational Resources Information Center

    Zemke, Ron

    1995-01-01

    Accelerated learning methods have evolved into a variety of holistic techniques that involve participants in the learning process and overcome negative attitudes about learning. These components are part of the mix: the brain, learning environment, music, imaginative activities, suggestion, positive mental state, the arts, multiple intelligences,…

  2. Helical Pulse Line Structures for Ion Acceleration

    SciTech Connect

    Briggs, R.J.; Reginato, L.L.; Waldron, W.L.

    2005-05-01

    The basic concept of the ''Pulse Line Ion Accelerator'' is presented, where pulse power sources create a ramped traveling wave voltage pulse on a helical pulse line. Ions can surf on this traveling wave and achieve energy gains much larger than the peak applied voltage. Tapered and untapered lines are compared, and a transformer coupling technique for launching the wave is described.

  3. Summary report of working group 2: Computations for accelerator physics

    NASA Astrophysics Data System (ADS)

    Cowan, Benjamin M.; Benedetti, C.

    2017-03-01

    The Computations for Accelerator Physics Working Group reviewed recent progress in and surveyed the state of the art of computational modeling of advanced accelerators. This included applications to laser-plasma and structure-based accelerators as well as beam dynamics in circular colliders. Fundamental aspects of numerical modeling and direct particle interaction techniques were discussed. The Working Group also covered the implications of advanced compute architectures.

  4. On the polarized beam acceleration in medium energy synchrotrons

    SciTech Connect

    Lee, S.Y.

    1992-12-31

    This lecture note reviews physics of spin motion in a synchrotron, spin depolarization mechanisms of spin resonances, and methods of overcoming the spin resonances during acceleration. Techniques used in accelerating polarized ions in the low/medium energy synchrotrons, such as the ZGS, the AGS, SATURNE, and the KEK PS and PS Booster are discussed. Problems related to polarized proton acceleration with snakes or partial snake are also examined.

  5. CLASHING BEAM PARTICLE ACCELERATOR

    DOEpatents

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  6. Vibration control in accelerators

    SciTech Connect

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  7. Dielectric assist accelerating structure

    NASA Astrophysics Data System (ADS)

    Satoh, D.; Yoshida, M.; Hayashizaki, N.

    2016-01-01

    A higher-order TM02 n mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

  8. Charged particle accelerator grating

    DOEpatents

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  9. HEAVY ION LINEAR ACCELERATOR

    DOEpatents

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  10. Principles of Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Briggs*, Richard J.

    The basic concepts involved in induction accelerators are introduced in this chapter. The objective is to provide a foundation for the more detailed coverage of key technology elements and specific applications in the following chapters. A wide variety of induction accelerators are discussed in the following chapters, from the high current linear electron accelerator configurations that have been the main focus of the original developments, to circular configurations like the ion synchrotrons that are the subject of more recent research. The main focus in the present chapter is on the induction module containing the magnetic core that plays the role of a transformer in coupling the pulsed power from the modulator to the charged particle beam. This is the essential common element in all these induction accelerators, and an understanding of the basic processes involved in its operation is the main objective of this chapter. (See [1] for a useful and complementary presentation of the basic principles in induction linacs.)

  11. DIELECTRIC WALL ACCELERATOR TECHNOLOGY

    SciTech Connect

    Sampayan, S; Caporaso, G; Chen, Y; Harris, J; Hawkins, S; Holmes, C; Nelson, S; Poole, B; Rhodes, M; Sanders, D; Sullivan, J; Wang, L; Watson, J

    2007-10-18

    The dielectric wall accelerator (DWA) is a compact pulsed power device where the pulse forming lines, switching, and vacuum wall are integrated into a single compact geometry. For this effort, we initiated a extensive compact pulsed power development program and have pursued the study of switching (gas, oil, laser induced surface flashover and photoconductive), dielectrics (ceramics and nanoparticle composites), pulse forming line topologies (asymmetric and symmetric Blumleins and zero integral pulse forming lines), and multilayered vacuum insulator (HGI) technology. Finally, we fabricated an accelerator cell for test on ETAII (a 5.5 MeV, 2 kA, 70 ns pulsewidth electron beam accelerator). We review our past results and report on the progress of accelerator cell testing.

  12. Amps particle accelerator definition study

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1975-01-01

    The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.

  13. Microgravity Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Microgravity Acceleration Measurement System (MAMS) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  14. CEBAF Accelerator Achievements

    NASA Astrophysics Data System (ADS)

    Chao, Y. C.; Drury, M.; Hovater, C.; Hutton, A.; Krafft, G. A.; Poelker, M.; Reece, C.; Tiefenback, M.

    2011-05-01

    In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

  15. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema

    None

    2016-07-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  16. Rolamite acceleration sensor

    DOEpatents

    Abbin, Joseph P.; Briner, Clifton F.; Martin, Samuel B.

    1993-01-01

    A rolamite acceleration sensor which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently.

  17. Rolamite acceleration sensor

    DOEpatents

    Abbin, J.P.; Briner, C.F.; Martin, S.B.

    1993-12-21

    A rolamite acceleration sensor is described which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently. 6 figures.

  18. Collective field accelerator

    DOEpatents

    Luce, John S.

    1978-01-01

    A collective field accelerator which operates with a vacuum diode and utilizes a grooved cathode and a dielectric anode that operates with a relativistic electron beam with a .nu./.gamma. of .about. 1, and a plurality of dielectric lenses having an axial magnetic field thereabout to focus the collectively accelerated electrons and ions which are ejected from the anode. The anode and lenses operate as unoptimized r-f cavities which modulate and focus the beam.

  19. Advancing computational methods for calibration of the Soil and Water Assessment Tool (SWAT): Application for modeling climate change impacts on water resources in the Upper Neuse Watershed of North Carolina

    NASA Astrophysics Data System (ADS)

    Ercan, Mehmet Bulent

    Watershed-scale hydrologic models are used for a variety of applications from flood prediction, to drought analysis, to water quality assessments. A particular challenge in applying these models is calibration of the model parameters, many of which are difficult to measure at the watershed-scale. A primary goal of this dissertation is to contribute new computational methods and tools for calibration of watershed-scale hydrologic models and the Soil and Water Assessment Tool (SWAT) model, in particular. SWAT is a physically-based, watershed-scale hydrologic model developed to predict the impact of land management practices on water quality and quantity. The dissertation follows a manuscript format meaning it is comprised of three separate but interrelated research studies. The first two research studies focus on SWAT model calibration, and the third research study presents an application of the new calibration methods and tools to study climate change impacts on water resources in the Upper Neuse Watershed of North Carolina using SWAT. The objective of the first two studies is to overcome computational challenges associated with calibration of SWAT models. The first study evaluates a parallel SWAT calibration tool built using the Windows Azure cloud environment and a parallel version of the Dynamically Dimensioned Search (DDS) calibration method modified to run in Azure. The calibration tool was tested for six model scenarios constructed using three watersheds of increasing size (the Eno, Upper Neuse, and Neuse) for both a 2 year and 10 year simulation duration. Leveraging the cloud as an on demand computing resource allowed for a significantly reduced calibration time such that calibration of the Neuse watershed went from taking 207 hours on a personal computer to only 3.4 hours using 256 cores in the Azure cloud. The second study aims at increasing SWAT model calibration efficiency by creating an open source, multi-objective calibration tool using the Non

  20. Accelerators for America's Future

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  1. Biomedical accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  2. Accelerated cleanup risk reduction

    SciTech Connect

    Knapp, R.B.; Aines, R.M.; Blake, R.G.; Copeland, A.B.; Newmark, R.L.; Tompson, A.F.B.

    1998-02-01

    There is no proven technology for remediating contaminant plume source regions in a heterogeneous subsurface. This project is an interdisciplinary effort to develop the requisite new technologies so that will be rapidly accepted by the remediation community. Our technology focus is hydrous pyrolysis/oxidation (HPO) which is a novel in situ thermal technique. We have expanded this core technology to leverage the action of steam injection and place an in situ microbial filter downstream to intercept and destroy the accelerated movement of contaminated groundwater. Most contaminant plume source regions, including the chlorinated solvent plume at LLNL, are in subsurface media characterized by a wide range in hydraulic conductivity. At LLNL, the main conduits for contaminant transport are buried stream channels composed of gravels and sands; these have a hydraulic conductivity in the range of 10{sup -1} to 10{sup -2} cm/s. Clay and silt units with a hydraulic conductivity of 10{sup -1} to 10{sup -6} cm/s bound these buried channels; these are barriers to groundwater movement and contain the highest contaminant concentrations in the source region. New remediation technologies are required because the current ones preferentially access the high conductivity units. HPO is an innovative process for the in situ destruction of contaminants in the entire subsurface. It operates by the injection of steam. We have demonstrated in laboratory experiments that many contaminants rapidly oxidize to harmless compounds at temperatures easily achieved by injecting steam, provided sufficient dissolved oxygen is present. One important challenge in a heterogeneous source region is getting heat, contaminants, and an oxidizing agent in the same place at the same time. We have used the NUFT computer program to simulate the cyclic injection of steam into a contaminated aquifer for design of a field demonstration. We used an 8 hour, steam/oxygen injection cycle followed by a 56 hour relaxation

  3. Kr II Laser-Induced Fluorescence for Measuring Plasma Acceleration (Preprint)

    DTIC Science & Technology

    2012-02-01

    krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator...velocity as the krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions...present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration

  4. Accelerator mass spectrometry: from nuclear physics to dating

    SciTech Connect

    Kutschera, W.

    1983-01-01

    Several applications of accelerator-based mass spectroscopy are reviewed. Among these are the search for unknown species, determination of comogenic radioisotopes in natural materials and measurements of half-lifes, especially those of significance to dating. Accelerator parameters and techniques of importance for these applications are also considered.

  5. Wave propagation in turbulent media: use of convergence acceleration methods.

    PubMed

    Baram, A; Tsadka, S; Azar, Z; Tur, M

    1988-06-01

    We propose the use of convergence acceleration methods for the evaluation of integral expressions of an oscillatory nature, often encountered in the study of optical wave propagation in the turbulent atmosphere. These techniques offer substantial savings in computation time with appreciable gain in accuracy. As an example, we apply the Levin u acceleration scheme to the problem of remote sensing of transversal wind profiles.

  6. Accelerated Molecular Dynamics Simulations of Reactive Hydrocarbon Systems

    SciTech Connect

    Stuart, Steven J.

    2014-02-25

    The research activities in this project consisted of four different sub-projects. Three different accelerated dynamics techniques (parallel replica dynamics, hyperdynamics, and temperature-accelerated dynamics) were applied to the modeling of pyrolysis of hydrocarbons. In addition, parallel replica dynamics was applied to modeling of polymerization.

  7. Determining Energy Distributions of HF-Accelerated Electrons at HAARP

    DTIC Science & Technology

    2015-11-18

    are presented for selected modification mechanisms (electron heating or electron acceleration energy ), total RF-plasma energy transfer flux, and...suprathermal accelerated electron energy spectra [Gustavsson et al., 2005] using inversion techniques similar to those described by Rees and Luckey [1974...primary excitation mechanisms include electron impact excitation by energetic electrons with kinetic energy exceeding the respective energies of 1.96 and

  8. Diagnostics for advanced laser acceleration experiments

    SciTech Connect

    Misuri, Alessio

    2002-01-01

    The first proposal for plasma based accelerators was suggested by 1979 by Tajima and Dawson. Since then there has been a tremendous progress both theoretically and experimentally. The theoretical progress is particularly due to the growing interest in the subject and to the development of more accurate numerical codes for the plasma simulations (especially particle-in-cell codes). The experimental progress follows from the development of multi-terawatt laser systems based on the chirped-pulse amplification technique. These efforts have produced results in several experiments world-wide, with the detection of accelerated electrons of tens of MeV. The peculiarity of these advanced accelerators is their ability to sustain extremely large acceleration gradients. In the conventional radio frequency linear accelerators (RF linacs) the acceleration gradients are limited roughly to 100 MV/m; this is partially due to breakdown which occurs on the walls of the structure. The electrical breakdown is originated by the emission of the electrons from the walls of the cavity. The electrons cause an avalanche breakdown when they reach other metal parts of the RF linacs structure.

  9. Acceleration of positrons in supernova shocks

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.

    1992-01-01

    During this project we investigated the acceleration of leptons (electrons and positrons) in collisionless shock waves. In particular, we were interested in how leptons are accelerated in the blast waves existing in the remnants of supernova explosions. Supernova remnants (SNRs) have long been considered as the most likely source of galactic cosmic rays but no definite connection between SNRs and the cosmic rays seen at earth can be made. Only by understanding lepton acceleration in shocks can the rich SNR data base be properly used to understand cosmic ray origins. Our project was directed at the neglected aspects of lepton acceleration. We showed that the efficiency of lepton acceleration depended critically on the lepton injection energy. We showed that, even when infection effects are not important, that proton and lepton distribution functions produced by shocks are quite different in the critical energy range for producing the observed synchrotron emission. We also showed that transrelativistic effects produced proton spectra that were not in agreement with standard results from radio observations, but that the lepton spectra were, in fact, consistent with observations. We performed simulations of relativistic shocks (shocks where the flow speed is a sizable fraction of the speed of light) and discovered some interesting effects. We first demonstrated the power of the Monte Carlo technique by determining the shock jump conditions in relativistic shocks. We then proceeded to determine how relativistic shocks accelerate particles. We found that nonlinear relativistic shocks treat protons and leptons even more differently than nonrelativistic shocks. The transrelativistic effects on the shock structure from the heavy ion component reduces the lepton acceleration to a tiny fraction of the ion acceleration. This effect is dramatic even if high energy leptons (many times thermal energy) are injected, and was totally unexpected. Our results have important

  10. Laser Ion Acceleration Control

    NASA Astrophysics Data System (ADS)

    Kawata, Shigeo; Nagashima, T.; Izumiyama, T.; Sato, D.; Takano, M.; Barada, D.; Ma, Y. Y.; Gu, Y. J.; Kong, Q.; Wang, P. X.; Wang, W. M.

    2013-10-01

    An intense femtosecond pulsed laser is employed to accelerate ions. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching, the ion particle energy control, etc. In the study particle computer simulations were performed to solve the issues, and each component was designed to control the ion beam quality. When an intense laser illuminates a target, electrons in the target are accelerated and leave from the target; temporarily a strong electric field is formed between the high-energy electrons and the target ions, and the target ions are accelerated. The energy efficiency from the laser to ions was improved by using a solid target with a fine sub-wavelength structure or by a near critical density gas plasma. The ion beam collimation was realized by holes behind the solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching were successfully realized by a multi-stage laser-target interaction. The present study proposed a novel concept for a future compact laser ion accelerator, based on each component study required to control the ion beam quality and parameters. Partly supported by JSPS, MEXT, CORE, Japan/US Cooperation program, ASHULA and ILE/Osaka University.

  11. Dielectric laser accelerators

    NASA Astrophysics Data System (ADS)

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  12. Electrostatic Plasma Accelerator (EPA)

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1989-01-01

    The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass. The goal of the present program is to demonstrate feasibility of the EPA thruster concept through experimental and theoretical investigations of the EPA acceleration mechanism and discharge chamber performance. Experimental investigations will include operating the test bed ion (TBI) engine as an EPA thruster and parametrically varying the thruster geometry and operating conditions to quantify the electrostatic plasma acceleration effect. The theoretical investigations will include the development of a discharge chamber model which describes the relationships between the engine size, plasma properties, and overall performance. For the EPA thruster to be a viable propulsion concept, overall thruster efficiencies approaching 30% with specific impulses approaching 1000 s must be achieved.

  13. Advanced accelerator theory development

    SciTech Connect

    Sampayan, S.E.; Houck, T.L.; Poole, B.; Tishchenko, N.; Vitello, P.A.; Wang, I.

    1998-02-09

    A new accelerator technology, the dielectric wall accelerator (DWA), is potentially an ultra compact accelerator/pulsed power driver. This new accelerator relies on three new components: the ultra-high gradient insulator, the asymmetric Blumlein and low jitter switches. In this report, we focused our attention on the first two components of the DWA system the insulators and the asymmetric Blumlein. First, we sought to develop the necessary design tools to model and scale the behavior of the high gradient insulator. To perform this task we concentrated on modeling the discharge processes (i.e., initiation and creation of the surface discharge). In addition, because these high gradient structures exhibit favorable microwave properties in certain accelerator configurations, we performed experiments and calculations to determine the relevant electromagnetic properties. Second, we performed circuit modeling to understand energy coupling to dynamic loads by the asymmetric Blumlein. Further, we have experimentally observed a non-linear coupling effect in certain asymmetric Blumlein configurations. That is, as these structures are stacked into a complete module, the output voltage does not sum linearly and a lower than expected output voltage results. Although we solved this effect experimentally, we performed calculations to understand this effect more fully to allow better optimization of this DWA pulse-forming line system.

  14. Staff Meetings: An Opportunity for Accelerated Training of Employees.

    ERIC Educational Resources Information Center

    Pattison, Sherry A.

    2001-01-01

    Accelerated learning techniques for training incorporated into staff meetings were designed to address different learning styles and modalities. The use of experiential games and multisensory whole-brain approaches was engaging and motivating. (Contains 25 references.) (SK)

  15. Acceleration and Velocity Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truax, Roger

    2016-01-01

    A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an Autoregressive Moving Average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. shape sensing, fiber optic strain sensor, system equivalent reduction and expansion process.

  16. Accelerator Science: Collider vs. Fixed Target

    SciTech Connect

    Lincoln, Don

    2016-09-07

    Particle physics experiments employ high energy particle accelerators to make their measurements. However there are many kinds of particle accelerators with many interesting techniques. One important dichotomy is whether one takes a particle beam and have it hit a stationary target of atoms, or whether one takes two counter rotating beams of particles and smashes them together head on. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of these two powerful methods of exploring the rules of the universe.

  17. Solar Energetic Particles: Acceleration and Observations

    NASA Astrophysics Data System (ADS)

    Sako, Takashi

    Research of solar energetic particles (SEPs) is important in understanding particle acceleration, transport and interactions taking place in the universe. The importance of space weather to modern human life is also increasing. In this lecture, I introduce a selected subset of SEP observations together with observation techniques and future plans. The aim is to connect these SEP observations with associated particle acceleration mechanisms and the subsequent transport and interaction processes. Because the observational properties are determined by different processes, a wide range of observations is necessary in order to fully understand the phenomena taking place. I will also give an overview of the role of the SEP studies in general astrophysics.

  18. Accelerator Science: Collider vs. Fixed Target

    ScienceCinema

    Lincoln, Don

    2016-09-21

    Particle physics experiments employ high energy particle accelerators to make their measurements. However there are many kinds of particle accelerators with many interesting techniques. One important dichotomy is whether one takes a particle beam and have it hit a stationary target of atoms, or whether one takes two counter rotating beams of particles and smashes them together head on. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of these two powerful methods of exploring the rules of the universe.

  19. Plasma-based accelerator structures

    SciTech Connect

    Schroeder, Carl B.

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  20. The fabrication of millimeter-wavelength accelerating structures

    SciTech Connect

    Chou, P.J.; Bowden, G.B.; Copeland, M.R.

    1996-11-01

    There is a growing interest in the development of high gradient ({ge} 1 GeV/m) accelerating structures. The need for high gradient acceleration based on current microwave technology requires the structures to be operated in the millimeter wavelength. Fabrication of accelerating structures at millimeter scale with sub-micron tolerances poses great challenges. The accelerating structures impose strict requirements on surface smoothness and finish to suppress field emission and multipactor effects. Various fabrication techniques based on conventional machining and micromachining have been evaluated and tested. These will be discussed and measurement results presented.

  1. Perturbations for transient acceleration

    SciTech Connect

    Vargas, Cristofher Zuñiga; Zimdahl, Winfried; Hipólito-Ricaldi, Wiliam S. E-mail: hipolito@ceunes.ufes.br

    2012-04-01

    According to the standard ΛCDM model, the accelerated expansion of the Universe will go on forever. Motivated by recent observational results, we explore the possibility of a finite phase of acceleration which asymptotically approaches another period of decelerated expansion. Extending an earlier study on a corresponding homogeneous and isotropic dynamics, in which interactions between dark matter and dark energy are crucial, the present paper also investigates the dynamics of the matter perturbations both on the Newtonian and General Relativistic (GR) levels and quantifies the potential relevance of perturbations of the dark-energy component. In the background, the model is tested against the Supernova type Ia (SNIa) data of the Constitution set and on the perturbative level against growth rate data, among them those of the WiggleZ survey, and the data of the 2dFGRS project. Our results indicate that a transient phase of accelerated expansion is not excluded by current observations.

  2. Uniform acceleration in general relativity

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov; Scarr, Tzvi

    2015-10-01

    We extend de la Fuente and Romero's (Gen Relativ Gravit 47:33, 2015) defining equation for uniform acceleration in a general curved spacetime from linear acceleration to the full Lorentz covariant uniform acceleration. In a flat spacetime background, we have explicit solutions. We use generalized Fermi-Walker transport to parallel transport the Frenet basis along the trajectory. In flat spacetime, we obtain velocity and acceleration transformations from a uniformly accelerated system to an inertial system. We obtain the time dilation between accelerated clocks. We apply our acceleration transformations to the motion of a charged particle in a constant electromagnetic field and recover the Lorentz-Abraham-Dirac equation.

  3. Microelectromechanical acceleration-sensing apparatus

    DOEpatents

    Lee, Robb M.; Shul, Randy J.; Polosky, Marc A.; Hoke, Darren A.; Vernon, George E.

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  4. Diffusive Shock Acceleration

    NASA Astrophysics Data System (ADS)

    Baring, Matthew

    2003-04-01

    The process of diffusive acceleration of charged particles in shocked plasmas is widely invoked in astrophysics to account for the ubiquitous presence of signatures of non-thermal relativistic electrons and ions in the universe. This statistical energization mechanism, manifested in turbulent media, was first posited by Enrico Fermi in 1949 to explain the observed cosmic ray population, which exhibits an almost power-law distribution in rigidity. The absence of a momentum scale is a key characteristic of diffusive shock acceleration, and astrophysical systems generally only impose scales at the injection (low energy) and loss (high energy) ends of the particle spectrum. The existence of structure in the cosmic ray spectrum (the "knee") at around 3000 TeV has promoted contentions that there are at least two origins for cosmic rays, a galactic one supplying those up to the knee, and perhaps an extragalactic one that can explain even the ultra-high energy cosmic rays (UHECRs) seen at 1-300 EeV. Accounting for the UHECRs with familiar astrophysical sites of acceleration has historically proven difficult due to the need to assume high magnetic fields in order to reduce the shortest diffusive acceleration timescale, the ion gyroperiod, to meaningful values. Yet active galaxies and gamma-ray bursts remain strong and interesting candidate sources for UHECRs, turning the theoretical focus to relativistic shocks. This review summarizes properties of diffusive shock acceleration that are salient to the issue of UHECR generation. These include spectral indices, anisotropies, acceleration efficencies and timescales, as functions of the shock speed and mean field orientation, and also the degree of field turbulence. Astrophysical sites for UHECR production are also critiqued.

  5. 'Light Sail' Acceleration Reexamined

    SciTech Connect

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for 'optimal' values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple 'light sail' model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  6. HIGH GRADIENT INDUCTION ACCELERATOR

    SciTech Connect

    Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2007-06-21

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.

  7. "Light sail" acceleration reexamined.

    PubMed

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for "optimal" values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple "light sail" model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  8. High intensity hadron accelerators

    SciTech Connect

    Teng, L.C.

    1989-05-01

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics.

  9. GPU Accelerated Vector Median Filter

    NASA Technical Reports Server (NTRS)

    Aras, Rifat; Shen, Yuzhong

    2011-01-01

    Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .

  10. Accelerometer Data Analysis and Presentation Techniques

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; Moskowitz, Milton E.; Reckart, Timothy

    1997-01-01

    The NASA Lewis Research Center's Principal Investigator Microgravity Services project analyzes Orbital Acceleration Research Experiment and Space Acceleration Measurement System data for principal investigators of microgravity experiments. Principal investigators need a thorough understanding of data analysis techniques so that they can request appropriate analyses to best interpret accelerometer data. Accelerometer data sampling and filtering is introduced along with the related topics of resolution and aliasing. Specific information about the Orbital Acceleration Research Experiment and Space Acceleration Measurement System data sampling and filtering is given. Time domain data analysis techniques are discussed and example environment interpretations are made using plots of acceleration versus time, interval average acceleration versus time, interval root-mean-square acceleration versus time, trimmean acceleration versus time, quasi-steady three dimensional histograms, and prediction of quasi-steady levels at different locations. An introduction to Fourier transform theory and windowing is provided along with specific analysis techniques and data interpretations. The frequency domain analyses discussed are power spectral density versus frequency, cumulative root-mean-square acceleration versus frequency, root-mean-square acceleration versus frequency, one-third octave band root-mean-square acceleration versus frequency, and power spectral density versus frequency versus time (spectrogram). Instructions for accessing NASA Lewis Research Center accelerometer data and related information using the internet are provided.

  11. A new perspective on global mean sea level (GMSL) acceleration

    NASA Astrophysics Data System (ADS)

    Watson, Phil J.

    2016-06-01

    The vast body of contemporary climate change science is largely underpinned by the premise of a measured acceleration from anthropogenic forcings evident in key climate change proxies -- greenhouse gas emissions, temperature, and mean sea level. By virtue, over recent years, the issue of whether or not there is a measurable acceleration in global mean sea level has resulted in fierce, widespread professional, social, and political debate. Attempts to measure acceleration in global mean sea level (GMSL) have often used comparatively crude analysis techniques providing little temporal instruction on these key questions. This work proposes improved techniques to measure real-time velocity and acceleration based on five GMSL reconstructions spanning the time frame from 1807 to 2014 with substantially improved temporal resolution. While this analysis highlights key differences between the respective reconstructions, there is now more robust, convincing evidence of recent acceleration in the trend of GMSL.

  12. Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

    2011-07-15

    Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

  13. Trends in accelerator technology for hadron therapy

    NASA Astrophysics Data System (ADS)

    Kostromin, S. A.; Syresin, E. M.

    2013-12-01

    Hadron therapy with protons and carbon ions is one of the most effective branches in radiation oncology. It has advantages over therapy using gamma radiation and electron beams. Fifty thousand patients a year need such treatment in Russia. A review of the main modern trends in the development of accelerators for therapy and treatment techniques concerned with respiratory gated irradiation and scanning with the intensity modulated pencil beams is given. The main stages of formation, time structure, and the main parameters of the beams used in proton therapy, as well as the requirements for medicine accelerators, are considered. The main results of testing with the beam of the C235-V3 cyclotron for the first Russian specialized hospital proton therapy center in Dimitrovgrad are presented. The use of superconducting accelerators and gantry systems for hadron therapy is considered.

  14. High average power linear induction accelerator development

    SciTech Connect

    Bayless, J.R.; Adler, R.J.

    1987-07-01

    There is increasing interest in linear induction accelerators (LIAs) for applications including free electron lasers, high power microwave generators and other types of radiation sources. Lawrence Livermore National Laboratory has developed LIA technology in combination with magnetic pulse compression techniques to achieve very impressive performance levels. In this paper we will briefly discuss the LIA concept and describe our development program. Our goals are to improve the reliability and reduce the cost of LIA systems. An accelerator is presently under construction to demonstrate these improvements at an energy of 1.6 MeV in 2 kA, 65 ns beam pulses at an average beam power of approximately 30 kW. The unique features of this system are a low cost accelerator design and an SCR-switched, magnetically compressed, pulse power system. 4 refs., 7 figs.

  15. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  16. Accelerating ab initio molecular dynamics simulations by linear prediction methods

    NASA Astrophysics Data System (ADS)

    Herr, Jonathan D.; Steele, Ryan P.

    2016-09-01

    Acceleration of ab initio molecular dynamics (AIMD) simulations can be reliably achieved by extrapolation of electronic data from previous timesteps. Existing techniques utilize polynomial least-squares regression to fit previous steps' Fock or density matrix elements. In this work, the recursive Burg 'linear prediction' technique is shown to be a viable alternative to polynomial regression, and the extrapolation-predicted Fock matrix elements were three orders of magnitude closer to converged elements. Accelerations of 1.8-3.4× were observed in test systems, and in all cases, linear prediction outperformed polynomial extrapolation. Importantly, these accelerations were achieved without reducing the MD integration timestep.

  17. Pulsed power for particle beam accelerators in military applications

    SciTech Connect

    Smith, I.D.

    1980-06-20

    Techniques useful for generating and conditioning power for high energy pulsed accelerators with potential weapon applications are described. Pulsed electron accelerators are exemplified by ETA and ATA at Lawrence Livermore Laboratories and RADLAC at Sandia Laboratories Albuquerque. Pulse-power techniques used in other applications are briefly mentioned, including some that may be useful for collective ion accelerators. The limitations of pulse-power and the general directions of desirable development are illustrated. The main needs are to increase repetition rate and to decrease size.

  18. Radioisotope Dating with Accelerators.

    ERIC Educational Resources Information Center

    Muller, Richard A.

    1979-01-01

    Explains a new method of detecting radioactive isotopes by counting their accelerated ions rather than the atoms that decay during the counting period. This method increases the sensitivity by several orders of magnitude, and allows one to find the ages of much older and smaller samples. (GA)

  19. Accelerated Management Development

    ERIC Educational Resources Information Center

    Munn, Kenn

    1974-01-01

    Western Electric's accelerated management development program for hand picked college graduate students consists of a high risk training project in which the management candidate accomplishes his task or is terminated. The success of such projects puts candidates in third level management in seven years or half the normal time. (DS)

  20. FPGA Verification Accelerator (FVAX)

    NASA Technical Reports Server (NTRS)

    Oh, Jane; Burke, Gary

    2008-01-01

    Is Verification Acceleration Possible? - Increasing the visibility of the internal nodes of the FPGA results in much faster debug time - Forcing internal signals directly allows a problem condition to be setup very quickly center dot Is this all? - No, this is part of a comprehensive effort to improve the JPL FPGA design and V&V process.