Science.gov

Sample records for accelerator applications aaa

  1. Monte Carlo evaluation of the AAA treatment planning algorithm in a heterogeneous multilayer phantom and IMRT clinical treatments for an Elekta SL25 linear accelerator

    SciTech Connect

    Sterpin, E.; Tomsej, M.; Smedt, B. de; Reynaert, N.; Vynckier, S.

    2007-05-15

    The Anisotropic Analytical Algorithm (AAA) is a new pencil beam convolution/superposition algorithm proposed by Varian for photon dose calculations. The configuration of AAA depends on linear accelerator design and specifications. The purpose of this study was to investigate the accuracy of AAA for an Elekta SL25 linear accelerator for small fields and intensity modulated radiation therapy (IMRT) treatments in inhomogeneous media. The accuracy of AAA was evaluated in two studies. First, AAA was compared both with Monte Carlo (MC) and the measurements in an inhomogeneous phantom simulating lung equivalent tissues and bone ribs. The algorithm was tested under lateral electronic disequilibrium conditions, using small fields (2x2 cm{sup 2}). Good agreement was generally achieved for depth dose and profiles, with deviations generally below 3% in lung inhomogeneities and below 5% at interfaces. However, the effects of attenuation and scattering close to the bone ribs were not fully taken into account by AAA, and small inhomogeneities may lead to planning errors. Second, AAA and MC were compared for IMRT plans in clinical conditions, i.e., dose calculations in a computed tomography scan of a patient. One ethmoid tumor, one orophaxynx and two lung tumors are presented in this paper. Small differences were found between the dose volume histograms. For instance, a 1.7% difference for the mean planning target volume dose was obtained for the ethmoid case. Since better agreement was achieved for the same plans but in homogeneous conditions, these differences must be attributed to the handling of inhomogeneities by AAA. Therefore, inherent assumptions of the algorithm, principally the assumption of independent depth and lateral directions in the scaling of the kernels, were slightly influencing AAA's validity in inhomogeneities. However, AAA showed a good accuracy overall and a great ability to handle small fields in inhomogeneous media compared to other pencil beam convolution

  2. Monte carlo evaluation of the AAA treatment planning algorithm in a heterogeneous multilayer phantom and IMRT clinical treatments for an Elekta SL25 linear accelerator.

    PubMed

    Sterpin, E; Tomsej, M; De Smedt, B; Reynaert, N; Vynckier, S

    2007-05-01

    The Anisotropic Analytical Algorithm (AAA) is a new pencil beam convolution/superposition algorithm proposed by Varian for photon dose calculations. The configuration of AAA depends on linear accelerator design and specifications. The purpose of this study was to investigate the accuracy of AAA for an Elekta SL25 linear accelerator for small fields and intensity modulated radiation therapy (IMRT) treatments in inhomogeneous media. The accuracy of AAA was evaluated in two studies. First, AAA was compared both with Monte Carlo (MC) and the measurements in an inhomogeneous phantom simulating lung equivalent tissues and bone ribs. The algorithm was tested under lateral electronic disequilibrium conditions, using small fields (2 x 2 cm(2)). Good agreement was generally achieved for depth dose and profiles, with deviations generally below 3% in lung inhomogeneities and below 5% at interfaces. However, the effects of attenuation and scattering close to the bone ribs were not fully taken into account by AAA, and small inhomogeneities may lead to planning errors. Second, AAA and MC were compared for IMRT plans in clinical conditions, i.e., dose calculations in a computed tomography scan of a patient. One ethmoid tumor, one orophaxynx and two lung tumors are presented in this paper. Small differences were found between the dose volume histograms. For instance, a 1.7% difference for the mean planning target volume dose was obtained for the ethmoid case. Since better agreement was achieved for the same plans but in homogeneous conditions, these differences must be attributed to the handling of inhomogeneities by AAA. Therefore, inherent assumptions of the algorithm, principally the assumption of independent depth and lateral directions in the scaling of the kernels, were slightly influencing AAA's validity in inhomogeneities. However, AAA showed a good accuracy overall and a great ability to handle small fields in inhomogeneous media compared to other pencil beam convolution

  3. Abdominal Aortic Aneurysm (AAA)

    MedlinePlus

    ... Professions Site Index A-Z Abdominal Aortic Aneurysm (AAA) Abdominal aortic aneurysm (AAA) occurs when atherosclerosis or plaque buildup causes the ... weak and bulge outward like a balloon. An AAA develops slowly over time and has few noticeable ...

  4. University Programs of the U.S. Department of Energy Advance Accelerator Applications Program

    SciTech Connect

    Beller, D. E.

    2002-01-01

    The Advanced Accelerator Applications (AAA) Program was initiated in fiscal year 2001 (FY01) by the U.S. Congress, the U.S. Department of Energy (DOE), and the Los Alamos National Laboratory (LANL) in partnership with other national laboratories. The primary goal of this program is to investigate the feasibility of accelerator-driven transmutation of nuclear waste (ATW). Because a large cadre of educated scientists and trained technicians will be needed to conduct the investigations of science and technology for transmutation, the AAA Program Office has begun a multi-year program to involve university faculty and students in various phases of the Project.

  5. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  6. Accelerators for research and applications

    SciTech Connect

    Alonso, J.R.

    1990-06-01

    The newest particle accelerators are almost always built for extending the frontiers of research, at the cutting edge of science and technology. Once these machines are operating and these technologies mature, new applications are always found, many of which touch our lives in profound ways. The evolution of accelerator technologies will be discussed, with descriptions of accelerator types and characteristics. The wide range of applications of accelerators will be discussed, in fields such as nuclear science, medicine, astrophysics and space-sciences, power generation, airport security, materials processing and microcircuit fabrication. 13 figs.

  7. AAA Foundation for Traffic Safety

    MedlinePlus

    ... of Top Deadly Mistakes Made by Teen Drivers -- AAA AAA: Road debris causes avoidable crashes, deaths Save the ... Analyst Associate Researcher Program Coordinator Stay Tuned New AAA Foundation for Traffic Safety website coming Fall 2017 ...

  8. AAAS: Politics. . . and Science

    ERIC Educational Resources Information Center

    Science News, 1978

    1978-01-01

    Reviews topics discussed during the American Association for the Advancement of Science (AAAS) meeting held in Washington, D.C. Topics included: the equal rights amendment, laetrile, nuclear radiation hazards, sociobiology, and various science topics. (SL)

  9. University programs of the U.S. Department of Energy advanced accelerator applications program

    SciTech Connect

    Beller, D. E.; Ward, T. E.; Bresee, J. C.

    2001-01-01

    The Advanced Accelerator Applications (AAA) Program was initiated in fiscal year 2001 (FY-01) by the U.S. Congress, the U.S. Department of Energy (DOE), and the Los Alamos National Laboratory (LANL) in partnership with other national laboratories. The primary goal of this program is to investigate the feasibility of transmutation of nuclear waste. An Accelerator-Driven Test Facility (ADTF), which may be built during the first decade of the 21st Century, is a major component of this effort. The ADTF would include a large, state-of-the-art charged-particle accelerator, proton-neutron target systems, and accelerator-driven R&D systems. This new facility and its underlying science and technology will require a large cadre of educated scientists and trained technicians. In addition, other applications of nuclear science and engineering (e.g., proliferation monitoring and defense, nuclear medicine, safety regulation, industrial processes, and many others) require increased academic and national infrastructure and student populations. Thus, the AAA Program Office has begun a multi-year program to involve university faculty and students in various phases of the Project to support the infrastructure requirements of nuclear energy, science and technology fields as well as the special needs of the DOE transmutation program. In this paper we describe university programs that have supported, are supporting, and will support the R&D necessary for the AAA Project. Previous work included research for the Accelerator Transmutation of Waste (ATW) project, current (FY-01) programs include graduate fellowships and research for the AAA Project, and it is expected that future programs will expand and add to the existing programs.

  10. Detectors for Accelerator-Based Security Applications

    NASA Astrophysics Data System (ADS)

    Warren, Glen A.; Stave, Sean C.; Miller, Erin A.

    We present a review of detector systems used in accelerator-based security applications. The applications discussed span stockpile stewardship, material interdiction, treaty verification, and spent nuclear fuel assay. The challenge for detectors in accelerator-based applications is the separation of the desired signal from the background, frequently during high input count rates. Typical techniques to address the background challenge include shielding, timing, selection of sensitive materials, and choice of accelerator.

  11. Applications of Electron Linear Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Westenskow*, Glen; Chen, Yu-Jiuan

    Linear Induction Accelerators (LIAs) can readily produce intense electron beams. For example, the ATA accelerator produced a 500 GW beam and the LIU-30 a 4 TW beam (see Chap. 2). Since the induction accelerator concept was proposed in the late 1950s [1, 2], there have been many proposed schemes to convert the beam power to other forms. Categories of applications that have been demonstrated for electron LIAs include:

  12. Rail accelerator technology and applications

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.

    1985-01-01

    Rail accelerators offer a viable means of launching ton-size payloads from the Earth's surface to space. The results of two mission studies which indicate that an Earth-to-Space Rail Launcher (ESRL) system is not only technically feasible but also economically beneficial, particularly when large amounts of bulk cago are to be delivered to space are given. An in-house experimental program at the Lewis Research Center (LeRC) was conducted in parallel with the mission studies with the objective of examining technical feasibility issues. A 1 m long - 12.5 by 12.5 mm bore rail accelerator as designed with clear polycarbonate sidewalls to visually observe the plasma armature acceleration. The general character of plasma/projectile dynamics is described for a typical test firing.

  13. Application accelerator system having bunch control

    DOEpatents

    Wang, D.; Krafft, G.A.

    1999-06-22

    An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig.

  14. Application accelerator system having bunch control

    DOEpatents

    Wang, Dunxiong; Krafft, Geoffrey Arthur

    1999-01-01

    An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.

  15. Accelerated Application Development: The ORNL Titan Experience

    DOE PAGES

    Joubert, Wayne; Archibald, Richard K.; Berrill, Mark A.; ...

    2015-05-09

    The use of computational accelerators such as NVIDIA GPUs and Intel Xeon Phi processors is now widespread in the high performance computing community, with many applications delivering impressive performance gains. However, programming these systems for high performance, performance portability and software maintainability has been a challenge. In this paper we discuss experiences porting applications to the Titan system. Titan, which began planning in 2009 and was deployed for general use in 2013, was the first multi-petaflop system based on accelerator hardware. To ready applications for accelerated computing, a preparedness effort was undertaken prior to delivery of Titan. In this papermore » we report experiences and lessons learned from this process and describe how users are currently making use of computational accelerators on Titan.« less

  16. Accelerated Application Development: The ORNL Titan Experience

    SciTech Connect

    Joubert, Wayne; Archibald, Richard K.; Berrill, Mark A.; Brown, W. Michael; Eisenbach, Markus; Grout, Ray; Larkin, Jeff; Levesque, John; Messer, Bronson; Norman, Matthew R.; Philip, Bobby; Sankaran, Ramanan; Tharrington, Arnold N.; Turner, John A.

    2015-05-09

    The use of computational accelerators such as NVIDIA GPUs and Intel Xeon Phi processors is now widespread in the high performance computing community, with many applications delivering impressive performance gains. However, programming these systems for high performance, performance portability and software maintainability has been a challenge. In this paper we discuss experiences porting applications to the Titan system. Titan, which began planning in 2009 and was deployed for general use in 2013, was the first multi-petaflop system based on accelerator hardware. To ready applications for accelerated computing, a preparedness effort was undertaken prior to delivery of Titan. In this paper we report experiences and lessons learned from this process and describe how users are currently making use of computational accelerators on Titan.

  17. Physics and Accelerator Applications of RF Superconductivity

    SciTech Connect

    H. Padamsee; K. W. Shepard; Ron Sundelin

    1993-12-01

    A key component of any particle accelerator is the device that imparts energy gain to the charged particle. This is usually an electromagnetic cavity resonating at a microwave frequency, chosen between 100 and 3000 MHz. Serious attempts to utilize superconductors for accelerating cavities were initiated more than 25 years ago with the acceleration of electrons in a lead-plated resonator at Stanford University (1). The first full-scale accelerator, the Stanford SCA, was completed in 1978 at the High Energy Physics Laboratory (HEPL) (2). Over the intervening one and a half decades, superconducting cavities have become increasingly important to particle accelerators for nuclear physics and high energy physics. For continuous operation, as is required for many applications, the power dissipation in the walls of a copper structure is quite substantial, for example, 0.1 megawatts per meter of structure operating at an accelerating field of 1 million volts/meter (MV/m). since losses increase as the square of the accelerating field, copper cavities become severely uneconomical as demand for higher fields grows with the higher energies called for by experimenters to probe ever deeper into the structure of matter. Rf superconductivity has become an important technology for particle accelerators. Practical structures with attractive performance levels have been developed for a variety of applications, installed in the targeted accelerators, and operated over significant lengths of time. Substantial progress has been made in understanding field and Q limitations and in inventing cures to advance performance. The technical and economical potential of rf superconductivity makes it an important candidate for future advanced accelerators for free electron lasers, for nuclear physics, and for high energy physics, at the luminosity as well as at the energy frontiers.

  18. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    collider and neutrino factory - summary of working group 2 / J. Galambos, R. Garoby and S. Geer -- Prospects for a very high power CW SRF linac / R. A. Rimmer -- Indian accelerator program for ADS applications / V. C. Sahni and P. Singh -- Ion accelerator activities at VECC (particularly, operating at low temperature) / R. K. Bhandari -- Chinese efforts in high intensity proton accelerators / S. Fu, J. Wang and S. Fang -- ADSR activity in the UK / R. J. Barlow -- ADS development in Japan / K. Kikuchi -- Project-X, SRF, and very large power stations / C. M. Ankenbrandt, R. P. Johnson and M. Popovic -- Power production and ADS / R. Raja -- Experimental neutron source facility based on accelerator driven system / Y. Gohar -- Transmutation mission / W. S. Yang -- Safety performance and issues / J. E. Cahalan -- Spallation target design for accelerator-driven systems / Y. Gohar -- Design considerations for accelerator transmutation of waste system / W. S. Yang -- Japan ADS program / T. Sasa -- Overview of members states' and IAEA activities in the field of Accelerator Driven Systems (ADS) / A. Stanculescu -- Linac for ADS applications - accelerator technologies / R. W. Garnett and R. L. Sheffield -- SRF linacs and accelerator driven sub-critical systems - summary working groups 3 & 4 / J. Delayen -- Production of Actinium-225 via high energy proton induced spallation of Thorium-232 / J. Harvey ... [et al.] -- Search for the electric dipole moment of Radium-225 / R. J. Holt, Z.-T. Lu and R. Mueller -- SRF linac and material science and medicine - summary of working group 5 / J. Nolen, E. Pitcher and H. Kirk.

  19. Validation of the Eclipse AAA algorithm at extended SSD.

    PubMed

    Hussain, Amjad; Villarreal-Barajas, Eduardo; Brown, Derek; Dunscombe, Peter

    2010-06-08

    The accuracy of dose calculations at extended SSD is of significant importance in the dosimetric planning of total body irradiation (TBI). In a first step toward the implementation of electronic, multi-leaf collimator compensation for dose inhomogeneities and surface contour in TBI, we have evaluated the ability of the Eclipse AAA to accurately predict dose distributions in water at extended SSD. For this purpose, we use the Eclipse AAA algorithm, commissioned with machine-specific beam data for a 6 MV photon beam, at standard SSD (100 cm). The model was then used for dose distribution calculations at extended SSD (179.5 cm). Two sets of measurements were acquired for a 6 MV beam (from a Varian linear accelerator) in a water tank at extended SSD: i) open beam for 5 x 5, 10 x 10, 20 x 20 and 40 x 40 cm2 field sizes (defined at 179.5 cm SSD), and ii) identical field sizes but with a 1.3 cm thick acrylic spoiler placed 10 cm above the water surface. Dose profiles were acquired at 5 cm, 10 cm and 20 cm depths. Dose distributions for the two setups were calculated using the AAA algorithm in Eclipse. Confidence limits for comparisons between measured and calculated absolute depth dose curves and normalized dose profiles were determined as suggested by Venselaar et al. The confidence limits were within 2% and 2 mm for both setups. Extended SSD calculations were also performed using Eclipse AAA, commissioned with Varian Golden beam data at standard SSD. No significant difference between the custom commissioned and Golden Eclipse AAA was observed. In conclusion, Eclipse AAA commissioned at standard SSD can be used to accurately predict dose distributions in water at extended SSD for 6 MV open beams.

  20. New Advanced Dielectric Materials for Accelerator Applications

    SciTech Connect

    Kanareykin, A.

    2010-11-04

    We present our recent results on the development and experimental testing of advanced dielectric materials that are capable of supporting the high RF electric fields generated by electron beams or pulsed high power microwaves. These materials have been optimized or specially designed for accelerator applications. The materials discussed here include low loss microwave ceramics, quartz, Chemical Vapor Deposition diamonds and nonlinear Barium Strontium Titanate based ferroelectrics.

  1. Accelerators for Discovery Science and Security applications

    NASA Astrophysics Data System (ADS)

    Todd, A. M. M.; Bluem, H. P.; Jarvis, J. D.; Park, J. H.; Rathke, J. W.; Schultheiss, T. J.

    2015-05-01

    Several Advanced Energy Systems (AES) accelerator projects that span applications in Discovery Science and Security are described. The design and performance of the IR and THz free electron laser (FEL) at the Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin that is now an operating user facility for physical chemistry research in molecular and cluster spectroscopy as well as surface science, is highlighted. The device was designed to meet challenging specifications, including a final energy adjustable in the range of 15-50 MeV, low longitudinal emittance (<50 keV-psec) and transverse emittance (<20 π mm-mrad), at more than 200 pC bunch charge with a micropulse repetition rate of 1 GHz and a macropulse length of up to 15 μs. Secondly, we will describe an ongoing effort to develop an ultrafast electron diffraction (UED) source that is scheduled for completion in 2015 with prototype testing taking place at the Brookhaven National Laboratory (BNL) Accelerator Test Facility (ATF). This tabletop X-band system will find application in time-resolved chemical imaging and as a resource for drug-cell interaction analysis. A third active area at AES is accelerators for security applications where we will cover some top-level aspects of THz and X-ray systems that are under development and in testing for stand-off and portal detection.

  2. a Geoscience Accelerator Library - Design and Applications

    NASA Astrophysics Data System (ADS)

    Hill, C.; Richardson, A.

    2010-12-01

    Accelerator technologies such as GPUs are potentially powerful tools for geophysical problems, but programming them still involves somewhat idiosyncratic software practices. In our talk, we will describe a geoscience accelerated kernels library (GeAccKL) we have been developing to allow geoscience fluid algorithms to exploit CUDA and OpenCL based platforms. The GeAccKL library is a collection of tools for building, time-stepping, finite-volume based simulators. At its heart the library consists of functions evaluating discrete forms of key equation kernels that are common to many geoscience codes. We implement kernels for equations by making use of templating and simple compiler techniques to accommodate applications that use a range of data structures and discrete stencils. From these kernel templates we can create specific instances of library code suitable for a particular application scenario. For example we can accommodate different grid staggerings for dynamical variables and different indexing and array layout conventions. The design allows kernels to be chained together so that data structures can persist in device memory between kernel calls. In this way multiple timesteps can be evaluated on a GPU accelerator with minimal device memory to host memory transfer. Parallelism across multiple GPUs is supported through either transfers within multi-threaded process shared memory or through messaging between process address spaces. This allows parallel multi-GPU execution within a single system and across GPUs in a cluster. We will illustrate our library in action in three case studies. First we look at the use of the library to accelerate one part of a time-step in an atmospheric model simulation. Secondly we will look at the use of the library to perform all the intensive computations over several time steps in a time-stepping loop for an ocean transport model. Finally we will look at accelerating the computation of upstream routing calculations in a dynamic

  3. Accelerating molecular modeling applications with graphics processors.

    PubMed

    Stone, John E; Phillips, James C; Freddolino, Peter L; Hardy, David J; Trabuco, Leonardo G; Schulten, Klaus

    2007-12-01

    Molecular mechanics simulations offer a computational approach to study the behavior of biomolecules at atomic detail, but such simulations are limited in size and timescale by the available computing resources. State-of-the-art graphics processing units (GPUs) can perform over 500 billion arithmetic operations per second, a tremendous computational resource that can now be utilized for general purpose computing as a result of recent advances in GPU hardware and software architecture. In this article, an overview of recent advances in programmable GPUs is presented, with an emphasis on their application to molecular mechanics simulations and the programming techniques required to obtain optimal performance in these cases. We demonstrate the use of GPUs for the calculation of long-range electrostatics and nonbonded forces for molecular dynamics simulations, where GPU-based calculations are typically 10-100 times faster than heavily optimized CPU-based implementations. The application of GPU acceleration to biomolecular simulation is also demonstrated through the use of GPU-accelerated Coulomb-based ion placement and calculation of time-averaged potentials from molecular dynamics trajectories. A novel approximation to Coulomb potential calculation, the multilevel summation method, is introduced and compared with direct Coulomb summation. In light of the performance obtained for this set of calculations, future applications of graphics processors to molecular dynamics simulations are discussed.

  4. Very fast kicker for accelerator applications

    SciTech Connect

    Grishanov, B.I.; Podgorny, F.V.; Ruemmler, J.; Shiltsev, V.D.

    1996-11-01

    We describe a very fast counter traveling wave kicker with a full pulse width of about 7 ns. Successful test experiment has been done with hi-tech semiconductor technology FET pulse generator with a MHz- range repetition rates and maximum kick strength of the order of 3 G{center_dot}m. Further. increase of the strength seems to be quite possible with the FET pursers, that makes the kicker to be very useful tool for bunch-by-bunch injection/extraction and other accelerator applications.

  5. Accelerating DNA analysis applications on GPU clusters

    SciTech Connect

    Tumeo, Antonino; Villa, Oreste

    2010-06-13

    DNA analysis is an emerging application of high performance bioinformatic. Modern sequencing machinery are able to provide, in few hours, large input streams of data which needs to be matched against exponentially growing databases known fragments. The ability to recognize these patterns effectively and fastly may allow extending the scale and the reach of the investigations performed by biology scientists. Aho-Corasick is an exact, multiple pattern matching algorithm often at the base of this application. High performance systems are a promising platform to accelerate this algorithm, which is computationally intensive but also inherently parallel. Nowadays, high performance systems also include heterogeneous processing elements, such as Graphic Processing Units (GPUs), to further accelerate parallel algorithms. Unfortunately, the Aho-Corasick algorithm exhibits large performance variabilities, depending on the size of the input streams, on the number of patterns to search and on the number of matches, and poses significant challenges on current high performance software and hardware implementations. An adequate mapping of the algorithm on the target architecture, coping with the limit of the underlining hardware, is required to reach the desired high throughputs. Load balancing also plays a crucial role when considering the limited bandwidth among the nodes of these systems. In this paper we present an efficient implementation of the Aho-Corasick algorithm for high performance clusters accelerated with GPUs. We discuss how we partitioned and adapted the algorithm to fit the Tesla C1060 GPU and then present a MPI based implementation for a heterogeneous high performance cluster. We compare this implementation to MPI and MPI with pthreads based implementations for a homogeneous cluster of x86 processors, discussing the stability vs. the performance and the scaling of the solutions, taking into consideration aspects such as the bandwidth among the different nodes.

  6. Acceleration of Data Analysis Applications using GPUs

    NASA Astrophysics Data System (ADS)

    Fillmore, D.; Messmer, P.; Mullowney, P.; Amyx, K.

    2008-12-01

    The vast amount of data collected by present and future scientific instruments, sensors and numerical models requires a significant increase in computing power for analysis. In many cases, processing time on a single workstation becomes impractical. While clusters of commodity processors can be utilized to accelerate some of these tasks, the relatively high software development cost, as well as acquisition and operational costs, make them less attractive for broad use. Over the past few years, another class of architectures has gained some popularity, namely heterogeneous architectures, which consist of general purpose processors connected to specialized processors. One of the most prominent examples are Graphics Processing Units (GPUs), which offer a tremendous amount of floating-point processing power due to demand for high-quality graphics in the computer game market. However, in order to harness this processing power, software developers have to develop with a detailed understanding of the underlying hardware. This burden on the developer is often hardly justifiable considering the rapid evolution of the hardware. In this talk, we will introduce GPULib, an open source library that enables scientists to accelerate their data analysis tasks using the GPUs already installed in their system from within high-level languages like IDL or MATLAB, and present examples and possible speedup from real-world data analysis applications. This work is funded through NASA Phase II SBIR Grant NNG06CA13C.

  7. Symposium report on frontier applications of accelerators

    SciTech Connect

    Parsa, Z.

    1993-09-28

    This report contains viewgraph material on the following topics: Electron-Positron Linear Colliders; Unconventional Colliders; Prospects for UVFEL; Accelerator Based Intense Spallation; Neutron Sources; and B Physics at Hadron Accelerators with RHIC as an Example.

  8. BBU design of linear induction accelerator cells for radiography application

    SciTech Connect

    Shang, C.C.; Chen, Y.J.; Gaporaso, G.J.; Houck, T.L.; Molau, N.E.; Focklen, J.; Gregory, S.

    1997-05-06

    There is an ongoing effort to develop accelerating modules for high-current electron accelerators for advanced radiography application. Accelerating modules with low beam-cavity coupling impedances along with gap designs with acceptable field stresses comprise a set of fundamental design criteria. We examine improved cell designs which have been developed for accelerator application in several radiographic operating regimes. We evaluate interaction impedances, analyze the effects of beam structure coupling on beam dynamics (beam break-up instability and corkscrew motion). We also provide estimates of coupling through interesting new high-gradient insulators and evaluate their potential future application in induction cells.

  9. Application of particle accelerators in research.

    PubMed

    Mazzitelli, Giovanni

    2011-07-01

    Since the beginning of the past century, accelerators have started to play a fundamental role as powerful tools to discover the world around us, how the universe has evolved since the big bang and to develop fundamental instruments for everyday life. Although more than 15 000 accelerators are operating around the world only a very few of them are dedicated to fundamental research. An overview of the present high energy physics (HEP) accelerator status and prospectives is presented.

  10. Applications of particle accelerators in medicine.

    PubMed

    Silari, Marco

    2011-07-01

    There are nearly 20,000 particle accelerators in operation worldwide, about half of them employed for biomedical uses. This paper focuses on some recent advances in the two main medical domains where accelerators find their use, radionuclide production and radiation therapy. The paper first discusses the use of high-energy electron and proton accelerators for the potential, future production of (99)Mo, which is presently provided by fission reactors. Next, it reviews the rationale for the use of protons and carbon ions in cancer therapy, discussing the requirements imposed on accelerator technology and looking at some recent developments.

  11. Production and applications of neutrons using particle accelerators

    SciTech Connect

    Chichester, David L.

    2009-11-01

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  12. Pulsed electron accelerator for radiation technologies in the enviromental applications

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  13. Inhibitors of the AAA+ Chaperone p97

    PubMed Central

    Chapman, Eli; Maksim, Nick; de la Cruz, Fabian; La Clair, James J.

    2015-01-01

    It is remarkable that a pathway as ubiquitous as protein quality control can be targeted to treat cancer. Bortezomib, an inhibitor of the proteasome, was first approved by the US Food and Drug Administration (FDA) more than 10 years ago to treat refractory myeloma and later extended to lymphoma. Its use has increased the survival rate of myeloma patients by as much as three years. This success was followed with the recent accelerated approval of the natural product derived proteasome inhibitor carfilzomib (Kyprolis®), which is used to treat patients with bortezomib-resistant multiple myeloma. The success of these two drugs has validated protein quality control as a viable target to fight select cancers, but begs the question why are proteasome inhibitors limited to lymphoma and myeloma? More recently, these limitations have encouraged the search for additional targets within the protein quality control system that might offer heightened cancer cell specificity, enhanced clinical utility, a lower rate of resistance, reduced toxicity, and mitigated side effects. One promising target is p97, an ATPase associated with various cellular activities (AAA+) chaperone. p97 figures prominently in protein quality control as well as serving a variety of other cellular functions associated with cancer. More than a decade ago, it was determined that up-regulation of p97 in many forms of cancer correlates with a poor clinical outcome. Since these initial discoveries, a mechanistic explanation for this observation has been partially illuminated, but details are lacking. Understandably, given this clinical correlation, myriad roles within the cell, and its importance in protein quality control, p97 has emerged as a potential therapeutic target. This review provides an overview of efforts towards the discovery of small molecule inhibitors of p97, offering a synopsis of efforts that parallel the excellent reviews that currently exist on p97 structure, function, and physiology. PMID

  14. Applications of the Strategic Defense Initiative's compact accelerators

    NASA Technical Reports Server (NTRS)

    Montanarelli, Nick; Lynch, Ted

    1991-01-01

    The Strategic Defense Initiative's (SDI) investment in particle accelerator technology for its directed energy weapons program has produced breakthroughs in the size and power of new accelerators. These accelerators, in turn, have produced spinoffs in several areas: the radio frequency quadrupole linear accelerator (RFQ linac) was recently incorporated into the design of a cancer therapy unit at the Loma Linda University Medical Center, an SDI-sponsored compact induction linear accelerator may replace Cobalt-60 radiation and hazardous ethylene-oxide as a method for sterilizing medical products, and other SDIO-funded accelerators may be used to produce the radioactive isotopes oxygen-15, nitrogen-13, carbon-11, and fluorine-18 for positron emission tomography (PET). Other applications of these accelerators include bomb detection, non-destructive inspection, decomposing toxic substances in contaminated ground water, and eliminating nuclear waste.

  15. Overview of Accelerator Applications for Security and Defense

    DOE PAGES

    Antolak, Arlyn J.

    2015-01-01

    Particle accelerators play a key role in a broad set of defense and security applications including war-fighter and asset protection, cargo inspection, nonproliferation, materials characterization and stockpile stewardship. Accelerators can replace the high activity radioactive sources that pose a security threat for developing a radiological dispersal device and be used to produce isotopes for medical, industrial, and re-search purposes. Lastly, we present an overview of current and emerging accelerator technologies relevant to addressing the needs of defense and security.

  16. Overview of Accelerator Applications for Security and Defense

    NASA Astrophysics Data System (ADS)

    Antolak, Arlyn J.

    Particle accelerators play a key role in a broad set of defense and security applications, including war-fighter and asset protection, cargo inspection, nonproliferation, materials characterization, and stockpile stewardship. Accelerators can replace the high activity radioactive sources that pose a security threat to developing a radiological dispersal device, and, can be used to produce isotopes for medical, industrial, and research purposes. An overview of current and emerging accelerator technologies relevant to addressing the needs of defense and security is presented.

  17. Pathophysiology of AAA: heredity vs environment.

    PubMed

    Björck, Martin; Wanhainen, Anders

    2013-01-01

    Abdominal aortic aneurysm (AAA) has a complex pathophysiology, in which both environmental and genetic factors play important roles, the most important being smoking. The recently reported falling prevalence rates of AAA in northern Europe and Australia/New Zeeland are largely explained by healthier smoking habits. Dietary factors and obesity, in particular abdominal obesity, are also of importance. A family history of AAA among first-degree relatives is present in approximately 13% of incident cases. The probability that a monozygotic twin of a person with an AAA has the disease is 24%, 71 times higher than that for a monozygotic twin of a person without AAA. Approximately 1000 SNPs in 100 candidate genes have been studied, and three genome-wide association studies were published, identifying different diverse weak associations. An example of interaction between environmental and genetic factors is the effect of cholesterol, where genetic and dietary factors affect levels of both HDL and LDL. True epigenetic studies have not yet been published.

  18. Laser wakefield accelerator based light sources: potential applications and requirements

    SciTech Connect

    Albert, F.; Thomas, A. G.; Mangles, S. P.D.; Banerjee, S.; Corde, S.; Flacco, A.; Litos, M.; Neely, D.; Viera, J.; Najmudin, Z.; Bingham, R.; Joshi, C.; Katsouleas, T.

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  19. Genetic algorithms and their applications in accelerator physics

    SciTech Connect

    Hofler, Alicia S.

    2013-12-01

    Multi-objective optimization techniques are widely used in an extremely broad range of fields. Genetic optimization for multi-objective optimization was introduced in the accelerator community in relatively recent times and quickly spread becoming a fundamental tool in multi-dimensional optimization problems. This discussion introduces the basics of the technique and reviews applications in accelerator problems.

  20. Advanced Accelerator Applications University Participation Program

    SciTech Connect

    Y. Chen; A. Hechanova

    2007-07-25

    Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability.

  1. High-power microwaves for defense and accelerator applications

    SciTech Connect

    Manheimer, W. )

    1992-03-11

    This paper discusses high-power microwaves for application to the Defense Department and to the powering of large accelerators. The microwave sources discussed are the SLAC klystron, the relativistic klystron, the magnetron and the vircator.

  2. Pulsed power for particle beam accelerators in military applications

    SciTech Connect

    Smith, I.D.

    1980-06-20

    Techniques useful for generating and conditioning power for high energy pulsed accelerators with potential weapon applications are described. Pulsed electron accelerators are exemplified by ETA and ATA at Lawrence Livermore Laboratories and RADLAC at Sandia Laboratories Albuquerque. Pulse-power techniques used in other applications are briefly mentioned, including some that may be useful for collective ion accelerators. The limitations of pulse-power and the general directions of desirable development are illustrated. The main needs are to increase repetition rate and to decrease size.

  3. LMIP/AAA: Local Authentication, Authorization and Accounting (AAA) Protocol for Mobile IP

    NASA Astrophysics Data System (ADS)

    Chenait, Manel

    Mobile IP represents a simple and scalable global mobility solution. However, it inhibits various vulnerabilities to malicious attacks and, therefore, requires the integration of appropriate security services. In this paper, we discuss two authentication schemes suggested for Mobile IP: standard authentication and Mobile IP/AAA authentication. In order to provide Mobile IP roaming services including identity verication, we propose an improvement to Mobile/AAA authentication scheme by applying a local politic key management in each domain, hence we reduce hando latency by avoiding the involvement of AAA infrastructure during mobile node roaming.

  4. Proceedings of a workshop on Applications of Accelerators

    SciTech Connect

    Herrmannsfeldt, W.B.; Sessler, A.M.; Alonso, J.R.

    1994-01-31

    This document is a compilation of material collected as the results of a workshop, Applications of Accelerators, held at the Stanford Linear Accelerator Center, 1--2 December 1993. The material collected here has been edited for style and to minimize duplication. Footnotes will identify the original source of the material. We believe that the reader will find that this document has something for every interest. There are applications in the fields of health, food preservation, energy, environmental monitoring and protection, and industrial processing. Man y of the examples discussed have already passed the demonstration stage. Most of the others are the subject of active accelerator research. Taken as a whole, the particle accelerator field contains a wealth of application opportunities, some already in use, and many more ready to be exploited.

  5. Trends for Electron Beam Accelerator Applications in Industry

    NASA Astrophysics Data System (ADS)

    Machi, Sueo

    2011-02-01

    Electron beam (EB) accelerators are major pieces of industrial equipment used for many commercial radiation processing applications. The industrial use of EB accelerators has a history of more than 50 years and is still growing in terms of both its economic scale and new applications. Major applications involve the modification of polymeric materials to create value-added products, such as heat-resistant wires, heat-shrinkable sheets, automobile tires, foamed plastics, battery separators and hydrogel wound dressing. The surface curing of coatings and printing inks is a growing application for low energy electron accelerators, resulting in an environmentally friendly and an energy-saving process. Recently there has been the acceptance of the use of EB accelerators in lieu of the radioactive isotope cobalt-60 as a source for sterilizing disposable medical products. Environmental protection by the use of EB accelerators is a new and important field of application. A commercial plant for the cleaning flue gases from a coal-burning power plant is in operation in Poland, employing high power EB accelerators. In Korea, a commercial plant uses EB to clean waste water from a dye factory.

  6. Sequence analysis of the AAA protein family.

    PubMed Central

    Beyer, A.

    1997-01-01

    The AAA protein family, a recently recognized group of Walker-type ATPases, has been subjected to an extensive sequence analysis. Multiple sequence alignments revealed the existence of a region of sequence similarity, the so-called AAA cassette. The borders of this cassette were localized and within it, three boxes of a high degree of conservation were identified. Two of these boxes could be assigned to substantial parts of the ATP binding site (namely, to Walker motifs A and B); the third may be a portion of the catalytic center. Phylogenetic trees were calculated to obtain insights into the evolutionary history of the family. Subfamilies with varying degrees of intra-relatedness could be discriminated; these relationships are also supported by analysis of sequences outside the canonical AAA boxes: within the cassette are regions that are strongly conserved within each subfamily, whereas little or even no similarity between different subfamilies can be observed. These regions are well suited to define fingerprints for subfamilies. A secondary structure prediction utilizing all available sequence information was performed and the result was fitted to the general 3D structure of a Walker A/GTPase. The agreement was unexpectedly high and strongly supports the conclusion that the AAA family belongs to the Walker superfamily of A/GTPases. PMID:9336829

  7. Modern compact accelerators of cyclotron type for medical applications

    NASA Astrophysics Data System (ADS)

    Smirnov, V.; Vorozhtsov, S.

    2016-09-01

    Ion beam therapy and hadron therapy are types of external beam radiotherapy. Recently, the vast majority of patients have been treated with protons and carbon ions. Typically, the types of accelerators used for therapy were cyclotrons and synchrocyclotrons. It is intuitively clear that a compact facility fits best to a hospital environment intended for particle therapy and medical diagnostics. Another criterion for selection of accelerators to be mentioned in this article is application of superconducting technology to the magnetic system design of the facility. Compact isochronous cyclotrons, which accelerate protons in the energy range 9-30 MeV, have been widely used for production of radionuclides. Energy of 230 MeV has become canonical for all proton therapy accelerators. Similar application of a carbon beam requires ion energy of 430 MeV/u. Due to application of superconducting coils the magnetic field in these machines can reach 4-5 T and even 9 T in some cases. Medical cyclotrons with an ironless or nearly ironless magnetic system that have a number of advantages over the classical accelerators are in the development stage. In this work an attempt is made to describe some conceptual and technical features of modern accelerators under consideration. The emphasis is placed on the magnetic and acceleration systems along with the beam extraction unit, which are very important from the point of view of the facility compactness and compliance with the strict medical requirements.

  8. Compact Plasma Accelerator for Micropropulsion Applications

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2001-01-01

    There is a need for a low power, light-weight (compact), high specific impulse electric propulsion device to satisfy mission requirements for microsatellite (1 to 20 kg) class missions. Satisfying these requirements entails addressing the general problem of generating a sufficiently dense plasma within a relatively small volume and then accelerating it. In the work presented here, the feasibility of utilizing a magnetic cusp to generate a dense plasma over small length scales of order 1 mm is investigated. This approach could potentially mitigate scaling issues associated with conventional ion thruster plasma containment schemes. Plume and discharge characteristics were documented using a Faraday probe and a retarding potential analyzer.

  9. Dust Accelerators And Their Applications In High-Temperature Plasmas

    SciTech Connect

    Ticos, Catalin M.; Wang Zhehui

    2011-06-01

    The perennial presence of dust in high-temperature plasma and fusion devices has been firmly established. Dust inventory must be controlled, in particular in the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and potentially interfere with fusion energy production. Although much effort has been devoted to getting rid of the dust nuisance, there are instances where a controlled use of dust can be beneficial. We have recognized a number of dust-accelerators applications in magnetic fusion, including in plasma diagnostics, in studying dust-plasma interactions, and more recently in edge localized mode (ELM)'s pacing. With the applications in mind, we will compare various acceleration methods, including electrostatic, gas-drag, and plasma-drag acceleration. We will also describe laboratory experiments and results on dust acceleration.

  10. Dust accelerators and their applications in high-temperature plasmas

    SciTech Connect

    Wang, Zhehui; Ticos, Catakin M

    2010-01-01

    The perennial presence of dust in high-temperature plasma and fusion devices has been firmly established. Dust inventory must be controlled, in particular in the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and potentially interfere with fusion energy production. Much effort has been devoted to gening rid of the dust nuisance. We have recognized a number of dust-accelerators applications in magnetic fusion, including in plasma diagnostics, in studying dust-plasma interactions, and more recently in edge localized mode (ELM)'s pacing. With the applications in mind, we will compare various acceleration methods, including electrostatic, gas-drag, and plasma-drag acceleration. We will also describe laboratory experiments and results on dust acceleration.

  11. Survey of proposed high intensity accelerators and their applications

    SciTech Connect

    Schriber, S.O.

    1994-09-01

    Many interesting applications are being considered for high intensity accelerators. Implications of the technology developments that are enhancing these opportunities, or making them possible, will be covered in context of the applications. Applications include those for research (in areas such as material science, biological sciences, nuclear and high energy physics), accelerator-driven transmutation technologies, defense, and medicine. Specific examples will be used to demonstrate the impact that technology development can have and how transfer of this technology to industry can have an impact in the consumer and commercial arenas. Technology Development in rf power, controls, beam optics, rf structures, magnets, injectors, and beam halos will be considered.

  12. Shaping laser accelerated ions for future applications - The LIGHT collaboration

    NASA Astrophysics Data System (ADS)

    Busold, S.; Almomani, A.; Bagnoud, V.; Barth, W.; Bedacht, S.; Blažević, A.; Boine-Frankenheim, O.; Brabetz, C.; Burris-Mog, T.; Cowan, T. E.; Deppert, O.; Droba, M.; Eickhoff, H.; Eisenbarth, U.; Harres, K.; Hoffmeister, G.; Hofmann, I.; Jaeckel, O.; Jaeger, R.; Joost, M.; Kraft, S.; Kroll, F.; Kaluza, M.; Kester, O.; Lecz, Z.; Merz, T.; Nürnberg, F.; Al-Omari, H.; Orzhekhovskaya, A.; Paulus, G.; Polz, J.; Ratzinger, U.; Roth, M.; Schaumann, G.; Schmidt, P.; Schramm, U.; Schreiber, G.; Schumacher, D.; Stoehlker, T.; Tauschwitz, A.; Vinzenz, W.; Wagner, F.; Yaramyshev, S.; Zielbauer, B.

    2014-03-01

    The generation of intense ion beams from high-intensity laser-generated plasmas has been the focus of research for the last decade. In the LIGHT collaboration the expertise of heavy ion accelerator scientists and laser and plasma physicists has been combined to investigate the prospect of merging these ion beams with conventional accelerator technology and exploring the possibilities of future applications. We report about the goals and first results of the LIGHT collaboration to generate, handle and transport laser driven ion beams. This effort constitutes an important step in research for next generation accelerator technologies.

  13. High-Power Electron Accelerators for Space (and other) Applications

    SciTech Connect

    Nguyen, Dinh Cong; Lewellen, John W.

    2016-05-23

    This is a presentation on high-power electron accelerators for space and other applications. The main points covered are: electron beams for space applications, new designs of RF accelerators, high-power high-electron mobility transistors (HEMT) testing, and Li-ion battery design. In summary, the authors have considered a concept of 1-MeV electron accelerator that can operate up to several seconds. This concept can be extended to higher energy to produce higher beam power. Going to higher beam energy requires adding more cavities and solid-state HEMT RF power devices. The commercial HEMT have been tested for frequency response and RF output power (up to 420 W). Finally, the authors are testing these HEMT into a resonant load and planning for an electron beam test in FY17.

  14. Linac-Based Photonuclear Applications at the Idaho Accelerator Center

    NASA Astrophysics Data System (ADS)

    Mamtimin, Mayir; Starovoitova, Valeriia N.; Harmon, Frank

    2014-02-01

    In this paper, current Idaho Accelerator Center (IAC) activities based on the exploitation of high energy bremsstrahlung photons generated by linear electron accelerators will be reviewed. These beams are used to induce photonuclear interactions for a wide variety of applications in materials science, activation analysis, medical research, and nuclear technology. Most of the exploited phenomena are governed by the familiar giant dipole resonance cross section in nuclei. By proper target and converter design, optimization of photon and photoneutron production can be achieved, allowing radiation fields produced with both photons and neutrons to be used for medical isotope production and for fission product transmutation. The latter provides a specific application example that supports long-term fission product waste management. Using high-energy, highpower electron accelerators, we can demonstrate transmutation of radio-toxic, long-lived fission products (LLFP) such as 99Tc and 129I into short lived species. The latest experimental and simulation results will be presented.

  15. Applications of laser wakefield accelerator-based light sources

    SciTech Connect

    Albert, Felicie; Thomas, Alec G. R.

    2016-10-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons in the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.

  16. Applications of laser wakefield accelerator-based light sources

    NASA Astrophysics Data System (ADS)

    Albert, Félicie; Thomas, Alec G. R.

    2016-11-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons in the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. We first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.

  17. Embedded Streaming Deep Neural Networks Accelerator With Applications.

    PubMed

    Dundar, Aysegul; Jin, Jonghoon; Martini, Berin; Culurciello, Eugenio

    2016-04-08

    Deep convolutional neural networks (DCNNs) have become a very powerful tool in visual perception. DCNNs have applications in autonomous robots, security systems, mobile phones, and automobiles, where high throughput of the feedforward evaluation phase and power efficiency are important. Because of this increased usage, many field-programmable gate array (FPGA)-based accelerators have been proposed. In this paper, we present an optimized streaming method for DCNNs' hardware accelerator on an embedded platform. The streaming method acts as a compiler, transforming a high-level representation of DCNNs into operation codes to execute applications in a hardware accelerator. The proposed method utilizes maximum computational resources available based on a novel-scheduled routing topology that combines data reuse and data concatenation. It is tested with a hardware accelerator implemented on the Xilinx Kintex-7 XC7K325T FPGA. The system fully explores weight-level and node-level parallelizations of DCNNs and achieves a peak performance of 247 G-ops while consuming less than 4 W of power. We test our system with applications on object classification and object detection in real-world scenarios. Our results indicate high-performance efficiency, outperforming all other presented platforms while running these applications.

  18. Applications of laser wakefield accelerator-based light sources

    DOE PAGES

    Albert, Felicie; Thomas, Alec G. R.

    2016-10-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less

  19. Small sample Accelerator Mass Spectrometry for biomedical applications

    NASA Astrophysics Data System (ADS)

    Salehpour, M.; Håkansson, K.; Possnert, G.

    2015-10-01

    The Accelerator Mass Spectrometry activities at Uppsala University include a group dedicated to the biomedical applications, involving natural level samples, as well as 14C-labeled substances requiring separate handling and preparation. For most applications sufficient sample amounts are available but many applications are limited to samples sizes in the μg-range. We have developed a preparation procedure for small samples biomedical applications, where a few μg C can be analyzed, albeit with compromised precision. The latest results for the small sample AMS method are shown and some of the biomedical activities at our laboratory are presented.

  20. Innovative applications of genetic algorithms to problems in accelerator physics

    NASA Astrophysics Data System (ADS)

    Hofler, Alicia; Terzić, Balša; Kramer, Matthew; Zvezdin, Anton; Morozov, Vasiliy; Roblin, Yves; Lin, Fanglei; Jarvis, Colin

    2013-01-01

    The genetic algorithm (GA) is a powerful technique that implements the principles nature uses in biological evolution to optimize a multidimensional nonlinear problem. The GA works especially well for problems with a large number of local extrema, where traditional methods (such as conjugate gradient, steepest descent, and others) fail or, at best, underperform. The field of accelerator physics, among others, abounds with problems which lend themselves to optimization via GAs. In this paper, we report on the successful application of GAs in several problems related to the existing Continuous Electron Beam Accelerator Facility nuclear physics machine, the proposed Medium-energy Electron-Ion Collider at Jefferson Lab, and a radio frequency gun-based injector. These encouraging results are a step forward in optimizing accelerator design and provide an impetus for application of GAs to other problems in the field. To that end, we discuss the details of the GAs used, include a newly devised enhancement which leads to improved convergence to the optimum, and make recommendations for future GA developments and accelerator applications.

  1. Operational and design aspects of accelerators for medical applications

    NASA Astrophysics Data System (ADS)

    Schippers, Jacobus Maarten; Seidel, Mike

    2015-03-01

    Originally, the typical particle accelerators as well as their associated beam transport equipment were designed for particle and nuclear physics research and applications in isotope production. In the past few decades, such accelerators and related equipment have also been applied for medical use. This can be in the original physics laboratory environment, but for the past 20 years also in hospital-based or purely clinical environments for particle therapy. The most important specific requirements of accelerators for radiation therapy with protons or ions will be discussed. The focus will be on accelerator design, operational, and formal aspects. We will discuss the special requirements to reach a high reliability for patient treatments as well as an accurate delivery of the dose at the correct position in the patient using modern techniques like pencil beam scanning. It will be shown that the technical requirements, safety aspects, and required reliability of the accelerated beam differ substantially from those in a nuclear physics laboratory. It will be shown that this difference has significant implications on the safety and interlock systems. The operation of such a medical facility should be possible by nonaccelerator specialists at different operating sites (treatment rooms). The organization and role of the control and interlock systems can be considered as being the most crucially important issue, and therefore a special, dedicated design is absolutely necessary in a facility providing particle therapy.

  2. Accelerator Stewardship Test Facility Program - Elliptical Twin Cavity for Accelerator Applications

    SciTech Connect

    Hutton, Andrew; Areti, Hari

    2015-08-01

    Funding is being requested pursuant to the proposals entitled Elliptical Twin Cavity for Accelerator Applications that was submitted and reviewed through the Portfolio Analysis and Management System (PAMS). The PAMS proposal identifier number is 0000219731. The proposed new type of superconducting cavity, the Elliptical Twin Cavity, is capable of accelerating or decelerating beams in two separate beam pipes. This configuration is particularly effective for high-current, low energy electron beams that will be used for bunched beam cooling of high-energy protons or ions. Having the accelerated beam physically separated from the decelerated beam, but interacting with the same RF mode, means that the low energy beam from the gun can be injected into to the superconducting cavity without bends enabling a small beam emittance to be maintained. A staff engineer who has been working with non-standard complicated cavity structures replaces the senior engineer (in the original budget) who is moving on to be a project leader. This is reflected in a slightly increased engineer time and in reduced costs. The Indirect costs for FY16 are lower than the previous projection. As a result, there is no scope reduction.

  3. Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications

    SciTech Connect

    Brown, Michael R.

    2006-11-16

    Project Title: Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications PI: Michael R. Brown, Swarthmore College The purpose of the project was to provide theoretical and modeling support to the Swarthmore Spheromak Experiment (SSX). Accordingly, the theoretical effort was tightly integrated into the SSX experimental effort. During the grant period, Michael Brown and his experimental collaborators at Swarthmore, with assistance from W. Matthaeus as appropriate, made substantial progress in understanding the physics SSX plasmas.

  4. Cyclotron Auto-Resonance Accelerator for environmental applications

    NASA Astrophysics Data System (ADS)

    Jiang, Yong; Shchelkunov, Sergey V.; Hirshfield, Jay L.

    2017-03-01

    A MW-level CW electron beam source for environmental remediation based on extensions of the scientifically-proven Cyclotron Auto-Resonance Accelerator, dubbed CARA, is described here. CARA is distinguished by its exceptionally high RF-to-beam efficiency, by its production of a self-scanning beam, and by its proportionately lower specific power loading on a beam output window. Its environmental applications include sterilization, flue gas and waste water treatment.

  5. Applications of laser wakefield accelerators for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Najmudin, Zulfikar

    2014-10-01

    Laser-wakefield accelerators driven by high-intensity short-pulse lasers are a proven compact source of high-energy electron beams, with energy gains of ~GeV energy in centimetres of plasma demonstrated. One of the main proposed applications for these accelerators is to drive synchrotron light sources, in particular for x-ray applications. It has also been shown that the same plasma accelerator can also act as a wigglers, capable of the production of high brightness and spatially coherent hard x-ray beams. In this latest work, we demonstrate the application of these unique light-sources for biological and medical applications. The experiments were performed with the Astra Gemini laser at the Rutherford Appleton Laboratory in the UK. Gemini produces laser pulses with energy exceeding 10 J in pulse lengths down to 40 fs. A long focal length parabola (f / 20) is used to focus the laser down to a spot of size approximately 25 μ m (fwhm) into a gas-cell of variable length. Electrons are accelerated to energies up to 1 GeV and a bright beam of x-rays is observed simultaneously with the accelerated beam. The length of the gas cell was optimised to produce high contrast x-ray images of radiographed test objects. This source was then used for imaging a number of interesting medical and biological samples. Full tomographic imaging of a human trabecular bone sample was made with resolution easily exceeding the ~100 μm level required for CT applications. Phase-contrast imaging of human prostrate and mouse neonates at the micron level was also demonstrated. These studies indicate the usefulness of these sources in research and clinical applications. They also show that full 3D imaging can be made possible with this source in a fraction of the time that it would take with a corresponding x-ray tube. The JAI is funded by STFC Grant ST/J002062/1.

  6. Application of Plasma Waveguides to High Energy Accelerators

    SciTech Connect

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We

  7. SU-E-T-199: Comparison Between Acuros XB and AAA in Homogeneous Phantoms for Volumetric Modulated Arc Therapy Plans

    SciTech Connect

    Lu, J-Y; Huang, B-T; Zhang, J-Y

    2015-06-15

    Purpose: To investigate the differences among Acuros XB (AXB) with dose-to-water report mode (AXBw), AXB with dose-to-medium report mode (AXBm) and Anisotropic Analytical Algorithm (AAA), in homogeneous phantoms and for volumetric modulated arc therapy (VMAT) plans. Methods: Nineteen clinically applied VMAT plans were transplanted to a Delta4 phantom and an I’mRT phantom to generate phantom plans, respectively. Each plan was calculated using AXBw, AXBm and AAA, respectively, utilizing the distributed calculation framework (DCF), and the calculation times were recorded. Each plan was delivered by the TrueBeam linear accelerator and measured using the Delta4 phantom and ionization chamber, respectively. The 3D gamma pass rates and point dose deviations were compared among AXBw, AXBm and AAA. Results: In terms of the gamma pass rates with both the criteria of 3 mm/3% (3 mm distance-to-agreement, 3% dose difference) and 2 mm/2%, AXBm demonstrated the significantly worst results, and no significant difference was found between AXBw and AAA. In terms of the point dose, AXBw was slightly closer to the measured dose compared with AAA, and AXBm demonstrated the maximum dose deviation from the measured dose. Moreover, AXB calculation consumed comparable time when the DCF was not busy, and consumed significantly less time when the DCF was busy. Conclusion: In the homogeneous phantoms and for the VMAT plans, AXBw has the best dose accuracy, and AAA is comparable to or slightly worse than AXBw, wheras AXBm has the worst dose accuracy. Furthermore, AXB has higher calculation efficiency than AAA.

  8. Applications of the ARGUS code in accelerator physics

    NASA Astrophysics Data System (ADS)

    Petillo, J. J.; Mankofsky, A.; Krueger, W. A.; Kostas, C.; Mondelli, A. A.; Drobot, A. T.

    1993-12-01

    ARGUS is a three-dimensional, electromagnetic, particle-in-cell (PIC) simulation code that is being distributed to U.S. accelerator laboratories in collaboration between Science Applications International Corporation (SAICTM) and the Los Alamos Accelerator Code Group (LAACG). It uses a modular architecture that allows multiple physics modules to share common utilities for grid and structure input, memory management, disk I/O, and diagnostics. Physics modules are in place for electrostatic and electromagnetic field solutions, frequency-domain (eigenvalue) solutions, time-dependent PIC, and steady-state PIC simulations. All of the modules are implemented with a domain-decomposition architecture that allows large problems to be broken up into pieces that fit in core and that facilitates the adaptation of ARGUS for parallel processing. ARGUS operates on either Cray or workstation platforms, and a MOTIF-based user interface is available for X-windows terminals. Applications of ARGUS in accelerator physics and design are described in this paper.

  9. Integrated Control of Axonemal Dynein AAA+ Motors

    PubMed Central

    King, Stephen M.

    2012-01-01

    Axonemal dyneins are AAA+ enzymes that convert ATP hydrolysis to mechanical work. This leads to the sliding of doublet microtubules with respect to each other and ultimately the generation of ciliary/flagellar beating. However, in order for useful work to be generated, the action of individual dynein motors must be precisely controlled. In addition, cells modulate the motility of these organelles through a variety of second messenger systems and these signals too must be integrated by the dynein motors to yield an appropriate output. This review describes the current status of efforts to understand dynein control mechanisms and their connectivity focusing mainly on studies of the outer dynein arm from axonemes of the unicellular biflagellate green alga Chlamydomonas. PMID:22406539

  10. Applications of the ram accelerator to hypervelocity aerothermodynamic testing

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Knowlen, C.; Hertzberg, A.

    1992-01-01

    A ram accelerator used as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerodynamics research is presented. It is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled down a stationary tube filled with a tailored combustible gas mixture. Ram accelerator operation has been demonstrated at 39 mm and 90 mm bores, supporting the proposition that this launcher concept can be scaled up to very large bore diameters of the order of 30-60 cm. It is concluded that high quality data obtained from the tube wall and projectile during the aceleration process itself are very useful for understanding aerothermodynamics of hypersonic flow in general, and for providing important CFD validation benchmarks.

  11. AAAS Communicating Science Program: Reflections on Evaluation

    NASA Astrophysics Data System (ADS)

    Braha, J.

    2015-12-01

    The AAAS Center for Public Engagement (Center) with science builds capacity for scientists to engage public audiences by fostering collaboration among natural or physical scientists, communication researchers, and public engagement practitioners. The recently launched Leshner Leadership Institute empowers cohorts of mid-career scientists to lead public engagement by supporting their networks of scientists, researchers, and practitioners. The Center works closely with social scientists whose research addresses science communication and public engagement with science to ensure that the Communicating Science training program builds on empirical evidence to inform best practices. Researchers ( Besley, Dudo, & Storkdieck 2015) have helped Center staff and an external evaluator develop pan instrument that measures progress towards goals that are suggested by the researcher, including internal efficacy (increasing scientists' communication skills and confidence in their ability to engage with the public) and external efficacy (scientists' confidence in engagement methods). Evaluation results from one year of the Communicating Science program suggest that the model of training yields positive results that support scientists in the area that should lead to greater engagement. This talk will explore the model for training, which provides a context for strategic communication, as well as the practical factors, such as time, access to public engagement practitioners, and technical skill, that seems to contribute to increased willingness to engage with public audiences. The evaluation program results suggest willingness by training participants to engage directly or to take preliminary steps towards engagement. In the evaluation results, 38% of trained scientists reported time as a barrier to engagement; 35% reported concern that engagement would distract from their work as a barrier. AAAS works to improve practitioner-researcher-scientist networks to overcome such barriers.

  12. Smartphone Application for Mechanical Quality Assurance of Medical Linear Accelerator.

    PubMed

    Kim, Hwiyoung; Lee, Hyunseok; Park, Jong In; Choi, Chang Heon; Park, So-Yeon; Kim, Hee Jung; Kim, Young Suk; Ye, Sung-Joon

    2017-03-20

    Mechanical quality assurance (QA) of medical linear accelerators consists of time consuming and human-error prone procedures. We developed a smartphone-application system for mechanical QA. The system consists of two smartphones; one attached to the gantry to obtain real-time information on mechanical parameters of medical linear accelerator, and the other to display the real-time information by bluetoothing the former. Motion sensors embedded in the smartphone were used to measure gantry and collimator rotations. Images taken by a high-resolution camera of the smartphone were processed to evaluate accuracies of jaw-positioning, cross-hair centering, and source-to-surface distance (SSD). The application was developed using Android software development kit and OpenCV library. Accuracy and precision of the system were validated against an optical rotation stage and digital calipers, prior to routine QA measurements of five medical linear accelerators. The system accuracy and precision to measure angles and lengths were determined to be 0.05 ± 0.05° and 0.25 ± 0.14 mm, respectively. The mean absolute errors (MAE) in QA measurements of gantry and collimator rotation were 0.05 ± 0.04° and 0.05 ± 0.04°, respectively. The MAE in QA measurements of light field was 0.39 ± 0.36 mm. The MAEs in QA measurements of crosshair centering and SSD were 0.40 ± 0.35 mm and 0.41 ± 0.32 mm, respectively. In conclusion, most of routine mechanical QA items could be performed by using the smartphone-application system within improved precision and time-frame, while eliminating potential human errors from the conventional manual method.

  13. ELIMED, future hadrontherapy applications of laser-accelerated beams

    NASA Astrophysics Data System (ADS)

    Cirrone, Giuseppe A. P.; Carpinelli, Massimo; Cuttone, Giacomo; Gammino, Santo; Bijan Jia, S.; Korn, Georg; Maggiore, Mario; Manti, Lorenzo; Margarone, Daniele; Prokupek, Jan; Renis, Marcella; Romano, Francesco; Schillaci, Francesco; Tomasello, Barbara; Torrisi, Lorenzo; Tramontana, Antonella; Velyhan, Andriy

    2013-12-01

    Laser-ion acceleration has recently gained a great interest as an alternative to conventional and more expensive acceleration techniques. These ion beams have desirable qualities such as small source size, high luminosity and small emittance to be used in different fields as Nuclear Physics, Medical Physics, etc. This is very promising specially for the future perspective of a new concept of hadrontherapy based on laser-based devices could be developed, replacing traditional accelerating machines. Before delivering laser-driven beams for treatments they have to be handled, cleaned from unwanted particles and characterized in order to have the clinical requirements. In fact ion energy spectra have exponential trend, almost 100% energy spread and a wide angular divergence which is the biggest issue in the beam transport and, hence, in a wider use of this technology. In order to demonstrate the clinical applicability of laser-driven beams new collaboration between ELI-Beamlines project researchers from Prague (Cz) and a INFN-LNS group from Catania (I) has been already launched and scientists from different countries have already express their will in joining the project. This cooperation has been named ELIMED (MEDical application at ELIBeamlines) and will take place inside the ELI-Beamlines infrastructure located in Prague. This work describes the schedule of the ELIMED project and the design of the energy selector which will be realized at INFN-LNS. The device is an important part of the whole transport beam line which will be realised in order to make the ion beams suitable for medical applications.

  14. LIGHT - from laser ion acceleration to future applications

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Light Collaboration

    2013-10-01

    Creation of high intensity multi-MeV ion bunches by high power lasers became a reliable tool during the last 15 years. The laser plasma source provides for TV/m accelerating field gradients and initially sub-ps bunch lengths. However, the large envelope divergence and the continuous exponential energy spectrum are substential drawbacks for many possible applications. To face this problem, the LIGHT collaboration was founded (Laser Ion Generation, Handling and Transport). The collaboration consists of several university groups and research centers, namely TU Darmstadt, JWGU Frankfurt, HI Jena, HZDR Dresden and GSI Darmstadt. The central goal is building a test beamline for merging laser ion acceleration with conventional accelerator infrastructure at the GSI facility. In the latest experiments, low divergent proton bunches with a central energy of up to 10 MeV and containing >109 particles could be provided at up to 2.2 m behind the plasma source, using a pulsed solenoid. In a next step, a radiofrequency cavity will be added to the beamline for phase rotation of these bunches, giving access to sub-ns bunch lengths and reaching highest intensities. An overview of the LIGHT objectives and the recent experimental results will be given. This work was supported by HIC4FAIR.

  15. A micromachined angular-acceleration sensor for geophysical applications

    NASA Astrophysics Data System (ADS)

    Liu, Huafeng; Pike, W. T.

    2016-10-01

    This paper presents an angular-acceleration sensor that works as either an angular accelerometer or a gravity gradiometer and is based on the micro electromechanical system (MEMS) technology. The changes in the angle of the sensor mass are sensed by a rotational capacitive array transducer that is formed by electrodes on both the stator and rotor dies of the flip-chip-bonded MEMS chip (21 mm × 12.5 mm × 1 mm). The prototype was characterized, demonstrating a fundamental frequency of 27 Hz, a quality factor of 230 in air, and a sensitivity of 6 mV/(rad/s2). The demonstrated noise floor was less than 0.003 rad/s2/ √{ Hz } within a bandwidth of 0.1 Hz to 10 Hz, which is comparable with the conventional angular accelerometer and is better than the other reported MEMS sensors in low-frequency ranges. The features of small size and low cost suggest that this MEMS angular-acceleration sensor could be mounted on a drone, a satellite or even a Mars rover, and it is promising to be used for monitoring angular accelerations, aiding seismic recording, mapping gravity anomalies, and other geophysical applications for large-scale terrestrial and space deployments.

  16. High-performance insulator structures for accelerator applications

    SciTech Connect

    Sampayan, S.E.; Caporaso, G.J.; Sanders, D.M.; Stoddard, R.D.; Trimble, D.O.; Elizondo, J.; Krogh, M.L.; Wieskamp, T.F.

    1997-05-01

    A new, high gradient insulator technology has been developed for accelerator systems. The concept involves the use of alternating layers of conductors and insulators with periods of order 1 mm or less. These structures perform many times better (about 1.5 to 4 times higher breakdown electric field) than conventional insulators in long pulse, short pulse, and alternating polarity applications. We describe our ongoing studies investigating the degradation of the breakdown electric field resulting from alternate fabrication techniques, the effect of gas pressure, the effect of the insulator-to-electrode interface gap spacing, and the performance of the insulator structure under bi-polar stress.

  17. A Reconfigurable Processor Infrastructure for Accelerating Java Applications

    NASA Astrophysics Data System (ADS)

    Han, Youngsun; Hwang, Seok Joong; Kim, Seon Wook

    In this paper, we present a reconfigurable processor infrastructure to accelerate Java applications, called Jaguar. The Jaguar infrastructure consists of a compiler framework and a runtime environment support. The compiler framework selects a group of Java methods to be translated into hardware for delivering the best performance under limited resources, and translates the selected Java methods into Verilog synthesizable code modules. The runtime environment support includes the Java virtual machine (JVM) running on a host processor to provide Java execution environment to the generated Java accelerator through communication interface units while preserving Java semantics. Our compiler infrastructure is a tightly integrated and solid compiler-aided solution for Java reconfigurable computing. There is no limitation in generating synthesizable Verilog modules from any Java application while preserving Java semantics. In terms of performance, our infrastructure achieves the speedup by 5.4 times on average and by up to 9.4 times in measured benchmarks with respect to JVM-only execution. Furthermore, two optimization schemes such as an instruction folding and a live buffer removal can reduce 24% on average and up to 39% of the resource consumption.

  18. GPU accelerated FDTD solver and its application in MRI.

    PubMed

    Chi, J; Liu, F; Jin, J; Mason, D G; Crozier, S

    2010-01-01

    The finite difference time domain (FDTD) method is a popular technique for computational electromagnetics (CEM). The large computational power often required, however, has been a limiting factor for its applications. In this paper, we will present a graphics processing unit (GPU)-based parallel FDTD solver and its successful application to the investigation of a novel B1 shimming scheme for high-field magnetic resonance imaging (MRI). The optimized shimming scheme exhibits considerably improved transmit B(1) profiles. The GPU implementation dramatically shortened the runtime of FDTD simulation of electromagnetic field compared with its CPU counterpart. The acceleration in runtime has made such investigation possible, and will pave the way for other studies of large-scale computational electromagnetic problems in modern MRI which were previously impractical.

  19. Highly Productive Application Development with ViennaCL for Accelerators

    NASA Astrophysics Data System (ADS)

    Rupp, K.; Weinbub, J.; Rudolf, F.

    2012-12-01

    The use of graphics processing units (GPUs) for the acceleration of general purpose computations has become very attractive over the last years, and accelerators based on many integrated CPU cores are about to hit the market. However, there are discussions about the benefit of GPU computing when comparing the reduction of execution times with the increased development effort [1]. To counter these concerns, our open-source linear algebra library ViennaCL [2,3] uses modern programming techniques such as generic programming in order to provide a convenient access layer for accelerator and GPU computing. Other GPU-accelerated libraries are primarily tuned for performance, but less tailored to productivity and portability: MAGMA [4] provides dense linear algebra operations via a LAPACK-comparable interface, but no dedicated matrix and vector types. Cusp [5] is closest in functionality to ViennaCL for sparse matrices, but is based on CUDA and thus restricted to devices from NVIDIA. However, no convenience layer for dense linear algebra is provided with Cusp. ViennaCL is written in C++ and uses OpenCL to access the resources of accelerators, GPUs and multi-core CPUs in a unified way. On the one hand, the library provides iterative solvers from the family of Krylov methods, including various preconditioners, for the solution of linear systems typically obtained from the discretization of partial differential equations. On the other hand, dense linear algebra operations are supported, including algorithms such as QR factorization and singular value decomposition. The user application interface of ViennaCL is compatible to uBLAS [6], which is part of the peer-reviewed Boost C++ libraries [7]. This allows to port existing applications based on uBLAS with a minimum of effort to ViennaCL. Conversely, the interface compatibility allows to use the iterative solvers from ViennaCL with uBLAS types directly, thus enabling code reuse beyond CPU-GPU boundaries. Out-of-the-box support

  20. Identification of a Degradation Signal Sequence within Substrates of the Mitochondrial i-AAA Protease.

    PubMed

    Rampello, Anthony J; Glynn, Steven E

    2017-03-24

    The i-AAA protease is a component of the mitochondrial quality control machinery that regulates respiration, mitochondrial dynamics, and protein import. The protease is required to select specific substrates for degradation from among the diverse complement of proteins present in mitochondria, yet the rules that govern this selection are unclear. Here, we reconstruct the yeast i-AAA protease, Yme1p, to examine the in vitro degradation of two intermembrane space chaperone subunits, Tim9 and Tim10. Yme1p degrades Tim10 more rapidly than Tim9 despite high sequence and structural similarity, and loss of Tim10 is accelerated by the disruption of conserved disulfide bonds within the substrate. An unstructured N-terminal region of Tim10 is necessary and sufficient to target the substrate to the protease through recognition of a short phenylalanine-rich motif, and the presence of similar motifs in other small Tim proteins predicts robust degradation by the protease. Together, these results identify the first specific degron sequence within a native i-AAA protease substrate.

  1. Fundamental Characteristics of AAA+ Protein Family Structure and Function

    PubMed Central

    2016-01-01

    Many complex cellular events depend on multiprotein complexes known as molecular machines to efficiently couple the energy derived from adenosine triphosphate hydrolysis to the generation of mechanical force. Members of the AAA+ ATPase superfamily (ATPases Associated with various cellular Activities) are critical components of many molecular machines. AAA+ proteins are defined by conserved modules that precisely position the active site elements of two adjacent subunits to catalyze ATP hydrolysis. In many cases, AAA+ proteins form a ring structure that translocates a polymeric substrate through the central channel using specialized loops that project into the central channel. We discuss the major features of AAA+ protein structure and function with an emphasis on pivotal aspects elucidated with archaeal proteins. PMID:27703410

  2. Ultrashort Pulse Laser Accelerated Proton Beams for First Radiobiological Applications

    SciTech Connect

    Schramm, U.; Zeil, K.; Beyreuther, E.; Bussmann, M.; Cowan, T. E.; Kluge, T.; Kraft, S.; Metzkes, J.; Sauerbrey, R.; Richter, C.; Enghardt, W.; Pawelke, J.; Karsch, L.; Laschinsky, L.; Naumburger, D.

    2010-11-04

    We report on the generation of proton pulses with maximum energies exceeding 15 MeV by means of the irradiation of few micron thick metal foils by ultrashort (30 fs) laser pulses at a power level of 100 TW. In contrast to the well known situation for longer laser pulses, here, a near linear scaling of the maximum proton energy with laser power can be found. Aiming for radiobiological applications the long and short term stability of the laser plasma accelerator as well as a compact energy selection and dosimetry system is presented. The first irradiation of in vitro tumour cells showing dose dependent biological damage is demonstrated paving the way for systematic radiobiological studies.

  3. Application of Plasma Waveguides to High Energy Accelerators

    SciTech Connect

    Milchberg, Howard

    2016-07-01

    This grant supported basic experimental, theoretical and computer simulation research into developing a compact, high pulse repetition rate laser accelerator using the direct laser acceleration mechanism in plasma-based slow wave structures.

  4. High-Current Experiments for Accelerator-Based Neutron Capture Therapy Applications

    SciTech Connect

    Gierga, D.P.; Klinkowstein, R.E.; Hughey, B.H.; Shefer, R.E.; Yanch, J.C.; Blackburn, B.W.

    1999-06-06

    Several accelerator-based neutron capture therapy applications are under development. These applications include boron neutron capture therapy for glioblastoma multiform and boron neutron capture synovectomy (BNCS) for rheumatoid arthritis. These modalities use accelerator-based charged-particle reactions to create a suitable neutron source. Neutrons are produced using a high-current, 2-MV terminal tandem accelerator. For these applications to be feasible, high accelerator beam currents must be routinely achievable. An effort was undertaken to explore the operating regime of the accelerator in the milliampere range. In preparation for high-current operation of the accelerator, computer simulations of charged-particle beam optics were performed to establish high-current operating conditions. Herein we describe high beam current simulations and high beam current operation of the accelerator.

  5. Recent advances in biomedical applications of accelerator mass spectrometry.

    PubMed

    Hah, Sang Soo; Henderson, Paul T; Turteltaub, Kenneth W

    2009-06-17

    The use of radioisotopes has a long history in biomedical science, and the technique of accelerator mass spectrometry (AMS), an extremely sensitive nuclear physics technique for detection of very low-abundant, stable and long-lived isotopes, has now revolutionized high-sensitivity isotope detection in biomedical research, because it allows the direct determination of the amount of isotope in a sample rather than measuring its decay, and thus the quantitative analysis of the fate of the radiolabeled probes under the given conditions. Since AMS was first used in the early 90's for the analysis of biological samples containing enriched 14C for toxicology and cancer research, the biomedical applications of AMS to date range from in vitro to in vivo studies, including the studies of 1) toxicant and drug metabolism, 2) neuroscience, 3) pharmacokinetics, and 4) nutrition and metabolism of endogenous molecules such as vitamins. In addition, a new drug development concept that relies on the ultrasensitivity of AMS, known as human microdosing, is being used to obtain early human metabolism information of candidate drugs. These various aspects of AMS are reviewed and a perspective on future applications of AMS to biomedical research is provided.

  6. Assessing heterogeneity in oligomeric AAA+ machines.

    PubMed

    Sysoeva, Tatyana A

    2017-03-01

    ATPases Associated with various cellular Activities (AAA+ ATPases) are molecular motors that use the energy of ATP binding and hydrolysis to remodel their target macromolecules. The majority of these ATPases form ring-shaped hexamers in which the active sites are located at the interfaces between neighboring subunits. Structural changes initiate in an active site and propagate to distant motor parts that interface and reshape the target macromolecules, thereby performing mechanical work. During the functioning cycle, the AAA+ motor transits through multiple distinct states. Ring architecture and placement of the catalytic sites at the intersubunit interfaces allow for a unique level of coordination among subunits of the motor. This in turn results in conformational differences among subunits and overall asymmetry of the motor ring as it functions. To date, a large amount of structural information has been gathered for different AAA+ motors, but even for the most characterized of them only a few structural states are known and the full mechanistic cycle cannot be yet reconstructed. Therefore, the first part of this work will provide a broad overview of what arrangements of AAA+ subunits have been structurally observed focusing on diversity of ATPase oligomeric ensembles and heterogeneity within the ensembles. The second part of this review will concentrate on methods that assess structural and functional heterogeneity among subunits of AAA+ motors, thus bringing us closer to understanding the mechanism of these fascinating molecular motors.

  7. Laser acceleration of ions: recent results and prospects for applications

    NASA Astrophysics Data System (ADS)

    Bychenkov, V. Yu; Brantov, A. V.; Govras, E. A.; Kovalev, V. F.

    2015-01-01

    We present a brief review of recent theoretical and numerical simulation results on the acceleration of ions from various targets irradiated by high-power femtosecond laser pulses. The results include: the optimization of the laser-plasma acceleration of ions over the thickness of a solid target; a new dependence of the energy of accelerated protons from a semi-transparent foil on the incident pulse energy; a theoretical model of plasma layer expansion in the vacuum for a fixed temperature of heated electrons, describing arbitrary regimes of particle acceleration, from the quasineutral flow of a plasma to Coulomb explosion; analytic theories of the relativistic Coulomb explosion of a spherical microtarget and the radial ponderomotive acceleration of ions from a laser channel in a transparent plasma; and calculations optimizing the production of isotopes for medicine using next-generation lasers.

  8. Informed Consent for AAA Repair: The Patient’s Perspective

    PubMed Central

    Berman, Loren; Curry, Leslie; Gusberg, Richard; Dardik, Alan; Fraenkel, Liana

    2009-01-01

    BACKGROUND Although information about risks, benefits and alternatives to intervention is central to ensuring adequate informed consent, patients are often not well-informed about potential adverse outcomes when they are considering whether to have surgery. Whether or not to undergo surgery for abdominal aortic aneurysm (AAA), and whether to have open or endovascular repair (EVAR), is a complex decision that relies heavily on patient preferences, and yet little is known about the patient perspective on informed consent in this context. Understanding patients’ views on their decision-making processes and the quality of surgeon-patient communication could inform improvements in informed consent for AAA repair. METHODS We conducted in-depth interviews with AAA patients (n=20) who underwent open AAA repair, endovascular repair, or declined surgery. Data were independently transcribed and analyzed by a team of individuals with diverse backgrounds, using the constant comparative method of analysis and systematic coding procedures. RESULTS We identified four central themes characterizing patients’ experiences with informed consent for AAA repair: 1) some patients perceived that there was no choice regarding whether or not to have surgery; 2) some patients did not feel adequately informed prior to making a decision; 3) patients differed in the scope and content of information they desired during informed consent; and 4) trust in the surgeon had an impact on the informed consent process. CONCLUSION Our research highlights the limitations of the informed consent encounter in the current clinical context, and points to several ways in which informed consent could be improved. Adapting the informed consent encounter to incorporate the patient’s perspective is critical in order to ensure that the decision regarding AAA repair is consistent with the patient’s informed preference. PMID:18572357

  9. Application of Burnable Absorbers in an Accelerator-Driven System

    SciTech Connect

    Wallenius, Jan; Tucek, Kamil; Carlsson, Johan; Gudowski, Waclaw

    2001-01-15

    The application of burnable absorbers (BAs) to minimize power peaking, reactivity loss, and capture-to-fission probabilities in an accelerator-driven waste transmutation system has been investigated. Boron-10-enriched B{sub 4}C absorber rods were introduced into a lead-bismuth-cooled core fueled with transuranic (TRU) discharges from light water reactors to achieve the smallest possible power peakings at beginning-of-life (BOL) subcriticality level of 0.97. Detailed Monte Carlo simulations show that a radial power peaking equal to 1.2 at BOL is attainable using a four-zone differentiation in BA content. Using a newly written Monte Carlo burnup code, reactivity losses were calculated to be 640 pcm per percent TRU burnup for unrecycled TRU discharges. Comparing to corresponding values in BA-free cores, BA introduction diminishes reactivity losses in TRU-fueled subcritical cores by {approx}20%. Radial power peaking after 300 days of operation at 1200-MW thermal power was <1.75 at a subcriticality level of {approx}0.92, which appears to be acceptable, with respect to limitations in cladding and fuel temperatures. In addition, the use of BAs yields significantly higher fission-to-capture probabilities in even-neutron-number nuclides. Fission-to-absorption probability ratio for {sup 241}Am equal to 0.33 was achieved in the configuration studied. Hence, production of the strong alpha-emitter {sup 242}Cm is reduced, leading to smaller fuel-swelling rates and pin pressurization. Disadvantages following BA introduction, such as increase of void worth and decrease of Doppler feedback in conjunction with small values of {beta}{sub eff}, need to be addressed by detailed studies of subcritical core dynamics.

  10. Application of instantaneous angular acceleration to diesel engine fault diagnosis

    NASA Astrophysics Data System (ADS)

    Ren, Yunpeng; Hu, Tianyou; Liu, Xin

    2005-12-01

    Diesel engine is a kind of important power generating machine, of which the running state monitoring and fault diagnosis attracts increasing attention. The theory and the method of diesel engine fault diagnosis based on angular acceleration measurement were studied, since angular acceleration contains a lot of information for diesel engine fault diagnosing and its power balance evaluating. USB data acquisition system was designed for the angular acceleration measurement, and it was composed with AVRAT09S8515 micro-processor and PDIUSBD12 USB interface IC. At the same time, the high speed micro-processor AVRAT09S8515 with unique function of automatically capturing the rising or falling edge of square wave was studied, and it was utilized in the diesel engine's crankshaft angular acceleration measuring system. The software and hardware of the whole system was designed, which supplied a whole solution to diesel engine fault diagnosis and power balance evaluation between each cylinder.

  11. The Adult Asperger Assessment (AAA): A Diagnostic Method

    ERIC Educational Resources Information Center

    Baron-Cohen, Simon; Wheelwright, Sally; Robinson, Janine; Woodbury-Smith, Marc

    2005-01-01

    At the present time there are a large number of adults who have "suspected" Asperger syndrome (AS). In this paper we describe a new instrument, the Adult Asperger Assessment (AAA), developed in our clinic for adults with AS. The need for a new instrument relevant to the diagnosis of AS in adulthood arises because existing instruments are designed…

  12. 26 CFR 1.1368-2 - Accumulated adjustments account (AAA).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... earnings and profits or previously taxed income pursuant to an election made under section 1368(e)(3) and... § 1.312-10(a). (e) Election to terminate year under section 1377(a)(2) or § 1.1368-1(g)(2). If an... described in section 1367(a)(2)(E). (ii) Extent of allowable reduction. The AAA may be decreased...

  13. Distribution of Wall Stress in Abdominal Aortic Aneurysm (AAA)

    NASA Astrophysics Data System (ADS)

    Lasheras, Juan

    2005-11-01

    Abdominal aortic aneurysm (AAA) rupture is believed to occur when the mechanical stress acting on the wall exceeds the strength of the wall tissue. Therefore, knowledge of the AAA wall stress distribution could be useful in assessing its risk of rupture. In our research, a finite element analysis was used to determine the wall stresses both in idealized models and in a real clinical model in which the aorta was considered isotropic with nonlinear material properties and was loaded with a given pressure. In the idealized models, both maximum diameter and asymmetry were found to have substantial influence on the distribution of the wall stress. The thrombus inside the AAA was also found to help protecting the walls from high stresses. Using CT scans of the AAA, the actual geometry of the aneurysm was reconstructed and we found that wall tension increases on the flatter surface (typically corresponds to the posterior surface) and at the inflection points of the bulge. In addition to the static analysis, we also performed simulations of the effect of unsteady pressure wave propagation inside the aneurysm.

  14. 26 CFR 1.1368-2 - Accumulated adjustments account (AAA).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... earnings and profits or previously taxed income pursuant to an election made under section 1368(e)(3) and... AAA for redemptions and distributions in the year of a redemption. (c) Distribution of money and loss... the adjusted basis of which exceeds its fair market value on the date of the distribution and...

  15. Present Trends In The Configurations And Applications Of Electrostatic Accelerator Systems

    NASA Astrophysics Data System (ADS)

    Norton, Gregory A.; Klody, George M.

    2011-06-01

    Despite the worldwide economic meltdown during the past two years and preceding any stimulus program projects, the market for electrostatic accelerators has increased on three fronts: new applications developed in an expanding range of fields; technical enhancements that increase the range, precision, and sensitivity of existing systems; and new accelerator projects in a growing number of developing countries. From the single application of basic nuclear structure research from the 1930's into the 1970's, the continued expansion of new applications and the technical improvements in electrostatic accelerators have dramatically affected the configurations and capabilities of accelerator systems to meet new requirements. This paper describes examples of recent developments in cosmology, exotic materials, high resolution RBS, compact AMS, dust acceleration, ion implantation, etc.

  16. Application of Accelerators in research and Industry: Proceedings of the fourteenth International Conference. Proceedings

    SciTech Connect

    Duggan, J.L.; Morgan, I.

    1997-08-01

    The fourteenth International Conference on the Application of Accelerators in Research and Industry was held in November, 1996 in Texas, USA. The United States Department of Energy was one of the sponsors of this conference. The conference was widely attended by accelerator scientists throughout the world. The topics discussed included a wide range of applications spanning the fields from Art History to Zoology. An overview of the Design Project for the National spallation Neutron Source was presented in one of the plenary sessions, as was a summary of Accelerated Beams of Radioactive Ions. Accelerator based Atomic Physics had the most sessions. The subject of accelerator Technology covered topics such as new accelerators, beam handling systems, ion sources, detector, spectrometers, and magnets etc. Radioactive Beams and Nuclear Physics were also topics of several sessions. New Research Opportunities for Nuclear structure, Nuclear Astrophysics, Material Science, and the future facilities and applications of Accelerated Beams of Radioactive ions were discussed. These proceedings represent the papers presented at this exciting conference which summarized the State of the Art technology of Accelerator applications in research and Industry. These proceedings contain 341 papers, out of which, 99 have been abstracted for the Energy Science and Technology database.(AIP)

  17. On the design and testing of solid armatures for rail accelerator applications

    SciTech Connect

    Karthaus, W.; de Zeeuw, W.A.; Kolkert, W.J. )

    1991-01-01

    Two different armature designs, for rail accelerator applications have been studied during electromagnetic launch experiments. The designs investigated are an aluminium multi-finger monoblock and a copper fiber brush armature. The experimental set-up used and the results obtained together with an electro-thermal model that describes the armature interface behavior during the acceleration process itself are presented in this paper.

  18. Accelerated corneal collagen crosslinking: Technique, efficacy, safety, and applications.

    PubMed

    Medeiros, Carla S; Giacomin, Natalia T; Bueno, Renata L; Ghanem, Ramon C; Moraes, Haroldo V; Santhiago, Marcony R

    2016-12-01

    Corneal collagen crosslinking (CXL) is an approach used to increase the biomechanical stability of the stromal tissue. Over the past 10 years, it has been used to halt the progression of ectatic diseases. According to the photochemical law of reciprocity, the same photochemical effect is achieved with reduced illumination time and correspondingly increased irradiation intensity. Several new CXL devices offer high ultraviolet-A irradiation intensity with different time settings. The main purpose of this review was to discuss the current use of different protocols of accelerated CXL and compare the efficacy and safety of accelerated CXL with the efficacy and safety of the established conventional method. Accelerated CXL proved to be safe and effective in halting progression of corneal ectasia. Corneal shape responses varied considerably, as did the demarcation line at different irradiance settings; the shorter the exposure time, the more superficial the demarcation line.

  19. Evaluating Agent Architectures: Cougaar, Aglets and AAA

    SciTech Connect

    Gorton, Ian; Haack, Jereme N.; Mcgee, David R.; Cowell, Andrew J.; Kuchar, Olga A.; Thomson, Judi R.; Carlos Lucena Alessandro Garcia Alexander Romanovsky, et al

    2003-05-03

    Research and development organizations are constantly evaluating new technologies in order to implement the next generation of advanced applications. At Pacific Northwest National Laboratory, agent technologies are perceived as an approach that can provide a competitive advantage in the construction of highly sophisticated software systems in a range of application areas. To determine the sophistication, utility, performance, and other critical aspects of such systems, a project was instigated to evaluate three candidate agent toolkits. This paper reports on the outcomes of this evaluation, the knowledge accumulated from carrying out this project, and provides insights into the capabilities of the agent technologies evaluated.

  20. Trends and applications for MeV electrostatic ion beam accelerators

    NASA Astrophysics Data System (ADS)

    Norton, G. A.; Stodola, S. E.

    2014-08-01

    The 1970s into the 1980s saw a major broadening of applications for electrostatic accelerators. Prior to this time, all accelerators were used primarily for nuclear structure research. In the 70s there was a significant move into production ion implantation with the necessary MeV ion beam analysis techniques such as RBS and ERD. Accelerators are still being built for these materials analysis techniques today. However, there is still a great ongoing expansion of applications for these machines. At the present time, the demand for electrostatic accelerators is near an all time high. The number of applications continues to grow. This paper will touch on some of the current applications which are as diverse as nuclear fission reactor developments and pharmacokinetics. In the field of nuclear engineering, MeV ion beams from electrostatic accelerators are being used in material damage studies and for iodine and actinide accelerator mass spectrometry (AMS). In the field of pharmacokinetics, electrostatic MeV accelerators are being used to detect extremely small amounts of above background 14C. This has significantly reduced the time required to reach first in human studies. These and other applications will be discussed.

  1. Double Acceleration of Ions and Application in Biomaterials

    NASA Astrophysics Data System (ADS)

    Lorusso, Antonella; Siciliano, Maria Vittoria; Velardi, Luciano; Nassisi, Vincenzo

    2010-02-01

    Ions of different elements were generated by laser-induced-plasma and accelerated by a two adjacent cavities. Therefore, the ions undergo a double acceleration imparting a maximum ion energy of 160 keV per charge state. We analyzed the extracted charge from a Cu target as a function of the accelerating voltage. At 60 kV of total accelerating voltage, the maximum current peak was of 5.3 mA. The ion flux resulted of 3.4×1011 ions/cm2. The normalized emittance measured by pepper pot method at 60 kV was of 0.22 π mm mrad. By means of this machine, biomedical materials as UHMWPE were implanted with carbon and titanium ions. At a total ion flux of 2×1015 ions/cm2 the polyethylene surface increased its micro hardness of about 3-hold measured by the scratch test. Considering the ion emission cone dimension, we estimated a total extracted charge per pulse of 200 nC.

  2. Double Acceleration of Ions and Application in Biomaterials

    SciTech Connect

    Lorusso, Antonella; Nassisi, Vincenzo; Siciliano, Maria Vittoria; Velardi, Luciano

    2010-02-02

    Ions of different elements were generated by laser-induced-plasma and accelerated by a two adjacent cavities. Therefore, the ions undergo a double acceleration imparting a maximum ion energy of 160 keV per charge state. We analyzed the extracted charge from a Cu target as a function of the accelerating voltage. At 60 kV of total accelerating voltage, the maximum current peak was of 5.3 mA. The ion flux resulted of 3.4x10{sup 11} ions/cm{sup 2}. The normalized emittance measured by pepper pot method at 60 kV was of 0.22 pi mm mrad. By means of this machine, biomedical materials as UHMWPE were implanted with carbon and titanium ions. At a total ion flux of 2x10{sup 15} ions/cm{sup 2} the polyethylene surface increased its micro hardness of about 3-hold measured by the scratch test. Considering the ion emission cone dimension, we estimated a total extracted charge per pulse of 200 nC.

  3. Emerging standards with application to accelerator safety systems

    SciTech Connect

    Mahoney, K.L.; Robertson, H.P.

    1997-08-01

    This paper addresses international standards which can be applied to the requirements for accelerator personnel safety systems. Particular emphasis is given to standards which specify requirements for safety interlock systems which employ programmable electronic subsystems. The work draws on methodologies currently under development for the medical, process control, and nuclear industries.

  4. ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES

    SciTech Connect

    Sampayan, S; Caporaso, G; Chen, Y; Carazo, V; Falabella, S; Guethlein, G; Guse, S; Harris, J R; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Paul, A C; Pearson, D; Poole, B; Schmidt, R; Sanders, D; Selenes, K; Sitaraman, S; Sullivan, J; Wang, L; Watson, J

    2009-06-11

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve {approx}10 MV/m gradients for 10s of nanoseconds pulses and to {approx}100 MV/m gradients for {approx}1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We detail the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  5. ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES

    SciTech Connect

    Sampayan, S.; Caporaso, G.; Chen, Y.-J.; Falabella, S.; Guethlein, G.; Harris, J. R.; Hawkins, S.; Holmes, C.; Nelson, S.; Paul, A. C.; Poole, B.; Sanders, D.; Sitaraman, S.; Sullivan, J.; Wang, L.; Watson, J.; Carazo, V.; Guse, S.; Pearson, D.; Schmidt, R.

    2009-12-02

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve approx10 MV/m gradients for 10 s of nanoseconds pulses and approx100 MV/m gradients for approx1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We describe the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  6. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    SciTech Connect

    Gohar, Yousry; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  7. Double-negative metamaterial research for accelerator applications

    NASA Astrophysics Data System (ADS)

    Antipov, S.; Spentzouris, L.; Gai, W.; Liu, W.; Power, J. G.

    2007-09-01

    Material properties are central to the design of particle accelerators. One area of advanced accelerator research is to investigate novel materials and structures and their potential use in extending capabilities of accelerator components. Within the past decade a new type of artificially constructed material having the unique property of simultaneously negative permittivity and permeability has been realized, and is under intense investigation, primarily by the optical physics and microwave engineering communities [C.M. Soukoulis, Science 315 (2007) 47; D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305 (2004) 788; J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76 (1996) 4773]. Although they are typically constructed of arrays of discrete cells, as long as the condition that the wavelength of applied radiation is significantly greater than the cell dimensions is met, the material mimics a continuous medium and can be described with the bulk properties of permittivity, ɛ, and permeability, μ. When the permittivity and permeability are simultaneously negative in some frequency range, the metamaterial is called double negative (DNM) or left-handed (LHM) and has unusual properties, such as a negative index of refraction. An investigation of these materials in the context of accelerators is being carried out by IIT and the Argonne Wakefield Accelerator Facility [S. Antipov, W. Liu, W. Gai, J. Power, L. Spentzouris, AIP Conf. Proc. 877 (2006); S. Antipov, W. Liu, J. Power, L. Spentzouris, Design, Fabrication, and Testing of Left-Handed Metamaterial, Wakefield Notes at Argonne Wakefield Accelerator, ]. Waveguides loaded with metamaterials are of interest because the DNM can change the dispersion relation of the waveguide significantly. For example, slow backward waves can be produced in a DNM-loaded waveguide without having corrugations. This article begins with a brief introduction of known design

  8. Metal and elastomer seal tests for accelerator applications

    SciTech Connect

    Welch, K.M.; McIntyre, G.T.; Tuozzolo, J.E.; Skelton, R.; Pate, D.J.; Gill, S.M.

    1989-01-01

    The vacuum system of the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory has more than a thousand metal vacuum seals. Also, numerous elastomer seals are used throughout the AGS to seal large beam component chambers. An accelerator upgrade program is being implemented to reduce the AGS operating pressure by x100 and improve the reliability of the vacuum system. This paper describes work in progress on metal and elastomer vacuum seals to help meet those two objectives. Tests are reported on the sealing properties of a variety of metal seals used on different sealing surfaces. Results are also given on reversible sorption properties of certain elastomers. 16 refs., 6 figs., 4 tabs.

  9. Application of permanent magnets in accelerators and electron storage rings

    NASA Astrophysics Data System (ADS)

    Halbach, K.

    1985-04-01

    The use of permanent-magnet systems in high-energy accelerators and as sources of synchrotron radiation in electron-storage rings is discussed in a review of recent experimental investigations. Consideration is given to the generic advantages of permanent magnets over electromagnets (higher field strength per magnet size) in small-scale configurations; the magnetic properties of some charge-sheet-equivalent-permanent-magnet materials (CSEMs); and the design of pure-CSEM and CSEM-Fe-hybrid multipole magnetic lenses, dipoles, and undulator/wiggler systems for use in free-electron lasers and the production of elliptically polarized synchrotron light. Drawings and diagrams are provided.

  10. Superstructure for high current applications in superconducting linear accelerators

    SciTech Connect

    Sekutowicz, Jacek; Kneisel, Peter

    2008-03-18

    A superstructure for accelerating charged particles at relativistic speeds. The superstructure consists of two weakly coupled multi-cell subunits equipped with HOM couplers. A beam pipe connects the subunits and an HOM damper is included at the entrance and the exit of each of the subunits. A coupling device feeds rf power into the subunits. The subunits are constructed of niobium and maintained at cryogenic temperatures. The length of the beam pipe between the subunits is selected to provide synchronism between particles and rf fields in both subunits.

  11. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    NASA Astrophysics Data System (ADS)

    Teng, Chen; Elias, Luis R.

    1995-02-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations.

  12. Application of nonlinear Krylov acceleration to radiative transfer problems

    SciTech Connect

    Till, A. T.; Adams, M. L.; Morel, J. E.

    2013-07-01

    The iterative solution technique used for radiative transfer is normally nested, with outer thermal iterations and inner transport iterations. We implement a nonlinear Krylov acceleration (NKA) method in the PDT code for radiative transfer problems that breaks nesting, resulting in more thermal iterations but significantly fewer total inner transport iterations. Using the metric of total inner transport iterations, we investigate a crooked-pipe-like problem and a pseudo-shock-tube problem. Using only sweep preconditioning, we compare NKA against a typical inner / outer method employing GMRES / Newton and find NKA to be comparable or superior. Finally, we demonstrate the efficacy of applying diffusion-based preconditioning to grey problems in conjunction with NKA. (authors)

  13. Bioanalytical applications of accelerator mass spectrometry for pharmaceutical research.

    PubMed

    Turteltaub, K W; Vogel, J S

    2000-07-01

    Accelerator mass spectrometry (AMS) is a mass spectrometric method for quantifying isotopes. It has had great impact in the geosciences and is now being applied in the biomedical fields. AMS measures radioisotopes such as 14C, 3H, 41Ca, and 36Cl, and others, with attomole sensitivity and high precision. Its use is allowing absorption, distribution, metabolism and elimination studies, as well as detailed pharmacokinetics, to be carried out directly in humans with very low chemical or radiological hazard. It is used in combination with standard separation methodologies, such as chromatography, in identification of metabolites and molecular targets for both toxicants and pharmacologic agents. AMS allows the use of very low specific activity chemicals (< 1 mCi/mmol), creating opportunities to use compounds not available in a high specific activity form, such as those that must be biosynthesized, produced in combinatorial libraries, or made through inefficient synthesis. AMS is allowing studies to be carried out with agents having low bioavailability, low systemic distributions, or high toxicity where administered doses must be kept low (<1 microg/kg). It may have uses in tests for idiosyncratic metabolism, drug interaction, or individual susceptibility, among others. The ability to use very low chemical doses, low radiological doses, small samples and conduct multiple dose studies may help move drug candidates into humans faster and safer than before. The uses of AMS are growing and its potential for drug development is only now beginning to be realized.

  14. Structural Basis of Protein Translocation by the Vps4-Vta1 AAA ATPase.

    PubMed

    Monroe, Nicole; Han, Han; Shen, Peter S; Sundquist, Wesley I; Hill, Christopher P

    2017-04-05

    Many important cellular membrane fission reactions are driven by ESCRT pathways, which culminate in disassembly of ESCRT-III polymers by the AAA ATPase Vps4. We report a 4.3 Å resolution cryo-EM structure of the active Vps4 hexamer with its cofactor Vta1, ADP•BeFx, and an ESCRT-III substrate peptide. Four Vps4 subunits form a helix whose interfaces are consistent with ATP-binding, is stabilized by Vta1, and binds the substrate peptide. The fifth subunit approximately continues this helix but appears to be dissociating. The final Vps4 subunit completes a notched-washer configuration as if transitioning between the ends of the helix. We propose that ATP binding propagates growth at one end of the helix while hydrolysis promotes disassembly at the other end, so that Vps4 'walks' along ESCRT-III until it encounters the ordered N-terminal domain to destabilize the ESCRT-III lattice. This model may be generally applicable to other protein-translocating AAA ATPases.

  15. A dosimetric evaluation of the Eclipse AAA algorithm and Millennium 120 MLC for cranial intensity-modulated radiosurgery

    SciTech Connect

    Calvo Ortega, Juan Francisco Moragues, Sandra; Pozo, Miquel; José, Sol San; Puertas, Enrique; Fernández, Jaime; Casals, Joan

    2014-07-01

    The aim of this study is to assess the accuracy of a convolution-based algorithm (anisotropic analytical algorithm [AAA]) implemented in the Eclipse planning system for intensity-modulated radiosurgery (IMRS) planning of small cranial targets by using a 5-mm leaf-width multileaf collimator (MLC). Overall, 24 patient-based IMRS plans for cranial lesions of variable size (0.3 to 15.1 cc) were planned (Eclipse, AAA, version 10.0.28) using fixed field-based IMRS produced by a Varian linear accelerator equipped with a 120 MLC (5-mm width on central leaves). Plan accuracy was evaluated according to phantom-based measurements performed with radiochromic film (EBT2, ISP, Wayne, NJ). Film 2D dose distributions were performed with the FilmQA Pro software (version 2011, Ashland, OH) by using the triple-channel dosimetry method. Comparison between computed and measured 2D dose distributions was performed using the gamma method (3%/1 mm). Performance of the MLC was checked by inspection of the DynaLog files created by the linear accelerator during the delivery of each dynamic field. The absolute difference between the calculated and measured isocenter doses for all the IMRS plans was 2.5% ± 2.1%. The gamma evaluation method resulted in high average passing rates of 98.9% ± 1.4% (red channel) and 98.9% ± 1.5% (blue and green channels). DynaLog file analysis revealed a maximum root mean square error of 0.46 mm. According to our results, we conclude that the Eclipse/AAA algorithm provides accurate cranial IMRS dose distributions that may be accurately delivered by a Varian linac equipped with a Millennium 120 MLC.

  16. A dosimetric evaluation of the Eclipse AAA algorithm and Millennium 120 MLC for cranial intensity-modulated radiosurgery.

    PubMed

    Calvo Ortega, Juan Francisco; Moragues, Sandra; Pozo, Miquel; José, Sol San; Puertas, Enrique; Fernández, Jaime; Casals, Joan

    2014-01-01

    The aim of this study is to assess the accuracy of a convolution-based algorithm (anisotropic analytical algorithm [AAA]) implemented in the Eclipse planning system for intensity-modulated radiosurgery (IMRS) planning of small cranial targets by using a 5-mm leaf-width multileaf collimator (MLC). Overall, 24 patient-based IMRS plans for cranial lesions of variable size (0.3 to 15.1cc) were planned (Eclipse, AAA, version 10.0.28) using fixed field-based IMRS produced by a Varian linear accelerator equipped with a 120 MLC (5-mm width on central leaves). Plan accuracy was evaluated according to phantom-based measurements performed with radiochromic film (EBT2, ISP, Wayne, NJ). Film 2D dose distributions were performed with the FilmQA Pro software (version 2011, Ashland, OH) by using the triple-channel dosimetry method. Comparison between computed and measured 2D dose distributions was performed using the gamma method (3%/1mm). Performance of the MLC was checked by inspection of the DynaLog files created by the linear accelerator during the delivery of each dynamic field. The absolute difference between the calculated and measured isocenter doses for all the IMRS plans was 2.5% ± 2.1%. The gamma evaluation method resulted in high average passing rates of 98.9% ± 1.4% (red channel) and 98.9% ± 1.5% (blue and green channels). DynaLog file analysis revealed a maximum root mean square error of 0.46mm. According to our results, we conclude that the Eclipse/AAA algorithm provides accurate cranial IMRS dose distributions that may be accurately delivered by a Varian linac equipped with a Millennium 120 MLC.

  17. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    SciTech Connect

    Ganni, Venkatarao; Knudsen, Peter N.; Arenius, Dana M.; Casagrande, Fabio

    2014-01-01

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

  18. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    SciTech Connect

    Ganni, V.; Knudsen, P.; Arenius, D.; Casagrande, F.

    2014-01-29

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

  19. Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques

    PubMed Central

    Mohammed, Muzaffer; Clement, Travis C.; Aslan, Kadir

    2014-01-01

    In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400–800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72–24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally. PMID:25568813

  20. Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques.

    PubMed

    Mohammed, Muzaffer; Clement, Travis C; Aslan, Kadir

    2014-12-02

    In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400-800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72-24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally.

  1. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernández, Luis

    2010-09-01

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  2. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    SciTech Connect

    Rodriguez-Fernandez, Luis

    2010-09-10

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  3. Applications of vacuum technology to novel accelerator problems

    SciTech Connect

    Garwin, E.L.

    1983-01-01

    Vacuum requirements for electron storage rings are most demanding to fulfill, due to the presence of gas desorption caused by large quantities of synchrotron radiation, the very limited area accessible for pumping ports, the need for 10/sup -9/ torr pressures in the ring, and for pressures a decade lower in the interaction regions. Design features of a wide variety of distributed ion sublimation pumps (DIP) developed at SLAC to meet these requirements are discussed, as well as NEG (non-evaporable getter) pumps tested for use in the Large Electron Positron Collider at CERN. Application of DIP to much higher pressures in electron damping rings for the Stanford Linear Collider are discussed.

  4. Convergence acceleration for vector sequences and applications to computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Sidi, Avram; Celestina, Mark L.

    1990-01-01

    Some recent developments in acceleration of convergence methods for vector sequences are reviewed. The methods considered are the minimal polynomial extrapolation, the reduced rank extrapolation, and the modified minimal polynomial extrapolation. The vector sequences to be accelerated are those that are obtained from the iterative solution of linear or nonlinear systems of equations. The convergence and stability properties of these methods as well as different ways of numerical implementation are discussed in detail. Based on the convergence and stability results, strategies that are useful in practical applications are suggested. Two applications to computational fluid mechanics involving the three dimensional Euler equations for ducted and external flows are considered. The numerical results demonstrate the usefulness of the methods in accelerating the convergence of the time marching techniques in the solution of steady state problems.

  5. Convergence acceleration for vector sequences and applications to computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Sidi, Avram; Celestina, Mark L.

    1988-01-01

    Some recent developments in acceleration of convergence methods for vector sequences are reviewed. The methods considered are the minimal polynomial extrapolation, the reduced rank extrapolation, and the modified minimal polynomial extrapolation. The vector sequences to be accelerated are those that are obtained from the iterative solution of linear or nonlinear systems of equations. The convergence and stability properties of these methods as well as different ways of numerical implementation are discussed in detail. Based on the convergence and stability results, strategies that are useful in practical applications are suggested. Two applications to computational fluid mechanics involving the three dimensional Euler equations for ducted and external flows are considered. The numerical results demonstrate the usefulness of the methods in accelerating the convergence of the time marching techniques in the solution of steady state problems.

  6. Differential expression of TRAIL and its receptors relative to calcification in AAA

    SciTech Connect

    Liu, Xun . E-mail: mpscrs@bath.ac.uk; Winrow, Vivienne R.; Horrocks, Michael; Stevens, Cliff R.

    2007-06-22

    Abdominal aortic aneurysm (AAA) is commonly associated with atherosclerosis. Human AAA tissue displays cells undergoing all stages of apoptosis. Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis in tumour cells but not in normal cells. It has death receptors and decoy receptors. An inhibitor of TRAIL, osteoprotegerin (OPG), is involved in osteogenesis and vascular calcification. We investigated TRAIL and its receptors in AAA compared within normal aorta (NA). Both qualitative and quantitative analyses of calcification in AAA walls were determined using Von Kossa staining and pre-operation computer tomography (CT) scans. There was a significant difference in calcification level at different locations in the AAA wall (p < 0.05). Apoptosis was confirmed in AAA by TUNEL assay. A significant difference in TRAIL and its receptor expression was observed between normal aortae and AAA (p < 0.05). Significant differences were also observed between tissues displaying different extents of calcification for TRAIL mRNA (p < 0.05) by RT-PCR examination and OPG protein (p < 0.01) by protein blotting examination. We propose that this pattern of expression of TRAIL and its receptors may contribute to AAA formation and calcification in the AAA wall.

  7. Emerging Mechanistic Insights into AAA Complexes Regulating Proteasomal Degradation

    PubMed Central

    Förster, Friedrich; Schuller, Jan M.; Unverdorben, Pia; Aufderheide, Antje

    2014-01-01

    The 26S proteasome is an integral element of the ubiquitin-proteasome system (UPS) and, as such, responsible for regulated degradation of proteins in eukaryotic cells. It consists of the core particle, which catalyzes the proteolysis of substrates into small peptides, and the regulatory particle, which ensures specificity for a broad range of substrates. The heart of the regulatory particle is an AAA-ATPase unfoldase, which is surrounded by non-ATPase subunits enabling substrate recognition and processing. Cryo-EM-based studies revealed the molecular architecture of the 26S proteasome and its conformational rearrangements, providing insights into substrate recognition, commitment, deubiquitylation and unfolding. The cytosol proteasomal degradation of polyubiquitylated substrates is tuned by various associating cofactors, including deubiquitylating enzymes, ubiquitin ligases, shuttling ubiquitin receptors and the AAA-ATPase Cdc48/p97. Cdc48/p97 and its cofactors function upstream of the 26S proteasome, and their modular organization exhibits some striking analogies to the regulatory particle. In archaea PAN, the closest regulatory particle homolog and Cdc48 even have overlapping functions, underscoring their intricate relationship. Here, we review recent insights into the structure and dynamics of the 26S proteasome and its associated machinery, as well as our current structural knowledge on the Cdc48/p97 and its cofactors that function in the ubiquitin-proteasome system (UPS). PMID:25102382

  8. The oligomeric state of the active Vps4 AAA ATPase

    PubMed Central

    Monroe, Nicole; Han, Han; Gonciarz, Malgorzata D.; Eckert, Debra M.; Karren, Mary Anne; Whitby, Frank G.; Sundquist, Wesley I.; Hill, Christopher P.

    2013-01-01

    The cellular ESCRT pathway drives membrane constriction toward the cytosol and effects membrane fission during cytokinesis, endosomal sorting, and the release of many enveloped viruses, including HIV. A component of this pathway, the AAA ATPase Vps4, provides energy for pathway progression. Although it is established that Vps4 functions as an oligomer, subunit stoichiometry and other fundamental features of the functional enzyme are unclear. Higher-order oligomers have thus far only been characterized for a Walker B mutant of Vps4 in the presence of ATP. Here, we report that although some mutant Vps4 proteins form dodecameric assemblies, active wild-type S. cerevisiae and S. solfataricus Vps4 enzymes can form hexamers in the presence of ATP and ADP, as assayed by size exclusion chromatography and equilibrium analytical ultracentifugation. The Vta1p activator binds hexameric yeast Vps4p without changing the oligomeric state of Vps4p, implying that the active Vta1p:Vps4p complex also contains a single hexameric ring. Additionally, we report crystal structures of two different archaeal Vps4 homologs, whose structures and lattice interactions suggest a conserved mode of oligomerization. Disruption of the proposed hexamerization interface by mutagenesis abolished the ATPase activity of archaeal Vps4 proteins and blocked Vps4p function in S. cerevisiae. These data challenge the prevailing model that active Vps4 is a double ring dodecamer, and argue that, like other type I AAA ATPases, Vps4 functions as a single ring with six subunits. PMID:24161953

  9. Flyer Acceleration by Pulsed Ion Beam Ablation and Application for Space Propulsion

    SciTech Connect

    Harada, Nobuhiro; Buttapeng, Chainarong; Yazawa, Masaru; Kashine, Kenji; Jiang Weihua; Yatsui, Kiyoshi

    2004-02-04

    Flyer acceleration by ablation plasma pressure produced by irradiation of intense pulsed ion beam has been studied. Acceleration process including expansion of ablation plasma was simulated based on fluid model. And interaction between incident pulsed ion beam and a flyer target was considered as accounting stopping power of it. In experiments, we used ETIGO-II intense pulsed ion beam generator with two kinds of diodes; 1) Magnetically Insulated Diode (MID, power densities of <100 J/cm2) and 2) Spherical-focused Plasma Focus Diode (SPFD, power densities of up to 4.3 kJ/cm2). Numerical results of accelerated flyer velocity agreed well with measured one over wide range of incident ion beam energy density. Flyer velocity of 5.6 km/s and ablation plasma pressure of 15 GPa was demonstrated by the present experiments. Acceleration of double-layer target consists of gold/aluminum was studied. For adequate layer thickness, such a flyer target could be much more accelerated than a single layer. Effect of waveform of ion beam was also examined. Parabolic waveform could accelerate more efficiently than rectangular waveform. Applicability of ablation propulsion was discussed. Specific impulse of 7000{approx}8000 seconds and time averaged thrust of up to 5000{approx}6000N can be expected. Their values can be controllable by changing power density of incident ion beam and pulse duration.

  10. Compact Dielectric Wall Accelerator Development For Intensity Modulated Proton Therapy And Homeland Security Applications

    SciTech Connect

    Chen, Y -; Caporaso, G J; Guethlein, G; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Cook, E; Falabella, S; Gower, E; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Stanley, J; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-06-17

    Compact dielectric wall (DWA) accelerator technology is being developed at the Lawrence Livermore National Laboratory. The DWA accelerator uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. Its high electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The DWA concept can be applied to accelerate charge particle beams with any charge to mass ratio and energy. Based on the DWA system, a novel compact proton therapy accelerator is being developed. This proton therapy system will produce individual pulses that can be varied in intensity, energy and spot width. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources. Applications of the DWA accelerator to problems in homeland security will also be discussed.

  11. Convergence Acceleration and Documentation of CFD Codes for Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Marquart, Jed E.

    2005-01-01

    The development and analysis of turbomachinery components for industrial and aerospace applications has been greatly enhanced in recent years through the advent of computational fluid dynamics (CFD) codes and techniques. Although the use of this technology has greatly reduced the time required to perform analysis and design, there still remains much room for improvement in the process. In particular, there is a steep learning curve associated with most turbomachinery CFD codes, and the computation times need to be reduced in order to facilitate their integration into standard work processes. Two turbomachinery codes have recently been developed by Dr. Daniel Dorney (MSFC) and Dr. Douglas Sondak (Boston University). These codes are entitled Aardvark (for 2-D and quasi 3-D simulations) and Phantom (for 3-D simulations). The codes utilize the General Equation Set (GES), structured grid methodology, and overset O- and H-grids. The codes have been used with success by Drs. Dorney and Sondak, as well as others within the turbomachinery community, to analyze engine components and other geometries. One of the primary objectives of this study was to establish a set of parametric input values which will enhance convergence rates for steady state simulations, as well as reduce the runtime required for unsteady cases. The goal is to reduce the turnaround time for CFD simulations, thus permitting more design parametrics to be run within a given time period. In addition, other code enhancements to reduce runtimes were investigated and implemented. The other primary goal of the study was to develop enhanced users manuals for Aardvark and Phantom. These manuals are intended to answer most questions for new users, as well as provide valuable detailed information for the experienced user. The existence of detailed user s manuals will enable new users to become proficient with the codes, as well as reducing the dependency of new users on the code authors. In order to achieve the

  12. Temporal Electron-bunch Shaping from a Photoinjector for Advanced Accelerator Applications

    SciTech Connect

    Lemery, Francois; Piot, Philippe

    2014-07-01

    Advanced-accelerator applications often require the production of bunches with shaped temporal distributions. An example of sought-after shape is a linearly-ramped current profile that can be improve the transformer ratio in beam-driven acceleration, or produce energy-modulated pulse for, e.g., the subsequent generation of THz radiation. Typically,  such a shaping is achieved by manipulating ultra-relativistic electron bunches. In this contribution we discuss the possibility of shaping the bunch via photoemission and demonstrate using particle-in-cell simulations the production of MeV electron bunches with quasi-ramped current profile.

  13. Particle Accelerators in China

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Fang, Shouxian

    As the special machines that can accelerate charged particle beams to high energy by using electromagnetic fields, particle accelerators have been widely applied in scientific research and various areas of society. The development of particle accelerators in China started in the early 1950s. After a brief review of the history of accelerators, this article describes in the following sections: particle colliders, heavy-ion accelerators, high-intensity proton accelerators, accelerator-based light sources, pulsed power accelerators, small scale accelerators, accelerators for applications, accelerator technology development and advanced accelerator concepts. The prospects of particle accelerators in China are also presented.

  14. A Sealed-Accelerator-Tube Neutron Generator for Boron Neutron Capture Therapy Application

    SciTech Connect

    Leung, K.-N.; Leung, K.N.; Lee, Y.; Verbeke, J.M.; Vurjic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

    1998-06-01

    Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator applications. By using a 2.5-cm-diameter RF-driven multicusp source and a computer designed 100 keV accelerator column, peak extractable hydrogen current exceeding 1 A from a 3-mm-diameter aperture, together with H{sup +} yields over 94% have been achieved. These experimental findings together with recent moderator design will enable one to develop compact 14 MeV neutron generators based on the D-T fusion reaction. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without pumping. With a 120 keV and 1 A deuteron beam, it is estimated that a treatment time of {approx} 45 minutes is needed for boron neutron capture therapy.

  15. Accelerated life time testing of fused silica for DUV laser applications revised

    NASA Astrophysics Data System (ADS)

    Mühlig, Christian; Bublitz, Simon

    2013-11-01

    We report on the continuation of a comparative study of different fused silica materials for ArF laser applications. After selecting potentially suited fused silica materials from their laser induced absorption and compaction obtained by a short time testing procedure, accelerated life time tests have been undertaken by sample irradiating at liquid nitrogen temperature and subsequent direct absorption measurements using the laser induced deflection (LID) technique. The obtained degradation acceleration strongly differs between fused silica materials showing high and low OH contents, respectively. As a result, a difference in the absorption degradation mechanism between high and low OH containing fused silica is proposed. Consequently two different scenarios for an acceleration of the absorption degradation are derived.

  16. Analysis of a Typical Chinese High School Biology Textbook Using the AAAS Textbook Standards

    ERIC Educational Resources Information Center

    Liang, Ye; Cobern, William W.

    2013-01-01

    The purpose of this study was to evaluate a typical Chinese high school biology textbook using the textbook standards of the American Association for the Advancement of Science (AAAS). The data were composed of three chapters selected from the textbook. Each chapter was analyzed and rated using the AAAS textbook standards. Pearson correlations…

  17. Nuclear modeling for applications in medical radiation therapy and accelerator-driven technologies

    SciTech Connect

    Chadwick, M.B.

    1995-06-01

    An understanding of the interactions of neutrons and protons below a few hundred MeV with nuclei is important for a number of applications. In this paper, two new applications are discussed: radiation transport calculations of energy deposition in fast neutron and proton cancer radiotherapy to optimize the dose given to a tumor; and intermediate-energy proton accelerators which are currently being designed for a range of applications including the destruction of long-lived radioactive nuclear waste. We describe nuclear theory calculations of direct, preequilibrium, and compound nucleus reaction mechanisms important for the modeling of these systems.

  18. Acceleration analysis of multi-rigid body system and its application for vehicle based stabilized platform system

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Luo, Erjuan; Jia, Lei; Liu, Bo

    2017-01-01

    The traditional representation of acceleration of a rigid body is given in terms of the angular acceleration and linear acceleration of a point attached to the rigid body. Since this representation has no coordinate invariance, the acceleration transformation of a multi-rigid-body system is complicated. In this paper, the physical meaning of the time derivative of a twist is investigated. It reveals that the rigid-body acceleration comprises the angular acceleration and tangent acceleration of a point which is attached to the rigid body and instantaneously coincident with the origin of frame in use. Their composition presents a six-dimensional representation of the rigid-body acceleration, which is verified to be of coordinate invariance. Based on the representation, the transformation of the rigid-body accelerations is performed conveniently, and the corresponding formula of composition accelerations of one rigid body relative to any other bodies in a multi-rigid-body system is presented. The method is then extended to the application of a vehicle stabilized platform system. The method is verified to be effective by analyzing the virtual prototype of the vehicle-based stabilized platform system. This paper builds a bridge for the six-dimensional rigid-body acceleration from theory achievements to practical application.

  19. Laser-driven electron beam acceleration and future application to compact light sources

    SciTech Connect

    Hafz, N.; Jeong, T. M.; Lee, S. K.; Pae, K. H.; Sung, J. H.; Choi, I. W.; Yu, T. J.; Lee, J.; Jeong, Y. U.

    2009-07-25

    Laser-driven plasma accelerators are gaining much attention by the advanced accelerator community due to the potential these accelerators hold in miniaturizing future high-energy and medium-energy machines. In the laser wakefield accelerator (LWFA), the ponderomotive force of an ultrashort high intensity laser pulse excites a longitudinal plasma wave or bubble. Due to huge charge separation, electric fields created in the plasma bubble can be several orders of magnitude higher than those available in conventional microwave and RF-based accelerator facilities which are limited (up to approx100 MV/m) by material breakdown. Therefore, if an electron bunch is injected into the bubble in phase with its field, it will gain relativistic energies within an extremely short distance. Here, in the LWFA we show the generation of high-quality and high-energy electron beams up to the GeV-class within a few millimeters of gas-jet plasmas irradiated by tens of terawatt ultrashort laser pulses. Thus we realize approximately four orders of magnitude acceleration gradients higher than available by conventional technology. As a practical application of the stable high-energy electron beam generation, we are planning on injecting the electron beams into a few-meters long conventional undulator in order to realize compact X-ray synchrotron (immediate) and FEL (future) light sources. Stable laser-driven electron beam and radiation devices will surely open a new era in science, medicine and technology and will benefit a larger number of users in those fields.

  20. Commercialization of an S-band standing-wave electron accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Moon, Jin-Hyeok; Kwak, Gyeong-Il; Han, Jae-Ik; Lee, Gyu-Baek; Jeon, Seong-Hwan; Kim, Jae-Young; Hwang, Cheol-Bin; Lee, Gi-Yong; Kim, Young-Man; Park, Sung-Ju

    2016-09-01

    An electron accelerator system has been developed for use in industrial, as well as possible medical, applications. Based on our experiences achieved during prototype system development and various electron beam acceleration tests, we have built a stable and compact system for sales purposes. We have integrated a self-developed accelerating cavity, an E-gun pulse driver, a radio-frequency (RF) power system, a vacuum system, a cooling system, etc. into a frame with a size of 1800 × 1000 × 1500 mm3. The accelerating structure is a side-coupled standing-wave type operating in the π/2 mode (tuned to~3 GHz). The RF power is provided by using a magnetron driven by a solid-state modulator. The electron gun is a triode type with a dispenser cathode (diameter of 11 mm). The system is capable of delivering a maximum 900-W average electron beam power with tight focusing at the target. Until now, we have performed various electron beam tests and X-ray beam tests after having built the system, have completed the beam assessment for commercializations, and have been preparing full-fledged sales activity. This article reports on our system development processes and on some of our early test results for commercializations.

  1. Failure modes and effects criticality analysis and accelerated life testing of LEDs for medical applications

    NASA Astrophysics Data System (ADS)

    Sawant, M.; Christou, A.

    2012-12-01

    While use of LEDs in Fiber Optics and lighting applications is common, their use in medical diagnostic applications is not very extensive. Since the precise value of light intensity will be used to interpret patient results, understanding failure modes [1-4] is very important. We used the Failure Modes and Effects Criticality Analysis (FMECA) tool to identify the critical failure modes of the LEDs. FMECA involves identification of various failure modes, their effects on the system (LED optical output in this context), their frequency of occurrence, severity and the criticality of the failure modes. The competing failure modes/mechanisms were degradation of: active layer (where electron-hole recombination occurs to emit light), electrodes (provides electrical contact to the semiconductor chip), Indium Tin Oxide (ITO) surface layer (used to improve current spreading and light extraction), plastic encapsulation (protective polymer layer) and packaging failures (bond wires, heat sink separation). A FMECA table is constructed and the criticality is calculated by estimating the failure effect probability (β), failure mode ratio (α), failure rate (λ) and the operating time. Once the critical failure modes were identified, the next steps were generation of prior time to failure distribution and comparing with our accelerated life test data. To generate the prior distributions, data and results from previous investigations were utilized [5-33] where reliability test results of similar LEDs were reported. From the graphs or tabular data, we extracted the time required for the optical power output to reach 80% of its initial value. This is our failure criterion for the medical diagnostic application. Analysis of published data for different LED materials (AlGaInP, GaN, AlGaAs), the Semiconductor Structures (DH, MQW) and the mode of testing (DC, Pulsed) was carried out. The data was categorized according to the materials system and LED structure such as AlGaInP-DH-DC, Al

  2. A nucleolar AAA-NTPase is required for parasite division

    PubMed Central

    Suvorova, Elena S.; Radke, Joshua B.; Ting, Li-Min; Vinayak, Sumiti; Alvarez, Carmelo A.; Kratzer, Stella; Kim, Kami; Striepen, Boris; White, Michael W.

    2013-01-01

    Summary Apicomplexa division involves several distinct phases shared with other eukaryote cell cycles including a gap period (G1) prior to chromosome synthesis, although how progression through the parasite cell cycle is controlled is not understood. Here we describe a cell cycle mutant that reversibly arrests in the G1 phase. The defect in this mutant was mapped by genetic complementation to a gene encoding a novel AAAATPase/CDC48 family member called TgNoAP1. TgNoAP1 is tightly regulated and expressed in the nucleolus during the G1/S phases. A tyrosine to a cysteine change upstream of the second AAA+ domain in the temperature sensitive TgNoAP1 allele leads to conditional protein instability, which is responsible for rapid cell cycle arrest and a primary defect in 28S rRNA processing as confirmed by knock-in of the mutation back into the parent genome. The interaction of TgNoAP1 with factors of the snoRNP and R2TP complexes indicates this protein has a role in pre-rRNA processing. This is a novel role for a cdc48-related chaperone protein and indicates that TgNoAP1 may be part of a dynamic mechanism that senses the health of the parasite protein machinery at the initial steps of ribosome biogenesis and conveys that information to the parasite cell cycle checkpoint controls. PMID:23964771

  3. A review of vector convergence acceleration methods, with applications to linear algebra problems

    NASA Astrophysics Data System (ADS)

    Brezinski, C.; Redivo-Zaglia, M.

    In this article, in a few pages, we will try to give an idea of convergence acceleration methods and extrapolation procedures for vector sequences, and to present some applications to linear algebra problems and to the treatment of the Gibbs phenomenon for Fourier series in order to show their effectiveness. The interested reader is referred to the literature for more details. In the bibliography, due to space limitation, we will only give the more recent items, and, for older ones, we refer to Brezinski and Redivo-Zaglia, Extrapolation methods. (Extrapolation Methods. Theory and Practice, North-Holland, 1991). This book also contains, on a magnetic support, a library (in Fortran 77 language) for convergence acceleration algorithms and extrapolation methods.

  4. GPU-accelerated phase extraction algorithm for interferograms: a real-time application

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoqiang; Wu, Yongqian; Liu, Fengwei

    2016-11-01

    Optical testing, having the merits of non-destruction and high sensitivity, provides a vital guideline for optical manufacturing. But the testing process is often computationally intensive and expensive, usually up to a few seconds, which is sufferable for dynamic testing. In this paper, a GPU-accelerated phase extraction algorithm is proposed, which is based on the advanced iterative algorithm. The accelerated algorithm can extract the right phase-distribution from thirteen 1024x1024 fringe patterns with arbitrary phase shifts in 233 milliseconds on average using NVIDIA Quadro 4000 graphic card, which achieved a 12.7x speedup ratio than the same algorithm executed on CPU and 6.6x speedup ratio than that on Matlab using DWANING W5801 workstation. The performance improvement can fulfill the demand of computational accuracy and real-time application.

  5. Run-time environment and application tools for the ground test accelerator control system

    NASA Astrophysics Data System (ADS)

    Kozubal, A. J.; Kerstiens, D. M.; Hill, J. O.; Dalesio, L. R.

    1990-08-01

    The control system for the ground test accelerator (GTA) at Los Alamos provides capabilities and tools that considerably reduce the amount of programming required to perform many applications. These qualities have proved to be valuable on early GTA experiments, where rapid prototy[ing has paid off. For instance, the initial controls for a 1 MW rf power supply provided supervisory control with no application-dependent programming. These same qualities will enable us to automate the start-up, operation and shutdown of the GTA. The run-time environment makes effective use of the distributed, nonhierarchical control-system architecture by providing a standard interface to the distributed data base. This paper gives an overview of the run-time software environment and the tools that simplify building the run-time data base, the operator interface screens, and application-specific control operations — sequential and continuous.

  6. Accelerated testing of solid oxide fuel cell stacks for micro combined heat and power application

    NASA Astrophysics Data System (ADS)

    Hagen, Anke; Høgh, Jens Valdemar Thorvald; Barfod, Rasmus

    2015-12-01

    State-of-the-art (SoA) solid oxide fuel cell (SOFC) stacks are tested using profiles relevant for use in micro combined heat and power (CHP) units. Such applications are characterised by dynamic load profiles. In order to shorten the needed testing time and to investigate potential acceleration of degradation, the profiles are executed faster than required for real applications. Operation with fast load cycling, both using hydrogen and methane/steam as fuels, does not accelerate degradation compared to constant operation, which demonstrates the maturity of SoA stacks and enables transferring knowledge from testing at constant conditions to dynamic operation. 7.5 times more cycles than required for 80,000 h lifetime as micro CHP are achieved on one-cell-stack level. The results also suggest that degradation mechanisms that proceed on a longer time-scale, such as creep, might have a more dominating effect for long life-times than regular short time changes of operation. In order to address lifetime testing it is suggested to build a testing program consisting of defined modules that represent different application profiles, such as one module at constant conditions, followed by modules at one set of dynamic conditions etc.

  7. 1 MeV, 10 kW DC electron accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Nayak, B.; Acharya, S.; Bhattacharjee, D.; Bakhtsingh, R. I.; Rajan, R.; Sharma, D. K.; Dewangan, S.; Sharma, V.; Patel, R.; Tiwari, R.; Benarjee, S.; Srivastava, S. K.

    2016-03-01

    Several modern applications of radiation processing like medical sterilization, rubber vulcanization, polymerization, cross-linking and pollution control from thermal power stations etc. require D.C. electron accelerators of energy ranging from a few hundred keVs to few MeVs and power from a few kilowatts to hundreds of kilowatts. To match these requirements, a 3 MeV, 30 kW DC electron linac has been developed at BARC, Mumbai and current operational experience of 1 MeV, 10 kW beam power will be described in this paper. The LINAC composed mainly of Electron Gun, Accelerating Tubes, Magnets, High Voltage source and provides 10 kW beam power at the Ti beam window stably after the scanning section. The control of the LINAC is fully automated. Here Beam Optics study is carried out to reach the preferential parameters of Accelerating as well as optical elements. Beam trials have been conducted to find out the suitable operation parameters of the system.

  8. Accelerated multiscale space-time finite element simulation and application to high cycle fatigue life prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Wen, Lihua; Naboulsi, Sam; Eason, Thomas; Vasudevan, Vijay K.; Qian, Dong

    2016-08-01

    A multiscale space-time finite element method based on time-discontinuous Galerkin and enrichment approach is presented in this work with a focus on improving the computational efficiencies for high cycle fatigue simulations. While the robustness of the TDG-based space-time method has been extensively demonstrated, a critical barrier for the extensive application is the large computational cost due to the additional temporal dimension and enrichment that are introduced. The present implementation focuses on two aspects: firstly, a preconditioned iterative solver is developed along with techniques for optimizing the matrix storage and operations. Secondly, parallel algorithms based on multi-core graphics processing unit are established to accelerate the progressive damage model implementation. It is shown that the computing time and memory from the accelerated space-time implementation scale with the number of degree of freedom N through ˜ O(N^{1.6}) and ˜ O(N), respectively. Finally, we demonstrate the accelerated space-time FEM simulation through benchmark problems.

  9. Investigation of Propagation Characteristics of Twisted Hollow Waveguides for Particle Accelerator Applications

    SciTech Connect

    Wilson, Joshua Lee

    2008-12-01

    A new class of accelerating structures employing a uniformly twisted waveguide is investigated. Twisted waveguides of various cross-sectional geometries are considered and analyzed. It is shown that such a twisted waveguide can support waves that travel at a speed slower than the speed of light c. The slow-wave properties of twisted structures are of interest because these slow-wave electromagnetic fields can be used in applications such as electron traveling wave tubes and linear particle accelerators. Since there is no exact closed form solution for the electromagnetic fields within a twisted waveguide or cavity, several previously proposed approximate methods are examined, and more effcient approaches are developed. It is found that the existing perturbation theory methods yield adequate results for slowly twisted structures; however, our efforts here are geared toward analyzing rapidly twisted structures using modifed finite difference methods specially suited for twisted structures. Although the method can handle general twisted structures, three particular cross sections are selected as representative cases for careful analysis. First, a slowly twisted rectangular cavity is analyzed as a reference case. This is because its shape is simple and perturbation theory already gives a good approximate solution for such slow twists rates. Secondly, a symmetrically notched circular cross section is investigated, since its longitudinal cross section is comparable to the well known disk-loaded cavity (used in many practical accelerator designs, including SLAC). Finally, a "dumbbell" shaped cross section is analyzed because of its similarity to the well-known TESLA-type accelerating cavity, which is of great importance because of its wide acceptance as a superconducting cavity. To validate the results of the developed theory and our extensive simulations, the newly developed numerical models are compared to commercial codes. Also, several prototypes are developed

  10. Robert R. Wilson Prize III: Applications of Intrabeam Scattering Formulae to a Myriad of Accelerator Systems

    NASA Astrophysics Data System (ADS)

    Mtingwa, Sekazi K.

    2017-01-01

    We discuss our entree into accelerator physics and the problem of intrabeam scattering in particular. We focus on the historical importance of understanding intrabeam scattering for the successful operation of Fermilab's Accumulator and Tevatron and the subsequent hunt for the top quark, and its importance for successful operation of CERN's Large Hadron Collider that discovered the Higgs boson. We provide details on intrabeam scattering formalisms for hadron and electron beams at high energies, concluding with an Ansatz by Karl Bane that has applications to electron damping rings and synchrotron light sources.

  11. Optimal convolution SOR acceleration of waveform relaxation with application to semiconductor device simulation

    NASA Technical Reports Server (NTRS)

    Reichelt, Mark

    1993-01-01

    In this paper we describe a novel generalized SOR (successive overrelaxation) algorithm for accelerating the convergence of the dynamic iteration method known as waveform relaxation. A new convolution SOR algorithm is presented, along with a theorem for determining the optimal convolution SOR parameter. Both analytic and experimental results are given to demonstrate that the convergence of the convolution SOR algorithm is substantially faster than that of the more obvious frequency-independent waveform SOR algorithm. Finally, to demonstrate the general applicability of this new method, it is used to solve the differential-algebraic system generated by spatial discretization of the time-dependent semiconductor device equations.

  12. ACCELERATORS: Preliminary application of turn-by-turn data analysis to the SSRF storage ring

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Hui; Zhao, Zhen-Tang

    2009-07-01

    There is growing interest in utilizing the beam position monitor turn-by-turn (TBT) data to debug accelerators. TBT data can be used to determine the linear optics, coupled optics and nonlinear behaviors of the storage ring lattice. This is not only a useful complement to other methods of determining the linear optics such as LOCO, but also provides a possibility to uncover more hidden phenomena. In this paper, a preliminary application of a β function measurement to the SSRF storage ring is presented.

  13. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    SciTech Connect

    J.R. Paterek; W.W. Bogan; L.M. Lahner; A. May

    2000-04-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  14. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    SciTech Connect

    J.R. Paterek; W.W. Bogan; L.M. Lahner; V. Trbovic; E. Korach

    2001-05-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  15. Proposed new accelerator design for homeland security x-ray applications

    SciTech Connect

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G.J.; Bharadwaj, Vinod; Nosochkov, Yuri

    2015-01-01

    Two goals for security scanning of cargo and freight are the ability to determine the type of material that is being imaged, and to do so at low radiation dose. One commonly used technique to determine the effective Z of the cargo is dual-energy imaging, i.e. imaging with different x-ray energy spectra. Another technique uses the fact that the transmitted x-ray spectrum itself also depends on the effective Z. Spectroscopy is difficult because the energy of individual x rays needs to be measured in a very high count-rate environment. Typical accelerators for security applications offer large but short bursts of x-rays, suitable for current-mode integrated imaging. In order to perform x-ray spectroscopy, a new accelerator design is desired that has the following features: 1) increased duty factor in order to spread out the arrival of x-rays at the detector array over time; 2) x-ray intensity modulation from one delivered pulse to the next by adjusting the accelerator electron beam instantaneous current so as to deliver adequate signal without saturating the spectroscopic detector; and 3) the capability to direct the (forward peaked) x-ray intensity towards high-attenuation areas in the cargo (“fan-beam-steering”). Current sources are capable of 0.1% duty factor, although usually they are operated at significantly lower duty factors (~0.04%), but duty factors in the range 0.4-1.0% are desired. The higher duty factor can be accomplished, e.g., by moving from 300 pulses per second (pps) to 1000 pps and/or increasing the pulse duration from a typical 4 μs to 10 μs. This paper describes initial R&D to examine cost effective modifications that could be performed on a typical accelerator for these purposes, as well as R&D for fan-beam steering.

  16. The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying

    PubMed Central

    Jacquemyn, Julie; Barth, Esther; Langer, Thomas; Niessen, Carien M.; Rugarli, Elena I.

    2016-01-01

    The m-AAA protease preserves proteostasis of the inner mitochondrial membrane. It ensures a functional respiratory chain, by controlling the turnover of respiratory complex subunits and allowing mitochondrial translation, but other functions in mitochondria are conceivable. Mutations in genes encoding subunits of the m-AAA protease have been linked to various neurodegenerative diseases in humans, such as hereditary spastic paraplegia and spinocerebellar ataxia. While essential functions of the m-AAA protease for neuronal survival have been established, its role in adult glial cells remains enigmatic. Here, we show that deletion of the highly expressed subunit AFG3L2 in mature mouse oligodendrocytes provokes early-on mitochondrial fragmentation and swelling, as previously shown in neurons, but causes only late-onset motor defects and myelin abnormalities. In contrast, total ablation of the m-AAA protease, by deleting both Afg3l2 and its paralogue Afg3l1, triggers progressive motor dysfunction and demyelination, owing to rapid oligodendrocyte cell death. Surprisingly, the mice showed premature hair greying, caused by progressive loss of melanoblasts that share a common developmental origin with Schwann cells and are targeted in our experiments. Thus, while both neurons and glial cells are dependant on the m-AAA protease for survival in vivo, complete ablation of the complex is necessary to trigger death of oligodendrocytes, hinting to cell-autonomous thresholds of vulnerability to m-AAA protease deficiency. PMID:27911893

  17. Determining the influence of calcification on the failure properties of abdominal aortic aneurysm (AAA) tissue.

    PubMed

    O'Leary, Siobhan A; Mulvihill, John J; Barrett, Hilary E; Kavanagh, Eamon G; Walsh, Michael T; McGloughlin, Tim M; Doyle, Barry J

    2015-02-01

    Varying degrees of calcification are present in most abdominal aortic aneurysms (AAAs). However, their impact on AAA failure properties and AAA rupture risk is unclear. The aim of this work is evaluate and compare the failure properties of partially calcified and predominantly fibrous AAA tissue and investigate the potential reasons for failure. Uniaxial mechanical testing was performed on AAA samples harvested from 31 patients undergoing open surgical repair. Individual tensile samples were divided into two groups: fibrous (n=31) and partially calcified (n=38). The presence of calcification was confirmed by fourier transform infrared spectroscopy (FTIR). A total of 69 mechanical tests were performed and the failure stretch (λf), failure stress (σf) and failure tension (Tf) were recorded for each test. Following mechanical testing, the failure sites of a subset of both tissue types were examined using scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDS) to investigate the potential reasons for failure. It has been shown that the failure properties of partially calcified tissue are significantly reduced compared to fibrous tissue and SEM and EDS results suggest that the junction between a calcification deposit and the fibrous matrix is highly susceptible to failure. This study implicates the presence of calcification as a key player in AAA rupture risk and provides further motivation for the development of non-invasive methods of measuring calcification.

  18. Characteristics of high gradient insulators for accelerator and high power flow applications

    SciTech Connect

    Elizondo, J.M.; Krogh, M.L.; Smith, D.

    1997-07-01

    The high gradient insulator has been demonstrated to operate at levels comparable or better than special geometry or coated insulators. Some patented insulator configurations allow for sophisticated accelerator structures, high power flow interfaces, and microwave applications not previously possible. Sophisticated manufacturing techniques available at AlliedSignal FM and T made this development possible. Bipolar and high power flow applications are specially suited for present insulator designs. The insulator shows a beneficial effect when used under RF fields or RF structures. These insulators can be designed, to a first approximation, from simple electron flight path equations. With a recently developed model of surface flashover physics the authors completed a set of design calculations that include effects such as layer density and dielectric/metal thickness. Experimental data, obtained in the last few years of development, is presented and reviewed. Several insulator fabrication characteristics, indicating critical design parameters, are also presented.

  19. A new approach to accelerate orthodontic tooth movement in women: Orthodontic force application after ovulation.

    PubMed

    Xu, Xiaomei; Zhao, Qing; Yang, Siwei; Fu, Guangxin; Chen, Yangxi

    2010-10-01

    Tooth movement occurs as a consequence of periodontal tissue remodeling. The goal of every orthodontist is to investigate better approaches to accelerate tooth movement. Estrogen, by binding with its receptors in periodontal tissue, regulates the remodeling of alveolar bones, promotes bone formation, and inhibits bone resorption. Estrogen secretion in vivo is characterized by a nearly lunar rhythm. The estrogen expression level is low during menstruation and the luteal phase, and reaches the highest at 1-2days before ovulation. Estrogen physiological fluctuations can cause physiological fluctuations in the serum markers of bone turnover. Therefore, orthodontic therapy should be planned according to the menstrual cycle since tooth movement, under the application of force, is faster during low estrogen levels. In this paper, we propose a hypothesis that application of orthodontic force after each ovulation may promote tooth movement, thereby shortening the course of orthodontic treatment.

  20. Engineering Silicone Rubbers for In vitro Studies: Creating AAA Models and ILT Analogues with Physiological Properties

    PubMed Central

    Corbett, T.J.; Doyle, B.J.; Callanan, A.; Walsh, M.T.; McGloughlin, T.M

    2010-01-01

    Background In vitro studies of abdominal aortic aneurysm (AAA) have been widely reported. Frequently mock artery models with intraluminal thrombus (ILT) analogues are used to mimic the AAA in vivo. While the models used may be physiological, their properties are frequently either not reported or investigated. Method of Approach This study is concerned with the testing and characterisation of previously used vessel analogue materials and the development of new materials for the manufacture of AAA models. These materials were used in conjunction with a previously validated injection moulding technique to manufacture AAA models of ideal geometry. To determine the model properties (stiffness (β) and compliance) the diameter change of each AAA model was investigated under incrementally increasing internal pressures and compared to published in vivo studies to determine if the models behaved physiologically. A FEA study was implemented to determine if the pressure – diameter change behaviour of the models could be predicted numerically. ILT analogues were also manufactured and characterised. Ideal models were manufactured with ILT analogue internal to the aneurysm region and the effect of the ILT analogue on the model compliance and stiffness was investigated. Results The wall materials had similar properties to aortic tissue at physiological pressures (Einit 2.22MPa and 1.57MPa (aortic tissue: 1.8MPa)). ILT analogues had similar Young’s modulus to the medial layer of ILT (0.24 and 0.33MPa (ILT: 0.28MPa)). All models had aneurysm sac compliance in the physiological range (2.62 – 8.01×10-4/mmHg (AAA in vivo: 1.8 – 9.4×10-4/mmHg)). The necks of our AAA models had similar stiffness to healthy aortas (20.44 – 29.83 (healthy aortas in vivo: 17.5±5.5)). Good agreement was seen between the diameter changes due to pressurisation in the experimental and FEA wall models with a maximum error of 7.3% at 120mmHg. It was also determined that the inclusion of ILT analogue

  1. Jerome Lewis Duggan: A Nuclear Physicist and a Well-Known, Six-Decade Accelerator Application Conference (CAARI) Organizer

    NASA Astrophysics Data System (ADS)

    Del McDaniel, Floyd; Doyle, Barney L.

    Jerry Duggan was an experimental MeV-accelerator-based nuclear and atomic physicist who, over the past few decades, played a key role in the important transition of this field from basic to applied physics. His fascination for and application of particle accelerators spanned almost 60 years, and led to important discoveries in the following fields: accelerator-based analysis (accelerator mass spectrometry, ion beam techniques, nuclear-based analysis, nuclear microprobes, neutron techniques); accelerator facilities, stewardship, and technology development; accelerator applications (industrial, medical, security and defense, and teaching with accelerators); applied research with accelerators (advanced synthesis and modification, radiation effects, nanosciences and technology); physics research (atomic and molecular physics, and nuclear physics); and many other areas and applications. Here we describe Jerry’s physics education at the University of North Texas (B. S. and M. S.) and Louisiana State University (Ph.D.). We also discuss his research at UNT, LSU, and Oak Ridge National Laboratory, his involvement with the industrial aspects of accelerators, and his impact on many graduate students, colleagues at UNT and other universities, national laboratories, and industry and acquaintances around the world. Along the way, we found it hard not to also talk about his love of family, sports, fishing, and other recreational activities. While these were significant accomplishments in his life, Jerry will be most remembered for his insight in starting and his industry in maintaining and growing what became one of the most diverse accelerator conferences in the world — the International Conference on the Application of Accelerators in Research and Industry, or what we all know as CAARI. Through this conference, which he ran almost single-handed for decades, Jerry came to know, and became well known by, literally thousands of atomic and nuclear physicists, accelerator

  2. Medical research and multidisciplinary applications with laser-accelerated beams: the ELIMED netwotk at ELI-Beamlines

    NASA Astrophysics Data System (ADS)

    Tramontana, A.; Anzalone, A.; Candiano, G.; Carpinelli, M.; Cirrone, G. A. P.; Cuttone, G.; Korn, G.; Licciardello, T.; Maggiore, M.; Manti, L.; Margarone, D.; Musumarra, A.; Perozziello, F.; Pisciotta, P.; Raffaele, L.; Romano, F.; Romano, F. P.; Stancampiano, C.; Schillaci, F.; Scuderi, V.; Torrisi, L.; Tudisco, S.

    2014-04-01

    Laser accelerated proton beams represent nowadays an attractive alternative to the conventional ones and they have been proposed in different research fields. In particular, the interest has been focused in the possibility of replacing conventional accelerating machines with laser-based accelerators in order to develop a new concept of hadrontherapy facilities, which could result more compact and less expensive. With this background the ELIMED (ELIMED: ELI-Beamlines MEDical applications) research project has been launched by LNS-INFN researchers (Laboratori Nazionali del Sud-Istituto Nazionale di Fisica Nucleare, Catania, IT) and ASCR-FZU researchers (Academy of Sciences of the Czech Republic-Fyzikální ústar, Prague, Cz), within the pan-European ELI-Beamlines facility framework. Its main purposes are the demonstration of future applications in hadrontherapy of optically accelerated protons and the realization of a laser-accelerated ion transport beamline for multidisciplinary applications. Several challenges, starting from laser-target interaction and beam transport development, up to dosimetric and radiobiological issues, need to be overcome in order to reach the final goals. The design and the realization of a preliminary beam handling and dosimetric system and of an advanced spectrometer for high energy (multi-MeV) laser-accelerated ion beams will be shortly presented in this work.

  3. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom.

    PubMed

    Barker, J; Garner, R C

    1999-01-01

    Accelerator mass spectrometry (AMS) is a nuclear physics technique developed about twenty years ago, that uses the high energy (several MeV) of a tandem Van de Graaff accelerator to measure very small quantities of rare and long-lived isotopes. Elements that are of interest in biomedicine and environmental sciences can be measured, often to parts per quadrillion sensitivity, i.e. zeptomole to attomole levels (10(-21)-10(-18) mole) from milligram samples. This is several orders of magnitude lower than that achievable by conventional decay counting techniques, such as liquid scintillation counting (LSC). AMS was first applied to geochemical, climatological and archaeological areas, such as for radiocarbon dating (Shroud of Turin), but more recently this technology has been used for bioanalytical applications. In this sphere, most work has been conducted using aluminium, calcium and carbon isotopes. The latter is of special interest in drug metabolism studies, where a Phase 1 adsorption, distribution, metabolism and excretion (ADME) study can be conducted using only 10 nanoCurie (37 Bq or ca. 0.9 microSv) amounts or less of 14C-labelled drugs. In the UK, these amounts of radioactivity are below those necessary to request specific regulatory approval from the Department of Health's Administration of Radioactive Substances Advisory Committee (ARSAC), thus saving on valuable development time and resources. In addition, the disposal of these amounts is much less an environmental issue than that associated with microCurie quantities, which are currently used. Also, AMS should bring an opportunity to conduct "first into man" studies without the need for widespread use of animals. Centre for Biomedical Accelerator Mass Spectrometry (CBAMS) Ltd. is the first fully commercial company in the world to offer analytical services using AMS. With its high throughput and relatively low costs per sample analysis, AMS should be of great benefit to the pharmaceutical and biotechnology

  4. Application of coenzyme Q10 for accelerating soft tissue wound healing after tooth extraction in rats.

    PubMed

    Yoneda, Toshiki; Tomofuji, Takaaki; Kawabata, Yuya; Ekuni, Daisuke; Azuma, Tetsuji; Kataoka, Kota; Kunitomo, Muneyoshi; Morita, Manabu

    2014-12-10

    Accelerating wound healing after tooth extraction is beneficial in dental treatment. Application of antioxidants, such as reduced coenzyme Q10 (rCoQ10), may promote wound healing after tooth extraction. In this study, we examined the effects of topical application of rCoQ10 on wound healing after tooth extraction in rats. After maxillary first molars were extracted, male Fischer 344 rats (8 weeks old) (n = 27) received topical application of ointment containing 5% rCoQ10 (experimental group) or control ointment (control group) to the sockets for 3 or 8 days (n = 6-7/group). At 3 days after extraction, the experimental group showed higher collagen density and lower numbers of polymorphonuclear leukocytes in the upper part of socket, as compared to the control group (p < 0.05). Gene expression of interleukin-1β, tumor necrosis factor-α and nuclear factor-κB were also lower in the experimental group than in the control group (p < 0.05). At 8 days after tooth extraction, there were no significant differences in collagen density, number of polymorphonuclear leukocytes and bone fill between the groups. Our results suggest that topical application of rCoQ10 promotes wound healing in the soft tissue of the alveolar socket, but that rCoQ10 has a limited effect on bone remodeling in rats.

  5. Coupled-Multiplier Accelerator Produces High-Power Electron Beams for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Hatridge, M.; McIntyre, P.; Roberson, S.; Sattarov, A.; Thomas, E.; Meitzler, Charles

    2003-08-01

    The coupled multiplier is a new approach to efficient generation of MeV d.c. power for accelerator applications. High voltage is produced by a series of modules, each of which consists of a high-power alternator, step-up transformer, and 3-phase multiplier circuit. The alternators are connected mechanically along a rotating shaft, and connected by insulating flexible couplers. This approach differs from all previous d.c. technologies in that power is delivered to the various stages of the system mechanically, rather than through capacitive or inductive electrical coupling. For this reason the capital cost depends linearly on required voltage and power, rather than quadratically as with conventional technologies. The CM technology enables multiple electron beams to be driven within a common supply and insulating housing. MeV electron beam is extremely effective in decomposing organic contaminants in water. A 1 MeV, 100 kW industrial accelerator using the CM technology has been built and is being installed for treatment of wastewater at a petrochemical plant.

  6. A 200 MHz 35 MW Multiple Beam Klystron for Accelerator Applications Final Report

    SciTech Connect

    R. Lawrence Ives; Michael Read; Patrick Ferguson; David Marsden

    2011-11-28

    Calabazas Creek Research, Inc. (CCR) performed initial development of a compact and reliable 35 MW, multiple beam klystron (MBK) at 200 MHz with a pulse length of 0.125 ms and a 30 Hz repetition rate. The device was targeted for acceleration and ionization cooling of a muon collider, but there are several other potential applications in this frequency range. The klystron uses multiple beams propagating in individual beam tunnels to reduce space charge and allow reduction in the accelerating voltage. This allows a significant reduction in length over a single beam source. More importantly this allows more efficient and less expensive power supplies. At 200 MHz, the interaction circuit for a single beam klystron would be more than six meters long to obtain 50% efficiency and 50 dB gain. This would require a beam voltage of approximately 400 kV and current of 251 A for a microperveance of 1.0. For an eight beam MBK with the same beam perveance, a three meter long interaction circuit achieves the same power and gain. Each beam operates at 142 kV and 70A. The Phase I demonstrated that this device could be fabricated with funding available in a Phase II program and could achieve the program specifications.

  7. Metal-assisted and microwave accelerated-evaporative crystallization: Application to lysozyme protein

    NASA Astrophysics Data System (ADS)

    Mauge-Lewis, Kevin

    In response to the growing need for new crystallization techniques that afford for rapid processing times along with control over crystal size and distribution, the Aslan Research Group has recently demonstrated the use of Metal-Assisted and Microwave-Accelerated Evaporative Crystallization MA-MAEC technique in conjunction with metal nanoparticles and nanostructures for the crystallization of amino acids and organic small molecules. In this study, we have employed the newly developed MA-MAEC technique to the accelerated crystallization of chicken egg-white lysozyme on circular crystallization platforms in order to demonstrate the proof-of-principle application of the method for protein crystallization. The circular crystallization platforms are constructed in-house from poly (methyl methacrylate) (PMMA) and silver nanoparticle films (SNFs), indium tin oxide (ITO) and iron nano-columns. In this study, we prove the MA-MAEC method to be a more effective technique in the rapid crystallization of macromolecules in comparison to other conventional methods. Furthermore, we demonstrate the use of the novel iCrystal system, which incorporates the use of continuous, low wattage heating to facilitate the rapid crystallization of the lysozyme while still retaining excellent crystal quality. With the incorporation of the iCrystal system, we observe crystallization times that are even shorter than those produced by the MA-MAEC technique using a conventional microwave oven in addition to significantly improved crystal quality.

  8. Bayesian framework for parametric bivariate accelerated lifetime modeling and its application to hospital acquired infections.

    PubMed

    Bilgili, D; Ryu, D; Ergönül, Ö; Ebrahimi, N

    2016-03-01

    Infectious diseases that can be spread directly or indirectly from one person to another are caused by pathogenic microorganisms such as bacteria, viruses, parasites, or fungi. Infectious diseases remain one of the greatest threats to human health and the analysis of infectious disease data is among the most important application of statistics. In this article, we develop Bayesian methodology using parametric bivariate accelerated lifetime model to study dependency between the colonization and infection times for Acinetobacter baumannii bacteria which is leading cause of infection among the hospital infection agents. We also study their associations with covariates such as age, gender, apache score, antibiotics use 3 months before admission and invasive mechanical ventilation use. To account for singularity, we use Singular Bivariate Extreme Value distribution to model residuals in Bivariate Accelerated lifetime model under the fully Bayesian framework. We analyze a censored data related to the colonization and infection collected in five major hospitals in Turkey using our methodology. The data analysis done in this article is for illustration of our proposed method and can be applied to any situation that our model can be used.

  9. Recent advances in the development of high average power induction accelerators for industrial and environmental applications

    SciTech Connect

    Neau, E.L.

    1994-09-01

    Short-pulse accelerator technology developed during the early 1960`s through the late 1980`s is being extended to high average power systems capable of use in industrial and environmental applications. Processes requiring high dose levels and/or high volume throughput will require systems with beam power levels from several hundreds of kilowatts to megawatts. Beam accelerating potentials can range from less than 1 MeV to as much as 10 MeV depending on the type of beam, depth of penetration required, and the density of the product being treated. This paper addresses the present status of a family of high average power systems, with output beam power levels up to 200 kW, now in operation that use saturable core switches to achieve output pulse widths of 50 to 80 nanoseconds. Inductive adders and field emission cathodes are used to generate beams of electrons or x-rays at up to 2.5 MeV over areas of 1000 cm{sup 2}. Similar high average power technology is being used at {le} 1 MeV to drive repetitive ion beam sources for treatment of material surfaces over 100`s of cm{sup 2}.

  10. Engineering silicone rubbers for in vitro studies: creating AAA models and ILT analogues with physiological properties.

    PubMed

    Corbett, T J; Doyle, B J; Callanan, A; Walsh, M T; McGloughlin, T M

    2010-01-01

    In vitro studies of abdominal aortic aneurysm (AAA) have been widely reported. Frequently mock artery models with intraluminal thrombus (ILT) analogs are used to mimic the in vivo AAA. While the models used may be physiological, their properties are frequently either not reported or investigated. This study is concerned with the testing and characterization of previously used vessel analog materials and the development of new materials for the manufacture of AAA models. These materials were used in conjunction with a previously validated injection molding technique to manufacture AAA models of ideal geometry. To determine the model properties (stiffness (beta) and compliance), the diameter change of each AAA model was investigated under incrementally increasing internal pressures and compared with published in vivo studies to determine if the models behaved physiologically. A FEA study was implemented to determine if the pressure-diameter change behavior of the models could be predicted numerically. ILT analogs were also manufactured and characterized. Ideal models were manufactured with ILT analog internal to the aneurysm region, and the effect of the ILT analog on the model compliance and stiffness was investigated. The wall materials had similar properties (E(init) 2.22 MPa and 1.57 MPa) to aortic tissue at physiological pressures (1.8 MPa (from literature)). ILT analogs had a similar Young's modulus (0.24 MPa and 0.33 MPa) to the medial layer of ILT (0.28 MPa (from literature)). All models had aneurysm sac compliance (2.62-8.01 x 10(-4)/mm Hg) in the physiological range (1.8-9.4 x 10(-4)/mm Hg (from literature)). The necks of the AAA models had similar stiffness (20.44-29.83) to healthy aortas (17.5+/-5.5 (from literature)). Good agreement was seen between the diameter changes due to pressurization in the experimental and FEA wall models with a maximum difference of 7.3% at 120 mm Hg. It was also determined that the inclusion of ILT analog in the sac of the

  11. Proposed new accelerator design for homeland security x-ray applications

    DOE PAGES

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G.J.; ...

    2015-01-01

    Two goals for security scanning of cargo and freight are the ability to determine the type of material that is being imaged, and to do so at low radiation dose. One commonly used technique to determine the effective Z of the cargo is dual-energy imaging, i.e. imaging with different x-ray energy spectra. Another technique uses the fact that the transmitted x-ray spectrum itself also depends on the effective Z. Spectroscopy is difficult because the energy of individual x rays needs to be measured in a very high count-rate environment. Typical accelerators for security applications offer large but short bursts ofmore » x-rays, suitable for current-mode integrated imaging. In order to perform x-ray spectroscopy, a new accelerator design is desired that has the following features: 1) increased duty factor in order to spread out the arrival of x-rays at the detector array over time; 2) x-ray intensity modulation from one delivered pulse to the next by adjusting the accelerator electron beam instantaneous current so as to deliver adequate signal without saturating the spectroscopic detector; and 3) the capability to direct the (forward peaked) x-ray intensity towards high-attenuation areas in the cargo (“fan-beam-steering”). Current sources are capable of 0.1% duty factor, although usually they are operated at significantly lower duty factors (~0.04%), but duty factors in the range 0.4-1.0% are desired. The higher duty factor can be accomplished, e.g., by moving from 300 pulses per second (pps) to 1000 pps and/or increasing the pulse duration from a typical 4 μs to 10 μs. This paper describes initial R&D to examine cost effective modifications that could be performed on a typical accelerator for these purposes, as well as R&D for fan-beam steering.« less

  12. Machines of destruction - AAA+ proteases and the adaptors that control them.

    PubMed

    Gur, Eyal; Ottofueling, Ralf; Dougan, David A

    2013-01-01

    Bacteria are frequently exposed to changes in environmental conditions, such as fluctuations in temperature, pH or the availability of nutrients. These assaults can be detrimental to cell as they often result in a proteotoxic stress, which can cause the accumulation of unfolded proteins. In order to restore a productive folding environment in the cell, bacteria have evolved a network of proteins, known as the protein quality control (PQC) network, which is composed of both chaperones and AAA+ proteases. These AAA+ proteases form a major part of this PQC network, as they are responsible for the removal of unwanted and damaged proteins. They also play an important role in the turnover of specific regulatory or tagged proteins. In this review, we describe the general features of an AAA+ protease, and using two of the best-characterised AAA+ proteases in Escherichia coli (ClpAP and ClpXP) as a model for all AAA+ proteases, we provide a detailed mechanistic description of how these machines work. Specifically, the review examines the physiological role of these machines, as well as the substrates and the adaptor proteins that modulate their substrate specificity.

  13. Accelerated Path-following Iterative Shrinkage Thresholding Algorithm with Application to Semiparametric Graph Estimation

    PubMed Central

    Zhao, Tuo; Liu, Han

    2016-01-01

    We propose an accelerated path-following iterative shrinkage thresholding algorithm (APISTA) for solving high dimensional sparse nonconvex learning problems. The main difference between APISTA and the path-following iterative shrinkage thresholding algorithm (PISTA) is that APISTA exploits an additional coordinate descent subroutine to boost the computational performance. Such a modification, though simple, has profound impact: APISTA not only enjoys the same theoretical guarantee as that of PISTA, i.e., APISTA attains a linear rate of convergence to a unique sparse local optimum with good statistical properties, but also significantly outperforms PISTA in empirical benchmarks. As an application, we apply APISTA to solve a family of nonconvex optimization problems motivated by estimating sparse semiparametric graphical models. APISTA allows us to obtain new statistical recovery results which do not exist in the existing literature. Thorough numerical results are provided to back up our theory. PMID:28133430

  14. Current status of MCNP6 as a simulation tool useful for space and accelerator applications

    SciTech Connect

    Mashnik, Stepan G; Bull, Jeffrey S; Hughes, H. Grady; Prael, Richard E; Sierk, Arnold J

    2012-07-20

    For the past several years, a major effort has been undertaken at Los Alamos National Laboratory (LANL) to develop the transport code MCNP6, the latest LANL Monte-Carlo transport code representing a merger and improvement of MCNP5 and MCNPX. We emphasize a description of the latest developments of MCNP6 at higher energies to improve its reliability in calculating rare-isotope production, high-energy cumulative particle production, and a gamut of reactions important for space-radiation shielding, cosmic-ray propagation, and accelerator applications. We present several examples of validation and verification of MCNP6 compared to a wide variety of intermediate- and high-energy experimental data on reactions induced by photons, mesons, nucleons, and nuclei at energies from tens of MeV to about 1 TeV/nucleon, and compare to results from other modern simulation tools.

  15. GPU-accelerated elastic 3D image registration for intra-surgical applications.

    PubMed

    Ruijters, Daniel; ter Haar Romeny, Bart M; Suetens, Paul

    2011-08-01

    Local motion within intra-patient biomedical images can be compensated by using elastic image registration. The application of B-spline based elastic registration during interventional treatment is seriously hampered by its considerable computation time. The graphics processing unit (GPU) can be used to accelerate the calculation of such elastic registrations by using its parallel processing power, and by employing the hardwired tri-linear interpolation capabilities in order to efficiently perform the cubic B-spline evaluation. In this article it is shown that the similarity measure and its derivatives also can be calculated on the GPU, using a two pass approach. On average a speedup factor 50 compared to a straight-forward CPU implementation was reached.

  16. Intense laser-driven ion beams in the relativistic-transparency regime: acceleration, control and applications

    NASA Astrophysics Data System (ADS)

    Fernandez, Juan C.

    2016-10-01

    Laser-plasma interactions in the novel regime of relativistically-induced transparency have been harnessed to generate efficiently intense ion beams with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at ``table-top'' scales. We have discovered and utilized a self-organizing scheme that exploits persisting self-generated plasma electric ( 0.1 TV/m) and magnetic ( 104 Tesla) fields to reduce the ion-energy (Ei) spread after the laser exits the plasma, thus separating acceleration from spread reduction. In this way we routinely generate aluminum and carbon beams with narrow spectral peaks at Ei up to 310 MeV and 220 MeV, respectively, with high efficiency ( 5%). The experimental demonstration has been done at the LANL Trident laser with 0.12 PW, high-contrast, 0.65 ps Gaussian laser pulses irradiating planar foils up to 250 nm thick. In this regime, Ei scales empirically with laser intensity (I) as I 1 / 2. Our progress is enabled by high-fidelity, massive computer simulations of the experiments. This work advances next-generation compact accelerators suitable for new applications. E . g ., a carbon beam with Ei 400 MeV and 10% energy spread is suitable for fast ignition (FI) of compressed DT. The observed scaling suggests that is feasible with existing target fabrication and PW-laser technologies, using a sub-ps laser pulse with I 2.5 ×1021 W/cm2. These beams have been used on Trident to generate warm-dense matter at solid-densities, enabling us to investigate its equation of state and mixing of heterogeneous interfaces purely by plasma effects distinct from hydrodynamics. They also drive an intense neutron-beam source with great promise for important applications such as active interrogation of shielded nuclear materials. Considerations on controlling ion-beam divergence for their increased utility are discussed. Funded by the LANL LDRD program.

  17. Structural basis for the ATP-independent proteolytic activity of LonB proteases and reclassification of their AAA+ modules.

    PubMed

    An, Young Jun; Na, Jung-Hyun; Kim, Myung-Il; Cha, Sun-Shin

    2015-10-01

    Lon proteases degrade defective or denature proteins as well as some folded proteins for the control of cellular protein quality. There are two types of Lon proteases, LonA and LonB. Each consists of two functional components: a protease component and an ATPase associated with various cellular activities (AAA+ module). Here, we report the 2.03 -resolution crystal structure of the isolated AAA+ module (iAAA+ module) of LonB from Thermococcus onnurineus NA1 (TonLonB). The iAAA+ module, having no bound nucleotide, adopts a conformation virtually identical to the ADP-bound conformation of AAA+ modules in the hexameric structure of TonLonB; this provides insights into the ATP-independent proteolytic activity observed in a LonB protease. Structural comparison of AAA+ modules between LonA and LonB revealed that the AAA+ modules of Lon proteases are separated into two distinct clades depending on their structural features. The AAA+ module of LonB belongs to the -H2 & Ins1 insert clade (HINS clade)- defined for the first time in this study, while the AAA+ module of LonA is a member of the HCLR clade.

  18. Detailed Modeling of Physical Processes in Electron Sources for Accelerator Applications

    NASA Astrophysics Data System (ADS)

    Chubenko, Oksana; Afanasev, Andrei

    2017-01-01

    At present, electron sources are essential in a wide range of applications - from common technical use to exploring the nature of matter. Depending on the application requirements, different methods and materials are used to generate electrons. State-of-the-art accelerator applications set a number of often-conflicting requirements for electron sources (e.g., quantum efficiency vs. polarization, current density vs. lifetime, etc). Development of advanced electron sources includes modeling and design of cathodes, material growth, fabrication of cathodes, and cathode testing. The detailed simulation and modeling of physical processes is required in order to shed light on the exact mechanisms of electron emission and to develop new-generation electron sources with optimized efficiency. The purpose of the present work is to study physical processes in advanced electron sources and develop scientific tools, which could be used to predict electron emission from novel nano-structured materials. In particular, the area of interest includes bulk/superlattice gallium arsenide (bulk/SL GaAs) photo-emitters and nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) photo/field-emitters. Work supported by The George Washington University and Euclid TechLabs LLC.

  19. Cell-Activation by Shear Stresses in Abdominal Aortic Aneurysms (AAA)

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie; Sparks, Steven; Chomaz, Jean-Marc; Lasheras, Juan C.

    2003-11-01

    Increasing experimental evidence indicates that low and oscillatory shear stresses promote proliferative, thrombotic, adhesive and inflammatory-mediated degenerative conditions throughout the wall of the aorta. These degenerative conditions have been shown to be involved in the pathogenesis of AAAs, a permanent, localized dilatation of the abdominal aorta. The purpose of this study is to measure both the magnitude and the duration of the shear stresses acting on both the arterial walls and on the blood cells inside AAAs, and to characterize their changes as the AAA enlarges. We conducted a parametric in-vitro study of the pulsatile blood flow in elastic models of AAAs while systematically varying the blood flow parameters, and the geometry of the aneurysm's bulging. The instantaneous flow characteristic inside the AAA was measured using DPIV at a sampling rate of 15 Hertz. A "cell-activation parameter" defined as the integral of the product of the magnitude of the shear stress and the time during which the stress acts was computed along each of the blood cell pathlines. The Lagrangian tracking of the blood cells shows that a large majority of them are subjected first to very high level of shear-induced "cell-activation" while later on they are entrained in regions of stasis where their residence time can increase up to several cardiac cycles. This cell-activation followed by the entrainment in low shear regions creates the optimal cell-adhesive and inflammatory-mediated degenerative conditions that are postulated to play an important role in the etiology and progressive enlargement of AAAs.

  20. Some aspects of raceTrack microtron 6.2 MeV accelerator-injector application

    SciTech Connect

    Galaktionov, D.V.; Danilov, A.V.

    1993-12-31

    In the present report the electron continuous wave accelerator-injector is described (energy limit of acceleration is 6.2 MeV, energy homogeneity of beam 0.002, current of beam 150 {mu}kA). We point out the preference of application of continuous beam of charged practicles in some applied tasks in comparison with methods which are existing now. In this report we show the possibility of optimal application of the accelerator in several fields such as: radioisotopic analysis of different substances; investigation of the response of different materials (used in devices which are exposed to radiation) to the impact of electrons and hard photons; and prospect of creation of materials with new properties.

  1. Development and applications of a multi-purpose digital controller with a System-on-Chip FPGA for accelerators

    NASA Astrophysics Data System (ADS)

    Kurimoto, Yoshinori; Nakamura, Keigo

    2016-12-01

    J-PARC Main Ring (MR) is a high intensity proton synchrotron which accelerates protons from 3 GeV to 30 GeV. It has operated at a beam intensity of 390 kW and an upgrade toward the megawatt rating is scheduled. For higher beam intensity, some of the accelerator components require more intelligent and complicated functions. To consolidate such functions among various components, we developed multi-purpose digital boards using a System-on-Chip Field-Programmable Gated Array (SoC FPGA). In this paper, we describe the details of our developed boards as well as their possible applications. As an application of the boards, we have successfully performed the measurement of the betatron amplitude function during beam acceleration in J-PARC MR. The experimental setup and results of the measurement are also described in detail.

  2. Accelerating the introduction of HTS products for a broad range of electric power and industrial applications

    NASA Astrophysics Data System (ADS)

    Eaton, Russell

    2002-01-01

    The Department of Energy (DOE), as part of its Superconductivity Program for Electric Systems, is successfully pursuing the development of electric power and industrial devices, incorporating significant high-temperature superconducting (HTS) components or subsystems, through its innovative Superconducting Partnership Initiative (SPI). The objective of the SPI is to accelerate the commercial introduction of the HTS products for a broad range of electric power and industrial applications. DOE's approach to accomplishing the SPI objective is to support cost shared projects carried out by industry led teams. DOE will fund projects to develop HTS devices that are either in (1) the research and development stage (Phase 1), (2) the pre-commercialization stage (Phase II), or (3) the commercial entry stage (Phase III). DOE's industry partners must contribute at least half a project's costs. These teams will include capabilities needed to develop the device as well as to develop the business plan for the commercial product introduction. DOE's partners consist of vertically integrated teams consisting of equipment manufacturers, HTS wire and coil suppliers, national laboratories, and end users, primarily utilities. These partners carry out the multi-year technology development efforts, consisting generally of design, construction, and testing of the HTS system. Finally, commercialization of HTS products will be discussed primarily in terms of benefits these products will have over competing products based upon conventional conductors and the critical need for affordable, practical HTS materials and conductors for these applications. .

  3. Accelerator Mass Spectrometry and its Applications in Archaeology, Geology, andEnvironmental Research

    NASA Astrophysics Data System (ADS)

    Kretschmer, Wolfgang

    Accelerator Mass Spectrometry (AMS) is an ultrasensitive method for the measurement of isotope ratios in the range of 10 - 12 - 10 - 15. Most frequently the 14C / 12C ratio from biogenic samples is determined which gives information on the age of the sample of up to 50 ka with a precision of typically 40-80 years. In this paper the radiocarbon method is discussed and various applications to interdisciplinary research are presented. One application at the Erlangen AMS facility is the 14C dating of sediment samples which together with simultaneous pollen analyses can establish a better chronology of climate and vegetation during Holocene in Germany. For an enhanced reliability of sediment dating different fractions like bulk sediments, pollen grains, macrofossils, and humic acids have been measured. For environmental research the 14C content of aldehydes from indoor air samples can be used to disentangle the anthropogenic or biogenic origin of these compounds. Finally interesting archaeological samples from a Persian mummy are discussed.

  4. Clinical aspects and potential clinical applications of laser accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Spatola, C.; Privitera, G.

    2013-07-01

    Proton beam radiation therapy (PBRT), as well as the other forms of hadrontherapy, is in use in the treatment of neoplastic diseases, to realize a high selective irradiation with maximum sparing of surrounding organs. The main characteristic of such a particles is to have an increased radiobiological effectiveness compared to conventional photons (about 10% more) and the advantage to deposit the energy in a defined space through the tissues (Bragg peak phenomenon). The goal of ELIMED Project is the realization of a laser accelerated proton beam line to prove its potential use for clinical application in the field of hadrontherapy. To date, there are several potential clinical applications of PBRT, some of which have become the treatment of choice for a specific tumour, for others it is under investigation as a therapeutic alternative to conventional X-ray radiotherapy, to increase the dose to the tumour and reduce the side effects. For almost half of cancers, an increased local tumour control is the mainstay for increased cancer curability.

  5. Application of Fermi scattering theory to a magnetically scanned electron linear accelerator.

    PubMed

    Sandison, G A; Huda, W

    1988-01-01

    This paper uses a solution to the Fermi electron transport equation for an isotropic point source to characterize the magnetically scanned broad electron beams from the Sagittaire Therac 40 accelerator in the air space above patients. Thick lead collimation is shown to be adequately modeled by an infinitely thin absorbing plate when used to predict penumbra shape. A relationship between broad beam penumbra width and the value of the root-mean-square spatial Gaussian spread sigma (z) of an elementary pencil beam is derived. This relationship is applicable for any rectangular field size. Measurement of the variation in broad beam penumbra width with source-surface distance (SSD) for a 7-MeV beam locates the isotropic source to be coincident with the exit window of the accelerator and indicates that the scattering effect of the monitor chamber may be considered negligibly small. Using this source location accurate predictions of beam profile shape for any clinically used beam energy, SSD, or field size are made in the presence of lead trimmer collimation. Field penumbra beyond the photon collimation system is formed in each lateral direction by two lead blocks whose faces are aligned along a diverging ray emanating from the source. The photon collimator closest to the source restricts the field size causing a variation of both fluence and the mean square angle spread of the electrons across the plane at the level of the lower collimator. This variation is accounted for by introducing an empirical perturbation factor into the mathematical formalism. An interesting feature of this perturbation factor is that it is field size dependent and its effect on penumbra width may be scaled for both beam energy and SSD to accurately predict beam profile shape.

  6. Application of Fermi scattering theory to a magnetically scanned electron linear accelerator

    SciTech Connect

    Sandison, G.A.; Huda, W.

    1988-07-01

    This paper uses a solution to the Fermi electron transport equation for an isotropic point source to characterize the magnetically scanned broad electron beams from the Sagittaire Therac 40 accelerator in the air space above patients. Thick lead collimation is shown to be adequately modeled by an infinitely thin absorbing plate when used to predict penumbra shape. A relationship between broad beam penumbra width and the value of the root-mean-square spatial Gaussian spread sigma (z) of an elementary pencil beam is derived. This relationship is applicable for any rectangular field size. Measurement of the variation in broad beam penumbra width with source-surface distance (SSD) for a 7-MeV beam locates the isotropic source to be coincident with the exit window of the accelerator and indicates that the scattering effect of the monitor chamber may be considered negligibly small. Using this source location accurate predictions of beam profile shape for any clinically used beam energy, SSD, or field size are made in the presence of lead trimmer collimation. Field penumbra beyond the photon collimation system is formed in each lateral direction by two lead blocks whose faces are aligned along a diverging ray emanating from the source. The photon collimator closest to the source restricts the field size causing a variation of both fluence and the mean square angle spread of the electrons across the plane at the level of the lower collimator. This variation is accounted for by introducing an empirical perturbation factor into the mathematical formalism. An interesting feature of this perturbation factor is that it is field size dependent and its effect on penumbra width may be scaled for both beam energy and SSD to accurately predict beam profile shape.

  7. Runtime and Architecture Support for Efficient Data Exchange in Multi-Accelerator Applications

    PubMed Central

    Cabezas, Javier; Gelado, Isaac; Stone, John E.; Navarro, Nacho; Kirk, David B.; Hwu, Wen-mei

    2014-01-01

    Heterogeneous parallel computing applications often process large data sets that require multiple GPUs to jointly meet their needs for physical memory capacity and compute throughput. However, the lack of high-level abstractions in previous heterogeneous parallel programming models force programmers to resort to multiple code versions, complex data copy steps and synchronization schemes when exchanging data between multiple GPU devices, which results in high software development cost, poor maintainability, and even poor performance. This paper describes the HPE runtime system, and the associated architecture support, which enables a simple, efficient programming interface for exchanging data between multiple GPUs through either interconnects or cross-node network interfaces. The runtime and architecture support presented in this paper can also be used to support other types of accelerators. We show that the simplified programming interface reduces programming complexity. The research presented in this paper started in 2009. It has been implemented and tested extensively in several generations of HPE runtime systems as well as adopted into the NVIDIA GPU hardware and drivers for CUDA 4.0 and beyond since 2011. The availability of real hardware that support key HPE features gives rise to a rare opportunity for studying the effectiveness of the hardware support by running important benchmarks on real runtime and hardware. Experimental results show that in a exemplar heterogeneous system, peer DMA and double-buffering, pinned buffers, and software techniques can improve the inter-accelerator data communication bandwidth by 2×. They can also improve the execution speed by 1.6× for a 3D finite difference, 2.5× for 1D FFT, and 1.6× for merge sort, all measured on real hardware. The proposed architecture support enables the HPE runtime to transparently deploy these optimizations under simple portable user code, allowing system designers to freely employ devices of

  8. Applications of ferrites and ferromagnets in tuning rf cavities for accelerators

    SciTech Connect

    Hanna, S.M. )

    1994-05-15

    Traditionally ferrites have been used in accelerators for tuning rf cavities and in nonreciprocal devices controlling the power flow in rf accelerating systems. Recently, the development of cavity tuners based on perpendicularly biased ferrites has shown good progress. Yttrium iron garnet (YIG) is gradually replacing the traditional Ni Zn ferrites. The use of conventional parallel-biased Ni Zn ferrites for varying the frequency of accelerating cavities has the disadvantage of high saturation magnetization (4[pi][ital M][sub [ital s

  9. Research in the Age of the Steady-State University. AAAS Selected Symposium 60.

    ERIC Educational Resources Information Center

    Phillips, Don I., Ed.; Shen, Benjamin, S. P., Ed.

    Based on an American Association for the Advancement of Science (AAAS) symposium, this book examines the future of academic research in light of the following: (1) direct funds for basic science had increased for 4 to 5 years, and nonbudget items (i.e., declining enrollments) had become of increasing concern; (2) the Sloan Commission on Government…

  10. The two faces of hydrogen-bond strength on triple AAA-DDD arrays.

    PubMed

    Lopez, Alfredo Henrique Duarte; Caramori, Giovanni Finoto; Coimbra, Daniel Fernando; Parreira, Renato Luis Tame; da Silva, Éder Henrique

    2013-12-02

    Systems that are connected through multiple hydrogen bonds are the cornerstone of molecular recognition processes in biology, and they are increasingly being employed in supramolecular chemistry, specifically in molecular self-assembly processes. For this reason, the effects of different substituents (NO2, CN, F, Cl, Br, OCH3 and NH2) on the electronic structure, and consequently on the magnitude of hydrogen bonds in triple AAA-DDD arrays (A=acceptor, D=donor) were evaluated in the light of topological [electron localization function (ELF) and quantum theory of atoms in molecules (QTAIM)], energetic [Su-Li energy-decomposition analysis (EDA) and natural bond orbital analysis (NBO)], and geometrical analysis. The results based on local H-bond descriptors (geometries, QTAIM, ELF, and NBO) indicate that substitutions with electron-withdrawing groups on the AAA module tend to strengthen, whereas electron-donating substituents tend to weaken the covalent character of the AAA-DDD intermolecular H-bonds, and also indicate that the magnitude of the effect is dependent on the position of substitution. In contrast, Su-Li EDA results show an opposite behavior when compared to local H-bond descriptors, indicating that electron-donating substituents tend to increase the magnitude of H-bonds in AAA-DDD arrays, and thus suggesting that the use of local H-bond descriptors describes the nature of H bonds only partially, not providing enough insight about the strength of such H bonds.

  11. Fluid Characteristics in Abdominal Aortic Aneurysms (AAAs) and Its Correlation to Thrombus Formation

    NASA Astrophysics Data System (ADS)

    Tang, Rubing; Bar-Yoseph, Pinhas Z.; Lasheras, Juan

    2008-11-01

    It has been observed that most large Abdominal Aortic Aneurysms (AAAs) develop an intraluminal thrombus as they progressively enlarge. Previous studies have suggested that the build up of the thrombus may be associated with the altered hemodynamic patterns that arise inside the AAA. We have performed a parametrical computational study of the flow patterns inside enlarging AAA to investigate the possible mechanism controlling the thrombus formation. Pulsatile blood flows were simulated in idealized models of fusiform aneurysms with different dilatation ratios and the effects of shear-activated platelet accumulation and platelet/wall interaction were evaluated based on the calculated flow fields. The platelet activation level (PAL) was determined by computing the integral over time of flow shear stresses exerted over the platelets as they are transported throughout the aneurysm. Our results have shown that the values of PAL in AAAs are in fact smaller than the maximum value obtained in a healthy abdominal aorta. However, we show that the transportation of blood cells towards the wall and the formation of stagnation points on the aneurysm's wall play more significant roles in thrombus formation than PAL.

  12. Physics models in the MARS15 code for accelerator and space applications.

    SciTech Connect

    Mokhov, N. V.; Gudima, K. K.; Mashnik, S. G.; Rakhno, I. L.; Sierk, A. J.; Striganov, S.

    2004-01-01

    The MARS code system, developed over 30 years, is a set of Monte Carlo programs for detailed simulation of hadronic and electromagnetic cascades in an arbitrary geometry of accelerator, detector and spacecraft components with particle energy ranging from a fraction of an electron volt up to 100 TeV. The new MARS15 (2004) version is described with an emphasis on modeling physics processes. This includes an extended list of elementary particles and arbitrary heavy ions, their interaction cross-sections, inclusive and exclusive nuclear event generators, photo - hadron production, correlated ionization energy loss and multiple Coulomb scattering, nuclide production and residual activation, and radiation damage (DPA). In particular, the details of a new model for leading baryon production and implementation of advanced versions of the Cascade-Exciton Model (CEM03), and the Los Alamos version of Quark-Gluon String Model (LAQGSM03) are given. The applications that are motivating these developments, needs for better nuclear data, and future physics improvements are described.

  13. Accelerator Technology and High Energy Physics Experiments, Photonics Applications and Web Engineering, Wilga, May 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2012-05-01

    The paper is the second part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with accelerator technology and high energy physics experiments. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the XXXth Jubilee SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonicselectronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-275].

  14. Selection of flowing liquid lead target structural materials for accelerator driven transmutation applications

    NASA Astrophysics Data System (ADS)

    Park, John J.; Buksa, John J.

    1995-09-01

    The beam entry window and container for a liquid lead spallation target will be exposed to high fluxes of protons and neutrons that are both higher in magnitude and energy than have been experienced in proton accelerators and fission reactors, as well as in a corrosive environment. The structural material of the target should have a good compatibility with liquid lead, a sufficient mechanical strength at elevated temperatures, a good performance under an intense irradiation environment, and a low neutron absorption cross section; these factors have been used to rank the applicability of a wide range of materials for structural containment. Nb-1Zr has been selected for use as the structural container for the LANL ABC/ATW molten lead target. Corrosion and mass transfer behavior for various candidate structural materials in liquid lead are reviewed, together with the beneficial effects of inhibitors and various coatings to protect substrate against liquid lead corrosion. Mechanical properties of some candidate materials at elevated temperatures and the property changes resulting from 800 MeV proton irradiation are also reviewed.

  15. A portable platform for accelerated PIC codes and its application to GPUs using OpenACC

    NASA Astrophysics Data System (ADS)

    Hariri, F.; Tran, T. M.; Jocksch, A.; Lanti, E.; Progsch, J.; Messmer, P.; Brunner, S.; Gheller, C.; Villard, L.

    2016-10-01

    We present a portable platform, called PIC_ENGINE, for accelerating Particle-In-Cell (PIC) codes on heterogeneous many-core architectures such as Graphic Processing Units (GPUs). The aim of this development is efficient simulations on future exascale systems by allowing different parallelization strategies depending on the application problem and the specific architecture. To this end, this platform contains the basic steps of the PIC algorithm and has been designed as a test bed for different algorithmic options and data structures. Among the architectures that this engine can explore, particular attention is given here to systems equipped with GPUs. The study demonstrates that our portable PIC implementation based on the OpenACC programming model can achieve performance closely matching theoretical predictions. Using the Cray XC30 system, Piz Daint, at the Swiss National Supercomputing Centre (CSCS), we show that PIC_ENGINE running on an NVIDIA Kepler K20X GPU can outperform the one on an Intel Sandy bridge 8-core CPU by a factor of 3.4.

  16. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  17. In vitro propagation and assessment of the genetic fidelity of Musa acuminata (AAA) cv. Vaibalhla derived from immature male flowers.

    PubMed

    Hrahsel, Lalremsiami; Basu, Adreeja; Sahoo, Lingaraj; Thangjam, Robert

    2014-02-01

    An efficient in vitro propagation method has been developed for the first time for Musa acuminata (AAA) cv. Vaibalhla, an economically important banana cultivar of Mizoram, India. Immature male flowers were used as explants. Murashige and Skoog's (MS) medium supplemented with plant growth regulators (PGRs) were used for the regeneration process. Out of different PGR combinations, MS medium supplemented with 2 mg L(-1) 6-benzylaminopurine (BAP) + 0.5 mg L(-1) α-naphthalene acetic acid (NAA) was optimal for production of white bud-like structures (WBLS). On this medium, explants produced the highest number of buds per explant (4.30). The highest percentage (77.77) and number (3.51) of shoot formation from each explants was observed in MS medium supplemented with 2 mg L(-1) kinetin + 0.5 mg L(-1) NAA. While MS medium supplemented with a combination of 2 mg L(-1) BAP + 0.5 mg L(-1) NAA showed the maximum shoot length (14.44 cm). Rooting efficiency of the shoots was highest in the MS basal medium without any PGRs. The plantlets were hardened successfully in the greenhouse with 96% survival rate. Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers were employed to assess the genetic stability of in vitro regenerated plantlets of M. acuminata (AAA) cv. Vaibalhla. Eight RAPD and 8 ISSR primers were successfully used for the analysis from the 40 RAPD and 30 ISSR primers screened initially. The amplified products were monomorphic across all the regenerated plants and were similar to the mother plant. The present standardised protocol will find application in mass production, conservation and genetic transformation studies of this commercially important banana.

  18. Accelerator mass spectrometry in the biomedical sciences: applications in low-exposure biomedical and environmental dosimetry

    NASA Astrophysics Data System (ADS)

    Felton, J. S.; Turteltaub, K. W.; Vogel, J. S.; Balhorn, R.; Gledhill, B. L.; Southon, J. R.; Caffee, M. W.; Finkel, R. C.; Nelson, D. E.; Proctor, I. D.; Davis, J. C.

    1990-12-01

    We are utilizing accelerator mass spectrometry as a sensitive detector for tracking the disposition of radioisotopically labeled molecules in the biomedical sciences. These applications have shown the effectiveness of AMS as a tool to quantify biologically important molecules at extremely low levels. For example, AMS is being used to determine the amount of carcinogen covalently bound to animal DNA (DNA adduct) at levels relevent to human exposure. Detection sensitivities are 1 carcinogen molecule bound in 1011 to 1012 DNA bases, depending on the specific activity of the radiolabeled carcinogen. Studies have been undertaken in our laboratory utilizing heterocyclic amine food-borne carcinogens and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent environmental carcinogen, to study the metabolism of carcinogens at low doses. In addition, AMS is being used to detect the presence of rare proteins (mutant forms of protamine) in human sperm. Approximately l per 106 sperm analyzed contain the rare form of the protamine. Protamine isolated from this small number of cells is being analyzed by AMS, following 14C labeling. Thus, AMS can be used to verify the identity of an extremely small amount of biological material. Furthermore, an additional improvement of 2 orders of magnitude in the sensitivity of biomédical tracer studies is suggested by preliminary work with bacterial hosts depleted in radiocarbon. Other problems in the life sciences where detection sensitivity or sample sizes are limitations should also benefit from AMS. Studies are underway to measure the molecular targeting of cancer chemotherapeutics in human tissue and to pursue applications for receptor biology. We are also applying other candidate isotopes, such as 3H (double labeling with 14C) and 41Ca (bone absorption) to problems in biology. The detection of 36Cl and 26Al have applications for determination of human neutron exposure and understanding neurological toxicity, respectively. The results

  19. Multi-GPU and multi-CPU accelerated FDTD scheme for vibroacoustic applications

    NASA Astrophysics Data System (ADS)

    Francés, J.; Otero, B.; Bleda, S.; Gallego, S.; Neipp, C.; Márquez, A.; Beléndez, A.

    2015-06-01

    with auto-vectorisation and also shared memory approach. In this scenario GPU computing is the best option since it provides a homogeneous behaviour. More specifically, the speedup of GPU computing achieves an upper limit of 12 for both one and two GPUs, whereas the performance reaches peak values of 80 GFlops and 146 GFlops for the performance for one GPU and two GPUs respectively. Finally, the method is applied to an earth crust profile in order to demonstrate the potential of our approach and the necessity of applying acceleration strategies in these type of applications.

  20. Application of the National Ignition Facility distinguishable-from-background program to accelerator facilities at Lawrence Livermore National Laboratory.

    PubMed

    Packard, Eric D; Mac Kenzie, Carolyn

    2013-06-01

    Lawrence Livermore National Laboratory must control potentially activated materials and equipment in accordance with U.S. Department of Energy (DOE) Order 458.1, Radiation Protection of the Public and the Environment, which requires DOE approval of the process used to release volumetrically contaminated personal property and establishes a dose constraint of 10 µSv y(-1) (1 mrem y(-1)) for clearance of such property. The National Ignition Facility at Lawrence Livermore National Laboratory developed a technical basis document and protocol for determining the radiological status of property that is potentially activated from exposure to neutron radiation produced via fusion of tritium and deuterium. The technical basis included assessment of the neutron energy, the type of materials potentially exposed and the likely activation products, and the sensitivity of radiation detectors used to survey the property. This paper evaluates the National Ignition Facility technical basis document for applicability to the release of property from Lawrence Livermore National Laboratory's various accelerator facilities considering the different types of particles accelerated, radiations produced, and resultant activation products. Extensive process knowledge regarding the accelerators' operations, accompanied by years of routine surveys, provides an excellent characterization of these facilities. Activation studies conducted at the Stanford Linear Accelerator and the High Energy Accelerator Research Organization in Japan corroborate that the long-lived radionuclides produced at accelerator facilities are of the same variety produced at the National Ignition Facility. Consequently, Lawrence Livermore National Laboratory concludes that the release protocol developed for the National Ignition Facility can be used appropriately at all its accelerator facilities.

  1. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    SciTech Connect

    Andreani, C.; Anderson, I. S.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C. -K.; Senesi, R.

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10⁻⁶ to 10² MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.

  2. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    DOE PAGES

    Andreani, C.; Anderson, I. S.; Carpenter, J. M.; ...

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10⁻⁶ to 10²more » MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.« less

  3. Developments and applications of accelerator system at the Wakasa Wan Energy Research Center

    NASA Astrophysics Data System (ADS)

    Hatori, S.; Kurita, T.; Hayashi, Y.; Yamada, M.; Yamada, H.; Mori, J.; Hamachi, H.; Kimura, S.; Shimoda, T.; Hiroto, M.; Hashimoto, T.; Shimada, M.; Yamamoto, H.; Ohtani, N.; Yasuda, K.; Ishigami, R.; Sasase, M.; Ito, Y.; Hatashita, M.; Takagi, K.; Kume, K.; Fukuda, S.; Yokohama, N.; Kagiya, G.; Fukumoto, S.; Kondo, M.

    2005-12-01

    At the Wakasa Wan Energy Research Center (WERC), an accelerator system with a 5 MV tandem accelerator and a 200 MeV proton synchrotron is used for ion beam analyses and irradiation experiments. The study of cancer therapy with a proton beam is also performed. Therefore, the stable operation and efficient sharing of beam time of the system are required, based on the treatment standard. Recent developments and the operation status of the system put stress on the tandem accelerator operation, magnifying the problems.

  4. A conserved inter-domain communication mechanism regulates the ATPase activity of the AAA-protein Drg1.

    PubMed

    Prattes, Michael; Loibl, Mathias; Zisser, Gertrude; Luschnig, Daniel; Kappel, Lisa; Rössler, Ingrid; Grassegger, Manuela; Hromic, Altijana; Krieger, Elmar; Gruber, Karl; Pertschy, Brigitte; Bergler, Helmut

    2017-03-17

    AAA-ATPases fulfil essential roles in different cellular pathways and often act in form of hexameric complexes. Interaction with pathway-specific substrate and adaptor proteins recruits them to their targets and modulates their catalytic activity. This substrate dependent regulation of ATP hydrolysis in the AAA-domains is mediated by a non-catalytic N-terminal domain. The exact mechanisms that transmit the signal from the N-domain and coordinate the individual AAA-domains in the hexameric complex are still the topic of intensive research. Here, we present the characterization of a novel mutant variant of the eukaryotic AAA-ATPase Drg1 that shows dysregulation of ATPase activity and altered interaction with Rlp24, its substrate in ribosome biogenesis. This defective regulation is the consequence of amino acid exchanges at the interface between the regulatory N-domain and the adjacent D1 AAA-domain. The effects caused by these mutations strongly resemble those of pathological mutations of the AAA-ATPase p97 which cause the hereditary proteinopathy IBMPFD (inclusion body myopathy associated with Paget's disease of the bone and frontotemporal dementia). Our results therefore suggest well conserved mechanisms of regulation between structurally, but not functionally related members of the AAA-family.

  5. A conserved inter-domain communication mechanism regulates the ATPase activity of the AAA-protein Drg1

    PubMed Central

    Prattes, Michael; Loibl, Mathias; Zisser, Gertrude; Luschnig, Daniel; Kappel, Lisa; Rössler, Ingrid; Grassegger, Manuela; Hromic, Altijana; Krieger, Elmar; Gruber, Karl; Pertschy, Brigitte; Bergler, Helmut

    2017-01-01

    AAA-ATPases fulfil essential roles in different cellular pathways and often act in form of hexameric complexes. Interaction with pathway-specific substrate and adaptor proteins recruits them to their targets and modulates their catalytic activity. This substrate dependent regulation of ATP hydrolysis in the AAA-domains is mediated by a non-catalytic N-terminal domain. The exact mechanisms that transmit the signal from the N-domain and coordinate the individual AAA-domains in the hexameric complex are still the topic of intensive research. Here, we present the characterization of a novel mutant variant of the eukaryotic AAA-ATPase Drg1 that shows dysregulation of ATPase activity and altered interaction with Rlp24, its substrate in ribosome biogenesis. This defective regulation is the consequence of amino acid exchanges at the interface between the regulatory N-domain and the adjacent D1 AAA-domain. The effects caused by these mutations strongly resemble those of pathological mutations of the AAA-ATPase p97 which cause the hereditary proteinopathy IBMPFD (inclusion body myopathy associated with Paget’s disease of the bone and frontotemporal dementia). Our results therefore suggest well conserved mechanisms of regulation between structurally, but not functionally related members of the AAA-family. PMID:28303975

  6. Children with ANSD fitted with hearing aids applying the AAA Pediatric Amplification Guideline: Current Practice and Outcomes

    PubMed Central

    Walker, Elizabeth A.; McCreery, Ryan W.; Spratford, Meredith; Roush, Patricia A.

    2015-01-01

    Background Up to 15% of children with permanent hearing loss have auditory neuropathy spectrum disorder (ANSD), which involves normal outer hair cell function and disordered afferent neural activity in the auditory nerve or brainstem. Given the varying presentations of ANSD in children, there is a need for more evidence-based research on appropriate clinical interventions for this population. Purpose This study compared the speech production, speech perception, and language outcomes of children with auditory neuropathy spectrum disorder (ANSD) who are hard of hearing and children with similar degrees of mild to moderately-severe sensorineural hearing loss (SNHL), all of whom were fitted with bilateral hearing aids based on the American Academy of Audiology (AAA) pediatric amplification guidelines. Research design Speech perception and communication outcomes data were gathered in a prospective accelerated longitudinal design, with entry into the study between six months and seven years of age. Three sites were involved in participant recruitment: Boys Town National Research Hospital, the University of North Carolina at Chapel Hill, and the University of Iowa. Study sample: The sample consisted of 12 children with ANSD and 22 children with SNHL. The groups were matched based on better-ear pure-tone average, better-ear aided speech intelligibility index, gender, maternal education level, and newborn hearing screening result (i.e., pass or refer). Data collection and analysis Children and their families participated in an initial baseline visit, followed by visits twice a year for children under age 2 years and once a year for children older than 2 years. Paired-sample t-tests were used to compare children with ANSD to children with SNHL. Results Paired t-tests indicated no significant differences between the ANSD and SNHL groups on language and articulation measures. Children with ANSD displayed functional speech perception skills in quiet. Although the number of

  7. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    NASA Astrophysics Data System (ADS)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  8. Feasibility study of Nb3Al Rutherford cable for high field accelerator magnet application

    SciTech Connect

    Yamada, R.; Kikuchi, A.; Ambrosio, G.; Andreev, N.; Barzi, E.; Cooper, C.; Feher, S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; Takeuchi, T.; Tartaglia, M.; Turrioni, D.; Verweij, A.P.; Wake, M.; Willering, G; Zlobin, A.V.; /Fermilab

    2006-08-01

    Feasibility study of Cu stabilized Nb{sub 3}Al strand and Rutherford cable for the application to high field accelerator magnets are being done at Fermilab in collaboration with NIMS. The Nb{sub 3}Al strand, which was developed and manufactured at NIMS in Japan, has a non-copper Jc of about 844 A/mm{sup 2} at 15 Tesla at 4.2 K, a copper content of 50%, and filament size of about 50 microns. Rutherford cables with 27 Nb{sub 3}Al strands of 1.03 mm diameter were fabricated and tested. Quench tests on a short cable were done to study its stability with only its self field, utilizing a high current transformer. A pair of 2 meter long Nb{sub 3}Al cables was tested extensively at CERN at 4.3 and 1.9 K up to 11 Tesla including its self field with a high transport current of 20.2 kA. In the low field test we observed instability near splices and in the central region. This is related to the flux-jump like behavior, because of excessive amount of Nb in the Nb{sub 3}Al strand. There is possibility that the Nb in Nb{sub 3}Al can cause instability below 2 Tesla field regions. We need further investigation on this problem. Above 8 Tesla, we observed quenches near the critical surface at fast ramp rate from 1000 to 3000 A/sec, with quench velocity over 100 m/sec. A small racetrack magnet was made using a 14 m of Rutherford cable and successfully tested up to 21.8 kA, corresponding to 8.7 T.

  9. Application of Failure Mode and Effects Analysis to Intraoperative Radiation Therapy Using Mobile Electron Linear Accelerators

    SciTech Connect

    Ciocca, Mario; Cantone, Marie-Claire; Veronese, Ivan; Cattani, Federica; Pedroli, Guido; Molinelli, Silvia; Vitolo, Viviana; Orecchia, Roberto

    2012-02-01

    Purpose: Failure mode and effects analysis (FMEA) represents a prospective approach for risk assessment. A multidisciplinary working group of the Italian Association for Medical Physics applied FMEA to electron beam intraoperative radiation therapy (IORT) delivered using mobile linear accelerators, aiming at preventing accidental exposures to the patient. Methods and Materials: FMEA was applied to the IORT process, for the stages of the treatment delivery and verification, and consisted of three steps: 1) identification of the involved subprocesses; 2) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system, based on the product of three parameters (severity, frequency of occurrence and detectability, each ranging from 1 to 10); 3) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. Results: Twenty-four subprocesses were identified. Ten potential failure modes were found and scored, in terms of RPN, in the range of 42-216. The most critical failure modes consisted of internal shield misalignment, wrong Monitor Unit calculation and incorrect data entry at treatment console. Potential causes of failure included shield displacement, human errors, such as underestimation of CTV extension, mainly because of lack of adequate training and time pressures, failure in the communication between operators, and machine malfunctioning. The main effects of failure were represented by CTV underdose, wrong dose distribution and/or delivery, unintended normal tissue irradiation. As additional safety measures, the utilization of a dedicated staff for IORT, double-checking of MU calculation and data entry and finally implementation of in vivo dosimetry were suggested. Conclusions: FMEA appeared as a useful tool for prospective evaluation of patient safety in radiotherapy. The

  10. An application of laser-plasma acceleration: towards a free-electron laser amplification

    NASA Astrophysics Data System (ADS)

    Couprie, M. E.; Labat, M.; Evain, C.; Marteau, F.; Briquez, F.; Khojoyan, M.; Benabderrahmane, C.; Chapuis, L.; Hubert, N.; Bourassin-Bouchet, C.; El Ajjouri, M.; Bouvet, F.; Dietrich, Y.; Valléau, M.; Sharma, G.; Yang, W.; Marcouillé, O.; Vétéran, J.; Berteaud, P.; El Ajjouri, T.; Cassinari, L.; Thaury, C.; Lambert, G.; Andriyash, I.; Malka, V.; Davoine, X.; Tordeux, M. A.; Miron, C.; Zerbib, D.; Tavakoli, K.; Marlats, J. L.; Tilmont, M.; Rommeluère, P.; Duval, J. P.; N'Guyen, M. H.; Rouqier, A.; Vanderbergue, M.; Herbeaux, C.; Sebdouai, M.; Lestrade, A.; Leclercq, N.; Dennetière, D.; Thomasset, M.; Polack, F.; Bielawski, S.; Szwaj, C.; Loulergue, A.

    2016-03-01

    The laser-plasma accelerator (LPA) presently provides electron beams with a typical current of a few kA, a bunch length of a few fs, energy in the few hundred MeV to several GeV range, a divergence of typically 1 mrad, an energy spread of the order of 1%, and a normalized emittance of the order of π.mm.mrad. One of the first applications could be to use these beams for the production of radiation: undulator emission has been observed but the rather large energy spread (1%) and divergence (1 mrad) prevent straightforward free-electron laser (FEL) amplification. An adequate beam manipulation through the transport to the undulator is then required. The key concept proposed here relies on an innovative electron beam longitudinal and transverse manipulation in the transport towards an undulator: a ‘demixing’ chicane sorts the electrons according to their energy and reduces the spread from 1% to one slice of a few ‰ and the effective transverse size is maintained constant along the undulator (supermatching) by a proper synchronization of the electron beam focusing with the progress of the optical wave. A test experiment for the demonstration of FEL amplification with an LPA is under preparation. Electron beam transport follows different steps with strong focusing with permanent magnet quadrupoles of variable strength, a demixing chicane with conventional dipoles, and a second set of quadrupoles for further focusing in the undulator. The FEL simulations and the progress of the preparation of the experiment are presented.

  11. Acceleration of mini-projectiles using a small-caliber electrothermal gun for fusion applications

    SciTech Connect

    Kincaid, R.W.; Bourham, M.A.; Gilligan, J.G.

    1995-12-31

    The small-caliber electrothermal plasma gun SIRENS has been used to accelerate mini-projectiles to demonstrate the feasibility of using such guns as a pellet injector for fueling of future fusion reactors. The gun has been modified to accommodate acceleration of plastic projectiles to simulate frozen hydrogenic pellets required to fuel fusion reactors. Barrel sections are equipped with diagnostics for velocity and position of the projectile. The length of the acceleration path could be varied between 15 and 45 cm. The pulse forming network (PFN) can provide up to 100 kJ discharge energy over 0.1 to 1.0 ms pulse duration. The projectile velocities have been measured via a set of break wires. The ODIN code has been modified to account for the projectile mass, acceleration and friction. Plasma parameters compared to code results are discussed in detail.

  12. Dimensions of Usability: Cougaar, Aglets and Adaptive Agent Architecture (AAA)

    SciTech Connect

    Haack, Jereme N.; Cowell, Andrew J.; Gorton, Ian

    2004-06-20

    Research and development organizations are constantly evaluating new technologies in order to implement the next generation of advanced applications. At Pacific Northwest National Laboratory, agent technologies are perceived as an approach that can provide a competitive advantage in the construction of highly sophisticated software systems in a range of application areas. An important factor in selecting a successful agent architecture is the level of support it provides the developer in respect to developer support, examples of use, integration into current workflow and community support. Without such assistance, the developer must invest more effort into learning instead of applying the technology. Like many other applied research organizations, our staff are not dedicated to a single project and must acquire new skills as required, underlining the importance of being able to quickly become proficient. A project was instigated to evaluate three candidate agent toolkits across the dimensions of support they provide. This paper reports on the outcomes of this evaluation and provides insights into the agent technologies evaluated.

  13. The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Zank, G. P.

    2015-01-01

    The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forward-forward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given.

  14. The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Zank, G. P.

    2015-01-01

    The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forwardforward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given.

  15. Coordinated gripping of substrate by subunits of a AAA+ proteolytic machine

    PubMed Central

    Iosefson, Ohad; Nager, Andrew R.; Baker, Tania A.; Sauer, Robert T.

    2014-01-01

    Hexameric AAA+ unfoldases of ATP-dependent proteases and protein-remodeling machines use conserved loops that line the axial pore to apply force to substrates during the mechanical processes of protein unfolding and translocation. Whether loops from multiple subunits act independently or coordinately in these processes is a critical aspect of mechanism but is currently unknown for any AAA+ machine. By studying covalently linked hexamers of the E. coli ClpX unfoldase bearing different numbers and configurations of wild-type and mutant pore loops, we show that loops function synergistically, with the number of wild-type loops required for efficient degradation depending upon the stability of the protein substrate. Our results support a mechanism in which a power stroke initiated in one subunit of the ClpX hexamer results in the concurrent movement of all six pore loops, which coordinately grip and apply force to the substrate. PMID:25599533

  16. Neuromuscular regulation in zebrafish by a large AAA+ ATPase/ubiquitin ligase, mysterin/RNF213

    PubMed Central

    Kotani, Yuri; Morito, Daisuke; Yamazaki, Satoru; Ogino, Kazutoyo; Kawakami, Koichi; Takashima, Seiji; Hirata, Hiromi; Nagata, Kazuhiro

    2015-01-01

    Mysterin (also known as RNF213) is a huge intracellular protein with two AAA+ ATPase modules and a RING finger ubiquitin ligase domain. Mysterin was originally isolated as a significant risk factor for the cryptogenic cerebrovascular disorder moyamoya disease, and was found to be involved in physiological angiogenesis in zebrafish. However, the function and the physiological significance of mysterin in other than blood vessels remain largely unknown, although mysterin is ubiquitously expressed in animal tissues. In this study, we performed antisense-mediated suppression of a mysterin orthologue in zebrafish larvae and revealed that mysterin-deficient larvae showed significant reduction in fast myofibrils and immature projection of primary motoneurons, leading to severe motor deficits. Fast muscle-specific restoration of mysterin expression cancelled these phenotypes, and interestingly both AAA+ ATPase and ubiquitin ligase activities of mysterin were indispensable for proper fast muscle formation, demonstrating an essential role of mysterin and its enzymatic activities in the neuromuscular regulation in zebrafish. PMID:26530008

  17. Structural Basis of ATP Hydrolysis and Intersubunit Signaling in the AAA+ ATPase p97.

    PubMed

    Hänzelmann, Petra; Schindelin, Hermann

    2016-01-05

    p97 belongs to the superfamily of AAA+ ATPases and is characterized by a tandem AAA module, an N-terminal domain involved in substrate and cofactor interactions, and a functionally important unstructured C-terminal tail. The ATPase activity is controlled by an intradomain communication within the same protomer and an interdomain communication between neighboring protomers. Here, we present for the first time crystal structures in which the physiologically relevant p97 hexamer constitutes the content of the asymmetric unit, namely in the apo state without nucleotide in either the D1 or D2 module and in the pre-activated state with ATPγS bound to both modules. The structures provide new mechanistic insights into the interdomain communication mediated by conformational changes of the C terminus as well as an intersubunit signaling network, which couples the nucleotide state to the conformation of the central putative substrate binding pore.

  18. The AAA+ ATPase, Thorase Regulates AMPA Receptor-Dependent Synaptic Plasticity and Behavior

    PubMed Central

    Zhang, Jianmin; Wang, Yue; Chi, Zhikai; Keuss, Matthew J.; Pai, Ying-Min Emily; Kang, Ho Chul; Shin, Jooho; Bugayenko, Artem; Wang, Hong; Xiong, Yulan; Pletnikov, Mikhail V.; Mattson, Mark P.; Dawson, Ted M.; Dawson, Valina L.

    2011-01-01

    SUMMARY The synaptic insertion or removal of AMPA receptors (AMPAR) plays critical roles in the regulation of synaptic activity reflected in the expression of long-term potentiation (LTP) and long-term depression (LTD). The cellular events underlying this important process in learning and memory are still being revealed. Here we describe and characterize the AAA+ ATPase, Thorase, that regulates the expression of surface AMPAR. In an ATPase-dependent manner Thorase mediates the internalization of AMPAR by disassembling the AMPAR-GRIP1 complex. Following genetic deletion of Thorase, the internalization of AMPAR is substantially reduced, leading to increased amplitudes of miniature excitatory postsynaptic currents, enhancement of LTP and elimination of LTD. These molecular events are expressed as deficits in learning and memory in Thorase null mice. This study identifies an AAA+ ATPase that plays a critical role in regulating the surface expression of AMPAR and thereby regulates synaptic plasticity and learning and memory. PMID:21496646

  19. Dosimetric comparison of Acuros XB, AAA, and XVMC in stereotactic body radiotherapy for lung cancer

    SciTech Connect

    Tsuruta, Yusuke; Nakata, Manabu; Higashimura, Kyoji; Nakamura, Mitsuhiro Matsuo, Yukinori; Monzen, Hajime; Mizowaki, Takashi; Hiraoka, Masahiro

    2014-08-15

    Purpose: To compare the dosimetric performance of Acuros XB (AXB), anisotropic analytical algorithm (AAA), and x-ray voxel Monte Carlo (XVMC) in heterogeneous phantoms and lung stereotactic body radiotherapy (SBRT) plans. Methods: Water- and lung-equivalent phantoms were combined to evaluate the percentage depth dose and dose profile. The radiation treatment machine Novalis (BrainLab AG, Feldkirchen, Germany) with an x-ray beam energy of 6 MV was used to calculate the doses in the composite phantom at a source-to-surface distance of 100 cm with a gantry angle of 0°. Subsequently, the clinical lung SBRT plans for the 26 consecutive patients were transferred from the iPlan (ver. 4.1; BrainLab AG) to the Eclipse treatment planning systems (ver. 11.0.3; Varian Medical Systems, Palo Alto, CA). The doses were then recalculated with AXB and AAA while maintaining the XVMC-calculated monitor units and beam arrangement. Then the dose-volumetric data obtained using the three different radiation dose calculation algorithms were compared. Results: The results from AXB and XVMC agreed with measurements within ±3.0% for the lung-equivalent phantom with a 6 × 6 cm{sup 2} field size, whereas AAA values were higher than measurements in the heterogeneous zone and near the boundary, with the greatest difference being 4.1%. AXB and XVMC agreed well with measurements in terms of the profile shape at the boundary of the heterogeneous zone. For the lung SBRT plans, AXB yielded lower values than XVMC in terms of the maximum doses of ITV and PTV; however, the differences were within ±3.0%. In addition to the dose-volumetric data, the dose distribution analysis showed that AXB yielded dose distribution calculations that were closer to those with XVMC than did AAA. Means ± standard deviation of the computation time was 221.6 ± 53.1 s (range, 124–358 s), 66.1 ± 16.0 s (range, 42–94 s), and 6.7 ± 1.1 s (range, 5–9 s) for XVMC, AXB, and AAA, respectively. Conclusions: In the

  20. Microstructure and mechanical properties of composite resins subjected to accelerated artificial aging.

    PubMed

    dos Reis, Andréa Cândido; de Castro, Denise Tornavoi; Schiavon, Marco Antônio; da Silva, Leandro Jardel; Agnelli, José Augusto Marcondes

    2013-01-01

    The aim of this study was to investigate the influence of accelerated artificial aging (AAA) on the microstructure and mechanical properties of the Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma and Filtek Z100. composite resins. The composites were characterized by Fourier-transform Infrared spectroscopy (FTIR) and thermal analyses (Differential Scanning Calorimetry - DSC and Thermogravimetry - TG). The microstructure of the materials was examined by scanning electron microscopy. Surface hardness and compressive strength data of the resins were recorded and the mean values were analyzed statistically by ANOVA and Tukey's test (α=0.05). The results showed significant differences among the commercial brands for surface hardness (F=86.74, p<0.0001) and compressive strength (F=40.31, p<0.0001), but AAA did not affect the properties (surface hardness: F=0.39, p=0.53; compressive strength: F=2.82, p=0.09) of any of the composite resins. FTIR, DSC and TG analyses showed that resin polymerization was complete, and there were no differences between the spectra and thermal curve profiles of the materials obtained before and after AAA. TG confirmed the absence of volatile compounds and evidenced good thermal stability up to 200 °C, and similar amounts of residues were found in all resins evaluated before and after AAA. The AAA treatment did not significantly affect resin surface. Therefore, regardless of the resin brand, AAA did not influence the microstructure or the mechanical properties.

  1. Rare isotope accelerator project in Korea and its application to high energy density sciences

    NASA Astrophysics Data System (ADS)

    Chung, M.; Chung, Y. S.; Kim, S. K.; Lee, B. J.; Hoffmann, D. H. H.

    2014-01-01

    As a national science project, the Korean government has recently established the Institute for Basic Science (IBS) with the goal of conducting world-class research in basic sciences. One of the core facilities for the IBS will be the rare isotope accelerator which can produce high-intensity rare isotope beams to investigate the fundamental properties of nature, and also to support a broad research program in material sciences, medical and biosciences, and future nuclear energy technologies. The construction of the accelerator is scheduled to be completed by approximately 2017. The design of the accelerator complex is optimized to deliver high average beam current on targets, and to maximize the production of rare isotope beams through the simultaneous use of Isotope Separation On-Line (ISOL) and In-Flight Fragmentation (IFF) methods. The proposed accelerator is, however, not optimal for high energy density science, which usually requires very high peak currents on the target. In this study, we present possible beam-plasma experiments that can be done within the scope of the current accelerator design, and we also investigate possible future extension paths that may enable high energy density science with intense pulsed heavy ion beams.

  2. The plant i-AAA protease controls the turnover of an essential mitochondrial protein import component.

    PubMed

    Opalińska, Magdalena; Parys, Katarzyna; Murcha, Monika W; Jańska, Hanna

    2017-03-06

    Mitochondria are multifunctional organelles that play a central role in energy metabolism. Owing to the life-essential functions of these organelles, mitochondrial content, quality and dynamics are tightly controlled. Across the species, highly conserved ATP-dependent proteases prevent malfunction of mitochondria through versatile activities. This study focuses on a molecular function of the plant mitochondrial inner membrane-embedded AAA protease (denoted i-AAA) FTSH4, providing its first bona fide substrate. Here, we report that the abundance of the Tim17-2 protein, an essential component of the TIM17:23 translocase (Tim17-2 together with Tim50 and Tim23), is directly controlled by the proteolytic activity of FTSH4. Plants that are lacking functional FTSH4 protease are characterized by significantly enhanced capacity of preprotein import through the TIM17:23-dependent pathway. Taken together, with the observation that FTSH4 prevents accumulation of Tim17-2, our data point towards the role of this i-AAA protease in the regulation of mitochondrial biogenesis in plants.

  3. Functional characterization of fidgetin, an AAA-family protein mutated in fidget mice

    SciTech Connect

    Yang Yan; Mahaffey, Connie L.; Berube, Nathalie; Nystuen, Arne; Frankel, Wayne N. . E-mail: wnf@jax.org

    2005-03-10

    The mouse fidget mutation is an autosomal recessive mutation that renders reduced or absent semicircular canals, microphthalmia, and various skeletal abnormalities to affected mice. We previously identified the defective gene which encodes fidgetin, a new member of the ATPases associated with diverse cellular activities (AAA proteins). Here, we report on the subcellular localization of fidgetin as well as that of two closely related proteins, fidgetin-like 1 and fidgetin-like 2. Epitope-tagging and immunostaining revealed that both fidgetin and fidgetin-like 2 were predominantly localized to the nucleus, whereas fidgetin-like 1 was both nuclear and cytoplasmic. Furthermore, deletion studies identified a putative bipartite nuclear localization signal in the middle portion of the fidgetin protein. Since AAA proteins are known to form functional hetero- or homo-hexamers, we used reciprocal immunoprecipitation to examine the potential interaction among these proteins. We found that fidgetin interacted with itself and this specific interaction was abolished when either the N- or C-terminus of the protein was truncated. Taken together, our results suggest that fidgetin is a nuclear AAA-family protein with the potential to form homo-oligomers, thus representing the first step towards the elucidation of fidgetin's cellular function and the disease mechanism in fidget mutant mice.

  4. An atypical AAA+ ATPase assembly controls efficient transposition through DNA remodeling and transposase recruitment

    PubMed Central

    Arias-Palomo, Ernesto; Berger, James M.

    2015-01-01

    Transposons are ubiquitous genetic elements that drive genome rearrangements, evolution, and the spread of infectious disease and drug-resistance. Many transposons, such as Mu, Tn7 and IS21, require regulatory AAA+ ATPases for function. We use x-ray crystallography and cryo-electron microscopy to show that the ATPase subunit of IS21, IstB, assembles into a clamshell-shaped decamer that sandwiches DNA between two helical pentamers of ATP-associated AAA+ domains, sharply bending the duplex into a 180° U-turn. Biochemical studies corroborate key features of the structure, and further show that the IS21 transposase, IstA, recognizes the IstB•DNA complex and promotes its disassembly by stimulating ATP hydrolysis. Collectively, these studies reveal a distinct manner of higher-order assembly and client engagement by a AAA+ ATPase and suggest a mechanistic model where IstB binding and subsequent DNA bending primes a selected insertion site for efficient transposition. PMID:26276634

  5. Regulation and action of the bacterial enhancer-binding protein AAA+ domains

    PubMed Central

    Chen, Baoyu; Sysoeva, Tatyana A.; Chowdhury, Saikat; Nixon, B. Tracy

    2009-01-01

    Bacterial EBPs (enhancer-binding proteins) play crucial roles in regulating cellular responses to environmental changes, in part by providing efficient control over σ54-dependent gene transcription. The AAA+ (ATPase associated with various cellular activites) domain of the EBPs, when assembled into a ring, uses energy from ATP binding, hydrolysis and product release to remodel the σ54–RNAP (RNA polymerase) holoenzyme so that it can transition from closed to open form at promoter DNA. The assembly, and hence activity, of these ATPases are regulated by many different signal transduction mechanisms. Recent advances in solution scattering techniques, when combined with high-resolution structures and biochemical data, have enabled us to obtain mechanistic insights into the regulation and action of a subset of these σ54 activators: those whose assembly into ring form is controlled by two-component signal transduction. We review (i) experimental considerations of applying the SAXS (small-angle X-ray scattering)/WAXS (wide-angle X-ray scattering) technique, (ii) distinct regulation mechanisms of the AAA+ domains of three EBPs by similar two-component signal transduction receiver domains, and (iii) major conformational changes and correlated σ54-binding activity of an isolated EBP AAA+ domain in the ATP hydrolysis cycle. PMID:18208392

  6. Application of Zernike polynomials towards accelerated adaptive focusing of transcranial high intensity focused ultrasound

    PubMed Central

    Kaye, Elena A.; Hertzberg, Yoni; Marx, Michael; Werner, Beat; Navon, Gil; Levoy, Marc; Pauly, Kim Butts

    2012-01-01

    Purpose: To study the phase aberrations produced by human skulls during transcranial magnetic resonance imaging guided focused ultrasound surgery (MRgFUS), to demonstrate the potential of Zernike polynomials (ZPs) to accelerate the adaptive focusing process, and to investigate the benefits of using phase corrections obtained in previous studies to provide the initial guess for correction of a new data set. Methods: The five phase aberration data sets, analyzed here, were calculated based on preoperative computerized tomography (CT) images of the head obtained during previous transcranial MRgFUS treatments performed using a clinical prototype hemispherical transducer. The noniterative adaptive focusing algorithm [Larrat , “MR-guided adaptive focusing of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(8), 1734–1747 (2010)]10.1109/TUFFC.2010.1612 was modified by replacing Hadamard encoding with Zernike encoding. The algorithm was tested in simulations to correct the patients’ phase aberrations. MR acoustic radiation force imaging (MR-ARFI) was used to visualize the effect of the phase aberration correction on the focusing of a hemispherical transducer. In addition, two methods for constructing initial phase correction estimate based on previous patient's data were investigated. The benefits of the initial estimates in the Zernike-based algorithm were analyzed by measuring their effect on the ultrasound intensity at the focus and on the number of ZP modes necessary to achieve 90% of the intensity of the nonaberrated case. Results: Covariance of the pairs of the phase aberrations data sets showed high correlation between aberration data of several patients and suggested that subgroups can be based on level of correlation. Simulation of the Zernike-based algorithm demonstrated the overall greater correction effectiveness of the low modes of ZPs. The focal intensity achieves 90% of nonaberrated intensity using fewer than 170 modes of ZPs. The

  7. Application of the Euler-Lagrange method in determination of the coordinate acceleration

    NASA Astrophysics Data System (ADS)

    Sfarti, A.

    2016-05-01

    In a recent comment published in this journal (2015 Eur. J. Phys. 36 038001), Khrapko derived the relationship between coordinate acceleration and coordinate speed for the case of radial motion in Schwarzschild coordinates. We will show an alternative derivation based on the Euler-Lagrange formalism. The Euler-Lagrange formalism has the advantage that it circumvents the tedious calculations of the Christoffel symbols and it is more intuitive. Another aspect of our comment is that one should not give much physical meaning to coordinate dependent entities, GR is a coordinate free field, so, a relationship between two coordinate dependent entities, like the acceleration being dependent on speed, should not be given much importance. By contrast, the proper acceleration and proper speed, are meaningful entities and their relationship is relevant. The comment is intended for graduate students and for the instructors who teach GR.

  8. Application of a tiered approach to the validation of accelerator MS assays.

    PubMed

    Higton, David; Seymour, Mark

    2014-03-01

    Since its introduction into the drug-development arena, accelerator mass spectrometry (coupled with liquid chromatography fractionation) has been used to support a variety of study types. The uses to which the technique has been put include parent and/or metabolite quantification in pharmacokinetic studies, total radioactivity measurement in adsorption, metabolism and excretion studies, and quantitative metabolite profiling. A tiered approach has been applied to the verification of accelerator mass spectrometry assays, dependant on in which type of study and at what stage of drug development they are used. As accelerator mass spectrometry is an absolute detector that can quantify without the use of analyte-related standards, the specific assay verification requirements differ from those for LC-MS/MS assays. This article describes when screening, qualified and validated assay verification procedures should be applied, and suggests what parameters should be assessed in each case.

  9. Experimental and computational studies on the flow fields in aortic aneurysms associated with deployment of AAA stent-grafts

    NASA Astrophysics Data System (ADS)

    Zhang, Xiwen; Yao, Zhaohui; Zhang, Yan; Xu, Shangdong

    2007-10-01

    Pulsatile flow fields in rigid abdominal aortic aneurysm (AAA) models were investigated numerically, and the simulation results are found in good agreement with particle image velocimetry (PIV) measurements. There are one or more vortexes in the AAA bulge, and a fairly high wall shear stress exists at the distal end, and thus the AAA is in danger of rupture. Medical treatment consists of inserting a vascular stent-graft in the AAA, which would decrease the blood impact to the inner walls and reduce wall shear stress so that the rupture could be prevented. A new computational model, based on porous medium model, was developed and results are documented. Therapeutic effect of the stent-graft was verified numerically with the new model.

  10. Application of rf superconductivity to high-brightness ion-beam accelerators

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Roche, C.T.

    1990-01-01

    A development program is underway to apply rf superconductivity to the design of cw linear accelerators for high-brightness ion beams. The key issues associated with this endeavor have been delineated in an earlier paper. Considerable progress has been made both experimentally and theoretically to resolve a number of these issues. In this paper we summarize this progress. We also identify current and future work in the areas of accelerator technology and superconducting materials which will confront the remaining issues and/or provide added capability to the technology. 13 refs., 2 figs.

  11. A Pulsed Laser-Electromagnetic Hybrid Accelerator For Space Propulsion Application

    SciTech Connect

    Shinohara, Tadaki; Horisawa, Hideyuki; Baba, Msahumi; Tei, Kazuyoku

    2010-05-06

    A fundamental study of a newly developed rectangular pulsed laser-electromagnetic hybrid thruster was conducted, in which laser-ablation plasma was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. The performance of the thruster was evaluated by measuring the mass per shot and impulse bit. As results, significantly high specific impulse ranging from 5,000 approx6,000 sec were obtained at energies of 0.1 and 8.6 J, respectively. In addition, the typical thrust efficiency varied from 17% to 19% depending on the charge energy.

  12. On-line system identification for control system applications in particle accelerators

    NASA Astrophysics Data System (ADS)

    Chowdhary, Mahesh

    1997-08-01

    Particle accelerators require a number of feedback systems in order to stabilize a variety of parameters. The Continuous Electron Beam Accelerator at Thomas Jefferson National Accelerator Facility presents a unique set of control and identification problems. This accelerator produces a continuous electron beam with energies between 0.5 and 4.0 GeV to be delivered to the experimental halls. In order to meet stringent beam quality requirements specified by the experimental halls, the position and the energy of the electron beam needs to stabilized at various locations in the accelerator. A number of noise measurement tests were conducted at various locations in the accelerator to obtain accurate information about the amplitude and the frequency of disturbances on the beam orbit and energy. Results of these measurements indicate that the line power harmonics were the primary source of disturbance on the beam orbit and energy. A prototype fast feedback system was implemented in the injector and the East Arc regions of the accelerator to stabilize the beam position and energy at these locations. The scheme of implementation of these systems and measurements of their performance are presented here. These feedback systems have to operate under conditions of varying noise characteristics and changing dynamics of the systems. For the feedback systems to always perform optimally, the knowledge of time varying noise characteristics and changing system dynamics needs to be incorporated into the feedback strategy. The approach presented in this work is to perform on-line system identification using a formulation of Fast Transversal Filter (FTF) in order to extract the time varying information from input/output data of the feedback system. A simulation test stand was developed using an analog computer to represent a continuous time system whose noise characteristics and dynamics could be changed in a controlled manner. An on-line system identification algorithm was implemented

  13. The application of exogenous cellulase to improve soil fertility and plant growth due to acceleration of straw decomposition.

    PubMed

    Han, Wei; He, Ming

    2010-05-01

    The effects of exogenous cellulase application on straw decomposition, soil fertility, and plant growth were investigated with nylon bag and pot experiments. Cellulase application promoted straw decomposition, and the decomposition rates of rice and wheat straw increased by 6.3-26.0% and 6.8-28.0%, respectively, in the nylon bag experiments. In pot experiments soil-available N and P contents, soil cellulase activity, and growth of rice seedlings increased. Soil respiration rate and microbial population were unaffected. Seventy Ug(-1) was the optimal cellulase concentration for plant growth. The exogenous cellulase persisted in soil for more than 100days. Although the data show that exogenous cellulase application can enhance soil fertility and plant growth in the short-term due to the acceleration of straw decomposition and has the potential to be an environment-friendly approach to manage straw, cellulase application to soil seems currently not economical.

  14. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISKIN OIL-IMPACTED SOILS

    SciTech Connect

    J.R. Paterek; W.W.Bogan; V. Trbovic; W. Sullivan

    2003-01-07

    The drilling and operation of gas/petroleum exploratory wells and the operations of natural gas and petroleum production wells generate a number of waste materials that are usually stored and/or processed at the drilling/operations site. Contaminated soils result from drilling operations, production operations, and pipeline breaks or leaks where crude oil and petroleum products are released into the surrounding soil or sediments. In many cases, intrinsic biochemical remediation of these contaminated soils is either not effective or is too slow to be an acceptable approach. This project targeted petroleum-impacted soil and other wastes, such as soil contaminated by: accidental release of petroleum and natural gas-associated organic wastes from pipelines or during transport of crude oil or natural gas; production wastes (such as produced waters, and/or fuels or product gas). Our research evaluated the process designated Chemically-Accelerated Biotreatment (CAB) that can be applied to remediate contaminated matrices, either on-site or in situ. The Gas Technology Institute (GTI) had previously developed a form of CAB for the remediation of hydrocarbons and metals at Manufactured Gas Plant (MGP) sites and this research project expanded its application into Exploration and Production (E&P) sites. The CAB treatment was developed in this project using risk-based endpoints, a.k.a. environmentally acceptable endpoints (EAE) as the treatment goal. This goal was evaluated, compared, and correlated to traditional analytical methods (Gas Chromatography (GC), High Precision Liquid Chromatography (HPLC), or Gas Chromatography-Mass Spectrometry (CGMS)). This project proved that CAB can be applied to remediate E&P contaminated soils to EAE, i.e. those concentrations of chemical contaminants in soil below which there is no adverse affect to human health or the environment. Conventional approaches to risk assessment to determine ''how clean is clean'' for soils undergoing remediation

  15. Application of gamma-ray radiography and gravimetric measurements after accelerated corrosion tests of steel embedded in mortar

    SciTech Connect

    Duffó, Gustavo; Gaillard, Natalia; Mariscotti, Mario; Ruffolo, Marcelo

    2015-08-15

    The accelerated corrosion by the impressed current technique is widely used in studies of concrete durability since it has the advantage that tests can be carried out within reasonable periods of time. In the present work the relationship between the applied current density and the resulting damage on the reinforcing steel, by applying optical microscopy, scanning electron microscopy, gamma-ray radiography and gravimetric measurements, was studied by means of the implementation of accelerated corrosion tests on reinforced mortar. The results show that the efficiency of the applied current is between 1 and 77%, regardless of the applied current density, the water/cement ratio and the mortar cover depth of the specimens. The results show the applicability of the gamma-ray radiography technique to detect localized corrosion of steel rebars in laboratory specimens.

  16. Damage Based Analysis (DBA): Theory, Derivation and Practical Application - Using Both an Acceleration and Pseudo-Velocity Approach

    NASA Technical Reports Server (NTRS)

    Grillo, Vince

    2016-01-01

    The objective of this presentation is to give a brief overview of the theory behind the (DBA) method, an overview of the derivation and a practical application of the theory using the Python computer language. The Theory and Derivation will use both Acceleration and Pseudo Velocity methods to derive a series of equations for processing by Python. We will take the results and compare both Acceleration and Pseudo Velocity methods and discuss implementation of the Python functions. Also, we will discuss the efficiency of the methods and the amount of computer time required for the solution. In conclusion, (DBA) offers a powerful method to evaluate the amount of energy imparted into a system in the form of both Amplitude and Duration during qualification testing and flight environments. Many forms of steady state and transient vibratory motion can be characterized using this technique. (DBA) provides a more robust alternative to traditional methods such Power Spectral Density (PSD) using a Maximax approach.

  17. Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials

    SciTech Connect

    Industrial Technologies Program

    2011-01-05

    This brochure describes the 31 R&D projects that AMO supports to accelerate the commercial manufacture and use of nanomaterials for enhanced energy efficiency. These cost-shared projects seek to exploit the unique properties of nanomaterials to improve the functionality of industrial processes and products.

  18. DEVELOPMENT OF ACCELERATOR DATA REPORTING SYSTEM AND ITS APPLICATION TO TREND ANALYSIS OF BEAM CURRENT DATA

    SciTech Connect

    Padilla, M.J.; Blokland, W.

    2009-01-01

    Detailed ongoing information about the ion beam quality is crucial to the successful operation of the Spallation Neutron Source at Oak Ridge National Laboratory. In order to provide the highest possible neutron production time, ion beam quality is monitored to isolate possible problems or performance-related issues throughout the accelerator and accumulator ring. For example, beam current monitor (BCM) data is used to determine the quality of the beam transport through the accelerator. In this study, a reporting system infrastructure was implemented and used to generate a trend analysis report of the BCM data. The BCM data was analyzed to facilitate the identifi cation of monitor calibration issues, beam trends, beam abnormalities, beam deviations and overall beam quality. A comparison between transformed BCM report data and accelerator log entries shows promising results which represent correlations between the data and changes made within the accelerator. The BCM analysis report is one of many reports within a system that assist in providing overall beam quality information to facilitate successful beam operation. In future reports, additional data manipulation functions and analysis can be implemented and applied. Built-in and user-defi ned analytic functions are available throughout the reporting system and can be reused with new data.

  19. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  20. A transient MHD model applicable for the source of solar cosmic ray acceleration

    NASA Technical Reports Server (NTRS)

    Dryer, M.; Wu, S. T.

    1981-01-01

    A two-dimensional, time-dependent magnetohydrodynamic model is used to describe the possible mechanisms for the source of solar cosmic ray acceleration following a solar flare. The hypothesis is based on the propagation of fast mode MHD shocks following a sudden release of energy. In this presentation, the effects of initial magnetic topology and strength on the formation of MHD shocks have been studied. The plasma beta (thermal pressure/magnetic pressure) is considered as a measure of the initial, relative strength of the field. During dynamic mass motion, the Alfven Mach number is the more appropriate measure of the magnetic field's ability to control the outward motion. It is suggested that this model (computed self-consistently) provides the shock waves and the disturbed mass motion behind it as likely sources for solar cosmic ray acceleration.

  1. The Cornell Main Linac Cryomodule: A Full Scale, High Q Accelerator Module for cw Application

    NASA Astrophysics Data System (ADS)

    Eichhorn, R.; Bullock, B.; Elmore, B.; Clasby, B.; Furuta, F.; He, Y.; Hoffstaetter, G.; Liepe, M.; O'Connell, T.; Conway, J.; Quigley, P.; Sabol, D.; Sears, J.; Smith, E.; Veshcherevich, V.

    Cornell University is in the process of building a 10 m long superconducting accelerator module as a prototype of the main linac of a proposed ERL facility. This module houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode - with individual HOM absorbers and one magnet/BPM section. In pushing the limits, a high quality factor of the cavities (2•1010) and high beam currents (100 mA accelerated plus 100 mA decelerated) were targeted. We will review the design shortly and present the results of the components tested before the assembly. This includes data of the quality-factors of all 6 cavities that we produced and treated in-house, the HOM absorber performance measured with beam on a test set-up as well as testing of the couplers and the tuners.

  2. High energy focused ion beam technology and applications at the Louisiana Accelerator Center

    NASA Astrophysics Data System (ADS)

    Glass, G. A.; Dymnikov, A. D.; Rout, B.; Zachry, D. P.

    2007-07-01

    The high energy focused ion beam (HEFIB) system at the Louisiana Accelerator Center (LAC) of the University of Louisiana at Lafayette, Lafayette, USA, is constructed on one of the beamlines of a National Electrostatics Corporation 1.7 MV 5SDH-2 tandem accelerator. The HEFIB system has several components, including a versatile magnetic quadrupole sextuplet lens focusing system defined as the Russian magnetic sextuplet (RMS) system having the same demagnifications, the same focal lengths and the same positions of the focal points in xz and yz planes as the Russian quadruplet and a one-piece concrete supporting base and integrated endstation with air isolation. A review of recent microlithography and HEFIB system developments at LAC are presented, as well as new results using heavy ion (HI) beam lithography on crystalline silicon.

  3. Application of real-time digitization techniques in beam measurement for accelerators

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Zhan, Lin-Song; Gao, Xing-Shun; Liu, Shu-Bin; An, Qi

    2016-04-01

    Beam measurement is very important for accelerators. In this paper, modern digital beam measurement techniques based on IQ (In-phase & Quadrature-phase) analysis are discussed. Based on this method and high-speed high-resolution analog-to-digital conversion, we have completed three beam measurement electronics systems designed for the China Spallation Neutron Source (CSNS), Shanghai Synchrotron Radiation Facility (SSRF), and Accelerator Driven Sub-critical system (ADS). Core techniques of hardware design and real-time system calibration are discussed, and performance test results of these three instruments are also presented. Supported by National Natural Science Foundation of China (11205153, 10875119), Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N27), and the Fundamental Research Funds for the Central Universities (WK2030040029),and the CAS Center for Excellence in Particle Physics (CCEPP).

  4. Application of aluminum and titanium foils in low-energy wide-aperture electron accelerators

    NASA Astrophysics Data System (ADS)

    Bodakin, L. V.; Gusakov, A. I.; Komarov, O. V.; Kosogorov, S. L.; Motovilov, S. A.; Uspenskii, N. A.

    2016-09-01

    We have reported on the results of theoretical and experimental investigations of characteristics of aluminum and titanium foils used in devices to extract electron beams from wide-aperture low-energy accelerators with a high current density. The mechanical properties of foils at different temperatures and the electron beam transmission and absorption coefficients have been compared. The results of analyzing the dependences of the efficiency of the electron beam extraction from accelerators on the type of the electron-optical system, material, and thickness of the foil for various sizes of extraction windows and the same type of the slot support grids have been presented. We have proposed an analytic model for calculating the temperature of the foil in the unit cell of the support grid. The electron transmittance and absorbance, as well as the temperature regimes of the foils, have been calculated using different methods.

  5. MO-FG-303-04: A Smartphone Application for Automated Mechanical Quality Assurance of Medical Accelerators

    SciTech Connect

    Kim, H; Lee, H; Choi, K; Ye, S

    2015-06-15

    Purpose: The mechanical quality assurance (QA) of medical accelerators consists of a time consuming series of procedures. Since most of the procedures are done manually – e.g., checking gantry rotation angle with the naked eye using a level attached to the gantry –, it is considered to be a process with high potential for human errors. To remove the possibilities of human errors and reduce the procedure duration, we developed a smartphone application for automated mechanical QA. Methods: The preparation for the automated process was done by attaching a smartphone to the gantry facing upward. For the assessments of gantry and collimator angle indications, motion sensors (gyroscope, accelerator, and magnetic field sensor) embedded in the smartphone were used. For the assessments of jaw position indicator, cross-hair centering, and optical distance indicator (ODI), an optical-image processing module using a picture taken by the high-resolution camera embedded in the smartphone was implemented. The application was developed with the Android software development kit (SDK) and OpenCV library. Results: The system accuracies in terms of angle detection error and length detection error were < 0.1° and < 1 mm, respectively. The mean absolute error for gantry and collimator rotation angles were 0.03° and 0.041°, respectively. The mean absolute error for the measured light field size was 0.067 cm. Conclusion: The automated system we developed can be used for the mechanical QA of medical accelerators with proven accuracy. For more convenient use of this application, the wireless communication module is under development. This system has a strong potential for the automation of the other QA procedures such as light/radiation field coincidence and couch translation/rotations.

  6. Expanding a flutter envelope using data from accelerating flight: Application to the F-16 fighter aircraft

    NASA Astrophysics Data System (ADS)

    Harris, Charles A.

    Due to the destructive nature of flutter, flutter testing is a mandatory requirement for certification of both civilian and military aircraft. However, along with the complexity of newer aircraft, the time and cost associated with flutter testing has increased dramatically. Considering that many of the test techniques and analysis methods used to perform flutter testing date back to the 1950s and 1960's it may be time to take a fresh look at how flutter testing can best be accomplished. This thesis revisits flutter testing techniques and proposes an alternative to traditional flutter testing. The alternative uses flight test data from an aircraft that is performing an acceleration to clear the flutter envelope of the aircraft. Four academic issues arise from this new test approach. (1) Are frequencies and dampings affected by the acceleration of the aircraft? (2) Can parameter identification algorithms extract frequency and damping values from the time varying data? (3) Can the vibration response at airspeeds (or Mach numbers) beyond which the aircraft has accelerated be anticipated? (4) What formal criteria can be used to determine when the aircraft needs to end the acceleration and terminate the test point? The academic contribution of this thesis is to address these issues. It is shown that although the frequencies and damping values do change the change is so small that it is irrelevant. It is also shown that by taking small windows of data, within which the change in parameters is small, it is possible to accurately identify parameters from the time varying data. Finally it is shown that at least in principal parameters can be predicted using data from sub-critical airspeeds, and that testing can be discontinued before an unstable flight condition is reached.

  7. Application of Rate Theory to Accelerated Durability Testing of Structural Adhesives

    DTIC Science & Technology

    1980-03-01

    comes too late to impact on material selection or design considerations. The analytical approach, coupled with an accelerated 10 testing program, is...estimated range and then evaluating the impact of each parameter on the failure rate and expected service life. The life-limiting components and the...interest of processing economy can be identified. This information can then be fed back into the system design process and the analyses repeated to

  8. Laser acceleration

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  9. Collection and focusing of laser accelerated ion beams for therapy applications

    NASA Astrophysics Data System (ADS)

    Hofmann, Ingo; Meyer-Ter-Vehn, Jürgen; Yan, Xueqing; Orzhekhovskaya, Anna; Yaramyshev, Stepan

    2011-03-01

    Experimental results in laser acceleration of protons and ions and theoretical predictions that the currently achieved energies might be raised by factors 5-10 in the next few years have stimulated research exploring this new technology for oncology as a compact alternative to conventional synchrotron based accelerator technology. The emphasis of this paper is on collection and focusing of the laser produced particles by using simulation data from a specific laser acceleration model. We present a scaling law for the “chromatic emittance” of the collector—here assumed as a solenoid lens—and apply it to the particle energy and angular spectra of the simulation output. For a 10 Hz laser system we find that particle collection by a solenoid magnet well satisfies requirements of intensity and beam quality as needed for depth scanning irradiation. This includes a sufficiently large safety margin for intensity, whereas a scheme without collection—by using mere aperture collimation—hardly reaches the needed intensities.

  10. Test results of a Nb3Al/Nb3Sn subscale magnet for accelerator application

    DOE PAGES

    Iio, Masami; Xu, Qingjin; Nakamoto, Tatsushi; ...

    2015-01-28

    The High Energy Accelerator Research Organization (KEK) has been developing a Nb3Al and Nb3Sn subscale magnet to establish the technology for a high-field accelerator magnet. The development goals are a feasibility demonstration for a Nb3Al cable and the technology acquisition of magnet fabrication with Nb3Al superconductors. KEK developed two double-pancake racetrack coils with Rutherford-type cables composed of 28 Nb3Al wires processed by rapid heating, quenching, and transformation in collaboration with the National Institute for Materials Science and the Fermi National Accelerator Laboratory. The magnet was fabricated to efficiently generate a high magnetic field in a minimum-gap common-coil configuration with twomore » Nb3Al coils sandwiched between two Nb3Sn coils produced by the Lawrence Berkeley National Laboratory. A shell-based structure and a “bladder and key” technique have been used for adjusting coil prestress during both the magnet assembly and the cool down. In the first excitation test of the magnet at 4.5 K performed in June 2014, the highest quench current of the Nb3Sn coil, i.e., 9667 A, was reached at 40 A/s corresponding to 9.0 T in the Nb3Sn coil and 8.2 T in the Nb3Al coil. The quench characteristics of the magnet were studied.« less

  11. Targeting electrostatic interactions in accelerated molecular dynamics with application to protein partial unfolding.

    PubMed

    Flores-Canales, Jose C; Kurnikova, Maria

    2015-06-09

    Accelerated molecular dynamics (aMD) is a promising sampling method to generate an ensemble of conformations and to explore the free energy landscape of proteins in explicit solvent. Its success resides in its ability to reduce barriers in the dihedral and the total potential energy space. However, aMD simulations of large proteins can generate large fluctuations of the dihedral and total potential energy with little conformational changes in the protein structure. To facilitate wider conformational sampling of large proteins in explicit solvent, we developed a direct intrasolute electrostatic interactions accelerated MD (DISEI-aMD) approach. This method aims to reduce energy barriers within rapidly changing electrostatic interactions between solute atoms at short-range distances. It also results in improved reconstruction quality of the original statistical ensemble of the system. Recently, we characterized a pH-dependent partial unfolding of diphtheria toxin translocation domain (T-domain) using microsecond long MD simulations. In this work, we focus on the study of conformational changes of a low-pH T-domain model in explicit solvent using DISEI-aMD. On the basis of the simulations of the low-pH T-domain model, we show that the proposed sampling method accelerates conformational rearrangement significantly faster than multiple standard aMD simulations and microsecond long conventional MD simulations.

  12. Acceleration control system for semi-active in-car crib with joint application of regular and inverted pendulum mechanisms

    NASA Astrophysics Data System (ADS)

    Kawashima, T.

    2016-09-01

    To reduce the risk of injury to an infant in an in-car crib (or in a child safety bed) collision shock during a car crash, it is necessary to maintain a constant force acting on the crib below a certain allowable value. To realize this objective, we propose a semi-active in-car crib system with the joint application of regular and inverted pendulum mechanisms. The arms of the proposed crib system support the crib like a pendulum while the pendulum system itself is supported like an inverted pendulum by the arms. In addition, the friction torque of each arm is controlled using a brake mechanism that enables the proposed in-car crib to decrease the acceleration of the crib gradually and maintain it around the target value. This system not only reduces the impulsive force but also transfers the force to the infant's back using a spin control system, i.e., the impulse force acts is made to act perpendicularly on the crib. The spin control system was developed in our previous work. This work focuses on the acceleration control system. A semi-active control law with acceleration feedback is introduced, and the effectiveness of the system is demonstrated using numerical simulation and model experiment.

  13. Systematical study on superconducting radio frequency elliptic cavity shapes applicable to future high energy accelerators and energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Shemelin, Valery; Zadeh, Shahnam Gorgi; Heller, Johann; van Rienen, Ursula

    2016-10-01

    Elliptic cavities at medium- and high-β range are receiving broader use in the particle accelerator applications. Optimizing the shape of these cavities is a complex and demanding process. In this paper we propose an optimization approach to minimize the ratio of peak magnetic field to the acceleration field Hpk/Eacc while keeping the ratio of peak surface electric field to the accelerating field Epk/Eacc, aperture radius and wall slope angle α at some permitted values. We show that it is possible to substantially vary the cavity geometry without violating the constraints or deteriorating the objective of the optimization. This gives us freedom in designing the geometry to overcome problems such as multipactor while maintaining the minimal Hpk/Eacc . The optimization is then performed to find a set of optimized geometries with minimum Hpk/Eacc for different β 's ranging from 0.4 to 1, different peak surface electric fields, wall slope angles and aperture radii. These data could be generally used as a suitable starting point in designing elliptic cavities.

  14. Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed.

    PubMed

    Sun, Hanwen; Ge, Xusheng; Lv, Yunkai; Wang, Anbang

    2012-05-11

    Accelerated solvent extraction (ASE) has become a popular green extraction technology for different classes of organic contaminants present in numerous kinds of food and feed for food safety. The parameters affecting ASE efficiency and application advancement of ASE in the analysis of organic contaminants, natural toxins compounds as well as bioactive and nutritional compounds in animal origin food, plant origin food and animal feed are reviewed in detail. ASE is a fully automated and reliable extraction technique with many advantages over traditional extraction techniques, so it could be especially useful for routine analyses of pollutants in food and feed.

  15. Accelerating the commercialization of university technologies for military healthcare applications: the role of the proof of concept process

    NASA Astrophysics Data System (ADS)

    Ochoa, Rosibel; DeLong, Hal; Kenyon, Jessica; Wilson, Eli

    2011-06-01

    The von Liebig Center for Entrepreneurism and Technology Advancement at UC San Diego (vonliebig.ucsd.edu) is focused on accelerating technology transfer and commercialization through programs and education on entrepreneurism. Technology Acceleration Projects (TAPs) that offer pre-venture grants and extensive mentoring on technology commercialization are a key component of its model which has been developed over the past ten years with the support of a grant from the von Liebig Foundation. In 2010, the von Liebig Entrepreneurism Center partnered with the U.S. Army Telemedicine and Advanced Technology Research Center (TATRC), to develop a regional model of Technology Acceleration Program initially focused on military research to be deployed across the nation to increase awareness of military medical needs and to accelerate the commercialization of novel technologies to treat the patient. Participants to these challenges are multi-disciplinary teams of graduate students and faculty in engineering, medicine and business representing universities and research institutes in a region, selected via a competitive process, who receive commercialization assistance and funding grants to support translation of their research discoveries into products or services. To validate this model, a pilot program focused on commercialization of wireless healthcare technologies targeting campuses in Southern California has been conducted with the additional support of Qualcomm, Inc. Three projects representing three different universities in Southern California were selected out of forty five applications from ten different universities and research institutes. Over the next twelve months, these teams will conduct proof of concept studies, technology development and preliminary market research to determine the commercial feasibility of their technologies. This first regional program will help build the needed tools and processes to adapt and replicate this model across other regions in the

  16. Characterization of the binding specificity of Anguilla anguilla agglutinin (AAA) in comparison to Ulex europaeus agglutinin I (UEA-I).

    PubMed

    Baldus, S E; Thiele, J; Park, Y O; Hanisch, F G; Bara, J; Fischer, R

    1996-08-01

    Using immunochemical and immunohistochemical methods, the binding site of Anguilla anguilla agglutinin (AAA) was characterized and compared with the related fucose-specific lectin from Ulex europaeus (UEA-I). In solid-phase enzyme-linked immunoassays, the two lectins recognized Fuc alpha 1-2Gal beta-HSA. AAA additionally cross-reacted with neoglycolipids bearing lacto-N-fucopentaose (LNFP) I [H type 1] and II [Le(a)] and lactodifucotetraose (LDFT) as glycan moieties. UEA-I, on the other hand, bound to a LDFT-derived neoglycolipid but not to the other neoglycolipids tested. Binding of AAA to gastric mucin was competitively neutralized by Le(a)-specific monoclonal antibodies. UEA-I binding, on the other hand, was reduced after co-incubation with H type 2- and Le(y)-specific monoclonal antibodies. According to our results, AAA reacts with fucosylated type 1 chain antigens, whereas UEA-I binds only to the alpha 1-2-fucosylated LDFT-derived neoglycolipid. In immunohistochemical studies, the reactivity of AAA and UEA-I in normal pyloric mucosa from individuals with known Lewis and secretor status was analysed. AAA showed a broad reaction in the superficial pyloric mucosa from secretors and non-secretors, but AAA reactivity was more pronounced in Le(a+b-) individuals. On the other hand, UEA-I stained the superficial pyloric mucosa only from secretor individuals. A staining of deep mucous glands by the lectins was found in all specimens. Both reacted with most human carcinomas of different origin. Slight differences in their binding pattern were observed and may be explained by the different fine-specificities of the lectins.

  17. Spatial distribution of nematodes in three banana ( Musa AAA) root parts considering two root thickness in three farm management systems

    NASA Astrophysics Data System (ADS)

    Araya, M.; De Waele, D.

    2004-10-01

    The spatial location of the banana ( Musa AAA) root parasitic nematodes within three root parts considering two root thickness was determined in three commercial farm management systems, which differ in weed and nematode management. Roots in each farm management system were classified in thick (>5 mm-d) and thin (1 ≤ 5 mm-d) roots. From each root type, the epidermis, the cortical parenchyma (CP) and the vascular cylinder (VC) were separated by fingernail, and nematodes were extracted by maceration of each root part. Independent of the farm management system, and for either root thickness, highest numbers of Radopholus similis per gram of root was found in the CP, followed by the epidermis and VC. The highest number of Helicotylencus spp., Pratylenchus spp. and the total nematode population per gram of root was found in the epidermis. Considering the number of nematodes per root part, the highest number of R. similis and total nematodes was located in the CP, while Helicotylenchus spp. and Pratylenchus spp. were concentrated in the epidermis. These patterns were approximately reproduced in the two root thickness and in the three farm management systems. This behavior suggests that injection of systemic nematicides into the plant pseudostem to replace the granular applications on surface soil might be promissory.

  18. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  19. Morphological State as a Predictor for Reintervention and Mortality After EVAR for AAA

    SciTech Connect

    Ohrlander, Tomas; Dencker, Magnus; Acosta, Stefan

    2012-10-15

    Purpose: This study was designed to assess aorto-iliac morphological characteristics in relation to reintervention and all-cause long-term mortality in patients undergoing standard EVAR for infrarenal AAA. Methods: Patients treated with EVAR (Zenith{sup Registered-Sign} Stentgrafts, Cook) between May 1998 and February 2006 were prospectively enrolled in a computerized database where comorbidities and preoperative aneurysm morphology were entered. Reinterventions and mortality were checked until December 1, 2010. Median follow-up time was 68 months. Results: A total of 304 patients were included, of which 86% were men. Median age was 74 years. The reintervention rate was 23.4% (71/304). A greater diameter of the common iliac artery (p = 0.037; hazard ratio (HR) 1.037 [1.002-1.073]) was an independent factor for an increased number of reinterventions. The 30-day mortality rate was 3.0% (9/304). Aneurysm-related deaths due to AAA occurred in 4.9% (15/304). Five patients died due to a concomitant ruptured thoracic aortic aneurysm. The mortality until end of follow-up was 54.3% (165/304). The proportion of deaths caused by vascular diseases was 61.6%. The severity of angulation of the iliac arteries (p = 0.014; HR 1.018 [95% confidence interval (CI) 1.004-1.033]) and anemia (p = 0.044; HR 2.79 [95% CI 1.029-7.556]) remained as independent factors associated with all-cause long-term mortality. The crude reintervention-free survival rate at 1, 3, and 5 years was 84.5%, 64.8%, and 51.6%, respectively. Conclusions: The initial aorto-iliac morphological state in patients scheduled for standard EVAR for AAA seems to be strongly related to the need for reinterventions and long-term mortality.

  20. NASA Astrophysics E/PO Impact: NASA SOFIA AAA Program Evaluation Results

    NASA Astrophysics Data System (ADS)

    Harman, Pamela; Backman, Dana E.; Clark, Coral; Inverness Research Sofia Aaa Evaluation Team, Wested Sofia Aaa Evaluation Team

    2015-01-01

    SOFIA is an airborne observatory, studying the universe at infrared wavelengths, capable of making observations that are impossible for even the largest and highest ground-based telescopes. SOFIA also inspires the development of new scientific instrumentation and fosters the education of young scientists and engineers.SOFIA is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR), consisting of an extensively modified Boeing 747SP aircraft carrying a reflecting telescope with an effective diameter of 2.5 meters (100 inches). The SOFIA aircraft is based at NASA Armstrong Flight Research Center, Building 703, in Palmdale, California. The Science Program and Outreach Offices are located at NASA Ames Research center. SOFIA is a program in NASA's Science Mission Directorate, Astrophysics Division.Data will be collected to study many different kinds of astronomical objects and phenomena, including star cycles, solar system formation, identification of complex molecules in space, our solar system, galactic dust, nebulae and ecosystems.Airborne Astronomy Ambassador (AAA) Program:The SOFIA Education and Communications program exploits the unique attributes of airborne astronomy to contribute to national goals for the reform of science, technology, engineering, and math (STEM) education, and to elevate public scientific and technical literacy.The AAA effort is a professional development program aspiring to improve teaching, inspire students, and inform the community. To date, 55 educators from 21 states; Cycles 0, 1 and 2; have completed their astronomy professional development and their SOFIA science flight experience. Evaluation has confirmed the program's positive impact on the teacher participants, on their students, and in their communities. The inspirational experience has positively impacted their practice and career trajectory. AAAs have incorporated content knowledge and specific components of their experience into their curricula, and have given

  1. Microscale acceleration history discriminators

    DOEpatents

    Polosky, Marc A.; Plummer, David W.

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  2. Superconducting NbTiN thin films for superconducting radio frequency accelerator cavity applications

    DOE PAGES

    Burton, Matthew C.; Beebe, Melissa R.; Yang, Kaida; ...

    2016-02-12

    Current superconducting radio frequency technology, used in various particle accelerator facilities across the world, is reliant upon bulk niobium superconducting cavities. Due to technological advancements in the processing of bulk Nb cavities, the facilities have reached accelerating fields very close to a material-dependent limit, which is close to 50 MV/m for bulk Nb. One possible solution to improve upon this fundamental limitation was proposed a few years ago by Gurevich [Appl. Phys. Lett. 88, 012511 (2006)], consisting of the deposition of alternating thin layers of superconducting and insulating materials on the interior surface of the cavities. The use of type-IImore » superconductors with Tc > TcNb and Hc > HcNb, (e.g., Nb3Sn, NbN, or NbTiN) could potentially greatly reduce the surface resistance (Rs) and enhance the accelerating field, if the onset of vortex penetration is increased above HcNb, thus enabling higher field gradients. Although Nb3Sn may prove superior, it is not clear that it can be grown as a suitable thin film for the proposed multilayer approach, since very high temperature is typically required for its growth, hindering achieving smooth interfaces and/or surfaces. On the other hand, since NbTiN has a smaller lower critical field (Hc1) and higher critical temperature (Tc) than Nb and increased conductivity compared to NbN, it is a promising candidate material for this new scheme. Here, the authors present experimental results correlating filmmicrostructure with superconducting properties on NbTiN thin film coupon samples while also comparing filmsgrown with targets of different stoichiometry. In conclusion, it is worth mentioning that the authors have achieved thin films with bulk-like lattice parameter and transition temperature while also achieving Hc1 values larger than bulk for films thinner than their London penetration depths.« less

  3. SU-E-T-126: Application of PIPSpro and EPID for Quality Assurance of Medical Accelerators

    SciTech Connect

    Lin, Z; Peng, X; Lu, J

    2015-06-15

    Purpose: The purpose is to study applying PIPSpro and EPID for routine quality assurance of medical accelerators. Methods: (1) The coincidence of Light field and radiation field: Placed the FC-2 phantom on the treatment couch at the 100cm SSD. Using jaw set 10×10 cm{sup 2} or 15×15 cm{sup 2} field. Verified that the light field aligns with the engraved squares on the phantom. Placed the Crosshair Marker phantom on the top of the FC-2 phantom with the cross-hair and spherical marker aligned to the center of the light field. Acquired images with EPID and the images should be exported preferably in DICOM format. Analyzed Follow the recommended procedures in the radiation light field module of PIPSpro software.(2)MLC QA:Set up the MLC phantom on the treatment couch at isocenter. Positioned the EPID imager at the highest possible position without colliding with either the couch or the phantom. Created and delivered four different patterns for testing the MLC leaf position, leaf width, multi-port and leaf transmission. (3)Radiation isocenter test: Included the isocenter of collimator rotation, gantry rotation and couch rotation. Set the jaws of the collimator to create a thin field as 0.4cm x 20cm.Irradiated film or EPID using an equidistant 15° spacing angles with rotating collimator, gantry and couch respectively. Results: We analyzed imagers from EPID and film with PIPSPro software. As a Result, we acquired the specifications of medical accelerators quickly. In the meantime, the results were saved to database for trending and future analysis. Conclusion: Quality assurance of medical accelerator is very important. We used PIPSpro and EPID for routine detection, not only improved our efficiency, but also saved the cost. It is an good method.

  4. Phosphorus activation neutron dosimetry and its application to an 18-MV radiotherapy accelerator.

    PubMed

    Bading, J R; Zeitz, L; Laughlin, J S

    1982-01-01

    Neutron fluxes and dose rates in and near the 18-MV x-ray beam of a Therac-20 accelerator were determined with measured activities from the nuclear reactions 31P(n, rho)31Si (fast neutrons) and 31P(n, gamma)32P (thermal neutrons), published cross sections, and neutron energy spectra from Monte Carlo calculations. Measurements were made in the patient plane in air and at a 10-cm depth in a tissue-similar phantom, and in a plane containing the x-ray target. Orthophosphoric acid solution was identified as a suitable and convenient phosphorus dosimeter material. In the 31P activation method, fluxes and dose rates are determined as the product of measured saturation activity per 31P atom and a conversion factor, which depends on the shape of the assumed neutron spectrum. For fast neutrons, which deliver most of the dose, the accuracy error in the saturation activity determinations was shown to be approximately less than 25%. An inconsistency resulting from neglect of the accelerator's adjustable collimator in the Monte Carlo calculations was demonstrated between the measured saturation activities and the theoretical neutron spectra. The maximum neutron dose equivalent rate observed was 5.9 mSv/Gy of x-ray absorbed dose at the accelerator calibration point. Surface dose equivalent rates of the present study are less than those of fluxmeter and remmeter studies at sites outside Therac-20 treatment fields by as much as factors of 2.4 and 2.8, respectively. The phantom study showed that at 18 MV internally produced neutrons have a negligible effect on the neutron field within the patient.

  5. SU-E-T-186: Cloud-Based Quality Assurance Application for Linear Accelerator Commissioning

    SciTech Connect

    Rogers, J

    2015-06-15

    Purpose: To identify anomalies and safety issues during data collection and modeling for treatment planning systems Methods: A cloud-based quality assurance system (AQUIRE - Automated QUalIty REassurance) has been developed to allow the uploading and analysis of beam data aquired during the treatment planning system commissioning process. In addition to comparing and aggregating measured data, tools have also been developed to extract dose from the treatment planning system for end-to-end testing. A gamma index is perfomed on the data to give a dose difference and distance-to-agreement for validation that a beam model is generating plans consistent with the beam data collection. Results: Over 20 linear accelerators have been commissioning using this platform, and a variety of errors and potential saftey issues have been caught through the validation process. For example, the gamma index of 2% dose, 2mm DTA is quite sufficient to see curves not corrected for effective point of measurement. Also, data imported into the database is analyzed against an aggregate of similar linear accelerators to show data points that are outliers. The resulting curves in the database exhibit a very small standard deviation and imply that a preconfigured beam model based on aggregated linear accelerators will be sufficient in most cases. Conclusion: With the use of this new platform for beam data commissioning, errors in beam data collection and treatment planning system modeling are greatly reduced. With the reduction in errors during acquisition, the resulting beam models are quite similar, suggesting that a common beam model may be possible in the future. Development is ongoing to create routine quality assurance tools to compare back to the beam data acquired during commissioning. I am a medical physicist for Alzyen Medical Physics, and perform commissioning services.

  6. Application of magnetic pulse compression to the grid system of the ETA/ATA accelerator

    SciTech Connect

    Birx, D.L.; Cook, E.G.; Reginato, L.L.; Schmidt, J.A.; Smith, M.W.

    1982-11-02

    During the past year, several magnetic pulse compression systems have been built and applied to the ETA accelerator. In view of their excellent performance, a non-linear magnetic system has been adopted for the ATA grid drive in place of the spark gap driven Blumlein. The magnetic system will give us a much higher reliability and greater flexibility by being independent of the high pressure gas blown system. A further advantage of this system will be the capability of achieving higher rep-rates in case of a future upgrade. System design and performance under burst mode will be described.

  7. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  8. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  9. Accelerator mass spectrometry of ultra-small samples with applications in the biosciences

    NASA Astrophysics Data System (ADS)

    Salehpour, Mehran; Håkansson, Karl; Possnert, Göran

    2013-01-01

    An overview is presented covering the biological accelerator mass spectrometry activities at Uppsala University. The research utilizes the Uppsala University Tandem laboratory facilities, including a 5 MV Pelletron tandem accelerator and two stable isotope ratio mass spectrometers. In addition, a dedicated sample preparation laboratory for biological samples with natural activity is in use, as well as another laboratory specifically for 14C-labeled samples. A variety of ongoing projects are described and presented. Examples are: (1) Ultra-small sample AMS. We routinely analyze samples with masses in the 5-10 μg C range. Data is presented regarding the sample preparation method, (2) bomb peak biological dating of ultra-small samples. A long term project is presented where purified and cell-specific DNA from various part of the human body including the heart and the brain are analyzed with the aim of extracting regeneration rate of the various human cells, (3) biological dating of various human biopsies, including atherosclerosis related plaques is presented. The average built up time of the surgically removed human carotid plaques have been measured and correlated to various data including the level of insulin in the human blood, and (4) In addition to standard microdosing type measurements using small pharmaceutical drugs, pre-clinical pharmacokinetic data from a macromolecular drug candidate are discussed.

  10. Hub-based simulation and graphics hardware accelerated visualization for nanotechnology applications.

    PubMed

    Qiao, Wei; McLennan, Michael; Kennell, Rick; Ebert, David S; Klimeck, Gerhard

    2006-01-01

    The Network for Computational Nanotechnology (NCN) has developed a science gateway at nanoHUB.org for nanotechnology education and research. Remote users can browse through online seminars and courses, and launch sophisticated nanotechnology simulation tools, all within their web browser. Simulations are supported by a middleware that can route complex jobs to grid supercomputing resources. But what is truly unique about the middleware is the way that it uses hardware accelerated graphics to support both problem setup and result visualization. This paper describes the design and integration of a remote visualization framework into the nanoHUB for interactive visual analytics of nanotechnology simulations. Our services flexibly handle a variety of nanoscience simulations, render them utilizing graphics hardware acceleration in a scalable manner, and deliver them seamlessly through the middleware to the user. Rendering is done only on-demand, as needed, so each graphics hardware unit can simultaneously support many user sessions. Additionally, a novel node distribution scheme further improves our system's scalability. Our approach is not only efficient but also cost-effective. Only a half-dozen render nodes are anticipated to support hundreds of active tool sessions on the nanoHUB. Moreover, this architecture and visual analytics environment provides capabilities that can serve many areas of scientific simulation and analysis beyond nanotechnology with its ability to interactively analyze and visualize multivariate scalar and vector fields.

  11. Basis function repetitive and feedback control with application to a particle accelerator

    NASA Astrophysics Data System (ADS)

    Akogyeram, Raphael Akuete

    2002-09-01

    The thesis addresses three problem areas within repetitive control. Firstly, it addresses issues concerning the ability of repetitive control and feedback control systems to eliminate periodic disturbances occurring above the Nyquist frequency of the hardware. Methods are developed for decomposing and unfolding notch filter or comb filter feedback control so that disturbances above Nyquist frequency can be canceled. Phenomena affecting final error levels are discussed, including error in unfolding, coarseness of zero-order hold cancellation, and waterbed effects in the feedback control system frequency response for different sample rates. Secondly, matched basis function repetitive control laws are developed for batch mode and real time implementation to converge to zero tracking error in the presence of periodic disturbances. For both control methods, conditions are given that guarantee asymptotic and monotonic convergence. Stability tests are formulated to examine stability when the period of a disturbance is not an integer number of sample times, and when there are multiple unrelated periods whose common period is too long to use. Thirdly, an understanding is developed of the optimum division of labor between the objectives accomplished by feedback and the objectives accomplished by repetitive control action. Some experimental results of the particle accelerator testbed at Thomas Jefferson National Accelerator Facility, Newport News, Virginia, are reported.

  12. Plasma-based accelerator structures

    SciTech Connect

    Schroeder, Carl B.

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  13. A higher plant mitochondrial homologue of the yeast m-AAA protease. Molecular cloning, localization, and putative function.

    PubMed

    Kolodziejczak, Marta; Kolaczkowska, Anna; Szczesny, Bartosz; Urantowka, Adam; Knorpp, Carina; Kieleczawa, Jan; Janska, Hanna

    2002-11-15

    Mitochondrial AAA metalloproteases play a fundamental role in mitochondrial biogenesis and function. They have been identified in yeast and animals but not yet in plants. This work describes the isolation and sequence analysis of the full-length cDNA from the pea (Pisum sativum) with significant homology to the yeast matrix AAA (m-AAA) protease. The product of this clone was imported into isolated pea mitochondria where it was processed to its mature form (PsFtsH). We have shown that the central region of PsFtsH containing the chaperone domain is exposed to the matrix space. Furthermore, we have demonstrated that the pea protease can complement respiration deficiency in the yta10 and/or yta12 null yeast mutants, indicating that the plant protein can compensate for the loss of at least some of the important m-AAA functions in yeast. Based on biochemical experiments using isolated pea mitochondria, we propose that PsFtsH-like m-AAA is involved in the accumulation of the subunit 9 of the ATP synthase in the mitochondrial membrane.

  14. The m-AAA protease processes cytochrome c peroxidase preferentially at the inner boundary membrane of mitochondria.

    PubMed

    Suppanz, Ida E; Wurm, Christian A; Wenzel, Dirk; Jakobs, Stefan

    2009-01-01

    The m-AAA protease is a conserved hetero-oligomeric complex in the inner membrane of mitochondria. Recent evidence suggests a compartmentalization of the contiguous mitochondrial inner membrane into an inner boundary membrane (IBM) and a cristae membrane (CM). However, little is known about the functional differences of these subdomains. We have analyzed the localizations of the m-AAA protease and its substrate cytochrome c peroxidase (Ccp1) within yeast mitochondria using live cell fluorescence microscopy and quantitative immunoelectron microscopy. We find that the m-AAA protease is preferentially localized in the IBM. Likewise, the membrane-anchored precursor form of Ccp1 accumulates in the IBM of mitochondria lacking a functional m-AAA protease. Only upon proteolytic cleavage the mature form mCcp1 moves into the cristae space. These findings suggest that protein quality control and proteolytic activation exerted by the m-AAA protease take place preferentially in the IBM pointing to significant functional differences between the IBM and the CM.

  15. PREFACE: International Symposium on Vacuum Science & Technology and its Application for Accelerators (IVS 2012)

    NASA Astrophysics Data System (ADS)

    Pandit, V. S.; Pal, Gautam

    2012-11-01

    The Indian Vacuum Society (IVS) was established in 1970 to promote vacuum science and technology in academic, industrial and R&D institutions in India. IVS is a member society of the International Union for Vacuum Science, Technique and Applications (IUVSTA). It has organized International and national symposia, short term courses and workshops on different aspects of Vacuum Science and Technology at regular intervals. So far 27 National symposia, 4 International Symposia and 47 courses have been organized at various locations in India. There has been an active participation from R&D establishments, universities and Indian industries during all these events. In view of the current global situation and emerging trends in vacuum technology, the executive committee of the IVS suggested to us that we organize an International Symposium at the Variable Energy Cyclotron Centre, Kolkata from 15-17 February 2012. At the Variable Energy Cyclotron Centre we have a large number of high vacuum systems used in the K130 Cyclotron and K500 Superconducting Cyclotron. Also a large cryogenic system using LHe plant is in operation for cryopanels and a superconducting magnet for K-500 Cyclotron. The main areas covered at the symposium were the production and measurement of vacuums, leak detection, design and development of large vacuum systems, vacuum metallurgy, vacuum materials and the application of high vacuums in cyclotrons, LINACS and other accelerators. This symposium provided an opportunity for interaction between active researchers and technologists and allowed them to review the current situation, report recent experimental results, share the available expertise and consider the future R&D efforts needed in this area. Keeping the industrial significance of vacuum technology in mind, an exhibition of the vacuum related equipment, accessories, products etc by various suppliers and manufactures was organized alongside the symposium. Participation by a large number of exhibitors

  16. Superconducting NbTiN thin films for superconducting radio frequency accelerator cavity applications

    SciTech Connect

    Burton, Matthew C.; Beebe, Melissa R.; Yang, Kaida; Lukaszew, Rosa A.; Valente-Feliciano, Anne -Marie; Reece, Charles

    2016-02-12

    Current superconducting radio frequency technology, used in various particle accelerator facilities across the world, is reliant upon bulk niobium superconducting cavities. Due to technological advancements in the processing of bulk Nb cavities, the facilities have reached accelerating fields very close to a material-dependent limit, which is close to 50 MV/m for bulk Nb. One possible solution to improve upon this fundamental limitation was proposed a few years ago by Gurevich [Appl. Phys. Lett. 88, 012511 (2006)], consisting of the deposition of alternating thin layers of superconducting and insulating materials on the interior surface of the cavities. The use of type-II superconductors with Tc > TcNb and Hc > HcNb, (e.g., Nb3Sn, NbN, or NbTiN) could potentially greatly reduce the surface resistance (Rs) and enhance the accelerating field, if the onset of vortex penetration is increased above HcNb, thus enabling higher field gradients. Although Nb3Sn may prove superior, it is not clear that it can be grown as a suitable thin film for the proposed multilayer approach, since very high temperature is typically required for its growth, hindering achieving smooth interfaces and/or surfaces. On the other hand, since NbTiN has a smaller lower critical field (Hc1) and higher critical temperature (Tc) than Nb and increased conductivity compared to NbN, it is a promising candidate material for this new scheme. Here, the authors present experimental results correlating filmmicrostructure with superconducting properties on NbTiN thin film coupon samples while also comparing filmsgrown with targets of different stoichiometry. In conclusion, it is worth mentioning that the authors have achieved thin films with bulk-like lattice parameter and transition temperature while also achieving Hc1 values larger than bulk for films thinner than their London penetration depths.

  17. Structural Characterization of the ATPase Reaction Cycle of Endosomal AAA Protein Vps4

    SciTech Connect

    Xiao, Junyu; Xia, Hengchuan; Yoshino-Koh, Kae; Zhou, Jiahai; Xu, Zhaohui

    2008-12-12

    The multivesicular body (MVB) pathway functions in multiple cellular processes including cell surface receptor down-regulation and viral budding from host cells. An important step in the MVB pathway is the correct sorting of cargo molecules, which requires the assembly and disassembly of endosomal sorting complexes required for transport (ESCRTs) on the endosomal membrane. Disassembly of the ESCRTs is catalyzed by ATPase associated with various cellular activities (AAA) protein Vps4. Vps4 contains a single AAA domain and undergoes ATP-dependent quaternary structural change to disassemble the ESCRTs. Structural and biochemical analyses of the Vps4 ATPase reaction cycle are reported here. Crystal structures of Saccharomyces cerevisiae Vps4 in both the nucleotide-free form and the ADP-bound form provide the first structural view illustrating how nucleotide binding might induce conformational changes within Vps4 that lead to oligomerization and binding to its substrate ESCRT-III subunits. In contrast to previous models, characterization of the Vps4 structure now supports a model where the ground state of Vps4 in the ATPase reaction cycle is predominantly a monomer and the activated state is a dodecamer. Comparison with a previously reported human VPS4B structure suggests that Vps4 functions in the MVB pathway via a highly conserved mechanism supported by similar protein-protein interactions during its ATPase reaction cycle.

  18. Time-resolved neutron scattering provides new insight into protein substrate processing by a AAA+ unfoldase

    PubMed Central

    Ibrahim, Ziad; Martel, Anne; Moulin, Martine; Kim, Henry S.; Härtlein, Michael; Franzetti, Bruno; Gabel, Frank

    2017-01-01

    We present a combination of small-angle neutron scattering, deuterium labelling and contrast variation, temperature activation and fluorescence spectroscopy as a novel approach to obtain time-resolved, structural data individually from macromolecular complexes and their substrates during active biochemical reactions. The approach allowed us to monitor the mechanical unfolding of a green fluorescent protein model substrate by the archaeal AAA+ PAN unfoldase on the sub-minute time scale. Concomitant with the unfolding of its substrate, the PAN complex underwent an energy-dependent transition from a relaxed to a contracted conformation, followed by a slower expansion to its initial state at the end of the reaction. The results support a model in which AAA ATPases unfold their substrates in a reversible power stroke mechanism involving several subunits and demonstrate the general utility of this time-resolved approach for studying the structural molecular kinetics of multiple protein remodelling complexes and their substrates on the sub-minute time scale. PMID:28102317

  19. The role of AAA+ proteases in mitochondrial protein biogenesis, homeostasis and activity control.

    PubMed

    Voos, Wolfgang; Ward, Linda A; Truscott, Kaye N

    2013-01-01

    Mitochondria are specialised organelles that are structurally and functionally integrated into cells in the vast majority of eukaryotes. They are the site of numerous enzymatic reactions, some of which are essential for life. The double lipid membrane of the mitochondrion, that spatially defines the organelle and is necessary for some functions, also creates a physical but semi-permeable barrier to the rest of the cell. Thus to ensure the biogenesis, regulation and maintenance of a functional population of proteins, an autonomous protein handling network within mitochondria is required. This includes resident mitochondrial protein translocation machinery, processing peptidases, molecular chaperones and proteases. This review highlights the contribution of proteases of the AAA+ superfamily to protein quality and activity control within the mitochondrion. Here they are responsible for the degradation of unfolded, unassembled and oxidatively damaged proteins as well as the activity control of some enzymes. Since most knowledge about these proteases has been gained from studies in the eukaryotic microorganism Saccharomyces cerevisiae, much of the discussion here centres on their role in this organism. However, reference is made to mitochondrial AAA+ proteases in other organisms, particularly in cases where they play a unique role such as the mitochondrial unfolded protein response. As these proteases influence mitochondrial function in both health and disease in humans, an understanding of their regulation and diverse activities is necessary.

  20. Heterogeneous nucleotide occupancy stimulates functionality of phage shock protein F, an AAA+ transcriptional activator.

    PubMed

    Joly, Nicolas; Schumacher, Jörg; Buck, Martin

    2006-11-17

    The catalytic AAA+ domain (PspF1-275) of an enhancer-binding protein is necessary and sufficient to contact sigma54-RNA polymerase holoenzyme (Esigma54), remodel it, and in so doing catalyze open promoter complex formation. Whether ATP binding and hydrolysis is coordinated between subunits of PspF and the precise nature of the nucleotide(s) bound to the oligomeric forms responsible for substrate remodeling are unknown. We demonstrate that ADP stimulates the intrinsic ATPase activity of PspF1-275 and propose that this heterogeneous nucleotide occupancy in a PspF1-275 hexamer is functionally important for specific activity. Binding of ADP and ATP triggers the formation of functional PspF1-275 hexamers as shown by a gain of specific activity. Furthermore, ATP concentrations congruent with stoichiometric ATP binding to PspF1-275 inhibit ATP hydrolysis and Esigma54-promoter open complex formation. Demonstration of a heterogeneous nucleotide-bound state of a functional PspF1-275.Esigma54 complex provides clear biochemical evidence for heterogeneous nucleotide occupancy in this AAA+ protein. Based on our data, we propose a stochastic nucleotide binding and a coordinated hydrolysis mechanism in PspF1-275 hexamers.

  1. Changes in the wall shear stresses (WSS) during the enlargement of Abdominal Aortic Aneurysms (AAA)

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie; Sparks, Steven R.; Chomaz, Jean-Marc; Lasheras, Juan C.

    2004-11-01

    The changes in the evolution of the spatial and temporal distribution of the WSS and gradients of WSS at different stages of the enlargement of AAAs are important to understand the etiology and progression of this vascular disease, since they affect the wall structural integrity, primarily via the changes induced on the shape, functions and metabolism of the endothelial cells. PIV measurements were performed in aneurysm models, while changing systematically their geometric parameters. We show that, even at very early stages of the disease (dilatation > 30%), the flow separates from the wall and the formation of a large vortex ring followed by internal shear layers leads to the generation of WSS that drastically differ from the healthy vessel. Inside the AAA, the mean WSS decreases to zero and the magnitude of the WSS can be as low as 26% of the value in a healthy vessel. Two regions with distinct patterns of WSS were identified. The region of flow detachment, with oscillatory WSS of very low mean, and the region of flow reattachment, located distally, where large, negative WSS and sustained gradients of WSS are produced as a result of the impact of the vortex ring on the wall.

  2. OGLE16aaa - a signature of a hungry supermassive black hole

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, Łukasz; Zieliński, M.; Kostrzewa-Rutkowska, Z.; Hamanowicz, A.; Jonker, P. G.; Arcavi, I.; Guillochon, J.; Brown, P. J.; Kozłowski, S.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Skowron, J.; Mróz, P.; Ulaczyk, K.; Pawlak, M.; Rybicki, K. A.; Greiner, J.; Krühler, T.; Bolmer, J.; Smartt, S. J.; Maguire, K.; Smith, K.

    2017-02-01

    We present the discovery and first three months of follow-up observations of a currently on-going unusual transient detected by the Optical Gravitational Lensing Experiment (OGLE-IV) survey, located in the centre of a galaxy at redshift z = 0.1655. The long rise to absolute magnitude of -20.5 mag, slow decline, very broad He and H spectral features make OGLE16aaa similar to other optical/UV tidal disruption events (TDEs). Weak narrow emission lines in the spectrum and archival photometric observations suggest the host galaxy is a weak-line active galactic nucleus, which has been accreting at higher rate in the past. OGLE16aaa, along with SDSS J0748, seems to form a sub-class of TDEs by weakly or recently active supermassive black holes (SMBHs). This class might bridge the TDEs by quiescent SMBHs and flares observed as `changing-look quasars', if we interpret the latter as TDEs. If this picture is true, the previously applied requirement for identifying a flare as a TDE that it had to come from an inactive nucleus, could be leading to observational bias in TDE selection, thus affecting TDE-rate estimations.

  3. Laser polishing of niobium for superconducting radio-frequency accelerator applications

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Klopf, J. Michael; Reece, Charles E.; Kelley, Michael J.

    2014-08-01

    Interior surfaces of niobium cavities used in superconducting radio frequency accelerators are now obtained by buffered chemical polish and/or electropolish. Laser polishing is a potential alternative, having advantages of speed, freedom from noxious chemistry and availability of in-process inspection. We studied the influence of the laser power density and laser beam raster rate on the surface topography. These two factors need to be combined carefully to smooth the surface without damage. Computational modeling was used to estimate the surface temperature and gain insight into the mechanism of laser polishing. Power spectral density analysis of surface topography measurements shows that laser polishing can produce smooth topography similar to that obtained by electropolish. This is a necessary first step toward introducing laser polishing as an alternative to the currently practiced chemical polishing.

  4. Evaluation of microwave-accelerated residue-specific acid cleavage for proteomic applications.

    PubMed

    Swatkoski, Stephen; Gutierrez, Peter; Wynne, Colin; Petrov, Alexey; Dinman, Jonathan D; Edwards, Nathan; Fenselau, Catherine

    2008-02-01

    Microwave-accelerated proteolysis using acetic acid has been shown to occur specifically on either or both sides of aspartic acid residues. This chemical cleavage has been applied to ovalbumin and several model peptides to test the effect on some of the more common post-translational modifications. No oxidation of methionine or cysteine was observed; however, hydrolysis of phosphate groups proceeds at a detectable rate. Acid cleavage was also extended to the yeast ribosome model proteome, where it provided information on 74% of that proteome. Aspartic acid occurs across the proteome with approximately half the frequency of the combined occurrence of the trypsin residues lysine and arginine, and implications of this are considered.

  5. Proposed New Accelerator Design for Homeland Security X-Ray Applications

    SciTech Connect

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G.J.; Bharadwaj, Vinod; Nosochkov, Yuri

    2015-08-07

    In the security and inspection market, there is a push towards highly mobile, reduced-dose active interrogation scanning and imaging systems to allow operation in urban environments. To achieve these goals, the accelerator system design needs to be smaller than existing systems. A smaller radiation exclusion zone may be accomplished through better beam collimation and an integrated, x-ray-source/detector-array assembly to allow feedback and control of an intensity-modulated x-ray source. A shaped low-Z target in the x-ray source can be used to generate a more forward peaked x-ray beam. Electron-beam steering can then be applied to direct the forward-peaked x rays toward areas in the cargo with high attenuation. This paper presents an exploratory study to identify components and upgrades that would be required to meet the desired specifications, as well as the best technical approach to design and build a prototype.

  6. Wet Lab Accelerator: A Web-Based Application Democratizing Laboratory Automation for Synthetic Biology.

    PubMed

    Bates, Maxwell; Berliner, Aaron J; Lachoff, Joe; Jaschke, Paul R; Groban, Eli S

    2017-01-20

    Wet Lab Accelerator (WLA) is a cloud-based tool that allows a scientist to conduct biology via robotic control without the need for any programming knowledge. A drag and drop interface provides a convenient and user-friendly method of generating biological protocols. Graphically developed protocols are turned into programmatic instruction lists required to conduct experiments at the cloud laboratory Transcriptic. Prior to the development of WLA, biologists were required to write in a programming language called "Autoprotocol" in order to work with Transcriptic. WLA relies on a new abstraction layer we call "Omniprotocol" to convert the graphical experimental description into lower level Autoprotocol language, which then directs robots at Transcriptic. While WLA has only been tested at Transcriptic, the conversion of graphically laid out experimental steps into Autoprotocol is generic, allowing extension of WLA into other cloud laboratories in the future. WLA hopes to democratize biology by bringing automation to general biologists.

  7. Microwave power coupler for a superconducting multiple-cell cavity for accelerator application and its testing procedures

    SciTech Connect

    Li, Jianjian

    2008-12-01

    Superconducting cavity resonators offer the advantage of high field intensity for a given input power, making them an attractive contender for particle accelerator applications. Power coupling into a superconducting cavity employed in a particle accelerator requires unique provisions to maintain high vacuum and cryogenic temperature on the cavity side, while operating with ambient conditions on the source side. Components introduced to fulfill mechanical requirements must show negligible obstruction of the propagation of the microwave with absence of critical locations that may give rise to electron multipaction, leading to a multiple section design, instead of an aperture, a probe, or a loop structure as found in conventional cavities. A coaxial power coupler for a superconducting multiple-cell cavity at 3.9 GHz has been developed. The cavity is intended to be employed as an accelerator to provide enhanced electron beam quality in a free-electron laser in Hamburg (FLASH) user facility. The design of the coupler called for two windows to sustain high vacuum in the cavity and two bellows to accommodate mechanical dimensional changes resulting from cryogenics. Suppression of multipacting was accomplished by the choice of conductor dimensions and materials with low second yield coefficients. Prior to integration with the cavity, the coupler was tested for intrinsic properties in a back-to-back configuration and conditioned for high-power operation with increasing power input. Maximum incident power was measured to be 61 kW. When integrated with the superconducting cavity, a loaded quality factor of 9 x 10 5 was measured by transient method. Coupler return loss and insertion loss were estimated to be around -21 dB and -0.2 dB, respectively.

  8. ATPase site architecture is required for self-assembly and remodeling activity of a hexameric AAA+ transcriptional activator.

    PubMed

    Joly, Nicolas; Zhang, Nan; Buck, Martin

    2012-08-10

    AAA+ proteins (ATPases associated with various cellular activities) are oligomeric ATPases that use ATP hydrolysis to remodel their substrates. By similarity with GTPases, a dynamic organization of the nucleotide-binding pockets between ATPase protomers is proposed to regulate functionality. Using the transcription activator PspF as an AAA+ model, we investigated contributions of conserved residues for roles in ATP hydrolysis and intersubunit communication. We determined the R-finger residue and revealed that it resides in a conserved "R-hand" motif (R(x)D(xxx)R) needed for its "trans-acting" activity. Further, a divergent Walker A glutamic acid residue acts synergistically with a tyrosine residue to function in ADP-dependent subunit-subunit coordination, forming the "ADP-switch" motif. Another glutamic acid controls hexamer formation in the presence of nucleotides. Together, these results lead to a "residue-nucleotide" interaction map upon which to base AAA+ core regulation.

  9. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome

    PubMed Central

    Förster, Friedrich; Lasker, Keren; Beck, Florian; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2009-01-01

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners. PMID:19653995

  10. Effects of the Transient Blood Flow-Wall Interaction on the Wall Stress Distribution in Abdominal Aortic Aneurysm (AAA)

    NASA Astrophysics Data System (ADS)

    Tang, Rubing; Geindreau, Christian; Lasheras, Juan

    2006-11-01

    Our static finite element analysis (FEA) of both idealized and real clinical models has shown that the maximum diameter and asymmetry have substantial influence on the AAA wall stress distribution. The thrombus inside the AAA was also found to reduce the magnitude of the wall stresses. To achieve a better understanding of the wall stress distribution in real AAAs, a dynamic FEA was also performed. We considered models, both symmetric and non-symmetric, in which the aorta is assumed isotropic with nonlinear material properties. For the limiting case of rigid walls, the evolution of the flow pattern and the wall shear stresses due to fluid flow at different stages of cardiac cycle predicted by our simulations are compared with experimental results obtained in in-vitro models. A good agreement is found between both results. Finally, we have extended the analysis to the physiologically correct case of deformable walls and characterized the transient effects on the wall stresses.

  11. Application of the reduction of scale range in a Lorentz boosted frame to the numerical simulation of particle acceleration devices.

    SciTech Connect

    Vay, J; Fawley, W M; Geddes, C G; Cormier-Michel, E; Grote, D P

    2009-05-05

    It has been shown that the ratio of longest to shortest space and time scales of a system of two or more components crossing at relativistic velocities is not invariant under Lorentz transformation. This implies the existence of a frame of reference minimizing an aggregate measure of the ratio of space and time scales. It was demonstrated that this translated into a reduction by orders of magnitude in computer simulation run times, using methods based on first principles (e.g., Particle-In-Cell), for particle acceleration devices and for problems such as: free electron laser, laser-plasma accelerator, and particle beams interacting with electron clouds. Since then, speed-ups ranging from 75 to more than four orders of magnitude have been reported for the simulation of either scaled or reduced models of the above-cited problems. In it was shown that to achieve full benefits of the calculation in a boosted frame, some of the standard numerical techniques needed to be revised. The theory behind the speed-up of numerical simulation in a boosted frame, latest developments of numerical methods, and example applications with new opportunities that they offer are all presented.

  12. Acceleration levels on board the Space Station and a tethered elevator for micro and variable-gravity applications

    NASA Technical Reports Server (NTRS)

    Lorenzini, E. C.; Cosmo, M.; Vetrella, S.; Moccia, A.

    1988-01-01

    This paper investigates the dynamics and acceleration levels of a new tethered system for micro and variable-gravity applications. The system consists of two platforms tethered on opposite sides to the Space Station. A fourth platform, the elevator, is placed in between the Space Station and the upper platform. Variable-g levels on board the elevator are obtained by moving this facility along the upper tether, while micro-g experiments are carried out on board the Space Station. By controlling the length of the lower tether the position of the system CM can be maintained on board the Space Station despite variations of the station's distribution of mass. The paper illustrates the mathematical model, the environmental perturbations and the control techniques which have been adopted for the simulation and control of the system dynamics. Two sets of results from two different simulation runs are shown. The first set shows the system dynamics and the acceleration spectra on board the Space Station and the elevator during station-keeping. The second set of results demonstrates the capability of the elevator to attain a preselected g-level.

  13. Effect of Accelerated Aging on Color Change of Direct and Indirect Fiber-Reinforced Composite Restorations

    PubMed Central

    Tabatabaei, Masoumeh Hasani; Farahat, Farnaz; Ahmadi, Elham; Hassani, Zahra

    2016-01-01

    Objectives: The aim of this study was to assess the effect of artificial accelerated aging (AAA) on color change of direct and indirect fiber-reinforced composite (FRC) restorations. Materials and Methods: Direct (Z250) and indirect (Gradia) composite resins were reinforced with glass (GF) and polyethylene fibers (PF) based on the manufacturers’ instructions. Forty samples were fabricated and divided into eight groups (n=5). Four groups served as experimental groups and the remaining four served as controls. Color change (ΔE) and color parameters (ΔL*, Δa*, Δb*) were read at baseline and after AAA based on the CIELAB system. Three-way ANOVA and Tukey’s test were used for statistical analysis. Results: Significant differences were found in ΔE, ΔL*, Δa* and Δb* among the groups after AAA (P<0.05). Most of the studied samples demonstrated an increase in lightness and a red-yellow shift after AAA. Conclusions: The obtained ΔE values were unacceptable after AAA (ΔE≥ 3.3). All indirect samples showed a green-blue shift with a reduction in lightness except for Gradia/PF+ NuliteF. PMID:28392813

  14. Analysis of positional candidate genes in the AAA1 susceptibility locus for abdominal aortic aneurysms on chromosome 19

    PubMed Central

    2011-01-01

    Background Abdominal aortic aneurysm (AAA) is a complex disorder with multiple genetic risk factors. Using affected relative pair linkage analysis, we previously identified an AAA susceptibility locus on chromosome 19q13. This locus has been designated as the AAA1 susceptibility locus in the Online Mendelian Inheritance in Man (OMIM) database. Methods Nine candidate genes were selected from the AAA1 locus based on their function, as well as mRNA expression levels in the aorta. A sample of 394 cases and 419 controls was genotyped for 41 SNPs located in or around the selected nine candidate genes using the Illumina GoldenGate platform. Single marker and haplotype analyses were performed. Three genes (CEBPG, PEPD and CD22) were selected for DNA sequencing based on the association study results, and exonic regions were analyzed. Immunohistochemical staining of aortic tissue sections from AAA and control individuals was carried out for the CD22 and PEPD proteins with specific antibodies. Results Several SNPs were nominally associated with AAA (p < 0.05). The SNPs with most significant p-values were located near the CCAAT enhancer binding protein (CEBPG), peptidase D (PEPD), and CD22. Haplotype analysis found a nominally associated 5-SNP haplotype in the CEBPG/PEPD locus, as well as a nominally associated 2-SNP haplotype in the CD22 locus. DNA sequencing of the coding regions revealed no variation in CEBPG. Seven sequence variants were identified in PEPD, including three not present in the NCBI SNP (dbSNP) database. Sequencing of all 14 exons of CD22 identified 20 sequence variants, five of which were in the coding region and six were in the 3'-untranslated region. Five variants were not present in dbSNP. Immunohistochemical staining for CD22 revealed protein expression in lymphocytes present in the aneurysmal aortic wall only and no detectable expression in control aorta. PEPD protein was expressed in fibroblasts and myofibroblasts in the media-adventitia border in both

  15. Applications of Accelerators and Radiation Sources in the Field of Space Research and Industry.

    PubMed

    Campajola, Luigi; Di Capua, Francesco

    2016-12-01

    Beyond their important economic role in commercial communications, satellites in general are critical infrastructure because of the services they provide. In addition to satellites providing information which facilitates a better understanding of the space environment and improved performance of physics experiments, satellite observations are also used to actively monitor weather, geological processes, agricultural development and the evolution of natural and man-made hazards. Defence agencies depend on satellite services for communication in remote locations, as well as for reconnaissance and intelligence. Both commercial and government users rely on communication satellites to provide communication in the event of a disaster that damages ground-based communication systems, provide news, education and entertainment to remote areas and connect global businesses. The space radiation environment is an hazard to most satellite missions and can lead to extremely difficult operating conditions for all of the equipment travelling in space. Here, we first provide an overview of the main components of space radiation environment, followed by a description of the basic mechanism of the interaction of radiation with matter. This is followed by an introduction to the space radiation hardness assurance problem and the main effects of natural radiation to the microelectronics (total ionizing dose, displacement damage and the single-event effect and a description of how different effects occurring in the space can be tested in on-ground experiments by using particle accelerators and radiation sources. We also discuss standards and the recommended procedures to obtain reliable results.

  16. Application of Machine Learning Approaches for Classifying Sitting Posture Based on Force and Acceleration Sensors

    PubMed Central

    Tanadini, Matteo; Plüss, Stefan; Schnüriger, Karin; Singh, Navrag B.

    2016-01-01

    Occupational musculoskeletal disorders, particularly chronic low back pain (LBP), are ubiquitous due to prolonged static sitting or nonergonomic sitting positions. Therefore, the aim of this study was to develop an instrumented chair with force and acceleration sensors to determine the accuracy of automatically identifying the user's sitting position by applying five different machine learning methods (Support Vector Machines, Multinomial Regression, Boosting, Neural Networks, and Random Forest). Forty-one subjects were requested to sit four times in seven different prescribed sitting positions (total 1148 samples). Sixteen force sensor values and the backrest angle were used as the explanatory variables (features) for the classification. The different classification methods were compared by means of a Leave-One-Out cross-validation approach. The best performance was achieved using the Random Forest classification algorithm, producing a mean classification accuracy of 90.9% for subjects with which the algorithm was not familiar. The classification accuracy varied between 81% and 98% for the seven different sitting positions. The present study showed the possibility of accurately classifying different sitting positions by means of the introduced instrumented office chair combined with machine learning analyses. The use of such novel approaches for the accurate assessment of chair usage could offer insights into the relationships between sitting position, sitting behaviour, and the occurrence of musculoskeletal disorders. PMID:27868066

  17. GPU accelerated solver for nonlinear reaction-diffusion systems. Application to the electrophysiology problem

    NASA Astrophysics Data System (ADS)

    Mena, Andres; Ferrero, Jose M.; Rodriguez Matas, Jose F.

    2015-11-01

    Solving the electric activity of the heart possess a big challenge, not only because of the structural complexities inherent to the heart tissue, but also because of the complex electric behaviour of the cardiac cells. The multi-scale nature of the electrophysiology problem makes difficult its numerical solution, requiring temporal and spatial resolutions of 0.1 ms and 0.2 mm respectively for accurate simulations, leading to models with millions degrees of freedom that need to be solved for thousand time steps. Solution of this problem requires the use of algorithms with higher level of parallelism in multi-core platforms. In this regard the newer programmable graphic processing units (GPU) has become a valid alternative due to their tremendous computational horsepower. This paper presents results obtained with a novel electrophysiology simulation software entirely developed in Compute Unified Device Architecture (CUDA). The software implements fully explicit and semi-implicit solvers for the monodomain model, using operator splitting. Performance is compared with classical multi-core MPI based solvers operating on dedicated high-performance computer clusters. Results obtained with the GPU based solver show enormous potential for this technology with accelerations over 50 × for three-dimensional problems.

  18. Application and calibration of a simple position detector for a dust accelerator

    NASA Astrophysics Data System (ADS)

    Otto, Katharina A.; Srama, Ralf; Auer, Siegfried; Bugiel, Sebastian; Grün, Eberhard; Kempf, Sascha; Xie, Jianfeng

    2013-11-01

    A newly developed position sensitive detector was implemented in the beam line of the Heidelberg dust accelerator. By charge induction, the detector enables the position of a dust particle to be determined without affecting its motion. The detector consists of four pairs of parallel plates, connected to a single common charge amplifier. The charge induced on the plates varies as a function of the dust particle trajectory, producing simple, easily interpreted signals. Using a segmented target installed in the beam line for a second independent measure of the trajectory, the position detector has been calibrated, allowing the detector signal to be mapped to a dust particle position. The resulting calibration curve indicates that the detector's position accuracy is approximately 0.14 mm, based on an average SNR of 700 for dust particles passing through the centre of the detector. The minimum dust charge for reliable detection was found to be about 1.1 fC. A detector simulation was used to produce a calibration curve that confirms the experimental results.

  19. Integrating Online Compression to Accelerate Large-Scale Data Analytics Applications

    SciTech Connect

    Bicer, T.; Yin, Jian; Chiu, David; Agrawal, Gagan; Schuchardt, Karen L.

    2013-05-19

    Abstract—With growing dataset sizes, and as computing cycles are increasing faster than storage and wide-area bandwidths, compression appears like a promising approach for improving the performance of large-scale data analytics applications. In this context, this paper makes the following contributions. First, we develop a new compression methodology, which exploits the similarities between spatial and/or temporal neighbors in a simulation dataset, and enables high compression ratios and low decompression costs. Second, we have developed a framework that can be used to incorporate a variety of compression and decompression algorithms. This framework also supports a simple API to allow integration with an existing application or data processing middleware. Once a compression algorithm is implemented, this framework can allow multi-threaded retrieval, multi-threaded data decompression, and use of informed prefetching and caching. By integrating this framework with a data-intensive middleware, we have applied our compression methodology and framework to three applications over two datasets, including a GCRM climate model dataset. We obtained an average compression ratio of 51.68%, and up to 53.27% improvement in execution time of data analysis applications.

  20. Accelerator mass spectrometry of iodine-129 and its applications in natural water systems

    NASA Astrophysics Data System (ADS)

    Buraglio, Nadia

    During recent decades, huge amount of radioactive waste has been dumped into the earth's surface environments. 129I (T1/2 = 15.6 My) is one of the radioactive products that has been produced through a variety of processes, including atomic weapon testing, reprocessing of nuclear fact and nuclear accidents. This thesis describes development of the Accelerator Mass Spectrometry (AMS) ultra-sensitive atom counting technique at Uppsala Tandem Laboratory to measure 129I and discusses investigations of its distribution in the hydrosphere (marine and fresh water) and precipitation. The AMS technique provides a method for measuring long-lived radioactive isotopes in small samples, relative to other conventional techniques, and thus opens a now line of research. The optimization of the AMS system at Uppsala included testing a time of flight detector, evaluation of the most appropriate charge-state, reduction of molecular interference and improvement of the detection limit. Furthermore, development of a chemical procedure for separation of iodine from natural water samples has been accomplished. The second part of the thesis reports investigations of 129I in natural waters and indicates that high concentrations of 129I (3-4 orders of magnitude higher than in the prenuclear era) are found in most of the considered natural waters. Inventory calculations and results of measurements suggest that the major sources of radioactive iodine are the two main European nuclear reprocessing facilities at Sellafield (U.K.) and La Hague (France). This information provides estimates of the transit time and vertical mixing of water masses in the central Arctic Ocean. Results from precipitation, lakes and runoff are used to elucidate mechanisms of transport of 129I from the point sources and its pathways in the hydrological environment. This study also shows the need for continuous monitoring of the 129I level in the hydrosphere and of its future variability.

  1. Application of accelerator mass spectrometry to macromolecules: preclinical pharmacokinetic studies on a polybisphosphonate.

    PubMed

    Salehpour, Mehran; Håkansson, Karl; Höglund, Urban; Grahn-Westin, Annika; Nilsson, Sten; Márquez, Marcela; Possnert, Göran; Holmberg, Anders R

    2011-09-15

    Data on the use of accelerator mass spectrometry (AMS) in conjunction with in vivo studies of macromolecular drugs are scarce. The present study shows the versatility of this technique when investigating the pharmacokinetics (PK) of a macromolecular drug candidate, a polybisphosphonate conjugate (ODX). The aforementioned is a polymer (molecular weight ~30 kDa) constituting a carbohydrate backbone with covalently linked ligands (aldendronate and aminoguanidine) and is intended for treatment of osteoporosis and the therapy of bone metastasis from prostate cancer. The conjugate is prepared through partial oxidation of the carbohydrate and sequential coupling of the ligands by reductive amination. (14)C was incorporated in the conjugate by means of coupling a commercially available (14)C-lysine in the conjugation sequence. Fifteen rats were injected intravenously with (14)C-labelled ODX (150 µg, 14 Bq/rat) and blood samples were collected at 1, 2, 4, 6, and 24 h post-injection (3 rats/time point). Liver, spleen and kidney samples were collected at 4 and 24 h post-injection. Blood from each time point (triplicate) were collected for AMS measurement determining the isotopic ratio ((14)C/(12)C) and consequently the drug concentration in blood. ODX showed a transient presence in blood circulation; 93% of the total dose was cleared from the circulation within 1 h. The half-life after 1 h was estimated to be about 3 h; 0.7% of the administered (14)C dose of ODX remained in circulation after 24 h. The major (14)C accumulation was in the liver, the spleen and the kidneys indicating the probable route of metabolism and excretion. This study demonstrates the versatility of AMS for pharmacological in vivo studies of macromolecules. Labelling with (14)C is relatively simple, inexpensive and the method requires minimal radioactivity, eliminating the need for radioprotection precautions in contrast to methods using scintillation counting.

  2. Measurement of Beryllium in Biological Samples by Accelerator Mass Spectrometry: Applications for Studying Chronic Beryllium Disease

    SciTech Connect

    Chiarappa-Zucca, M L; Finkel, R C; Martinelli, R E; McAninch, J E; Nelson, D O; Turtletaub, K W

    2004-04-15

    A method using accelerator mass spectrometry (AMS) has been developed for quantifying attomoles of beryllium (Be) in biological samples. This method provides the sensitivity to trace Be in biological samples at very low doses with the purpose of identifying the molecular targets involved in chronic beryllium disease. Proof of the method was tested by administering 0.001, 0.05, 0.5 and 5.0 {micro}g {sup 9}Be and {sup 10}Be by intraperitoneal injection to male mice and removing spleen, liver, femurs, blood, lung, and kidneys after 24 h exposure. These samples were prepared for AMS analysis by tissue digestion in nitric acid, followed by further organic oxidation with hydrogen peroxide and ammonium persulfate and lastly, precipitation of Be with ammonium hydroxide, and conversion to beryllium oxide at 800 C. The {sup 10}Be/{sup 9}Be ratio of the extracted beryllium oxide was measured by AMS and Be in the original sample was calculated. Results indicate that Be levels were dose-dependent in all tissues and the highest levels were measured in the spleen and liver. The measured {sup 10}Be/{sup 9}Be ratios spanned 4 orders of magnitude, from 10{sup -10} to 10{sup -14}, with a detection limit of 3.0 x 10{sup -14}, which is equivalent to 0.8 attomoles of {sup 10}Be. These results show that routine quantification of nanogram levels of Be in tissues is possible and that AMS is a sensitive method that can be used in biological studies to understand the molecular dosimetry of Be and mechanisms of toxicity.

  3. Prototype 1.75 MV X-band linear accelerator testing for medical CT and industrial nondestructive testing applications

    NASA Astrophysics Data System (ADS)

    Clayton, James; Shedlock, Daniel; Vanderet, Steven; Zentai, George; Star-Lack, Josh; LaFave, Richard; Virshup, Gary

    2015-03-01

    Flat panel imagers based on amorphous silicon technology (a-Si) for digital radiography are accepted by the medical and industrial community as having several advantages over radiographic film-based systems. Use of Mega-voltage x-rays with these flat panel systems is applicable to both portal imaging for radiotherapy and for nondestructive testing (NDT) and security applications. In the medical field, one potential application that has not been greatly explored is to radiotherapy treatment planning. Currently, such conventional computed tomographic (CT) data acquired at kV energies is used to help delineate tumor targets and normal structures that are to be spared during treatment. CT number accuracy is crucial for radiotherapy dose calculations. Conventional CT scanners operating at kV X-ray energies typically exhibit significant image reconstruction artifacts in the presence of metal implants in human body. Using the X-ray treatment beams, having energies typically >=6MV, to acquire the CT data may not be practical if it is desired to maintain contrast sensitivity at a sufficiently low dose. Nondestructive testing imaging systems can expand their application space with the development of the higher energy accelerator for use in pipeline, and casting inspection as well as certain cargo screening applications that require more penetration. A new prototype x-band BCL designed to operate up to 1.75 MV has been designed built and tested. The BCL was tested with a prototype portal imager and medical phantoms to determine artifact reductions and a PaxScan 2530HE industrial imager to demonstrate resolution is maintained and penetration is improved.

  4. Stacked insulator induction accelerator gaps

    SciTech Connect

    Houck, T.I.; Westenskow, G.A.; Kim, J.S.; Eylon, S.; Henestroza, E.; Yu, S.S.; Vanecek, D.

    1997-05-01

    Stacked insulators, with alternating layers of insulating material and conducting film, have been shown to support high surface electrical field stresses. We have investigated the application of the stacked insulator technology to the design of induction accelerator modules for the Relativistic-Klystron Two-Beam Accelerator program. The rf properties of the accelerating gaps using stacked insulators, particularly the impedance at frequencies above the beam pipe cutoff frequency, are investigated. Low impedance is critical for Relativistic-Klystron Two-Beam Accelerator applications where a high current, bunched beam is trsnsported through many accelerating gaps. An induction accelerator module designs using a stacked insulator is presented.

  5. Structure of a AAA+ unfoldase in the process of unfolding substrate.

    PubMed

    Ripstein, Zev A; Huang, Rui; Augustyniak, Rafal; Kay, Lewis E; Rubinstein, John L

    2017-04-08

    AAA+ unfoldases are thought to unfold substrate through the central pore of their hexameric structures, but how this process occurs is not known. VAT, the Thermoplasma acidophilum homologue of eukaryotic CDC48/p97, works in conjunction with the proteasome to degrade misfolded or damaged proteins. We show that in the presence of ATP, VAT with its regulatory N-terminal domains removed unfolds other VAT complexes as substrate. We captured images of this transient process by electron cryomicroscopy (cryo-EM) to reveal the structure of the substrate-bound intermediate. Substrate binding breaks the six-fold symmetry of the complex, allowing five of the six VAT subunits to constrict into a tight helix that grips an ~80 Å stretch of unfolded protein. The structure suggests a processive hand-over-hand unfolding mechanism, where each VAT subunit releases the substrate in turn before re-engaging further along the target protein, thereby unfolding it.

  6. Mutations in the Human AAA+ Chaperone p97 and Related Diseases

    PubMed Central

    Tang, Wai Kwan; Xia, Di

    2016-01-01

    A number of neurodegenerative diseases have been linked to mutations in the human protein p97, an abundant cytosolic AAA+ (ATPase associated with various cellular activities) ATPase, that functions in a large number of cellular pathways. With the assistance of a variety of cofactors and adaptor proteins, p97 couples the energy of ATP hydrolysis to conformational changes that are necessary for its function. Disease-linked mutations, which are found at the interface between two main domains of p97, have been shown to alter the function of the protein, although the pathogenic mutations do not appear to alter the structure of individual subunit of p97 or the formation of the hexameric biological unit. While exactly how pathogenic mutations alter the cellular function of p97 remains unknown, functional, biochemical and structural differences between wild-type and pathogenic mutants of p97 are being identified. Here, we summarize recent progress in the study of p97 pathogenic mutants. PMID:27990419

  7. Distinct quaternary structures of the AAA+ Lon protease control substrate degradation

    PubMed Central

    Vieux, Ellen F.; Wohlever, Matthew L.; Chen, James Z.; Sauer, Robert T.; Baker, Tania A.

    2013-01-01

    Lon is an ATPase associated with cellular activities (AAA+) protease that controls cell division in response to stress and also degrades misfolded and damaged proteins. Subunits of Lon are known to assemble into ring-shaped homohexamers that enclose an internal degradation chamber. Here, we demonstrate that hexamers of Escherichia coli Lon also interact to form a dodecamer at physiological protein concentrations. Electron microscopy of this dodecamer reveals a prolate structure with the protease chambers at the distal ends and a matrix of N domains forming an equatorial hexamer–hexamer interface, with portals of ∼45 Å providing access to the enzyme lumen. Compared with hexamers, Lon dodecamers are much less active in degrading large substrates but equally active in degrading small substrates. Our results support a unique gating mechanism that allows the repertoire of Lon substrates to be tuned by its assembly state. PMID:23674680

  8. Triple A syndrome with a novel indel mutation in the AAAS gene and delayed puberty.

    PubMed

    Bustanji, Haidar; Sahar, Bashar; Huebner, Angela; Ajlouni, Kamel; Landgraf, Dana; Hamamy, Hanan; Koehler, Katrin

    2015-07-01

    Triple A syndrome, formerly known as Allgrove syndrome, is an autosomal recessive disorder characterized clinically by adrenal insufficiency, alacrima, achalasia, and neurological abnormalities. We report a 17-year-old boy presented to the endocrine clinic with delayed puberty and a 4-year's history of fatigue and muscle weakness. He had achalasia, alacrima, and skin and mucosal hyperpigmentation. Hormonal assessment revealed isolated glucocorticoid deficiency. Clinical diagnosis of triple A syndrome was confirmed by sequencing the entire coding region including exon-intron boundaries of the AAAS gene. Analysis revealed a homozygous novel indel mutation encompassing intron 7 to intron 10 of the gene (g.16166_17813delinsTGAGGCCTGCTG; NG_016775). This is the first report of triple A syndrome in Jordan with a novel indel mutation and presenting with delayed puberty.

  9. Deciphering the roles of multi-component recognition signals by the AAA+ unfoldase, ClpX

    PubMed Central

    Ling, Lorraine; Montaño, Sherwin P.; Sauer, Robert T.; Rice, Phoebe A.; Baker, Tania A.

    2015-01-01

    ATP-dependent protein remodeling and unfolding enzymes are key participants in protein metabolism in all cells. How these often-destructive enzymes specifically recognize target protein complexes is poorly understood. Here, we use the well-studied AAA+ unfoldase-substrate pair, E. coli ClpX and MuA transposase, to address how these powerful enzymes recognize target protein complexes. We demonstrate that the final transposition product, which is a DNA-bound tetramer of MuA, is preferentially recognized over the monomeric apo-protein through its multivalent display of ClpX recognition tags. The important peptide tags include one at the C-terminus (“C-tag”) that binds the ClpX pore and a second (enhancement or “E-tag”) that binds the ClpX N-terminal domain. We construct a chimeric protein to interrogate subunit-specific contributions of these tags. Efficient remodeling of MuA tetramers requires ClpX to contact a minimum of three tags (one C-tag and two or more E-tags), and that these tags are contributed by different subunits within the tetramer. The individual recognition peptides bind ClpX weakly (KD>70μM), but when combined in the MuA tetramer, impart a high-affinity interaction (KD~1.0 μM). When the weak C-tag signal is replaced with a stronger recognition tag, the E-tags become unnecessary and ClpX’s preference for the complex over MuA monomers is eliminated. Additionally, because the spatial orientation of the tags is predicted to change during the final step of transposition, this recognition strategy suggests how AAA+ unfoldases specifically distinguish the completed “end-stage” form of a particular complex for the ideal biological outcome. PMID:25797169

  10. Caveolin-1 controls mitochondrial function through regulation of m-AAA mitochondrial protease

    PubMed Central

    Volonte, Daniela; Liu, Zhongmin; Shiva, Sruti; Galbiati, Ferruccio

    2016-01-01

    Mitochondrial proteases ensure mitochondrial integrity and function after oxidative stress by providing mitochondrial protein quality control. However, the molecular mechanisms that regulate this basic biological function in eukaryotic cells remain largely unknown. Caveolin-1 is a scaffolding protein involved in signal transduction. We find that AFG3L2, a m-AAA type of mitochondrial protease, is a novel caveolin-1-interacting protein in vitro. We show that oxidative stress promotes the translocation of both caveolin-1 and AFG3L2 to mitochondria, enhances the interaction of caveolin-1 with AFG3L2 in mitochondria and stimulates mitochondrial protease activity in wild-type fibroblasts. Localization of AFG3L2 to mitochondria after oxidative stress is inhibited in fibroblasts lacking caveolin-1, which results in impaired mitochondrial protein quality control, an oxidative phosphorylation to aerobic glycolysis switch and reduced ATP production. Mechanistically, we demonstrate that a lack of caveolin-1 does not alter either mitochondrial number or morphology but leads to the cytoplasmic and proteasome-dependent degradation of complexes I, III, IV and V upon oxidant stimulation. Restoration of mitochondrial respiratory chain complexes in caveolin-1 null fibroblasts reverts the enhanced glycolysis observed in these cells. Expression of a mutant form of AFG3L2, which has reduced affinity for caveolin-1, fails to localize to mitochondria and promotes degradation of complex IV after oxidative stress. Thus, caveolin-1 maintains mitochondrial integrity and function when cells are challenged with free radicals by promoting the mitochondrial localization of m-AAA protease and its quality control functions. PMID:27705926

  11. Acceleration of MPEG-4 video applications with the reconfigurable HW processor XPP

    NASA Astrophysics Data System (ADS)

    Ritter, Claus; Schueler, Eberhard; Quast, Johannes; Mueller-Glaser, Klaus D.

    2003-06-01

    The next generation of mobile phones need high computational power to fulfil their primary tasks, multimedia applications and services. To achieve this goal, powerful processors with high clock frequencies are used. Although the processing power capabilities are increased, the capabilities in the electrical power supply are not. The results are powerful mobile devices with insufficient batteries. The formula: higher frequency is equivalent with a higher computational power is still valid, but for the price of a high power consumption. One solution is the usage of specialized and therefore more compact hardware, like ASICs, DSPs etc. On the other side this will greatly reduce the flexibility of the device and the application areas will be limited. New technology approaches have to be found to reduce these dilemmas. This paper describes an ongoing study of a SoC design where the reconfigurable coprocessor XPP is embedded with a standard mobile phone processor. The target application for this system is a low-cost/power environment running a MPEG-4 encoder/decoder (Visual Profile: Simple@L1). The whole MPEG-4 encoding/decoding process is partitioned between the standard processor, which is controlling the system and executes control-intensive algorithms, and its XPP coprocessor, which executes the computational-intensive data-flow algorithms and sends the results back to the host processor or a shared memory bank.

  12. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  13. Student-Athlete Perceptions of a Summer Pre-Enrollment Experience at an NCAA Division I-AAA Institution

    ERIC Educational Resources Information Center

    Dalgety, Michael Franklin

    2012-01-01

    The purpose of this exploratory qualitative study was to examine student-athlete perceptions of the role of summer pre-enrollment in their adjustment and transition to college. The study focused on student-athletes who received athletically-related financial aid at a National Collegiate Athletic Association (NCAA) Division I-AAA institution. The…

  14. US Particle Accelerators at Age 50.

    ERIC Educational Resources Information Center

    Wilson, R. R.

    1981-01-01

    Reviews the development of accelerators over the past 50 years. Topics include: types of accelerators, including cyclotrons; sociology of accelerators (motivation, financing, construction, and use); impact of war; national laboratories; funding; applications; future projects; foreign projects; and international collaborations. (JN)

  15. Application of accelerated acquisition and highly constrained reconstruction methods to MR

    NASA Astrophysics Data System (ADS)

    Wang, Kang

    2011-12-01

    There are many Magnetic Resonance Imaging (MRI) applications that require rapid data acquisition. In conventional proton MRI, representative applications include real-time dynamic imaging, whole-chest pulmonary perfusion imaging, high resolution coronary imaging, MR T1 or T2 mapping, etc. The requirement for fast acquisition and novel reconstruction methods is either due to clinical demand for high temporal resolution, high spatial resolution, or both. Another important category in which fast MRI methods are highly desirable is imaging with hyperpolarized (HP) contrast media, such as HP 3He imaging for evaluation of pulmonary function, and imaging of HP 13C-labeled substrates for the study of in vivo metabolic processes. To address these needs, numerous MR undersampling methods have been developed and combined with novel image reconstruction techniques. This thesis aims to develop novel data acquisition and image reconstruction techniques for the following applications. (I) Ultrashort echo time spectroscopic imaging (UTESI). The need for acquiring many echo images in spectroscopic imaging with high spatial resolution usually results in extended scan times, and thus requires k-space undersampling and novel imaging reconstruction methods to overcome the artifacts related to the undersampling. (2) Dynamic hyperpolarized 13C spectroscopic imaging. HP 13C compounds exhibit non-equilibrium T1 decay and rapidly evolving spectral dynamics, and therefore it is vital to utilize the polarized signal wisely and efficiently to observe the entire temporal dynamic of the injected "C compounds as well as the corresponding downstream metabolites. (3) Time-resolved contrast-enhanced MR angiography. The diagnosis of vascular diseases often requires large coverage of human body anatomies with high spatial resolution and sufficient temporal resolution for the separation of arterial phases from venous phases. The goal of simultaneously achieving high spatial and temporal resolution has

  16. Application of Chemically Accelerated Biotreatment to Reduce Risk in Oil-Impacted Soils

    SciTech Connect

    Paterek, J.R.; Bogan, W.W.; Lahner, L.M.; Trbovic, V.

    2003-03-06

    Conducted research in the following major focus areas: (1) Development of mild extraction approaches to estimate bioavailable fraction of crude oil residues in contaminated soils; (2) Application of these methods to understand decreases in toxicity and increases in sequestration of hydrocarbons over time, as well as the influence of soil properties on these processes; (3) Measurements of the abilities of various bacteria (PAH-degraders and others more representative of typical soil bacteria) to withstand oxidative treatments (i.e. Fenton's reaction) which would occur in CBT; and (4) Experiments into the biochemical/genetic inducibility of PAH degradation by compounds formed by the chemical oxidation of PAH.

  17. Invited Review Article: "Hands-on" laser-driven ion acceleration: A primer for laser-driven source development and potential applications

    NASA Astrophysics Data System (ADS)

    Schreiber, J.; Bolton, P. R.; Parodi, K.

    2016-07-01

    An overview of progress and typical yields from intense laser-plasma acceleration of ions is presented. The evolution of laser-driven ion acceleration at relativistic intensities ushers prospects for improved functionality and diverse applications which can represent a varied assortment of ion beam requirements. This mandates the development of the integrated laser-driven ion accelerator system, the multiple components of which are described. Relevant high field laser-plasma science and design of controlled optimum pulsed laser irradiation on target are dominant single shot (pulse) considerations with aspects that are appropriate to the emerging petawatt era. The pulse energy scaling of maximum ion energies and typical differential spectra obtained over the past two decades provide guidance for continued advancement of laser-driven energetic ion sources and their meaningful applications.

  18. Pareto front analysis of 6 and 15 MV dynamic IMRT for lung cancer using pencil beam, AAA and Monte Carlo

    NASA Astrophysics Data System (ADS)

    Ottosson, R. O.; Karlsson, A.; Behrens, C. F.

    2010-08-01

    The pencil beam dose calculation method is frequently used in modern radiation therapy treatment planning regardless of the fact that it is documented inaccurately for cases involving large density variations. The inaccuracies are larger for higher beam energies. As a result, low energy beams are conventionally used for lung treatments. The aim of this study was to analyze the advantages and disadvantages of dynamic IMRT treatment planning for high and low photon energy in order to assess if deviating from the conventional low energy approach could be favorable in some cases. Furthermore, the influence of motion on the dose distribution was investigated. Four non-small cell lung cancer cases were selected for this study. Inverse planning was conducted using Varian Eclipse. A total number of 31 dynamic IMRT plans, distributed amongst the four cases, were created ranging from PTV conformity weighted to normal tissue sparing weighted. All optimized treatment plans were calculated using three different calculation algorithms (PBC, AAA and MC). In order to study the influence of motion, two virtual lung phantoms were created. The idea was to mimic two different situations: one where the GTV is located centrally in the PTV and another where the GTV was close to the edge of the PTV. PBC is in poor agreement with MC and AAA for all cases and treatment plans. AAA overestimates the dose, compared to MC. This effect is more pronounced for 15 than 6 MV. AAA and MC both predict similar perturbations in dose distributions when moving the GTV to the edge of the PTV. PBC, however, predicts results contradicting those of AAA and MC. This study shows that PB-based dose calculation algorithms are clinically insufficient for patient geometries involving large density inhomogeneities. AAA is in much better agreement with MC, but even a small overestimation of the dose level by the algorithm might lead to a large part of the PTV being underdosed. It is advisable to use low energy as a

  19. Microelectromechanical acceleration-sensing apparatus

    DOEpatents

    Lee, Robb M.; Shul, Randy J.; Polosky, Marc A.; Hoke, Darren A.; Vernon, George E.

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  20. [Results of fibrin clot application for acceleration of regeneration of the damaged mandible in experiment].

    PubMed

    Maĭborodin, I V; Kolesnikov, I S; Shevela, A I; Sheplev, B V; Drovosekov, M N; Toder, M S

    2011-01-01

    The processes of regeneration of the damaged rat bottom jaw bone after application of enriched thrombocytes a fibrin clot were studied by morphological and radiovisiographic methods. At a natural course of regeneration the artificial aperture of bone was filled with blood and there the blood clot was formed. After 1 week the separate bone islets of a young tissue occurred in bone defect. In 2-3 weeks the aperture in a bottom jaw bone was completely closed by a young bone tissue. After operation with filling of bone bottom jaw defect by fibrin clot there was no formation of a blood clot. Already after 1 week the bone tissue defect was filled by the merged islets of again generated bone. By second week after fibrin use the further formation of bone tissue in defect and formation of a bone callosity was noted.

  1. [Series: Medical Applications of the PHITS Code (2): Acceleration by Parallel Computing].

    PubMed

    Furuta, Takuya; Sato, Tatsuhiko

    2015-01-01

    Time-consuming Monte Carlo dose calculation becomes feasible owing to the development of computer technology. However, the recent development is due to emergence of the multi-core high performance computers. Therefore, parallel computing becomes a key to achieve good performance of software programs. A Monte Carlo simulation code PHITS contains two parallel computing functions, the distributed-memory parallelization using protocols of message passing interface (MPI) and the shared-memory parallelization using open multi-processing (OpenMP) directives. Users can choose the two functions according to their needs. This paper gives the explanation of the two functions with their advantages and disadvantages. Some test applications are also provided to show their performance using a typical multi-core high performance workstation.

  2. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  3. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    SciTech Connect

    Chibani, Omar C-M Ma, Charlie

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  4. Acceleration of iterative image reconstruction for x-ray imaging for security applications

    NASA Astrophysics Data System (ADS)

    Degirmenci, Soysal; Politte, David G.; Bosch, Carl; Tricha, Nawfel; O'Sullivan, Joseph A.

    2015-03-01

    Three-dimensional image reconstruction for scanning baggage in security applications is becoming increasingly important. Compared to medical x-ray imaging, security imaging systems must be designed for a greater variety of objects. There is a lot of variation in attenuation and nearly every bag scanned has metal present, potentially yielding significant artifacts. Statistical iterative reconstruction algorithms are known to reduce metal artifacts and yield quantitatively more accurate estimates of attenuation than linear methods. For iterative image reconstruction algorithms to be deployed at security checkpoints, the images must be quantitatively accurate and the convergence speed must be increased dramatically. There are many approaches for increasing convergence; two approaches are described in detail in this paper. The first approach includes a scheduled change in the number of ordered subsets over iterations and a reformulation of convergent ordered subsets that was originally proposed by Ahn, Fessler et. al.1 The second approach is based on varying the multiplication factor in front of the additive step in the alternating minimization (AM) algorithm, resulting in more aggressive updates in iterations. Each approach is implemented on real data from a SureScanTM x 1000 Explosive Detection System∗ and compared to straightforward implementations of the alternating minimization algorithm of O'Sullivan and Benac2 with a Huber-type edge-preserving penalty, originally proposed by Lange.3

  5. Combined generating-accelerating buncher for compact linear accelerators

    NASA Astrophysics Data System (ADS)

    Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Sokolov, I. D.; Zavadtsev, A. A.

    2016-09-01

    Described in the previous article [1] method of the power extraction from the modulated electron beam has been applied to the compact standing wave electron linear accelerator feeding system, which doesnt require any connection waveguides between the power source and the accelerator itself [2]. Generating and accelerating bunches meet in the hybrid accelerating cell operating at TM020 mode, thus the accelerating module is placed on the axis of the generating module, which consists from the pulsed high voltage electron sources and electrons dumps. This combination makes the accelerator very compact in size which is very valuable for the modern applications such as portable inspection sources. Simulations and geometry cold tests are presented.

  6. Relative importance of aneurysm diameter and body size for predicting AAA rupture in men and women

    PubMed Central

    Lo, Ruby C.; Lu, Bing; Fokkema, Margriet T.M.; Conrad, Mark; Patel, Virendra I.; Fillinger, Mark; Matyal, Robina; Schermerhorn, Marc L.

    2014-01-01

    Objectives Women have been shown to have up to a four-fold higher risk of abdominal aortic aneurysm (AAA) rupture at any given aneurysm diameter compared to men, leading to recommendations to offer repair to women at lower diameter thresholds. Although this higher risk of rupture may simply reflect greater relative aortic dilatation in women who have smaller aortas to begin with, this has never been quantified. Our objective was therefore to quantify the relationship between rupture and aneurysm diameter relative to body size and to determine whether a differential association between aneurysm diameter, body size, and rupture risk exists for men and women. Methods We performed a retrospective review of all patients in the Vascular Study Group of New England (VSGNE) database who underwent endovascular or open AAA repair. Using each patient’s height and weight, body mass index (BMI) and body surface area (BSA) were calculated. Next, indices of each measure of body size (height, weight, BMI, BSA) relative to aneurysm diameter were calculated for each patient. To generate these indices, we divided aneurysm diameter (in cm) by the measure of body size [e.g. aortic size index (ASI) = aneurysm diameter (cm) / BSA (m2)]. Along with other relevant clinical variables, we used these indices to construct different age-adjusted and multivariable-adjusted logistic regression models to determine predictors of ruptured repair vs. elective repair. Models for men and women were developed separately and different models were compared using the area under the curve (AUC). Results We identified 4045 patients who underwent AAA repair (78% male, 53% EVAR). Women had significantly smaller diameter aneurysms, lower BSA, and higher BSA indices than men (Table 1). For men, the variable that increased the odds of rupture the most was aneurysm diameter (AUC = 0.82). Men exhibited an increased rupture risk with increasing aneurysm diameter (<5.5cm: OR 1.0; 5.5–6.4cm: OR 0.9, 95% CI 0.5–1

  7. High Gradient Accelerator Research

    SciTech Connect

    Temkin, Richard

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  8. Accelerating dissipative particle dynamics simulations on GPUs: Algorithms, numerics and applications

    NASA Astrophysics Data System (ADS)

    Tang, Yu-Hang; Karniadakis, George Em

    2014-11-01

    We present a scalable dissipative particle dynamics simulation code, fully implemented on the Graphics Processing Units (GPUs) using a hybrid CUDA/MPI programming model, which achieves 10-30 times speedup on a single GPU over 16 CPU cores and almost linear weak scaling across a thousand nodes. A unified framework is developed within which the efficient generation of the neighbor list and maintaining particle data locality are addressed. Our algorithm generates strictly ordered neighbor lists in parallel, while the construction is deterministic and makes no use of atomic operations or sorting. Such neighbor list leads to optimal data loading efficiency when combined with a two-level particle reordering scheme. A faster in situ generation scheme for Gaussian random numbers is proposed using precomputed binary signatures. We designed custom transcendental functions that are fast and accurate for evaluating the pairwise interaction. The correctness and accuracy of the code is verified through a set of test cases simulating Poiseuille flow and spontaneous vesicle formation. Computer benchmarks demonstrate the speedup of our implementation over the CPU implementation as well as strong and weak scalability. A large-scale simulation of spontaneous vesicle formation consisting of 128 million particles was conducted to further illustrate the practicality of our code in real-world applications. Catalogue identifier: AETN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 1 602 716 No. of bytes in distributed program, including test data, etc.: 26 489 166 Distribution format: tar.gz Programming language: C/C++, CUDA C/C++, MPI. Computer: Any computers having nVidia GPGPUs with compute capability 3.0. Operating system: Linux. Has the code been

  9. Quality of graphite target for biological/biomedical/environmental applications of 14C-accelerator mass spectrometry.

    PubMed

    Kim, Seung-Hyun; Kelly, Peter B; Ortalan, Volkan; Browning, Nigel D; Clifford, Andrew J

    2010-03-15

    Catalytic graphitization for (14)C-accelerator mass spectrometry ((14)C-AMS) produced various forms of elemental carbon. Our high-throughput Zn reduction method (C/Fe = 1:5, 500 degrees C, 3 h) produced the AMS target of graphite-coated iron powder (GCIP), a mix of nongraphitic carbon and Fe(3)C. Crystallinity of the AMS targets of GCIP (nongraphitic carbon) was increased to turbostratic carbon by raising the C/Fe ratio from 1:5 to 1:1 and the graphitization temperature from 500 to 585 degrees C. The AMS target of GCIP containing turbostratic carbon had a large isotopic fractionation and a low AMS ion current. The AMS target of GCIP containing turbostratic carbon also yielded less accurate/precise (14)C-AMS measurements because of the lower graphitization yield and lower thermal conductivity that were caused by the higher C/Fe ratio of 1:1. On the other hand, the AMS target of GCIP containing nongraphitic carbon had higher graphitization yield and better thermal conductivity over the AMS target of GCIP containing turbostratic carbon due to optimal surface area provided by the iron powder. Finally, graphitization yield and thermal conductivity were stronger determinants (over graphite crystallinity) for accurate/precise/high-throughput biological, biomedical, and environmental (14)C-AMS applications such as absorption, distribution, metabolism, elimination (ADME), and physiologically based pharmacokinetics (PBPK) of nutrients, drugs, phytochemicals, and environmental chemicals.

  10. The application of accelerator mass spectroscopy (AMS) in the study of source identification of aerosols in China

    SciTech Connect

    Shao Min; Tang Xiaoyan; Li Jinlong

    1995-12-01

    Accelerator Mass Spectrometry is a new physical technique and it was successfully established in China in 1992. This paper tried to apply the AMS in source identification for atmospheric aerosols which was part of our national project of AMS application in environmental research. For comparison, we also studied the aerosol sources by multivariate analysis models such as correspond factor analysis, principal factor analysis and target recognition analysis. For the samples we collected in suburb of Beijing, the results by factor analysis showed that the predominant TSP source was soil which contributed more than 50% to atmospheric particles. However, the AMS results demonstrated that carbonaceous aerosols have quite different emission sources. For carbonaceous aerosols of Beijing, Hunan and Shandong, the contribution to ambient particles from fossil fuel was nearly 2/3, and as the man-made activities (coal-burning, etc.) increased, the fossil part contributed more. Therefore, it`s significant to combine the method of factor analysis and AMS in the study of atmospheric aerosols.

  11. The Development of Biomedical Applications of Nuclear Physics Detector Technology at the Thomas Jefferson National Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Weisenberger, Andrew

    2003-10-01

    The Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility (Jefferson Lab) for the United States Department of Energy. As a user facility for physicists worldwide, its primary mission is to conduct basic nuclear physics research of the atom's nucleus at the quark level. Within the Jefferson Lab Physics Division is the Jefferson Lab Detector Group which was formed to support the design and construction of new detector systems during the construction phase of the major detector systems at Jefferson Lab and to act as technical consultants for the lab scientists and users. The Jefferson Lab Detector Group, headed by Dr. Stan Majewski, has technical capabilities in the development and use of radiation detection systems. These capabilities include expertise in nuclear particle detection through the use of gas detectors, scintillation and light guide techniques, standard and position-sensitive photomultiplier tubes (PSPMTs), fast analog readout electronics and data acquisition, and on-line image formation and analysis. In addition to providing nuclear particle detector support to the lab, the group has for several years (starting in 1996) applied these technologies to the development of novel high resolution gamma-ray imaging systems for biomedical applications and x-ray imaging techniques. The Detector Group has developed detector systems for breast cancer detection, brain cancer therapy and small animal imaging to support biomedical research. An overview will be presented of how this small nuclear physics detector research group by teaming with universities, medical facilities, industry and other national laboratories applies technology originating from basic nuclear physics research to biomedical applications.

  12. SU-E-T-122: Anisotropic Analytical Algorithm (AAA) Vs. Acuros XB (AXB) in Stereotactic Treatment Planning

    SciTech Connect

    Mynampati, D; Scripes, P Godoy; Kuo, H; Yaparpalvi, R; Tome, W

    2015-06-15

    Purpose: To evaluate dosimetric differences between superposition beam model (AAA) and determinant photon transport solver (AXB) in lung SBRT and Cranial SRS dose computations. Methods: Ten Cranial SRS and ten Lung SBRT plans using Varian, AAA -11.0 were re-planned using Acuros -XB-11.0 with fixed MU. 6MV photon Beam model with HD120-MLC used for dose calculations. Four non-coplanar conformal arcs used to deliver 21Gy or 18Gy to SRS targets (0.4 to 6.2cc). 54Gy (3Fractions) or 50Gy (5Fractions) was planned for SBRT targets (7.3 to 13.9cc) using two VAMT non-coplanar arcs. Plan comparison parameters were dose to 1% PTV volume (D1), dose to 99% PTV volume( D99), Target mean (Dmean), Conformity index (ratio of prescription isodose volume to PTV), Homogeneity Index [ (D2%-D98%)/Dmean] and R50 (ratio of 50% of prescription isodose volume to PTV). OAR parameters were Brain volume receiving 12Gy dose (V12Gy) and maximum dose (D0.03) to Brainstem for SRS. For lung SBRT, maximum dose to Heart and Cord, Mean lung dose (MLD) and volume of lung receiving 20Gy (V20Gy) were computed. PTV parameters compared by percentage difference between AXB and AAA parameters. OAR parameters and HI compared by absolute difference between two calculations. For analysis, paired t-test performed over the parameters. Results: Compared to AAA, AXB SRS plans have on average 3.2% lower D99, 6.5% lower CI and 3cc less Brain-V12. However, AXB SBRT plans have higher D1, R50 and Dmean by 3.15%, 1.63% and 2.5%. For SRS and SBRT, AXB plans have average HI 2 % and 4.4% higher than AAA plans. In both techniques, all other parameters vary within 1% or 1Gy. In both sets only two parameters have P>0.05. Conclusion: Even though t-test results signify difference between AXB and AAA plans, dose differences in dose estimations by both algorithms are clinically insignificant.

  13. ATP-induced conformational dynamics in the AAA+ motor unit of magnesium chelatase.

    PubMed

    Lundqvist, Joakim; Elmlund, Hans; Wulff, Ragna Peterson; Berglund, Lisa; Elmlund, Dominika; Emanuelsson, Cecilia; Hebert, Hans; Willows, Robert D; Hansson, Mats; Lindahl, Martin; Al-Karadaghi, Salam

    2010-03-10

    Mg-chelatase catalyzes the first committed step of the chlorophyll biosynthetic pathway, the ATP-dependent insertion of Mg(2+) into protoporphyrin IX (PPIX). Here we report the reconstruction using single-particle cryo-electron microscopy of the complex between subunits BchD and BchI of Rhodobacter capsulatus Mg-chelatase in the presence of ADP, the nonhydrolyzable ATP analog AMPPNP, and ATP at 7.5 A, 14 A, and 13 A resolution, respectively. We show that the two AAA+ modules of the subunits form a unique complex of 3 dimers related by a three-fold axis. The reconstructions demonstrate substantial differences between the conformations of the complex in the presence of ATP and ADP, and suggest that the C-terminal integrin-I domains of the BchD subunits play a central role in transmitting conformational changes of BchI to BchD. Based on these data a model for the function of magnesium chelatase is proposed.

  14. Simulation of bifurcated stent grafts to treat abdominal aortic aneurysms (AAA)

    NASA Astrophysics Data System (ADS)

    Egger, J.; Großkopf, S.; Freisleben, B.

    2007-03-01

    In this paper a method is introduced, to visualize bifurcated stent grafts in CT-Data. The aim is to improve therapy planning for minimal invasive treatment of abdominal aortic aneurysms (AAA). Due to precise measurement of the abdominal aortic aneurysm and exact simulation of the bifurcated stent graft, physicians are supported in choosing a suitable stent prior to an intervention. The presented method can be used to measure the dimensions of the abdominal aortic aneurysm as well as simulate a bifurcated stent graft. Both of these procedures are based on a preceding segmentation and skeletonization of the aortic, right and left iliac. Using these centerlines (aortic, right and left iliac) a bifurcated initial stent is constructed. Through the implementation of an ACM method the initial stent is fit iteratively to the vessel walls - due to the influence of external forces (distance- as well as balloonforce). Following the fitting process, the crucial values for choosing a bifurcated stent graft are measured, e.g. aortic diameter, right and left common iliac diameter, minimum diameter of distal neck. The selected stent is then simulated to the CT-Data - starting with the initial stent. It hereby becomes apparent if the dimensions of the bifurcated stent graft are exact, i.e. the fitting to the arteries was done properly and no ostium was covered.

  15. CODAS syndrome is associated with mutations of LONP1, encoding mitochondrial AAA+ Lon protease.

    PubMed

    Strauss, Kevin A; Jinks, Robert N; Puffenberger, Erik G; Venkatesh, Sundararajan; Singh, Kamalendra; Cheng, Iteen; Mikita, Natalie; Thilagavathi, Jayapalraja; Lee, Jae; Sarafianos, Stefan; Benkert, Abigail; Koehler, Alanna; Zhu, Anni; Trovillion, Victoria; McGlincy, Madeleine; Morlet, Thierry; Deardorff, Matthew; Innes, A Micheil; Prasad, Chitra; Chudley, Albert E; Lee, Irene Nga Wing; Suzuki, Carolyn K

    2015-01-08

    CODAS syndrome is a multi-system developmental disorder characterized by cerebral, ocular, dental, auricular, and skeletal anomalies. Using whole-exome and Sanger sequencing, we identified four LONP1 mutations inherited as homozygous or compound-heterozygous combinations among ten individuals with CODAS syndrome. The individuals come from three different ancestral backgrounds (Amish-Swiss from United States, n = 8; Mennonite-German from Canada, n = 1; mixed European from Canada, n = 1). LONP1 encodes Lon protease, a homohexameric enzyme that mediates protein quality control, respiratory-complex assembly, gene expression, and stress responses in mitochondria. All four pathogenic amino acid substitutions cluster within the AAA(+) domain at residues near the ATP-binding pocket. In biochemical assays, pathogenic Lon proteins show substrate-specific defects in ATP-dependent proteolysis. When expressed recombinantly in cells, all altered Lon proteins localize to mitochondria. The Old Order Amish Lon variant (LONP1 c.2161C>G[p.Arg721Gly]) homo-oligomerizes poorly in vitro. Lymphoblastoid cell lines generated from affected children have (1) swollen mitochondria with electron-dense inclusions and abnormal inner-membrane morphology; (2) aggregated MT-CO2, the mtDNA-encoded subunit II of cytochrome c oxidase; and (3) reduced spare respiratory capacity, leading to impaired mitochondrial proteostasis and function. CODAS syndrome is a distinct, autosomal-recessive, developmental disorder associated with dysfunction of the mitochondrial Lon protease.

  16. Development and Analysis of Synthetic Composite Materials Emulating Patient AAA Wall Material Properties

    NASA Astrophysics Data System (ADS)

    Margossian, Christa M.

    Abdominal Aortic Aneurysm (AAA) rupture accounts for 14,000 deaths a year in the United States. Since the number of ruptures has not decreased significantly in recent years despite improvements in imaging and surgical procedures, there is a need for an accurate, noninvasive technique capable of establishing rupture risk for specific patients and discriminating lesions at high risk. In this project, synthetic composite materials replicating patient-specific wall stiffness and strength were developed and their material properties evaluated. Composites utilizing various fibers were developed to give a range of stiffness from 1825.75 kPa up through 8187.64 kPa with one base material, Sylgard 170. A range of strength from 631.12 kPa to 1083 kPa with the same base material was also found. By evaluating various base materials and various reinforcing fibers, a catalogue of stiffnesses and strengths was started to allow for adaptation to specific patient properties. Three specific patient properties were well-matched with two composites fabricated: silk thread-reinforced Sylgard 170 and silk thread-reinforced Dragon Skin 20. The composites showed similar stiffnesses to the specific patients while reaching target stresses at particular strains. Not all patients were matched with composites as of yet, but recommendations for future matches are able to be determined. These composites will allow for the future evaluation of flow-induced wall stresses in models replicating patient material properties and geometries.

  17. Section 7.3. accelerator facilities. Technology review of accelerator facilities

    NASA Astrophysics Data System (ADS)

    McKeown, Joseph

    New initiatives in basic science, accelerator engineering and market development, continue to stimulate applications of electron accelerators. Contributions from scientific experts in each of these segments have been assimulated to reflect the present status of accelerator technology in radiation processing.

  18. Scaling FFAG accelerator for muon acceleration

    SciTech Connect

    Lagrange, JB.; Planche, T.; Mori, Y.

    2011-10-06

    Recent developments in scaling fixed field alternating gradient (FFAG) accelerators have opened new ways for lattice design, with straight sections, and insertions like dispersion suppressors. Such principles and matching issues are detailed in this paper. An application of these new concepts is presented to overcome problems in the PRISM project.

  19. Scaling FFAG accelerator for muon acceleration

    NASA Astrophysics Data System (ADS)

    Lagrange, JB.; Planche, T.; Mori, Y.

    2011-10-01

    Recent developments in scaling fixed field alternating gradient (FFAG) accelerators have opened new ways for lattice design, with straight sections, and insertions like dispersion suppressors. Such principles and matching issues are detailed in this paper. An application of these new concepts is presented to overcome problems in the PRISM project.

  20. Electron Acceleration in Pulsar-wind Termination Shocks: An Application to the Crab Nebula Gamma-Ray Flares

    NASA Astrophysics Data System (ADS)

    Kroon, John J.; Becker, Peter A.; Finke, Justin D.; Dermer, Charles D.

    2016-12-01

    The γ-ray flares from the Crab Nebula observed by AGILE and Fermi-LAT reaching GeV energies and lasting several days challenge the standard models for particle acceleration in pulsar-wind nebulae because the radiating electrons have energies exceeding the classical radiation-reaction limit for synchrotron. Previous modeling has suggested that the synchrotron limit can be exceeded if the electrons experience electrostatic acceleration, but the resulting spectra do not agree very well with the data. As a result, there are still some important unanswered questions about the detailed particle acceleration and emission processes occurring during the flares. We revisit the problem using a new analytical approach based on an electron transport equation that includes terms describing electrostatic acceleration, stochastic wave-particle acceleration, shock acceleration, synchrotron losses, and particle escape. An exact solution is obtained for the electron distribution, which is used to compute the associated γ-ray synchrotron spectrum. We find that in our model the γ-ray flares are mainly powered by electrostatic acceleration, but the contributions from stochastic and shock acceleration play an important role in producing the observed spectral shapes. Our model can reproduce the spectra of all the Fermi-LAT and AGILE flares from the Crab Nebula, using magnetic field strengths in agreement with the multi-wavelength observational constraints. We also compute the spectrum and duration of the synchrotron afterglow created by the accelerated electrons, after they escape into the region on the downstream side of the pulsar-wind termination shock. The afterglow is expected to fade over a maximum period of about three weeks after the γ-ray flare.

  1. Effect of microgravity simulation using 3D clinostat on cavendish banana (Musa acuminata AAA Group) ripening process

    NASA Astrophysics Data System (ADS)

    Dwivany, Fenny Martha; Esyanti, Rizkita R.; Prapaisie, Adeline; Puspa Kirana, Listya; Latief, Chunaeni; Ginaldi, Ari

    2016-11-01

    The objective of the research was to determine the effect of microgravity simulation by 3D clinostat on Cavendish banana (Musa acuminata AAA group) ripening process. In this study, physical, physiological changes as well as genes expression were analysed. The result showed that in microgravity simulation condition ripening process in banana was delayed and the MaACOl, MaACSl and MaACS5 gene expression were affected.

  2. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  3. EM single particle analysis of the ATP-dependent BchI complex of magnesium chelatase: an AAA+ hexamer.

    PubMed

    Willows, R D; Hansson, A; Birch, D; Al-Karadaghi, S; Hansson, M

    2004-01-01

    BchI, belonging to the AAA+ -protein family, forms the enzyme magnesium chelatase together with BchD and BchH. This enzyme catalyses the insertion of Mg2+ into protoporphyrin IX upon ATP hydrolysis. Previous studies have indicated that BchI forms ATP-dependent complexes and it is a member of the AAA+ -protein family (ATPases associated with various cellular activities) and it was suggested based on structural homology that the BchI formed hexameric complexes. AAA+ -proteins are Mg2+ -dependent ATPases that normally form oligomeric ring complexes in the presence of ATP. Single particle analysis of fully formed ring complexes of BchI observed by negative staining EM indicate that the BchI has strong 6- and 2-fold rotational symmetries and a weaker 4-fold rotational symmetry which are reminiscent of DNA helicase. A 2D average of the fully formed BchI-ATP ring complex is presented here from images of the complex obtained from negative staining EM. Other complexes are also observed in the EM micrographs and the class averages of these are indicative of the fragility and dynamic nature of the BchI complex which has been reported and they are suggestive of partially circular complexes with six or less protomers per particle. The resolution of the average circular complex is estimated at approximately 30A and it is similar in shape and size to an atomic resolution hexameric model of BchI rendered at 30A.

  4. Designing reliability into accelerators

    NASA Astrophysics Data System (ADS)

    Hutton, A.

    1992-07-01

    Future accelerators will have to provide a high degree of reliability. Quality must be designed in right from the beginning and must remain a central theme throughout the project. The problem is similar to the problems facing US industry today, and examples of the successful application of quality engineering will be given. Different aspects of an accelerator project will be addressed: Concept, Design, Motivation, Management Techniques, and Fault Diagnosis. The importance of creating and maintaining a coherent team will be stressed.

  5. GPU-Accelerated Monte Carlo Electron Transport Methods: Development and Application for Radiation Dose Calculations Using Six GPU cards

    NASA Astrophysics Data System (ADS)

    Su, Lin; Du, Xining; Liu, Tianyu; Xu, X. George

    2014-06-01

    An electron-photon coupled Monte Carlo code ARCHER - Accelerated Radiation-transport Computations in Heterogeneous EnviRonments - is being developed at Rensselaer Polytechnic Institute as a software testbed for emerging heterogeneous high performance computers that utilize accelerators such as GPUs. This paper presents the preliminary code development and the testing involving radiation dose related problems. In particular, the paper discusses the electron transport simulations using the class-II condensed history method. The considered electron energy ranges from a few hundreds of keV to 30 MeV. For photon part, photoelectric effect, Compton scattering and pair production were modeled. Voxelized geometry was supported. A serial CPU code was first written in C++. The code was then transplanted to the GPU using the CUDA C 5.0 standards. The hardware involved a desktop PC with an Intel Xeon X5660 CPU and six NVIDIA Tesla™ M2090 GPUs. The code was tested for a case of 20 MeV electron beam incident perpendicularly on a water-aluminum-water phantom. The depth and later dose profiles were found to agree with results obtained from well tested MC codes. Using six GPU cards, 6x106 electron histories were simulated within 2 seconds. In comparison, the same case running the EGSnrc and MCNPX codes required 1645 seconds and 9213 seconds, respectively. On-going work continues to test the code for different medical applications such as radiotherapy and brachytherapy.

  6. The new external ion beam analysis setup at the Demokritos Tandem accelerator and first applications in cultural heritage

    NASA Astrophysics Data System (ADS)

    Sokaras, Dimosthenis; Bistekos, Euthimios; Georgiou, Lambros; Salomon, Joseph; Bogovac, Mladen; Aloupi-Siotis, Eleni; Paschalis, Vasilis; Aslani, Ioanna; Karabagia, Sofia; Lagoyannis, Anastasios; Harissopulos, Sotirios; Kantarelou, Vasiliki; Karydas, Andreas-Germanos

    2011-03-01

    At the 5.5 MV Tandem VdG accelerator of the Institute of Nuclear Physics of N.C.S.R. "Demokritos", Athens, Greece, an external ion-beam set-up has been recently developed and installed. The aim of this development was to integrate the analytical capabilities of the PIXE, RBS and PIGE ion beam techniques in one experimental set-up, so that to attain a complete elemental and near surface structural characterization of samples in an almost non-destructive way and without any limitation concerning their size or conductive state. A careful 3D mechanical drawing optimized the set-up experimental parameters achieving probe dimensions at the millimeter range (1 mm 2) and fulfilling the special requirements imposed for optimum performance of the aforementioned techniques, including the possibility to use heavier, than protons, ion beams. For the digital pulse processing of the X-ray, γ-ray and charged particle detector signals, novel hardware and software tools were developed based on a custom FPGA configuration. The first applications were focused in the quality control of materials that have been intentionally contaminated with a particular tracer-element ("tagged" materials). The tagged materials which were developed and tested are technologically authentic replicas of ancient attic ceramics with black glazed decoration. Analytical diagnostic studies were carried out for a few representative paintings of contemporary Greek painters in order to identify and document materials/pigments and techniques and eventually to prevent trade of fakes. Finally, ancient glass beads were also examined with respect to the sodium concentration and its in-depth homogeneity.

  7. Spectroscopic and molecular docking study on the interaction between salicylic acid and the induced disease-resistant protein OsAAA1 of rice

    NASA Astrophysics Data System (ADS)

    Chen, Ya H.; Dai, Kang; Zhang, Hua; Wu, Yun H.; Wang, Chun T.; Liu, Xue Q.; Liu, Xin Q.

    2017-02-01

    The interaction between salicylic acid (SA) and the induced disease-resistant protein OsAAA1 in rice was studied using spectroscopy and molecular docking. Ultraviolet (UV) absorption spectroscopy demonstrated an interaction between OsAAA1 protein and SA. Spectroscopy showed that this interaction was a dynamic quenching process. Synchronous fluorescence spectroscopy (SFS) further revealed that this interaction caused changes in the microenvironment of tyrosine and tryptophan and that the interaction site was closer to the tryptophan residue. The structural model of protein OsAAA1 was determined by homology modeling method, and the molecular docking simulation diagram of OsAAA1 with SA was obtained. These models, in combination with a Ramachandran plot analysis, showed amino acid residues ranging from position 240 to position 420 as the possible site interacting with SA. Among them, Gly389, Lys257 and Glu425 might be three key amino acids that can form hydrogen bonds with SA.

  8. Spectroscopic and molecular docking study on the interaction between salicylic acid and the induced disease-resistant protein OsAAA1 of rice.

    PubMed

    Chen, Ya H; Dai, Kang; Zhang, Hua; Wu, Yun H; Wang, Chun T; Liu, Xue Q; Liu, Xin Q

    2017-02-15

    The interaction between salicylic acid (SA) and the induced disease-resistant protein OsAAA1 in rice was studied using spectroscopy and molecular docking. Ultraviolet (UV) absorption spectroscopy demonstrated an interaction between OsAAA1 protein and SA. Spectroscopy showed that this interaction was a dynamic quenching process. Synchronous fluorescence spectroscopy (SFS) further revealed that this interaction caused changes in the microenvironment of tyrosine and tryptophan and that the interaction site was closer to the tryptophan residue. The structural model of protein OsAAA1 was determined by homology modeling method, and the molecular docking simulation diagram of OsAAA1 with SA was obtained. These models, in combination with a Ramachandran plot analysis, showed amino acid residues ranging from position 240 to position 420 as the possible site interacting with SA. Among them, Gly389, Lys257 and Glu425 might be three key amino acids that can form hydrogen bonds with SA.

  9. Dilatation of the bile and pancreatic ducts due to compression by an unruptured abdominal aortic aneurysm (AAA): a case ameliorated by an endovascular stent grafting.

    PubMed

    Fukui, Toshiro; Suzuki, Ryo; Sakaguchi, Yutaku; Shibatani, Nobuyuki; Hachimine, Daisaku; Uchida, Kazushige; Nishio, Akiyoshi; Seki, Toshihito; Okazaki, Kazuichi

    2012-01-01

    An 88-year-old woman was referred to our hospital due to abdominal discomfort. Imaging modalities showed an abdominal aortic aneurysm (AAA) compressing the duodenum, the distal common bile duct and the head of the pancreas concurrent with distension of the proximal bile and main pancreatic ducts in the body and tail of the pancreas. After admission, the patient underwent endovascular stent grafting to treat the AAA. The size of the aneurysm decreased and the dilatation of the bile and pancreatic ducts became less prominent. AAA should therefore be considered as a possible diagnosis in patients with findings of dilatation of the bile ducts in the absence of stones or tumors in the pancreaticobiliary system. This is the first reported case of a patient treated for both AAA and dilatation of the bile and pancreatic ducts with endovascular stent grafting via the femoral artery.

  10. Experimental Investigation of Acceleration Characteristics of a Turbojet Engine Including Regions of Surge and Stall for Control Applications

    NASA Technical Reports Server (NTRS)

    Stiglic, Paul M; Schmidt, Ross D; Delio, Gene J

    1954-01-01

    The acceleration characteristics, in the region of maximum acceleration and compressor stall and surge, of an axial-flow turbojet engine with a fixed-area exhaust nozzle were determined by subjecting the engine to fuel flow steps, ramps, and ramps with a sine wave superimposed. From the data obtained, the effectiveness of an optimalizer type of control for this engine was evaluated. At all speeds above 40 percent of rated, a maximum acceleration was not obtained until the engine reached the point of stall or surge. A sharp drop, as high as 80 percent of maximum, in acceleration then occurred as the compressor entered surge of stall. With the maximum acceleration occurring at the point of surge or stall, the optimalizer-type control could not prevent the engine from entering surge or stall. Effective operation of the control may still be possible by sensing the sharp drop in acceleration experienced at the point of stall or surge and using this signal to limit fuel flow. The success of this type of operation would depend on the magnitude of the stall-recovery hysteresis.

  11. SU-E-T-36: A GPU-Accelerated Monte-Carlo Dose Calculation Platform and Its Application Toward Validating a ViewRay Beam Model

    SciTech Connect

    Wang, Y; Mazur, T; Green, O; Hu, Y; Wooten, H; Yang, D; Zhao, T; Mutic, S; Li, H

    2015-06-15

    Purpose: To build a fast, accurate and easily-deployable research platform for Monte-Carlo dose calculations. We port the dose calculation engine PENELOPE to C++, and accelerate calculations using GPU acceleration. Simulations of a Co-60 beam model provided by ViewRay demonstrate the capabilities of the platform. Methods: We built software that incorporates a beam model interface, CT-phantom model, GPU-accelerated PENELOPE engine, and GUI front-end. We rewrote the PENELOPE kernel in C++ (from Fortran) and accelerated the code on a GPU. We seamlessly integrated a Co-60 beam model (obtained from ViewRay) into our platform. Simulations of various field sizes and SSDs using a homogeneous water phantom generated PDDs, dose profiles, and output factors that were compared to experiment data. Results: With GPU acceleration using a dated graphics card (Nvidia Tesla C2050), a highly accurate simulation – including 100*100*100 grid, 3×3×3 mm3 voxels, <1% uncertainty, and 4.2×4.2 cm2 field size – runs 24 times faster (20 minutes versus 8 hours) than when parallelizing on 8 threads across a new CPU (Intel i7-4770). Simulated PDDs, profiles and output ratios for the commercial system agree well with experiment data measured using radiographic film or ionization chamber. Based on our analysis, this beam model is precise enough for general applications. Conclusions: Using a beam model for a Co-60 system provided by ViewRay, we evaluate a dose calculation platform that we developed. Comparison to measurements demonstrates the promise of our software for use as a research platform for dose calculations, with applications including quality assurance and treatment plan verification.

  12. Catalytic turnover triggers exchange of subunits of the magnesium chelatase AAA+ motor unit.

    PubMed

    Lundqvist, Joakim; Braumann, Ilka; Kurowska, Marzena; Müller, André H; Hansson, Mats

    2013-08-16

    The ATP-dependent insertion of Mg(2+) into protoporphyrin IX is the first committed step in the chlorophyll biosynthetic pathway. The reaction is catalyzed by magnesium chelatase, which consists of three gene products: BchI, BchD, and BchH. The BchI and BchD subunits belong to the family of AAA+ proteins (ATPases associated with various cellular activities) and form a two-ring complex with six BchI subunits in one layer and six BchD subunits in the other layer. This BchID complex is a two-layered trimer of dimers with the ATP binding site located at the interface between two neighboring BchI subunits. ATP hydrolysis by the BchID motor unit fuels the insertion of Mg(2+) into the porphyrin by the BchH subunit. In the present study, we explored mutations that were originally identified in semidominant barley (Hordeum vulgare L.) mutants. The resulting recombinant BchI proteins have marginal ATPase activity and cannot contribute to magnesium chelatase activity although they apparently form structurally correct complexes with BchD. Mixing experiments with modified and wild-type BchI in various combinations showed that an exchange of BchI subunits in magnesium chelatase occurs during the catalytic cycle, which indicates that dissociation of the complex may be part of the reaction mechanism related to product release. Mixing experiments also showed that more than three functional interfaces in the BchI ring structure are required for magnesium chelatase activity.

  13. AAA+ proteases and their role in distinct stages along the Vibrio cholerae lifecycle.

    PubMed

    Pressler, Katharina; Vorkapic, Dina; Lichtenegger, Sabine; Malli, Gerald; Barilich, Benjamin P; Cakar, Fatih; Zingl, Franz G; Reidl, Joachim; Schild, Stefan

    2016-09-01

    The facultative human pathogen Vibrio cholerae has to adapt to different environmental conditions along its lifecycle by means of transcriptional, translational and post-translational regulation. This study provides a first comprehensive analysis regarding the contribution of the cytoplasmic AAA+ proteases Lon, ClpP and HslV to distinct features of V. cholerae behaviour, including biofilm formation, motility, cholera toxin expression and colonization fitness in the mouse model. While absence of HslV did not yield to any altered phenotype compared to wildtype, absence of Lon or ClpP resulted in significantly reduced colonization in vivo. In addition, a Δlon deletion mutant showed altered biofilm formation and increased motility, which could be correlated with higher expression of V. cholerae flagella gene class IV. Concordantly, we could show by immunoblot analysis, that Lon is the main protease responsible for proteolytic control of FliA, which is required for class IV flagella gene transcription, but also downregulates virulence gene expression. FliA becomes highly sensitive to proteolytic degradation in absence of its anti-sigma factor FlgM, a scenario reported to occur during mucosal penetration due to FlgM secretion through the broken flagellum. Our results confirm that the high stability of FliA in the absence of Lon results in less cholera toxin and toxin corgulated pilus production under virulence gene inducing conditions and in the presence of a damaged flagellum. Thus, the data presented herein provide a molecular explanation on how V. cholerae can achieve full expression of virulence genes during early stages of colonization, despite FliA getting liberated from the anti-sigma factor FlgM.

  14. A proteomic study of Corynebacterium glutamicum AAA+ protease FtsH

    PubMed Central

    Lüdke, Alja; Krämer, Reinhard; Burkovski, Andreas; Schluesener, Daniela; Poetsch, Ansgar

    2007-01-01

    Background The influence of the membrane-bound AAA+ protease FtsH on membrane and cytoplasmic proteins of Corynebacterium glutamicum was investigated in this study. For the analysis of the membrane fraction, anion exchange chromatography was combined with SDS-PAGE, while the cytoplasmic protein fraction was studied by conventional two-dimensional gel electrophoresis. Results In contrast to the situation in other bacteria, deletion of C. glutamicum ftsH has no significant effect on growth in standard minimal medium or response to heat or osmotic stress. On the proteome level, deletion of the ftsH gene resulted in a strong increase of ten cytoplasmic and membrane proteins, namely biotin carboxylase/biotin carboxyl carrier protein (accBC), glyceraldehyde-3-phosphate dehydrogenase (gap), homocysteine methyltransferase (metE), malate synthase (aceB), isocitrate lyase (aceA), a conserved hypothetical protein (NCgl1985), succinate dehydrogenase A (sdhA), succinate dehydrogenase B (sdhB), succinate dehydrogenase CD (sdhCD), and glutamate binding protein (gluB), while 38 cytoplasmic and membrane-associated proteins showed a decreased abundance. The decreasing amount of succinate dehydrogenase A (sdhA) in the cytoplasmic fraction of the ftsH mutant compared to the wild type and its increasing abundance in the membrane fraction indicates that FtsH might be involved in the cleavage of a membrane anchor of this membrane-associated protein and by this changes its localization. Conclusion The data obtained hint to an involvement of C. glutamicum FtsH protease mainly in regulation of energy and carbon metabolism, while the protease is not involved in stress response, as found in other bacteria. PMID:17254330

  15. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  16. Accelerators for America's Future

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  17. Vibration control in accelerators

    SciTech Connect

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  18. Principles of Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Briggs*, Richard J.

    The basic concepts involved in induction accelerators are introduced in this chapter. The objective is to provide a foundation for the more detailed coverage of key technology elements and specific applications in the following chapters. A wide variety of induction accelerators are discussed in the following chapters, from the high current linear electron accelerator configurations that have been the main focus of the original developments, to circular configurations like the ion synchrotrons that are the subject of more recent research. The main focus in the present chapter is on the induction module containing the magnetic core that plays the role of a transformer in coupling the pulsed power from the modulator to the charged particle beam. This is the essential common element in all these induction accelerators, and an understanding of the basic processes involved in its operation is the main objective of this chapter. (See [1] for a useful and complementary presentation of the basic principles in induction linacs.)

  19. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  20. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  1. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  2. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  3. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  4. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  5. EXTREME PARTICLE ACCELERATION IN MAGNETIC RECONNECTION LAYERS: APPLICATION TO THE GAMMA-RAY FLARES IN THE CRAB NEBULA

    SciTech Connect

    Cerutti, Benoit; Uzdensky, Dmitri A.; Begelman, Mitchell C. E-mail: uzdensky@colorado.edu

    2012-02-20

    The gamma-ray space telescopes AGILE and Fermi detected short and bright synchrotron gamma-ray flares at photon energies above 100 MeV in the Crab Nebula. This discovery suggests that electron-positron pairs in the nebula are accelerated to PeV energies in a milligauss magnetic field, which is difficult to explain with classical models of particle acceleration and pulsar wind nebulae. We investigate whether particle acceleration in a magnetic reconnection layer can account for the puzzling properties of the flares. We numerically integrate relativistic test-particle orbits in the vicinity of the layer, including the radiation reaction force, and using analytical expressions for the large-scale electromagnetic fields. As they get accelerated by the reconnection electric field, the particles are focused deep inside the current layer where the magnetic field is small. The electrons suffer less from synchrotron losses and are accelerated to extremely high energies. Population studies show that, at the end of the layer, the particle distribution piles up at the maximum energy given by the electric potential drop and is focused into a thin fan beam. Applying this model to the Crab Nebula, we find that the emerging synchrotron emission spectrum peaks above 100 MeV and is close to the spectral shape of a single electron. The flare inverse Compton emission is negligible and no detectable emission is expected at other wavelengths. This mechanism provides a plausible explanation for the gamma-ray flares in the Crab Nebula and could be at work in other astrophysical objects such as relativistic jets in active galactic nuclei.

  6. Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase.

    PubMed

    Fodje, M N; Hansson, A; Hansson, M; Olsen, J G; Gough, S; Willows, R D; Al-Karadaghi, S

    2001-08-03

    In chlorophyll biosynthesis, insertion of Mg(2+) into protoporphyrin IX is catalysed in an ATP-dependent reaction by a three-subunit (BchI, BchD and BchH) enzyme magnesium chelatase. In this work we present the three-dimensional structure of the ATP-binding subunit BchI. The structure has been solved by the multiple wavelength anomalous dispersion method and refined at 2.1 A resolution to the crystallographic R-factor of 22.2 % (R(free)=24.5 %). It belongs to the chaperone-like "ATPase associated with a variety of cellular activities" (AAA) family of ATPases, with a novel arrangement of domains: the C-terminal helical domain is located behind the nucleotide-binding site, while in other known AAA module structures it is located on the top. Examination by electron microscopy of BchI solutions in the presence of ATP demonstrated that BchI, like other AAA proteins, forms oligomeric ring structures. Analysis of the amino acid sequence of subunit BchD revealed an AAA module at the N-terminal portion of the sequence and an integrin I domain at the C terminus. An acidic, proline-rich region linking these two domains is suggested to contribute to the association of BchI and BchD by binding to a positively charged cleft at the surface of the nucleotide-binding domain of BchI. Analysis of the amino acid sequences of BchI and BchH revealed integrin I domain-binding sequence motifs. These are proposed to bind the integrin I domain of BchD during the functional cycle of magnesium chelatase, linking porphyrin metallation by BchH to ATP hydrolysis by BchI. An integrin I domain and an acidic and proline-rich region have been identified in subunit CobT of cobalt chelatase, clearly demonstrating its homology to BchD. These findings, for the first time, provide an insight into the subunit organisation of magnesium chelatase and the homologous colbalt chelatase.

  7. Sequence comparisons of A/AA/6/60 influenza viruses: mutations which may contribute to attenuation.

    PubMed

    Herlocher, M L; Clavo, A C; Maassab, H F

    1996-06-01

    Influenza virus infection is a worldwide public health threat. Cold-adaptation was used to develop a vaccine line (ca A/AA/6/60 H2N2) which promised to reduce the morbidity and mortality associated with influenza and to serve as a model for other live virus vaccines. This study establishes that two distinct lines of wt A/AA/6/60 viruses exist with different phenotypic and genotypic characteristics. The two virus lines have the same parent but different passage histories. The first line is both temperature sensitive (ts) and attenuated in ferrets and the second line (after multiple passages in chick kidney cells, eggs and mice) is non-ts and virulent in ferrets. Both lines of viruses have been further differentiated by sequence analysis. We have identified point mutations common to all virulent viruses but absent from the attenuated viruses. This was accomplished by comparing the nucleotide sequences of the six internal genes in three different attenuated passages of A/AA/6/60 with those of five different virulent passages of the same virus. The corresponding nucleotides of the attenuated viruses, therefore, represent candidate attenuating lesions: 6 in the basic polymerase genes (5 in PB1, 1 in PB2), 2 in the acidic polymerase gene (PA), 1 in the matrix (M) gene, 2 in the non-structural (NS) gene, and none in the nucleoprotein (NP) gene. Two of the 5 attenuating lesions in PB1 are silent; 1/2 in PA is silent; and 1/2 in NS is silent. Further changes which might be identified by comparing nucleotide and amino acid sequences of the A/AA/6/60 viruses with those of other influenza viruses may also contribute to the attenuation of the ca virus. Our study identifies nucleotides which more precisely define virulence for this virus and suggests that growth of the virus at low temperature may have preserved a non-virulent virus population rather than attenuating a virulent one.

  8. NIIEFA accelerators for applied purposes

    NASA Astrophysics Data System (ADS)

    Vorogushin, M. F.; Strokach, A. P.; Filatov, O. G.

    2016-12-01

    Since the foundation of the institute, we have designed and delivered more than three hundred different accelerators to Russia and abroad: cyclotrons, linear accelerators, and neutron generators. The technical characteristics of our equipment makes it competitive on the international market. Here we present the application, main parameters, and status of accelerators manufactured by NIIEFA, as well as prospects for the development of electrophysical systems for applied purposes.

  9. Collective accelerator for electron colliders

    SciTech Connect

    Briggs, R.J.

    1985-05-13

    A recent concept for collective acceleration and focusing of a high energy electron bunch is discussed, in the context of its possible applicability to large linear colliders in the TeV range. The scheme can be considered to be a member of the general class of two-beam accelerators, where a high current, low voltage beam produces the acceleration fields for a trailing high energy bunch.

  10. Effect of Accelerated Artificial Aging on Translucency of Methacrylate and Silorane-Based Composite Resins

    PubMed Central

    Shirinzad, Mehdi; Rezaei-Soufi, Loghman; Mirtorabi, Maryam Sadat; Vahdatinia, Farshid

    2016-01-01

    Objectives: Composite restorations must have tooth-like optical properties namely color and translucency and maintain them for a long time. This study aimed to compare the effect of accelerated artificial aging (AAA) on the translucency of three methacrylate-based composites (Filtek Z250, Filtek Z250XT and Filtek Z350XT) and one silorane-based composite resin (Filtek P90). Materials and Methods: For this in vitro study, 56 composite discs were fabricated (n=14 for each group). Using scanning spectrophotometer, CIE L*a*b* parameters and translucency of each specimen were measured at 24 hours and after AAA for 384 hours. Data were analyzed using one-way ANOVA, Tukey's test and paired t-test at P=0.05 level of significance. Results: The mean (±standard deviation) translucency parameter for Filtek Z250, Filtek Z250XT, Filtek Z350XT and Filtek P90 was 5.67±0.64, 4.59±0.77, 7.87±0.82 and 4.21±0.71 before AAA and 4.25±0.615, 3.53±0.73, 5.94±0.57 and 4.12±0.54 after AAA, respectively. After aging, the translucency of methacrylate-based composites decreased significantly (P<0.05). However, the translucency of Filtek P90 did not change significantly (P>0.05). Conclusions: The AAA significantly decreased the translucency of methacrylate-based composites (Filtek Z250, Filtek Z250XT and Filtek Z350XT) but no change occurred in the translucency of Filtek P90 silorane-based composite. PMID:27928237

  11. Biomedical accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  12. A Study of the Activated GaAs Surface for Application as an Electron Source in Particle Accelerators

    SciTech Connect

    Chanlek, N.; Herbert, J. D.; Jones, L. B.; Middleman, K. J.; Jones, R. M.

    2009-08-04

    The use of type III-V semiconductor materials as photocathodes has in recent years become a focus for the High Energy Physics community. Once activated to a negative electron affinity (NEA) state and illuminated by a laser, these materials can be used as a high-brightness source of both polarised and un-polarised electrons in some modern accelerators, for example, ALICE (Accelerators and Lasers in Combined Experiments) at Daresbury Laboratory. This paper will focus on the use of gallium arsenide (GaAs) as a photocathode, and detail the reconfiguration and re-commissioning of two vacuum systems that support standard surface science techniques such as ultraviolet/X-ray photoelectron spectroscopy (UPS/XPS), low energy electron diffraction (LEED) and auger electron spectroscopy (AES). The paper will present details of cleaning GaAs in order to maximise quantum efficiency and will provide evidence from XPS and LEED to demonstrate what is happening at the atomic level.

  13. Microwave-accelerated metal-enhanced fluorescence: application to detection of genomic and exosporium anthrax DNA in <30 seconds.

    PubMed

    Aslan, Kadir; Zhang, Yongxia; Hibbs, Stephen; Baillie, Les; Previte, Michael J R; Geddes, Chris D

    2007-11-01

    We describe the ultra-fast and sensitive detection of the gene encoding the protective antigen of Bacillus anthracis the causative agent of anthrax. Our approach employs a highly novel platform technology, Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF), which combines the use of Metal-Enhanced Fluorescence to enhance assay sensitivity and focused microwave heating to spatially and kinetically accelerate DNA hybridization. Genomic and exosporium target DNA of Bacillus anthracis spores was detected within a minute in the nanograms per microliter concentration range using low-power focused microwave heating. The MAMEF technology was able to distinguish between B. anthracis and B. cereus, a non-virulent close relative. We believe that this study has set the stage and indeed provides an opportunity for the ultra-fast and specific detection of B. anthracis spores with minimal pre-processing steps using a relatively simple but cost-effective technology that could minimize casualties in the event of another anthrax attack.

  14. Acceleration Studies

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.

    1993-01-01

    Work to support the NASA MSFC Acceleration Characterization and Analysis Project (ACAP) was performed. Four tasks (analysis development, analysis research, analysis documentation, and acceleration analysis) were addressed by parallel projects. Work concentrated on preparation for and implementation of near real-time SAMS data analysis during the USMP-1 mission. User support documents and case specific software documentation and tutorials were developed. Information and results were presented to microgravity users. ACAP computer facilities need to be fully implemented and networked, data resources must be cataloged and accessible, future microgravity missions must be coordinated, and continued Orbiter characterization is necessary.

  15. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases.

    PubMed

    Halfon, S; Paul, M; Steinberg, D; Nagler, A; Arenshtam, A; Kijel, D; Polacheck, I; Srebnik, M

    2009-07-01

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction (7)Li(p,n)(7)Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  16. Additive electroplating technology as a post-CMOS process for the production of MEMS acceleration-threshold switches for transportation applications

    NASA Astrophysics Data System (ADS)

    Michaelis, Sven; Timme, Hans-Jörg; Wycisk, Michael; Binder, Josef

    2000-06-01

    This paper presents an acceleration-threshold sensor fabricated with an electroplating technology which can be integrated on top of a pre-processed CMOS signal processing circuit. The device can be manufactured using a standard low-cost CMOS production line and then adding the mechanical sensor elements via a specialized back-end process. This makes the system especially interesting for automotive applications, such as airbag safety systems or transportation shock monitoring systems, where smaller size, improved functionality, high reliability and low costs are important.

  17. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    SciTech Connect

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  18. Design and dosimetry characteristics of a commercial applicator system for intra-operative electron beam therapy utilizing ELEKTA Precise accelerator.

    PubMed

    Nevelsky, Alexander; Bernstein, Zvi; Bar-Deroma, Raquel; Kuten, Abraham; Orion, Itzhak

    2010-07-19

    The design concept and dosimetric characteristics of a new applicator system for intraoperative radiation therapy (IORT) are presented in this work. A new hard-docking commercial system includes polymethylmethacrylate (PMMA) applicators with different diameters and applicator end angles and a set of secondary lead collimators. A telescopic device allows changing of source-to-surface distance (SSD). All measurements were performed for 6, 9, 12 and 18 MeV electron energies. Output factors and percentage depth doses (PDD) were measured in a water phantom using a plane-parallel ion chamber. Isodose contours and radiation leakage were measured using a solid water phantom and radiographic films. The dependence of PDD on SSD was checked for the applicators with the smallest and the biggest diameters. SSD dependence of the output factors was measured. Hardcopies of PDD and isodose contours were prepared to help the team during the procedure on deciding applicator size and energy to be chosen. Applicator output factors are a function of energy, applicator size and applicator type. Dependence of SSD correction factors on applicator size and applicator type was found to be weak. The same SSD correction will be applied for all applicators in use for each energy. The radiation leakage through the applicators is clinically acceptable. The applicator system enables effective collimation of electron beams for IORT. The data presented are sufficient for applicator, energy and monitor unit selection for IORT treatment of a patient.

  19. COMPASS Accelerator Design Technical Overview

    SciTech Connect

    Nanni, Emilio; Dolgashev, Valery; Tantawi, Sami; Neilson, Jeff

    2016-03-14

    This report is a survey of technical options for generating a MeV-class accelerator for space based science applications. The survey was performed focusing on the primary technical requirements of the accelerator in the context of a satellite environment with its unique challenges of limited electrical power (PE), thermal isolation, dimensions, payload requirement and electrical isolation.

  20. Fluence Uniformity Measurements in an Electron Accelerator Used for Irradiation of Extended Area Solar Cells and Electronic Circuits for Space Applications

    NASA Technical Reports Server (NTRS)

    Uribe, Roberto M.; Filppi, Ed; Zhang, Shubo

    2007-01-01

    It is common to have liquid crystal displays and electronic circuit boards with area sizes of the order of 20x20 sq cm on board of satellites and space vehicles. Usually irradiating them at different fluence values assesses the radiation damage in these types of devices. As a result, there is a need for a radiation source with large spatial fluence uniformity for the study of the damage by radiation from space in those devices. Kent State University s Program on Electron Beam Technology has access to an electron accelerator used for both research and industrial applications. The electron accelerator produces electrons with energies in the interval from 1 to 5 MeV and a maximum beam power of 150 kW. At such high power levels, the electron beam is continuously scanned back and forth in one dimension in order to provide uniform irradiation and to prevent damage to the sample. This allows for the uniform irradiation of samples with an area of up to 1.32 sq m. This accelerator has been used in the past for the study of radiation damage in solar cells (1). However in order to irradiate extended area solar cells there was a need to measure the uniformity of the irradiation zone in terms of fluence. In this paper the methodology to measure the fluence uniformity on a sample handling system (linear motion system), used for the irradiation of research samples, along the irradiation zone of the above-mentioned facility is described and the results presented. We also illustrate the use of the electron accelerator for the irradiation of large area solar cells (of the order of 156 sq cm) and include in this paper the electrical characterization of these types of solar cells irradiated with 5 MeV electrons to a total fluence of 2.6 x 10(exp 15) e/sq cm.

  1. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  2. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  3. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  4. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  5. Unfolding the mechanism of the AAA+ unfoldase VAT by a combined cryo-EM, solution NMR study

    PubMed Central

    Huang, Rui; Ripstein, Zev A.; Augustyniak, Rafal; Lazniewski, Michal; Ginalski, Krzysztof; Kay, Lewis E.; Rubinstein, John L.

    2016-01-01

    The AAA+ (ATPases associated with a variety of cellular activities) enzymes play critical roles in a variety of homeostatic processes in all kingdoms of life. Valosin-containing protein-like ATPase of Thermoplasma acidophilum (VAT), the archaeal homolog of the ubiquitous AAA+ protein Cdc48/p97, functions in concert with the 20S proteasome by unfolding substrates and passing them on for degradation. Here, we present electron cryomicroscopy (cryo-EM) maps showing that VAT undergoes large conformational rearrangements during its ATP hydrolysis cycle that differ dramatically from the conformational states observed for Cdc48/p97. We validate key features of the model with biochemical and solution methyl-transverse relaxation optimized spectroscopY (TROSY) NMR experiments and suggest a mechanism for coupling the energy of nucleotide hydrolysis to substrate unfolding. These findings illustrate the unique complementarity between cryo-EM and solution NMR for studies of molecular machines, showing that the structural properties of VAT, as well as the population distributions of conformers, are similar in the frozen specimens used for cryo-EM and in the solution phase where NMR spectra are recorded. PMID:27402735

  6. Structural Characterization of a Newly Identified Component of α-Carboxysomes: The AAA+ Domain Protein CsoCbbQ.

    PubMed

    Sutter, Markus; Roberts, Evan W; Gonzalez, Raul C; Bates, Cassandra; Dawoud, Salma; Landry, Kimberly; Cannon, Gordon C; Heinhorst, Sabine; Kerfeld, Cheryl A

    2015-11-05

    Carboxysomes are bacterial microcompartments that enhance carbon fixation by concentrating ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and its substrate CO2 within a proteinaceous shell. They are found in all cyanobacteria, some purple photoautotrophs and many chemoautotrophic bacteria. Carboxysomes consist of a protein shell that encapsulates several hundred molecules of RuBisCO, and contain carbonic anhydrase and other accessory proteins. Genes coding for carboxysome shell components and the encapsulated proteins are typically found together in an operon. The α-carboxysome operon is embedded in a cluster of additional, conserved genes that are presumably related to its function. In many chemoautotrophs, products of the expanded carboxysome locus include CbbO and CbbQ, a member of the AAA+ domain superfamily. We bioinformatically identified subtypes of CbbQ proteins and show that their genes frequently co-occur with both Form IA and Form II RuBisCO. The α-carboxysome-associated ortholog, CsoCbbQ, from Halothiobacillus neapolitanus forms a hexamer in solution and hydrolyzes ATP. The crystal structure shows that CsoCbbQ is a hexamer of the typical AAA+ domain; the additional C-terminal domain, diagnostic of the CbbQ subfamily, structurally fills the inter-monomer gaps, resulting in a distinctly hexagonal shape. We show that CsoCbbQ interacts with CsoCbbO and is a component of the carboxysome shell, the first example of ATPase activity associated with a bacterial microcompartment.

  7. The AAA+ ATPase ATAD3A Controls Mitochondrial Dynamics at the Interface of the Inner and Outer Membranes ▿

    PubMed Central

    Gilquin, Benoît; Taillebourg, Emmanuel; Cherradi, Nadia; Hubstenberger, Arnaud; Gay, Olivia; Merle, Nicolas; Assard, Nicole; Fauvarque, Marie-Odile; Tomohiro, Shiho; Kuge, Osamu; Baudier, Jacques

    2010-01-01

    Dynamic interactions between components of the outer (OM) and inner (IM) membranes control a number of critical mitochondrial functions such as channeling of metabolites and coordinated fission and fusion. We identify here the mitochondrial AAA+ ATPase protein ATAD3A specific to multicellular eukaryotes as a participant in these interactions. The N-terminal domain interacts with the OM. A central transmembrane segment (TMS) anchors the protein in the IM and positions the C-terminal AAA+ ATPase domain in the matrix. Invalidation studies in Drosophila and in a human steroidogenic cell line showed that ATAD3A is required for normal cell growth and cholesterol channeling at contact sites. Using dominant-negative mutants, including a defective ATP-binding mutant and a truncated 50-amino-acid N-terminus mutant, we showed that ATAD3A regulates dynamic interactions between the mitochondrial OM and IM sensed by the cell fission machinery. The capacity of ATAD3A to impact essential mitochondrial functions and organization suggests that it possesses unique properties in regulating mitochondrial dynamics and cellular functions in multicellular organisms. PMID:20154147

  8. The AAA+ proteins Pontin and Reptin enter adult age: from understanding their basic biology to the identification of selective inhibitors

    PubMed Central

    Matias, Pedro M.; Baek, Sung Hee; Bandeiras, Tiago M.; Dutta, Anindya; Houry, Walid A.; Llorca, Oscar; Rosenbaum, Jean

    2015-01-01

    Pontin and Reptin are related partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) family. They are implicated in multiple and seemingly unrelated processes encompassing the regulation of gene transcription, the remodeling of chromatin, DNA damage sensing and repair, and the assembly of protein and ribonucleoprotein complexes, among others. The 2nd International Workshop on Pontin and Reptin took place at the Instituto de Tecnologia Química e Biológica António Xavier in Oeiras, Portugal on October 10–12, 2014, and reported significant new advances on the mechanisms of action of these two AAA+ ATPases. The major points under discussion were related to the mechanisms through which these proteins regulate gene transcription, their roles as co-chaperones, and their involvement in pathophysiology, especially in cancer and ciliary biology and disease. Finally, they may become anticancer drug targets since small chemical inhibitors were shown to produce anti-tumor effects in animal models. PMID:25988184

  9. The AAA+ proteins Pontin and Reptin enter adult age: from understanding their basic biology to the identification of selective inhibitors.

    PubMed

    Matias, Pedro M; Baek, Sung Hee; Bandeiras, Tiago M; Dutta, Anindya; Houry, Walid A; Llorca, Oscar; Rosenbaum, Jean

    2015-01-01

    Pontin and Reptin are related partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) family. They are implicated in multiple and seemingly unrelated processes encompassing the regulation of gene transcription, the remodeling of chromatin, DNA damage sensing and repair, and the assembly of protein and ribonucleoprotein complexes, among others. The 2nd International Workshop on Pontin and Reptin took place at the Instituto de Tecnologia Química e Biológica António Xavier in Oeiras, Portugal on October 10-12, 2014, and reported significant new advances on the mechanisms of action of these two AAA+ ATPases. The major points under discussion were related to the mechanisms through which these proteins regulate gene transcription, their roles as co-chaperones, and their involvement in pathophysiology, especially in cancer and ciliary biology and disease. Finally, they may become anticancer drug targets since small chemical inhibitors were shown to produce anti-tumor effects in animal models.

  10. HIGH GRADIENT INDUCTION ACCELERATOR

    SciTech Connect

    Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2007-06-21

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.

  11. An investigation into the use of MMCTP to tune accelerator source parameters and testing its clinical application.

    PubMed

    Conneely, Elaine; Alexander, Andrew; Stroian, Gabriella; Seuntjens, Jan; Foley, Mark J

    2013-03-04

    This paper presents an alternative method to tune Monte Carlo electron beam parameters to match measured data using a minimal set of variables in order to reduce the model setup time prior to clinical implementation of the model. Monte Carlo calculations provide the possibility of a powerful treatment planning verification technique. The nonstandardized and nonautomated process of tuning the required accelerator model is one of the reasons for delays in the clinical implementation of Monte Carlo techniques. This work aims to establish and verify an alternative tuning method that can be carried out in a minimal amount of time, allowing it to be easily implemented in a clinical setting by personnel with minimal experience with Monte Carlo methods. This tuned model can then be incorporated into the MMCTP system to allow the system to be used as a second dose calculation check for IMRT plans. The technique proposed was used to establish the primary electron beam parameters for accelerator models for the Varian Clinac 2100 6 MV photon beam using the BEAMnrc Monte Carlo system. The method is intended to provide a clear, direct, and efficient process for tuning an accelerator model using readily available clinical quality assurance data. The tuning provides a refined model, which agrees with measured dose profile curves within 1.5% outside the penumbra or 3 mm in the penumbra, for square fields with sides of 3 cm up to 30 cm. These models can then be employed as the basis for Monte Carlo recalculations of dose distributions, using the MMCTP system, for clinical treatment plans, providing an invaluable assessment tool. This was tested on six IMRT plans and compared to the measurements performed for the pretreatment QA process. These Monte Carlo values for the average dose to the chamber volume agreed with measurements to within 0.6%.

  12. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy.

    PubMed

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-03-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 10(5) n/cm(2)/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources.

  13. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    PubMed Central

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-01-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources. PMID:25589504

  14. Laser acceleration and its future

    PubMed Central

    Tajima, Toshiki

    2010-01-01

    Laser acceleration is based on the concept to marshal collective fields that may be induced by laser. In order to exceed the material breakdown field by a large factor, we employ the broken-down matter of plasma. While the generated wakefields resemble with the fields in conventional accelerators in their structure (at least qualitatively), it is their extreme accelerating fields that distinguish the laser wakefield from others, amounting to tiny emittance and compact accelerator. The current research largely falls on how to master the control of acceleration process in spatial and temporal scales several orders of magnitude smaller than the conventional method. The efforts over the last several years have come to a fruition of generating good beam properties with GeV energies on a table top, leading to many applications, such as ultrafast radiolysis, intraoperative radiation therapy, injection to X-ray free electron laser, and a candidate for future high energy accelerators. PMID:20228616

  15. Calorimetric low temperature detectors for low-energetic heavy ions and their application in accelerator mass spectrometry.

    PubMed

    Kraft-Bermuth, S; Andrianov, V A; Bleile, A; Echler, A; Egelhof, P; Kiseleva, A; Kiselev, O; Meier, H J; Meier, J P; Shrivastava, A; Weber, M; Golser, R; Kutschera, W; Priller, A; Steier, P; Vockenhuber, C

    2009-10-01

    The energy-sensitive detection of heavy ions with calorimetric low temperature detectors was investigated in the energy range of E=0.1-1 MeV/amu, commonly used for accelerator mass spectrometry (AMS). The detectors used consist of sapphire absorbers and superconducting aluminum transition edge thermometers operated at T approximately 1.5 K. They were irradiated with various ion beams (13C, 197Au, 238U) provided by the VERA tandem accelerator in Vienna, Austria. The relative energy resolution obtained was DeltaE/E=(5-9) x 10(-3), even for the heaviest ions such as 238U. In addition, no evidence for a pulse height defect was observed. This performance allowed for the first time to apply a calorimetric low temperature detector in an AMS experiment. The aim was to precisely determine the isotope ratio of 236U/238U for several samples of natural uranium, 236U being known as a sensitive monitor for neutron fluxes. Replacing a conventionally used detection system at VERA by the calorimetric detector enabled to substantially reduce background from neighboring isotopes and to increase the detection efficiency. Due to the high sensitivity achieved, a value of 236U/238U=6.1 x 10(-12) could be obtained, representing the smallest 236U/238U ratio measured at the time. In addition, we contributed to establishing an improved material standard of 236U/238U, which can be used as a reference for future AMS measurements.

  16. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  17. Dielectric laser accelerators

    NASA Astrophysics Data System (ADS)

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  18. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  19. SU-E-T-137: Dosimetric Validation for Pinnacle, Acuros, AAA, and Brainlab Algorithms with Induced Inhomogenieties

    SciTech Connect

    Lopez, P; Tambasco, M; LaFontaine, R; Burns, L

    2014-06-01

    Purpose: To compare the dosimetric accuracy of the Eclipse 11.0 Acuros XB and Anisotropic Analytical Algorithm (AAA), Pinnacle-3 9.2 Collapsed Cone Convolution, and the iPlan 4.1 Monte Carlo (MC) and Pencil Beam (PB) algorithms using measurement as the gold standard. Methods: Ion chamber and diode measurements were taken for 6, 10, and 18 MV beams in a phantom made up of slab densities corresponding to solid water, lung, and bone. The phantom was setup at source-to-surface distance of 100 cm, and the field sizes were 3.0 × 3.0, 5.0 × 5.0, and 10.0 × 10.0 cm2. Data from the planning systems were computed along the central axis of the beam. The measurements were taken using a pinpoint chamber and edge diode for interface regions. Results: The best agreement between data from the algorithms and our measurements occurs away from the slab interfaces. For the 6 MV beam, iPlan 4.1 MC software performs the best with 1.7% absolute average percent difference from measurement. For the 10 MV beam, iPlan 4.1 PB performs the best with 2.7% absolute average percent difference from measurement. For the 18 MV beam, Acuros performs the best with 2.0% absolute average percent difference from measurement. It is interesting to note that the steepest drop in dose occurred the at lung heterogeneity-solid water interface of the18 MV, 3.0 × 3.0 cm2 field size setup. In this situation, Acuros and AAA performed best with an average percent difference within −1.1% of measurement, followed by iPlan 4.1 MC, which was within 4.9%. Conclusion: This study shows that all of the algorithms perform reasonably well in computing dose in a heterogeneous slab phantom. Moreover, Acuros and AAA perform particularly well at the lung-solid water interfaces for higher energy beams and small field sizes.

  20. Development of a coupled dynamics code with transport theory capability and application to accelerator driven systems transients

    SciTech Connect

    Cahalan, J. E.; Ama, T.; Palmiotti, G.; Taiwo, T. A.; Yang, W. S.

    2000-03-09

    The VARIANT-K and DIF3D-K nodal spatial kinetics computer codes have been coupled to the SAS4A and SASSYS-1 liquid metal reactor accident and systems analysis codes. SAS4A and SASSYS-1 have been extended with the addition of heavy liquid metal (Pb and Pb-Bi) thermophysical properties, heat transfer correlations, and fluid dynamics correlations. The coupling methodology and heavy liquid metal modeling additions are described. The new computer code suite has been applied to analysis of neutron source and thermal-hydraulics transients in a model of an accelerator-driven minor actinide burner design proposed in an OECD/NEA/NSC benchmark specification. Modeling assumptions and input data generation procedures are described. Results of transient analyses are reported, with emphasis on comparison of P1 and P3 variational nodal transport theory results with nodal diffusion theory results, and on significance of spatial kinetics effects.

  1. The Radiation Reaction Effect on Electrons at Super-High Laser Intensities with Application to Ion Acceleration

    SciTech Connect

    Naumova, N. M.; Sokolov, I. V.; Tikhonchuk, V. T.; Schlegel, T.; Nees, J. A.; Yanovsky, V. P.; Labaune, C.; Mourou, G. A.

    2009-07-25

    At super-high laser intensities the radiation back reaction on electrons becomes so significant that its influence on laser-plasma interaction cannot be neglected while simulating these processes with particle-in-cell (PIC) codes. We discuss a way of taking the radiation effect on electrons into account and extracting spatial and frequency distributions of the generated high-frequency radiation. We also examine ponderomotive acceleration of ions in the double layer created by strong laser pulses and we compare an analytical description with PIC simulations as well. We discuss: (1) non-stationary features found in simulations, (2) electron cooling effect due to radiation losses, and (3) the limits of the analytical model.

  2. Determination of CA-41, I-129 and OS-187 in the Rochester tandem accelerator and some applications of these isotopes

    NASA Technical Reports Server (NTRS)

    Fehn, U.; Elmore, D.; Gove, H. E.; Kubik, P.; Teng, R.; Tubbs, L.

    1986-01-01

    The measurement of Ca-41 and I-129 utilizing the Rochester Tanden Accelerator Mass Spectrometer (TAMS) is discussed. Ca-41, having a half-life of 100,000 yrs., is of potential use for the dating of ground water as well as of bones in the age range between 50,000 and 1 million yrs. A major problem for the measurement of Ca-41 with TAMS is the fact that calcium does not readily form negative atomic ions. It does, however, form negative molecular ions. The production of CaO ions from compounds such as CaO and CaCO3 and from free Ca molecules sprayed with oxygen gas was studied. A project to utilize I-129 as a tracer for hydrothermal convection in sediment-covered oceanic crust is also briefly described. Finally, plans to use the Os-187/Os-186 ratio for the determination of extraterrestrial material in the Ries crater in Germany are summarized.

  3. NIFTI and DISCOS: New concepts for a compact accelerator neutron source for boron neutron capture therapy applications

    SciTech Connect

    Powell, J.; Ludewig, H.; Todosow, M.; Reich, M.

    1995-06-01

    Two new concepts, NIFTI and DISCOS, are described. These concepts enable the efficient production of epithermal neutrons for BNCT (Boron Neutron Capture Therapy) medical treatment, utilizing a low current, low energy proton beam impacting on a lithium target. The NIFTI concept uses fluoride compounds, such as lead or beryllium fluoride, to efficiently degrade high energy neutrons from the lithium target to the lower energies required for BNCT. The fluoride compounds are in turn encased in an iron layer that strongly impedes the transmission of neutrons with energies above 24 KeV. Lower energy neutrons readily pass through this iron filter, which has a deep window in its scattering cross section at 24 KeV. The DISCOS concept uses a rapidly rotating, high g disc to create a series of thin ({approximately} 1 micron thickness) liquid lithium targets in the form of continuous films or sheets of discrete droplets--through which the proton beam passes. The average energy lost by a proton as it passes through a single target is small, approximately 10 KeV. Between the targets, the proton beam is re-accelerated by an applied DC electric field. The DISCOS approach enables the accelerator--target facility to operate with a beam energy only slightly above the threshold value for neutron production--resulting in an output beam of low-energy epithermal neutrons--while achieving a high yield of neutrons per milliamp of proton beam current. Parametric trade studies of the NIFTI and DISCOS concepts are described. These include analyses of a broad range of NIFTI designs using the Monte carlo MCNP neutronics code, as well as mechanical and thermal-hydraulic analyses of various DISCOS designs.

  4. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  5. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  6. Clinical outcomes, toxicity, and cosmesis in breast cancer patients with close skin spacing treated with accelerated partial breast irradiation (APBI) using multi-lumen/catheter applicators

    PubMed Central

    Akhtari, Mani; Abboud, Mirna; Szeja, Sean; Pino, Ramiro; Lewis, Gary D.; Bass, Barbara L.; Miltenburg, Darlene M.; Butler, E. Brian

    2016-01-01

    Purpose Accelerated partial breast irradiation (APBI) using a single-lumen device is associated with better cosmetic outcomes if the spacing between the applicator and skin is > 7 mm. However, there are no reports addressing the late toxicity and clinical outcomes in patients treated with single-entry multi-lumen/catheter applicators who had close skin spacing (7 mm or less). We undertook this study to report clinical outcome, acute and late toxicity as well as cosmesis of early stage breast cancer patients with close skin spacing treated with APBI using multi-lumen or multi-catheter devices. Material and methods This is a retrospective study of all breast cancer patients who had undergone APBI using single-entry multi-lumen/catheter devices in a single institution between 2008 to 2012. The study was limited to those with ≤ 7 mm spacing between the device and skin. Results We identified 37 patients and 38 lesions with skin spacing of ≤ 7 mm. Seven lesions (18%) had spacing of ≤ 3 mm. Median follow-up was 47.5 months. There was one case of ipsilateral breast recurrence and one ipsilateral axillary recurrence. Based on RTOG criteria, 22 treated lesions experienced grade 1 and 9 lesions experienced grade 2 toxicity. Twenty-one lesions experienced late grade 1 toxicity. One patient had to undergo mastectomy due to mastitis. Twenty-four treated breasts showed excellent and 11 had good cosmetic outcome. Overall cosmesis trended towards a significant correlation with skin spacing. However, all patients with ≤ 3 mm skin spacing experienced acute and late toxicities. Conclusions Accelerated partial breast irradiation can be safely performed in patients with skin spacing of ≤ 7 mm using single-entry multi-lumen/catheter applicators with excellent cosmetic outcomes and an acceptable toxicity profile. However, skin spacing of ≤ 3 mm is associated with acute and late toxicity and should be avoided if possible. PMID:28115955

  7. The Pex1/Pex6 complex is a heterohexameric AAA+ motor with alternating and highly coordinated subunits.

    PubMed

    Gardner, Brooke M; Chowdhury, Saikat; Lander, Gabriel C; Martin, Andreas

    2015-03-27

    Pex1 and Pex6 are Type-2 AAA+ ATPases required for the de novo biogenesis of peroxisomes. Mutations in Pex1 and Pex6 account for the majority of the most severe forms of peroxisome biogenesis disorders in humans. Here, we show that the ATP-dependent complex of Pex1 and Pex6 from Saccharomyces cerevisiae is a heterohexamer with alternating subunits. Within the Pex1/Pex6 complex, only the D2 ATPase ring hydrolyzes ATP, while nucleotide binding in the D1 ring promotes complex assembly. ATP hydrolysis by Pex1 is highly coordinated with that of Pex6. Furthermore, Pex15, the membrane anchor required for Pex1/Pex6 recruitment to peroxisomes, inhibits the ATP-hydrolysis activity of Pex1/Pex6.

  8. Early and Late Endograft Limb Proximal Migration with Resulting Type 1b Endoleak following an EVAR for Ruptured AAA

    PubMed Central

    Adrahtas, Demetri; Monastiriotis, Spyridon

    2017-01-01

    Introduction. Seal zone failure after EVAR leads to type 1 endoleaks and increases the risk of delayed aortic rupture. Type 1b endoleaks, although rare, represent a true risk to the repair. Case Presentation. We report the case of a 65-year-old female who underwent emergent endovascular repair for a ruptured infrarenal abdominal aortic aneurysm and developed bilateral type 1b endoleaks following proximal migration of both endograft limbs. The right-side failure was diagnosed within 48 hours from the initial repair and the left side at the 1-year follow-up. Both sides were successfully treated with endovascular techniques. A review of the literature with an analysis of potential risk factors is also reported. Conclusion. For patients undergoing EVAR for ruptured AAA and with noncalcified iliac arteries, more aggressive oversizing of the iliac limbs is recommended to prevents distal seal zone failures. PMID:28255495

  9. Impact accelerations

    NASA Technical Reports Server (NTRS)

    Vongierke, H. E.; Brinkley, J. W.

    1975-01-01

    The degree to which impact acceleration is an important factor in space flight environments depends primarily upon the technology of capsule landing deceleration and the weight permissible for the associated hardware: parachutes or deceleration rockets, inflatable air bags, or other impact attenuation systems. The problem most specific to space medicine is the potential change of impact tolerance due to reduced bone mass and muscle strength caused by prolonged weightlessness and physical inactivity. Impact hazards, tolerance limits, and human impact tolerance related to space missions are described.

  10. Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers.

    PubMed

    Hansson, A; Willows, R D; Roberts, T H; Hansson, M

    2002-10-15

    Many enzymes of the bacteriochlorophyll and chlorophyll biosynthesis pathways have been conserved throughout evolution, but the molecular mechanisms of the key steps remain unclear. The magnesium chelatase reaction is one of these steps, and it requires the proteins BchI, BchD, and BchH to catalyze the insertion of Mg(2+) into protoporphyrin IX upon ATP hydrolysis. Structural analyses have shown that BchI forms hexamers and belongs to the ATPases associated with various cellular activities (AAA(+)) family of proteins. AAA(+) proteins are Mg(2+)-dependent ATPases that normally form oligomeric ring structures in the presence of ATP. By using ATPase-deficient BchI subunits, we demonstrate that binding of ATP is sufficient to form BchI oligomers. Further, ATPase-deficient BchI proteins can form mixed oligomers with WT BchI. The formation of BchI oligomers is not sufficient for magnesium chelatase activity when combined with BchD and BchH. Combining WT BchI with ATPase-deficient BchI in an assay disrupts the chelatase reaction, but the presence of deficient BchI does not inhibit ATPase activity of the WT BchI. Thus, the ATPase of every WT segment of the hexamer is autonomous, but all segments of the hexamer must be capable of ATP hydrolysis for magnesium chelatase activity. We suggest that ATP hydrolysis of each BchI within the hexamer causes a conformational change of the hexamer as a whole. However, hexamers containing ATPase-deficient BchI are unable to perform this ATP-dependent conformational change, and the magnesium chelatase reaction is stalled in an early stage.

  11. Structural Characterization of a Newly Identified Component of α-Carboxysomes: The AAA+ Domain Protein CsoCbbQ

    DOE PAGES

    Sutter, Markus; Roberts, Evan W.; Gonzalez, Raul C.; ...

    2015-11-05

    Carboxysomes are bacterial microcompartments that enhance carbon fixation by concentrating ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and its substrate CO2 within a proteinaceous shell. They are found in all cyanobacteria, some purple photoautotrophs and many chemoautotrophic bacteria. Carboxysomes consist of a protein shell that encapsulates several hundred molecules of RuBisCO, and contain carbonic anhydrase and other accessory proteins. Genes coding for carboxysome shell components and the encapsulated proteins are typically found together in an operon. The α-carboxysome operon is embedded in a cluster of additional, conserved genes that are presumably related to its function. In many chemoautotrophs, products of the expanded carboxysome locusmore » include CbbO and CbbQ, a member of the AAA+ domain superfamily. We bioinformatically identified subtypes of CbbQ proteins and show that their genes frequently co-occur with both Form IA and Form II RuBisCO. The α-carboxysome-associated ortholog, CsoCbbQ, from Halothiobacillus neapolitanus forms a hexamer in solution and hydrolyzes ATP. The crystal structure shows that CsoCbbQ is a hexamer of the typical AAA+ domain; the additional C-terminal domain, diagnostic of the CbbQ subfamily, structurally fills the inter-monomer gaps, resulting in a distinctly hexagonal shape. Finally, we show that CsoCbbQ interacts with CsoCbbO and is a component of the carboxysome shell, the first example of ATPase activity associated with a bacterial microcompartment.« less

  12. Structural Characterization of a Newly Identified Component of α-Carboxysomes: The AAA+ Domain Protein CsoCbbQ

    SciTech Connect

    Sutter, Markus; Roberts, Evan W.; Gonzalez, Raul C.; Bates, Cassandra; Dawoud, Salma; Landry, Kimberly; Cannon, Gordon C.; Heinhorst, Sabine; Kerfeld, Cheryl A.

    2015-11-05

    Carboxysomes are bacterial microcompartments that enhance carbon fixation by concentrating ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and its substrate CO2 within a proteinaceous shell. They are found in all cyanobacteria, some purple photoautotrophs and many chemoautotrophic bacteria. Carboxysomes consist of a protein shell that encapsulates several hundred molecules of RuBisCO, and contain carbonic anhydrase and other accessory proteins. Genes coding for carboxysome shell components and the encapsulated proteins are typically found together in an operon. The α-carboxysome operon is embedded in a cluster of additional, conserved genes that are presumably related to its function. In many chemoautotrophs, products of the expanded carboxysome locus include CbbO and CbbQ, a member of the AAA+ domain superfamily. We bioinformatically identified subtypes of CbbQ proteins and show that their genes frequently co-occur with both Form IA and Form II RuBisCO. The α-carboxysome-associated ortholog, CsoCbbQ, from Halothiobacillus neapolitanus forms a hexamer in solution and hydrolyzes ATP. The crystal structure shows that CsoCbbQ is a hexamer of the typical AAA+ domain; the additional C-terminal domain, diagnostic of the CbbQ subfamily, structurally fills the inter-monomer gaps, resulting in a distinctly hexagonal shape. Finally, we show that CsoCbbQ interacts with CsoCbbO and is a component of the carboxysome shell, the first example of ATPase activity associated with a bacterial microcompartment.

  13. Quick-hardening problems are eliminated with spray gun modification which mixes resin and accelerator liquids during application

    NASA Technical Reports Server (NTRS)

    Johnson, O. W.

    1964-01-01

    A modified spray gun, with separate containers for resin and additive components, solves the problems of quick hardening and nozzle clogging. At application, separate atomizers spray the liquids in front of the nozzle face where they blend.

  14. A multiparameter wearable physiologic monitoring system for space and terrestrial applications

    NASA Technical Reports Server (NTRS)

    Mundt, Carsten W.; Montgomery, Kevin N.; Udoh, Usen E.; Barker, Valerie N.; Thonier, Guillaume C.; Tellier, Arnaud M.; Ricks, Robert D.; Darling, Robert B.; Cagle, Yvonne D.; Cabrol, Nathalie A.; Ruoss, Stephen J.; Swain, Judith L.; Hines, John W.; Kovacs, Gregory T A.

    2005-01-01

    A novel, unobtrusive and wearable, multiparameter ambulatory physiologic monitoring system for space and terrestrial applications, termed LifeGuard, is presented. The core element is a wearable monitor, the crew physiologic observation device (CPOD), that provides the capability to continuously record two standard electrocardiogram leads, respiration rate via impedance plethysmography, heart rate, hemoglobin oxygen saturation, ambient or body temperature, three axes of acceleration, and blood pressure. These parameters can be digitally recorded with high fidelity over a 9-h period with precise time stamps and user-defined event markers. Data can be continuously streamed to a base station using a built-in Bluetooth RF link or stored in 32 MB of on-board flash memory and downloaded to a personal computer using a serial port. The device is powered by two AAA batteries. The design, laboratory, and field testing of the wearable monitors are described.

  15. Compact pulsed accelerator

    SciTech Connect

    Rhee, M.J.; Schneider, R.F.

    1983-01-01

    The formation of fast pulses from a current charged transmission line and opening switch is described. By employing a plasma focus as an opening switch and diode in the prototype device, a proton beam of peak energy 250 keV is produced. The time integrated energy spectrum of the beam is constructed from a Thomson spectrograph. Applications of this device as an inexpensive and portable charged particle accelerator are discussed. 7 refs., 5 figs., 1 tab.

  16. Accelerator simulation using computers

    SciTech Connect

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a multi-track'' simulation and analysis code can be used for these applications.

  17. Accelerator simulation using computers

    SciTech Connect

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a ``multi-track`` simulation and analysis code can be used for these applications.

  18. Application of quantitative trait locus mapping and transcriptomics to studies of the senescence-accelerated phenotype in rats

    PubMed Central

    2014-01-01

    Background Etiology of complex disorders, such as cataract and neurodegenerative diseases including age-related macular degeneration (AMD), remains poorly understood due to the paucity of animal models, fully replicating the human disease. Previously, two quantitative trait loci (QTLs) associated with early cataract, AMD-like retinopathy, and some behavioral aberrations in senescence-accelerated OXYS rats were uncovered on chromosome 1 in a cross between OXYS and WAG rats. To confirm the findings, we generated interval-specific congenic strains, WAG/OXYS-1.1 and WAG/OXYS-1.2, carrying OXYS-derived loci of chromosome 1 in the WAG strain. Both congenic strains displayed early cataract and retinopathy but differed clinically from OXYS rats. Here we applied a high-throughput RNA sequencing (RNA-Seq) strategy to facilitate nomination of the candidate genes and functional pathways that may be responsible for these differences and can contribute to the development of the senescence-accelerated phenotype of OXYS rats. Results First, the size and map position of QTL-derived congenic segments were determined by comparative analysis of coding single-nucleotide polymorphisms (SNPs), which were identified for OXYS, WAG, and congenic retinal RNAs after sequencing. The transferred locus was not what we expected in WAG/OXYS-1.1 rats. In rat retina, 15442 genes were expressed. Coherent sets of differentially expressed genes were identified when we compared RNA-Seq retinal profiles of 20-day-old WAG/OXYS-1.1, WAG/OXYS-1.2, and OXYS rats. The genes most different in the average expression level between the congenic strains included those generally associated with the Wnt, integrin, and TGF-β signaling pathways, widely involved in neurodegenerative processes. Several candidate genes (including Arhgap33, Cebpg, Gtf3c1, Snurf, Tnfaip3, Yme1l1, Cbs, Car9 and Fn1) were found to be either polymorphic in the congenic loci or differentially expressed between the strains. These genes may

  19. Accelerated learning approaches for maintenance training

    SciTech Connect

    Erickson, E.J.

    1991-01-01

    As a training tool, Accelerated Learning techniques have been in use since 1956. Trainers from a variety of applications and disciplines have found success in using Accelerated Learning approaches, such as training aids, positive affirmations, memory aids, room arrangement, color patterns, and music. Some have thought that maintenance training and Accelerated Learning have nothing in common. Recent training applications by industry and education of Accelerated Learning are proving very successful by several standards. This paper cites available resource examples and challenges maintenance trainers to adopt new ideas and concepts to accelerate learning in all training setting. 7 refs.

  20. Analyzing Nuclear Fuel Cycles from Isotopic Ratios of Waste Products Applicable to Measurement by Accelerator Mass Spectrometry

    SciTech Connect

    Biegalski, S R; Whitney, S M; Buchholz, B

    2005-08-24

    An extensive study was conducted to determine isotopic ratios of nuclides in spent fuel that may be utilized to reveal historical characteristics of a nuclear reactor cycle. This forensic information is important to determine the origin of unknown nuclear waste. The distribution of isotopes in waste products provides information about a nuclear fuel cycle, even when the isotopes of uranium and plutonium are removed through chemical processing. Several different reactor cycles of the PWR, BWR, CANDU, and LMFBR were simulated for this work with the ORIGEN-ARP and ORIGEN 2.2 codes. The spent fuel nuclide concentrations of these reactors were analyzed to find the most informative isotopic ratios indicative of irradiation cycle length and reactor design. Special focus was given to long-lived and stable fission products that would be present many years after their creation. For such nuclides, mass spectrometry analysis methods often have better detection limits than classic gamma-ray spectroscopy. The isotopic ratios {sup 151}Sm/{sup 146}Sm, {sup 149}Sm/{sup 146}Sm, and {sup 244}Cm/{sup 246}Cm were found to be good indicators of fuel cycle length and are well suited for analysis by accelerator mass spectroscopy.

  1. Using a commercial graphical processing unit and the CUDA programming language to accelerate scientific image processing applications

    NASA Astrophysics Data System (ADS)

    Broussard, Randy P.; Ives, Robert W.

    2011-01-01

    In the past two years the processing power of video graphics cards has quadrupled and is approaching super computer levels. State-of-the-art graphical processing units (GPU) boast of theoretical computational performance in the range of 1.5 trillion floating point operations per second (1.5 Teraflops). This processing power is readily accessible to the scientific community at a relatively small cost. High level programming languages are now available that give access to the internal architecture of the graphics card allowing greater algorithm optimization. This research takes memory access expensive portions of an image-based iris identification algorithm and hosts it on a GPU using the C++ compatible CUDA language. The selected segmentation algorithm uses basic image processing techniques such as image inversion, value squaring, thresholding, dilation, erosion and memory/computationally intensive calculations such as the circular Hough transform. Portions of the iris segmentation algorithm were accelerated by a factor of 77 over the 2008 GPU results. Some parts of the algorithm ran at speeds that were over 1600 times faster than their CPU counterparts. Strengths and limitations of the GPU Single Instruction Multiple Data architecture are discussed. Memory access times, instruction execution times, programming details and code samples are presented as part of the research.

  2. A HiPIMS plasma source with a magnetic nozzle that accelerates ions: application in a thruster

    NASA Astrophysics Data System (ADS)

    Bathgate, Stephen N.; Ganesan, Rajesh; Bilek, Marcela M. M.; McKenzie, David R.

    2017-01-01

    We demonstrate a solid fuel electrodeless ion thruster that uses a magnetic nozzle to collimate and accelerate copper ions produced by a high power impulse magnetron sputtering discharge (HiPIMS). The discharge is initiated using argon gas but in a practical device the consumption of argon could be minimised by exploiting the self-sputtering of copper. The ion fluence produced by the HiPIMS discharge was measured with a retarding field energy analyzer (RFEA) as a function of the magnetic field strength of the nozzle. The ion fraction of the copper was determined from the deposition rate of copper as a function of substrate bias and was found to exceed 87%. The ion fluence and ion energy increased in proportion with the magnetic field of the nozzle and the energy of the ions was found to follow a Maxwell-Boltzmann distribution with a directed velocity. The effectiveness of the magnetic nozzle in converting the randomized thermal motion of the ions into a jet was demonstrated from the energy distribution of the ions. The maximum ion exhaust velocity of at least 15.1 km/s, equivalent to a specific impulse of 1543 s was measured which is comparable to existing Hall thrusters and exceeds that of Teflon pulsed plasma thrusters.

  3. Acceleration of Relativistic Electron Dynamics by Means of X2C Transformation: Application to the Calculation of Nonlinear Optical Properties.

    PubMed

    Konecny, Lukas; Kadek, Marius; Komorovsky, Stanislav; Malkina, Olga L; Ruud, Kenneth; Repisky, Michal

    2016-12-13

    The Liouville-von Neumann equation based on the four-component matrix Dirac-Kohn-Sham Hamiltonian is transformed to a quasirelativistic exact two-component (X2C) form and then used to solve the time evolution of the electronic states only. By this means, a significant acceleration by a factor of 7 or more has been achieved. The transformation of the original four-component equation of motion is formulated entirely in matrix algebra, following closely the X2C decoupling procedure of Ilias and Saue [ J. Chem. Phys. 2007 , 126 , 064102 ] proposed earlier for a static (time-independent) case. In a dynamic (time-dependent) regime, however, an adiabatic approximation must in addition be introduced in order to preserve the block-diagonal form of the time-dependent Dirac-Fock operator during the time evolution. The resulting X2C Liouville-von Neumann electron dynamics (X2C-LvNED) is easy to implement as it does not require an explicit form of the picture-change transformed operators responsible for the (higher-order) relativistic corrections and/or interactions with external fields. To illustrate the accuracy and performance of the method, numerical results and computational timings for nonlinear optical properties are presented. All of the time domain X2C-LvNED results show excellent agreement with the reference four-component calculations as well as with the results obtained from frequency domain response theory.

  4. The application of the Accelerated Stability Assessment Program (ASAP) to quality by design (QbD) for drug product stability.

    PubMed

    Waterman, Kenneth Craig

    2011-09-01

    An isoconversion paradigm, where times in different temperature and humidity-controlled stability chambers are set to provide a fixed degradant level, is shown to compensate for the complex, non-single order kinetics of solid drug products. A humidity-corrected Arrhenius equation provides reliable estimates for temperature and relative humidity effects on degradation rates. A statistical protocol is employed to determine best fits for chemical stability data, which in turn allows for accurate estimations of shelf life (with appropriate confidence intervals) at any storage condition including inside packaging (based on the moisture vapor transmission rate of the packaging and moisture sorption isotherms of the internal components). These methodologies provide both faster results and far better predictions of chemical stability limited shelf life (expiry) than previously possible. Precise shelf-life estimations are generally determined using a 2-week, product-specific protocol. Once the model for a product is developed, it can play a critical role in providing the product understanding necessary for a quality by design (QbD) filing for product approval and enable rational control strategies to assure product stability. Moreover, this Accelerated Stability Assessment Program (ASAP) enables the coupling of product attributes (e.g., moisture content, packaging options) to allow for flexibility in how control strategies are implemented to provide a balance of cost, speed, and other factors while maintaining adequate stability.

  5. Critical Issues in Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Uesaka, M.; Hosokai, T.

    2004-10-01

    Updated achievements and critical issues in plasma accelerators are summarized. As to laser plasma accelerators, we cover the results of plasma cathodes by U.Michigan, LBNL, LOA and U.Tokyo. Although many new results of accelerated electrons have been reported, the electrons do not yet form a bunch with narrow energy spread. Several injection schemes and measurements to verify ultrashort bunch (tens fs) with narrow energy spread, low emittance and many charges are planned. E-162 experiments by UCLA / USC / SLAC and a newly proposed experiment on density transition trapping are introduced for electron beam driven plasma accelerators. Their main purpose is realization of GeV plasma accelerator, but application to pump-and-probe analysis for investigation of ultrafast quantum phenomena is also promising.

  6. CHARACTERIZATION OF DEFENSE NUCLEAR WASTE USING HAZARDOUS WASTE GUIDANCE. APPLICATIONS TO HANFORD SITE ACCELERATED HIGH-LEVEL WASTE TREATMENT AND DISPOSAL MISSION0

    SciTech Connect

    Hamel, William; Huffman, Lori; Lerchen, Megan; Wiemers, Karyn

    2003-02-27

    Federal hazardous waste regulations were developed for management of industrial waste. These same regulations are also applicable for much of the nation's defense nuclear wastes. At the U.S. Department of Energy's (DOE) Hanford Site in southeast Washington State, one of the nation's largest inventories of nuclear waste remains in storage in large underground tanks. The waste's regulatory designation and its composition and form constrain acceptable treatment and disposal options. Obtaining detailed knowledge of the tank waste composition presents a significant portion of the many challenges in meeting the regulatory-driven treatment and disposal requirements for this waste. Key in applying the hazardous waste regulations to defense nuclear wastes is defining the appropriate and achievable quality for waste feed characterization data and the supporting evidence demonstrating that applicable requirements have been met at the time of disposal. Application of a performance-based approach to demonstrating achievable quality standards will be discussed in the context of the accelerated high-level waste treatment and disposal mission at the Hanford Site.

  7. Development and practical application of accelerated solvent extraction for the isolation of cocaine/crack biomarkers in meconium samples.

    PubMed

    Mantovani, Cínthia de Carvalho; Lima, Marcela Bittar; Oliveira, Carolina Dizioli Rodrigues de; Menck, Rafael de Almeida; Diniz, Edna Maria de Albuquerque; Yonamine, Mauricio

    2014-04-15

    A method using accelerated solvent extraction (ASE) for the isolation of cocaine/crack biomarkers in meconium samples, followed by solid phase extraction (SPE) and the simultaneous quantification by gas chromatography-mass spectrometry (GC-MS) was developed and validated. Initially, meconium samples were submitted to an ASE procedure, which was followed by SPE with Bond Elut Certify I cartridges. The analytes were derivatizated with PFP/PFPA and analyzed by GC-MS. The limits of detection (LOD) were between 11 and 17ng/g for all analytes. The limits of quantification (LOQ) were 30ng/g for anhydroecgonine methyl ester, and 20ng/g for cocaine, benzoylecgonine, ecgonine methyl ester and cocaethylene. Linearity ranged from the LOQ to 1500ng/g for all analytes, with a coefficients of determination greater than 0.991, except for m-hydroxybenzoylecgonine, which was only qualitatively detected. Precision and accuracy were evaluated at three concentration levels. For all analytes, inter-assay precision ranged from 3.2 to 18.1%, and intra-assay precision did not exceed 12.7%. The accuracy results were between 84.5 and 114.2% and the average recovery ranged from 17 to 84%. The method was applied to 342 meconium samples randomly collected in the University Hospital-University of São Paulo (HU-USP), Brazil. Cocaine biomarkers were detected in 19 samples, which represent 5.6% of exposure prevalence. Significantly lower birth weight, length and head circumference were found for the exposed newborns compared with the non-exposed group. This is the first report in which ASE was used as a sample preparation technique to extract cocaine biomarkers from a complex biological matrix such as meconium samples. The advantages of the developed method are the smaller demand for organic solvents and the minor sample handling, which allows a faster and accurate procedure, appropriate to confirm fetal exposure to cocaine/crack.

  8. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  9. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered

  10. Precision and accuracy in the quantitative analysis of biological samples by accelerator mass spectrometry: application in microdose absolute bioavailability studies.

    PubMed

    Gao, Lan; Li, Jing; Kasserra, Claudia; Song, Qi; Arjomand, Ali; Hesk, David; Chowdhury, Swapan K

    2011-07-15

    Determination of the pharmacokinetics and absolute bioavailability of an experimental compound, SCH 900518, following a 89.7 nCi (100 μg) intravenous (iv) dose of (14)C-SCH 900518 2 h post 200 mg oral administration of nonradiolabeled SCH 900518 to six healthy male subjects has been described. The plasma concentration of SCH 900518 was measured using a validated LC-MS/MS system, and accelerator mass spectrometry (AMS) was used for quantitative plasma (14)C-SCH 900518 concentration determination. Calibration standards and quality controls were included for every batch of sample analysis by AMS to ensure acceptable quality of the assay. Plasma (14)C-SCH 900518 concentrations were derived from the regression function established from the calibration standards, rather than directly from isotopic ratios from AMS measurement. The precision and accuracy of quality controls and calibration standards met the requirements of bioanalytical guidance (U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Veterinary Medicine. Guidance for Industry: Bioanalytical Method Validation (ucm070107), May 2001. http://www.fda.gov/downloads/Drugs/GuidanceCompilanceRegulatoryInformation/Guidances/ucm070107.pdf ). The AMS measurement had a linear response range from 0.0159 to 9.07 dpm/mL for plasma (14)C-SCH 900158 concentrations. The CV and accuracy were 3.4-8.5% and 94-108% (82-119% for the lower limit of quantitation (LLOQ)), respectively, with a correlation coefficient of 0.9998. The absolute bioavailability was calculated from the dose-normalized area under the curve of iv and oral doses after the plasma concentrations were plotted vs the sampling time post oral dose. The mean absolute bioavailability of SCH 900518 was 40.8% (range 16.8-60.6%). The typical accuracy and standard deviation in AMS quantitative analysis of drugs from human plasma samples have been reported for the first time, and the impact of these

  11. CCC for AAA: Tapping Creativity, Collaboration & Cooperation for Quality in Teacher Education

    ERIC Educational Resources Information Center

    Praveen, C.

    2006-01-01

    Information and Communication Technology in education is changing the way we teach, learn and conduct research. Today we have WIRE, WEB and WINDOWS leading to CONNECTIVITY, NETWORKING and APPLICATIONS. Not surprisingly the National Council of Teacher Education, (NCTE) India, decided to make ICT Literacy a compulsory part of the Pre-service course…

  12. Dynamics of Radiation Pressure Acceleration

    SciTech Connect

    Macchi, A.; Benedetti, C.; Pegoraro, F.; Veghini, S.

    2010-02-02

    We describe recent theoretical results on Radiation Pressure Acceleration of ions by ultraintense, circularly polarized laser pulses, giving an insight on the underlying dynamics and suggestions for the development of applications. In thick targets, we show how few-cycle pulses may generate single ion bunches in inhomogeneous density profiles. In thin targets, we present a refinement of the simple model of the accelerating mirror and a comparison of its predictions with simulation results, solving an apparent paradox.

  13. Accelerator physics and modeling: Proceedings

    SciTech Connect

    Parsa, Z.

    1991-12-31

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings.

  14. Accelerator physics and modeling: Proceedings

    SciTech Connect

    Parsa, Z.

    1991-01-01

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings.

  15. Integrating Science and Management - Evaluation of a Collaborative Model to Accelerate the Transition of Sea Level Rise Research Results into Application

    NASA Astrophysics Data System (ADS)

    Kidwell, D.; DeLorme, D.; Lewitus, A.

    2015-12-01

    The development and implementation of applied research programs that maximize stakeholder collaboration and utility is a well-documented struggle for funding agencies. In 2007, NOAA initiated multi-year stakeholder engagement process to develop a regional-scale, inter-disciplinary research project that resulted in a novel approach to accelerate the application of research results into management. This process culminated in a 2009 federal funding opportunity and resultant 6-year Ecological Effects of Sea Level Rise-Northern Gulf of Mexico (EESLR-NGOM) project focused on the dynamic integration of biological models (wetlands and oysters) with inundation and storm surge models at three National Estuarine Research Reserves in Florida, Alabama, and Mississippi. The project implemented a co-management approach between a traditional principle investigator (PI) and newly created applications co-PI that led a management advisory committee. Our goal was to provide the dedicated funding and infrastructure necessary to ensure the initial relevancy of the proposed project results, to guide ongoing research efforts, and to aid the efficient incorporation of key scientific results and tools into direct management application. As the project nears completion in 2016 and modeling applications reach maturity, this presentation will discuss the programmatic approach that resulted in EESLR-NGOM as well as an evaluation of nearly 6-years of collaborative science. This evaluation will focus on the funding agency perspective, with an emphasis on assessing the pros and cons of project implementation to establish lessons-learned for related collaborative science efforts. In addition, with increased attention in the Gulf of Mexico on projected sea level rise impacts to coastal ecosystem restoration and management, a core benchmark for this evaluation will be the use of project models and tools by coastal managers and planners at local, state, and/or federal agencies.

  16. Review of ion accelerators

    SciTech Connect

    Alonso, J.

    1990-06-01

    The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here.

  17. Hardware Accelerated Simulated Radiography

    SciTech Connect

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-04-12

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists.

  18. Adaptive control for accelerators

    DOEpatents

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  19. Dosimetric considerations and early clinical experience of accelerated partial breast irradiation using multi-lumen applicators in the setting of breast augmentation

    PubMed Central

    Akhtari, Mani; Pino, Ramiro; Scarboro, Sarah B.; Bass, Barbara L.; Miltenburg, Darlene M.; Butler, E. Brian

    2015-01-01

    Purpose Accelerated partial breast irradiation (APBI) is an accepted treatment option in breast-conserving therapy for early stage breast cancer. However, data regarding outcomes of patients treated with multi-lumen catheter systems who have existing breast implants is limited. The purpose of this study was to report treatment parameters, outcomes, and possible dosimetric correlation with cosmetic outcome for this population of patients at our institution. Material and methods We report the treatment and outcome of seven consecutive patients with existing breast implants and early stage breast cancer who were treated between 2009 and 2013 using APBI following lumpectomy. All patients were treated twice per day for five days to a total dose of 34 Gy using a high-dose-rate 192Ir source. Cosmetic outcomes were evaluated using the Harvard breast cosmesis scale, and late toxicities were reported using the Radiation Therapy Oncology Group (RTOG) late radiation morbidity schema. Results After a mean follow-up of 32 months, all patients have remained cancer free. Six out of seven patients had an excellent or good cosmetic outcome. There were no grade 3 or 4 late toxicities. The average total breast implant volume was 279.3 cc, received an average mean dose of 12.1 Gy, and a maximum dose of 234.1 Gy. The average percentage of breast implant volume receiving 50%, 75%, 100%, 150%, and 200% of the prescribed dose was 15.6%, 7.03%, 4.6%, 1.58%, and 0.46%, respectively. Absolute volume of breast implants receiving more than 50% of prescribed dose correlated with worse cosmetic outcomes. Conclusions Accelerated partial breast irradiation using a multi-lumen applicator in patients with existing breast implants can safely be performed with promising early clinical results. The presence of the implant did not compromise the ability to achieve dosimetric criteria; however, dose to the implant and the irradiated implant volume may be related with worse cosmetic outcomes. PMID:26816499

  20. Measurement of cosmogenic /sup 36/Cl/Cl in young volcanic rocks: An application of accelerator mass spectrometry in geochronology

    SciTech Connect

    Leavy, B.D.; Phillips, F.M.; Elmore, D.; Kubik, P.W.

    1987-01-01

    We have measured /sup 36/Cl/Cl ratios in a number of young volcanic rocks in order to test the feasibility of using /sup 36/Cl buildup as a geochronometer for materials less than about 700,000 years old. All of the analyzed rocks have been dated independently using K-Ar or other radiometric dating methods and have exposure histories that are known or can be reasonably assumed. Measured /sup 36/Cl/Cl ratios in these rocks are in good agreement with the calculated in-situ /sup 36/Cl buildup curve. These analyses indicate that AMS measurement of /sup 36/Cl buildup in young rocks is a potentially powerful new method for dating materials that had previously been undatable, and as such will have broad applications in volcanology, tectonics, geophysics, and Quaternary research.

  1. Progress of Laser-Driven Plasma Accelerators

    SciTech Connect

    Nakajima, Kazuhisa

    2007-07-11

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world.Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called ''dream beams on a table top'', which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators.

  2. Progress on plasma accelerators

    SciTech Connect

    Chen, P.

    1986-05-01

    Several plasma accelerator concepts are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA) and the Plasma Wake Field Accelerator (PWFA). Various accelerator physics issues regarding these schemes are discussed, and numerical examples on laboratory scale experiments are given. The efficiency of plasma accelerators is then revealed with suggestions on improvements. Sources that cause emittance growth are discussed briefly.

  3. Parallel beam dynamics simulation of linear accelerators

    SciTech Connect

    Qiang, Ji; Ryne, Robert D.

    2002-01-31

    In this paper we describe parallel particle-in-cell methods for the large scale simulation of beam dynamics in linear accelerators. These techniques have been implemented in the IMPACT (Integrated Map and Particle Accelerator Tracking) code. IMPACT is being used to study the behavior of intense charged particle beams and as a tool for the design of next-generation linear accelerators. As examples, we present applications of the code to the study of emittance exchange in high intensity beams and to the study of beam transport in a proposed accelerator for the development of accelerator-driven waste transmutation technologies.

  4. Application of Wavelet-Based Methods for Accelerating Multi-Time-Scale Simulation of Bistable Heterogeneous Catalysis

    DOE PAGES

    Gur, Sourav; Frantziskonis, George N.; Univ. of Arizona, Tucson, AZ; ...

    2017-02-16

    Here, we report results from a numerical study of multi-time-scale bistable dynamics for CO oxidation on a catalytic surface in a flowing, well-mixed gas stream. The problem is posed in terms of surface and gas-phase submodels that dynamically interact in the presence of stochastic perturbations, reflecting the impact of molecular-scale fluctuations on the surface and turbulence in the gas. Wavelet-based methods are used to encode and characterize the temporal dynamics produced by each submodel and detect the onset of sudden state shifts (bifurcations) caused by nonlinear kinetics. When impending state shifts are detected, a more accurate but computationally expensive integrationmore » scheme can be used. This appears to make it possible, at least in some cases, to decrease the net computational burden associated with simulating multi-time-scale, nonlinear reacting systems by limiting the amount of time in which the more expensive integration schemes are required. Critical to achieving this is being able to detect unstable temporal transitions such as the bistable shifts in the example problem considered here. Lastly, our results indicate that a unique wavelet-based algorithm based on the Lipschitz exponent is capable of making such detections, even under noisy conditions, and may find applications in critical transition detection problems beyond catalysis.« less

  5. Electric rail gun projectile acceleration to high velocity

    NASA Technical Reports Server (NTRS)

    Bauer, D. P.; Mccormick, T. J.; Barber, J. P.

    1982-01-01

    Electric rail accelerators are being investigated for application in electric propulsion systems. Several electric propulsion applications require that the rail accelerator be capable of launching projectiles at velocities above 10 km/s. An experimental program was conducted to develop rail accelerator technology for high velocity projectile launch. Several 6 mm bore, 3 m long rail accelerators were fabricated. Projectiles with a mass of 0.2 g were accelerated by plasmas, carrying currents up to 150 kA. Experimental design and results are described. Results indicate that the accelerator performed as predicted for a fraction of the total projectile acceleration. The disparity between predicted and measured results are discussed.

  6. In-situ monitoring of blood glucose level for dialysis machine by AAA-battery-size ATR Fourier spectroscopy

    NASA Astrophysics Data System (ADS)

    Hosono, Satsuki; Sato, Shun; Ishida, Akane; Suzuki, Yo; Inohara, Daichi; Nogo, Kosuke; Abeygunawardhana, Pradeep K.; Suzuki, Satoru; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2015-07-01

    For blood glucose level measurement of dialysis machines, we proposed AAA-battery-size ATR (Attenuated total reflection) Fourier spectroscopy in middle infrared light region. The proposed one-shot Fourier spectroscopic imaging is a near-common path and spatial phase-shift interferometer with high time resolution. Because numerous number of spectral data that is 60 (= camera frame rare e.g. 60[Hz]) multiplied by pixel number could be obtained in 1[sec.], statistical-averaging improvement realize high-accurate spectral measurement. We evaluated the quantitative accuracy of our proposed method for measuring glucose concentration in near-infrared light region with liquid cells. We confirmed that absorbance at 1600[nm] had high correlations with glucose concentrations (correlation coefficient: 0.92). But to measure whole-blood, complex light phenomenon caused from red blood cells, that is scattering and multiple reflection or so, deteriorate spectral data. Thus, we also proposed the ultrasound-assisted spectroscopic imaging that traps particles at standing-wave node. Thus, if ATR prism is oscillated mechanically, anti-node area is generated around evanescent light field on prism surface. By elimination complex light phenomenon of red blood cells, glucose concentration in whole-blood will be quantify with high accuracy. In this report, we successfully trapped red blood cells in normal saline solution with ultrasonic standing wave (frequency: 2[MHz]).

  7. A threonine turnstile defines a dynamic amphiphilic binding motif in the AAA ATPase p97 allosteric binding site.

    PubMed

    Burnett, James C; Lim, Chaemin; Peyser, Brian D; Samankumara, Lalith P; Kovaliov, Marina; Colombo, Raffaele; Bulfer, Stacie L; LaPorte, Matthew G; Hermone, Ann R; McGrath, Connor F; Arkin, Michelle R; Gussio, Rick; Huryn, Donna M; Wipf, Peter

    2017-03-29

    The turnstile motion of two neighboring threonines sets up a dynamic side chain interplay that can accommodate both polar and apolar ligands in a small molecule allosteric protein binding site. A computational model based on SAR data and both X-ray and cryo-EM structures of the AAA ATPase p97 was used to analyze the effects of paired threonines at the inhibitor site. Specifically, the Thr side chain hydroxyl groups form a hydrogen bonding network that readily accommodates small, highly polar ligand substituents. Conversely, diametric rotation of the χ1 torsion by 150-180° orients the side chain β-methyl groups into the binding cleft, creating a hydrophobic pocket that can accommodate small, apolar substituents. This motif was found to be critical for rationalizing the affinities of a structurally focused set of inhibitors of p97 covering a > 2000-fold variation in potencies, with a preference for either small-highly polar or small-apolar groups. The threonine turnstile motif was further validated by a PDB search that identified analogous binding modes in ligand interactions in PKB, as well as by an analysis of NMR structures demonstrating additional gear-like interactions between adjacent Thr pairs. Combined, these data suggest that the threonine turnstile motif may be a general feature of interest in protein binding pockets.

  8. Werner syndrome protein directly binds to the AAA ATPase p97/VCP in an ATP-dependent fashion.

    PubMed

    Indig, Fred Eliezer; Partridge, Juneth Joaquin; von Kobbe, Cayetano; Aladjem, Mirit I; Latterich, Martin; Bohr, Vilhelm A

    2004-01-01

    We have previously shown that the Werner syndrome helicase, WRNp, a member of the RecQ helicase family, forms a tight molecular complex with the p97/Valosin containing protein (VCP), a member of the AAA (ATPases associated with diverse cellular activities) family of proteins. This interaction is disrupted by chemical agents that confer DNA damage, suggesting that VCP plays an important role in the signal-dependent release of WRNp from its nucleolar sequestration site. Here, we characterized the structural requirements for interactions between WRNp and VCP and for the nuclear localization of VCP. We discovered that VCP directly binds to the RQC (RecQ conserved) domain of WRNp, which is a highly conserved motif common to the RecQ helicase family. This interaction is ATP-dependent, suggesting that VCP plays a mechanistic role in releasing WRNp from the nucleolus. Immunohistochemical analysis of various VCP domains and mutated proteins expressed in vitro demonstrated that VCP may contain several hierarchical cellular localization motifs within its domain structure.

  9. Ultrastructural changes and the distribution of arabinogalactan proteins during somatic embryogenesis of banana (Musa spp. AAA cv. 'Yueyoukang 1').

    PubMed

    Pan, Xiao; Yang, Xiao; Lin, Guimei; Zou, Ru; Chen, Houbin; Samaj, Jozef; Xu, Chunxiang

    2011-08-01

    A better understanding of somatic embryogenesis in banana (Musa spp.) may provide a practical way to improve regeneration of banana plants. In this study, we applied scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to visualize the ultrastructural changes during somatic embryogenesis of banana (Musa AAA cv. 'Yueyoukang 1'). We also used histological and immunohistochemical techniques with 16 monoclonal antibodies to study the spatial distribution and cellular/subcellular localization of different arabinogalactan protein (AGP) components of the cell wall during somatic embryogenesis. Histological study with periodic acid-Schiff staining documented diverse embryogenic stages from embryogenic cells (ECs) to the late embryos. SEM revealed a mesh-like structure on the surface of proembryos which represented an early structural marker of somatic embryogenesis. TEM showed that ECs were rich in juvenile mitochondria, endoplasmic reticulum and Golgi stacks. Cells in proembryos and early globular embryos resembled ECs, but they were more vacuolated, showed more regular nuclei and slightly more developed organelles. Immunocytochemical study revealed that the signal of most AGP epitopes was stronger in starch-rich cells when compared with typical ECs. The main AGP component in the extracellular matrix surface network of banana proembryos was the MAC204 epitope. Later, AGP immunolabelling patterns varied with the developmental stages of the embryos. These results about developmental regulation of AGP epitopes along with developmental changes in the ultrastructure of cells are providing new insights into the somatic embryogenesis of banana.

  10. Structural insights into the Escherichia coli lysine decarboxylases and molecular determinants of interaction with the AAA+ ATPase RavA

    PubMed Central

    Kandiah, Eaazhisai; Carriel, Diego; Perard, Julien; Malet, Hélène; Bacia, Maria; Liu, Kaiyin; Chan, Sze W. S.; Houry, Walid A.; Ollagnier de Choudens, Sandrine; Elsen, Sylvie; Gutsche, Irina

    2016-01-01

    The inducible lysine decarboxylase LdcI is an important enterobacterial acid stress response enzyme whereas LdcC is its close paralogue thought to play mainly a metabolic role. A unique macromolecular cage formed by two decamers of the Escherichia coli LdcI and five hexamers of the AAA+ ATPase RavA was shown to counteract acid stress under starvation. Previously, we proposed a pseudoatomic model of the LdcI-RavA cage based on its cryo-electron microscopy map and crystal structures of an inactive LdcI decamer and a RavA monomer. We now present cryo-electron microscopy 3D reconstructions of the E. coli LdcI and LdcC, and an improved map of the LdcI bound to the LARA domain of RavA, at pH optimal for their enzymatic activity. Comparison with each other and with available structures uncovers differences between LdcI and LdcC explaining why only the acid stress response enzyme is capable of binding RavA. We identify interdomain movements associated with the pH-dependent enzyme activation and with the RavA binding. Multiple sequence alignment coupled to a phylogenetic analysis reveals that certain enterobacteria exert evolutionary pressure on the lysine decarboxylase towards the cage-like assembly with RavA, implying that this complex may have an important function under particular stress conditions. PMID:27080013

  11. Thyroid Hormone Receptor Interacting Protein 13 (TRIP13) AAA-ATPase Is a Novel Mitotic Checkpoint-silencing Protein*

    PubMed Central

    Wang, Kexi; Sturt-Gillespie, Brianne; Hittle, James C.; Macdonald, Dawn; Chan, Gordon K.; Yen, Tim J.; Liu, Song-Tao

    2014-01-01

    The mitotic checkpoint (or spindle assembly checkpoint) is a fail-safe mechanism to prevent chromosome missegregation by delaying anaphase onset in the presence of defective kinetochore-microtubule attachment. The target of the checkpoint is the E3 ubiquitin ligase anaphase-promoting complex/cyclosome. Once all chromosomes are properly attached and bioriented at the metaphase plate, the checkpoint needs to be silenced. Previously, we and others have reported that TRIP13 AAA-ATPase binds to the mitotic checkpoint-silencing protein p31comet. Here we show that endogenous TRIP13 localizes to kinetochores. TRIP13 knockdown delays metaphase-to-anaphase transition. The delay is caused by prolonged presence of the effector for the checkpoint, the mitotic checkpoint complex, and its association and inhibition of the anaphase-promoting complex/cyclosome. These results suggest that TRIP13 is a novel mitotic checkpoint-silencing protein. The ATPase activity of TRIP13 is essential for its checkpoint function, and interference with TRIP13 abolished p31comet-mediated mitotic checkpoint silencing. TRIP13 overexpression is a hallmark of cancer cells showing chromosomal instability, particularly in certain breast cancers with poor prognosis. We suggest that premature mitotic checkpoint silencing triggered by TRIP13 overexpression may promote cancer development. PMID:25012665

  12. Disassembly of mitotic checkpoint complexes by the joint action of the AAA-ATPase TRIP13 and p31comet

    PubMed Central

    Eytan, Esther; Wang, Kexi; Miniowitz-Shemtov, Shirly; Sitry-Shevah, Danielle; Kaisari, Sharon; Yen, Tim J.; Liu, Song-Tao; Hershko, Avram

    2014-01-01

    The mitotic (or spindle assembly) checkpoint system delays anaphase until all chromosomes are correctly attached to the mitotic spindle. When the checkpoint is active, a Mitotic Checkpoint Complex (MCC) assembles and inhibits the ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C). MCC is composed of the checkpoint proteins Mad2, BubR1, and Bub3 associated with the APC/C activator Cdc20. When the checkpoint signal is turned off, MCC is disassembled and the checkpoint is inactivated. The mechanisms of the disassembly of MCC are not sufficiently understood. We have previously observed that ATP hydrolysis is required for the action of the Mad2-binding protein p31comet to disassemble MCC. We now show that HeLa cell extracts contain a factor that promotes ATP- and p31comet-dependent disassembly of a Cdc20–Mad2 subcomplex and identify it as Thyroid Receptor Interacting Protein 13 (TRIP13), an AAA-ATPase known to interact with p31comet. The joint action of TRIP13 and p31comet also promotes the release of Mad2 from MCC, participates in the complete disassembly of MCC and abrogates checkpoint inhibition of APC/C. We propose that TRIP13 plays centrally important roles in the sequence of events leading to MCC disassembly and checkpoint inactivation. PMID:25092294

  13. The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects

    PubMed Central

    Herruzo, Esther; Ontoso, David; González-Arranz, Sara; Cavero, Santiago; Lechuga, Ana; San-Segundo, Pedro A.

    2016-01-01

    Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes. PMID:27257060

  14. Evaluation of a multiple spin- and gradient-echo (SAGE) EPI acquisition with SENSE acceleration: applications for perfusion imaging in and outside the brain.

    PubMed

    Skinner, Jack T; Robison, Ryan K; Elder, Christopher P; Newton, Allen T; Damon, Bruce M; Quarles, C Chad

    2014-12-01

    Perfusion-based changes in MR signal intensity can occur in response to the introduction of exogenous contrast agents and endogenous tissue properties (e.g. blood oxygenation). MR measurements aimed at capturing these changes often implement single-shot echo planar imaging (ssEPI). In recent years ssEPI readouts have been combined with parallel imaging (PI) to allow fast dynamic multi-slice imaging as well as the incorporation of multiple echoes. A multiple spin- and gradient-echo (SAGE) EPI acquisition has recently been developed to allow measurement of transverse relaxation rate (R2 and R2(*)) changes in dynamic susceptibility contrast (DSC)-MRI experiments in the brain. With SAGE EPI, the use of PI can influence image quality, temporal resolution, and achievable echo times. The effect of PI on dynamic SAGE measurements, however, has not been evaluated. In this work, a SAGE EPI acquisition utilizing SENSE PI and partial Fourier (PF) acceleration was developed and evaluated. Voxel-wise measures of R2 and R2(*) in healthy brain were compared using SAGE EPI and conventional non-EPI multiple echo acquisitions with varying SENSE and PF acceleration. A conservative SENSE factor of 2 with PF factor of 0.73 was found to provide accurate measures of R2 and R2(*) in white (WM) (rR2=[0.55-0.79], rR2*=[0.47-0.71]) and gray (GM) matter (rR2=[0.26-0.59], rR2*=[0.39-0.74]) across subjects. The combined use of SENSE and PF allowed the first dynamic SAGE EPI measurements in muscle, with a SENSE factor of 3 and PF factor of 0.6 providing reliable relaxation rate estimates when compared to multi-echo methods. Application of the optimized SAGE protocol in DSC-MRI of high-grade glioma patients provided T1 leakage-corrected estimates of CBV and CBF as well as mean vessel diameter (mVD) and simultaneous measures of DCE-MRI parameters K(trans) and ve. Likewise, application of SAGE in a muscle reperfusion model allowed dynamic measures of R2', a parameter that has been shown to correlate

  15. Simulation Accelerator

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under a NASA SBIR (Small Business Innovative Research) contract, (NAS5-30905), EAI Simulation Associates, Inc., developed a new digital simulation computer, Starlight(tm). With an architecture based on the analog model of computation, Starlight(tm) outperforms all other computers on a wide range of continuous system simulation. This system is used in a variety of applications, including aerospace, automotive, electric power and chemical reactors.

  16. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect

    Spentzouris, P.; Cary, J.; McInnes, L.C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization

  17. Accelerator mass spectrometry.

    PubMed

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples.

  18. Electrostatic Plasma Accelerator (EPA)

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1995-01-01

    The application of electric propulsion to communications satellites, however, has been limited to the use of hydrazine thrusters with electric heaters for thrust and specific impulse augmentation. These electrothermal thrusters operate at specific impulse levels of approximately 300 s with heater powers of about 500 W. Low power arcjets (1-3 kW) are currently being investigated as a way to increase specific impulse levels to approximately 500 s. Ion propulsion systems can easily produce specific impulses of 3000 s or greater, but have yet to be applied to communications satellites. The reasons most often given for not using ion propulsion systems are their high level of overall complexity, low thrust with long burn times, and the difficulty of integrating the propulsion system into existing commercial spacecraft busses. The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass.

  19. The AAA+ FtsH Protease Degrades an ssrA-Tagged Model Protein in the Inner Membrane of Escherichia coli.

    PubMed

    Hari, Sanjay B; Sauer, Robert T

    2016-10-11

    In eubacteria, the tmRNA system frees ribosomes that stall during protein synthesis and adds an ssrA tag to the incompletely translated polypeptide to target it for degradation. The AAA+ ClpXP protease degrades most ssrA-tagged proteins in the Escherichia coli cytoplasm and was recently shown to degrade an ssrA-tagged protein in the inner membrane. However, we find that tmRNA-mediated tagging of E. coli ProW1-182, a different inner-membrane protein, results in degradation by the membrane-tethered AAA+ FtsH protease. ClpXP played no role in the degradation of ProW1-182 in vivo. These studies suggest that a complex distribution of proteolytic labor maintains protein quality control in the inner membrane.

  20. Accelerating Commercial Remote Sensing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Visiting Investigator Program (VIP) at Stennis Space Center, Community Coffee was able to use satellites to forecast coffee crops in Guatemala. Using satellite imagery, the company can produce detailed maps that separate coffee cropland from wild vegetation and show information on the health of specific crops. The data can control coffee prices and eventually may be used to optimize application of fertilizers, pesticides and irrigation. This would result in maximal crop yields, minimal pollution and lower production costs. VIP is a mechanism involving NASA funding designed to accelerate the growth of commercial remote sensing by promoting general awareness and basic training in the technology.

  1. GiMMiK-Generating bespoke matrix multiplication kernels for accelerators: Application to high-order Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Wozniak, Bartosz D.; Witherden, Freddie D.; Russell, Francis P.; Vincent, Peter E.; Kelly, Paul H. J.

    2016-05-01

    Matrix multiplication is a fundamental linear algebra routine ubiquitous in all areas of science and engineering. Highly optimised BLAS libraries (cuBLAS and clBLAS on GPUs) are the most popular choices for an implementation of the General Matrix Multiply (GEMM) in software. In this paper we present GiMMiK-a generator of bespoke matrix multiplication kernels for the CUDA and OpenCL platforms. GiMMiK exploits a prior knowledge of the operator matrix to generate highly performant code. The performance of GiMMiK's kernels is particularly apparent in a block-by-panel type of matrix multiplication, where the block matrix is typically small (e.g. dimensions of 96 × 64). Such operations are characteristic to our motivating application in PyFR-an implementation of Flux Reconstruction schemes for high-order fluid flow simulations on mixed unstructured meshes. GiMMiK fully unrolls the matrix-vector product and embeds matrix entries directly in the code to benefit from the use of the constant cache and compiler optimisations. Further, it reduces the number of floating-point operations by removing multiplications by zeros. Together with the ability of our kernels to avoid the poorly optimised cleanup code, executed by library GEMM, we are able to outperform cuBLAS on two NVIDIA GPUs: GTX 780 Ti and Tesla K40c. We observe speedups of our kernels over cuBLAS GEMM of up to 9.98 and 63.30 times for a 294×1029 99% sparse PyFR matrix in double precision on the Tesla K40c and GTX 780 Ti correspondingly. In single precision, observed speedups reach 12.20 and 13.07 times for a 4×8 50% sparse PyFR matrix on the two aforementioned cards. Using GiMMiK as the matrix multiplication kernel provider allows us to achieve a speedup of up to 1.70 (2.19) for a simulation of an unsteady flow over a cylinder executed with PyFR in double (single) precision on the Tesla K40c. All results were generated with GiMMiK version 1.0.

  2. Molecular and biological changes in the cold-adapted "master strain" A/AA/6/60 (H2N2) influenza virus.

    PubMed Central

    Herlocher, M L; Maassab, H F; Webster, R G

    1993-01-01

    The live cold-adapted (ca) A/AA/6/60 influenza vaccine is being commercially developed for worldwide use in children and is being used as a model for other live vaccines. Although it has been proven safe and immunogenic, the molecular basis of cold adaptation has never been determined. To identify sequence changes responsible for cold adaptation, we have compared the sequence of the master ca vaccine strain to its progenitor wild-type virus, wt A/AA/6/60 E2 (wt2). Only 4 nt differences encoding 2 aa differences were found in three gene segments. Computer-predicted RNA folds project different secondary structures between the ca and wt2 molecules based on the two silent differences between them. Genes coding for the acidic polymerase, matrix, and nonstructural proteins are identical between the two viruses. The few differences found in the ca A/AA/6/60 virus after its long stepwise passage at 25 degrees C in primary chicken kidney cells suggest that cold adaptation resulted in greater genetic stability for the highly variable RNA genome. PMID:8327480

  3. The AAA+ ATPases and HflB/FtsH proteases of 'Candidatus Phytoplasma mali': phylogenetic diversity, membrane topology, and relationship to strain virulence.

    PubMed

    Seemüller, Erich; Sule, Sandor; Kube, Michael; Jelkmann, Wilhelm; Schneider, Bernd

    2013-03-01

    Previous examination revealed a correlation of phytopathogenic data of 'Candidatus Phytoplasma mali' strains and the DNA sequence variability of a type ATP00464 hflB gene fragment. To further investigate such a relationship, all distinct genes previously annotated as hflB in the genome of 'Ca. P. mali' strain AT were fully sequenced and analyzed from a number of representative mild, moderate, and severe strains. The re-annotation indicated that the sequences encode six AAA+ ATPases and six HflB proteases. Each of the nine distinct deduced AAA+ proteins that were examined formed a coherent phylogenetic cluster. However, within these groups, sequences of three ATPases and three proteases from mild and severe strains clustered distantly, according to their virulence. This grouping was supported by an association with virulence-related amino acid substitutions. Another finding was that full-length genes from ATPase AP11 could only be identified in mild and moderate strains. Prediction of the membrane topology indicated that the long ATPase- and protease-carrying C-terminal tails of approximately half of the AAA+ proteins are extracellular, putatively facing the environment of the sieve tubes. Thus, they may be involved in pathogen-host interactions and may compromise phloem function, a major effect of phytoplasma infection. All full-length genes examined appear transcriptionally active and all deduced peptides show the key positions indicative for protein function.

  4. Mechanism of action of the Escherichia coli phage shock protein PspA in repression of the AAA family transcription factor PspF.

    PubMed

    Elderkin, Sarah; Jones, Susan; Schumacher, Jörg; Studholme, David; Buck, Martin

    2002-06-28

    The PspA protein, a negative regulator of the Escherichia coli phage shock psp operon, is produced when virulence factors are exported through secretins in many Gram-negative pathogenic bacteria and its homologue in plants, VIPP1, plays a critical role in thylakoid biogenesis, essential for photosynthesis. Activation of transcription by the enhancer-dependent bacterial sigma(54) containing RNA polymerase occurs through ATP hydrolysis-driven protein conformational changes enabled by activator proteins that belong to the large AAA(+) mechanochemical protein family. We show that PspA directly and specifically acts upon and binds to the AAA(+) domain of the PspF transcription activator. Interactions involving PspF and nucleotide are changed by the action of PspA. These changes and the complexes that form between PspF and PspA can explain how PspA exerts its negative effects upon transcription activated by PspF, and are of significance when considering how activities of other AAA(+) proteins might be controlled.

  5. Microwave-Accelerated Surface Plasmon-Coupled Directional Luminescence: application to fast and sensitive assays in buffer, human serum and whole blood.

    PubMed

    Aslan, Kadir; Malyn, Stuart N; Geddes, Chris D

    2007-05-31

    The applicability of a new technique, Microwave-Accelerated Surface Plasmon-Coupled Luminescence (MA-SPCL) for fast and sensitive bioassays in buffer, serum and whole blood using quantum dots as luminescence reporters is demonstrated. In this regard, a model bioassay based on the well-known interactions of biotin and streptavidin is used. Using MA-SPCL, the bioassay was kinetically completed within 1 min with the use of low power microwave heating as compared to the identical bioassay which took in excess of 30 min to reach >95% completion at room temperature, a 30-fold increase in assay kinetics. The luminescence emission from the quantum dots was coupled to surface plasmons of the gold film, enabling the detection of the luminescence emission in a highly directional fashion as compared to the normal isotropic emission, for enhanced sensitivity and detection. The combined effect of microwaves for faster assay kinetics, with surface plasmon-coupled luminescence for sensitive luminescence measurements, has also made possible the demonstration of the use of the MA-SPCL technique for assays run in complex media, such as human serum and whole blood, where the same assay could not be performed at room temperature due to the coagulation of blood. In the MA-SPCL assay run in serum and whole blood, the luminescence intensity from 33 nM quantum dots was 75% and 20% that of the luminescence intensity from the assay run in buffer, with a signal to noise ratio of 12.5 and 3, respectively.

  6. Accelerator and electrodynamics capability review

    SciTech Connect

    Jones, Kevin W

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  7. FY05 LDRD Fianl Report Investigation of AAA+ protein machines that participate in DNA replication, recombination, and in response to DNA damage LDRD Project Tracking Code: 04-LW-049

    SciTech Connect

    Sawicka, D; de Carvalho-Kavanagh, M S; Barsky, D; Venclovas, C

    2006-12-04

    The AAA+ proteins are remarkable macromolecules that are able to self-assemble into nanoscale machines. These protein machines play critical roles in many cellular processes, including the processes that manage a cell's genetic material, but the mechanism at the molecular level has remained elusive. We applied computational molecular modeling, combined with advanced sequence analysis and available biochemical and genetic data, to structurally characterize eukaryotic AAA+ proteins and the protein machines they form. With these models we have examined intermolecular interactions in three-dimensions (3D), including both interactions between the components of the AAA+ complexes and the interactions of these protein machines with their partners. These computational studies have provided new insights into the molecular structure and the mechanism of action for AAA+ protein machines, thereby facilitating a deeper understanding of processes involved in DNA metabolism.

  8. An Investigation of Student, Faculty, and Administration Perceptions of the Application of Accelerated Learning Strategies in the Wisconsin Technical College System

    ERIC Educational Resources Information Center

    Birkholz, Alex D.

    2004-01-01

    The Wisconsin Technical College System (WTCS) engaged in an educational reform initiative by implementing the use of an accelerated instructional methodology. Rather than strictly compressing course meeting times, the WTCS required that courses identified as "accelerated" incorporate brain-based instructional tools and delivery methods.…

  9. PARTICLE ACCELERATOR AND METHOD OF CONTROLLING THE TEMPERATURE THEREOF

    DOEpatents

    Neal, R.B.; Gallagher, W.J.

    1960-10-11

    A method and means for controlling the temperature of a particle accelerator and more particularly to the maintenance of a constant and uniform temperature throughout a particle accelerator is offered. The novel feature of the invention resides in the provision of two individual heating applications to the accelerator structure. The first heating application provided is substantially a duplication of the accelerator heat created from energization, this first application being employed only when the accelerator is de-energized thereby maintaining the accelerator temperature constant with regard to time whether the accelerator is energized or not. The second heating application provided is designed to add to either the first application or energization heat in a manner to create the same uniform temperature throughout all portions of the accelerator.

  10. Introduction to Particle Acceleration in the Cosmos

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Horwitz, J. L.; Perez, J.; Quenby, J.

    2005-01-01

    Accelerated charged particles have been used on Earth since 1930 to explore the very essence of matter, for industrial applications, and for medical treatments. Throughout the universe nature employs a dizzying array of acceleration processes to produce particles spanning twenty orders of magnitude in energy range, while shaping our cosmic environment. Here, we introduce and review the basic physical processes causing particle acceleration, in astrophysical plasmas from geospace to the outer reaches of the cosmos. These processes are chiefly divided into four categories: adiabatic and other forms of non-stochastic acceleration, magnetic energy storage and stochastic acceleration, shock acceleration, and plasma wave and turbulent acceleration. The purpose of this introduction is to set the stage and context for the individual papers comprising this monograph.

  11. Multi-beam linear accelerator EVT

    NASA Astrophysics Data System (ADS)

    Teryaev, Vladimir E.; Kazakov, Sergey Yu.; Hirshfield, Jay L.

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  12. Dusty-Plasma Particle Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  13. Pulsed Drift Tube Accelerator

    SciTech Connect

    Faltens, A.

    2004-10-25

    The pulsed drift-tube accelerator (DTA) concept was revived by Joe Kwan and John Staples and is being considered for the HEDP/WDM application. It could be used to reach the full energy or as an intermediate accelerator between the diode and a high gradient accelerator such as multi-beam r.f. In the earliest LBNL HIF proposals and conceptual drivers it was used as an extended injector to reach energies where an induction linac with magnetic quadrupoles is the best choice. For HEDP, because of the very short pulse duration, the DTA could provide an acceleration rate of about 1MV/m. This note is divided into two parts: the first, a design based on existing experience; the second, an optimistic extrapolation. The first accelerates 16 parallel K{sup +} beams at a constant line charge density of 0.25{micro} C/m per beam to 10 MeV; the second uses a stripper and charge selector at around 4MeV followed by further acceleration to reach 40 MeV. Both benefit from more compact sources than the present 2MV injector source, although that beam is the basis of the first design and is a viable option. A pulsed drift-tube accelerator was the first major HIF experiment at LBNL. It was designed to produce a 2{micro}s rectangular 1 Ampere C{sub s}{sup +} beam at 2MeV. It ran comfortably at 1.6MeV for several years, then at lower voltages and currents for other experiments, and remnants of that experiment are in use in present experiments, still running 25 years later. The 1A current, completely equivalent to 1.8A K{sup +}, was chosen to be intermediate between the beamlets appropriate for a multi-beam accelerator, and a single beam of, say, 10A, at injection energies. The original driver scenarios using one large beam on each side of the reactor rapidly fell out of favor because of the very high transverse and longitudinal fields from the beam space charge, circa 1MV/cm and 250 kV/cm respectively, near the chamber and because of aberrations in focusing a large diameter beam down to a 1

  14. Visions for the future of particle accelerators

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    The ambitions of accelerator based science, technology and applications far exceed the present accelerator possibilities. Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results and visions for the future in the domain of accelerator science and technology in Europe, shown during the final fourth annual meeting of the EuCARD - European Coordination of Accelerator Research and Development. The conference concerns building of the research infrastructure, including advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution. The main subject is however the vision for the future of particle accelerators and next generation light sources.

  15. Network acceleration techniques

    NASA Technical Reports Server (NTRS)

    Crowley, Patricia (Inventor); Awrach, James Michael (Inventor); Maccabe, Arthur Barney (Inventor)

    2012-01-01

    Splintered offloading techniques with receive batch processing are described for network acceleration. Such techniques offload specific functionality to a NIC while maintaining the bulk of the protocol processing in the host operating system ("OS"). The resulting protocol implementation allows the application to bypass the protocol processing of the received data. Such can be accomplished this by moving data from the NIC directly to the application through direct memory access ("DMA") and batch processing the receive headers in the host OS when the host OS is interrupted to perform other work. Batch processing receive headers allows the data path to be separated from the control path. Unlike operating system bypass, however, the operating system still fully manages the network resource and has relevant feedback about traffic and flows. Embodiments of the present disclosure can therefore address the challenges of networks with extreme bandwidth delay products (BWDP).

  16. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function.

    PubMed Central

    Babst, M; Wendland, B; Estepa, E J; Emr, S D

    1998-01-01

    Vps4p is an AAA-type ATPase required for efficient transport of biosynthetic and endocytic cargo from an endosome to the lysosome-like vacuole of Saccharomyces cerevisiae. Vps4p mutants that do not bind ATP or are defective in ATP hydrolysis were characterized both in vivo and in vitro. The nucleotide-free or ADP-bound form of Vps4p existed as a dimer, whereas in the ATP-locked state, Vps4p dimers assembled into a decameric complex. This suggests that ATP hydrolysis drives a cycle of association and dissociation of Vps4p dimers/decamers. Nucleotide binding also regulated the association of Vps4p with an endosomal compartment in vivo. This membrane association required the N-terminal coiled-coil motif of Vps4p, but deletion of the coiled-coil domain did not affect ATPase activity or oligomeric assembly of the protein. Membrane association of two previously uncharacterized class E Vps proteins, Vps24p and Vps32p/Snf7p, was also affected by mutations in VPS4. Upon inactivation of a temperature-conditional vps4 mutant, Vps24p and Vps32p/Snf7p rapidly accumulated in a large membrane-bound complex. Immunofluorescence indicated that both proteins function with Vps4p at a common endosomal compartment. Together, the data suggest that the Vps4 ATPase catalyzes the release (uncoating) of an endosomal membrane-associated class E protein complex(es) required for normal morphology and sorting activity of the endosome. PMID:9606181

  17. [The normotensive carriers of the MTHFR 677T allele, displaying the increased risk of development of the abdominal aortic aneurysm (AAA), occur at the highest frequency among the smoking patients].

    PubMed

    Strauss, Ewa; Waliszewski, Krzysztof; Pawlak, Andrzej L

    2004-01-01

    Abdominal aortic aneurysm (AAA) presents itself as a progressive dilation of the abdominal aorta, leading--if untreated--to rupture. It is a common disease of the elderly, with a complex etiology. Smoking, hypertension and several genetic factors are recognized as relevant for the pathogenesis of AAA. We studied association between the polymorphism of the MTHFR (methylenetetrahydrofolate reductase) gene within the fourth exon (677C>T) and the occurrence of hypertension and smoking status in the group of 74 male patients with AAA. In the patients group, the smoking hypertensive persons represented the largest subgroup (43%). We determined the the MTHFR 677C>T polymorphism in AAA patients and compared it to that in 71 healthy normotensive males. The frequencies of the 677T allele and MTHFR 677C>T genotypes were similar in both groups, but the subgroup of normotensive AAA patients (n=29) displayed significantly increased frequencies of 677T allele (0.4) and of 677CT and TT genotypes (69%), as compared to those in the control group (0.28 and 46%, respectively). This corresponds to the 3.3-fold greater risk of AAA in normotensive subjects with the 677T allele of MTHFR, as compared to the homo-zygotes 677CC (p<0.03; 95% CI=1.2-9.2). The highest frequencies of MTHFR 677T allele (0.43) and 677CT and TT genotypes (73%) were found in the subgroup of normotensive smoking patients (n=22).

  18. Experimental verification of the Acuros XB and AAA dose calculation adjacent to heterogeneous media for IMRT and RapidArc of nasopharygeal carcinoma

    SciTech Connect

    Kan, Monica W. K.; Leung, Lucullus H. T.; So, Ronald W. K.; Yu, Peter K. N.

    2013-03-15

    Purpose: To compare the doses calculated by the Acuros XB (AXB) algorithm and analytical anisotropic algorithm (AAA) with experimentally measured data adjacent to and within heterogeneous medium using intensity modulated radiation therapy (IMRT) and RapidArc{sup Registered-Sign} (RA) volumetric arc therapy plans for nasopharygeal carcinoma (NPC). Methods: Two-dimensional dose distribution immediately adjacent to both air and bone inserts of a rectangular tissue equivalent phantom irradiated using IMRT and RA plans for NPC cases were measured with GafChromic{sup Registered-Sign} EBT3 films. Doses near and within the nasopharygeal (NP) region of an anthropomorphic phantom containing heterogeneous medium were also measured with thermoluminescent dosimeters (TLD) and EBT3 films. The measured data were then compared with the data calculated by AAA and AXB. For AXB, dose calculations were performed using both dose-to-medium (AXB{sub Dm}) and dose-to-water (AXB{sub Dw}) options. Furthermore, target dose differences between AAA and AXB were analyzed for the corresponding real patients. The comparison of real patient plans was performed by stratifying the targets into components of different densities, including tissue, bone, and air. Results: For the verification of planar dose distribution adjacent to air and bone using the rectangular phantom, the percentages of pixels that passed the gamma analysis with the {+-} 3%/3mm criteria were 98.7%, 99.5%, and 97.7% on the axial plane for AAA, AXB{sub Dm}, and AXB{sub Dw}, respectively, averaged over all IMRT and RA plans, while they were 97.6%, 98.2%, and 97.7%, respectively, on the coronal plane. For the verification of planar dose distribution within the NP region of the anthropomorphic phantom, the percentages of pixels that passed the gamma analysis with the {+-} 3%/3mm criteria were 95.1%, 91.3%, and 99.0% for AAA, AXB{sub Dm}, and AXB{sub Dw}, respectively, averaged over all IMRT and RA plans. Within the NP region where

  19. Quantification of DNA strand breaks and abasic sites by oxime derivatization and accelerator mass spectrometry: application to gamma-radiation and peroxynitrite.

    PubMed

    Zhou, Xinfeng; Liberman, Rosa G; Skipper, Paul L; Margolin, Yelena; Tannenbaum, Steven R; Dedon, Peter C

    2005-08-01

    We report a highly sensitive method to quantify abasic sites and deoxyribose oxidation products arising in damaged DNA. The method exploits the reaction of aldehyde- and ketone-containing deoxyribose oxidation products and abasic sites with [(14)C]methoxyamine to form stable oxime derivatives, as originally described by Talpaert-Borle and Liuzzi [Reaction of apurinic/apyrimidinic sites with [(14)C]methoxyamine. A method for the quantitative assay of AP sites in DNA, Biochim. Biophys. Acta 740 (1983) 410-416]. The sensitivity of the method was dramatically improved by the application of accelerator mass spectrometry to quantify the (14)C, with a limit of detection of 1 lesion in 10(6) nucleotides in 1 microg of DNA. The method was validated using DNA containing a defined quantity of abasic sites, with a >0.95 correlation between the quantities of abasic sites and those of methoxyamine labels. The original applications of this and similar oxyamine derivatization methods have assumed that abasic sites are the only aldehyde-containing DNA damage products. However, deoxyribose oxidation produces strand breaks and abasic sites containing a variety of degradation products with aldehyde and ketone moieties. To assess the utility of methoxyamine labeling for quantifying strand breaks and abasic sites, the method was applied to plasmid DNA treated with gamma-radiation and peroxynitrite. For gamma-radiation, there was a 0.99 correlation between the quantity of methoxyamine labels and the quantity of strand breaks and abasic sites determined by a plasmid nicking assay; the abasic sites comprised less than 10% of the radiation-induced DNA damage. Studies with peroxynitrite demonstrate that the method, in conjunction with DNA repair enzymes that remove damaged bases to produce aldehydic sugar residues or abasic sites, is also applicable to quantifying nucleobase lesions in addition to strand break products. Compared to other abasic site quantification techniques, the modified

  20. Future accelerator technology

    SciTech Connect

    Sessler, A.M.

    1986-05-01

    A general discussion is presented of the acceleration of particles. Upon this foundation is built a categorization scheme into which all accelerators can be placed. Special attention is devoted to accelerators which employ a wake-field mechanism and a restricting theorem is examined. It is shown how the theorem may be circumvented. Comments are made on various acceleration schemes.

  1. ACCELERATION AND THE GIFTED.

    ERIC Educational Resources Information Center

    GIBSON, ARTHUR R.; STEPHANS, THOMAS M.

    ACCELERATION OF PUPILS AND SUBJECTS IS CONSIDERED A MEANS OF EDUCATING THE ACADEMICALLY GIFTED STUDENT. FIVE INTRODUCTORY ARTICLES PROVIDE A FRAMEWORK FOR THINKING ABOUT ACCELERATION. FIVE PROJECT REPORTS OF ACCELERATED PROGRAMS IN OHIO ARE INCLUDED. ACCELERATION IS NOW BEING REGARDED MORE FAVORABLY THAN FORMERLY, BECAUSE METHODS HAVE BEEN…

  2. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  3. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  4. RHIC sextant test: Accelerator systems and performance

    SciTech Connect

    Pilat, F.; Trbojevic, D.; Ahrens, L.

    1997-08-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning.

  5. Abdominal Aortic Aneurysm (AAA)

    MedlinePlus

    ... US) : Ultrasound is a highly accurate way to measure the size of an aneurysm. A physician may also use a special technique called Doppler ultrasound to examine blood flow through the aorta. Occasionally the aorta may not ...

  6. Thermodynamics of Accelerating Black Holes.

    PubMed

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  7. Thermodynamics of Accelerating Black Holes

    NASA Astrophysics Data System (ADS)

    Appels, Michael; Gregory, Ruth; KubizÅák, David

    2016-09-01

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon—even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  8. OpenMP for Accelerators

    SciTech Connect

    Beyer, J C; Stotzer, E J; Hart, A; de Supinski, B R

    2011-03-15

    OpenMP [13] is the dominant programming model for shared-memory parallelism in C, C++ and Fortran due to its easy-to-use directive-based style, portability and broad support by compiler vendors. Similar characteristics are needed for a programming model for devices such as GPUs and DSPs that are gaining popularity to accelerate compute-intensive application regions. This paper presents extensions to OpenMP that provide that programming model. Our results demonstrate that a high-level programming model can provide accelerated performance comparable to hand-coded implementations in CUDA.

  9. Accelerated dynamics simulations of nanotubes.

    SciTech Connect

    Uberuaga, B. P.; Stuart, S. J.; Voter, A. F.

    2002-01-01

    We report on the application of accelerated dynamics techniques to the study of carbon nanotubes. We have used the parallel replica method and temperature accelerated dynamics simulations are currently in progress. In the parallel replica study, we have stretched tubes at a rate significantly lower than that used in previous studies. In these preliminary results, we find that there are qualitative differences in the rupture of the nanotubes at different temperatures. We plan on extending this investigation to include nanotubes of various chiralities. We also plan on exploring unique geometries of nanotubes.

  10. A portable accelerator control toolkit

    SciTech Connect

    Watson, W.A. III

    1997-06-01

    In recent years, the expense of creating good control software has led to a number of collaborative efforts among laboratories to share this cost. The EPICS collaboration is a particularly successful example of this trend. More recently another collaborative effort has addressed the need for sophisticated high level software, including model driven accelerator controls. This work builds upon the CDEV (Common DEVice) software framework, which provides a generic abstraction of a control system, and maps that abstraction onto a number of site-specific control systems including EPICS, the SLAC control system, CERN/PS and others. In principle, it is now possible to create portable accelerator control applications which have no knowledge of the underlying and site-specific control system. Applications based on CDEV now provide a growing suite of tools for accelerator operations, including general purpose displays, an on-line accelerator model, beamline steering, machine status displays incorporating both hardware and model information (such as beam positions overlaid with beta functions) and more. A survey of CDEV compatible portable applications will be presented, as well as plans for future development.

  11. Interactive analysis environment of unified accelerator libraries

    NASA Astrophysics Data System (ADS)

    Fine, V.; Malitsky, N.; Talman, R.

    2006-04-01

    Unified Accelerator Libraries (UAL, http://www.ual.bnl.gov) software is an open accelerator simulation environment addressing a broad spectrum of accelerator tasks ranging from efficient online-oriented modeling to full-scale realistic beam dynamics studies. The paper introduces a new package integrating UAL simulation algorithms with the QT-based Graphical User Interface and the ROOT data analysis and visualization framework ( http://root.cern.ch). The primary user application is implemented as an interactive and configurable Accelerator Physics Player. Its interface to visualization components is based on the QT layer ( http://root.bnl.gov) supported by the STAR experiment.

  12. New accelerators in high-energy physics

    SciTech Connect

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting.

  13. STATUS OF THE DIELECTRIC WALL ACCELERATOR

    SciTech Connect

    Caporaso, G J; Chen, Y; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Carroll, J; Cook, E; Falabella, S; Guethlein, G; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-04-22

    The dielectric wall accelerator (DWA) system being developed at the Lawrence Livermore National Laboratory (LLNL) uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. High electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The system is capable of accelerating any charge to mass ratio particle. Applications of high gradient proton and electron versions of this accelerator will be discussed. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, photoconductive switches and compact proton sources.

  14. Noncanonical role for the host Vps4 AAA+ ATPase ESCRT protein in the formation of Tomato bushy stunt virus replicase.

    PubMed

    Barajas, Daniel; Martín, Isabel Fernández de Castro; Pogany, Judit; Risco, Cristina; Nagy, Peter D

    2014-04-01

    Assembling of the membrane-bound viral replicase complexes (VRCs) consisting of viral- and host-encoded proteins is a key step during the replication of positive-stranded RNA viruses in the infected cells. Previous genome-wide screens with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host have revealed the involvement of eleven cellular ESCRT (endosomal sorting complexes required for transport) proteins in viral replication. The ESCRT proteins are involved in endosomal sorting of cellular membrane proteins by forming multiprotein complexes, deforming membranes away from the cytosol and, ultimately, pinching off vesicles into the lumen of the endosomes. In this paper, we show an unexpected key role for the conserved Vps4p AAA+ ATPase, whose canonical function is to disassemble the ESCRT complexes and recycle them from the membranes back to the cytosol. We find that the tombusvirus p33 replication protein interacts with Vps4p and three ESCRT-III proteins. Interestingly, Vps4p is recruited to become a permanent component of the VRCs as shown by co-purification assays and immuno-EM. Vps4p is co-localized with the viral dsRNA and contacts the viral (+)RNA in the intracellular membrane. Deletion of Vps4p in yeast leads to the formation of crescent-like membrane structures instead of the characteristic spherule and vesicle-like structures. The in vitro assembled tombusvirus replicase based on cell-free extracts (CFE) from vps4Δ yeast is highly nuclease sensitive, in contrast with the nuclease insensitive replicase in wt CFE. These data suggest that the role of Vps4p and the ESCRT machinery is to aid building the membrane-bound VRCs, which become nuclease-insensitive to avoid the recognition by the host antiviral surveillance system and the destruction of the viral RNA. Other (+)RNA viruses of plants and animals might also subvert Vps4p and the ESCRT machinery for formation of VRCs, which require membrane deformation and spherule formation.

  15. Noncanonical Role for the Host Vps4 AAA+ ATPase ESCRT Protein in the Formation of Tomato Bushy Stunt Virus Replicase

    PubMed Central

    Pogany, Judit; Risco, Cristina; Nagy, Peter D.

    2014-01-01

    Assembling of the membrane-bound viral replicase complexes (VRCs) consisting of viral- and host-encoded proteins is a key step during the replication of positive-stranded RNA viruses in the infected cells. Previous genome-wide screens with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host have revealed the involvement of eleven cellular ESCRT (endosomal sorting complexes required for transport) proteins in viral replication. The ESCRT proteins are involved in endosomal sorting of cellular membrane proteins by forming multiprotein complexes, deforming membranes away from the cytosol and, ultimately, pinching off vesicles into the lumen of the endosomes. In this paper, we show an unexpected key role for the conserved Vps4p AAA+ ATPase, whose canonical function is to disassemble the ESCRT complexes and recycle them from the membranes back to the cytosol. We find that the tombusvirus p33 replication protein interacts with Vps4p and three ESCRT-III proteins. Interestingly, Vps4p is recruited to become a permanent component of the VRCs as shown by co-purification assays and immuno-EM. Vps4p is co-localized with the viral dsRNA and contacts the viral (+)RNA in the intracellular membrane. Deletion of Vps4p in yeast leads to the formation of crescent-like membrane structures instead of the characteristic spherule and vesicle-like structures. The in vitro assembled tombusvirus replicase based on cell-free extracts (CFE) from vps4Δ yeast is highly nuclease sensitive, in contrast with the nuclease insensitive replicase in wt CFE. These data suggest that the role of Vps4p and the ESCRT machinery is to aid building the membrane-bound VRCs, which become nuclease-insensitive to avoid the recognition by the host antiviral surveillance system and the destruction of the viral RNA. Other (+)RNA viruses of plants and animals might also subvert Vps4p and the ESCRT machinery for formation of VRCs, which require membrane deformation and spherule formation. PMID:24763736

  16. Dynamically Reconfigurable Systolic Array Accelerator

    NASA Technical Reports Server (NTRS)

    Dasu, Aravind; Barnes, Robert

    2012-01-01

    A polymorphic systolic array framework has been developed that works in conjunction with an embedded microprocessor on a field-programmable gate array (FPGA), which allows for dynamic and complimentary scaling of acceleration levels of two algorithms active concurrently on the FPGA. Use is made of systolic arrays and a hardware-software co-design to obtain an efficient multi-application acceleration system. The flexible and simple framework allows hosting of a broader range of algorithms, and is extendable to more complex applications in the area of aerospace embedded systems. FPGA chips can be responsive to realtime demands for changing applications needs, but only if the electronic fabric can respond fast enough. This systolic array framework allows for rapid partial and dynamic reconfiguration of the chip in response to the real-time needs of scalability, and adaptability of executables.

  17. Application of Overall Dynamic Body Acceleration as a Proxy for Estimating the Energy Expenditure of Grazing Farm Animals: Relationship with Heart Rate

    PubMed Central

    Miwa, Masafumi; Oishi, Kazato; Nakagawa, Yasuhiro; Maeno, Hiromichi; Anzai, Hiroki; Kumagai, Hajime; Okano, Kanji; Tobioka, Hisaya; Hirooka, Hiroyuki

    2015-01-01

    Estimating the energy expenditure of farm animals at pasture is important for efficient animal management. In recent years, an alternative technique for estimating energy expenditure by measuring body acceleration has been widely performed in wildlife and human studies, but the availability of the technique in farm animals has not yet been examined. In the present study, we tested the potential use of an acceleration index, overall dynamic body acceleration (ODBA), as a new proxy for estimating the energy expenditure of grazing farm animals (cattle, goats and sheep) at pasture with the simultaneous evaluation of a conventional proxy, heart rate. Body accelerations in three axes and heart rate for cows (n = 8, two breeds), goats (n = 6) and sheep (n = 5) were recorded, and the effect of ODBA calculated from the body accelerations on heart rate was analyzed. In addition, the effects of the two other activity indices, the number of steps and vectorial dynamic body acceleration (VeDBA), on heart rate were also investigated. The results of the comparison among three activity indices indicated that ODBA was the best predictor for heart rate. Although the relationship between ODBA and heart rate was different between the groups of species and breeds and between individuals (P<0.01), the difference could be explained by different body weights; a common equation could be established by correcting the body weights (M: kg): heart rate (beats/min) = 147.263∙M-0.141 + 889.640∙M-0.179∙ODBA (g). Combining this equation with the previously reported energy expenditure per heartbeat, we estimated the energy expenditure of the tested animals, and the results indicated that ODBA is a good proxy for estimating the energy expenditure of grazing farm animals across species and breeds. The utility and simplicity of the procedure with acceleration loggers could make the accelerometry technique a worthwhile option in field research and commercial farm use. PMID:26030931

  18. Application of overall dynamic body acceleration as a proxy for estimating the energy expenditure of grazing farm animals: relationship with heart rate.

    PubMed

    Miwa, Masafumi; Oishi, Kazato; Nakagawa, Yasuhiro; Maeno, Hiromichi; Anzai, Hiroki; Kumagai, Hajime; Okano, Kanji; Tobioka, Hisaya; Hirooka, Hiroyuki

    2015-01-01

    Estimating the energy expenditure of farm animals at pasture is important for efficient animal management. In recent years, an alternative technique for estimating energy expenditure by measuring body acceleration has been widely performed in wildlife and human studies, but the availability of the technique in farm animals has not yet been examined. In the present study, we tested the potential use of an acceleration index, overall dynamic body acceleration (ODBA), as a new proxy for estimating the energy expenditure of grazing farm animals (cattle, goats and sheep) at pasture with the simultaneous evaluation of a conventional proxy, heart rate. Body accelerations in three axes and heart rate for cows (n = 8, two breeds), goats (n = 6) and sheep (n = 5) were recorded, and the effect of ODBA calculated from the body accelerations on heart rate was analyzed. In addition, the effects of the two other activity indices, the number of steps and vectorial dynamic body acceleration (VeDBA), on heart rate were also investigated. The results of the comparison among three activity indices indicated that ODBA was the best predictor for heart rate. Although the relationship between ODBA and heart rate was different between the groups of species and breeds and between individuals (P<0.01), the difference could be explained by different body weights; a common equation could be established by correcting the body weights (M: kg): heart rate (beats/min) = 147.263∙M-0.141 + 889.640∙M-0.179∙ODBA (g). Combining this equation with the previously reported energy expenditure per heartbeat, we estimated the energy expenditure of the tested animals, and the results indicated that ODBA is a good proxy for estimating the energy expenditure of grazing farm animals across species and breeds. The utility and simplicity of the procedure with acceleration loggers could make the accelerometry technique a worthwhile option in field research and commercial farm use.

  19. Acceleration mapping on Consort 5

    NASA Astrophysics Data System (ADS)

    Naumann, Robert J.

    1994-09-01

    The Consort 5 rocket carrying a set of commercial low-gravity experiments experienced a significant side thrust from an apparent burn-through of the second-stage motor just prior to cut-off. The resulting angular momentum could not be removed by the attitude rate control system, thus the payload was left in an uncontrollable rocking/tumbling mode. Although the primary low-gravity emphasis mission requirements could not be met, it was hoped that some science could be salvaged by mapping the acceleration field over the vehicle so that each investigator could correlate his or her results with the acceleration environment at his or her experiment location. This required some detective work to obtain the body rates and moment of inertia ratios required to solve the full set of Euler equations for a tri-axial rigid body. The techniques for acceleration mapping described in this paper may be applicable to other low-gravity emphasis missions.

  20. Anderson Acceleration for Fixed-Point Iterations

    SciTech Connect

    Walker, Homer F.

    2015-08-31

    The purpose of this grant was to support research on acceleration methods for fixed-point iterations, with applications to computational frameworks and simulation problems that are of interest to DOE.