Science.gov

Sample records for accelerator applications aaa

  1. Modelling of residually stressed materials with application to AAA.

    PubMed

    Ahamed, T; Dorfmann, L; Ogden, R W

    2016-08-01

    Residual stresses are generated in living tissues by processes of growth and adaptation and they significantly influence the mechanical behaviour of the tissues. Thus, to effectively model the elastic response of the tissues relative to a residually stressed configuration the residual stresses need to be incorporated into the constitutive equations. The purposes of this paper are (a) to summarise a general elastic constitutive formulation that includes residual stress, (b) to specify the tensors needed for the three-dimensional implementation of the theory in a nonlinear finite element code, and (c) to use the theory and its implementation to evaluate the wall stress distribution in an abdominal aortic aneurysm (AAA) using patient specific geometry and material model parameters. The considered material is anisotropic with two preferred directions indicating the orientation of the collagen fibres in the aortic tissue. The method described in this paper is general and can be used, by specifying appropriate energy functions, to investigate other residually stressed biological systems. PMID:26874252

  2. Photocathodes in accelerator applications

    SciTech Connect

    Fraser, J.S.; Sheffield, R.L.; Gray, E.R.; Giles, P.M.; Springer, R.W.; Loebs, V.A.

    1987-01-01

    Some electron accelerator applications require bursts of short pulses at high microscopic repetition rates and high peak brightness. A photocathode, illuminated by a mode-locked laser, is well suited to filling this need. The intrinsic brightness of a photoemitter beam is high; experiments are under way at Los Alamos to study the brightness of short bunches with high space charge after acceleration. A laser-illuminated Cs/sub 3/Sb photoemitter is located in the first rf cavity of an injector linac. Diagnostics include a pepper-pot emittance analyzer, a magnetic spectrometer, and a streak camera.

  3. Abdominal Aortic Aneurysm (AAA)

    MedlinePlus

    ... Resources Professions Site Index A-Z Abdominal Aortic Aneurysm (AAA) Abdominal aortic aneurysm (AAA) occurs when atherosclerosis ... aortic aneurysm treated? What is an abdominal aortic aneurysm? The aorta, the largest artery in the body, ...

  4. Accelerators for research and applications

    SciTech Connect

    Alonso, J.R.

    1990-06-01

    The newest particle accelerators are almost always built for extending the frontiers of research, at the cutting edge of science and technology. Once these machines are operating and these technologies mature, new applications are always found, many of which touch our lives in profound ways. The evolution of accelerator technologies will be discussed, with descriptions of accelerator types and characteristics. The wide range of applications of accelerators will be discussed, in fields such as nuclear science, medicine, astrophysics and space-sciences, power generation, airport security, materials processing and microcircuit fabrication. 13 figs.

  5. University programs of the U.S. Department of Energy advanced accelerator applications program

    SciTech Connect

    Beller, D. E.; Ward, T. E.; Bresee, J. C.

    2001-01-01

    The Advanced Accelerator Applications (AAA) Program was initiated in fiscal year 2001 (FY-01) by the U.S. Congress, the U.S. Department of Energy (DOE), and the Los Alamos National Laboratory (LANL) in partnership with other national laboratories. The primary goal of this program is to investigate the feasibility of transmutation of nuclear waste. An Accelerator-Driven Test Facility (ADTF), which may be built during the first decade of the 21st Century, is a major component of this effort. The ADTF would include a large, state-of-the-art charged-particle accelerator, proton-neutron target systems, and accelerator-driven R&D systems. This new facility and its underlying science and technology will require a large cadre of educated scientists and trained technicians. In addition, other applications of nuclear science and engineering (e.g., proliferation monitoring and defense, nuclear medicine, safety regulation, industrial processes, and many others) require increased academic and national infrastructure and student populations. Thus, the AAA Program Office has begun a multi-year program to involve university faculty and students in various phases of the Project to support the infrastructure requirements of nuclear energy, science and technology fields as well as the special needs of the DOE transmutation program. In this paper we describe university programs that have supported, are supporting, and will support the R&D necessary for the AAA Project. Previous work included research for the Accelerator Transmutation of Waste (ATW) project, current (FY-01) programs include graduate fellowships and research for the AAA Project, and it is expected that future programs will expand and add to the existing programs.

  6. AAAS: Politics. . . and Science

    ERIC Educational Resources Information Center

    Science News, 1978

    1978-01-01

    Reviews topics discussed during the American Association for the Advancement of Science (AAAS) meeting held in Washington, D.C. Topics included: the equal rights amendment, laetrile, nuclear radiation hazards, sociobiology, and various science topics. (SL)

  7. Science Education at AAAS

    ERIC Educational Resources Information Center

    Livermore, Arthur H.

    1975-01-01

    Describes several programs of the American Association for the Advancement of Science (AAAS) Office of Science Education (OSE), including short courses offered in the natural and social sciences, mathematics, and engineering to college teachers. Discusses several OSE publications. (MLH)

  8. Applications of Ion Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Barnard, John J.; Briggs*, Richard J.

    As discussed in Chap. 9, the physics of ion induction accelerators has many commonalities with the physics of electron induction accelerators. However, there are important differences, arising because of the different missions of ion machines relative to electron machines and also because the velocity of the ions is usually non-relativistic in these applications. The basic architectures and layout reflects these differences. In Chaps. 6, 7, and 8 a number of examples of electron accelerators and their applications were given, including machines that have already been constructed. In this chapter, we give several examples of potential uses for ion induction accelerators. Although, as of this writing, none of these applications have come to fruition, in the case of heavy ion fusion (HIF) , small scale experiments have been carried out and a sizable effort has been made in laying the groundwork for such an accelerator. A second application, using ion beams for study of High Energy Density Physics (HEDP) or Warm Dense Matter (WDM) physics will soon be realized and the requirements for this machine will be discussed in detail. Also, a concept for a spallation neutron source is discussed in lesser detail.

  9. AAA Foundation for Traffic Safety

    MedlinePlus

    ... Survey: Teens should be wired less while driving, AAA Arizona says ... - ABC15 Arizona Graduated Licensing Laws - Insurance ... of Top Deadly Mistakes Made by Teen Drivers -- AAA More... Spotlight American Driving Survey This survey provides ...

  10. LINAC for ADS application - accelerator technologies

    SciTech Connect

    Garnett, Robert W; Sheffreld, Richard L

    2009-01-01

    Sifnificant high-current, high-intensity accelerator research and development have been done in the recent past in the US, centered primarily at Los Alamos National Laboratory. These efforts have included designs for the Accelerator Production of Tritium Project, Accelerator Transmutation of Waste, and Accelerator Driven Systems, as well as many others. This past work and some specific design principles that were developed to optimie linac designs for ADS and other high-intensity applications will be discussed briefly.

  11. Electrostatic quadrupole DC accelerators for BNCT applications

    SciTech Connect

    Kwan, J.W.; Anderson, O.A.; Reginato, L.L.; Vella, M.C.; Yu, S.S.

    1994-04-01

    A dc electrostatic quadrupole (ESQ) accelerator is capable of producing a 2.5 MeV, 100 mA proton beam for the purpose of generating neutrons for Boron Neutron Capture Therapy. The ESQ accelerator is better than the conventional aperture column in high beam current application due to the presence of stronger transverse field for beam focusing and for suppressing secondary electrons. The major challenge in this type of accelerator is in developing the proper power supply system.

  12. Rail accelerator technology and applications

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.

    1985-01-01

    Rail accelerators offer a viable means of launching ton-size payloads from the Earth's surface to space. The results of two mission studies which indicate that an Earth-to-Space Rail Launcher (ESRL) system is not only technically feasible but also economically beneficial, particularly when large amounts of bulk cago are to be delivered to space are given. An in-house experimental program at the Lewis Research Center (LeRC) was conducted in parallel with the mission studies with the objective of examining technical feasibility issues. A 1 m long - 12.5 by 12.5 mm bore rail accelerator as designed with clear polycarbonate sidewalls to visually observe the plasma armature acceleration. The general character of plasma/projectile dynamics is described for a typical test firing.

  13. Application accelerator system having bunch control

    DOEpatents

    Wang, Dunxiong; Krafft, Geoffrey Arthur

    1999-01-01

    An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.

  14. Application accelerator system having bunch control

    DOEpatents

    Wang, D.; Krafft, G.A.

    1999-06-22

    An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig.

  15. Electron accelerators: History, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Martins, M. N.; Silva, T. F.

    2014-02-01

    This paper will present an outlook on sources of radiation, focusing on electron accelerators. We will review advances that were important for the development of particle accelerators, concentrating on those that led to modern electron accelerators. Electron accelerators are multipurpose machines that deliver beams with energies spanning five orders of magnitude, and are used in applications that range from fundamental studies of particle interactions to cross-linking polymer chains in industrial plants. Each accelerator type presents specific characteristics that make it more suitable for certain applications. Our work will focus on radiation sources for medical applications, dominated by electron linacs (linear accelerators), and those used for research, field where electron rings dominate. We will outline the main technological advances that occurred in the past decades, which made possible the construction of machines fit for clinical environments. Their compactness, efficiency and reliability have been key to their acceptance in clinical applications. This outline will include advances that allowed for the construction of brighter synchrotron light sources, where the relevant beam characteristics are good optical quality and high beam current. The development of insertion devices will also be discussed, as well the development of Free Electron Lasers (FEL). We conclude the review with an outline of the new developments of electron accelerators and the expectations for Energy Recovery Linacs.

  16. Accelerated Application Development: The ORNL Titan Experience

    SciTech Connect

    Joubert, Wayne; Archibald, Richard K.; Berrill, Mark A.; Brown, W. Michael; Eisenbach, Markus; Grout, Ray; Larkin, Jeff; Levesque, John; Messer, Bronson; Norman, Matthew R.; Philip, Bobby; Sankaran, Ramanan; Tharrington, Arnold N.; Turner, John A.

    2015-05-09

    The use of computational accelerators such as NVIDIA GPUs and Intel Xeon Phi processors is now widespread in the high performance computing community, with many applications delivering impressive performance gains. However, programming these systems for high performance, performance portability and software maintainability has been a challenge. In this paper we discuss experiences porting applications to the Titan system. Titan, which began planning in 2009 and was deployed for general use in 2013, was the first multi-petaflop system based on accelerator hardware. To ready applications for accelerated computing, a preparedness effort was undertaken prior to delivery of Titan. In this paper we report experiences and lessons learned from this process and describe how users are currently making use of computational accelerators on Titan.

  17. Accelerated Application Development: The ORNL Titan Experience

    DOE PAGES

    Joubert, Wayne; Archibald, Richard K.; Berrill, Mark A.; Brown, W. Michael; Eisenbach, Markus; Grout, Ray; Larkin, Jeff; Levesque, John; Messer, Bronson; Norman, Matthew R.; et al

    2015-05-09

    The use of computational accelerators such as NVIDIA GPUs and Intel Xeon Phi processors is now widespread in the high performance computing community, with many applications delivering impressive performance gains. However, programming these systems for high performance, performance portability and software maintainability has been a challenge. In this paper we discuss experiences porting applications to the Titan system. Titan, which began planning in 2009 and was deployed for general use in 2013, was the first multi-petaflop system based on accelerator hardware. To ready applications for accelerated computing, a preparedness effort was undertaken prior to delivery of Titan. In this papermore » we report experiences and lessons learned from this process and describe how users are currently making use of computational accelerators on Titan.« less

  18. Physics and Accelerator Applications of RF Superconductivity

    SciTech Connect

    H. Padamsee; K. W. Shepard; Ron Sundelin

    1993-12-01

    A key component of any particle accelerator is the device that imparts energy gain to the charged particle. This is usually an electromagnetic cavity resonating at a microwave frequency, chosen between 100 and 3000 MHz. Serious attempts to utilize superconductors for accelerating cavities were initiated more than 25 years ago with the acceleration of electrons in a lead-plated resonator at Stanford University (1). The first full-scale accelerator, the Stanford SCA, was completed in 1978 at the High Energy Physics Laboratory (HEPL) (2). Over the intervening one and a half decades, superconducting cavities have become increasingly important to particle accelerators for nuclear physics and high energy physics. For continuous operation, as is required for many applications, the power dissipation in the walls of a copper structure is quite substantial, for example, 0.1 megawatts per meter of structure operating at an accelerating field of 1 million volts/meter (MV/m). since losses increase as the square of the accelerating field, copper cavities become severely uneconomical as demand for higher fields grows with the higher energies called for by experimenters to probe ever deeper into the structure of matter. Rf superconductivity has become an important technology for particle accelerators. Practical structures with attractive performance levels have been developed for a variety of applications, installed in the targeted accelerators, and operated over significant lengths of time. Substantial progress has been made in understanding field and Q limitations and in inventing cures to advance performance. The technical and economical potential of rf superconductivity makes it an important candidate for future advanced accelerators for free electron lasers, for nuclear physics, and for high energy physics, at the luminosity as well as at the energy frontiers.

  19. Environmental applications of accelerator technology

    SciTech Connect

    Robinson, D.M.

    1981-04-01

    Accelerator technology at long last is fulfilling the promise expressed by its enthusiasts thirty years ago of having a role in the reduction of air and water borne pollution and disease. This paper describes with specific examples three types of projects either working or expected to be in commercial operation within a year. All three are energy efficient and likely to be followed by general implementation. The three types of projects are: the disinfestation of liquid sludge from digested municipal sewage by electrons so that the nutrients can safely be used on land and possibly in the ocean; the disinfestation of animal feed to reduce pathogens, specifically the reduction of salmonella in poultry feed; and the more efficient removal of fly ash from the stack discharge of coal-fired power plants, accomplished by superimposing fast rising pulses on the d.c. voltage of conventional electrostatic precipitators.

  20. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    collider and neutrino factory - summary of working group 2 / J. Galambos, R. Garoby and S. Geer -- Prospects for a very high power CW SRF linac / R. A. Rimmer -- Indian accelerator program for ADS applications / V. C. Sahni and P. Singh -- Ion accelerator activities at VECC (particularly, operating at low temperature) / R. K. Bhandari -- Chinese efforts in high intensity proton accelerators / S. Fu, J. Wang and S. Fang -- ADSR activity in the UK / R. J. Barlow -- ADS development in Japan / K. Kikuchi -- Project-X, SRF, and very large power stations / C. M. Ankenbrandt, R. P. Johnson and M. Popovic -- Power production and ADS / R. Raja -- Experimental neutron source facility based on accelerator driven system / Y. Gohar -- Transmutation mission / W. S. Yang -- Safety performance and issues / J. E. Cahalan -- Spallation target design for accelerator-driven systems / Y. Gohar -- Design considerations for accelerator transmutation of waste system / W. S. Yang -- Japan ADS program / T. Sasa -- Overview of members states' and IAEA activities in the field of Accelerator Driven Systems (ADS) / A. Stanculescu -- Linac for ADS applications - accelerator technologies / R. W. Garnett and R. L. Sheffield -- SRF linacs and accelerator driven sub-critical systems - summary working groups 3 & 4 / J. Delayen -- Production of Actinium-225 via high energy proton induced spallation of Thorium-232 / J. Harvey ... [et al.] -- Search for the electric dipole moment of Radium-225 / R. J. Holt, Z.-T. Lu and R. Mueller -- SRF linac and material science and medicine - summary of working group 5 / J. Nolen, E. Pitcher and H. Kirk.

  1. New Advanced Dielectric Materials for Accelerator Applications

    SciTech Connect

    Kanareykin, A.

    2010-11-04

    We present our recent results on the development and experimental testing of advanced dielectric materials that are capable of supporting the high RF electric fields generated by electron beams or pulsed high power microwaves. These materials have been optimized or specially designed for accelerator applications. The materials discussed here include low loss microwave ceramics, quartz, Chemical Vapor Deposition diamonds and nonlinear Barium Strontium Titanate based ferroelectrics.

  2. New Advanced Dielectric Materials for Accelerator Applications

    NASA Astrophysics Data System (ADS)

    Kanareykin, A.

    2010-11-01

    We present our recent results on the development and experimental testing of advanced dielectric materials that are capable of supporting the high RF electric fields generated by electron beams or pulsed high power microwaves. These materials have been optimized or specially designed for accelerator applications. The materials discussed here include low loss microwave ceramics, quartz, Chemical Vapor Deposition diamonds and nonlinear Barium Strontium Titanate based ferroelectrics.

  3. Accelerators for Discovery Science and Security applications

    NASA Astrophysics Data System (ADS)

    Todd, A. M. M.; Bluem, H. P.; Jarvis, J. D.; Park, J. H.; Rathke, J. W.; Schultheiss, T. J.

    2015-05-01

    Several Advanced Energy Systems (AES) accelerator projects that span applications in Discovery Science and Security are described. The design and performance of the IR and THz free electron laser (FEL) at the Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin that is now an operating user facility for physical chemistry research in molecular and cluster spectroscopy as well as surface science, is highlighted. The device was designed to meet challenging specifications, including a final energy adjustable in the range of 15-50 MeV, low longitudinal emittance (<50 keV-psec) and transverse emittance (<20 π mm-mrad), at more than 200 pC bunch charge with a micropulse repetition rate of 1 GHz and a macropulse length of up to 15 μs. Secondly, we will describe an ongoing effort to develop an ultrafast electron diffraction (UED) source that is scheduled for completion in 2015 with prototype testing taking place at the Brookhaven National Laboratory (BNL) Accelerator Test Facility (ATF). This tabletop X-band system will find application in time-resolved chemical imaging and as a resource for drug-cell interaction analysis. A third active area at AES is accelerators for security applications where we will cover some top-level aspects of THz and X-ray systems that are under development and in testing for stand-off and portal detection.

  4. a Geoscience Accelerator Library - Design and Applications

    NASA Astrophysics Data System (ADS)

    Hill, C.; Richardson, A.

    2010-12-01

    Accelerator technologies such as GPUs are potentially powerful tools for geophysical problems, but programming them still involves somewhat idiosyncratic software practices. In our talk, we will describe a geoscience accelerated kernels library (GeAccKL) we have been developing to allow geoscience fluid algorithms to exploit CUDA and OpenCL based platforms. The GeAccKL library is a collection of tools for building, time-stepping, finite-volume based simulators. At its heart the library consists of functions evaluating discrete forms of key equation kernels that are common to many geoscience codes. We implement kernels for equations by making use of templating and simple compiler techniques to accommodate applications that use a range of data structures and discrete stencils. From these kernel templates we can create specific instances of library code suitable for a particular application scenario. For example we can accommodate different grid staggerings for dynamical variables and different indexing and array layout conventions. The design allows kernels to be chained together so that data structures can persist in device memory between kernel calls. In this way multiple timesteps can be evaluated on a GPU accelerator with minimal device memory to host memory transfer. Parallelism across multiple GPUs is supported through either transfers within multi-threaded process shared memory or through messaging between process address spaces. This allows parallel multi-GPU execution within a single system and across GPUs in a cluster. We will illustrate our library in action in three case studies. First we look at the use of the library to accelerate one part of a time-step in an atmospheric model simulation. Secondly we will look at the use of the library to perform all the intensive computations over several time steps in a time-stepping loop for an ocean transport model. Finally we will look at accelerating the computation of upstream routing calculations in a dynamic

  5. Very fast kicker for accelerator applications

    SciTech Connect

    Grishanov, B.I.; Podgorny, F.V.; Ruemmler, J.; Shiltsev, V.D.

    1996-11-01

    We describe a very fast counter traveling wave kicker with a full pulse width of about 7 ns. Successful test experiment has been done with hi-tech semiconductor technology FET pulse generator with a MHz- range repetition rates and maximum kick strength of the order of 3 G{center_dot}m. Further. increase of the strength seems to be quite possible with the FET pursers, that makes the kicker to be very useful tool for bunch-by-bunch injection/extraction and other accelerator applications.

  6. Direct Current Accelerators for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Hellborg, Ragnar; Whitlow, Harry J.

    2011-02-01

    Direct current accelerators form the basis of many front-line industrial processes. They have many advantages that have kept them at the forefront of technology for many decades, such as a small and easily managed environmental footprint. In this article, the basic principles of the different subsystems (ion and electron sources, high voltage generation, control, etc.) are overviewed. Some well-known (ion implantation and polymer processing) and lesser-known (electron beam lithography and particle-induced X-ray aerosol mapping) applications are reviewed.

  7. Application of local area networks to accelerator control systems at the Stanford Linear Accelerator

    SciTech Connect

    Fox, J.D.; Linstadt, E.; Melen, R.

    1983-03-01

    The history and current status of SLAC's SDLC networks for distributed accelerator control systems are discussed. These local area networks have been used for instrumentation and control of the linear accelerator. Network topologies, protocols, physical links, and logical interconnections are discussed for specific applications in distributed data acquisition and control system, computer networks and accelerator operations.

  8. Applications toolkit for accelerator control and analysis

    SciTech Connect

    Borland, M.

    1997-06-01

    The Advanced Photon Source (APS) has taken a unique approach to creating high-level software applications for accelerator operation and analysis. The approach is based on self-describing data, modular program toolkits, and scripts. Self-describing data provide a communication standard that aids the creation of modular program toolkits by allowing compliant programs to be used in essentially arbitrary combinations. These modular programs can be used as part of an arbitrary number of high-level applications. At APS, a group of about 70 data analysis, manipulation, and display tools is used in concert with about 20 control-system-specific tools to implement applications for commissioning and operations. High-level applications are created using scripts, which are relatively simple interpreted programs. The Tcl/Tk script language is used, allowing creating of graphical user interfaces (GUIs) and a library of algorithms that are separate from the interface. This last factor allows greater automation of control by making it easy to take the human out of the loop. Applications of this methodology to operational tasks such as orbit correction, configuration management, and data review will be discussed.

  9. Acceleration of Data Analysis Applications using GPUs

    NASA Astrophysics Data System (ADS)

    Fillmore, D.; Messmer, P.; Mullowney, P.; Amyx, K.

    2008-12-01

    The vast amount of data collected by present and future scientific instruments, sensors and numerical models requires a significant increase in computing power for analysis. In many cases, processing time on a single workstation becomes impractical. While clusters of commodity processors can be utilized to accelerate some of these tasks, the relatively high software development cost, as well as acquisition and operational costs, make them less attractive for broad use. Over the past few years, another class of architectures has gained some popularity, namely heterogeneous architectures, which consist of general purpose processors connected to specialized processors. One of the most prominent examples are Graphics Processing Units (GPUs), which offer a tremendous amount of floating-point processing power due to demand for high-quality graphics in the computer game market. However, in order to harness this processing power, software developers have to develop with a detailed understanding of the underlying hardware. This burden on the developer is often hardly justifiable considering the rapid evolution of the hardware. In this talk, we will introduce GPULib, an open source library that enables scientists to accelerate their data analysis tasks using the GPUs already installed in their system from within high-level languages like IDL or MATLAB, and present examples and possible speedup from real-world data analysis applications. This work is funded through NASA Phase II SBIR Grant NNG06CA13C.

  10. Symposium report on frontier applications of accelerators

    SciTech Connect

    Parsa, Z.

    1993-09-28

    This report contains viewgraph material on the following topics: Electron-Positron Linear Colliders; Unconventional Colliders; Prospects for UVFEL; Accelerator Based Intense Spallation; Neutron Sources; and B Physics at Hadron Accelerators with RHIC as an Example.

  11. DETECTORS FOR ACCELERATOR-BASED NUCLEAR SECURITY APPLICATIONS

    SciTech Connect

    Warren, Glen A.; Stave, Sean C.; Miller, Erin A.

    2015-08-31

    We present of review of detector systems used in accelerator-based national security applications. In gen-eral, the detectors used for these applications are also used in passive measurements. The critical difference is that detector systems for accelerator-based applications in general need to discriminate beam-generated background from the intended signal. Typical techniques to remove background include shielding, timing, selection of sensitive materials, and choice of accelerator.

  12. Application of particle accelerators in research.

    PubMed

    Mazzitelli, Giovanni

    2011-07-01

    Since the beginning of the past century, accelerators have started to play a fundamental role as powerful tools to discover the world around us, how the universe has evolved since the big bang and to develop fundamental instruments for everyday life. Although more than 15 000 accelerators are operating around the world only a very few of them are dedicated to fundamental research. An overview of the present high energy physics (HEP) accelerator status and prospectives is presented.

  13. Applications of particle accelerators in medicine.

    PubMed

    Silari, Marco

    2011-07-01

    There are nearly 20,000 particle accelerators in operation worldwide, about half of them employed for biomedical uses. This paper focuses on some recent advances in the two main medical domains where accelerators find their use, radionuclide production and radiation therapy. The paper first discusses the use of high-energy electron and proton accelerators for the potential, future production of (99)Mo, which is presently provided by fission reactors. Next, it reviews the rationale for the use of protons and carbon ions in cancer therapy, discussing the requirements imposed on accelerator technology and looking at some recent developments.

  14. PRODUCTION AND APPLICATIONS OF NEUTRONS USING PARTICLE ACCELERATORS

    SciTech Connect

    David L. Chichester

    2009-11-01

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  15. Applications of the Strategic Defense Initiative's compact accelerators

    NASA Technical Reports Server (NTRS)

    Montanarelli, Nick; Lynch, Ted

    1991-01-01

    The Strategic Defense Initiative's (SDI) investment in particle accelerator technology for its directed energy weapons program has produced breakthroughs in the size and power of new accelerators. These accelerators, in turn, have produced spinoffs in several areas: the radio frequency quadrupole linear accelerator (RFQ linac) was recently incorporated into the design of a cancer therapy unit at the Loma Linda University Medical Center, an SDI-sponsored compact induction linear accelerator may replace Cobalt-60 radiation and hazardous ethylene-oxide as a method for sterilizing medical products, and other SDIO-funded accelerators may be used to produce the radioactive isotopes oxygen-15, nitrogen-13, carbon-11, and fluorine-18 for positron emission tomography (PET). Other applications of these accelerators include bomb detection, non-destructive inspection, decomposing toxic substances in contaminated ground water, and eliminating nuclear waste.

  16. Applications of the Strategic Defense Initiative's compact accelerators

    NASA Astrophysics Data System (ADS)

    Montanarelli, Nick; Lynch, Ted

    1991-12-01

    The Strategic Defense Initiative's (SDI) investment in particle accelerator technology for its directed energy weapons program has produced breakthroughs in the size and power of new accelerators. These accelerators, in turn, have produced spinoffs in several areas: the radio frequency quadrupole linear accelerator (RFQ linac) was recently incorporated into the design of a cancer therapy unit at the Loma Linda University Medical Center, an SDI-sponsored compact induction linear accelerator may replace Cobalt-60 radiation and hazardous ethylene-oxide as a method for sterilizing medical products, and other SDIO-funded accelerators may be used to produce the radioactive isotopes oxygen-15, nitrogen-13, carbon-11, and fluorine-18 for positron emission tomography (PET). Other applications of these accelerators include bomb detection, non-destructive inspection, decomposing toxic substances in contaminated ground water, and eliminating nuclear waste.

  17. Overview of Accelerator Applications for Security and Defense

    DOE PAGES

    Antolak, Arlyn J.

    2015-01-01

    Particle accelerators play a key role in a broad set of defense and security applications including war-fighter and asset protection, cargo inspection, nonproliferation, materials characterization and stockpile stewardship. Accelerators can replace the high activity radioactive sources that pose a security threat for developing a radiological dispersal device and be used to produce isotopes for medical, industrial, and re-search purposes. Lastly, we present an overview of current and emerging accelerator technologies relevant to addressing the needs of defense and security.

  18. Overview of Accelerator Applications for Security and Defense

    NASA Astrophysics Data System (ADS)

    Antolak, Arlyn J.

    Particle accelerators play a key role in a broad set of defense and security applications, including war-fighter and asset protection, cargo inspection, nonproliferation, materials characterization, and stockpile stewardship. Accelerators can replace the high activity radioactive sources that pose a security threat to developing a radiological dispersal device, and, can be used to produce isotopes for medical, industrial, and research purposes. An overview of current and emerging accelerator technologies relevant to addressing the needs of defense and security is presented.

  19. Inhibitors of the AAA+ Chaperone p97

    PubMed Central

    Chapman, Eli; Maksim, Nick; de la Cruz, Fabian; La Clair, James J.

    2015-01-01

    It is remarkable that a pathway as ubiquitous as protein quality control can be targeted to treat cancer. Bortezomib, an inhibitor of the proteasome, was first approved by the US Food and Drug Administration (FDA) more than 10 years ago to treat refractory myeloma and later extended to lymphoma. Its use has increased the survival rate of myeloma patients by as much as three years. This success was followed with the recent accelerated approval of the natural product derived proteasome inhibitor carfilzomib (Kyprolis®), which is used to treat patients with bortezomib-resistant multiple myeloma. The success of these two drugs has validated protein quality control as a viable target to fight select cancers, but begs the question why are proteasome inhibitors limited to lymphoma and myeloma? More recently, these limitations have encouraged the search for additional targets within the protein quality control system that might offer heightened cancer cell specificity, enhanced clinical utility, a lower rate of resistance, reduced toxicity, and mitigated side effects. One promising target is p97, an ATPase associated with various cellular activities (AAA+) chaperone. p97 figures prominently in protein quality control as well as serving a variety of other cellular functions associated with cancer. More than a decade ago, it was determined that up-regulation of p97 in many forms of cancer correlates with a poor clinical outcome. Since these initial discoveries, a mechanistic explanation for this observation has been partially illuminated, but details are lacking. Understandably, given this clinical correlation, myriad roles within the cell, and its importance in protein quality control, p97 has emerged as a potential therapeutic target. This review provides an overview of efforts towards the discovery of small molecule inhibitors of p97, offering a synopsis of efforts that parallel the excellent reviews that currently exist on p97 structure, function, and physiology. PMID

  20. Laser wakefield accelerator based light sources: potential applications and requirements

    SciTech Connect

    Albert, F.; Thomas, A. G.; Mangles, S. P.D.; Banerjee, S.; Corde, S.; Flacco, A.; Litos, M.; Neely, D.; Viera, J.; Najmudin, Z.; Bingham, R.; Joshi, C.; Katsouleas, T.

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  1. Genetic algorithms and their applications in accelerator physics

    SciTech Connect

    Hofler, Alicia S.

    2013-12-01

    Multi-objective optimization techniques are widely used in an extremely broad range of fields. Genetic optimization for multi-objective optimization was introduced in the accelerator community in relatively recent times and quickly spread becoming a fundamental tool in multi-dimensional optimization problems. This discussion introduces the basics of the technique and reviews applications in accelerator problems.

  2. Genetic analysis of abdominal aortic aneurysms (AAA)

    SciTech Connect

    St. Jean, P.L.; Hart, B.K.; Zhang, X.C.

    1994-09-01

    The association between AAA and gender, smoking (SM), hypertension (HTN) and inguinal herniation (IH) was examined in 141 AAA probands and 139 of their 1st degree relatives with aortic exam (36 affected, 103 unaffected). There was no significant difference between age at diagnosis of affecteds and age at exam of unaffecteds. Of 181 males, 142 had AAA; of 99 females, 35 had AAA. Using log-linear modeling AAA was significantly associated at the 5% level with gender, SM and HTN but not IH. The association of AAA with SM and HTN held when males and females were analyzed separately. HTN was -1.5 times more common in both affected males and females, while SM was 1.5 and 2 times more common in affected males and females, respectively. Tests of association and linkage analyses were performed with relevant candidate genes: 3 COL3A1 polymorphisms (C/T, ALA/THR, AvaII), 2 ELN polymorphisms (SER/GLY, (CA)n), FBN1(TAAA)n, 2 APOB polymorphisms (Xbal,Ins/Del), CLB4B (CA)n, PI and markers D1S243 (CA)n, HPR (CA)n and MFD23(CA)n. The loci were genotyped in > 100 AAA probands and > 95 normal controls. No statistically significant evidence of association at the 5% level was obtained for any of the loci using chi-square test of association. 28 families with 2 or more affecteds were analyzed using the affected pedigree member method (APM) and lod-score analyses. There was no evidence for linkage with any loci using APM. Lod-score analysis under an autosomal recessive model resulted in excluding linkage (lod score < -2) of all loci to AAA at {theta}=0.0. Under an autosomal dominant model, linkage was excluded at {theta}=0.0 to ELN, APOB, CLG4B, D1S243, HPR and MFD23. The various genes previously proposed in AAA pathogenesis are neither associated nor casually related in our study population.

  3. Advanced Accelerator Applications University Participation Program

    SciTech Connect

    Y. Chen; A. Hechanova

    2007-07-25

    Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability.

  4. Pathophysiology of AAA: heredity vs environment.

    PubMed

    Björck, Martin; Wanhainen, Anders

    2013-01-01

    Abdominal aortic aneurysm (AAA) has a complex pathophysiology, in which both environmental and genetic factors play important roles, the most important being smoking. The recently reported falling prevalence rates of AAA in northern Europe and Australia/New Zeeland are largely explained by healthier smoking habits. Dietary factors and obesity, in particular abdominal obesity, are also of importance. A family history of AAA among first-degree relatives is present in approximately 13% of incident cases. The probability that a monozygotic twin of a person with an AAA has the disease is 24%, 71 times higher than that for a monozygotic twin of a person without AAA. Approximately 1000 SNPs in 100 candidate genes have been studied, and three genome-wide association studies were published, identifying different diverse weak associations. An example of interaction between environmental and genetic factors is the effect of cholesterol, where genetic and dietary factors affect levels of both HDL and LDL. True epigenetic studies have not yet been published.

  5. Acceleration of compact toruses and fusion applications

    SciTech Connect

    Hartman, C.W.; Eddleman, J.L.; Hammer, J.H.; Logan, B.G.; McLean, H.S.; Molvik, A.W.

    1990-10-11

    The Compact Torus (Spheromak-type) is a near ideal plasma confinement configuration for acceleration. The fields are mostly generated by internal plasma currents, plasma confinement is toroidal, and the compact torus exhibits resiliency and stability in virtue of the ``rugged`` helicity invariant. Based on these considerations we are developing a coaxial rail-gun type Compact Torus Accelerator (CTA). In the CTA, the CT ring is formed between coaxial electrodes using a magnetized Marshall gun, it is quasistatically ``precompressed`` in a conical electrode section for inductive energy storage, it is accelerated in a straight-coaxial electrode section as in a conventional rail-gun, and it is focused to small size and high energy and power density in a final ``focus`` cone section. The dynamics of slow precompression and acceleration have been demonstrated experimentally in the RACE device with results in good agreement with 2-D MHD code calculations. CT plasma rings with 100 {micro}gms mass have been accelerated to 40 Kj kinetic energy at 20% efficiency with final velocity = 1 X 10{sup 8} cm/s (= 5 KeV/H{sup +}). Preliminary focus tests exhibi dynamics of radius compression, deceleration, and bouncing. Compression ratios of 2-3 have been achieved. A scaled-up 10-100 MJ CTA is predicted to achieve a focus radius of several cm to deliver = 30 MJ ring kinetic energy in 5-10 nsec. This is sufficient energy, power, and power density to enable the CTA to act as a high efficiency, low cost ICF driver. Alternatively, the focused CT can form the basis for an magnetically insulated, inertial confinement fusion (MICF) system. Preliminary calculations of these fusion systems will be discussed.

  6. Proceedings of a workshop on Applications of Accelerators

    SciTech Connect

    Herrmannsfeldt, W.B.; Sessler, A.M.; Alonso, J.R.

    1994-01-31

    This document is a compilation of material collected as the results of a workshop, Applications of Accelerators, held at the Stanford Linear Accelerator Center, 1--2 December 1993. The material collected here has been edited for style and to minimize duplication. Footnotes will identify the original source of the material. We believe that the reader will find that this document has something for every interest. There are applications in the fields of health, food preservation, energy, environmental monitoring and protection, and industrial processing. Man y of the examples discussed have already passed the demonstration stage. Most of the others are the subject of active accelerator research. Taken as a whole, the particle accelerator field contains a wealth of application opportunities, some already in use, and many more ready to be exploited.

  7. Trends for Electron Beam Accelerator Applications in Industry

    NASA Astrophysics Data System (ADS)

    Machi, Sueo

    2011-02-01

    Electron beam (EB) accelerators are major pieces of industrial equipment used for many commercial radiation processing applications. The industrial use of EB accelerators has a history of more than 50 years and is still growing in terms of both its economic scale and new applications. Major applications involve the modification of polymeric materials to create value-added products, such as heat-resistant wires, heat-shrinkable sheets, automobile tires, foamed plastics, battery separators and hydrogel wound dressing. The surface curing of coatings and printing inks is a growing application for low energy electron accelerators, resulting in an environmentally friendly and an energy-saving process. Recently there has been the acceptance of the use of EB accelerators in lieu of the radioactive isotope cobalt-60 as a source for sterilizing disposable medical products. Environmental protection by the use of EB accelerators is a new and important field of application. A commercial plant for the cleaning flue gases from a coal-burning power plant is in operation in Poland, employing high power EB accelerators. In Korea, a commercial plant uses EB to clean waste water from a dye factory.

  8. Modern compact accelerators of cyclotron type for medical applications

    NASA Astrophysics Data System (ADS)

    Smirnov, V.; Vorozhtsov, S.

    2016-09-01

    Ion beam therapy and hadron therapy are types of external beam radiotherapy. Recently, the vast majority of patients have been treated with protons and carbon ions. Typically, the types of accelerators used for therapy were cyclotrons and synchrocyclotrons. It is intuitively clear that a compact facility fits best to a hospital environment intended for particle therapy and medical diagnostics. Another criterion for selection of accelerators to be mentioned in this article is application of superconducting technology to the magnetic system design of the facility. Compact isochronous cyclotrons, which accelerate protons in the energy range 9-30 MeV, have been widely used for production of radionuclides. Energy of 230 MeV has become canonical for all proton therapy accelerators. Similar application of a carbon beam requires ion energy of 430 MeV/u. Due to application of superconducting coils the magnetic field in these machines can reach 4-5 T and even 9 T in some cases. Medical cyclotrons with an ironless or nearly ironless magnetic system that have a number of advantages over the classical accelerators are in the development stage. In this work an attempt is made to describe some conceptual and technical features of modern accelerators under consideration. The emphasis is placed on the magnetic and acceleration systems along with the beam extraction unit, which are very important from the point of view of the facility compactness and compliance with the strict medical requirements.

  9. Compact Plasma Accelerator for Micropropulsion Applications

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2001-01-01

    There is a need for a low power, light-weight (compact), high specific impulse electric propulsion device to satisfy mission requirements for microsatellite (1 to 20 kg) class missions. Satisfying these requirements entails addressing the general problem of generating a sufficiently dense plasma within a relatively small volume and then accelerating it. In the work presented here, the feasibility of utilizing a magnetic cusp to generate a dense plasma over small length scales of order 1 mm is investigated. This approach could potentially mitigate scaling issues associated with conventional ion thruster plasma containment schemes. Plume and discharge characteristics were documented using a Faraday probe and a retarding potential analyzer.

  10. Sequence analysis of the AAA protein family.

    PubMed Central

    Beyer, A.

    1997-01-01

    The AAA protein family, a recently recognized group of Walker-type ATPases, has been subjected to an extensive sequence analysis. Multiple sequence alignments revealed the existence of a region of sequence similarity, the so-called AAA cassette. The borders of this cassette were localized and within it, three boxes of a high degree of conservation were identified. Two of these boxes could be assigned to substantial parts of the ATP binding site (namely, to Walker motifs A and B); the third may be a portion of the catalytic center. Phylogenetic trees were calculated to obtain insights into the evolutionary history of the family. Subfamilies with varying degrees of intra-relatedness could be discriminated; these relationships are also supported by analysis of sequences outside the canonical AAA boxes: within the cassette are regions that are strongly conserved within each subfamily, whereas little or even no similarity between different subfamilies can be observed. These regions are well suited to define fingerprints for subfamilies. A secondary structure prediction utilizing all available sequence information was performed and the result was fitted to the general 3D structure of a Walker A/GTPase. The agreement was unexpectedly high and strongly supports the conclusion that the AAA family belongs to the Walker superfamily of A/GTPases. PMID:9336829

  11. Dust Accelerators And Their Applications In High-Temperature Plasmas

    SciTech Connect

    Ticos, Catalin M.; Wang Zhehui

    2011-06-01

    The perennial presence of dust in high-temperature plasma and fusion devices has been firmly established. Dust inventory must be controlled, in particular in the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and potentially interfere with fusion energy production. Although much effort has been devoted to getting rid of the dust nuisance, there are instances where a controlled use of dust can be beneficial. We have recognized a number of dust-accelerators applications in magnetic fusion, including in plasma diagnostics, in studying dust-plasma interactions, and more recently in edge localized mode (ELM)'s pacing. With the applications in mind, we will compare various acceleration methods, including electrostatic, gas-drag, and plasma-drag acceleration. We will also describe laboratory experiments and results on dust acceleration.

  12. Dust accelerators and their applications in high-temperature plasmas

    SciTech Connect

    Wang, Zhehui; Ticos, Catakin M

    2010-01-01

    The perennial presence of dust in high-temperature plasma and fusion devices has been firmly established. Dust inventory must be controlled, in particular in the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and potentially interfere with fusion energy production. Much effort has been devoted to gening rid of the dust nuisance. We have recognized a number of dust-accelerators applications in magnetic fusion, including in plasma diagnostics, in studying dust-plasma interactions, and more recently in edge localized mode (ELM)'s pacing. With the applications in mind, we will compare various acceleration methods, including electrostatic, gas-drag, and plasma-drag acceleration. We will also describe laboratory experiments and results on dust acceleration.

  13. Survey of proposed high intensity accelerators and their applications

    SciTech Connect

    Schriber, S.O.

    1994-09-01

    Many interesting applications are being considered for high intensity accelerators. Implications of the technology developments that are enhancing these opportunities, or making them possible, will be covered in context of the applications. Applications include those for research (in areas such as material science, biological sciences, nuclear and high energy physics), accelerator-driven transmutation technologies, defense, and medicine. Specific examples will be used to demonstrate the impact that technology development can have and how transfer of this technology to industry can have an impact in the consumer and commercial arenas. Technology Development in rf power, controls, beam optics, rf structures, magnets, injectors, and beam halos will be considered.

  14. 26 CFR 1.1368-2 - Accumulated adjustments account (AAA).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 11 2010-04-01 2010-04-01 true Accumulated adjustments account (AAA). 1.1368-2... adjustments account (AAA). (a) Accumulated adjustments account—(1) In general. The accumulated adjustments account is an account of the S corporation and is not apportioned among shareholders. The AAA is...

  15. AAA-DDD triple hydrogen bond complexes.

    PubMed

    Blight, Barry A; Camara-Campos, Amaya; Djurdjevic, Smilja; Kaller, Martin; Leigh, David A; McMillan, Fiona M; McNab, Hamish; Slawin, Alexandra M Z

    2009-10-01

    Experiment and theory both suggest that the AAA-DDD pattern of hydrogen bond acceptors (A) and donors (D) is the arrangement of three contiguous hydrogen bonding centers that results in the strongest association between two species. Murray and Zimmerman prepared the first example of such a system (complex 3*2) and determined the lower limit of its association constant (K(a)) in CDCl(3) to be 10(5) M(-1) by (1)H NMR spectroscopy (Murray, T. J. and Zimmerman, S. C. J. Am. Chem. Soc. 1992, 114, 4010-4011). The first cationic AAA-DDD pair (3*4(+)) was described by Bell and Anslyn (Bell, D. A. and Anslyn, E. A. Tetrahedron 1995, 51, 7161-7172), with a K(a) > 5 x 10(5) M(-1) in CH(2)Cl(2) as determined by UV-vis spectroscopy. We were recently able to quantify the strength of a neutral AAA-DDD arrangement using a more chemically stable AAA-DDD system, 6*2, which has an association constant of 2 x 10(7) M(-1) in CH(2)Cl(2) (Djurdjevic, S., Leigh, D. A., McNab, H., Parsons, S., Teobaldi, G. and Zerbetto, F. J. Am. Chem. Soc. 2007, 129, 476-477). Here we report on further AA(A) and DDD partners, together with the first precise measurement of the association constant of a cationic AAA-DDD species. Complex 6*10(+)[B(3,5-(CF(3))(2)C(6)H(3))(4)(-)] has a K(a) = 3 x 10(10) M(-1) at RT in CH(2)Cl(2), by far the most strongly bound triple hydrogen bonded system measured to date. The X-ray crystal structure of 6*10(+) with a BPh(4)(-) counteranion shows a planar array of three short (NH...N distances 1.95-2.15 A), parallel (but staggered rather than strictly linear; N-H...N angles 165.4-168.8 degrees), primary hydrogen bonds. These are apparently reinforced, as theory predicts, by close electrostatic interactions (NH-*-N distances 2.78-3.29 A) between each proton and the acceptor atoms of the adjacent primary hydrogen bonds.

  16. Applications of laser wakefield accelerator-based light sources

    NASA Astrophysics Data System (ADS)

    Albert, Félicie; Thomas, Alec G. R.

    2016-11-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons in the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. We first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.

  17. Industrial application of e-beam accelerators in Korea

    NASA Astrophysics Data System (ADS)

    Han, Bumsoo; Kim, JinKyu; Kim, Yuri; Jeong, Kwang-Young

    2012-07-01

    Electron Accelerators are the most common means of radiation processing, and they are used in diverse industries to enhance the physical and the chemical properties of materials and to reduce undesirable contaminants, such as pathogens or toxic by-products of materials. Fifteen thousand [1,500] electron accelerators are commercially used in the world, and this number is eight or nine times greater than the number of Gamma irradiation facilities. Electron accelerators are reliable and durable electrically-sourced equipment that can produce ionizing radiation when it is needed for a particular commercial use. Electron accelerators were introduced in Korea during the 1970s, firstly for research and later for insulated wire and cable production. At present, over sixty electron accelerators are in commercial use, providing several billion USD annually in Korean industries, mainly for purposes such as, productions of wires, cables, thermo-shrinkable materials, foam sheets, and coating, curing of materials, sterilization of medical products, environmental protection, and others. With the increasing needs in the automobile and electronics industries, applicable areas for electron accelerator will be extended greatly in the future.

  18. Applications of large-scale computation to particle accelerators

    SciTech Connect

    Herrmannsfeldt, W.B.

    1991-05-01

    The rapid growth in the power of large-scale computers has had a revolutionary effect on the study of charged-particle accelerators that is similar to the impact of smaller computers on everyday life. Before an accelerator is built, it is now the absolute rule to simulate every component and subsystem by computer to establish modes of operation and tolerances. We will bypass the important and fruitful areas of control and operation, and consider only application to design and diagnostic interpretation. Applications of computers can be divided into separate categories including: component design, system design, stability studies, cost optimization, and operating condition simulation. For the purposes of this report, we will choose a few examples from the above categories to illustrate the methods used, and discuss the significance of the work to the project. We also briefly discuss the accelerator project itself. The examples that will be discussed are: The design of accelerator structures for electron-positron linear colliders and circular colliding beam systems, simulation of the wake fields from multibunch electron beams for linear colliders. Particle-in-cell simulation of space-charge dominated beams for an experimental linear induction accelerator for Heavy Ion Fusion.

  19. Applications of the ARGUS code in accelerator physics

    SciTech Connect

    Petillo, J.J.; Mankofsky, A.; Krueger, W.A.; Kostas, C.; Mondelli, A.A.; Drobot, A.T.

    1993-12-31

    ARGUS is a three-dimensional, electromagnetic, particle-in-cell (PIC) simulation code that is being distributed to U.S. accelerator laboratories in collaboration between SAIC and the Los Alamos Accelerator Code Group. It uses a modular architecture that allows multiple physics modules to share common utilities for grid and structure input., memory management, disk I/O, and diagnostics, Physics modules are in place for electrostatic and electromagnetic field solutions., frequency-domain (eigenvalue) solutions, time- dependent PIC, and steady-state PIC simulations. All of the modules are implemented with a domain-decomposition architecture that allows large problems to be broken up into pieces that fit in core and that facilitates the adaptation of ARGUS for parallel processing ARGUS operates on either Cray or workstation platforms, and MOTIF-based user interface is available for X-windows terminals. Applications of ARGUS in accelerator physics and design are described in this paper.

  20. Operational and design aspects of accelerators for medical applications

    NASA Astrophysics Data System (ADS)

    Schippers, Jacobus Maarten; Seidel, Mike

    2015-03-01

    Originally, the typical particle accelerators as well as their associated beam transport equipment were designed for particle and nuclear physics research and applications in isotope production. In the past few decades, such accelerators and related equipment have also been applied for medical use. This can be in the original physics laboratory environment, but for the past 20 years also in hospital-based or purely clinical environments for particle therapy. The most important specific requirements of accelerators for radiation therapy with protons or ions will be discussed. The focus will be on accelerator design, operational, and formal aspects. We will discuss the special requirements to reach a high reliability for patient treatments as well as an accurate delivery of the dose at the correct position in the patient using modern techniques like pencil beam scanning. It will be shown that the technical requirements, safety aspects, and required reliability of the accelerated beam differ substantially from those in a nuclear physics laboratory. It will be shown that this difference has significant implications on the safety and interlock systems. The operation of such a medical facility should be possible by nonaccelerator specialists at different operating sites (treatment rooms). The organization and role of the control and interlock systems can be considered as being the most crucially important issue, and therefore a special, dedicated design is absolutely necessary in a facility providing particle therapy.

  1. A compact, repetitive accelerator for military and industrial applications

    SciTech Connect

    Zutavern, F.J.; O`Malley, M.W.; Ruebush, M.H.; Rinehart, L.F.; Loubriel, G.M.; Babcock, S.R.; Denison, G.J.

    1998-04-01

    A compact, short pulse, repetitive accelerator has many useful military and commercial applications in biological counter proliferation, materials processing, radiography, and sterilization (medical instruments, waste, and food). The goal of this project was to develop and demonstrate a small, 700 kV accelerator, which can produce 7 kA particle beams with pulse lengths of 10--30 ns at rates up to 50 Hz. At reduced power levels, longer pulses or higher repetition rates (up to 10 kHz) could be achieved. Two switching technologies were tested: (1) spark gaps, which have been used to build low repetition rate accelerators for many years; and (2) high gain photoconductive semiconductor switches (PCSS), a new solid state switching technology. This plan was economical, because it used existing hardware for the accelerator, and the PCSS material and fabrication for one module was relatively inexpensive. It was research oriented, because it provided a test bed to examine the utility of other emerging switching technologies, such as magnetic switches. At full power, the accelerator will produce 700 kV and 7 kA with either the spark gap or PCSS pulser.

  2. Laser acceleration of low emittance, high energy ions and applications

    NASA Astrophysics Data System (ADS)

    Fuchs, Julien; Audebert, Patrick; Borghesi, Marco; Pépin, Henri; Willi, Oswald

    2009-03-01

    Laser-accelerated ion sources have exceptional properties, i.e. high brightness and high spectral cut-off (56 MeV at present), high directionality and laminarity (at least 100-fold better than conventional accelerators beams), short burst duration (ps). Thanks to these properties, these sources open new opportunities for applications. Among these, we have already explored their use for proton radiography of fields in plasmas and for warm dense matter generation. These sources could also stimulate development of compact ion accelerators or be used for medical applications. To extend the range of applications, ion energy and conversion efficiency must however be increased. Two strategies for doing so using present-day lasers have been successfully explored in LULI experiments. In view of applications, it is also essential to control (i.e. collimate and energy select) these beams. For this purpose, we have developed an ultra-fast laser-triggered micro-lens providing tuneable control of the beam divergence as well as energy selection. To cite this article: J. Fuchs et al., C. R. Physique 10 (2009).

  3. Compact superferric FFAG accelerators for medium energy hadron applications

    NASA Astrophysics Data System (ADS)

    Qin, B.; Mori, Y.

    2011-08-01

    Medium energy hadron beams are desirable in various applications such as accelerator-driven subcritical systems (ADSR), high intensity neutron sources and carbon therapy. Compactness and easy operation characters are important for this energy region, especially in the case of medical use purposes. This paper introduces a novel superferric scheme with scaling fixed-field alternating gradient (FFAG) accelerators, which can provide 400 MeV/u carbon ions for cancer therapy. By employing a maximum field of 5 T with a high field index, 8.5 m diameter with 85 cm radius excursion is achieved in a single FFAG ring. The lattice configuration and design of superferric magnet sectors with high permeability materials were described in detail. This scheme can also be extended to other hadron applications.

  4. Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications

    SciTech Connect

    Brown, Michael R.

    2006-11-16

    Project Title: Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications PI: Michael R. Brown, Swarthmore College The purpose of the project was to provide theoretical and modeling support to the Swarthmore Spheromak Experiment (SSX). Accordingly, the theoretical effort was tightly integrated into the SSX experimental effort. During the grant period, Michael Brown and his experimental collaborators at Swarthmore, with assistance from W. Matthaeus as appropriate, made substantial progress in understanding the physics SSX plasmas.

  5. Innovative Applications of Genetic Algorithms to Problems in Accelerator Physics

    SciTech Connect

    Hofler, Alicia; Terzic, Balsa; Kramer, Matthew; Zvezdin, Anton; Morozov, Vasiliy; Roblin, Yves; Lin, Fanglei; Jarvis, Colin

    2013-01-01

    The genetic algorithm (GA) is a relatively new technique that implements the principles nature uses in biological evolution in order to optimize a multidimensional nonlinear problem. The GA works especially well for problems with a large number of local extrema, where traditional methods (such as conjugate gradient, steepest descent, and others) fail or, at best, underperform. The field of accelerator physics, among others, abounds with problems which lend themselves to optimization via GAs. In this paper, we report on the successful application of GAs in several problems related to the existing CEBAF facility, the proposed MEIC at Jefferson Lab, and a radio frequency (RF) gun based injector. These encouraging results are a step forward in optimizing accelerator design and provide an impetus for application of GAs to other problems in the field. To that end, we discuss the details of the GAs used, including a newly devised enhancement, which leads to improved convergence to the optimum and make recommendations for future GA developments and accelerator applications.

  6. Accelerator Stewardship Test Facility Program - Elliptical Twin Cavity for Accelerator Applications

    SciTech Connect

    Hutton, Andrew; Areti, Hari

    2015-08-01

    Funding is being requested pursuant to the proposals entitled Elliptical Twin Cavity for Accelerator Applications that was submitted and reviewed through the Portfolio Analysis and Management System (PAMS). The PAMS proposal identifier number is 0000219731. The proposed new type of superconducting cavity, the Elliptical Twin Cavity, is capable of accelerating or decelerating beams in two separate beam pipes. This configuration is particularly effective for high-current, low energy electron beams that will be used for bunched beam cooling of high-energy protons or ions. Having the accelerated beam physically separated from the decelerated beam, but interacting with the same RF mode, means that the low energy beam from the gun can be injected into to the superconducting cavity without bends enabling a small beam emittance to be maintained. A staff engineer who has been working with non-standard complicated cavity structures replaces the senior engineer (in the original budget) who is moving on to be a project leader. This is reflected in a slightly increased engineer time and in reduced costs. The Indirect costs for FY16 are lower than the previous projection. As a result, there is no scope reduction.

  7. Symmetric neutralized ion beams: Production, acceleration, propagation, and applications

    NASA Astrophysics Data System (ADS)

    Hicks, Nathaniel Kenneth

    This dissertation presents the first integrated experimental, computational, and theoretical research program on symmetric neutralized ion beams. A beam of this type is composed of positive and negative ions having equal charge-to-mass ratios, such that the beam has overall charge neutrality and its constituent ions respond symmetrically to electromagnetic forces. Under the right conditions, these beams may propagate undeflected across transverse magnetic fields due to beam polarization. Such propagation is studied here computationally, using a three-dimensional particle-in-cell code. Also, key theoretical differences between the propagation ability of these beams and that of beams consisting of positive ions and electrons are elucidated. An experimental method of producing a symmetric neutralized ion beam by merging together separate beams of positive and negative ions is demonstrated, and prototype collector hardware to diagnose the composition and energy distribution of the beam is developed. The ability of radio frequency quadrupole accelerators to simultaneously confine and accelerate the positive and negative ions of such a beam is demonstrated computationally and is confirmed experimentally, and a method to reestablish local charge neutrality in the beam after acceleration is conceived and simulated. The favorable scaling of such accelerators to small size and high frequency is illustrated. Finally, applications of the research to magnetic confinement fusion and topics for future study are presented.

  8. Application of Plasma Waveguides to High Energy Accelerators

    SciTech Connect

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We

  9. Acceleration of compact toroid plasma rings for fusion applications

    NASA Astrophysics Data System (ADS)

    Hartman, C. W.; Barr, W. L.; Eddleman, J. L.; Gee, M.; Hammer, J. H.; Ho, S. K.; Logan, B. G.; Meeker, D. J.; Mirin, A. A.; Nevins, W. M.

    1988-08-01

    We describe experimental results for a new type of collective accelerator based on magnetically confined compact torus (CT) plasma rings and discuss applications to both inertial and magnetic fusion. We have demonstrated the principle of CT acceleration in the RACE device with acceleration of 0.5 mg ring masses to 400 km/s and 0.02 mg ring masses to 1400 km/s at greater than or equal to 30 percent efficiency. Scaling the CT accelerator to the multi-megajoule level could provide an efficient, economical driver for inertial fusion (ICF) or magnetically insulated inertial fusion. Efficient conversion to X-rays for driving hohlraum-type ICF targets has been modeled using a radiation-hydrodynamics code. At less demanding conditions than required for ICF, a CT accelerator can be applied to fueling and current drive in tokamaks. Fueling is accomplished by injecting CTs at the required rate to sustain the particle inventory and at a velocity sufficient to penetrate to the magnetic axis before CT dissolution. Current drive is a consequence of the magnetic helicity content of the CT, which is approximately conserved during reconnection of the CT fields with the tokamak. Major areas of uncertainty in CT fueling and current drive concern the mechanism by which CTs will stop in a tokamak plasma and the effects of the CT on energy confinement and magnetic stability. Bounds on the required CT injection velocity are obtained by considering drag due to emission of an Alfven-wave wake and rapid reconnection and tilting on the internal Alfven time scale of the CT. Preliminary results employing a 3-D, resistive MHD code show rapid tilting with the CT aligning its magnetic moment with the tokamak field. Requirements for an experimental test of CT injection and scenarios for fueling a reactor will also be discussed.

  10. Applications of the ram accelerator to hypervelocity aerothermodynamic testing

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Knowlen, C.; Hertzberg, A.

    1992-01-01

    A ram accelerator used as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerodynamics research is presented. It is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled down a stationary tube filled with a tailored combustible gas mixture. Ram accelerator operation has been demonstrated at 39 mm and 90 mm bores, supporting the proposition that this launcher concept can be scaled up to very large bore diameters of the order of 30-60 cm. It is concluded that high quality data obtained from the tube wall and projectile during the aceleration process itself are very useful for understanding aerothermodynamics of hypersonic flow in general, and for providing important CFD validation benchmarks.

  11. Superconducting RF Technology R&D for Future Accelerator Applications

    SciTech Connect

    Reece, Charles E.; Ciovati, Gianluigi

    2012-09-01

    Superconducting rf (SRF) technology is evolving rapidly, as are its applications. While there is active exploitation of what one may call the current state-of-the-practice, there is also rapid progress in expanding in several dimensions the accessible and useful parameter space. While state-of-the-art performance sometimes outpaces thorough understanding, the improving scientific understanding from active SRF research is clarifying routes to obtain optimum performance from present materials and opening avenues beyond the standard bulk niobium. The improving technical basis understanding is enabling process engineering to improve both performance confidence and reliability and also unit implementation costs. Increasing confidence in the technology enables the engineering of new creative application designs. We attempt to survey this landscape to highlight the potential for future accelerator applications.

  12. Integrated Control of Axonemal Dynein AAA+ Motors

    PubMed Central

    King, Stephen M.

    2012-01-01

    Axonemal dyneins are AAA+ enzymes that convert ATP hydrolysis to mechanical work. This leads to the sliding of doublet microtubules with respect to each other and ultimately the generation of ciliary/flagellar beating. However, in order for useful work to be generated, the action of individual dynein motors must be precisely controlled. In addition, cells modulate the motility of these organelles through a variety of second messenger systems and these signals too must be integrated by the dynein motors to yield an appropriate output. This review describes the current status of efforts to understand dynein control mechanisms and their connectivity focusing mainly on studies of the outer dynein arm from axonemes of the unicellular biflagellate green alga Chlamydomonas. PMID:22406539

  13. ELIMED, future hadrontherapy applications of laser-accelerated beams

    NASA Astrophysics Data System (ADS)

    Cirrone, Giuseppe A. P.; Carpinelli, Massimo; Cuttone, Giacomo; Gammino, Santo; Bijan Jia, S.; Korn, Georg; Maggiore, Mario; Manti, Lorenzo; Margarone, Daniele; Prokupek, Jan; Renis, Marcella; Romano, Francesco; Schillaci, Francesco; Tomasello, Barbara; Torrisi, Lorenzo; Tramontana, Antonella; Velyhan, Andriy

    2013-12-01

    Laser-ion acceleration has recently gained a great interest as an alternative to conventional and more expensive acceleration techniques. These ion beams have desirable qualities such as small source size, high luminosity and small emittance to be used in different fields as Nuclear Physics, Medical Physics, etc. This is very promising specially for the future perspective of a new concept of hadrontherapy based on laser-based devices could be developed, replacing traditional accelerating machines. Before delivering laser-driven beams for treatments they have to be handled, cleaned from unwanted particles and characterized in order to have the clinical requirements. In fact ion energy spectra have exponential trend, almost 100% energy spread and a wide angular divergence which is the biggest issue in the beam transport and, hence, in a wider use of this technology. In order to demonstrate the clinical applicability of laser-driven beams new collaboration between ELI-Beamlines project researchers from Prague (Cz) and a INFN-LNS group from Catania (I) has been already launched and scientists from different countries have already express their will in joining the project. This cooperation has been named ELIMED (MEDical application at ELIBeamlines) and will take place inside the ELI-Beamlines infrastructure located in Prague. This work describes the schedule of the ELIMED project and the design of the energy selector which will be realized at INFN-LNS. The device is an important part of the whole transport beam line which will be realised in order to make the ion beams suitable for medical applications.

  14. Multiple-applications of Accelerated Compact Toroid Injection for MFE

    NASA Astrophysics Data System (ADS)

    Hwang, David; Horton, Robert; Evans, Russell; Liu, Fei; Zhu, Ben; Hong, Sean; Buchenauer, Dean

    2010-11-01

    The CTIX experiment has explored the potential applications of launching a fast moving magnetized compact toroid for Magnetic Fusion experiments. These applications include central fueling of a MFE device such as tokamaks, stellarators, etc. At present, the UC Davis CTIX accelerator has achieved densities at mid to upper 10^15 per cc, at speeds reaching over 200 km/sec. In order to meet the parameters of even larger fusion devices, the technology of the accelerator needs to incorporate the latest plasma wall interaction findings. As a result of the next step in CT development, UC Davis will be collaborating with the Fusion Technology group at Sandia National Laboratory in Livermore California. We will be designing new plasmas facing electrodes that can reduce electrode impurities and increase electrode lifetime. In addition to producing high density CTs, we will include the updated conical compression results from our previous installed drift section compressor. In addition of the MFE applications, the ability to enhance the CT density, fields as well as speed can be useful to other fusion areas such as MIF, etc.

  15. AAAS Communicating Science Program: Reflections on Evaluation

    NASA Astrophysics Data System (ADS)

    Braha, J.

    2015-12-01

    The AAAS Center for Public Engagement (Center) with science builds capacity for scientists to engage public audiences by fostering collaboration among natural or physical scientists, communication researchers, and public engagement practitioners. The recently launched Leshner Leadership Institute empowers cohorts of mid-career scientists to lead public engagement by supporting their networks of scientists, researchers, and practitioners. The Center works closely with social scientists whose research addresses science communication and public engagement with science to ensure that the Communicating Science training program builds on empirical evidence to inform best practices. Researchers ( Besley, Dudo, & Storkdieck 2015) have helped Center staff and an external evaluator develop pan instrument that measures progress towards goals that are suggested by the researcher, including internal efficacy (increasing scientists' communication skills and confidence in their ability to engage with the public) and external efficacy (scientists' confidence in engagement methods). Evaluation results from one year of the Communicating Science program suggest that the model of training yields positive results that support scientists in the area that should lead to greater engagement. This talk will explore the model for training, which provides a context for strategic communication, as well as the practical factors, such as time, access to public engagement practitioners, and technical skill, that seems to contribute to increased willingness to engage with public audiences. The evaluation program results suggest willingness by training participants to engage directly or to take preliminary steps towards engagement. In the evaluation results, 38% of trained scientists reported time as a barrier to engagement; 35% reported concern that engagement would distract from their work as a barrier. AAAS works to improve practitioner-researcher-scientist networks to overcome such barriers.

  16. A Reconfigurable Processor Infrastructure for Accelerating Java Applications

    NASA Astrophysics Data System (ADS)

    Han, Youngsun; Hwang, Seok Joong; Kim, Seon Wook

    In this paper, we present a reconfigurable processor infrastructure to accelerate Java applications, called Jaguar. The Jaguar infrastructure consists of a compiler framework and a runtime environment support. The compiler framework selects a group of Java methods to be translated into hardware for delivering the best performance under limited resources, and translates the selected Java methods into Verilog synthesizable code modules. The runtime environment support includes the Java virtual machine (JVM) running on a host processor to provide Java execution environment to the generated Java accelerator through communication interface units while preserving Java semantics. Our compiler infrastructure is a tightly integrated and solid compiler-aided solution for Java reconfigurable computing. There is no limitation in generating synthesizable Verilog modules from any Java application while preserving Java semantics. In terms of performance, our infrastructure achieves the speedup by 5.4 times on average and by up to 9.4 times in measured benchmarks with respect to JVM-only execution. Furthermore, two optimization schemes such as an instruction folding and a live buffer removal can reduce 24% on average and up to 39% of the resource consumption.

  17. Accelerated optical polymer aging studies for LED luminaire applications

    NASA Astrophysics Data System (ADS)

    Estupiñán, Edgar; Wendling, Peter; Kostrun, Marijan; Garner, Richard

    2013-09-01

    There is a need in the lighting industry to design and implement accelerated aging methods that accurately simulate the aging process of LED luminaire components. In response to this need, we have built a flexible and reliable system to study the aging characteristics of optical polymer materials, and we have employed it to study a commercially available LED luminaire diffuser made of PMMA. The experimental system consists of a "Blue LED Emitter" and a working surface. Both the temperatures of the samples and the optical powers of the LEDs are appropriately characterized in the system. Several accelerated aging experiments are carried out at different temperatures and optical powers over a 90 hour period and the measured transmission values are used as inputs to a degradation model derived using plausibility arguments. This model seems capable of predicting the behavior of the material as a function of time, temperature and optical power. The model satisfactorily predicts the measured transmission values of diffusers aged in luminaires at two different times and thus can be used to make application recommendations for this material. Specifically, at 35000 hours (the manufacturer's stated life of the luminaire) and at the typical operational temperature of the diffuser, the model predicts a transmission loss of only a few percent over the original transmission of the material at 450 nm, which renders this material suitable for this application.

  18. GPU accelerated FDTD solver and its application in MRI.

    PubMed

    Chi, J; Liu, F; Jin, J; Mason, D G; Crozier, S

    2010-01-01

    The finite difference time domain (FDTD) method is a popular technique for computational electromagnetics (CEM). The large computational power often required, however, has been a limiting factor for its applications. In this paper, we will present a graphics processing unit (GPU)-based parallel FDTD solver and its successful application to the investigation of a novel B1 shimming scheme for high-field magnetic resonance imaging (MRI). The optimized shimming scheme exhibits considerably improved transmit B(1) profiles. The GPU implementation dramatically shortened the runtime of FDTD simulation of electromagnetic field compared with its CPU counterpart. The acceleration in runtime has made such investigation possible, and will pave the way for other studies of large-scale computational electromagnetic problems in modern MRI which were previously impractical.

  19. Highly Productive Application Development with ViennaCL for Accelerators

    NASA Astrophysics Data System (ADS)

    Rupp, K.; Weinbub, J.; Rudolf, F.

    2012-12-01

    The use of graphics processing units (GPUs) for the acceleration of general purpose computations has become very attractive over the last years, and accelerators based on many integrated CPU cores are about to hit the market. However, there are discussions about the benefit of GPU computing when comparing the reduction of execution times with the increased development effort [1]. To counter these concerns, our open-source linear algebra library ViennaCL [2,3] uses modern programming techniques such as generic programming in order to provide a convenient access layer for accelerator and GPU computing. Other GPU-accelerated libraries are primarily tuned for performance, but less tailored to productivity and portability: MAGMA [4] provides dense linear algebra operations via a LAPACK-comparable interface, but no dedicated matrix and vector types. Cusp [5] is closest in functionality to ViennaCL for sparse matrices, but is based on CUDA and thus restricted to devices from NVIDIA. However, no convenience layer for dense linear algebra is provided with Cusp. ViennaCL is written in C++ and uses OpenCL to access the resources of accelerators, GPUs and multi-core CPUs in a unified way. On the one hand, the library provides iterative solvers from the family of Krylov methods, including various preconditioners, for the solution of linear systems typically obtained from the discretization of partial differential equations. On the other hand, dense linear algebra operations are supported, including algorithms such as QR factorization and singular value decomposition. The user application interface of ViennaCL is compatible to uBLAS [6], which is part of the peer-reviewed Boost C++ libraries [7]. This allows to port existing applications based on uBLAS with a minimum of effort to ViennaCL. Conversely, the interface compatibility allows to use the iterative solvers from ViennaCL with uBLAS types directly, thus enabling code reuse beyond CPU-GPU boundaries. Out-of-the-box support

  20. Alumino-silicate ion sources for accelerator applications

    SciTech Connect

    Warwick, A.I.

    1985-04-01

    As part of the program of Heavy Ion Fusion Accelerator Research at the Lawrence Berkeley Laboratory, ion sources have been developed using thermionic emitters of singly charged alkali metal ions. These emitters are flat surfaces of alumino-silicate, loaded with the appropriate ion. They have become convenient and reliable sources producing pulsed beams of very low emittance. Thermionic emission of ions from alumino-silicates has been known for a very long time. Here the author focuses on the practical application as accelerator ion sources. The author discusses the fabrication and heating of large area emitters, uniformity of emission and the maximum ion current density which can be extracted under space charge limited conditions, with zero electric field on the emitter surface. Results are presented for Na, K and Cs ions showing maximum space charge limited current densities of 25, 40 and 120 mAcm/sup -2/ respectively. In the case of cesium the author has produced a 5 mA beam at a kinetic energy of 200 keV with normalized emittance 1.2 x 10/sup -7/ ..pi.. m rad.

  1. Fundamental Characteristics of AAA+ Protein Family Structure and Function

    PubMed Central

    2016-01-01

    Many complex cellular events depend on multiprotein complexes known as molecular machines to efficiently couple the energy derived from adenosine triphosphate hydrolysis to the generation of mechanical force. Members of the AAA+ ATPase superfamily (ATPases Associated with various cellular Activities) are critical components of many molecular machines. AAA+ proteins are defined by conserved modules that precisely position the active site elements of two adjacent subunits to catalyze ATP hydrolysis. In many cases, AAA+ proteins form a ring structure that translocates a polymeric substrate through the central channel using specialized loops that project into the central channel. We discuss the major features of AAA+ protein structure and function with an emphasis on pivotal aspects elucidated with archaeal proteins. PMID:27703410

  2. Applications of accelerator mass spectrometry for pharmacological and toxicological research.

    PubMed

    Brown, Karen; Tompkins, Elaine M; White, Ian N H

    2006-01-01

    The technique of accelerator mass spectrometry (AMS), known for radiocarbon dating of archeological specimens, has revolutionized high-sensitivity isotope detection in pharmacology and toxicology by allowing the direct determination of the amount of isotope in a sample rather than measuring its decay. It can quantify many isotopes, including 26Al, 14C, 41Ca, and 3H with detection down to attomole (10(-18)) amounts. Pharmacokinetic data in humans have been achieved with ultra-low levels of radiolabel. One of the most exciting biomedical applications of AMS with 14C-labeled potential carcinogens is the detection of modified proteins or DNA in tissues. The relationship between low-level exposure and covalent binding of genotoxic chemicals has been compared in rodents and humans. Such compounds include heterocyclic amines, benzene, and tamoxifen. Other applications range from measuring the absorption of 26Al to monitoring 41Ca turnover in bone. In epoxy-embedded tissue sections, high-resolution imaging of 14C label in cells is possible. The uses of AMS are becoming more widespread with the availability of instrumentation dedicated to the analysis of biomedical samples.

  3. Recent advances in biomedical applications of accelerator mass spectrometry

    PubMed Central

    Hah, Sang Soo

    2009-01-01

    The use of radioisotopes has a long history in biomedical science, and the technique of accelerator mass spectrometry (AMS), an extremely sensitive nuclear physics technique for detection of very low-abundant, stable and long-lived isotopes, has now revolutionized high-sensitivity isotope detection in biomedical research, because it allows the direct determination of the amount of isotope in a sample rather than measuring its decay, and thus the quantitative analysis of the fate of the radiolabeled probes under the given conditions. Since AMS was first used in the early 90's for the analysis of biological samples containing enriched 14C for toxicology and cancer research, the biomedical applications of AMS to date range from in vitro to in vivo studies, including the studies of 1) toxicant and drug metabolism, 2) neuroscience, 3) pharmacokinetics, and 4) nutrition and metabolism of endogenous molecules such as vitamins. In addition, a new drug development concept that relies on the ultrasensitivity of AMS, known as human microdosing, is being used to obtain early human metabolism information of candidate drugs. These various aspects of AMS are reviewed and a perspective on future applications of AMS to biomedical research is provided. PMID:19534792

  4. High-Current Experiments for Accelerator-Based Neutron Capture Therapy Applications

    SciTech Connect

    Gierga, D.P.; Klinkowstein, R.E.; Hughey, B.H.; Shefer, R.E.; Yanch, J.C.; Blackburn, B.W.

    1999-06-06

    Several accelerator-based neutron capture therapy applications are under development. These applications include boron neutron capture therapy for glioblastoma multiform and boron neutron capture synovectomy (BNCS) for rheumatoid arthritis. These modalities use accelerator-based charged-particle reactions to create a suitable neutron source. Neutrons are produced using a high-current, 2-MV terminal tandem accelerator. For these applications to be feasible, high accelerator beam currents must be routinely achievable. An effort was undertaken to explore the operating regime of the accelerator in the milliampere range. In preparation for high-current operation of the accelerator, computer simulations of charged-particle beam optics were performed to establish high-current operating conditions. Herein we describe high beam current simulations and high beam current operation of the accelerator.

  5. An Application Specific Memory Characterization Technique for Co-processor Accelerators

    SciTech Connect

    Alam, Sadaf R; Smith, Melissa C; Vetter, Jeffrey S

    2007-01-01

    Commodity accelerator technologies including reconfigurable devices and graphical processing units (GPUs) provide an order of magnitude performance improvement compared to mainstream microprocessor systems. A number of compute-intensive, scientific applications, therefore, can potentially benefit from commodity computing devices available in the form of co-processor accelerators. However, there has been little progress in accelerating production-level scientific applications using these technologies due to several programming and performance challenges. One of the key performance challenges is performance sustainability. While computation is often accelerated substantially by accelerator devices, the achievable performance is significantly lower once the data transfer costs and overheads are incorporated. We present an application-specific memory characterization technique for an FPGA-accelerated system that enabled us to reduce data transfer overhead for a scientific application by a factor of 5. We classify large data structures in the application according to their read and write characteristics and access patterns. This classification in turn enabled us to sustain a speedup of over three for a full-scale scientific application. Our proposed technique extends to applications that exhibit similar memory behavior and to co-processor accelerator systems that support data streaming and pipelining, and allow overlapped execution between the host and the accelerator device.

  6. Role of AAA(+)-proteins in peroxisome biogenesis and function.

    PubMed

    Grimm, Immanuel; Erdmann, Ralf; Girzalsky, Wolfgang

    2016-05-01

    Mutations in the PEX1 gene, which encodes a protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The recognition that Pex1p shares a conserved ATP-binding domain with p97 and NSF led to the discovery of the extended family of AAA+-type ATPases. So far, four AAA+-type ATPases are related to peroxisome function. Pex6p functions together with Pex1p in peroxisome biogenesis, ATAD1/Msp1p plays a role in membrane protein targeting and a member of the Lon-family of proteases is associated with peroxisomal quality control. This review summarizes the current knowledge on the AAA+-proteins involved in peroxisome biogenesis and function.

  7. Application of Accelerators in research and Industry: Proceedings of the fourteenth International Conference. Proceedings

    SciTech Connect

    Duggan, J.L.; Morgan, I.

    1997-08-01

    The fourteenth International Conference on the Application of Accelerators in Research and Industry was held in November, 1996 in Texas, USA. The United States Department of Energy was one of the sponsors of this conference. The conference was widely attended by accelerator scientists throughout the world. The topics discussed included a wide range of applications spanning the fields from Art History to Zoology. An overview of the Design Project for the National spallation Neutron Source was presented in one of the plenary sessions, as was a summary of Accelerated Beams of Radioactive Ions. Accelerator based Atomic Physics had the most sessions. The subject of accelerator Technology covered topics such as new accelerators, beam handling systems, ion sources, detector, spectrometers, and magnets etc. Radioactive Beams and Nuclear Physics were also topics of several sessions. New Research Opportunities for Nuclear structure, Nuclear Astrophysics, Material Science, and the future facilities and applications of Accelerated Beams of Radioactive ions were discussed. These proceedings represent the papers presented at this exciting conference which summarized the State of the Art technology of Accelerator applications in research and Industry. These proceedings contain 341 papers, out of which, 99 have been abstracted for the Energy Science and Technology database.(AIP)

  8. Distribution of Wall Stress in Abdominal Aortic Aneurysm (AAA)

    NASA Astrophysics Data System (ADS)

    Lasheras, Juan

    2005-11-01

    Abdominal aortic aneurysm (AAA) rupture is believed to occur when the mechanical stress acting on the wall exceeds the strength of the wall tissue. Therefore, knowledge of the AAA wall stress distribution could be useful in assessing its risk of rupture. In our research, a finite element analysis was used to determine the wall stresses both in idealized models and in a real clinical model in which the aorta was considered isotropic with nonlinear material properties and was loaded with a given pressure. In the idealized models, both maximum diameter and asymmetry were found to have substantial influence on the distribution of the wall stress. The thrombus inside the AAA was also found to help protecting the walls from high stresses. Using CT scans of the AAA, the actual geometry of the aneurysm was reconstructed and we found that wall tension increases on the flatter surface (typically corresponds to the posterior surface) and at the inflection points of the bulge. In addition to the static analysis, we also performed simulations of the effect of unsteady pressure wave propagation inside the aneurysm.

  9. Ex-congressman Rush Holt to lead AAAS

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2015-01-01

    The particle physicist Rush Holt, who served in the US Congress for 15 years, has been named as the next chief executive of the American Association for the Advancement of Science (AAAS) - the non-profit US society that promotes public engagement with science and technology.

  10. The Adult Asperger Assessment (AAA): A Diagnostic Method

    ERIC Educational Resources Information Center

    Baron-Cohen, Simon; Wheelwright, Sally; Robinson, Janine; Woodbury-Smith, Marc

    2005-01-01

    At the present time there are a large number of adults who have "suspected" Asperger syndrome (AS). In this paper we describe a new instrument, the Adult Asperger Assessment (AAA), developed in our clinic for adults with AS. The need for a new instrument relevant to the diagnosis of AS in adulthood arises because existing instruments are designed…

  11. THE AAA3 DOMAIN OF CYTOPLASMIC DYNEIN ACTS AS A SWITCH TO FACILITATE MICROTUBULE RELEASE

    PubMed Central

    Dewitt, Mark A.; Cypranowska, Caroline A.; Cleary, Frank B.; Belyy, Vladislav; Yildiz, Ahmet

    2014-01-01

    Cytoplasmic dynein is an AAA+ motor responsible for intracellular cargo transport and force generation along microtubules (MTs). Unlike kinesin and myosin, dynein contains multiple ATPase subunits, with AAA1 serving as the primary catalytic site. ATPase activity at AAA3 is also essential for robust motility, but its role in dynein’s mechanochemical cycle remains unclear. Here, we introduced transient pauses in Saccharomyces cerevisiae dynein motility by using a slowly hydrolyzing ATP analog. Analysis of pausing behavior revealed that AAA3 hydrolyzes nucleotide an order of magnitude slower than AAA1 and the two sites do not coordinate. ATPase mutations to AAA3 abolish the ability of dynein to modulate MT release. Nucleotide hydrolysis at AAA3 lifts this “MT gate” to fast motility. These results suggest that AAA3 acts as a switch that repurposes cytoplasmic dynein for fast cargo transport and MT anchoring tasks in cells. PMID:25486306

  12. Emerging standards with application to accelerator safety systems

    SciTech Connect

    Mahoney, K.L.; Robertson, H.P.

    1997-08-01

    This paper addresses international standards which can be applied to the requirements for accelerator personnel safety systems. Particular emphasis is given to standards which specify requirements for safety interlock systems which employ programmable electronic subsystems. The work draws on methodologies currently under development for the medical, process control, and nuclear industries.

  13. Double Acceleration of Ions and Application in Biomaterials

    SciTech Connect

    Lorusso, Antonella; Nassisi, Vincenzo; Siciliano, Maria Vittoria; Velardi, Luciano

    2010-02-02

    Ions of different elements were generated by laser-induced-plasma and accelerated by a two adjacent cavities. Therefore, the ions undergo a double acceleration imparting a maximum ion energy of 160 keV per charge state. We analyzed the extracted charge from a Cu target as a function of the accelerating voltage. At 60 kV of total accelerating voltage, the maximum current peak was of 5.3 mA. The ion flux resulted of 3.4x10{sup 11} ions/cm{sup 2}. The normalized emittance measured by pepper pot method at 60 kV was of 0.22 pi mm mrad. By means of this machine, biomedical materials as UHMWPE were implanted with carbon and titanium ions. At a total ion flux of 2x10{sup 15} ions/cm{sup 2} the polyethylene surface increased its micro hardness of about 3-hold measured by the scratch test. Considering the ion emission cone dimension, we estimated a total extracted charge per pulse of 200 nC.

  14. ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES

    SciTech Connect

    Sampayan, S; Caporaso, G; Chen, Y; Carazo, V; Falabella, S; Guethlein, G; Guse, S; Harris, J R; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Paul, A C; Pearson, D; Poole, B; Schmidt, R; Sanders, D; Selenes, K; Sitaraman, S; Sullivan, J; Wang, L; Watson, J

    2009-06-11

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve {approx}10 MV/m gradients for 10s of nanoseconds pulses and to {approx}100 MV/m gradients for {approx}1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We detail the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  15. Trends and applications for MeV electrostatic ion beam accelerators

    NASA Astrophysics Data System (ADS)

    Norton, G. A.; Stodola, S. E.

    2014-08-01

    The 1970s into the 1980s saw a major broadening of applications for electrostatic accelerators. Prior to this time, all accelerators were used primarily for nuclear structure research. In the 70s there was a significant move into production ion implantation with the necessary MeV ion beam analysis techniques such as RBS and ERD. Accelerators are still being built for these materials analysis techniques today. However, there is still a great ongoing expansion of applications for these machines. At the present time, the demand for electrostatic accelerators is near an all time high. The number of applications continues to grow. This paper will touch on some of the current applications which are as diverse as nuclear fission reactor developments and pharmacokinetics. In the field of nuclear engineering, MeV ion beams from electrostatic accelerators are being used in material damage studies and for iodine and actinide accelerator mass spectrometry (AMS). In the field of pharmacokinetics, electrostatic MeV accelerators are being used to detect extremely small amounts of above background 14C. This has significantly reduced the time required to reach first in human studies. These and other applications will be discussed.

  16. Molecularly Defined Nanostructures Based on a Novel AAA-DDD Triple Hydrogen-Bonding Motif.

    PubMed

    Papmeyer, Marcus; Vuilleumier, Clément A; Pavan, Giovanni M; Zhurov, Konstantin O; Severin, Kay

    2016-01-26

    A facile and flexible method for the synthesis of a new AAA-DDD triple hydrogen-bonding motif is described. Polytopic supramolecular building blocks with precisely oriented AAA and DDD groups are thus accessible in few steps. These building blocks were used for the assembly of large macrocycles featuring four AAA-DDD interactions and a macrobicyclic complex with a total of six AAA-DDD interactions.

  17. Potential applications of the dielectric wakefield accelerators in the SINBAD facility at DESY

    NASA Astrophysics Data System (ADS)

    Nie, Y. C.; Assmann, R.; Dorda, U.; Marchetti, B.; Weikum, M.; Zhu, J.; Hüning, M.

    2016-09-01

    Short, high-brightness relativistic electron bunches can drive ultra-high wakefields in the dielectric wakefield accelerators (DWFAs). This effect can be used to generate high power THz coherent Cherenkov radiation, accelerate a witness bunch with gradient two or three orders of magnitude larger than that in the conventional RF linear accelerators, introduce energy modulation within the driving bunch itself, etc. The paper studies potential applications of the DWFAs in the SINBAD facility at DESY. The simulations show that the ultra-short relativistic bunches from the SINBAD injector ARES can excite accelerating wakefields with peak amplitudes as high as GV/m at THz frequencies in proper DWFA structures. In addition, it illustrates that the DWFA structure can serve as a dechirper to compensate the correlated energy spread of the bunches accelerated by the laser plasma wakefield accelerator.

  18. Inhibition of early AAA formation by aortic intraluminal pentagalloyl glucose (PGG) infusion in a novel porcine AAA model

    PubMed Central

    Kloster, Brian O.; Lund, Lars; Lindholt, Jes S.

    2016-01-01

    Background The vast majority of abdominal aortic aneurysms found in screening programs are small, and as no effective treatment exits, many will expand until surgery is indicated. Therefore, it remains intriguing to develop a safe and low cost treatment of these small aneurysms, that is able to prevent or delay their expansion. In this study, we investigated whether intraluminal delivered pentagalloyl glucose (PGG) can impair the early AAA development in a porcine model. Methods The infrarenal aorta was exposed in thirty pigs. Twenty underwent an elastase based AAA inducing procedure and ten of these received an additional intraluminal PGG infusion. The final 10 were sham operated and served as controls. Results All pigs who only had an elastase infusion developed macroscopically expanding AAAs. In pigs treated with an additional PGG infusion the growth rate of the AP-diameter rapidly returned to physiological values as seen in the control group. In the elastase group, histology revealed more or less complete resolution of the elastic lamellae in the media while they were more abundant, coherent and structurally organized in the PGG group. The control group displayed normal physiological growth and histology. Conclusion In our model, intraluminal delivered PGG is able to penetrate the aortic wall from the inside and impair the early AAA development by stabilizing the elastic lamellae and preserving their integrity. The principle holds a high clinical potential if it can be translated to human conditions, since it, if so, potentially could represent a new drug for stabilizing small abdominal aneurysms. PMID:27144001

  19. Applications of ultra-compact accelerator technologies for homeland security

    NASA Astrophysics Data System (ADS)

    Sampayan, S.; Caporaso, G.; Chen, Y. J.; Falabella, S.; Guethlein, G.; Harris, J. R.; Hawkins, S.; Holmes, C.; Krogh, M.; Nelson, S.; Nunnally, W.; Paul, A. C.; Poole, B.; Rhodes, M.; Sanders, D.; Selenes, K.; Shaklee, K.; Sitaraman, S.; Sullivan, J.; Wang, L.; Watson, J.

    2007-08-01

    We report on a technology development to address explosive detector system throughout with increased detection probability. The system we proposed and are studying consists of a pixelized X-ray based pre-screener and a pulsed neutron source quantitative post verifier. Both technologies are derived from our compact accelerator development program for the Department of Energy Radiography Mission that enables gradients > 10 MV/m. For the pixelized X-ray source panel technology, we have performed initial integration and testing. For the accelerator, we are presently integrating and testing cell modules. For the verifier, we performed MCNP calculations that show good detectability of military and multi-part liquid threat systems. We detail the progress of our overall effort, including research and modeling to date, recent high voltage test results and concept integration.

  20. Double-negative metamaterial research for accelerator applications

    NASA Astrophysics Data System (ADS)

    Antipov, S.; Spentzouris, L.; Gai, W.; Liu, W.; Power, J. G.

    2007-09-01

    Material properties are central to the design of particle accelerators. One area of advanced accelerator research is to investigate novel materials and structures and their potential use in extending capabilities of accelerator components. Within the past decade a new type of artificially constructed material having the unique property of simultaneously negative permittivity and permeability has been realized, and is under intense investigation, primarily by the optical physics and microwave engineering communities [C.M. Soukoulis, Science 315 (2007) 47; D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305 (2004) 788; J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76 (1996) 4773]. Although they are typically constructed of arrays of discrete cells, as long as the condition that the wavelength of applied radiation is significantly greater than the cell dimensions is met, the material mimics a continuous medium and can be described with the bulk properties of permittivity, ɛ, and permeability, μ. When the permittivity and permeability are simultaneously negative in some frequency range, the metamaterial is called double negative (DNM) or left-handed (LHM) and has unusual properties, such as a negative index of refraction. An investigation of these materials in the context of accelerators is being carried out by IIT and the Argonne Wakefield Accelerator Facility [S. Antipov, W. Liu, W. Gai, J. Power, L. Spentzouris, AIP Conf. Proc. 877 (2006); S. Antipov, W. Liu, J. Power, L. Spentzouris, Design, Fabrication, and Testing of Left-Handed Metamaterial, Wakefield Notes at Argonne Wakefield Accelerator, ]. Waveguides loaded with metamaterials are of interest because the DNM can change the dispersion relation of the waveguide significantly. For example, slow backward waves can be produced in a DNM-loaded waveguide without having corrugations. This article begins with a brief introduction of known design

  1. Superstructure for high current applications in superconducting linear accelerators

    DOEpatents

    Sekutowicz, Jacek; Kneisel, Peter

    2008-03-18

    A superstructure for accelerating charged particles at relativistic speeds. The superstructure consists of two weakly coupled multi-cell subunits equipped with HOM couplers. A beam pipe connects the subunits and an HOM damper is included at the entrance and the exit of each of the subunits. A coupling device feeds rf power into the subunits. The subunits are constructed of niobium and maintained at cryogenic temperatures. The length of the beam pipe between the subunits is selected to provide synchronism between particles and rf fields in both subunits.

  2. Metal and elastomer seal tests for accelerator applications

    SciTech Connect

    Welch, K.M.; McIntyre, G.T.; Tuozzolo, J.E.; Skelton, R.; Pate, D.J.; Gill, S.M.

    1989-01-01

    The vacuum system of the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory has more than a thousand metal vacuum seals. Also, numerous elastomer seals are used throughout the AGS to seal large beam component chambers. An accelerator upgrade program is being implemented to reduce the AGS operating pressure by x100 and improve the reliability of the vacuum system. This paper describes work in progress on metal and elastomer vacuum seals to help meet those two objectives. Tests are reported on the sealing properties of a variety of metal seals used on different sealing surfaces. Results are also given on reversible sorption properties of certain elastomers. 16 refs., 6 figs., 4 tabs.

  3. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    NASA Astrophysics Data System (ADS)

    Teng, Chen; Elias, Luis R.

    1995-02-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations.

  4. Application of nonlinear Krylov acceleration to radiative transfer problems

    SciTech Connect

    Till, A. T.; Adams, M. L.; Morel, J. E.

    2013-07-01

    The iterative solution technique used for radiative transfer is normally nested, with outer thermal iterations and inner transport iterations. We implement a nonlinear Krylov acceleration (NKA) method in the PDT code for radiative transfer problems that breaks nesting, resulting in more thermal iterations but significantly fewer total inner transport iterations. Using the metric of total inner transport iterations, we investigate a crooked-pipe-like problem and a pseudo-shock-tube problem. Using only sweep preconditioning, we compare NKA against a typical inner / outer method employing GMRES / Newton and find NKA to be comparable or superior. Finally, we demonstrate the efficacy of applying diffusion-based preconditioning to grey problems in conjunction with NKA. (authors)

  5. Device Configuration Handler for Accelerator Control Applications at Jefferson Lab

    SciTech Connect

    Matt Bickley; P. Chevtsov; T. Larrieu

    2003-10-01

    The accelerator control system at Jefferson Lab uses hundreds of physical devices with such popular instrument bus interfaces as Industry Pack (IPAC), GPIB, RS-232, etc. To properly handle all these components, control computers (IOCs) must be provided with the correct information about the unique memory addresses of the used interface cards, interrupt numbers (if any), data communication channels and protocols. In these conditions, the registration of a new control device in the control system is not an easy task for software developers. Because the device configuration is distributed, it requires the detailed knowledge about not only the new device but also the configuration of all other devices on the existing system. A configuration handler implemented at Jefferson Lab centralizes the information about all control devices making their registration user-friendly and very easy to use. It consists of a device driver framework and the device registration software developed on the basis of ORACLE database and freely available scripting tools (perl, php).

  6. CPU-GPU hybrid accelerating the Zuker algorithm for RNA secondary structure prediction applications

    PubMed Central

    2012-01-01

    Background Prediction of ribonucleic acid (RNA) secondary structure remains one of the most important research areas in bioinformatics. The Zuker algorithm is one of the most popular methods of free energy minimization for RNA secondary structure prediction. Thus far, few studies have been reported on the acceleration of the Zuker algorithm on general-purpose processors or on extra accelerators such as Field Programmable Gate-Array (FPGA) and Graphics Processing Units (GPU). To the best of our knowledge, no implementation combines both CPU and extra accelerators, such as GPUs, to accelerate the Zuker algorithm applications. Results In this paper, a CPU-GPU hybrid computing system that accelerates Zuker algorithm applications for RNA secondary structure prediction is proposed. The computing tasks are allocated between CPU and GPU for parallel cooperate execution. Performance differences between the CPU and the GPU in the task-allocation scheme are considered to obtain workload balance. To improve the hybrid system performance, the Zuker algorithm is optimally implemented with special methods for CPU and GPU architecture. Conclusions Speedup of 15.93× over optimized multi-core SIMD CPU implementation and performance advantage of 16% over optimized GPU implementation are shown in the experimental results. More than 14% of the sequences are executed on CPU in the hybrid system. The system combining CPU and GPU to accelerate the Zuker algorithm is proven to be promising and can be applied to other bioinformatics applications. PMID:22369626

  7. 2 MeV linear accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Smith, Richard R.; Farrell, Sherman R.

    1997-02-01

    RPC Industries has developed a high average power scanned electron beam linac system for medium energy industrial processing, such as in-line sterilization. The parameters are: electron energy 2 MeV; average beam current 5.0 mA; and scanned width 0.5 meters. The control system features data logging and a Man-Machine Interface system. The accelerator is vertically mounted, the system height above the floor is 3.4 m, and the footprint is 0.9×1.2 meter2. The typical processing cell inside dimensions are 3.0 m by 3.5 m by 4.2 m high with concrete side walls 0.5 m thick above ground level. The equal exit depth dose is 0.73 gm cm-2. Additional topics that will be reported are: throughput, measurements of dose vs depth, dose uniformity across the web, and beam power by calorimeter and magnetic deflection of the beam.

  8. Pulse-discharge plasmas for plasma-accelerator applications

    SciTech Connect

    Clayton, C. E.; Joshi, C.; Lopes, N. C.

    2012-12-21

    For particle-beam-driven plasma wakefield accelerators, a long and fully-ionized plasma is desirable. We describe an experiment at UCLA to develop a prototype of such plasma using a pulsed-current discharge. Scaling of the plasma density with glass-tube diameter and with discharge-circuit parameters is currently underway. We have found that 4 Torr of Argon can be fully ionized to a density of about 1.3 Multiplication-Sign 10{sup 17} cm{sup -3} when the current density in the 1 inch diameter, 1.2 meter-long tube is around 2 kA/cm{sup 2}, at least at one point along the discharge. The homogeneity of the plasma density in the longitudinal direction is crucial to prevent slippage of the driven plasma structures with the particles. Equally important are the transverse gradients since any dipole asymmetry in the transverse direction can lead to 'steering' of the particle beam. The longitudinal and transverse gradients may be a function of time into the discharge, the shape of the electrodes, the tube size, and the fractional ionization for a given fill pressure. These issues are currently under investigation.

  9. Application of impedance measurement techniques to accelerating cavity mode characterization

    NASA Astrophysics Data System (ADS)

    Hanna, S. M.; Stefan, P. M.

    1993-11-01

    Impedance measurements, using a central wire to simulate the electron beam, were performed on a 52 MHz accelerating cavity at the National Synchrotron Light Source (NSLS). This cavity was recently installed in the X-ray storage ring at the NSLS as a part of an upgrade of the ring. To damp higher-order modes (HOM) in this cavity, damping antennas have been installed. We implemented the impedance measurement technique to characterize the cavity modes up to 1 GHz and confirm the effectiveness of the damping antennas. Scattering parameters were measured using a network analyzer (HP 8510B) with a personal computer as a controller. Analysis based on S and T parameters for the system was used to solve for the cavity impedance, Z( ω), as a function of the measured transmission response, S21( ω). Search techniques were used to find the shunt resistance Rsh, and Q from the calculated Z( ω) for different modes. Our results for {R}/{Q} showed good agreement with URMEL simulations. The values of Q were compared with other independent Q measurement techniques. Our analytical technique offers an alternative approach for cases where full thru-reflection-line (TRL) calibration is not feasible and a more time-effective technique for obtaining {R}/{Q}, compared with the bead-pull method.

  10. Status of materials handbooks for particle accelerator and nuclear reactor applications

    NASA Astrophysics Data System (ADS)

    Maloy, Stuart; Rogers, Berylene; Ren, Weiju; Rittenhouse, Philip

    2008-06-01

    In support of research and development for accelerator applications, a materials handbook was developed in August of 1998 funded by the Accelerator Production of Tritium Project. This handbook, presently called Advanced Fuel Cycle Initiative ( AFCI) Materials Handbook, Materials Data for Particle Accelerator Applications, has just issued Revision 5 and contains detailed information showing the effects of irradiation on many properties for a wide variety of materials. Development of a web-accessible materials database for Generation IV Reactor Programs has been ongoing for about three years. This handbook provides a single authoritative source for qualified materials data applicable to all Generation IV reactor concepts. A beta version of this Gen IV Materials Handbook has been completed and is presently under evaluation.

  11. Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques

    PubMed Central

    Mohammed, Muzaffer; Clement, Travis C.; Aslan, Kadir

    2014-01-01

    In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400–800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72–24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally. PMID:25568813

  12. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    SciTech Connect

    Ganni, Venkatarao; Knudsen, Peter N.; Arenius, Dana M.; Casagrande, Fabio

    2014-01-01

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

  13. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    SciTech Connect

    Ganni, V.; Knudsen, P.; Arenius, D.; Casagrande, F.

    2014-01-29

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

  14. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    SciTech Connect

    Rodriguez-Fernandez, Luis

    2010-09-10

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  15. Application of radiofrequency superconductivity to accelerators for high-current ion beams

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Roche, C.T.; Sagalovsky, L.

    1992-01-01

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high-current, high-brightness ion beam. During the last few years, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm) surface areas. Theoretical studies of beam halo, cumulative beam breakup and alternating-phase focusing have also yielded important results. This paper su-summarizes the recent progress and identifies current and future work in the areas of superconducting accelerator technology for high-current ion beams.

  16. Application of radiofrequency superconductivity to accelerators for high-current ion beams

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Roche, C.T.; Sagalovsky, L.

    1992-12-31

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high-current, high-brightness ion beam. During the last few years, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm) surface areas. Theoretical studies of beam halo, cumulative beam breakup and alternating-phase focusing have also yielded important results. This paper su-summarizes the recent progress and identifies current and future work in the areas of superconducting accelerator technology for high-current ion beams.

  17. Applications of vacuum technology to novel accelerator problems

    SciTech Connect

    Garwin, E.L.

    1983-01-01

    Vacuum requirements for electron storage rings are most demanding to fulfill, due to the presence of gas desorption caused by large quantities of synchrotron radiation, the very limited area accessible for pumping ports, the need for 10/sup -9/ torr pressures in the ring, and for pressures a decade lower in the interaction regions. Design features of a wide variety of distributed ion sublimation pumps (DIP) developed at SLAC to meet these requirements are discussed, as well as NEG (non-evaporable getter) pumps tested for use in the Large Electron Positron Collider at CERN. Application of DIP to much higher pressures in electron damping rings for the Stanford Linear Collider are discussed.

  18. The use of electromagnetic particle-in-cell codes in accelerator applications

    SciTech Connect

    Eppley, K.

    1988-12-01

    The techniques developed for the numerical simulation of plasmas have numerous applications relevant to accelerators. The operation of many accelerator components involves transients, interactions between beams and rf fields, and internal plasma oscillations. These effects produce non-linear behavior which can be represented accurately by particle in cell (PIC) simulations. We will give a very brief overview of the algorithms used in PIC Codes. We will examine the range of parameters over which they are useful. We will discuss the factors which determine whether a two or three dimensional simulation is most appropriate. PIC codes have been applied to a wide variety of diverse problems, spanning many of the systems in a linear accelerator. We will present a number of practical examples of the application of these codes to areas such as guns, bunchers, rf sources, beam transport, emittance growth and final focus. 8 refs., 8 figs., 2 tabs.

  19. Flyer Acceleration by Pulsed Ion Beam Ablation and Application for Space Propulsion

    SciTech Connect

    Harada, Nobuhiro; Buttapeng, Chainarong; Yazawa, Masaru; Kashine, Kenji; Jiang Weihua; Yatsui, Kiyoshi

    2004-02-04

    Flyer acceleration by ablation plasma pressure produced by irradiation of intense pulsed ion beam has been studied. Acceleration process including expansion of ablation plasma was simulated based on fluid model. And interaction between incident pulsed ion beam and a flyer target was considered as accounting stopping power of it. In experiments, we used ETIGO-II intense pulsed ion beam generator with two kinds of diodes; 1) Magnetically Insulated Diode (MID, power densities of <100 J/cm2) and 2) Spherical-focused Plasma Focus Diode (SPFD, power densities of up to 4.3 kJ/cm2). Numerical results of accelerated flyer velocity agreed well with measured one over wide range of incident ion beam energy density. Flyer velocity of 5.6 km/s and ablation plasma pressure of 15 GPa was demonstrated by the present experiments. Acceleration of double-layer target consists of gold/aluminum was studied. For adequate layer thickness, such a flyer target could be much more accelerated than a single layer. Effect of waveform of ion beam was also examined. Parabolic waveform could accelerate more efficiently than rectangular waveform. Applicability of ablation propulsion was discussed. Specific impulse of 7000{approx}8000 seconds and time averaged thrust of up to 5000{approx}6000N can be expected. Their values can be controllable by changing power density of incident ion beam and pulse duration.

  20. Compact Dielectric Wall Accelerator Development For Intensity Modulated Proton Therapy And Homeland Security Applications

    SciTech Connect

    Chen, Y -; Caporaso, G J; Guethlein, G; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Cook, E; Falabella, S; Gower, E; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Stanley, J; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-06-17

    Compact dielectric wall (DWA) accelerator technology is being developed at the Lawrence Livermore National Laboratory. The DWA accelerator uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. Its high electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The DWA concept can be applied to accelerate charge particle beams with any charge to mass ratio and energy. Based on the DWA system, a novel compact proton therapy accelerator is being developed. This proton therapy system will produce individual pulses that can be varied in intensity, energy and spot width. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources. Applications of the DWA accelerator to problems in homeland security will also be discussed.

  1. Differential expression of TRAIL and its receptors relative to calcification in AAA

    SciTech Connect

    Liu, Xun . E-mail: mpscrs@bath.ac.uk; Winrow, Vivienne R.; Horrocks, Michael; Stevens, Cliff R.

    2007-06-22

    Abdominal aortic aneurysm (AAA) is commonly associated with atherosclerosis. Human AAA tissue displays cells undergoing all stages of apoptosis. Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis in tumour cells but not in normal cells. It has death receptors and decoy receptors. An inhibitor of TRAIL, osteoprotegerin (OPG), is involved in osteogenesis and vascular calcification. We investigated TRAIL and its receptors in AAA compared within normal aorta (NA). Both qualitative and quantitative analyses of calcification in AAA walls were determined using Von Kossa staining and pre-operation computer tomography (CT) scans. There was a significant difference in calcification level at different locations in the AAA wall (p < 0.05). Apoptosis was confirmed in AAA by TUNEL assay. A significant difference in TRAIL and its receptor expression was observed between normal aortae and AAA (p < 0.05). Significant differences were also observed between tissues displaying different extents of calcification for TRAIL mRNA (p < 0.05) by RT-PCR examination and OPG protein (p < 0.01) by protein blotting examination. We propose that this pattern of expression of TRAIL and its receptors may contribute to AAA formation and calcification in the AAA wall.

  2. Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases.

    PubMed

    Kirstein, Janine; Molière, Noël; Dougan, David A; Turgay, Kürşad

    2009-08-01

    Members of the AAA+ protein superfamily contribute to many diverse aspects of protein homeostasis in prokaryotic cells. As a fundamental component of numerous proteolytic machines in bacteria, AAA+ proteins play a crucial part not only in general protein quality control but also in the regulation of developmental programmes, through the controlled turnover of key proteins such as transcription factors. To manage these many, varied tasks, Hsp100/Clp and AAA+ proteases use specific adaptor proteins to enhance or expand the substrate recognition abilities of their cognate protease. Here, we review our current knowledge of the modulation of bacterial AAA+ proteases by these cellular arbitrators.

  3. Convergence Acceleration and Documentation of CFD Codes for Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Marquart, Jed E.

    2005-01-01

    The development and analysis of turbomachinery components for industrial and aerospace applications has been greatly enhanced in recent years through the advent of computational fluid dynamics (CFD) codes and techniques. Although the use of this technology has greatly reduced the time required to perform analysis and design, there still remains much room for improvement in the process. In particular, there is a steep learning curve associated with most turbomachinery CFD codes, and the computation times need to be reduced in order to facilitate their integration into standard work processes. Two turbomachinery codes have recently been developed by Dr. Daniel Dorney (MSFC) and Dr. Douglas Sondak (Boston University). These codes are entitled Aardvark (for 2-D and quasi 3-D simulations) and Phantom (for 3-D simulations). The codes utilize the General Equation Set (GES), structured grid methodology, and overset O- and H-grids. The codes have been used with success by Drs. Dorney and Sondak, as well as others within the turbomachinery community, to analyze engine components and other geometries. One of the primary objectives of this study was to establish a set of parametric input values which will enhance convergence rates for steady state simulations, as well as reduce the runtime required for unsteady cases. The goal is to reduce the turnaround time for CFD simulations, thus permitting more design parametrics to be run within a given time period. In addition, other code enhancements to reduce runtimes were investigated and implemented. The other primary goal of the study was to develop enhanced users manuals for Aardvark and Phantom. These manuals are intended to answer most questions for new users, as well as provide valuable detailed information for the experienced user. The existence of detailed user s manuals will enable new users to become proficient with the codes, as well as reducing the dependency of new users on the code authors. In order to achieve the

  4. Engineering fluorescent protein substrates for the AAA+ Lon protease.

    PubMed

    Wohlever, Matthew L; Nager, Andrew R; Baker, Tania A; Sauer, Robert T

    2013-04-01

    AAA+ proteases, such as Escherichia coli Lon, recognize protein substrates by binding to specific peptide degrons and then unfold and translocate the protein into an internal degradation chamber for proteolysis. For some AAA+ proteases, attaching specific degrons to the N- or C-terminus of green fluorescent protein (GFP) generates useful substrates, whose unfolding and degradation can be monitored by loss of fluorescence, but Lon fails to degrade appropriately tagged GFP variants at a significant rate. Here, we demonstrate that Lon catalyzes robust unfolding and degradation of circularly permuted variants of GFP with a β20 degron appended to the N terminus or a sul20 degron appended to the C terminus. Lon degradation of non-permuted GFP-sul20 is very slow, in part because the enzyme cannot efficiently extract the degron-proximal C-terminal β-strand to initiate denaturation. The circularly permuted GFP substrates described here allow convenient high-throughput assays of the kinetics of Lon degradation in vitro and also permit assays of Lon proteolysis in vivo.

  5. Training Scientists to be Effective Communicators: AAAS Communicating Science Workshops

    NASA Astrophysics Data System (ADS)

    Cendes, L.; Lohwater, T.

    2012-12-01

    "Communicating Science: Tools for Scientists and Engineers" is a workshop program developed by AAAS to provide guidance and practice for scientists and engineers in communicating about science with public audiences. The program was launched at the 2008 AAAS Annual Meeting in Boston and has since provided 24 workshops for more than 1,500 scientist and engineer attendees at universities, science society meetings, and government agency labs around the United States. Each interactive workshop targets scientists and engineers specifically and has included content such as message development, defining audience, identifying opportunities for engaging the public, and practice with public presentations and cameras. The workshop format allows for collaborative learning through small-group discussion, resource sharing, and participation in critique of other participants' presentations. Continuous monitoring of the program includes on-site and online surveys and evaluation. On an assessment of workshops from 2008-2010, attendees reported that knowledge gained from the workshop helped in crafting messages about their scientific work for use in communicating with public audiences, and approximately 80 percent of respondents reported participation in communication with a public audience after attending the workshop. Through workshop content and feedback of participating scientists, this presentation will highlight some best practices and resources for scientists who want to take a proactive role in science communication.

  6. Temporal Electron-bunch Shaping from a Photoinjector for Advanced Accelerator Applications

    SciTech Connect

    Lemery, Francois; Piot, Philippe

    2014-07-01

    Advanced-accelerator applications often require the production of bunches with shaped temporal distributions. An example of sought-after shape is a linearly-ramped current profile that can be improve the transformer ratio in beam-driven acceleration, or produce energy-modulated pulse for, e.g., the subsequent generation of THz radiation. Typically,  such a shaping is achieved by manipulating ultra-relativistic electron bunches. In this contribution we discuss the possibility of shaping the bunch via photoemission and demonstrate using particle-in-cell simulations the production of MeV electron bunches with quasi-ramped current profile.

  7. A Sealed-Accelerator-Tube Neutron Generator for Boron Neutron Capture Therapy Application

    SciTech Connect

    Leung, K.-N.; Leung, K.N.; Lee, Y.; Verbeke, J.M.; Vurjic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

    1998-06-01

    Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator applications. By using a 2.5-cm-diameter RF-driven multicusp source and a computer designed 100 keV accelerator column, peak extractable hydrogen current exceeding 1 A from a 3-mm-diameter aperture, together with H{sup +} yields over 94% have been achieved. These experimental findings together with recent moderator design will enable one to develop compact 14 MeV neutron generators based on the D-T fusion reaction. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without pumping. With a 120 keV and 1 A deuteron beam, it is estimated that a treatment time of {approx} 45 minutes is needed for boron neutron capture therapy.

  8. Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications

    PubMed Central

    Sodickson, Daniel K.

    2010-01-01

    Cardiovascular magnetic resonance imaging (CVMRI) is of proven clinical value in the non-invasive imaging of cardiovascular diseases. CVMRI requires rapid image acquisition, but acquisition speed is fundamentally limited in conventional MRI. Parallel imaging provides a means for increasing acquisition speed and efficiency. However, signal-to-noise (SNR) limitations and the limited number of receiver channels available on most MR systems have in the past imposed practical constraints, which dictated the use of moderate accelerations in CVMRI. High levels of acceleration, which were unattainable previously, have become possible with many-receiver MR systems and many-element, cardiac-optimized RF-coil arrays. The resulting imaging speed improvements can be exploited in a number of ways, ranging from enhancement of spatial and temporal resolution to efficient whole heart coverage to streamlining of CVMRI work flow. In this review, examples of these strategies are provided, following an outline of the fundamentals of the highly accelerated imaging approaches employed in CVMRI. Topics discussed include basic principles of parallel imaging; key requirements for MR systems and RF-coil design; practical considerations of SNR management, supported by multi-dimensional accelerations, 3D noise averaging and high field imaging; highly accelerated clinical state-of-the art cardiovascular imaging applications spanning the range from SNR-rich to SNR-limited; and current trends and future directions. PMID:17562047

  9. On the design and testing of solid armatures for rail accelerator applications

    NASA Astrophysics Data System (ADS)

    Karthaus, W.; de Zeeuw, W. A.; Kolkert, W. J.

    1991-01-01

    Two different armature designs for rail accelerator applications have been studied during electromagnetic launch experiments: an aluminum multifinger monobloc and a copper fiber brush armature. The aluminum solid monobloc armatures launched with the 3-m rail accelerator of rather loose tolerance in borewidth do not provide the expected solid-solid electrical sliding contacts. Loss of rigidity, mainly due to thermal loading of the finger tips, results in vigorous arcing, evaporation of the armature, and aluminium deposit on the rails. The copper fiber brush armatures launched with the 1-m rail accelerator with tight tolerance in borewidth provide integer solid-solid, current carrying sliding contacts in the initial phase of the acceleration process, followed by a transition to a hybrid form where plasma layers and the solid armature body constitute the current conducting interfaces. At the transition region, armature resistance increases by two orders of magnitude. A major portion of the electrical energy commutated into the rail accelerator is dissipated by ohmic heating of the rails.

  10. Nuclear modeling for applications in medical radiation therapy and accelerator-driven technologies

    SciTech Connect

    Chadwick, M.B.

    1995-06-01

    An understanding of the interactions of neutrons and protons below a few hundred MeV with nuclei is important for a number of applications. In this paper, two new applications are discussed: radiation transport calculations of energy deposition in fast neutron and proton cancer radiotherapy to optimize the dose given to a tumor; and intermediate-energy proton accelerators which are currently being designed for a range of applications including the destruction of long-lived radioactive nuclear waste. We describe nuclear theory calculations of direct, preequilibrium, and compound nucleus reaction mechanisms important for the modeling of these systems.

  11. Analysis of a Typical Chinese High School Biology Textbook Using the AAAS Textbook Standards

    ERIC Educational Resources Information Center

    Liang, Ye; Cobern, William W.

    2013-01-01

    The purpose of this study was to evaluate a typical Chinese high school biology textbook using the textbook standards of the American Association for the Advancement of Science (AAAS). The data were composed of three chapters selected from the textbook. Each chapter was analyzed and rated using the AAAS textbook standards. Pearson correlations…

  12. Recent developments in the application of electron accelerators for polymer processing

    NASA Astrophysics Data System (ADS)

    Chmielewski, A. G.; Al-Sheikhly, M.; Berejka, A. J.; Cleland, M. R.; Antoniak, M.

    2014-01-01

    There are now over 1700 high current, electron beam (EB) accelerators being used world-wide in industrial applications, most of which involve polymer processing. In contrast to the use of heat, which transfers only about 5-10% of input energy into energy useful for materials modification, radiation processing is very energy efficient, with 60% or more of the input energy to an accelerator being available for affecting materials. Historic markets, such as the crosslinking of wire and cable jacketing, of heat shrinkable tubings and films, of partial crosslinking of tire components and of low-energy EB to cure or dry inks and coatings remain strong. Accelerator manufacturers have made equipment more affordable by down-sizing units while maintaining high beam currents. Very powerful accelerators with 700 kW output have made X-ray conversion a practical alternative to the historic use of radioisotopes, mainly cobalt-60, for applications as medical device sterilization. New EB end-uses are emerging, such as the development of nano-composites and nano-gels and the use of EB processing to facilitate biofuel production. These present opportunities for future research and development.

  13. Development of high gradient laser wakefield accelerators towards nuclear detection applications at LBNL

    SciTech Connect

    Geddes, Cameron GR; Bruhwiler, David L.; Cary, John R.; Esarey, Eric H.; Gonsalves, Anthony J.; Lin, Chen; Cormier-Michel, Estelle; Matlis, Nicholas H.; Nakamura, Kei; Bakeman, Mike; Panasenko, Dmitriy; Plateau, Guillaume R.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.

    2008-09-08

    Compact high-energy linacs are important to applications including monochromatic gamma sources for nuclear material security applications. Recent laser wakefield accelerator experiments at LBNL demonstrated narrow energy spread beams, now with energies of up to 1 GeV in 3 cm using a plasma channel at low density. This demonstrates the production of GeV beams from devices much smaller than conventional linacs, and confirms the anticipated scaling of laser driven accelerators to GeV energies. Stable performance at 0.5 GeV was demonstrated. Experiments and simulations are in progress to control injection of particles into the wake and hence to improve beam quality and stability. Using plasma density gradients to control injection, stable beams at 1 MeV over days of operation, and with an order of magnitude lower absolute momentum spread than previously observed, have been demonstrated. New experiments are post-accelerating the beams from controlled injection experiments to increase beam quality and stability. Thomson scattering from such beams is being developed to provide collimated multi-MeV monoenergetic gamma sources for security applications from compact devices. Such sources can reduce dose to target and increase accuracy for applications including photofission and nuclear resonance fluorescence.

  14. A computer study of radionuclide production in high power accelerators for medical and industrial applications

    NASA Astrophysics Data System (ADS)

    Van Riper, K. A.; Mashnik, S. G.; Wilson, W. B.

    2001-05-01

    Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes by high-energy protons and neutrons. These methods are readily applicable to accelerator, and reactor, environments other than the particular model we considered and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements. These methods also are applicable to an expanded set of reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures is available on the Web at http://t2.lanl.gov/publications/publications.html, or, if not accessible, in hard copy from the authors.

  15. Hardware accelerator of convolution with exponential function for image processing applications

    NASA Astrophysics Data System (ADS)

    Panchenko, Ivan; Bucha, Victor

    2015-12-01

    In this paper we describe a Hardware Accelerator (HWA) for fast recursive approximation of separable convolution with exponential function. This filter can be used in many Image Processing (IP) applications, e.g. depth-dependent image blur, image enhancement and disparity estimation. We have adopted this filter RTL implementation to provide maximum throughput in constrains of required memory bandwidth and hardware resources to provide a power-efficient VLSI implementation.

  16. Microwave-accelerated plasmonics: application to ultrafast and ultrasensitive clinical assays

    NASA Astrophysics Data System (ADS)

    Aslan, Kadir; Previte, Michael J. R.; Zhang, Yongxia; Geddes, Chris D.

    2007-02-01

    In recent years our laboratory has described the favorable effects of fluorophores in close proximity to metallic nanostructures (1-6). These include, increased system quantum yields (increased detectability) and much improved fluorophore photostabilities. These effects have led to many applications of metal-enhanced fluorescence (MEF) including, improved DNA detection (7, 8), enhanced ratiometric sensing (5), metal-enhanced phosphorescence (9) and chemiluminescence signatures (10), as well as to the development of nano-rod (6), triangular nano-plate (4) and modified plastic surfaces (1, 3) for their multifarious applications. In all of our applications of MEF to date, we have been able to significantly optically amplify luminescence based signatures, but have been unable to modify the rates of the respective biochemical reactions being either studied or utilized, as these are dependent on the usual solution parameters of temperature, viscosity and their bioaffinity etc. However, our laboratory has recently shown that low power microwaves, when applied to the metallic nanostructures which are suitable for MEF, are preferentially heated, rapidly accelerating local biochemical reactions (11). Subsequently, ultra-fast and ultra-sensitive assays can be realized. We have recently termed the amalgamation of both MEF with microwave heating as "Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF)." In this conference proceeding, we summarize our MAMEF work on ultra-fast and sensitive myoglobin detection for rapid cardiac risk assessment and DNA detection for bioterrorism applications. In addition we present two new platform technologies, namely, Microwave-Accelerated Surface Plasmon-Coupled Directional Luminescence (MA-SPCL) for ultra fast assays using clinical samples and a Microwave-Accelerated Aggregation Assay (MA-AA) technology, for ultra fast solutionbased nanoparticle aggregation assays.

  17. Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator Physics

    SciTech Connect

    Battistoni, Giuseppe; Broggi, Francesco; Brugger, Markus; Campanella, Mauro; Carboni, Massimo; Empl, Anton; Fasso, Alberto; Gadioli, Ettore; Cerutti, Francesco; Ferrari, Alfredo; Ferrari, Anna; Lantz, Matthias; Mairani, Andrea; Margiotta, M.; Morone, Christina; Muraro, Silvia; Parodi, Katerina; Patera, Vincenzo; Pelliccioni, Maurizio; Pinsky, Lawrence; Ranft, Johannes; /Siegen U. /CERN /Seibersdorf, Reaktorzentrum /INFN, Milan /Milan U. /SLAC /INFN, Legnaro /INFN, Bologna /Bologna U. /CERN /HITS, Heidelberg /CERN /CERN /Frascati /CERN /CERN /CERN /CERN /NASA, Houston

    2012-04-17

    FLUKA is a general purpose Monte Carlo code capable of handling all radiation components from thermal energies (for neutrons) or 1 keV (for all other particles) to cosmic ray energies and can be applied in many different fields. Presently the code is maintained on Linux. The validity of the physical models implemented in FLUKA has been benchmarked against a variety of experimental data over a wide energy range, from accelerator data to cosmic ray showers in the Earth atmosphere. FLUKA is widely used for studies related both to basic research and to applications in particle accelerators, radiation protection and dosimetry, including the specific issue of radiation damage in space missions, radiobiology (including radiotherapy) and cosmic ray calculations. After a short description of the main features that make FLUKA valuable for these topics, the present paper summarizes some of the recent applications of the FLUKA Monte Carlo code in the nuclear as well high energy physics. In particular it addresses such topics as accelerator related applications.

  18. Commercialization of an S-band standing-wave electron accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Moon, Jin-Hyeok; Kwak, Gyeong-Il; Han, Jae-Ik; Lee, Gyu-Baek; Jeon, Seong-Hwan; Kim, Jae-Young; Hwang, Cheol-Bin; Lee, Gi-Yong; Kim, Young-Man; Park, Sung-Ju

    2016-09-01

    An electron accelerator system has been developed for use in industrial, as well as possible medical, applications. Based on our experiences achieved during prototype system development and various electron beam acceleration tests, we have built a stable and compact system for sales purposes. We have integrated a self-developed accelerating cavity, an E-gun pulse driver, a radio-frequency (RF) power system, a vacuum system, a cooling system, etc. into a frame with a size of 1800 × 1000 × 1500 mm3. The accelerating structure is a side-coupled standing-wave type operating in the π/2 mode (tuned to~3 GHz). The RF power is provided by using a magnetron driven by a solid-state modulator. The electron gun is a triode type with a dispenser cathode (diameter of 11 mm). The system is capable of delivering a maximum 900-W average electron beam power with tight focusing at the target. Until now, we have performed various electron beam tests and X-ray beam tests after having built the system, have completed the beam assessment for commercializations, and have been preparing full-fledged sales activity. This article reports on our system development processes and on some of our early test results for commercializations.

  19. Application of Magnetically Insulated Transmission Lines for high current, high voltage electron beam accelerators

    SciTech Connect

    Shope, S.L.; Mazarakis, M.G.; Frost, C.A.; Poukey, J.W.; Turman, B.N.

    1991-01-01

    Self Magnetically Insulated Transmission Lines (MITL) adders have been used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently we used at MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (r{sub {rho}} < 2 cm), 11 to 15 MeV, 50 to 100-kA beams with a small transverse velocity v{perpendicular}/c = {beta}{perpendicular} {le} 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. Our success with the MITL technology led us to investigate the application to higher energy accelerator designs. We have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30--50 ns FWHM output pulse. 10 refs.

  20. Application of Magnetically Insulated Transmission Lines for high current, high voltage electron beam accelerators

    SciTech Connect

    Shope, S.L.; Mazarakis, M.G.; Frost, C.A.; Poukey, J.W.; Turman, B.N.

    1991-12-31

    Self Magnetically Insulated Transmission Lines (MITL) adders have been used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently we used at MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (r{sub {rho}} < 2 cm), 11 to 15 MeV, 50 to 100-kA beams with a small transverse velocity v{perpendicular}/c = {beta}{perpendicular} {le} 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. Our success with the MITL technology led us to investigate the application to higher energy accelerator designs. We have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30--50 ns FWHM output pulse. 10 refs.

  1. Performance of NASA Earth Science Applications using Modern Computing Accelerator Technologies

    NASA Astrophysics Data System (ADS)

    Mehrotra, P.; Cheung, S.; Hood, R.; Jin, H.; Kokron, D.; Biswas, R.

    2012-12-01

    The current trend in high performance computing systems is towards a cluster of multi-core nodes enhanced with accelerators. These accelerators utilize lots of smaller multi-threaded cores to provide greater computational capability at a much lower power draw. Examples of such accelerators include, NVIDIA's General Purpose Graphics Processing Unit (GPGPU) and Intel's Many Integrated Core (MIC) Architecture. Both low-level and high-level programming models have been developed to address complex hierarchical structures at different hardware levels and to ease the programming effort. MICs are coded using C, C++, Fortran, with MPI and OpenMP being used for parallelism — approaches familiar to the science community researchers. On the other hand, GPGPUs are coded with CUDA and OpenCL, newer language extensions that many scientists in the community have not yet mastered. Given the hybrid nature of such systems presents a major challenge for software developers and achieving the desired performance is still not a simple task. At the NASA Advanced Supercomputing (NAS) Division, we have been experimenting with porting and optimizing several codes to such architectures. In this presentation, we summarize our experiences focusing on the programmability and usability of accelerators as well as their performance of NASA relevant benchmarks and climate and weather related applications.

  2. A review of vector convergence acceleration methods, with applications to linear algebra problems

    NASA Astrophysics Data System (ADS)

    Brezinski, C.; Redivo-Zaglia, M.

    In this article, in a few pages, we will try to give an idea of convergence acceleration methods and extrapolation procedures for vector sequences, and to present some applications to linear algebra problems and to the treatment of the Gibbs phenomenon for Fourier series in order to show their effectiveness. The interested reader is referred to the literature for more details. In the bibliography, due to space limitation, we will only give the more recent items, and, for older ones, we refer to Brezinski and Redivo-Zaglia, Extrapolation methods. (Extrapolation Methods. Theory and Practice, North-Holland, 1991). This book also contains, on a magnetic support, a library (in Fortran 77 language) for convergence acceleration algorithms and extrapolation methods.

  3. Multipurpose applications of the accelerator-based neutron source[1pt] GENEPI2

    NASA Astrophysics Data System (ADS)

    Villa, F.; Baylac, M.; Billebaud, A.; Boge, P.; Cabanel, T.; Labussière, E.; Méplan, O.; Rey, S.

    2016-11-01

    GENEPI2 (GEnérateur de NEutrons Pulsé Intense) is an accelerator-based neutron source operating at LPSC laboratory in Grenoble (France). The neutrons are produced at 2.5MeV or 14.2MeV trough fusion reactions. GENEPI2 specifications allow performing efficiently accelerated irradiation tests of integrated circuits. This facility can also be operated to test and calibrate different types of detectors. This paper will describe the facility and its performances. Then, measurements of the neutron production will be presented as well as different types of experiments and irradiations. Finally, we describe upgrades undertaken to increase the neutron flux and optimize the facility for multiple applications.

  4. 1 MeV, 10 kW DC electron accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Nayak, B.; Acharya, S.; Bhattacharjee, D.; Bakhtsingh, R. I.; Rajan, R.; Sharma, D. K.; Dewangan, S.; Sharma, V.; Patel, R.; Tiwari, R.; Benarjee, S.; Srivastava, S. K.

    2016-03-01

    Several modern applications of radiation processing like medical sterilization, rubber vulcanization, polymerization, cross-linking and pollution control from thermal power stations etc. require D.C. electron accelerators of energy ranging from a few hundred keVs to few MeVs and power from a few kilowatts to hundreds of kilowatts. To match these requirements, a 3 MeV, 30 kW DC electron linac has been developed at BARC, Mumbai and current operational experience of 1 MeV, 10 kW beam power will be described in this paper. The LINAC composed mainly of Electron Gun, Accelerating Tubes, Magnets, High Voltage source and provides 10 kW beam power at the Ti beam window stably after the scanning section. The control of the LINAC is fully automated. Here Beam Optics study is carried out to reach the preferential parameters of Accelerating as well as optical elements. Beam trials have been conducted to find out the suitable operation parameters of the system.

  5. Accelerated multiscale space-time finite element simulation and application to high cycle fatigue life prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Wen, Lihua; Naboulsi, Sam; Eason, Thomas; Vasudevan, Vijay K.; Qian, Dong

    2016-08-01

    A multiscale space-time finite element method based on time-discontinuous Galerkin and enrichment approach is presented in this work with a focus on improving the computational efficiencies for high cycle fatigue simulations. While the robustness of the TDG-based space-time method has been extensively demonstrated, a critical barrier for the extensive application is the large computational cost due to the additional temporal dimension and enrichment that are introduced. The present implementation focuses on two aspects: firstly, a preconditioned iterative solver is developed along with techniques for optimizing the matrix storage and operations. Secondly, parallel algorithms based on multi-core graphics processing unit are established to accelerate the progressive damage model implementation. It is shown that the computing time and memory from the accelerated space-time implementation scale with the number of degree of freedom N through ˜ O(N^{1.6}) and ˜ O(N), respectively. Finally, we demonstrate the accelerated space-time FEM simulation through benchmark problems.

  6. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    SciTech Connect

    J.R. Paterek; W.W. Bogan; L.M. Lahner; A. May

    2000-04-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  7. A compact 500 MHz 4 kW Solid-State Power Amplifier for accelerator applications

    NASA Astrophysics Data System (ADS)

    Gaspar, M.; Pedrozzi, M.; Ferreira, L. F. R.; Garvey, T.

    2011-05-01

    We present the development of a compact narrow-band Solid-State Power Amplifier (SSPA). We foresee a promising application of solid-state amplifiers specifically in accelerators for new generation synchrotron light sources. Such a new technology has reached a competitive price/performance ratio and expected lifetime in comparison with klystron and IOT amplifiers. The increasing number of synchrotron light sources using 500 MHz as base frequency justifies the effort in the development of the proposed amplifier. Two different techniques are also proposed to improve the control and performance of these new distributed amplification systems which we call, respectively, complete distributed system and forced compression.

  8. Radiological assessment of target materials for accelerator transmutation of waste (ATW) applications

    NASA Astrophysics Data System (ADS)

    Vickers, Linda Diane

    This dissertation issues the first published document of the radiation absorbed dose rate (rad-h-1) to tissue from radioactive spallation products in Ta, W, Pb, Bi, and LBE target materials used in Accelerator Transmutation of Waste (ATW) applications. No previous works have provided an estimate of the absorbed dose rate (rad-h-1) from activated targets for ATW applications. The results of this dissertation are useful for planning the radiological safety assessment to personnel, and for the design, construction, maintenance, and disposition of target materials of high-energy particle accelerators for ATW applications (Charlton, 1996). In addition, this dissertation provides the characterization of target materials of high-energy particle accelerators for the parameters of: (1) spallation neutron yield (neutrons/proton), (2) spallation products yield (nuclides/proton), (3) energy-dependent spallation neutron fluence distribution, (4) spallation neutron flux, (5) identification of radioactive spallation products for consideration in safety of personnel to high radiation dose rates, and (6) identification of the optimum geometrical dimensions for the target applicable to the maximum radial spallation neutron leakage from the target. Pb and Bi target materials yielded the lowest absorbed dose rates (rad-h -1) for a 10-year irradiation/50-year decay scheme, and would be the preferred target materials for consideration of the radiological safety of personnel during ATW operations. A beneficial characteristic of these target materials is that they do not produce radioactive transuranic isotopes, which have very long half-lives and require special handling and disposition requirements. Furthermore, the targets are not considered High-Level Waste (HLW) such as reactor spent fuel for disposal purposes. It is a basic ATW system requirement that the spallation target after it has been expended should be disposable as Class C low-level radioactive waste. Therefore, the disposal

  9. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    SciTech Connect

    J.R. Paterek; W.W. Bogan; L.M. Lahner; V. Trbovic; E. Korach

    2001-05-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  10. Investigation of Propagation Characteristics of Twisted Hollow Waveguides for Particle Accelerator Applications

    SciTech Connect

    Wilson, Joshua Lee

    2008-12-01

    A new class of accelerating structures employing a uniformly twisted waveguide is investigated. Twisted waveguides of various cross-sectional geometries are considered and analyzed. It is shown that such a twisted waveguide can support waves that travel at a speed slower than the speed of light c. The slow-wave properties of twisted structures are of interest because these slow-wave electromagnetic fields can be used in applications such as electron traveling wave tubes and linear particle accelerators. Since there is no exact closed form solution for the electromagnetic fields within a twisted waveguide or cavity, several previously proposed approximate methods are examined, and more effcient approaches are developed. It is found that the existing perturbation theory methods yield adequate results for slowly twisted structures; however, our efforts here are geared toward analyzing rapidly twisted structures using modifed finite difference methods specially suited for twisted structures. Although the method can handle general twisted structures, three particular cross sections are selected as representative cases for careful analysis. First, a slowly twisted rectangular cavity is analyzed as a reference case. This is because its shape is simple and perturbation theory already gives a good approximate solution for such slow twists rates. Secondly, a symmetrically notched circular cross section is investigated, since its longitudinal cross section is comparable to the well known disk-loaded cavity (used in many practical accelerator designs, including SLAC). Finally, a "dumbbell" shaped cross section is analyzed because of its similarity to the well-known TESLA-type accelerating cavity, which is of great importance because of its wide acceptance as a superconducting cavity. To validate the results of the developed theory and our extensive simulations, the newly developed numerical models are compared to commercial codes. Also, several prototypes are developed

  11. AAA: Road Debris a Mounting Danger on U.S. Highways

    MedlinePlus

    ... Highways Crashes involving objects that have fallen from vehicles up 40 percent since 2001 To use the ... the AAA Foundation for Traffic Safety. Crashes involving vehicle-related debris are up 40 percent since the ...

  12. Proposed New Accelerator Design for Homeland Security X-Ray Applications

    NASA Astrophysics Data System (ADS)

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G. J.; Bharadwaj, Vinod; Nosochkov, Yuri

    Two goals for security scanning of cargo and freight are the ability to determine the type of material that is being imaged, and to do so at low radiation dose. One commonly used technique to determine the effective Z of the cargo is dual-energy imaging, i.e. imaging with different x-ray energy spectra. Another technique uses the fact that the transmitted x-ray spectrum itself also depends on the effective Z. Spectroscopy is difficult because the energy of individual x rays needs to be measured in a very high count-rate environment. Typical accelerators for security applications offer large but short bursts of x-rays, suitable for current-mode integrated imaging. In order to perform x-ray spectroscopy, a new accelerator design is desired that has the following features: 1)increased duty factor in order to spread out the arrival of x-rays at the detector array over time; 2)x-ray intensitymodulation from one delivered pulse to the next by adjusting the accelerator electron beam instantaneous current so as to deliveradequate signal without saturating the spectroscopic detector; and 3)the capability to direct the (forward peaked) x-ray intensity towards high-attenuation areas in the cargo ("fan-beam-steering"). Current sources are capable of 0.1% duty factor, although usually they are operated at significantly lower duty factors (∼0.04%), but duty factors in the range 0.4-1.0% are desired. The higher duty factor can be accomplished, e.g., by moving from 300 pulses per second (pps) to 1000 pps and/or increasing the pulse duration from a typical 4 μs to 10 μs. This paper describes initial R&D to examine cost effective modifications that could be performed on a typical accelerator for these purposes, as well as R&D for fan-beam steering.

  13. Proposed new accelerator design for homeland security x-ray applications

    SciTech Connect

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G.J.; Bharadwaj, Vinod; Nosochkov, Yuri

    2015-01-01

    Two goals for security scanning of cargo and freight are the ability to determine the type of material that is being imaged, and to do so at low radiation dose. One commonly used technique to determine the effective Z of the cargo is dual-energy imaging, i.e. imaging with different x-ray energy spectra. Another technique uses the fact that the transmitted x-ray spectrum itself also depends on the effective Z. Spectroscopy is difficult because the energy of individual x rays needs to be measured in a very high count-rate environment. Typical accelerators for security applications offer large but short bursts of x-rays, suitable for current-mode integrated imaging. In order to perform x-ray spectroscopy, a new accelerator design is desired that has the following features: 1) increased duty factor in order to spread out the arrival of x-rays at the detector array over time; 2) x-ray intensity modulation from one delivered pulse to the next by adjusting the accelerator electron beam instantaneous current so as to deliver adequate signal without saturating the spectroscopic detector; and 3) the capability to direct the (forward peaked) x-ray intensity towards high-attenuation areas in the cargo (“fan-beam-steering”). Current sources are capable of 0.1% duty factor, although usually they are operated at significantly lower duty factors (~0.04%), but duty factors in the range 0.4-1.0% are desired. The higher duty factor can be accomplished, e.g., by moving from 300 pulses per second (pps) to 1000 pps and/or increasing the pulse duration from a typical 4 μs to 10 μs. This paper describes initial R&D to examine cost effective modifications that could be performed on a typical accelerator for these purposes, as well as R&D for fan-beam steering.

  14. Prototyping a large field size IORT applicator for a mobile linear accelerator

    NASA Astrophysics Data System (ADS)

    Janssen, Rogier W. J.; Faddegon, Bruce A.; Dries, Wim J. F.

    2008-04-01

    The treatment of large tumors such as sarcomas with intra-operative radiotherapy using a Mobetron® is often complicated because of the limited field size of the primary collimator and the available applicators (max Ø100 mm). To circumvent this limitation a prototype rectangular applicator of 80 × 150 mm2 was designed and built featuring an additional scattering foil located at the top of the applicator. Because of its proven accuracy in modeling linear accelerator components the design was based on the EGSnrc Monte Carlo simulation code BEAMnrc. First, the Mobetron® treatment head was simulated both without an applicator and with a standard 100 mm applicator. Next, this model was used to design an applicator foil consisting of a rectangular Al base plate covering the whole beam and a pyramid of four stacked cylindrical slabs of different diameters centered on top of it. This foil was mounted on top of a plain rectangular Al tube. A prototype was built and tested with diode dosimetry in a water tank. Here, the prototype showed clinically acceptable 80 × 150 mm2 dose distributions for 4 MeV, 6 MeV and 9 MeV, obviating the use of complicated multiple irradiations with abutting field techniques. In addition, the measurements agreed well with the MC simulations, typically within 2%/1 mm.

  15. An AAA-DDD triply hydrogen-bonded complex easily accessible for supramolecular polymers.

    PubMed

    Han, Yi-Fei; Chen, Wen-Qiang; Wang, Hong-Bo; Yuan, Ying-Xue; Wu, Na-Na; Song, Xiang-Zhi; Yang, Lan

    2014-12-15

    For a complementary hydrogen-bonded complex, when every hydrogen-bond acceptor is on one side and every hydrogen-bond donor is on the other, all secondary interactions are attractive and the complex is highly stable. AAA-DDD (A=acceptor, D=donor) is considered to be the most stable among triply hydrogen-bonded sequences. The easily synthesized and further derivatized AAA-DDD system is very desirable for hydrogen-bonded functional materials. In this case, AAA and DDD, starting from 4-methoxybenzaldehyde, were synthesized with the Hantzsch pyridine synthesis and Friedländer annulation reaction. The association constant determined by fluorescence titration in chloroform at room temperature is 2.09×10(7)  M(-1) . The AAA and DDD components are not coplanar, but form a V shape in the solid state. Supramolecular polymers based on AAA-DDD triply hydrogen bonded have also been developed. This work may make AAA-DDD triply hydrogen-bonded sequences easily accessible for stimuli-responsive materials.

  16. Determining the influence of calcification on the failure properties of abdominal aortic aneurysm (AAA) tissue.

    PubMed

    O'Leary, Siobhan A; Mulvihill, John J; Barrett, Hilary E; Kavanagh, Eamon G; Walsh, Michael T; McGloughlin, Tim M; Doyle, Barry J

    2015-02-01

    Varying degrees of calcification are present in most abdominal aortic aneurysms (AAAs). However, their impact on AAA failure properties and AAA rupture risk is unclear. The aim of this work is evaluate and compare the failure properties of partially calcified and predominantly fibrous AAA tissue and investigate the potential reasons for failure. Uniaxial mechanical testing was performed on AAA samples harvested from 31 patients undergoing open surgical repair. Individual tensile samples were divided into two groups: fibrous (n=31) and partially calcified (n=38). The presence of calcification was confirmed by fourier transform infrared spectroscopy (FTIR). A total of 69 mechanical tests were performed and the failure stretch (λf), failure stress (σf) and failure tension (Tf) were recorded for each test. Following mechanical testing, the failure sites of a subset of both tissue types were examined using scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDS) to investigate the potential reasons for failure. It has been shown that the failure properties of partially calcified tissue are significantly reduced compared to fibrous tissue and SEM and EDS results suggest that the junction between a calcification deposit and the fibrous matrix is highly susceptible to failure. This study implicates the presence of calcification as a key player in AAA rupture risk and provides further motivation for the development of non-invasive methods of measuring calcification.

  17. Determining the influence of calcification on the failure properties of abdominal aortic aneurysm (AAA) tissue.

    PubMed

    O'Leary, Siobhan A; Mulvihill, John J; Barrett, Hilary E; Kavanagh, Eamon G; Walsh, Michael T; McGloughlin, Tim M; Doyle, Barry J

    2015-02-01

    Varying degrees of calcification are present in most abdominal aortic aneurysms (AAAs). However, their impact on AAA failure properties and AAA rupture risk is unclear. The aim of this work is evaluate and compare the failure properties of partially calcified and predominantly fibrous AAA tissue and investigate the potential reasons for failure. Uniaxial mechanical testing was performed on AAA samples harvested from 31 patients undergoing open surgical repair. Individual tensile samples were divided into two groups: fibrous (n=31) and partially calcified (n=38). The presence of calcification was confirmed by fourier transform infrared spectroscopy (FTIR). A total of 69 mechanical tests were performed and the failure stretch (λf), failure stress (σf) and failure tension (Tf) were recorded for each test. Following mechanical testing, the failure sites of a subset of both tissue types were examined using scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDS) to investigate the potential reasons for failure. It has been shown that the failure properties of partially calcified tissue are significantly reduced compared to fibrous tissue and SEM and EDS results suggest that the junction between a calcification deposit and the fibrous matrix is highly susceptible to failure. This study implicates the presence of calcification as a key player in AAA rupture risk and provides further motivation for the development of non-invasive methods of measuring calcification. PMID:25482218

  18. Characteristics of high gradient insulators for accelerator and high power flow applications

    SciTech Connect

    Elizondo, J.M.; Krogh, M.L.; Smith, D.

    1997-07-01

    The high gradient insulator has been demonstrated to operate at levels comparable or better than special geometry or coated insulators. Some patented insulator configurations allow for sophisticated accelerator structures, high power flow interfaces, and microwave applications not previously possible. Sophisticated manufacturing techniques available at AlliedSignal FM and T made this development possible. Bipolar and high power flow applications are specially suited for present insulator designs. The insulator shows a beneficial effect when used under RF fields or RF structures. These insulators can be designed, to a first approximation, from simple electron flight path equations. With a recently developed model of surface flashover physics the authors completed a set of design calculations that include effects such as layer density and dielectric/metal thickness. Experimental data, obtained in the last few years of development, is presented and reviewed. Several insulator fabrication characteristics, indicating critical design parameters, are also presented.

  19. Verification of IMRT dose calculations using AAA and PBC algorithms in dose buildup regions.

    PubMed

    Oinam, Arun S; Singh, Lakhwant

    2010-08-26

    The purpose of this comparative study was to test the accuracy of anisotropic analytical algorithm (AAA) and pencil beam convolution (PBC) algorithms of Eclipse treatment planning system (TPS) for dose calculations in the low- and high-dose buildup regions. AAA and PBC algorithms were used to create two intensity-modulated radiotherapy (IMRT) plans of the same optimal fluence generated from a clinically simulated oropharynx case in an in-house fabricated head and neck phantom. The TPS computed buildup doses were compared with the corresponding measured doses in the phantom using thermoluminescence dosimeters (TLD 100). Analysis of dose distribution calculated using PBC and AAA shows an increase in gamma value in the dose buildup region indicating large dose deviation. For the surface areas of 1, 50 and 100 cm2, PBC overestimates doses as compared to AAA calculated value in the range of 1.34%-3.62% at 0.6 cm depth, 1.74%-2.96% at 0.4 cm depth, and 1.96%-4.06% at 0.2 cm depth, respectively. In high-dose buildup region, AAA calculated doses were lower by an average of -7.56% (SD = 4.73%), while PBC was overestimated by 3.75% (SD = 5.70%) as compared to TLD measured doses at 0.2 cm depth. However, at 0.4 and 0.6 cm depth, PBC overestimated TLD measured doses by 5.84% (SD = 4.38%) and 2.40% (SD = 4.63%), respectively, while AAA underestimated the TLD measured doses by -0.82% (SD = 4.24%) and -1.10% (SD = 4.14%) at the same respective depth. In low-dose buildup region, both AAA and PBC overestimated the TLD measured doses at all depths except -2.05% (SD = 10.21%) by AAA at 0.2 cm depth. The differences between AAA and PBC at all depths were statistically significant (p < 0.05) in high-dose buildup region, whereas it is not statistically significant in low-dose buildup region. In conclusion, AAA calculated the dose more accurately than PBC in clinically important high-dose buildup region at 0.4 cm and 0.6 cm depths. The use of an orfit cast increases the dose buildup

  20. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom.

    PubMed

    Barker, J; Garner, R C

    1999-01-01

    Accelerator mass spectrometry (AMS) is a nuclear physics technique developed about twenty years ago, that uses the high energy (several MeV) of a tandem Van de Graaff accelerator to measure very small quantities of rare and long-lived isotopes. Elements that are of interest in biomedicine and environmental sciences can be measured, often to parts per quadrillion sensitivity, i.e. zeptomole to attomole levels (10(-21)-10(-18) mole) from milligram samples. This is several orders of magnitude lower than that achievable by conventional decay counting techniques, such as liquid scintillation counting (LSC). AMS was first applied to geochemical, climatological and archaeological areas, such as for radiocarbon dating (Shroud of Turin), but more recently this technology has been used for bioanalytical applications. In this sphere, most work has been conducted using aluminium, calcium and carbon isotopes. The latter is of special interest in drug metabolism studies, where a Phase 1 adsorption, distribution, metabolism and excretion (ADME) study can be conducted using only 10 nanoCurie (37 Bq or ca. 0.9 microSv) amounts or less of 14C-labelled drugs. In the UK, these amounts of radioactivity are below those necessary to request specific regulatory approval from the Department of Health's Administration of Radioactive Substances Advisory Committee (ARSAC), thus saving on valuable development time and resources. In addition, the disposal of these amounts is much less an environmental issue than that associated with microCurie quantities, which are currently used. Also, AMS should bring an opportunity to conduct "first into man" studies without the need for widespread use of animals. Centre for Biomedical Accelerator Mass Spectrometry (CBAMS) Ltd. is the first fully commercial company in the world to offer analytical services using AMS. With its high throughput and relatively low costs per sample analysis, AMS should be of great benefit to the pharmaceutical and biotechnology

  1. Application of coenzyme Q10 for accelerating soft tissue wound healing after tooth extraction in rats.

    PubMed

    Yoneda, Toshiki; Tomofuji, Takaaki; Kawabata, Yuya; Ekuni, Daisuke; Azuma, Tetsuji; Kataoka, Kota; Kunitomo, Muneyoshi; Morita, Manabu

    2014-12-10

    Accelerating wound healing after tooth extraction is beneficial in dental treatment. Application of antioxidants, such as reduced coenzyme Q10 (rCoQ10), may promote wound healing after tooth extraction. In this study, we examined the effects of topical application of rCoQ10 on wound healing after tooth extraction in rats. After maxillary first molars were extracted, male Fischer 344 rats (8 weeks old) (n = 27) received topical application of ointment containing 5% rCoQ10 (experimental group) or control ointment (control group) to the sockets for 3 or 8 days (n = 6-7/group). At 3 days after extraction, the experimental group showed higher collagen density and lower numbers of polymorphonuclear leukocytes in the upper part of socket, as compared to the control group (p < 0.05). Gene expression of interleukin-1β, tumor necrosis factor-α and nuclear factor-κB were also lower in the experimental group than in the control group (p < 0.05). At 8 days after tooth extraction, there were no significant differences in collagen density, number of polymorphonuclear leukocytes and bone fill between the groups. Our results suggest that topical application of rCoQ10 promotes wound healing in the soft tissue of the alveolar socket, but that rCoQ10 has a limited effect on bone remodeling in rats.

  2. The new IBA self-shielded dynamitron accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Galloway, R. A.; DeNeuter, S.; Lisanti, T. F.; Cleland, M. R.

    2004-09-01

    Radiation Dynamics Inc. (RDI), currently a member of the IBA Group (Ion Beam Applications based Louvain-la-Neuve, Belgium), has been supplying accelerators since its founding in 1958. These systems supplied for both industrial processing and research application for electrons and ions have proven to be reliable and robust. Today's demands in the industrial sector have driven the design and development of a new version of our Dynamitron ®. This new system, envisioned to operate at electron energies up to 1.5 MeV, in many cases can be supplied with integral shielding providing a small footprint requirement for placement in a facility. In the majority of these lower energy applications this allows the appropriate material handling system to be installed inside the steel radiation enclosure. Designed to deliver beam power outputs as high as 100 kW, this new system is capable of servicing the high throughput demands of today's manufacturing lines. Still retaining the positive aspects of the industrially proven Dynamitron system, this compact system can be tailored to meet a variety of in-line or off-line processing applications.

  3. Medical research and multidisciplinary applications with laser-accelerated beams: the ELIMED netwotk at ELI-Beamlines

    NASA Astrophysics Data System (ADS)

    Tramontana, A.; Anzalone, A.; Candiano, G.; Carpinelli, M.; Cirrone, G. A. P.; Cuttone, G.; Korn, G.; Licciardello, T.; Maggiore, M.; Manti, L.; Margarone, D.; Musumarra, A.; Perozziello, F.; Pisciotta, P.; Raffaele, L.; Romano, F.; Romano, F. P.; Stancampiano, C.; Schillaci, F.; Scuderi, V.; Torrisi, L.; Tudisco, S.

    2014-04-01

    Laser accelerated proton beams represent nowadays an attractive alternative to the conventional ones and they have been proposed in different research fields. In particular, the interest has been focused in the possibility of replacing conventional accelerating machines with laser-based accelerators in order to develop a new concept of hadrontherapy facilities, which could result more compact and less expensive. With this background the ELIMED (ELIMED: ELI-Beamlines MEDical applications) research project has been launched by LNS-INFN researchers (Laboratori Nazionali del Sud-Istituto Nazionale di Fisica Nucleare, Catania, IT) and ASCR-FZU researchers (Academy of Sciences of the Czech Republic-Fyzikální ústar, Prague, Cz), within the pan-European ELI-Beamlines facility framework. Its main purposes are the demonstration of future applications in hadrontherapy of optically accelerated protons and the realization of a laser-accelerated ion transport beamline for multidisciplinary applications. Several challenges, starting from laser-target interaction and beam transport development, up to dosimetric and radiobiological issues, need to be overcome in order to reach the final goals. The design and the realization of a preliminary beam handling and dosimetric system and of an advanced spectrometer for high energy (multi-MeV) laser-accelerated ion beams will be shortly presented in this work.

  4. A neutron booster for spallation sources—application to accelerator driven systems and isotope production

    NASA Astrophysics Data System (ADS)

    Galy, J.; Magill, J.; Van Dam, H.; Valko, J.

    2002-06-01

    One can design a critical system with fissile material in the form of a thin layer on the inner surface of a cylindrical neutron moderator such as graphite or beryllium. Recently, we have investigated the properties of critical and near critical systems based on the use of thin actinide layers of uranium, plutonium and americium. The thickness of the required fissile layer depends on the type of fissile material, its concentration in the layer and on the geometrical arrangement, but is typically in the μm-mm range. The resulting total mass of fissile material can be as low as 100 g. Thin fissile layers have a variety of applications in nuclear technology—for example in the design neutron amplifiers for medical applications and "fast" islands in thermal reactors for waste incineration. In the present paper, we investigate the properties of a neutron booster unit for spallation sources and isotope production. In those applications a layer of fissile material surrounds the spallation source. Such a module could be developed for spallation targets foreseen in the MYRRHA (L. Van Den Durpel, H. Aı̈t Abderrahim, P. D'hondt, G. Minsart, J.L. Bellefontaine, S. Bodart, B. Ponsard, F. Vermeersch, W. Wacquier. A prototype accelerator driven system in Belgium: the Myrrha project, Technical Committee Meeting on Feasibility and Motivation for Hybrid concepts for Nuclear Energy generation and Transmutation, Madrid, Spain, September 17-19, 1997 [1]). or MEGAPIE (M. Salvatores, G.S. Bauer, G. Heusener. The MEGAPIE initiative: executive outline and status as per November 1999, MPO-1-GB-6/0_GB, 1999 [2]) projects. With a neutron multiplication factor of the booster unit in the range 10-20 (i.e. with a keff of 0.9-0.95), considerably less powerful accelerators would be required to obtain the desired neutron flux. Instead of the powerful accelerators with proton energies of 1 GeV and currents of 10 mA foreseen for accelerator driven systems, similar neutron fluxes can be obtained

  5. Recent advances in the development of high average power induction accelerators for industrial and environmental applications

    SciTech Connect

    Neau, E.L.

    1994-09-01

    Short-pulse accelerator technology developed during the early 1960`s through the late 1980`s is being extended to high average power systems capable of use in industrial and environmental applications. Processes requiring high dose levels and/or high volume throughput will require systems with beam power levels from several hundreds of kilowatts to megawatts. Beam accelerating potentials can range from less than 1 MeV to as much as 10 MeV depending on the type of beam, depth of penetration required, and the density of the product being treated. This paper addresses the present status of a family of high average power systems, with output beam power levels up to 200 kW, now in operation that use saturable core switches to achieve output pulse widths of 50 to 80 nanoseconds. Inductive adders and field emission cathodes are used to generate beams of electrons or x-rays at up to 2.5 MeV over areas of 1000 cm{sup 2}. Similar high average power technology is being used at {le} 1 MeV to drive repetitive ion beam sources for treatment of material surfaces over 100`s of cm{sup 2}.

  6. A 200 MHz 35 MW Multiple Beam Klystron for Accelerator Applications Final Report

    SciTech Connect

    R. Lawrence Ives; Michael Read; Patrick Ferguson; David Marsden

    2011-11-28

    Calabazas Creek Research, Inc. (CCR) performed initial development of a compact and reliable 35 MW, multiple beam klystron (MBK) at 200 MHz with a pulse length of 0.125 ms and a 30 Hz repetition rate. The device was targeted for acceleration and ionization cooling of a muon collider, but there are several other potential applications in this frequency range. The klystron uses multiple beams propagating in individual beam tunnels to reduce space charge and allow reduction in the accelerating voltage. This allows a significant reduction in length over a single beam source. More importantly this allows more efficient and less expensive power supplies. At 200 MHz, the interaction circuit for a single beam klystron would be more than six meters long to obtain 50% efficiency and 50 dB gain. This would require a beam voltage of approximately 400 kV and current of 251 A for a microperveance of 1.0. For an eight beam MBK with the same beam perveance, a three meter long interaction circuit achieves the same power and gain. Each beam operates at 142 kV and 70A. The Phase I demonstrated that this device could be fabricated with funding available in a Phase II program and could achieve the program specifications.

  7. Proposed new accelerator design for homeland security x-ray applications

    DOE PAGES

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G.J.; Bharadwaj, Vinod; Nosochkov, Yuri

    2015-01-01

    Two goals for security scanning of cargo and freight are the ability to determine the type of material that is being imaged, and to do so at low radiation dose. One commonly used technique to determine the effective Z of the cargo is dual-energy imaging, i.e. imaging with different x-ray energy spectra. Another technique uses the fact that the transmitted x-ray spectrum itself also depends on the effective Z. Spectroscopy is difficult because the energy of individual x rays needs to be measured in a very high count-rate environment. Typical accelerators for security applications offer large but short bursts ofmore » x-rays, suitable for current-mode integrated imaging. In order to perform x-ray spectroscopy, a new accelerator design is desired that has the following features: 1) increased duty factor in order to spread out the arrival of x-rays at the detector array over time; 2) x-ray intensity modulation from one delivered pulse to the next by adjusting the accelerator electron beam instantaneous current so as to deliver adequate signal without saturating the spectroscopic detector; and 3) the capability to direct the (forward peaked) x-ray intensity towards high-attenuation areas in the cargo (“fan-beam-steering”). Current sources are capable of 0.1% duty factor, although usually they are operated at significantly lower duty factors (~0.04%), but duty factors in the range 0.4-1.0% are desired. The higher duty factor can be accomplished, e.g., by moving from 300 pulses per second (pps) to 1000 pps and/or increasing the pulse duration from a typical 4 μs to 10 μs. This paper describes initial R&D to examine cost effective modifications that could be performed on a typical accelerator for these purposes, as well as R&D for fan-beam steering.« less

  8. Current status of MCNP6 as a simulation tool useful for space and accelerator applications

    SciTech Connect

    Mashnik, Stepan G; Bull, Jeffrey S; Hughes, H. Grady; Prael, Richard E; Sierk, Arnold J

    2012-07-20

    For the past several years, a major effort has been undertaken at Los Alamos National Laboratory (LANL) to develop the transport code MCNP6, the latest LANL Monte-Carlo transport code representing a merger and improvement of MCNP5 and MCNPX. We emphasize a description of the latest developments of MCNP6 at higher energies to improve its reliability in calculating rare-isotope production, high-energy cumulative particle production, and a gamut of reactions important for space-radiation shielding, cosmic-ray propagation, and accelerator applications. We present several examples of validation and verification of MCNP6 compared to a wide variety of intermediate- and high-energy experimental data on reactions induced by photons, mesons, nucleons, and nuclei at energies from tens of MeV to about 1 TeV/nucleon, and compare to results from other modern simulation tools.

  9. Recent advances in the development of high average power induction accelerators for industrial and environmental applications

    SciTech Connect

    Neau, F.L.

    1994-12-31

    Short-pulse accelerator technology developed during time period from the early 60`s through the late 80`s is now being extended to high average power systems capable of being used in industrial and environmental applications. Processes requiring high dose levels and/or high volume throughput may require systems with beam power levels from several hundreds of kilowatts to megawatts. Processes may include chemical waste mitigation, flue gas cleanup, food pasteurization, and new forms of materials preparation and treatment. This paper will address the present status of high average power systems now in operation that use combinations of semiconductor and saturable core magnetic switches with inductive voltage adders to achieve MeV beams of electrons or x-rays over areas of 10,000 cm{sup 2} or more. Similar high average power technology is also being used below 1 MeV to drive repetitive ion beam sources for treatment of material surfaces.

  10. Cytoplasmic dynein regulates its attachment to microtubules via nucleotide state-switched mechanosensing at multiple AAA domains.

    PubMed

    Nicholas, Matthew P; Berger, Florian; Rao, Lu; Brenner, Sibylle; Cho, Carol; Gennerich, Arne

    2015-05-19

    Cytoplasmic dynein is a homodimeric microtubule (MT) motor protein responsible for most MT minus-end-directed motility. Dynein contains four AAA+ ATPases (AAA: ATPase associated with various cellular activities) per motor domain (AAA1-4). The main site of ATP hydrolysis, AAA1, is the only site considered by most dynein motility models. However, it remains unclear how ATPase activity and MT binding are coordinated within and between dynein's motor domains. Using optical tweezers, we characterize the MT-binding strength of recombinant dynein monomers as a function of mechanical tension and nucleotide state. Dynein responds anisotropically to tension, binding tighter to MTs when pulled toward the MT plus end. We provide evidence that this behavior results from an asymmetrical bond that acts as a slip bond under forward tension and a slip-ideal bond under backward tension. ATP weakens MT binding and reduces bond strength anisotropy, and unexpectedly, so does ADP. Using nucleotide binding and hydrolysis mutants, we show that, although ATP exerts its effects via binding AAA1, ADP effects are mediated by AAA3. Finally, we demonstrate "gating" of AAA1 function by AAA3. When tension is absent or applied via dynein's C terminus, ATP binding to AAA1 induces MT release only if AAA3 is in the posthydrolysis state. However, when tension is applied to the linker, ATP binding to AAA3 is sufficient to "open" the gate. These results elucidate the mechanisms of dynein-MT interactions, identify regulatory roles for AAA3, and help define the interplay between mechanical tension and nucleotide state in regulating dynein motility.

  11. Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction

    NASA Astrophysics Data System (ADS)

    Ikeda, Yoshimasa; Taketani, Atsushi; Takamura, Masato; Sunaga, Hideyuki; Kumagai, Masayoshi; Oba, Yojiro; Otake, Yoshie; Suzuki, Hiroshi

    2016-10-01

    A compact accelerator-based neutron source has been lately discussed on engineering applications such as transmission imaging and small angle scattering as well as reflectometry. However, nobody considers using it for neutron diffraction experiment because of its low neutron flux. In this study, therefore, the neutron diffraction experiments are carried out using Riken Accelerator-driven Compact Neutron Source (RANS), to clarify the capability of the compact neutron source for neutron engineering diffraction. The diffraction pattern from a ferritic steel was successfully measured by suitable arrangement of the optical system to reduce the background noise, and it was confirmed that the recognizable diffraction pattern can be measured by a large sampling volume with 10 mm in cubic for an acceptable measurement time, i.e. 10 min. The minimum resolution of the 110 reflection for RANS is approximately 2.5% at 8 μs of the proton pulse width, which is insufficient to perform the strain measurement by neutron diffraction. The moderation time width at the wavelength corresponding to the 110 reflection is estimated to be approximately 30 μs, which is the most dominant factor to determine the resolution. Therefore, refinements of the moderator system to decrease the moderation time by decreasing a thickness of the moderator or by applying the decoupler system or application of the angular dispersive neutron diffraction technique are important to improve the resolution of the diffraction experiment using the compact neutron source. In contrast, the texture evolution due to plastic deformation was successfully observed by measuring a change in the diffraction peak intensity by RANS. Furthermore, the volume fraction of the austenitic phase in the dual phase mock specimen was also successfully evaluated by fitting the diffraction pattern using a Rietveld code. Consequently, RANS has been proved to be capable for neutron engineering diffraction aiming for the easy access

  12. The New IBA Self-Shielded Dynamitron Accelerator for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Galloway, R. A.; DeNeuter, S.; Lisanti, T. F.; Cleland, M. R.

    2003-08-01

    Radiation Dynamics, Inc. (RDI), currently a wholly-owned subsidiary of Ion Beam Applications (IBA), has supplied particle accelerators for both research and industrial applications worldwide for almost 50 years. The industrial market demands are driving the development of a new Dynamitron® system with a smaller, more compact configuration that may be provided at a lower entry cost. This new system, operating at electron energies up to 1.0 MeV, includes integral shielding, which allows the appropriate material handling system to be installed inside the radiation enclosure. Designed to operate with beam power levels as high as 100 kW, this new system provides a robust base for high-throughput crosslinking of products such as electrical wire, heat-shrinkable plastic tubing and sheet materials. Still retaining the positive aspects of the current Dynamitron system that have established it firmly in the industrial sector, this compact system can be tailored to meet a variety of processing applications.

  13. Identification of AAAS gene mutation in Allgrove syndrome: A report of three cases

    PubMed Central

    LI, WENJING; GONG, CHUNXIU; QI, ZHAN; WU, DI; CAO, BINGYAN

    2015-01-01

    Allgrove syndrome (AS) is an autosomal recessive congenital disease, caused by mutations in the AAAS gene, and is characterized by the triad of Addison's disease, achalasia and alacrima. The present study describes three newly diagnosed cases of AS, in which genetic analysis of the AAAS gene was used to identify AAAS gene mutations, to enhance the understanding of the pathogenesis and clinical manifestations of AS in the Chinese population. Two of the cases exhibited homozygous mutations of c.771delG (p.Arg258GlyfsX33) in exon 8 and one case exhibited a homozygous mutation of c.1366C>T (p.Q456X) in exon 15. A review of the current literature suggests that the AAAS c.771delG mutation has only been reported in the Chinese population. Genetic analysis of the AAAS gene in Chinese AS patients at a young age may facilitate an earlier diagnosis and the timely initiation of the appropriate treatment, ultimately improving the patient outcome. PMID:26622478

  14. Dynein motors: How AAA+ ring opening and closing coordinates microtubule binding and linker movement.

    PubMed

    Schmidt, Helgo

    2015-05-01

    Dyneins are a family of motor proteins that move along the microtubule. Motility is generated in the motor domain, which consists of a ring of six AAA+ (ATPases associated with diverse cellular activities) domains, the linker and the microtubule-binding domain (MTBD). The cyclic ATP-hydrolysis in the AAA+ ring causes the remodelling of the linker, which creates the necessary force for movement. The production of force has to be synchronized with cycles of microtubule detachment and rebinding to efficiently create movement along the microtubule. The analysis of four dynein motor domain crystal structures in the essay presented here provides evidence that this crucial coordination is carried out by open/closed AAA+ ring conformations.

  15. Clinical aspects and potential clinical applications of laser accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Spatola, C.; Privitera, G.

    2013-07-01

    Proton beam radiation therapy (PBRT), as well as the other forms of hadrontherapy, is in use in the treatment of neoplastic diseases, to realize a high selective irradiation with maximum sparing of surrounding organs. The main characteristic of such a particles is to have an increased radiobiological effectiveness compared to conventional photons (about 10% more) and the advantage to deposit the energy in a defined space through the tissues (Bragg peak phenomenon). The goal of ELIMED Project is the realization of a laser accelerated proton beam line to prove its potential use for clinical application in the field of hadrontherapy. To date, there are several potential clinical applications of PBRT, some of which have become the treatment of choice for a specific tumour, for others it is under investigation as a therapeutic alternative to conventional X-ray radiotherapy, to increase the dose to the tumour and reduce the side effects. For almost half of cancers, an increased local tumour control is the mainstay for increased cancer curability.

  16. Live Cell in Vitro and in Vivo Imaging Applications: Accelerating Drug Discovery

    PubMed Central

    Isherwood, Beverley; Timpson, Paul; McGhee, Ewan J; Anderson, Kurt I; Canel, Marta; Serrels, Alan; Brunton, Valerie G; Carragher, Neil O

    2011-01-01

    Dynamic regulation of specific molecular processes and cellular phenotypes in live cell systems reveal unique insights into cell fate and drug pharmacology that are not gained from traditional fixed endpoint assays. Recent advances in microscopic imaging platform technology combined with the development of novel optical biosensors and sophisticated image analysis solutions have increased the scope of live cell imaging applications in drug discovery. We highlight recent literature examples where live cell imaging has uncovered novel insight into biological mechanism or drug mode-of-action. We survey distinct types of optical biosensors and associated analytical methods for monitoring molecular dynamics, in vitro and in vivo. We describe the recent expansion of live cell imaging into automated target validation and drug screening activities through the development of dedicated brightfield and fluorescence kinetic imaging platforms. We provide specific examples of how temporal profiling of phenotypic response signatures using such kinetic imaging platforms can increase the value of in vitro high-content screening. Finally, we offer a prospective view of how further application and development of live cell imaging technology and reagents can accelerate preclinical lead optimization cycles and enhance the in vitro to in vivo translation of drug candidates. PMID:24310493

  17. High neutronic efficiency, low current targets for accelerator-based BNCT applications

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1998-08-01

    The neutronic efficiency of target/filters for accelerator-based BNCT applications is measured by the proton current required to achieve a desirable neutron current at the treatment port (10{sup 9} n/cm{sup 2}/s). In this paper the authors describe two possible targeyt/filter concepts wihch minimize the required current. Both concepts are based on the Li-7 (p,n)Be-7 reaction. Targets that operate near the threshold energy generate neutrons that are close tothe desired energy for BNCT treatment. Thus, the filter can be extremely thin ({approximately} 5 cm iron). However, this approach has an extremely low neutron yield (n/p {approximately} 1.0({minus}6)), thus requiring a high proton current. The proposed solutino is to design a target consisting of multiple extremely thin targets (proton energy loss per target {approximately} 10 keV), and re-accelerate the protons between each target. Targets operating at ihgher proton energies ({approximately} 2.5 MeV) have a much higher yield (n/p {approximately} 1.0({minus}4)). However, at these energies the maximum neutron energy is approximately 800 keV, and thus a neutron filter is required to degrade the average neutron energy to the range of interest for BNCT (10--20 keV). A neutron filter consisting of fluorine compounds and iron has been investigated for this case. Typically a proton current of approximately 5 mA is required to generate the desired neutron current at the treatment port. The efficiency of these filter designs can be further increased by incorporating neutron reflectors that are co-axial with the neutron source. These reflectors are made of materials which have high scattering cross sections in the range 0.1--1.0 MeV.

  18. Cell-Activation by Shear Stresses in Abdominal Aortic Aneurysms (AAA)

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie; Sparks, Steven; Chomaz, Jean-Marc; Lasheras, Juan C.

    2003-11-01

    Increasing experimental evidence indicates that low and oscillatory shear stresses promote proliferative, thrombotic, adhesive and inflammatory-mediated degenerative conditions throughout the wall of the aorta. These degenerative conditions have been shown to be involved in the pathogenesis of AAAs, a permanent, localized dilatation of the abdominal aorta. The purpose of this study is to measure both the magnitude and the duration of the shear stresses acting on both the arterial walls and on the blood cells inside AAAs, and to characterize their changes as the AAA enlarges. We conducted a parametric in-vitro study of the pulsatile blood flow in elastic models of AAAs while systematically varying the blood flow parameters, and the geometry of the aneurysm's bulging. The instantaneous flow characteristic inside the AAA was measured using DPIV at a sampling rate of 15 Hertz. A "cell-activation parameter" defined as the integral of the product of the magnitude of the shear stress and the time during which the stress acts was computed along each of the blood cell pathlines. The Lagrangian tracking of the blood cells shows that a large majority of them are subjected first to very high level of shear-induced "cell-activation" while later on they are entrained in regions of stasis where their residence time can increase up to several cardiac cycles. This cell-activation followed by the entrainment in low shear regions creates the optimal cell-adhesive and inflammatory-mediated degenerative conditions that are postulated to play an important role in the etiology and progressive enlargement of AAAs.

  19. Upgrading of the 4.5 MV Dynamitron accelerator at Tohoku University for microbeam and nanobeam applications

    NASA Astrophysics Data System (ADS)

    Matsuyama, S.; Ishii, K.; Fujisawa, M.; Kawamura, Y.; Tsuboi, S.; Yamanaka, K.; Watanabe, M.; Hashimoto, Y.; Ohkura, S.; Fujikawa, M.; Nagaya, T.; Komatsu, K.; Yamazaki, H.; Kikuchi, Y.

    2009-06-01

    To improve the beam brightness and the stability of the accelerator for nanobeam and microbeam applications, the Dynamitron accelerator was upgraded. Although the microbeam system at Tohoku University can focus the beam to several hundred square micrometers, its beam currents were insufficient for analyses of sub-micrometer resolution because of the lack of the accelerator brightness. For this upgrade, an ion source, with lenses in the terminal, and an acceleration tube were replaced with new ones. A control system for the ion source and lens system was also newly developed. Beam brightness of 2.6 and 0.44 pA μm -2 mrad -2 MeV -1 is currently obtained for H2+ and H1+ beams at half divergence of 0.07 mrad. The voltage stability of the accelerator was improved by adjusting the voltage stabilizing system, thereby improving the beam current stability. The Dynamitron accelerator has been operated routinely for various experiments without a serious problem.

  20. Runtime and Architecture Support for Efficient Data Exchange in Multi-Accelerator Applications

    PubMed Central

    Cabezas, Javier; Gelado, Isaac; Stone, John E.; Navarro, Nacho; Kirk, David B.; Hwu, Wen-mei

    2014-01-01

    Heterogeneous parallel computing applications often process large data sets that require multiple GPUs to jointly meet their needs for physical memory capacity and compute throughput. However, the lack of high-level abstractions in previous heterogeneous parallel programming models force programmers to resort to multiple code versions, complex data copy steps and synchronization schemes when exchanging data between multiple GPU devices, which results in high software development cost, poor maintainability, and even poor performance. This paper describes the HPE runtime system, and the associated architecture support, which enables a simple, efficient programming interface for exchanging data between multiple GPUs through either interconnects or cross-node network interfaces. The runtime and architecture support presented in this paper can also be used to support other types of accelerators. We show that the simplified programming interface reduces programming complexity. The research presented in this paper started in 2009. It has been implemented and tested extensively in several generations of HPE runtime systems as well as adopted into the NVIDIA GPU hardware and drivers for CUDA 4.0 and beyond since 2011. The availability of real hardware that support key HPE features gives rise to a rare opportunity for studying the effectiveness of the hardware support by running important benchmarks on real runtime and hardware. Experimental results show that in a exemplar heterogeneous system, peer DMA and double-buffering, pinned buffers, and software techniques can improve the inter-accelerator data communication bandwidth by 2×. They can also improve the execution speed by 1.6× for a 3D finite difference, 2.5× for 1D FFT, and 1.6× for merge sort, all measured on real hardware. The proposed architecture support enables the HPE runtime to transparently deploy these optimizations under simple portable user code, allowing system designers to freely employ devices of

  1. Studies of the Mirrortron ion accelerator concept and its application to heavy-ion drivers

    SciTech Connect

    Post, R.F.; Schwager, L.A. ); Douglass, S.R.; Jones, B.R.; Lambert, M.A.; Larson, D.L. . Dept. of Applied Science)

    1990-11-30

    The Mirrortron accelerator is a plasma-based ion accelerator concept that, when implemented, should permit both higher acceleration gradients and higher peak-current capabilities than is possible with conventional induction-type accelerators. Control over the acceleration and focussing of an accelerated beam should approach that achieved in vacuum-field-based ion accelerators. In the Mirrortron a low density (10{sup 10} to 10{sup 11} cm{sup {minus}3}) hot electron'' plasma is confined by a long solenoidal magnetic field capped by mirrors.'' Acceleration of pre-bunched ions is accomplished by activating a series of fast-pulsed mirror coils spaced along the acceleration tube. The hot electrons, being repelled by mirror action, leave the plasma ions behind to create a localized region of high electrical gradient (up to of order 100 MV/m). At the laboratory an experiment and analyses to elucidate the concept and its scaling laws as applied to heavy-ion drivers are underway and will be described. 4 refs., 5 figs.

  2. A portable platform for accelerated PIC codes and its application to GPUs using OpenACC

    NASA Astrophysics Data System (ADS)

    Hariri, F.; Tran, T. M.; Jocksch, A.; Lanti, E.; Progsch, J.; Messmer, P.; Brunner, S.; Gheller, C.; Villard, L.

    2016-10-01

    We present a portable platform, called PIC_ENGINE, for accelerating Particle-In-Cell (PIC) codes on heterogeneous many-core architectures such as Graphic Processing Units (GPUs). The aim of this development is efficient simulations on future exascale systems by allowing different parallelization strategies depending on the application problem and the specific architecture. To this end, this platform contains the basic steps of the PIC algorithm and has been designed as a test bed for different algorithmic options and data structures. Among the architectures that this engine can explore, particular attention is given here to systems equipped with GPUs. The study demonstrates that our portable PIC implementation based on the OpenACC programming model can achieve performance closely matching theoretical predictions. Using the Cray XC30 system, Piz Daint, at the Swiss National Supercomputing Centre (CSCS), we show that PIC_ENGINE running on an NVIDIA Kepler K20X GPU can outperform the one on an Intel Sandy bridge 8-core CPU by a factor of 3.4.

  3. Physics models in the MARS15 code for accelerator and space applications.

    SciTech Connect

    Mokhov, N. V.; Gudima, K. K.; Mashnik, S. G.; Rakhno, I. L.; Sierk, A. J.; Striganov, S.

    2004-01-01

    The MARS code system, developed over 30 years, is a set of Monte Carlo programs for detailed simulation of hadronic and electromagnetic cascades in an arbitrary geometry of accelerator, detector and spacecraft components with particle energy ranging from a fraction of an electron volt up to 100 TeV. The new MARS15 (2004) version is described with an emphasis on modeling physics processes. This includes an extended list of elementary particles and arbitrary heavy ions, their interaction cross-sections, inclusive and exclusive nuclear event generators, photo - hadron production, correlated ionization energy loss and multiple Coulomb scattering, nuclide production and residual activation, and radiation damage (DPA). In particular, the details of a new model for leading baryon production and implementation of advanced versions of the Cascade-Exciton Model (CEM03), and the Los Alamos version of Quark-Gluon String Model (LAQGSM03) are given. The applications that are motivating these developments, needs for better nuclear data, and future physics improvements are described.

  4. The CINDER'90 transmutation code package for use in accelerator applications in combination with MCNPX

    SciTech Connect

    Gallmeier, Franz X.; Ferguson, Phillip D.; Lu, Wei; Iverson, Erik B.; Muhrer, Guenter; Holloway, Shannon T.; Kelsey, Charles; Pitcher, Eric; Wohlmuther, Michael; Micklich, Bradley J.

    2010-01-01

    CINDER'90, a nuclear inventory code originated at the Bettis Atomic Power Laboratory for reactor irradiation calculations and extended for use of in accelerator dr iven systems and high-energy applications at Los Alamos National Laboratory, has been released as a code package for distribution through the Radiation Safety Information Computational Center (RSICC). The code package and its updated data libraries come with several scripts that allow calculations of multi-cell problems in combination with the radiation transport code MCNPX. A script was developed that manages all the pre-processing steps extracting the necessary information from MCNPX output or from one input file, and that runs the CINDER’90 code for a requested list of MCNPX cells and for a requested time history. A second script was developed that extracts the decay photon sources from CINDER’90 output for a requested list of cells and for a requested irradiation or decay time step and builds source deck for subsequent MCNPX calculations. Since the package release, improvements to CINDER’90 are underway in algorithms, libraries, and interfaces to transport codes.

  5. Accelerator Technology and High Energy Physics Experiments, Photonics Applications and Web Engineering, Wilga, May 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2012-05-01

    The paper is the second part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with accelerator technology and high energy physics experiments. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the XXXth Jubilee SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonicselectronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-275].

  6. Selection of flowing liquid lead target structural materials for accelerator driven transmutation applications

    SciTech Connect

    Park, J.J.; Buksa, J.J.

    1994-08-01

    The beam entry window and container for a liquid lead spallation target will be exposed to high fluxes of protons and neutrons that are both higher in magnitude and energy than have been experienced in proton accelerators and fission reactors, as well as in a corrosive environment. The structural material of the target should have a good compatibility with liquid lead, a sufficient mechanical strength at elevated temperatures, a good performance under an intense irradiation environment, and a low neutron absorption cross section; these factors have been used to rank the applicability of a wide range of materials for structural containment Nb-1Zr has been selected for use as the structural container for the LANL ABC/ATW molten lead target. Corrosion and mass transfer behavior for various candidate structural materials in liquid lead are reviewed, together with the beneficial effects of inhibitors and various coatings to protect substrate against liquid lead corrosion. Mechanical properties of some candidate materials at elevated temperatures and the property changes resulting from 800 MeV proton irradiation are also reviewed.

  7. Norwalk Community College AA-AS Degree Review Committee Curriculum Report, August 21, 1989.

    ERIC Educational Resources Information Center

    Pennino, Eileen M.; Luster, Gwen Tolliver

    In an attempt to revitalize and reform its curriculum, the Associate of Arts-Associate of Science (AA-AS) Degree Review Committee (DRC) of Connecticut's Norwalk Community College issued a curriculum report proposing a 21 credit, limited distributive core for the AS degree (which accounts for 80% of the college's degree recipients). This proposal…

  8. Professional Ethics Activities in the Scientific and Engineering Societies. AAAS Professional Ethics Project.

    ERIC Educational Resources Information Center

    Chalk, Rosemary; And Others

    Presented is an overview of the depth and range of the ethics activities undertaken by societies affiliated with the American Association for the Advancement of Science (AAAS). Included in this report are: (1) reviews of previous surveys of organizations which had adopted codes of ethics; (2) descriptions of the methodology and findings of the…

  9. Fluid Characteristics in Abdominal Aortic Aneurysms (AAAs) and Its Correlation to Thrombus Formation

    NASA Astrophysics Data System (ADS)

    Tang, Rubing; Bar-Yoseph, Pinhas Z.; Lasheras, Juan

    2008-11-01

    It has been observed that most large Abdominal Aortic Aneurysms (AAAs) develop an intraluminal thrombus as they progressively enlarge. Previous studies have suggested that the build up of the thrombus may be associated with the altered hemodynamic patterns that arise inside the AAA. We have performed a parametrical computational study of the flow patterns inside enlarging AAA to investigate the possible mechanism controlling the thrombus formation. Pulsatile blood flows were simulated in idealized models of fusiform aneurysms with different dilatation ratios and the effects of shear-activated platelet accumulation and platelet/wall interaction were evaluated based on the calculated flow fields. The platelet activation level (PAL) was determined by computing the integral over time of flow shear stresses exerted over the platelets as they are transported throughout the aneurysm. Our results have shown that the values of PAL in AAAs are in fact smaller than the maximum value obtained in a healthy abdominal aorta. However, we show that the transportation of blood cells towards the wall and the formation of stagnation points on the aneurysm's wall play more significant roles in thrombus formation than PAL.

  10. Effects of doping and bias voltage on the screening in AAA-stacked trilayer graphene

    NASA Astrophysics Data System (ADS)

    Mohammadi, Yawar; Moradian, Rostam; Shirzadi Tabar, Farzad

    2014-09-01

    We calculate the static polarization of AAA-stacked trilayer graphene (TLG) and study its screening properties within the random phase approximation (RPA) in all undoped, doped and biased regimes. We find that the static polarization of undoped AAA-stacked TLG is a combination of the doped and undoped single-layer graphene static polarization. This leads to an enhancement of the dielectric background constant along a Thomas-Fermi screening with the Thomas-Fermi wave vector which is independent of carrier concentrations and a 1/r3 power law decay for the long-distance behavior of the screened Coulomb potential. We show that effects of a bias voltage can be taken into account by a renormalization of the interlayer hopping energy to a new bias-voltage-dependent value, indicating screening properties of AAA-stacked TLG can be tuned electrically. We also find that screening properties of doped AAA-stacked TLG, when μ exceeds √{2}γ, are similar to that of doped SLG only depending on doping. While for μ<√{2}γ, its screening properties are combination of SLG and AA-stacked bilayer graphene screening properties and they are determined by doping and the interlayer hopping energy.

  11. Structure of Lmaj006129AAA, a hypothetical protein from Leishmania major

    SciTech Connect

    Arakaki, Tracy; Le Trong, Isolde; Phizicky, Eric; Quartley, Erin; DeTitta, George; Luft, Joseph; Lauricella, Angela; Anderson, Lori; Kalyuzhniy, Oleksandr; Worthey, Elizabeth; Myler, Peter J.; Kim, David; Baker, David; Hol, Wim G. J.; Merritt, Ethan A.

    2006-03-01

    The crystal structure of a conserved hypothetical protein from L. major, Pfam sequence family PF04543, structural genomics target ID Lmaj006129AAA, has been determined at a resolution of 1.6 Å. The gene product of structural genomics target Lmaj006129 from Leishmania major codes for a 164-residue protein of unknown function. When SeMet expression of the full-length gene product failed, several truncation variants were created with the aid of Ginzu, a domain-prediction method. 11 truncations were selected for expression, purification and crystallization based upon secondary-structure elements and disorder. The structure of one of these variants, Lmaj006129AAH, was solved by multiple-wavelength anomalous diffraction (MAD) using ELVES, an automatic protein crystal structure-determination system. This model was then successfully used as a molecular-replacement probe for the parent full-length target, Lmaj006129AAA. The final structure of Lmaj006129AAA was refined to an R value of 0.185 (R{sub free} = 0.229) at 1.60 Å resolution. Structure and sequence comparisons based on Lmaj006129AAA suggest that proteins belonging to Pfam sequence families PF04543 and PF01878 may share a common ligand-binding motif.

  12. The two faces of hydrogen-bond strength on triple AAA-DDD arrays.

    PubMed

    Lopez, Alfredo Henrique Duarte; Caramori, Giovanni Finoto; Coimbra, Daniel Fernando; Parreira, Renato Luis Tame; da Silva, Éder Henrique

    2013-12-01

    Systems that are connected through multiple hydrogen bonds are the cornerstone of molecular recognition processes in biology, and they are increasingly being employed in supramolecular chemistry, specifically in molecular self-assembly processes. For this reason, the effects of different substituents (NO2, CN, F, Cl, Br, OCH3 and NH2) on the electronic structure, and consequently on the magnitude of hydrogen bonds in triple AAA-DDD arrays (A=acceptor, D=donor) were evaluated in the light of topological [electron localization function (ELF) and quantum theory of atoms in molecules (QTAIM)], energetic [Su-Li energy-decomposition analysis (EDA) and natural bond orbital analysis (NBO)], and geometrical analysis. The results based on local H-bond descriptors (geometries, QTAIM, ELF, and NBO) indicate that substitutions with electron-withdrawing groups on the AAA module tend to strengthen, whereas electron-donating substituents tend to weaken the covalent character of the AAA-DDD intermolecular H-bonds, and also indicate that the magnitude of the effect is dependent on the position of substitution. In contrast, Su-Li EDA results show an opposite behavior when compared to local H-bond descriptors, indicating that electron-donating substituents tend to increase the magnitude of H-bonds in AAA-DDD arrays, and thus suggesting that the use of local H-bond descriptors describes the nature of H bonds only partially, not providing enough insight about the strength of such H bonds.

  13. Anonymous Communication Policies for the Internet: Results and Recommendations of the AAAS Conference.

    ERIC Educational Resources Information Center

    Teich, Al; Frankel, Mark S.; Kling, Rob; Lee, Yaching

    1999-01-01

    Reports the results of a conference on the Internet and anonymous communication organized by the American Association for the Advancement of Science (AAAS). Discusses how anonymous communications can be shaped by the law, education, and public awareness, and highlights the importance of involving all affected interests in policy development.…

  14. The mouse fidgetin gene defines a new role for AAA family proteins in mammalian development.

    PubMed

    Cox, G A; Mahaffey, C L; Nystuen, A; Letts, V A; Frankel, W N

    2000-10-01

    The mouse mutation fidget arose spontaneously in a heterogeneous albino stock. This mutant mouse is characterized by a side-to-side head-shaking and circling behaviour, due to reduced or absent semicircular canals. Fidget mice also have small eyes, associated with cell-cycle delay and insufficient growth of the retinal neural epithelium, and lower penetrance skeletal abnormalities, including pelvic girdle dysgenesis, skull bone fusions and polydactyly. By positional cloning, we found the gene mutated in fidget mice, fidgetin (Fign), which encodes a new member of the 'meiotic' or subfamily-7 (SF7; ref. 7) group of ATPases associated with diverse cellular activities (AAA proteins). We also discovered two closely related mammalian genes. AAA proteins are molecular chaperones that facilitate a variety of functions, including membrane fusion, proteolysis, peroxisome biogenesis, endosome sorting and meiotic spindle formation, but functions for the SF7 AAA proteins are largely unknown. Fidgetin is the first mutant AAA protein found in a mammalian developmental mutant, thus defining a new role for these proteins in embryonic development.

  15. National dosimetric audit network finds discrepancies in AAA lung inhomogeneity corrections.

    PubMed

    Dunn, Leon; Lehmann, Joerg; Lye, Jessica; Kenny, John; Kron, Tomas; Alves, Andrew; Cole, Andrew; Zifodya, Jackson; Williams, Ivan

    2015-07-01

    This work presents the Australian Clinical Dosimetry Service's (ACDS) findings of an investigation of systematic discrepancies between treatment planning system (TPS) calculated and measured audit doses. Specifically, a comparison between the Anisotropic Analytic Algorithm (AAA) and other common dose-calculation algorithms in regions downstream (≥2cm) from low-density material in anthropomorphic and slab phantom geometries is presented. Two measurement setups involving rectilinear slab-phantoms (ACDS Level II audit) and anthropomorphic geometries (ACDS Level III audit) were used in conjunction with ion chamber (planar 2D array and Farmer-type) measurements. Measured doses were compared to calculated doses for a variety of cases, with and without the presence of inhomogeneities and beam-modifiers in 71 audits. Results demonstrate a systematic AAA underdose with an average discrepancy of 2.9 ± 1.2% when the AAA algorithm is implemented in regions distal from lung-tissue interfaces, when lateral beams are used with anthropomorphic phantoms. This systemic discrepancy was found for all Level III audits of facilities using the AAA algorithm. This discrepancy is not seen when identical measurements are compared for other common dose-calculation algorithms (average discrepancy -0.4 ± 1.7%), including the Acuros XB algorithm also available with the Eclipse TPS. For slab phantom geometries (Level II audits), with similar measurement points downstream from inhomogeneities this discrepancy is also not seen. PMID:25921329

  16. Multi-GPU and multi-CPU accelerated FDTD scheme for vibroacoustic applications

    NASA Astrophysics Data System (ADS)

    Francés, J.; Otero, B.; Bleda, S.; Gallego, S.; Neipp, C.; Márquez, A.; Beléndez, A.

    2015-06-01

    with auto-vectorisation and also shared memory approach. In this scenario GPU computing is the best option since it provides a homogeneous behaviour. More specifically, the speedup of GPU computing achieves an upper limit of 12 for both one and two GPUs, whereas the performance reaches peak values of 80 GFlops and 146 GFlops for the performance for one GPU and two GPUs respectively. Finally, the method is applied to an earth crust profile in order to demonstrate the potential of our approach and the necessity of applying acceleration strategies in these type of applications.

  17. Application of the National Ignition Facility distinguishable-from-background program to accelerator facilities at Lawrence Livermore National Laboratory.

    PubMed

    Packard, Eric D; Mac Kenzie, Carolyn

    2013-06-01

    Lawrence Livermore National Laboratory must control potentially activated materials and equipment in accordance with U.S. Department of Energy (DOE) Order 458.1, Radiation Protection of the Public and the Environment, which requires DOE approval of the process used to release volumetrically contaminated personal property and establishes a dose constraint of 10 µSv y(-1) (1 mrem y(-1)) for clearance of such property. The National Ignition Facility at Lawrence Livermore National Laboratory developed a technical basis document and protocol for determining the radiological status of property that is potentially activated from exposure to neutron radiation produced via fusion of tritium and deuterium. The technical basis included assessment of the neutron energy, the type of materials potentially exposed and the likely activation products, and the sensitivity of radiation detectors used to survey the property. This paper evaluates the National Ignition Facility technical basis document for applicability to the release of property from Lawrence Livermore National Laboratory's various accelerator facilities considering the different types of particles accelerated, radiations produced, and resultant activation products. Extensive process knowledge regarding the accelerators' operations, accompanied by years of routine surveys, provides an excellent characterization of these facilities. Activation studies conducted at the Stanford Linear Accelerator and the High Energy Accelerator Research Organization in Japan corroborate that the long-lived radionuclides produced at accelerator facilities are of the same variety produced at the National Ignition Facility. Consequently, Lawrence Livermore National Laboratory concludes that the release protocol developed for the National Ignition Facility can be used appropriately at all its accelerator facilities.

  18. In vitro propagation and assessment of the genetic fidelity of Musa acuminata (AAA) cv. Vaibalhla derived from immature male flowers.

    PubMed

    Hrahsel, Lalremsiami; Basu, Adreeja; Sahoo, Lingaraj; Thangjam, Robert

    2014-02-01

    An efficient in vitro propagation method has been developed for the first time for Musa acuminata (AAA) cv. Vaibalhla, an economically important banana cultivar of Mizoram, India. Immature male flowers were used as explants. Murashige and Skoog's (MS) medium supplemented with plant growth regulators (PGRs) were used for the regeneration process. Out of different PGR combinations, MS medium supplemented with 2 mg L(-1) 6-benzylaminopurine (BAP) + 0.5 mg L(-1) α-naphthalene acetic acid (NAA) was optimal for production of white bud-like structures (WBLS). On this medium, explants produced the highest number of buds per explant (4.30). The highest percentage (77.77) and number (3.51) of shoot formation from each explants was observed in MS medium supplemented with 2 mg L(-1) kinetin + 0.5 mg L(-1) NAA. While MS medium supplemented with a combination of 2 mg L(-1) BAP + 0.5 mg L(-1) NAA showed the maximum shoot length (14.44 cm). Rooting efficiency of the shoots was highest in the MS basal medium without any PGRs. The plantlets were hardened successfully in the greenhouse with 96% survival rate. Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers were employed to assess the genetic stability of in vitro regenerated plantlets of M. acuminata (AAA) cv. Vaibalhla. Eight RAPD and 8 ISSR primers were successfully used for the analysis from the 40 RAPD and 30 ISSR primers screened initially. The amplified products were monomorphic across all the regenerated plants and were similar to the mother plant. The present standardised protocol will find application in mass production, conservation and genetic transformation studies of this commercially important banana.

  19. Dose properties of a laser accelerated electron beam and prospects for clinical application.

    PubMed

    Kainz, K K; Hogstrom, K R; Antolak, J A; Almond, P R; Bloch, C D; Chiu, C; Fomytskyi, M; Raischel, F; Downer, M; Tajima, T

    2004-07-01

    Laser wakefield acceleration (LWFA) technology has evolved to where it should be evaluated for its potential as a future competitor to existing technology that produces electron and x-ray beams. The purpose of the present work is to investigate the dosimetric properties of an electron beam that should be achievable using existing LWFA technology, and to document the necessary improvements to make radiotherapy application for LWFA viable. This paper first qualitatively reviews the fundamental principles of LWFA and describes a potential design for a 30 cm accelerator chamber containing a gas target. Electron beam energy spectra, upon which our dose calculations are based, were obtained from a uniform energy distribution and from two-dimensional particle-in-cell (2D PIC) simulations. The 2D PIC simulation parameters are consistent with those reported by a previous LWFA experiment. According to the 2D PIC simulations, only approximately 0.3% of the LWFA electrons are emitted with an energy greater than 1 MeV. We studied only the high-energy electrons to determine their potential for clinical electron beams of central energy from 9 to 21 MeV. Each electron beam was broadened and flattened by designing a dual scattering foil system to produce a uniform beam (103%>off-axis ratio>95%) over a 25 x 25 cm2 field. An energy window (deltaE) ranging from 0.5 to 6.5 MeV was selected to study central-axis depth dose, beam flatness, and dose rate. Dose was calculated in water at a 100 cm source-to-surface distance using the EGS/BEAM Monte Carlo algorithm. Calculations showed that the beam flatness was fairly insensitive to deltaE. However, since the falloff of the depth-dose curve (R10-R90) and the dose rate both increase with deltaE, a tradeoff between minimizing (R10-R90) and maximizing dose rate is implied. If deltaE is constrained so that R10-R90 is within 0.5 cm of its value for a monoenergetic beam, the maximum practical dose rate based on 2D PIC is approximately 0.1 Gy min

  20. Recent developments in the application of rf superconductivity to high-brightness and high-gradient ion beam accelerators

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Nichols, G.L.; Roche, C.T.; Sagalovsky, L.

    1991-12-31

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high- brightness ion beams. Since the last workshop, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm{sup 2}) surface areas. Theoretical studies of beam impingement and cumulative beam breakup have also yielded encouraging results. Consequently, a section of superconducting resonators and focusing elements has been designed for tests with high-current deuteron beams. In addition, considerable data pertaining to the rf properties of high-{Tc} superconductors has been collected at rf-field amplitudes and frequencies of interest in connection with accelerator operation. This paper summarizes the recent progress and identifies current and future work in the areas of accelerator technology and superconducting materials which will build upon it.

  1. Recent developments in the application of rf superconductivity to high-brightness and high-gradient ion beam accelerators

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Nichols, G.L.; Roche, C.T.; Sagalovsky, L.

    1991-01-01

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high- brightness ion beams. Since the last workshop, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm{sup 2}) surface areas. Theoretical studies of beam impingement and cumulative beam breakup have also yielded encouraging results. Consequently, a section of superconducting resonators and focusing elements has been designed for tests with high-current deuteron beams. In addition, considerable data pertaining to the rf properties of high-{Tc} superconductors has been collected at rf-field amplitudes and frequencies of interest in connection with accelerator operation. This paper summarizes the recent progress and identifies current and future work in the areas of accelerator technology and superconducting materials which will build upon it.

  2. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    DOE PAGES

    Andreani, C.; Anderson, I. S.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C. -K.; Senesi, R.

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10⁻⁶ to 10²more » MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.« less

  3. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    SciTech Connect

    Andreani, C.; Anderson, I. S.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C. -K.; Senesi, R.

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10⁻⁶ to 10² MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.

  4. Asymmetric processing of a substrate protein in sequential allosteric cycles of AAA+ nanomachines

    NASA Astrophysics Data System (ADS)

    Kravats, Andrea N.; Tonddast-Navaei, Sam; Bucher, Ryan J.; Stan, George

    2013-09-01

    Essential protein quality control includes mechanisms of substrate protein (SP) unfolding and translocation performed by powerful ring-shaped AAA+ (ATPases associated with various cellular activities) nanomachines. These SP remodeling actions are effected by mechanical forces imparted by AAA+ loops that protrude into the central channel. Sequential intra-ring allosteric motions, which underlie repetitive SP-loop interactions, have been proposed to comprise clockwise (CW), counterclockwise (CCW), or random (R) conformational transitions of individual AAA+ subunits. To probe the effect of these allosteric mechanisms on unfoldase and translocase functions, we perform Langevin dynamics simulations of a coarse-grained model of an all-alpha SP processed by the single-ring ClpY ATPase or by the double-ring p97 ATPase. We find that, in all three allosteric mechanisms, the SP undergoes conformational transitions along a common set of pathways, which reveals that the active work provided by the ClpY machine involves single loop-SP interactions. Nevertheless, the rates and yields of SP unfolding and translocation are controlled by mechanism-dependent loop-SP binding events, as illustrated by faster timescales of SP processing in CW allostery compared with CCW and R allostery. The distinct efficacy of allosteric mechanisms is due to the asymmetric collaboration of adjacent subunits, which involves CW-biased structural motions of AAA+ loops and results in CW-compatible torque applied onto the SP. Additional simulations of mutant ClpY rings, which render a subset of subunits catalytically-defective or reduce their SP binding affinity, reveal that subunit-based conformational transitions play the major role in SP remodeling. Based on these results we predict that the minimally functional AAA+ ring includes three active subunits, only two of which are adjacent.

  5. Asymmetric processing of a substrate protein in sequential allosteric cycles of AAA+ nanomachines.

    PubMed

    Kravats, Andrea N; Tonddast-Navaei, Sam; Bucher, Ryan J; Stan, George

    2013-09-28

    Essential protein quality control includes mechanisms of substrate protein (SP) unfolding and translocation performed by powerful ring-shaped AAA+ (ATPases associated with various cellular activities) nanomachines. These SP remodeling actions are effected by mechanical forces imparted by AAA+ loops that protrude into the central channel. Sequential intra-ring allosteric motions, which underlie repetitive SP-loop interactions, have been proposed to comprise clockwise (CW), counterclockwise (CCW), or random (R) conformational transitions of individual AAA+ subunits. To probe the effect of these allosteric mechanisms on unfoldase and translocase functions, we perform Langevin dynamics simulations of a coarse-grained model of an all-alpha SP processed by the single-ring ClpY ATPase or by the double-ring p97 ATPase. We find that, in all three allosteric mechanisms, the SP undergoes conformational transitions along a common set of pathways, which reveals that the active work provided by the ClpY machine involves single loop-SP interactions. Nevertheless, the rates and yields of SP unfolding and translocation are controlled by mechanism-dependent loop-SP binding events, as illustrated by faster timescales of SP processing in CW allostery compared with CCW and R allostery. The distinct efficacy of allosteric mechanisms is due to the asymmetric collaboration of adjacent subunits, which involves CW-biased structural motions of AAA+ loops and results in CW-compatible torque applied onto the SP. Additional simulations of mutant ClpY rings, which render a subset of subunits catalytically-defective or reduce their SP binding affinity, reveal that subunit-based conformational transitions play the major role in SP remodeling. Based on these results we predict that the minimally functional AAA+ ring includes three active subunits, only two of which are adjacent.

  6. Application of Failure Mode and Effects Analysis to Intraoperative Radiation Therapy Using Mobile Electron Linear Accelerators

    SciTech Connect

    Ciocca, Mario; Cantone, Marie-Claire; Veronese, Ivan; Cattani, Federica; Pedroli, Guido; Molinelli, Silvia; Vitolo, Viviana; Orecchia, Roberto

    2012-02-01

    Purpose: Failure mode and effects analysis (FMEA) represents a prospective approach for risk assessment. A multidisciplinary working group of the Italian Association for Medical Physics applied FMEA to electron beam intraoperative radiation therapy (IORT) delivered using mobile linear accelerators, aiming at preventing accidental exposures to the patient. Methods and Materials: FMEA was applied to the IORT process, for the stages of the treatment delivery and verification, and consisted of three steps: 1) identification of the involved subprocesses; 2) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system, based on the product of three parameters (severity, frequency of occurrence and detectability, each ranging from 1 to 10); 3) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. Results: Twenty-four subprocesses were identified. Ten potential failure modes were found and scored, in terms of RPN, in the range of 42-216. The most critical failure modes consisted of internal shield misalignment, wrong Monitor Unit calculation and incorrect data entry at treatment console. Potential causes of failure included shield displacement, human errors, such as underestimation of CTV extension, mainly because of lack of adequate training and time pressures, failure in the communication between operators, and machine malfunctioning. The main effects of failure were represented by CTV underdose, wrong dose distribution and/or delivery, unintended normal tissue irradiation. As additional safety measures, the utilization of a dedicated staff for IORT, double-checking of MU calculation and data entry and finally implementation of in vivo dosimetry were suggested. Conclusions: FMEA appeared as a useful tool for prospective evaluation of patient safety in radiotherapy. The

  7. An application of laser-plasma acceleration: towards a free-electron laser amplification

    NASA Astrophysics Data System (ADS)

    Couprie, M. E.; Labat, M.; Evain, C.; Marteau, F.; Briquez, F.; Khojoyan, M.; Benabderrahmane, C.; Chapuis, L.; Hubert, N.; Bourassin-Bouchet, C.; El Ajjouri, M.; Bouvet, F.; Dietrich, Y.; Valléau, M.; Sharma, G.; Yang, W.; Marcouillé, O.; Vétéran, J.; Berteaud, P.; El Ajjouri, T.; Cassinari, L.; Thaury, C.; Lambert, G.; Andriyash, I.; Malka, V.; Davoine, X.; Tordeux, M. A.; Miron, C.; Zerbib, D.; Tavakoli, K.; Marlats, J. L.; Tilmont, M.; Rommeluère, P.; Duval, J. P.; N'Guyen, M. H.; Rouqier, A.; Vanderbergue, M.; Herbeaux, C.; Sebdouai, M.; Lestrade, A.; Leclercq, N.; Dennetière, D.; Thomasset, M.; Polack, F.; Bielawski, S.; Szwaj, C.; Loulergue, A.

    2016-03-01

    The laser-plasma accelerator (LPA) presently provides electron beams with a typical current of a few kA, a bunch length of a few fs, energy in the few hundred MeV to several GeV range, a divergence of typically 1 mrad, an energy spread of the order of 1%, and a normalized emittance of the order of π.mm.mrad. One of the first applications could be to use these beams for the production of radiation: undulator emission has been observed but the rather large energy spread (1%) and divergence (1 mrad) prevent straightforward free-electron laser (FEL) amplification. An adequate beam manipulation through the transport to the undulator is then required. The key concept proposed here relies on an innovative electron beam longitudinal and transverse manipulation in the transport towards an undulator: a ‘demixing’ chicane sorts the electrons according to their energy and reduces the spread from 1% to one slice of a few ‰ and the effective transverse size is maintained constant along the undulator (supermatching) by a proper synchronization of the electron beam focusing with the progress of the optical wave. A test experiment for the demonstration of FEL amplification with an LPA is under preparation. Electron beam transport follows different steps with strong focusing with permanent magnet quadrupoles of variable strength, a demixing chicane with conventional dipoles, and a second set of quadrupoles for further focusing in the undulator. The FEL simulations and the progress of the preparation of the experiment are presented.

  8. Feasibility study of Nb3Al Rutherford cable for high field accelerator magnet application

    SciTech Connect

    Yamada, R.; Kikuchi, A.; Ambrosio, G.; Andreev, N.; Barzi, E.; Cooper, C.; Feher, S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; Takeuchi, T.; Tartaglia, M.; Turrioni, D.; Verweij, A.P.; Wake, M.; Willering, G; Zlobin, A.V.; /Fermilab

    2006-08-01

    Feasibility study of Cu stabilized Nb{sub 3}Al strand and Rutherford cable for the application to high field accelerator magnets are being done at Fermilab in collaboration with NIMS. The Nb{sub 3}Al strand, which was developed and manufactured at NIMS in Japan, has a non-copper Jc of about 844 A/mm{sup 2} at 15 Tesla at 4.2 K, a copper content of 50%, and filament size of about 50 microns. Rutherford cables with 27 Nb{sub 3}Al strands of 1.03 mm diameter were fabricated and tested. Quench tests on a short cable were done to study its stability with only its self field, utilizing a high current transformer. A pair of 2 meter long Nb{sub 3}Al cables was tested extensively at CERN at 4.3 and 1.9 K up to 11 Tesla including its self field with a high transport current of 20.2 kA. In the low field test we observed instability near splices and in the central region. This is related to the flux-jump like behavior, because of excessive amount of Nb in the Nb{sub 3}Al strand. There is possibility that the Nb in Nb{sub 3}Al can cause instability below 2 Tesla field regions. We need further investigation on this problem. Above 8 Tesla, we observed quenches near the critical surface at fast ramp rate from 1000 to 3000 A/sec, with quench velocity over 100 m/sec. A small racetrack magnet was made using a 14 m of Rutherford cable and successfully tested up to 21.8 kA, corresponding to 8.7 T.

  9. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    NASA Astrophysics Data System (ADS)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  10. Acceleration of mini-projectiles using a small-caliber electrothermal gun for fusion applications

    SciTech Connect

    Kincaid, R.W.; Bourham, M.A.; Gilligan, J.G.

    1995-12-31

    The small-caliber electrothermal plasma gun SIRENS has been used to accelerate mini-projectiles to demonstrate the feasibility of using such guns as a pellet injector for fueling of future fusion reactors. The gun has been modified to accommodate acceleration of plastic projectiles to simulate frozen hydrogenic pellets required to fuel fusion reactors. Barrel sections are equipped with diagnostics for velocity and position of the projectile. The length of the acceleration path could be varied between 15 and 45 cm. The pulse forming network (PFN) can provide up to 100 kJ discharge energy over 0.1 to 1.0 ms pulse duration. The projectile velocities have been measured via a set of break wires. The ODIN code has been modified to account for the projectile mass, acceleration and friction. Plasma parameters compared to code results are discussed in detail.

  11. Children with ANSD fitted with hearing aids applying the AAA Pediatric Amplification Guideline: Current Practice and Outcomes

    PubMed Central

    Walker, Elizabeth A.; McCreery, Ryan W.; Spratford, Meredith; Roush, Patricia A.

    2015-01-01

    Background Up to 15% of children with permanent hearing loss have auditory neuropathy spectrum disorder (ANSD), which involves normal outer hair cell function and disordered afferent neural activity in the auditory nerve or brainstem. Given the varying presentations of ANSD in children, there is a need for more evidence-based research on appropriate clinical interventions for this population. Purpose This study compared the speech production, speech perception, and language outcomes of children with auditory neuropathy spectrum disorder (ANSD) who are hard of hearing and children with similar degrees of mild to moderately-severe sensorineural hearing loss (SNHL), all of whom were fitted with bilateral hearing aids based on the American Academy of Audiology (AAA) pediatric amplification guidelines. Research design Speech perception and communication outcomes data were gathered in a prospective accelerated longitudinal design, with entry into the study between six months and seven years of age. Three sites were involved in participant recruitment: Boys Town National Research Hospital, the University of North Carolina at Chapel Hill, and the University of Iowa. Study sample: The sample consisted of 12 children with ANSD and 22 children with SNHL. The groups were matched based on better-ear pure-tone average, better-ear aided speech intelligibility index, gender, maternal education level, and newborn hearing screening result (i.e., pass or refer). Data collection and analysis Children and their families participated in an initial baseline visit, followed by visits twice a year for children under age 2 years and once a year for children older than 2 years. Paired-sample t-tests were used to compare children with ANSD to children with SNHL. Results Paired t-tests indicated no significant differences between the ANSD and SNHL groups on language and articulation measures. Children with ANSD displayed functional speech perception skills in quiet. Although the number of

  12. Microstructure and mechanical properties of composite resins subjected to accelerated artificial aging.

    PubMed

    dos Reis, Andréa Cândido; de Castro, Denise Tornavoi; Schiavon, Marco Antônio; da Silva, Leandro Jardel; Agnelli, José Augusto Marcondes

    2013-01-01

    The aim of this study was to investigate the influence of accelerated artificial aging (AAA) on the microstructure and mechanical properties of the Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma and Filtek Z100. composite resins. The composites were characterized by Fourier-transform Infrared spectroscopy (FTIR) and thermal analyses (Differential Scanning Calorimetry - DSC and Thermogravimetry - TG). The microstructure of the materials was examined by scanning electron microscopy. Surface hardness and compressive strength data of the resins were recorded and the mean values were analyzed statistically by ANOVA and Tukey's test (α=0.05). The results showed significant differences among the commercial brands for surface hardness (F=86.74, p<0.0001) and compressive strength (F=40.31, p<0.0001), but AAA did not affect the properties (surface hardness: F=0.39, p=0.53; compressive strength: F=2.82, p=0.09) of any of the composite resins. FTIR, DSC and TG analyses showed that resin polymerization was complete, and there were no differences between the spectra and thermal curve profiles of the materials obtained before and after AAA. TG confirmed the absence of volatile compounds and evidenced good thermal stability up to 200 °C, and similar amounts of residues were found in all resins evaluated before and after AAA. The AAA treatment did not significantly affect resin surface. Therefore, regardless of the resin brand, AAA did not influence the microstructure or the mechanical properties.

  13. The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Zank, G. P.

    2015-01-01

    The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forward-forward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given.

  14. The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Zank, G. P.

    2015-01-01

    The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forwardforward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given.

  15. Application of Zernike polynomials towards accelerated adaptive focusing of transcranial high intensity focused ultrasound

    PubMed Central

    Kaye, Elena A.; Hertzberg, Yoni; Marx, Michael; Werner, Beat; Navon, Gil; Levoy, Marc; Pauly, Kim Butts

    2012-01-01

    Purpose: To study the phase aberrations produced by human skulls during transcranial magnetic resonance imaging guided focused ultrasound surgery (MRgFUS), to demonstrate the potential of Zernike polynomials (ZPs) to accelerate the adaptive focusing process, and to investigate the benefits of using phase corrections obtained in previous studies to provide the initial guess for correction of a new data set. Methods: The five phase aberration data sets, analyzed here, were calculated based on preoperative computerized tomography (CT) images of the head obtained during previous transcranial MRgFUS treatments performed using a clinical prototype hemispherical transducer. The noniterative adaptive focusing algorithm [Larrat , “MR-guided adaptive focusing of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(8), 1734–1747 (2010)]10.1109/TUFFC.2010.1612 was modified by replacing Hadamard encoding with Zernike encoding. The algorithm was tested in simulations to correct the patients’ phase aberrations. MR acoustic radiation force imaging (MR-ARFI) was used to visualize the effect of the phase aberration correction on the focusing of a hemispherical transducer. In addition, two methods for constructing initial phase correction estimate based on previous patient's data were investigated. The benefits of the initial estimates in the Zernike-based algorithm were analyzed by measuring their effect on the ultrasound intensity at the focus and on the number of ZP modes necessary to achieve 90% of the intensity of the nonaberrated case. Results: Covariance of the pairs of the phase aberrations data sets showed high correlation between aberration data of several patients and suggested that subgroups can be based on level of correlation. Simulation of the Zernike-based algorithm demonstrated the overall greater correction effectiveness of the low modes of ZPs. The focal intensity achieves 90% of nonaberrated intensity using fewer than 170 modes of ZPs. The

  16. Application of a tiered approach to the validation of accelerator MS assays.

    PubMed

    Higton, David; Seymour, Mark

    2014-03-01

    Since its introduction into the drug-development arena, accelerator mass spectrometry (coupled with liquid chromatography fractionation) has been used to support a variety of study types. The uses to which the technique has been put include parent and/or metabolite quantification in pharmacokinetic studies, total radioactivity measurement in adsorption, metabolism and excretion studies, and quantitative metabolite profiling. A tiered approach has been applied to the verification of accelerator mass spectrometry assays, dependant on in which type of study and at what stage of drug development they are used. As accelerator mass spectrometry is an absolute detector that can quantify without the use of analyte-related standards, the specific assay verification requirements differ from those for LC-MS/MS assays. This article describes when screening, qualified and validated assay verification procedures should be applied, and suggests what parameters should be assessed in each case.

  17. Application of the Euler-Lagrange method in determination of the coordinate acceleration

    NASA Astrophysics Data System (ADS)

    Sfarti, A.

    2016-05-01

    In a recent comment published in this journal (2015 Eur. J. Phys. 36 038001), Khrapko derived the relationship between coordinate acceleration and coordinate speed for the case of radial motion in Schwarzschild coordinates. We will show an alternative derivation based on the Euler-Lagrange formalism. The Euler-Lagrange formalism has the advantage that it circumvents the tedious calculations of the Christoffel symbols and it is more intuitive. Another aspect of our comment is that one should not give much physical meaning to coordinate dependent entities, GR is a coordinate free field, so, a relationship between two coordinate dependent entities, like the acceleration being dependent on speed, should not be given much importance. By contrast, the proper acceleration and proper speed, are meaningful entities and their relationship is relevant. The comment is intended for graduate students and for the instructors who teach GR.

  18. SFM-FDTD analysis of triangular-lattice AAA structure: Parametric study of the TEM mode

    NASA Astrophysics Data System (ADS)

    Hamidi, M.; Chemrouk, C.; Belkhir, A.; Kebci, Z.; Ndao, A.; Lamrous, O.; Baida, F. I.

    2014-05-01

    This theoretical work reports a parametric study of enhanced transmission through annular aperture array (AAA) structure arranged in a triangular lattice. The effect of the incidence angle in addition to the inner and outer radii values on the evolution of the transmission spectra is carried out. To this end, a 3D Finite-Difference Time-Domain code based on the Split Field Method (SFM) is used to calculate the spectral response of the structure for any angle of incidence. In order to work through an orthogonal unit cell which presents the advantage to reduce time and space of computation, special periodic boundary conditions are implemented. This study provides a new modeling of AAA structures useful for producing tunable ultra-compact devices.

  19. Geometrical factors influencing the hemodynamic behavior of the AAA stent grafts: essentials for the clinician.

    PubMed

    Georgakarakos, Efstratios; Argyriou, Christos; Schoretsanitis, Nikolaos; Ioannou, Chris V; Kontopodis, Nikolaos; Morgan, Robert; Tsetis, Dimitrios

    2014-12-01

    Endovascular aneurysm repair (EVAR) is considered to be the treatment of choice for abdominal aortic aneurysms (AAA). Despite the initial technical success, EVAR is amenable to early and late complications, among which the migration of the endograft (EG) with subsequent proximal endoleak (Type Ia) leads to repressurization of the AAA sac, exposure to excessive wall stress, and, hence, to potential rupture. This article discusses the influence that certain geometrical factors, such as neck angulation, iliac bifurcation, EG curvature, neck-to-iliac diameter, and length ratios, as well as iliac limbs configuration can exert on the hemodynamic behavior of the EGs. The information provided could help both clinicians and EG manufacturers towards further development and improvement of EG designs and better operational planning. PMID:24938906

  20. Substituent effects in double-helical hydrogen-bonded AAA-DDD complexes.

    PubMed

    Wang, Hong-Bo; Mudraboyina, Bhanu P; Wisner, James A

    2012-01-27

    Two series of DDD and AAA hydrogen-bond arrays were synthesized that form triply-hydrogen-bonded double-helical complexes when combined in CDCl(3) solution. Derivatization of the DDD arrays with electron-withdrawing groups increases the complex association constants by up to a factor of 30 in those arrays examined. Derivatization of the AAA arrays with electron donating substituents reveals a similar magnitude effect on the complex stabilities. The effect of substitution on both types of arrays are modeled quite satisfactorily (R(2) > 0.96 in all cases) as free energy relationships with respect to the sums of their Hammett substituent constants. In all, the complex stabilities can be manipulated over more than three orders of magnitude (>20 kJ mol(-1)) using this type of modification.

  1. Dosimetric comparison of Acuros XB, AAA, and XVMC in stereotactic body radiotherapy for lung cancer

    SciTech Connect

    Tsuruta, Yusuke; Nakata, Manabu; Higashimura, Kyoji; Nakamura, Mitsuhiro Matsuo, Yukinori; Monzen, Hajime; Mizowaki, Takashi; Hiraoka, Masahiro

    2014-08-15

    Purpose: To compare the dosimetric performance of Acuros XB (AXB), anisotropic analytical algorithm (AAA), and x-ray voxel Monte Carlo (XVMC) in heterogeneous phantoms and lung stereotactic body radiotherapy (SBRT) plans. Methods: Water- and lung-equivalent phantoms were combined to evaluate the percentage depth dose and dose profile. The radiation treatment machine Novalis (BrainLab AG, Feldkirchen, Germany) with an x-ray beam energy of 6 MV was used to calculate the doses in the composite phantom at a source-to-surface distance of 100 cm with a gantry angle of 0°. Subsequently, the clinical lung SBRT plans for the 26 consecutive patients were transferred from the iPlan (ver. 4.1; BrainLab AG) to the Eclipse treatment planning systems (ver. 11.0.3; Varian Medical Systems, Palo Alto, CA). The doses were then recalculated with AXB and AAA while maintaining the XVMC-calculated monitor units and beam arrangement. Then the dose-volumetric data obtained using the three different radiation dose calculation algorithms were compared. Results: The results from AXB and XVMC agreed with measurements within ±3.0% for the lung-equivalent phantom with a 6 × 6 cm{sup 2} field size, whereas AAA values were higher than measurements in the heterogeneous zone and near the boundary, with the greatest difference being 4.1%. AXB and XVMC agreed well with measurements in terms of the profile shape at the boundary of the heterogeneous zone. For the lung SBRT plans, AXB yielded lower values than XVMC in terms of the maximum doses of ITV and PTV; however, the differences were within ±3.0%. In addition to the dose-volumetric data, the dose distribution analysis showed that AXB yielded dose distribution calculations that were closer to those with XVMC than did AAA. Means ± standard deviation of the computation time was 221.6 ± 53.1 s (range, 124–358 s), 66.1 ± 16.0 s (range, 42–94 s), and 6.7 ± 1.1 s (range, 5–9 s) for XVMC, AXB, and AAA, respectively. Conclusions: In the

  2. The Drug Diazaborine Blocks Ribosome Biogenesis by Inhibiting the AAA-ATPase Drg1*

    PubMed Central

    Loibl, Mathias; Klein, Isabella; Prattes, Michael; Schmidt, Claudia; Kappel, Lisa; Zisser, Gertrude; Gungl, Anna; Krieger, Elmar; Pertschy, Brigitte; Bergler, Helmut

    2014-01-01

    The drug diazaborine is the only known inhibitor of ribosome biogenesis and specifically blocks large subunit formation in eukaryotic cells. However, the target of this drug and the mechanism of inhibition were unknown. Here we identify the AAA-ATPase Drg1 as a target of diazaborine. Inhibitor binding into the second AAA domain of Drg1 requires ATP loading and results in inhibition of ATP hydrolysis in this site. As a consequence the physiological activity of Drg1, i.e. the release of Rlp24 from pre-60S particles, is blocked, and further progression of cytoplasmic preribosome maturation is prevented. Our results identify the first target of an inhibitor of ribosome biogenesis and provide the mechanism of inhibition of a key step in large ribosomal subunit formation. PMID:24371142

  3. Application of rf superconductivity to high-brightness ion-beam accelerators

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Roche, C.T.

    1990-01-01

    A development program is underway to apply rf superconductivity to the design of cw linear accelerators for high-brightness ion beams. The key issues associated with this endeavor have been delineated in an earlier paper. Considerable progress has been made both experimentally and theoretically to resolve a number of these issues. In this paper we summarize this progress. We also identify current and future work in the areas of accelerator technology and superconducting materials which will confront the remaining issues and/or provide added capability to the technology. 13 refs., 2 figs.

  4. Dimensions of Usability: Cougaar, Aglets and Adaptive Agent Architecture (AAA)

    SciTech Connect

    Haack, Jereme N.; Cowell, Andrew J.; Gorton, Ian

    2004-06-20

    Research and development organizations are constantly evaluating new technologies in order to implement the next generation of advanced applications. At Pacific Northwest National Laboratory, agent technologies are perceived as an approach that can provide a competitive advantage in the construction of highly sophisticated software systems in a range of application areas. An important factor in selecting a successful agent architecture is the level of support it provides the developer in respect to developer support, examples of use, integration into current workflow and community support. Without such assistance, the developer must invest more effort into learning instead of applying the technology. Like many other applied research organizations, our staff are not dedicated to a single project and must acquire new skills as required, underlining the importance of being able to quickly become proficient. A project was instigated to evaluate three candidate agent toolkits across the dimensions of support they provide. This paper reports on the outcomes of this evaluation and provides insights into the agent technologies evaluated.

  5. Indications for and outcome of open AAA repair in the endovascular era.

    PubMed

    Wieker, Carola M; Spazier, Max; Böckler, Dittmar

    2016-04-01

    The benefits, safety and efficacy of endovascular aortic aneurysm repair (EVAR) is well documented and intensively reported in multiple randomized trials and meta-analysis. Therefore, EVAR became the first choice of abdominal aortic aneurysms (AAA) treatment in almost 70-100% of patients. Consecutively, open repair (OR) is performed less frequently in morphologically preselected patients. Anatomical condition remains the most important factor for indication for OR. Especially unfavorable intrarenal landing zone based on difficult neck anatomy like very short neck or excessive neck angulation is still the most predictive factor. Furthermore, patients presenting additional iliac aneurysms, aortoiliac occlusive disease or variations of renal arteries are recommended for OR. Randomized trials like EVAR 1, DREAM and OVER from the year 2004/2005 and 2009 showed lower 30-day mortality rates in EVAR compared to OR. However, the late mortality rates after two years became equal in both treatment options. Furthermore, reinterventions after EVAR occur more frequently than after OR. Analysis from our own data showed a higher 30-day mortality in the patients who underwent OR in the endovascular era (15% vs. 2.5%), however the number of emergency open AAA repair because of ruptured aneurysms was much higher in the endovascular era (32.5% vs. 5%). In conclusion, treatment of AAA has changed in the past decade. Nevertheless OR of AAA still remains as a safe and durable method in experienced surgeons, even in the endovascular era. High volume centres are needed to offer the best patients' treatment providing the best postoperative outcome. Therefore OR must remain a part of fellowship training in the future. To decide the best treatment option many facts like patients' fitness and preference or finally the anatomic suitability for endovascular repair have to be considered. PMID:26822580

  6. Structures of the double-ring AAA ATPase Pex1-Pex6 involved in peroxisome biogenesis.

    PubMed

    Tan, Dongyan; Blok, Neil B; Rapoport, Tom A; Walz, Thomas

    2016-03-01

    The Pex1 and Pex6 proteins are members of the AAA family of ATPases and are involved in peroxisome biogenesis. Recently, cryo-electron microscopy structures of the Pex1-Pex6 complex in different nucleotide states have been determined. This Structural Snapshot describes the structural features of the complex and their implications for its function, as well as questions that still await answers.

  7. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISKIN OIL-IMPACTED SOILS

    SciTech Connect

    J.R. Paterek; W.W.Bogan; V. Trbovic; W. Sullivan

    2003-01-07

    The drilling and operation of gas/petroleum exploratory wells and the operations of natural gas and petroleum production wells generate a number of waste materials that are usually stored and/or processed at the drilling/operations site. Contaminated soils result from drilling operations, production operations, and pipeline breaks or leaks where crude oil and petroleum products are released into the surrounding soil or sediments. In many cases, intrinsic biochemical remediation of these contaminated soils is either not effective or is too slow to be an acceptable approach. This project targeted petroleum-impacted soil and other wastes, such as soil contaminated by: accidental release of petroleum and natural gas-associated organic wastes from pipelines or during transport of crude oil or natural gas; production wastes (such as produced waters, and/or fuels or product gas). Our research evaluated the process designated Chemically-Accelerated Biotreatment (CAB) that can be applied to remediate contaminated matrices, either on-site or in situ. The Gas Technology Institute (GTI) had previously developed a form of CAB for the remediation of hydrocarbons and metals at Manufactured Gas Plant (MGP) sites and this research project expanded its application into Exploration and Production (E&P) sites. The CAB treatment was developed in this project using risk-based endpoints, a.k.a. environmentally acceptable endpoints (EAE) as the treatment goal. This goal was evaluated, compared, and correlated to traditional analytical methods (Gas Chromatography (GC), High Precision Liquid Chromatography (HPLC), or Gas Chromatography-Mass Spectrometry (CGMS)). This project proved that CAB can be applied to remediate E&P contaminated soils to EAE, i.e. those concentrations of chemical contaminants in soil below which there is no adverse affect to human health or the environment. Conventional approaches to risk assessment to determine ''how clean is clean'' for soils undergoing remediation

  8. Characterization of ATPase activity of the AAA ARC from Bifidobacterium longum subsp. infantis.

    PubMed

    Guzmán-Rodríguez, Mabel; de la Rosa, Ana Paulina Barba; Santos, Leticia

    2015-01-01

    Bifidobacteria are considered to be probiotics that exist in the large intestine and are helpful to maintain human health. Oral administration of bifidobacteria may be effective in improving the intestinal flora and environment, stimulating the immune response and possibly preventing cancer. However, for consistent and positive results, further well-controlled studies are urgently needed to describe the basic mechanisms of this microorganism. Analysis of the proteasome-lacking Bifidobacterium longum genome reveals that it possesses a gene, IPR003593 AAA ATPase core, which codes a 56 kDa protein containing one AAA ATPase domain. Phylogenetic classification made by CLANS, positioned this sequence into the ARC divergent branch of the AAA ATPase family of proteins. N-terminal analysis of the sequence indicates this protein is closely related to other ATPases such as the Rhodococcus erythropolis ARC, Archaeoglobus fulgidus PAN, Mycobacterium tuberculosis Mpa and the human proteasomal Rpt1 subunit. This gene was cloned, the full-length recombinant protein was overexpressed in Escherichia coli, purified as a high-molecular size complex and named Bl-ARC. Enzymatic characterization showed that Bl-ARC ATPase is active, Mg(+2)-dependent and sensitive to N-ethylmaleimide. Gene organization positions bl-arc in a region flanked by a cluster of genes that includes pup, dop and pafA genes. These findings point to a possible function as a chaperone in the degradation pathway via pupylation.

  9. An atypical AAA+ ATPase assembly controls efficient transposition through DNA remodeling and transposase recruitment

    PubMed Central

    Arias-Palomo, Ernesto; Berger, James M.

    2015-01-01

    Transposons are ubiquitous genetic elements that drive genome rearrangements, evolution, and the spread of infectious disease and drug-resistance. Many transposons, such as Mu, Tn7 and IS21, require regulatory AAA+ ATPases for function. We use x-ray crystallography and cryo-electron microscopy to show that the ATPase subunit of IS21, IstB, assembles into a clamshell-shaped decamer that sandwiches DNA between two helical pentamers of ATP-associated AAA+ domains, sharply bending the duplex into a 180° U-turn. Biochemical studies corroborate key features of the structure, and further show that the IS21 transposase, IstA, recognizes the IstB•DNA complex and promotes its disassembly by stimulating ATP hydrolysis. Collectively, these studies reveal a distinct manner of higher-order assembly and client engagement by a AAA+ ATPase and suggest a mechanistic model where IstB binding and subsequent DNA bending primes a selected insertion site for efficient transposition. PMID:26276634

  10. Structural basis for DNA-mediated allosteric regulation facilitated by the AAA+ module of Lon protease.

    PubMed

    Lee, Alan Yueh-Luen; Chen, Yu-Da; Chang, Yu-Yung; Lin, Yu-Ching; Chang, Chi-Fon; Huang, Shing-Jong; Wu, Shih-Hsiung; Hsu, Chun-Hua

    2014-02-01

    Lon belongs to a unique group of AAA+ proteases that bind DNA. However, the DNA-mediated regulation of Lon remains elusive. Here, the crystal structure of the α subdomain of the Lon protease from Brevibacillus thermoruber (Bt-Lon) is presented, together with biochemical data, and the DNA-binding mode is delineated, showing that Arg518, Arg557 and Arg566 play a crucial role in DNA binding. Electrostatic interactions contributed by arginine residues in the AAA+ module are suggested to be important to DNA binding and allosteric regulation of enzymatic activities. Intriguingly, Arg557, which directly binds DNA in the α subdomain, has a dual role in the negative regulation of ATPase stimulation by DNA and in the domain-domain communication in allosteric regulation of Bt-Lon by substrate. In conclusion, structural and biochemical evidence is provided to show that electrostatic interaction in the AAA+ module is important for DNA binding by Lon and allosteric regulation of its enzymatic activities by DNA and substrate.

  11. Subunit dynamics and nucleotide-dependent asymmetry of an AAA(+) transcription complex.

    PubMed

    Zhang, Nan; Gordiyenko, Yuliya; Joly, Nicolas; Lawton, Edward; Robinson, Carol V; Buck, Martin

    2014-01-01

    Bacterial enhancer binding proteins (bEBPs) are transcription activators that belong to the AAA(+) protein family. They form higher-order self-assemblies to regulate transcription initiation at stress response and pathogenic promoters. The precise mechanism by which these ATPases utilize ATP binding and hydrolysis energy to remodel their substrates remains unclear. Here we employed mass spectrometry of intact complexes to investigate subunit dynamics and nucleotide occupancy of the AAA(+) domain of one well-studied bEBP in complex with its substrate, the σ(54) subunit of RNA polymerase. Our results demonstrate that the free AAA(+) domain undergoes significant changes in oligomeric states and nucleotide occupancy upon σ(54) binding. Such changes likely correlate with one transition state of ATP and are associated with an open spiral ring formation that is vital for asymmetric subunit function and interface communication. We confirmed that the asymmetric subunit functionality persists for open promoter complex formation using single-chain forms of bEBP lacking the full complement of intact ATP hydrolysis sites. Outcomes reconcile low- and high-resolution structures and yield a partial sequential ATP hydrolysis model for bEBPs. PMID:24055699

  12. Functional characterization of fidgetin, an AAA-family protein mutated in fidget mice

    SciTech Connect

    Yang Yan; Mahaffey, Connie L.; Berube, Nathalie; Nystuen, Arne; Frankel, Wayne N. . E-mail: wnf@jax.org

    2005-03-10

    The mouse fidget mutation is an autosomal recessive mutation that renders reduced or absent semicircular canals, microphthalmia, and various skeletal abnormalities to affected mice. We previously identified the defective gene which encodes fidgetin, a new member of the ATPases associated with diverse cellular activities (AAA proteins). Here, we report on the subcellular localization of fidgetin as well as that of two closely related proteins, fidgetin-like 1 and fidgetin-like 2. Epitope-tagging and immunostaining revealed that both fidgetin and fidgetin-like 2 were predominantly localized to the nucleus, whereas fidgetin-like 1 was both nuclear and cytoplasmic. Furthermore, deletion studies identified a putative bipartite nuclear localization signal in the middle portion of the fidgetin protein. Since AAA proteins are known to form functional hetero- or homo-hexamers, we used reciprocal immunoprecipitation to examine the potential interaction among these proteins. We found that fidgetin interacted with itself and this specific interaction was abolished when either the N- or C-terminus of the protein was truncated. Taken together, our results suggest that fidgetin is a nuclear AAA-family protein with the potential to form homo-oligomers, thus representing the first step towards the elucidation of fidgetin's cellular function and the disease mechanism in fidget mutant mice.

  13. Molecular snapshots of the Pex1/6 AAA+ complex in action

    PubMed Central

    Ciniawsky, Susanne; Grimm, Immanuel; Saffian, Delia; Girzalsky, Wolfgang; Erdmann, Ralf; Wendler, Petra

    2015-01-01

    The peroxisomal proteins Pex1 and Pex6 form a heterohexameric type II AAA+ ATPase complex, which fuels essential protein transport across peroxisomal membranes. Mutations in either ATPase in humans can lead to severe peroxisomal disorders and early death. We present an extensive structural and biochemical analysis of the yeast Pex1/6 complex. The heterohexamer forms a trimer of Pex1/6 dimers with a triangular geometry that is atypical for AAA+ complexes. While the C-terminal nucleotide-binding domains (D2) of Pex6 constitute the main ATPase activity of the complex, both D2 harbour essential substrate-binding motifs. ATP hydrolysis results in a pumping motion of the complex, suggesting that Pex1/6 function involves substrate translocation through its central channel. Mutation of the Walker B motif in one D2 domain leads to ATP hydrolysis in the neighbouring domain, giving structural insights into inter-domain communication of these unique heterohexameric AAA+ assemblies. PMID:26066397

  14. Functional characterization of fidgetin, an AAA-family protein mutated in fidget mice.

    PubMed

    Yang, Yan; Mahaffey, Connie L; Bérubé, Nathalie; Nystuen, Arne; Frankel, Wayne N

    2005-03-10

    The mouse fidget mutation is an autosomal recessive mutation that renders reduced or absent semicircular canals, microphthalmia, and various skeletal abnormalities to affected mice. We previously identified the defective gene which encodes fidgetin, a new member of the ATPases associated with diverse cellular activities (AAA proteins). Here, we report on the subcellular localization of fidgetin as well as that of two closely related proteins, fidgetin-like 1 and fidgetin-like 2. Epitope-tagging and immunostaining revealed that both fidgetin and fidgetin-like 2 were predominantly localized to the nucleus, whereas fidgetin-like 1 was both nuclear and cytoplasmic. Furthermore, deletion studies identified a putative bipartite nuclear localization signal in the middle portion of the fidgetin protein. Since AAA proteins are known to form functional hetero- or homo-hexamers, we used reciprocal immunoprecipitation to examine the potential interaction among these proteins. We found that fidgetin interacted with itself and this specific interaction was abolished when either the N- or C-terminus of the protein was truncated. Taken together, our results suggest that fidgetin is a nuclear AAA-family protein with the potential to form homo-oligomers, thus representing the first step towards the elucidation of fidgetin's cellular function and the disease mechanism in fidget mutant mice.

  15. Experimental and computational studies on the flow fields in aortic aneurysms associated with deployment of AAA stent-grafts

    NASA Astrophysics Data System (ADS)

    Zhang, Xiwen; Yao, Zhaohui; Zhang, Yan; Xu, Shangdong

    2007-10-01

    Pulsatile flow fields in rigid abdominal aortic aneurysm (AAA) models were investigated numerically, and the simulation results are found in good agreement with particle image velocimetry (PIV) measurements. There are one or more vortexes in the AAA bulge, and a fairly high wall shear stress exists at the distal end, and thus the AAA is in danger of rupture. Medical treatment consists of inserting a vascular stent-graft in the AAA, which would decrease the blood impact to the inner walls and reduce wall shear stress so that the rupture could be prevented. A new computational model, based on porous medium model, was developed and results are documented. Therapeutic effect of the stent-graft was verified numerically with the new model.

  16. Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials

    SciTech Connect

    Industrial Technologies Program

    2011-01-05

    This brochure describes the 31 R&D projects that AMO supports to accelerate the commercial manufacture and use of nanomaterials for enhanced energy efficiency. These cost-shared projects seek to exploit the unique properties of nanomaterials to improve the functionality of industrial processes and products.

  17. 76 FR 56505 - Agency Information Collection (Application by Insured Terminally Ill Person for Accelerated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... life expectancy of the insured person and a statement by the insured on the amount of accelerated... a portion of the face value of his or her Servicemembers' Group Life Insurance (SGLI) or Veterans' Group Life Insurance (VGLI) prior to death. If the insured would like to receive a portion of the...

  18. DEVELOPMENT OF ACCELERATOR DATA REPORTING SYSTEM AND ITS APPLICATION TO TREND ANALYSIS OF BEAM CURRENT DATA

    SciTech Connect

    Padilla, M.J.; Blokland, W.

    2009-01-01

    Detailed ongoing information about the ion beam quality is crucial to the successful operation of the Spallation Neutron Source at Oak Ridge National Laboratory. In order to provide the highest possible neutron production time, ion beam quality is monitored to isolate possible problems or performance-related issues throughout the accelerator and accumulator ring. For example, beam current monitor (BCM) data is used to determine the quality of the beam transport through the accelerator. In this study, a reporting system infrastructure was implemented and used to generate a trend analysis report of the BCM data. The BCM data was analyzed to facilitate the identifi cation of monitor calibration issues, beam trends, beam abnormalities, beam deviations and overall beam quality. A comparison between transformed BCM report data and accelerator log entries shows promising results which represent correlations between the data and changes made within the accelerator. The BCM analysis report is one of many reports within a system that assist in providing overall beam quality information to facilitate successful beam operation. In future reports, additional data manipulation functions and analysis can be implemented and applied. Built-in and user-defi ned analytic functions are available throughout the reporting system and can be reused with new data.

  19. Application of gamma-ray radiography and gravimetric measurements after accelerated corrosion tests of steel embedded in mortar

    SciTech Connect

    Duffó, Gustavo; Gaillard, Natalia; Mariscotti, Mario; Ruffolo, Marcelo

    2015-08-15

    The accelerated corrosion by the impressed current technique is widely used in studies of concrete durability since it has the advantage that tests can be carried out within reasonable periods of time. In the present work the relationship between the applied current density and the resulting damage on the reinforcing steel, by applying optical microscopy, scanning electron microscopy, gamma-ray radiography and gravimetric measurements, was studied by means of the implementation of accelerated corrosion tests on reinforced mortar. The results show that the efficiency of the applied current is between 1 and 77%, regardless of the applied current density, the water/cement ratio and the mortar cover depth of the specimens. The results show the applicability of the gamma-ray radiography technique to detect localized corrosion of steel rebars in laboratory specimens.

  20. Damage Based Analysis (DBA): Theory, Derivation and Practical Application - Using Both an Acceleration and Pseudo-Velocity Approach

    NASA Technical Reports Server (NTRS)

    Grillo, Vince

    2016-01-01

    The objective of this presentation is to give a brief overview of the theory behind the (DBA) method, an overview of the derivation and a practical application of the theory using the Python computer language. The Theory and Derivation will use both Acceleration and Pseudo Velocity methods to derive a series of equations for processing by Python. We will take the results and compare both Acceleration and Pseudo Velocity methods and discuss implementation of the Python functions. Also, we will discuss the efficiency of the methods and the amount of computer time required for the solution. In conclusion, (DBA) offers a powerful method to evaluate the amount of energy imparted into a system in the form of both Amplitude and Duration during qualification testing and flight environments. Many forms of steady state and transient vibratory motion can be characterized using this technique. (DBA) provides a more robust alternative to traditional methods such Power Spectral Density (PSD) using a Maximax approach.

  1. The Cornell Main Linac Cryomodule: A Full Scale, High Q Accelerator Module for cw Application

    NASA Astrophysics Data System (ADS)

    Eichhorn, R.; Bullock, B.; Elmore, B.; Clasby, B.; Furuta, F.; He, Y.; Hoffstaetter, G.; Liepe, M.; O'Connell, T.; Conway, J.; Quigley, P.; Sabol, D.; Sears, J.; Smith, E.; Veshcherevich, V.

    Cornell University is in the process of building a 10 m long superconducting accelerator module as a prototype of the main linac of a proposed ERL facility. This module houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode - with individual HOM absorbers and one magnet/BPM section. In pushing the limits, a high quality factor of the cavities (2•1010) and high beam currents (100 mA accelerated plus 100 mA decelerated) were targeted. We will review the design shortly and present the results of the components tested before the assembly. This includes data of the quality-factors of all 6 cavities that we produced and treated in-house, the HOM absorber performance measured with beam on a test set-up as well as testing of the couplers and the tuners.

  2. Application of aluminum and titanium foils in low-energy wide-aperture electron accelerators

    NASA Astrophysics Data System (ADS)

    Bodakin, L. V.; Gusakov, A. I.; Komarov, O. V.; Kosogorov, S. L.; Motovilov, S. A.; Uspenskii, N. A.

    2016-09-01

    We have reported on the results of theoretical and experimental investigations of characteristics of aluminum and titanium foils used in devices to extract electron beams from wide-aperture low-energy accelerators with a high current density. The mechanical properties of foils at different temperatures and the electron beam transmission and absorption coefficients have been compared. The results of analyzing the dependences of the efficiency of the electron beam extraction from accelerators on the type of the electron-optical system, material, and thickness of the foil for various sizes of extraction windows and the same type of the slot support grids have been presented. We have proposed an analytic model for calculating the temperature of the foil in the unit cell of the support grid. The electron transmittance and absorbance, as well as the temperature regimes of the foils, have been calculated using different methods.

  3. Application of High-performance Visual Analysis Methods to Laser Wakefield Particle Acceleration Data

    SciTech Connect

    Rubel, Oliver; Prabhat, Mr.; Wu, Kesheng; Childs, Hank; Meredith, Jeremy; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Ahern, Sean; Weber, Gunther H.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

    2008-08-28

    Our work combines and extends techniques from high-performance scientific data management and visualization to enable scientific researchers to gain insight from extremely large, complex, time-varying laser wakefield particle accelerator simulation data. We extend histogram-based parallel coordinates for use in visual information display as well as an interface for guiding and performing data mining operations, which are based upon multi-dimensional and temporal thresholding and data subsetting operations. To achieve very high performance on parallel computing platforms, we leverage FastBit, a state-of-the-art index/query technology, to accelerate data mining and multi-dimensional histogram computation. We show how these techniques are used in practice by scientific researchers to identify, visualize and analyze a particle beam in a large, time-varying dataset.

  4. Application of real-time digitization techniques in beam measurement for accelerators

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Zhan, Lin-Song; Gao, Xing-Shun; Liu, Shu-Bin; An, Qi

    2016-04-01

    Beam measurement is very important for accelerators. In this paper, modern digital beam measurement techniques based on IQ (In-phase & Quadrature-phase) analysis are discussed. Based on this method and high-speed high-resolution analog-to-digital conversion, we have completed three beam measurement electronics systems designed for the China Spallation Neutron Source (CSNS), Shanghai Synchrotron Radiation Facility (SSRF), and Accelerator Driven Sub-critical system (ADS). Core techniques of hardware design and real-time system calibration are discussed, and performance test results of these three instruments are also presented. Supported by National Natural Science Foundation of China (11205153, 10875119), Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N27), and the Fundamental Research Funds for the Central Universities (WK2030040029),and the CAS Center for Excellence in Particle Physics (CCEPP).

  5. Expanding a flutter envelope using data from accelerating flight: Application to the F-16 fighter aircraft

    NASA Astrophysics Data System (ADS)

    Harris, Charles A.

    Due to the destructive nature of flutter, flutter testing is a mandatory requirement for certification of both civilian and military aircraft. However, along with the complexity of newer aircraft, the time and cost associated with flutter testing has increased dramatically. Considering that many of the test techniques and analysis methods used to perform flutter testing date back to the 1950s and 1960's it may be time to take a fresh look at how flutter testing can best be accomplished. This thesis revisits flutter testing techniques and proposes an alternative to traditional flutter testing. The alternative uses flight test data from an aircraft that is performing an acceleration to clear the flutter envelope of the aircraft. Four academic issues arise from this new test approach. (1) Are frequencies and dampings affected by the acceleration of the aircraft? (2) Can parameter identification algorithms extract frequency and damping values from the time varying data? (3) Can the vibration response at airspeeds (or Mach numbers) beyond which the aircraft has accelerated be anticipated? (4) What formal criteria can be used to determine when the aircraft needs to end the acceleration and terminate the test point? The academic contribution of this thesis is to address these issues. It is shown that although the frequencies and damping values do change the change is so small that it is irrelevant. It is also shown that by taking small windows of data, within which the change in parameters is small, it is possible to accurately identify parameters from the time varying data. Finally it is shown that at least in principal parameters can be predicted using data from sub-critical airspeeds, and that testing can be discontinued before an unstable flight condition is reached.

  6. Test results of a Nb3Al/Nb3Sn subscale magnet for accelerator application

    DOE PAGES

    Iio, Masami; Xu, Qingjin; Nakamoto, Tatsushi; Sasaki, Ken -ichi; Ogitsu, Toru; Yamamoto, Akira; Kimura, Nobuhiro; Tsuchiya, Kiyosumi; Sugano, Michinaka; Enomoto, Shun; et al

    2015-01-28

    The High Energy Accelerator Research Organization (KEK) has been developing a Nb3Al and Nb3Sn subscale magnet to establish the technology for a high-field accelerator magnet. The development goals are a feasibility demonstration for a Nb3Al cable and the technology acquisition of magnet fabrication with Nb3Al superconductors. KEK developed two double-pancake racetrack coils with Rutherford-type cables composed of 28 Nb3Al wires processed by rapid heating, quenching, and transformation in collaboration with the National Institute for Materials Science and the Fermi National Accelerator Laboratory. The magnet was fabricated to efficiently generate a high magnetic field in a minimum-gap common-coil configuration with twomore » Nb3Al coils sandwiched between two Nb3Sn coils produced by the Lawrence Berkeley National Laboratory. A shell-based structure and a “bladder and key” technique have been used for adjusting coil prestress during both the magnet assembly and the cool down. In the first excitation test of the magnet at 4.5 K performed in June 2014, the highest quench current of the Nb3Sn coil, i.e., 9667 A, was reached at 40 A/s corresponding to 9.0 T in the Nb3Sn coil and 8.2 T in the Nb3Al coil. The quench characteristics of the magnet were studied.« less

  7. Structural Insights into the Unusually Strong ATPase Activity of the AAA Domain of the Caenorhabditis elegans Fidgetin-like 1 (FIGL-1) Protein*

    PubMed Central

    Peng, Wentao; Lin, Zhijie; Li, Weirong; Lu, Jing; Shen, Yuequan; Wang, Chunguang

    2013-01-01

    The FIGL-1 (fidgetin like-1) protein is a homolog of fidgetin, a protein whose mutation leads to multiple developmental defects. The FIGL-1 protein contains an AAA (ATPase associated with various activities) domain and belongs to the AAA superfamily. However, the biological functions and developmental implications of this protein remain unknown. Here, we show that the AAA domain of the Caenorhabditis elegans FIGL-1 protein (CeFIGL-1-AAA), in clear contrast to homologous AAA domains, has an unusually high ATPase activity and forms a hexamer in solution. By determining the crystal structure of CeFIGL-1-AAA, we found that the loop linking helices α9 and α10 folds into the short helix α9a, which has an acidic surface and interacts with a positively charged surface of the neighboring subunit. Disruption of this charge interaction by mutagenesis diminishes both the ATPase activity and oligomerization capacity of the protein. Interestingly, the acidic residues in helix α9a of CeFIGL-1-AAA are not conserved in other homologous AAA domains that have relatively low ATPase activities. These results demonstrate that the sequence of CeFIGL-1-AAA has adapted to establish an intersubunit charge interaction, which contributes to its strong oligomerization and ATPase activity. These unique properties of CeFIGL-1-AAA distinguish it from other homologous proteins, suggesting that CeFIGL-1 may have a distinct biological function. PMID:23979136

  8. Acceleration control system for semi-active in-car crib with joint application of regular and inverted pendulum mechanisms

    NASA Astrophysics Data System (ADS)

    Kawashima, T.

    2016-09-01

    To reduce the risk of injury to an infant in an in-car crib (or in a child safety bed) collision shock during a car crash, it is necessary to maintain a constant force acting on the crib below a certain allowable value. To realize this objective, we propose a semi-active in-car crib system with the joint application of regular and inverted pendulum mechanisms. The arms of the proposed crib system support the crib like a pendulum while the pendulum system itself is supported like an inverted pendulum by the arms. In addition, the friction torque of each arm is controlled using a brake mechanism that enables the proposed in-car crib to decrease the acceleration of the crib gradually and maintain it around the target value. This system not only reduces the impulsive force but also transfers the force to the infant's back using a spin control system, i.e., the impulse force acts is made to act perpendicularly on the crib. The spin control system was developed in our previous work. This work focuses on the acceleration control system. A semi-active control law with acceleration feedback is introduced, and the effectiveness of the system is demonstrated using numerical simulation and model experiment.

  9. [Docking of low-molecular ligands on the plant FtsZ-protein with application of CUDA-accelerated calculations].

    PubMed

    Demchuk, O N; Karpov, P A; Blium, Ia B

    2012-01-01

    This article provides review and analysis of opportunities for application of the CUDA technology for acceleration of computations in structural biology and bioinformatics. On the example of work with the Hex 6.1 program, comparative analysis of increase in the speed and quality of results of hard-docking of a number of low-molecular compounds on the surface of the FtsZ protein from Arabidopsis thaliana was performed. Several potential benzimidazole--plant FtsZ protein binding sites were identified. PMID:22856146

  10. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  11. PREFACE: International Symposium on Vacuum Science & Technology and its Application for Accelerators (IVS 2012)

    NASA Astrophysics Data System (ADS)

    Pandit, V. S.; Pal, Gautam

    2012-11-01

    The Indian Vacuum Society (IVS) was established in 1970 to promote vacuum science and technology in academic, industrial and R&D institutions in India. IVS is a member society of the International Union for Vacuum Science, Technique and Applications (IUVSTA). It has organized International and national symposia, short term courses and workshops on different aspects of Vacuum Science and Technology at regular intervals. So far 27 National symposia, 4 International Symposia and 47 courses have been organized at various locations in India. There has been an active participation from R&D establishments, universities and Indian industries during all these events. In view of the current global situation and emerging trends in vacuum technology, the executive committee of the IVS suggested to us that we organize an International Symposium at the Variable Energy Cyclotron Centre, Kolkata from 15-17 February 2012. At the Variable Energy Cyclotron Centre we have a large number of high vacuum systems used in the K130 Cyclotron and K500 Superconducting Cyclotron. Also a large cryogenic system using LHe plant is in operation for cryopanels and a superconducting magnet for K-500 Cyclotron. The main areas covered at the symposium were the production and measurement of vacuums, leak detection, design and development of large vacuum systems, vacuum metallurgy, vacuum materials and the application of high vacuums in cyclotrons, LINACS and other accelerators. This symposium provided an opportunity for interaction between active researchers and technologists and allowed them to review the current situation, report recent experimental results, share the available expertise and consider the future R&D efforts needed in this area. Keeping the industrial significance of vacuum technology in mind, an exhibition of the vacuum related equipment, accessories, products etc by various suppliers and manufactures was organized alongside the symposium. Participation by a large number of exhibitors

  12. Accelerating the commercialization of university technologies for military healthcare applications: the role of the proof of concept process

    NASA Astrophysics Data System (ADS)

    Ochoa, Rosibel; DeLong, Hal; Kenyon, Jessica; Wilson, Eli

    2011-06-01

    The von Liebig Center for Entrepreneurism and Technology Advancement at UC San Diego (vonliebig.ucsd.edu) is focused on accelerating technology transfer and commercialization through programs and education on entrepreneurism. Technology Acceleration Projects (TAPs) that offer pre-venture grants and extensive mentoring on technology commercialization are a key component of its model which has been developed over the past ten years with the support of a grant from the von Liebig Foundation. In 2010, the von Liebig Entrepreneurism Center partnered with the U.S. Army Telemedicine and Advanced Technology Research Center (TATRC), to develop a regional model of Technology Acceleration Program initially focused on military research to be deployed across the nation to increase awareness of military medical needs and to accelerate the commercialization of novel technologies to treat the patient. Participants to these challenges are multi-disciplinary teams of graduate students and faculty in engineering, medicine and business representing universities and research institutes in a region, selected via a competitive process, who receive commercialization assistance and funding grants to support translation of their research discoveries into products or services. To validate this model, a pilot program focused on commercialization of wireless healthcare technologies targeting campuses in Southern California has been conducted with the additional support of Qualcomm, Inc. Three projects representing three different universities in Southern California were selected out of forty five applications from ten different universities and research institutes. Over the next twelve months, these teams will conduct proof of concept studies, technology development and preliminary market research to determine the commercial feasibility of their technologies. This first regional program will help build the needed tools and processes to adapt and replicate this model across other regions in the

  13. Time dependent diffusive shock acceleration and its application to middle aged supernova remnants

    NASA Astrophysics Data System (ADS)

    Tang, Xiaping; Chevalier, Roger A.

    2016-06-01

    Recent gamma-ray observations show that middle aged supernova remnants (SNRs) interacting with molecular clouds (MCs) can be sources of both GeV and TeV emission. Based on the MC association, two scenarios have been proposed to explain the observed gamma-ray emission. In one, energetic cosmic ray (CR) particles escape from the SNR and then illuminate nearby MCs, producing gamma-ray emission, while the other involves direct interaction between the SNR and MC. In the direct interaction scenario, re-acceleration of pre-existing CRs in the ambient medium is investigated while particles injected from the thermal pool are neglected in view of the slow shock speeds in middle aged SNRs. However, standard diffusive shock acceleration (DSA) theory produces a steady state particle spectrum that is too flat compared to observations, which suggests that the high energy part of the observed spectrum has not yet reached a steady state. We derive a time dependent DSA solution in the test particle limit for re-acceleration of pre-existing CRs case and show that it is capable of reproducing the observed gamma-ray emission in SNRs like IC 443 and W44, in the context of a MC interaction model. We also provide a simple physical picture to understand the time dependent DSA spectrum. A spatially averaged diffusion coefficient around the SNR can be estimated through fitting the gamma-ray spectrum. The spatially averaged diffusion coefficient in middle aged SNRs like IC 443 and W44 is estimated to be ~10^(25) cm^2/s at ~ 1GeV, which is between the Bohm limit and interstellar value.

  14. Superconducting NbTiN thin films for superconducting radio frequency accelerator cavity applications

    DOE PAGES

    Burton, Matthew C.; Beebe, Melissa R.; Yang, Kaida; Lukaszew, Rosa A.; Valente-Feliciano, Anne -Marie; Reece, Charles

    2016-02-12

    Current superconducting radio frequency technology, used in various particle accelerator facilities across the world, is reliant upon bulk niobium superconducting cavities. Due to technological advancements in the processing of bulk Nb cavities, the facilities have reached accelerating fields very close to a material-dependent limit, which is close to 50 MV/m for bulk Nb. One possible solution to improve upon this fundamental limitation was proposed a few years ago by Gurevich [Appl. Phys. Lett. 88, 012511 (2006)], consisting of the deposition of alternating thin layers of superconducting and insulating materials on the interior surface of the cavities. The use of type-IImore » superconductors with Tc > TcNb and Hc > HcNb, (e.g., Nb3Sn, NbN, or NbTiN) could potentially greatly reduce the surface resistance (Rs) and enhance the accelerating field, if the onset of vortex penetration is increased above HcNb, thus enabling higher field gradients. Although Nb3Sn may prove superior, it is not clear that it can be grown as a suitable thin film for the proposed multilayer approach, since very high temperature is typically required for its growth, hindering achieving smooth interfaces and/or surfaces. On the other hand, since NbTiN has a smaller lower critical field (Hc1) and higher critical temperature (Tc) than Nb and increased conductivity compared to NbN, it is a promising candidate material for this new scheme. Here, the authors present experimental results correlating filmmicrostructure with superconducting properties on NbTiN thin film coupon samples while also comparing filmsgrown with targets of different stoichiometry. In conclusion, it is worth mentioning that the authors have achieved thin films with bulk-like lattice parameter and transition temperature while also achieving Hc1 values larger than bulk for films thinner than their London penetration depths.« less

  15. Electron Beam-Induced Conductivity Experiments in a Static Cell for Application to MHD Accelerators

    SciTech Connect

    Lipinski, Ronald L.; Nelson, Gordon L.; Pena, Gary E.; Reed, Kim W.

    1999-06-24

    Past analyses of conventional MHD accelerator systems, which employ arc heaters in conjunction with alkali metal seeding of the air, have concluded that this approach to acceleration of air is not capable of reaching the high total enthalpy, low temperatures, and high dynamic pressures required to support advanced engine testingl'2>3. The very high temperatures required to ionize the seed material, coupled with known limits on the maximum operating pressures attainable in arc heaters, dictate that the final entropy of the test gas will exceed the targeted test section value, resulting in test section pressures or Mach numbers which are too low. This was the basic conclusion of the NASA-sponsored MARIAH study3. The present work describes the fist phase of a planned multi-year experimental effort to demonstrate an alternative mode of MHD accelerator operation which can potentially obviate these limitations. The concept is to exploit the ionizing power of electron beams to create a nonequilibrium ionization condition in the MHD channel, thus greatly increasing the electrical conductivity compared to its thermodynamic equilibrium (essentially zero) value. The advantage of this mode of operation is that the static temperatures can be kept relatively low through the MHD channel. The paper summa rizes the theoretical model for electron beam ionization in air, recently developed by Macheret et a12. Experiments conducted at San&a National Laboratories for the purpose of validating this model are also described. The fust phase of these experiments consist of measuring the bulk electrical conductivity of static air in a confined volume in the vicinity of an energetic electron beam. The experimental method is described, preliminary data is presented, and the results are interpreted in the light of the theoretical model.

  16. Application of convergence acceleration to the reactor kinetic equations: A comparative study

    SciTech Connect

    Picca, P.; Furfaro, R.; Ganapol, B. D.

    2013-07-01

    This presentation provides a comparison of two methodologies for the solution of reactor kinetic equations, namely for a standard finite difference and a semi-analytical approach. The above-mentioned methods are implemented in a convergence acceleration framework to enhance their efficiency and a comparative study is reported to verify whether it is more convenient to use a rudimentary but fast algorithm (finite difference) with respect to the more refined but computationally intense approach of the semi-analytical method. Performance on several test cases from the literature are compared. (authors)

  17. Basis function repetitive and feedback control with application to a particle accelerator

    NASA Astrophysics Data System (ADS)

    Akogyeram, Raphael Akuete

    2002-09-01

    The thesis addresses three problem areas within repetitive control. Firstly, it addresses issues concerning the ability of repetitive control and feedback control systems to eliminate periodic disturbances occurring above the Nyquist frequency of the hardware. Methods are developed for decomposing and unfolding notch filter or comb filter feedback control so that disturbances above Nyquist frequency can be canceled. Phenomena affecting final error levels are discussed, including error in unfolding, coarseness of zero-order hold cancellation, and waterbed effects in the feedback control system frequency response for different sample rates. Secondly, matched basis function repetitive control laws are developed for batch mode and real time implementation to converge to zero tracking error in the presence of periodic disturbances. For both control methods, conditions are given that guarantee asymptotic and monotonic convergence. Stability tests are formulated to examine stability when the period of a disturbance is not an integer number of sample times, and when there are multiple unrelated periods whose common period is too long to use. Thirdly, an understanding is developed of the optimum division of labor between the objectives accomplished by feedback and the objectives accomplished by repetitive control action. Some experimental results of the particle accelerator testbed at Thomas Jefferson National Accelerator Facility, Newport News, Virginia, are reported.

  18. Stability and Acceleration of Solar Flux Ropes: Application to Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Schuck, Peter; Chen, James

    2006-10-01

    The dynamics of solar flux ropes have received much attention in connection with coronal mass ejections (CMEs). A major unanswered question is how initial quasi-equilibrium flux ropes are driven. The Lorentz hoop force, originally derived for toroidal tokamak equilibrium, has been extented to expanding solar flux ropes with stationary footpoints [1]. We discuss the results of extensive comparisons between calculated flux-rope dynamics and recently observed CME dynamics (17 events). The agreement is found to be very good. In particular, the intrinsic spatial and temporal scales produced by the model equations are manifested in observed CME acceleration profiles [2]. More recently, a simplified equation based on the same concept has been proposed to describe CME dynamics [3]. This equation describes a system with no fixed footpoints and yields fundamentally different scales. We discuss how the differences are manifested in observed acceleration and how they can be used as observational discriminators. [1] Chen, J., Astrophy. J., 338, 453, 1989. Garren, D. and Chen, J., Phys. Plasmas, 1, 3425, 1994. Chen, J., J. Geophys. Res., 101, 27499, 1996. [2] Chen, J. and Krall, J., in press, Astrophys. J., 2006. [3] Kliem, B. and Torok, T., Phys. Rev. Lett., 96, 255002, 2006.

  19. NASA Astrophysics E/PO Impact: NASA SOFIA AAA Program Evaluation Results

    NASA Astrophysics Data System (ADS)

    Harman, Pamela; Backman, Dana E.; Clark, Coral; Inverness Research Sofia Aaa Evaluation Team, Wested Sofia Aaa Evaluation Team

    2015-01-01

    SOFIA is an airborne observatory, studying the universe at infrared wavelengths, capable of making observations that are impossible for even the largest and highest ground-based telescopes. SOFIA also inspires the development of new scientific instrumentation and fosters the education of young scientists and engineers.SOFIA is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR), consisting of an extensively modified Boeing 747SP aircraft carrying a reflecting telescope with an effective diameter of 2.5 meters (100 inches). The SOFIA aircraft is based at NASA Armstrong Flight Research Center, Building 703, in Palmdale, California. The Science Program and Outreach Offices are located at NASA Ames Research center. SOFIA is a program in NASA's Science Mission Directorate, Astrophysics Division.Data will be collected to study many different kinds of astronomical objects and phenomena, including star cycles, solar system formation, identification of complex molecules in space, our solar system, galactic dust, nebulae and ecosystems.Airborne Astronomy Ambassador (AAA) Program:The SOFIA Education and Communications program exploits the unique attributes of airborne astronomy to contribute to national goals for the reform of science, technology, engineering, and math (STEM) education, and to elevate public scientific and technical literacy.The AAA effort is a professional development program aspiring to improve teaching, inspire students, and inform the community. To date, 55 educators from 21 states; Cycles 0, 1 and 2; have completed their astronomy professional development and their SOFIA science flight experience. Evaluation has confirmed the program's positive impact on the teacher participants, on their students, and in their communities. The inspirational experience has positively impacted their practice and career trajectory. AAAs have incorporated content knowledge and specific components of their experience into their curricula, and have given

  20. Morphological State as a Predictor for Reintervention and Mortality After EVAR for AAA

    SciTech Connect

    Ohrlander, Tomas; Dencker, Magnus; Acosta, Stefan

    2012-10-15

    Purpose: This study was designed to assess aorto-iliac morphological characteristics in relation to reintervention and all-cause long-term mortality in patients undergoing standard EVAR for infrarenal AAA. Methods: Patients treated with EVAR (Zenith{sup Registered-Sign} Stentgrafts, Cook) between May 1998 and February 2006 were prospectively enrolled in a computerized database where comorbidities and preoperative aneurysm morphology were entered. Reinterventions and mortality were checked until December 1, 2010. Median follow-up time was 68 months. Results: A total of 304 patients were included, of which 86% were men. Median age was 74 years. The reintervention rate was 23.4% (71/304). A greater diameter of the common iliac artery (p = 0.037; hazard ratio (HR) 1.037 [1.002-1.073]) was an independent factor for an increased number of reinterventions. The 30-day mortality rate was 3.0% (9/304). Aneurysm-related deaths due to AAA occurred in 4.9% (15/304). Five patients died due to a concomitant ruptured thoracic aortic aneurysm. The mortality until end of follow-up was 54.3% (165/304). The proportion of deaths caused by vascular diseases was 61.6%. The severity of angulation of the iliac arteries (p = 0.014; HR 1.018 [95% confidence interval (CI) 1.004-1.033]) and anemia (p = 0.044; HR 2.79 [95% CI 1.029-7.556]) remained as independent factors associated with all-cause long-term mortality. The crude reintervention-free survival rate at 1, 3, and 5 years was 84.5%, 64.8%, and 51.6%, respectively. Conclusions: The initial aorto-iliac morphological state in patients scheduled for standard EVAR for AAA seems to be strongly related to the need for reinterventions and long-term mortality.

  1. PREFACE: International Symposium on Vacuum Science & Technology and its Application for Accelerators (IVS 2012)

    NASA Astrophysics Data System (ADS)

    Pandit, V. S.; Pal, Gautam

    2012-11-01

    The Indian Vacuum Society (IVS) was established in 1970 to promote vacuum science and technology in academic, industrial and R&D institutions in India. IVS is a member society of the International Union for Vacuum Science, Technique and Applications (IUVSTA). It has organized International and national symposia, short term courses and workshops on different aspects of Vacuum Science and Technology at regular intervals. So far 27 National symposia, 4 International Symposia and 47 courses have been organized at various locations in India. There has been an active participation from R&D establishments, universities and Indian industries during all these events. In view of the current global situation and emerging trends in vacuum technology, the executive committee of the IVS suggested to us that we organize an International Symposium at the Variable Energy Cyclotron Centre, Kolkata from 15-17 February 2012. At the Variable Energy Cyclotron Centre we have a large number of high vacuum systems used in the K130 Cyclotron and K500 Superconducting Cyclotron. Also a large cryogenic system using LHe plant is in operation for cryopanels and a superconducting magnet for K-500 Cyclotron. The main areas covered at the symposium were the production and measurement of vacuums, leak detection, design and development of large vacuum systems, vacuum metallurgy, vacuum materials and the application of high vacuums in cyclotrons, LINACS and other accelerators. This symposium provided an opportunity for interaction between active researchers and technologists and allowed them to review the current situation, report recent experimental results, share the available expertise and consider the future R&D efforts needed in this area. Keeping the industrial significance of vacuum technology in mind, an exhibition of the vacuum related equipment, accessories, products etc by various suppliers and manufactures was organized alongside the symposium. Participation by a large number of exhibitors

  2. SU-E-P-16: A Feasibility Study of Using Eclipse AAA for SRS Treatement

    SciTech Connect

    Lim, S; LoSasso, T

    2015-06-15

    Purpose: To commission Varian Eclipse AAA for SRS treatment and compare the accuracy with Brainlab iPlan system for clinical cases measured with radiochromic film. Methods: A 6MV AAA clinical model for a Varian TrueBeam STx is used as baseline. The focal spot and field size of the baseline model(BASE) are (1.75,0.75) and 40×40cm{sup 2} respectively. Maximum field sizes, output factors(S{sub t}), FWHM focal spot and secondary source sizes are systematically adjusted to obtain an optimized model(OPT) by comparing the calculated PDD’s, profiles, and output factors with measurements taken with a stereotactic diode(SD) and, cc01 and cc04 ion chambers in Blue Phantom. In-phantom dose distributions of clinical SRS fields are calculated using the OPT and the clinical Brainlab iPlan pencil-beam. Within the 90% isodose-line(ROI), the average dose difference between the calculations and radiochromic film measurements are assessed. Results: The maximum field, focal spot and secondary source sizes for the OPT are 15×15cm{sup 2}, (0,0), and 32.3mm respectively. The OPT St input at 1.0 and 2.0cm fields are increased by 4.5% and 1.5% from BASE. The calculated output of the BASE and OPT underestimate by 16.1%–3.2% respectively at 0.5×0.5cm{sup 2} field and 3.1%−0.02% respectively at 1.0×1.0cm{sup 2} field. The depth doses at 10cm are within 3.5% and 0.4% of measurements for 0.5×0.5 and 1.0×1.0cm{sup 2}. The ROI dose of OPT and iPlan are within 1.6% and 0.6% of film measurements for 3.0cm clinical fields. For 1.0cm fields, the ROI dose of OPT underestimate 0.0–2.0% and iPlan overestimates 1.7–2.9% relative to measurements. Conclusion: The small field dose calculation of Eclipse AAA algorithm can be significantly improved by carefully adjusting the input parameters. The larger deviation of the OPT for 0.5×0.5cm{sup 2} field from measurements can be attributed to the lowest 1.0cm field size input limit of AAA. The OPT compares reasonably well with the iPlan pencil

  3. Microscale acceleration history discriminators

    DOEpatents

    Polosky, Marc A.; Plummer, David W.

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  4. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  5. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  6. Can Accelerators Accelerate Learning?

    SciTech Connect

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-10

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  7. Laser polishing of niobium for superconducting radio-frequency accelerator applications

    SciTech Connect

    Zhao, Liang; Klopf, John M.; Reece, Charles E.; Kelley, Michael J.

    2014-08-01

    Interior surfaces of niobium cavities used in superconducting radio frequency accelerators are now obtained by buffered chemical polish and/or electropolish. Laser polishing is a potential alternative, having advantages of speed, freedom from noxious chemistry and availability of in-process inspection. We studied the influence of the laser power density and laser beam raster rate on the surface topography. These two factors need to be combined carefully to smooth the surface without damage. Computational modeling was used to estimate the surface temperature and gain insight into the mechanism of laser polishing. Power spectral density analysis of surface topography measurements shows that laser polishing can produce smooth topography similar to that obtained by electropolish. This is a necessary first step toward introducing laser polishing as an alternative to the currently practiced chemical polishing.

  8. Proposed New Accelerator Design for Homeland Security X-Ray Applications

    SciTech Connect

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G.J.; Bharadwaj, Vinod; Nosochkov, Yuri

    2015-08-07

    In the security and inspection market, there is a push towards highly mobile, reduced-dose active interrogation scanning and imaging systems to allow operation in urban environments. To achieve these goals, the accelerator system design needs to be smaller than existing systems. A smaller radiation exclusion zone may be accomplished through better beam collimation and an integrated, x-ray-source/detector-array assembly to allow feedback and control of an intensity-modulated x-ray source. A shaped low-Z target in the x-ray source can be used to generate a more forward peaked x-ray beam. Electron-beam steering can then be applied to direct the forward-peaked x rays toward areas in the cargo with high attenuation. This paper presents an exploratory study to identify components and upgrades that would be required to meet the desired specifications, as well as the best technical approach to design and build a prototype.

  9. A higher plant mitochondrial homologue of the yeast m-AAA protease. Molecular cloning, localization, and putative function.

    PubMed

    Kolodziejczak, Marta; Kolaczkowska, Anna; Szczesny, Bartosz; Urantowka, Adam; Knorpp, Carina; Kieleczawa, Jan; Janska, Hanna

    2002-11-15

    Mitochondrial AAA metalloproteases play a fundamental role in mitochondrial biogenesis and function. They have been identified in yeast and animals but not yet in plants. This work describes the isolation and sequence analysis of the full-length cDNA from the pea (Pisum sativum) with significant homology to the yeast matrix AAA (m-AAA) protease. The product of this clone was imported into isolated pea mitochondria where it was processed to its mature form (PsFtsH). We have shown that the central region of PsFtsH containing the chaperone domain is exposed to the matrix space. Furthermore, we have demonstrated that the pea protease can complement respiration deficiency in the yta10 and/or yta12 null yeast mutants, indicating that the plant protein can compensate for the loss of at least some of the important m-AAA functions in yeast. Based on biochemical experiments using isolated pea mitochondria, we propose that PsFtsH-like m-AAA is involved in the accumulation of the subunit 9 of the ATP synthase in the mitochondrial membrane.

  10. Electron and ion acceleration in relativistic shocks with applications to GRB afterglows

    NASA Astrophysics Data System (ADS)

    Warren, Donald C.; Ellison, Donald C.; Bykov, Andrei M.; Lee, Shiu-Hang

    2015-09-01

    We have modelled the simultaneous first-order Fermi shock acceleration of protons, electrons, and helium nuclei by relativistic shocks. By parametrizing the particle diffusion, our steady-state Monte Carlo simulation allows us to follow particles from particle injection at non-relativistic thermal energies to above PeV energies, including the non-linear smoothing of the shock structure due to cosmic ray (CR) backpressure. We observe the mass-to-charge (A/Z) enhancement effect believed to occur in efficient Fermi acceleration in non-relativistic shocks and we parametrize the transfer of ion energy to electrons seen in particle-in-cell (PIC) simulations. For a given set of environmental and model parameters, the Monte Carlo simulation determines the absolute normalization of the particle distributions and the resulting synchrotron, inverse Compton, and pion-decay emission in a largely self-consistent manner. The simulation is flexible and can be readily used with a wide range of parameters typical of γ-ray burst (GRB) afterglows. We describe some preliminary results for photon emission from shocks of different Lorentz factors and outline how the Monte Carlo simulation can be generalized and coupled to hydrodynamic simulations of GRB blast waves. We assume Bohm diffusion for simplicity but emphasize that the non-linear effects we describe stem mainly from an extended shock precursor where higher energy particles diffuse further upstream. Quantitative differences will occur with different diffusion models, particularly for the maximum CR energy and photon emission, but these non-linear effects should be qualitatively similar as long as the scattering mean-free path is an increasing function of momentum.

  11. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  12. Microwave power coupler for a superconducting multiple-cell cavity for accelerator application and its testing procedures

    SciTech Connect

    Li, Jianjian

    2008-12-01

    Superconducting cavity resonators offer the advantage of high field intensity for a given input power, making them an attractive contender for particle accelerator applications. Power coupling into a superconducting cavity employed in a particle accelerator requires unique provisions to maintain high vacuum and cryogenic temperature on the cavity side, while operating with ambient conditions on the source side. Components introduced to fulfill mechanical requirements must show negligible obstruction of the propagation of the microwave with absence of critical locations that may give rise to electron multipaction, leading to a multiple section design, instead of an aperture, a probe, or a loop structure as found in conventional cavities. A coaxial power coupler for a superconducting multiple-cell cavity at 3.9 GHz has been developed. The cavity is intended to be employed as an accelerator to provide enhanced electron beam quality in a free-electron laser in Hamburg (FLASH) user facility. The design of the coupler called for two windows to sustain high vacuum in the cavity and two bellows to accommodate mechanical dimensional changes resulting from cryogenics. Suppression of multipacting was accomplished by the choice of conductor dimensions and materials with low second yield coefficients. Prior to integration with the cavity, the coupler was tested for intrinsic properties in a back-to-back configuration and conditioned for high-power operation with increasing power input. Maximum incident power was measured to be 61 kW. When integrated with the superconducting cavity, a loaded quality factor of 9 x 10 5 was measured by transient method. Coupler return loss and insertion loss were estimated to be around -21 dB and -0.2 dB, respectively.

  13. Plasma-based accelerator structures

    SciTech Connect

    Schroeder, Carl B.

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  14. TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching

    PubMed Central

    Ye, Qiaozhen; Rosenberg, Scott C; Moeller, Arne; Speir, Jeffrey A; Su, Tiffany Y; Corbett, Kevin D

    2015-01-01

    The AAA+ family ATPase TRIP13 is a key regulator of meiotic recombination and the spindle assembly checkpoint, acting on signaling proteins of the conserved HORMA domain family. Here we present the structure of the Caenorhabditis elegans TRIP13 ortholog PCH-2, revealing a new family of AAA+ ATPase protein remodelers. PCH-2 possesses a substrate-recognition domain related to those of the protein remodelers NSF and p97, while its overall hexameric architecture and likely structural mechanism bear close similarities to the bacterial protein unfoldase ClpX. We find that TRIP13, aided by the adapter protein p31(comet), converts the HORMA-family spindle checkpoint protein MAD2 from a signaling-active ‘closed’ conformer to an inactive ‘open’ conformer. We propose that TRIP13 and p31(comet) collaborate to inactivate the spindle assembly checkpoint through MAD2 conformational conversion and disassembly of mitotic checkpoint complexes. A parallel HORMA protein disassembly activity likely underlies TRIP13's critical regulatory functions in meiotic chromosome structure and recombination. DOI: http://dx.doi.org/10.7554/eLife.07367.001 PMID:25918846

  15. Going the distance: validation of Acuros and AAA at an extended SSD of 400 cm.

    PubMed

    Lamichhane, Narottam; Patel, Vivek N; Studenski, Matthew T

    2016-01-01

    Accurate dose calculation and treatment delivery is essential for total body irradiation (TBI). In an effort to verify the accuracy of TBI dose calculation at our institution, we evaluated both the Varian Eclipse AAA and Acuros algorithms to predict dose distributions at an extended source-to-surface distance (SSD) of 400 cm. Measurements were compared to calculated values for a 6 MV beam in physical and virtual phantoms at 400 cm SSD using open beams for both 5 × 5 and 40 × 40cm2 field sizes. Inline and crossline profiles were acquired at equivalent depths of 5 cm, 10 cm, and 20 cm. Depth-dose curves were acquired using EBT2 film and an ion chamber for both field sizes. Finally, a RANDO phantom was used to simulate an actual TBI treatment. At this extended SSD, care must be taken using the planning system as there is good relative agreement between measured and calculated profiles for both algorithms, but there are deviations in terms of the absolute dose. Acuros has better agreement than AAA in the penumbra region. PMID:27074473

  16. Changes in the wall shear stresses (WSS) during the enlargement of Abdominal Aortic Aneurysms (AAA)

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie; Sparks, Steven R.; Chomaz, Jean-Marc; Lasheras, Juan C.

    2004-11-01

    The changes in the evolution of the spatial and temporal distribution of the WSS and gradients of WSS at different stages of the enlargement of AAAs are important to understand the etiology and progression of this vascular disease, since they affect the wall structural integrity, primarily via the changes induced on the shape, functions and metabolism of the endothelial cells. PIV measurements were performed in aneurysm models, while changing systematically their geometric parameters. We show that, even at very early stages of the disease (dilatation > 30%), the flow separates from the wall and the formation of a large vortex ring followed by internal shear layers leads to the generation of WSS that drastically differ from the healthy vessel. Inside the AAA, the mean WSS decreases to zero and the magnitude of the WSS can be as low as 26% of the value in a healthy vessel. Two regions with distinct patterns of WSS were identified. The region of flow detachment, with oscillatory WSS of very low mean, and the region of flow reattachment, located distally, where large, negative WSS and sustained gradients of WSS are produced as a result of the impact of the vortex ring on the wall.

  17. Structural Characterization of the ATPase Reaction Cycle of Endosomal AAA Protein Vps4

    SciTech Connect

    Xiao, Junyu; Xia, Hengchuan; Yoshino-Koh, Kae; Zhou, Jiahai; Xu, Zhaohui

    2008-12-12

    The multivesicular body (MVB) pathway functions in multiple cellular processes including cell surface receptor down-regulation and viral budding from host cells. An important step in the MVB pathway is the correct sorting of cargo molecules, which requires the assembly and disassembly of endosomal sorting complexes required for transport (ESCRTs) on the endosomal membrane. Disassembly of the ESCRTs is catalyzed by ATPase associated with various cellular activities (AAA) protein Vps4. Vps4 contains a single AAA domain and undergoes ATP-dependent quaternary structural change to disassemble the ESCRTs. Structural and biochemical analyses of the Vps4 ATPase reaction cycle are reported here. Crystal structures of Saccharomyces cerevisiae Vps4 in both the nucleotide-free form and the ADP-bound form provide the first structural view illustrating how nucleotide binding might induce conformational changes within Vps4 that lead to oligomerization and binding to its substrate ESCRT-III subunits. In contrast to previous models, characterization of the Vps4 structure now supports a model where the ground state of Vps4 in the ATPase reaction cycle is predominantly a monomer and the activated state is a dodecamer. Comparison with a previously reported human VPS4B structure suggests that Vps4 functions in the MVB pathway via a highly conserved mechanism supported by similar protein-protein interactions during its ATPase reaction cycle.

  18. Evaluation of accelerated H/sup +/ applications in predicting soil chemical and microbial changes due to acid rain

    SciTech Connect

    Killham, K.; Firestone, M.K.

    1982-01-01

    A comparison was made between three acidified, simulated rain treatments which have been used to assess the impact of acid rain on soil chemical and microbial processes. There were significant differences in effects on chemical and microbial characteristics of soil exposed to the three treatments due to differences in the rate of H/sup +/ ion application, even though the total quantity of protons supplied was the same in each case. An input of 30 cm of simulated rain of pH 3.0 over 6 months increased microbial activity and caused only slight changes in soil pH and soil nitrogen status. Treatments in which the rate of H/sup +/ input was accelerated by increasing solution volume, or acidity, inhibited microbial activity and caused soil chemical changes in excess of those produced by the more gradual yet equivalent H/sup +/ loading. We conclude that the effects of short-term, accelerated acid treatments cannot be used to realistically forecast long-term impacts of acid rain. The results of such experiments may be useful in identifying processes or parameters for studies of longer duration.

  19. Application of the Jacobian-Free Newton-Krylov Method to Nonlinear Acceleration of Transport Source Iteration in Slab Geometry

    SciTech Connect

    Dana A. Knoll; H. Park; Kord Smith

    2011-02-01

    The use of the Jacobian-free Newton-Krylov (JFNK) method within the context of nonlinear diffusion acceleration (NDA) of source iteration is explored. The JFNK method is a synergistic combination of Newton's method as the nonlinear solver and Krylov methods as the linear solver. JFNK methods do not form or store the Jacobian matrix, and Newton's method is executed via probing the nonlinear discrete function to approximate the required matrix-vector products. Current application of NDA relies upon a fixed-point, or Picard, iteration to resolve the nonlinearity. We show that the JFNK method can be used to replace this Picard iteration with a Newton iteration. The Picard linearization is retained as a preconditioner. We show that the resulting JFNK-NDA capability provides benefit in some regimes. Furthermore, we study the effects of a two-grid approach, and the required intergrid transfers when the higher-order transport method is solved on a fine mesh compared to the low-order acceleration problem.

  20. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome

    PubMed Central

    Förster, Friedrich; Lasker, Keren; Beck, Florian; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2009-01-01

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners. PMID:19653995

  1. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome.

    PubMed

    Förster, Friedrich; Lasker, Keren; Beck, Florian; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2009-10-16

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners.

  2. The ATPase of the phi29 DNA packaging motor is a member of the hexameric AAA+ superfamily.

    PubMed

    Schwartz, Chad; De Donatis, Gian Marco; Fang, Huaming; Guo, Peixuan

    2013-08-15

    The AAA+ superfamily of proteins is a class of motor ATPases performing a wide range of functions that typically exist as hexamers. The ATPase of phi29 DNA packaging motor has long been a subject of debate in terms of stoichiometry and mechanism of action. Here, we confirmed the stoichiometry of phi29 motor ATPase to be a hexamer and provide data suggesting that the phi29 motor ATPase is a member of the classical hexameric AAA+ superfamily. Native PAGE, EMSA, capillary electrophoresis, ATP titration, and binomial distribution assay show that the ATPase is a hexamer. Mutations in the known Walker motifs of the ATPase validated our previous assumptions that the protein exists as another member of this AAA+ superfamily. Our data also supports the finding that the phi29 DNA packaging motor uses a revolution mechanism without rotation or coiling (Schwartz et al., this issue).

  3. Effects of the Transient Blood Flow-Wall Interaction on the Wall Stress Distribution in Abdominal Aortic Aneurysm (AAA)

    NASA Astrophysics Data System (ADS)

    Tang, Rubing; Geindreau, Christian; Lasheras, Juan

    2006-11-01

    Our static finite element analysis (FEA) of both idealized and real clinical models has shown that the maximum diameter and asymmetry have substantial influence on the AAA wall stress distribution. The thrombus inside the AAA was also found to reduce the magnitude of the wall stresses. To achieve a better understanding of the wall stress distribution in real AAAs, a dynamic FEA was also performed. We considered models, both symmetric and non-symmetric, in which the aorta is assumed isotropic with nonlinear material properties. For the limiting case of rigid walls, the evolution of the flow pattern and the wall shear stresses due to fluid flow at different stages of cardiac cycle predicted by our simulations are compared with experimental results obtained in in-vitro models. A good agreement is found between both results. Finally, we have extended the analysis to the physiologically correct case of deformable walls and characterized the transient effects on the wall stresses.

  4. Moyamoya disease-associated protein mysterin/RNF213 is a novel AAA+ ATPase, which dynamically changes its oligomeric state

    NASA Astrophysics Data System (ADS)

    Morito, Daisuke; Nishikawa, Kouki; Hoseki, Jun; Kitamura, Akira; Kotani, Yuri; Kiso, Kazumi; Kinjo, Masataka; Fujiyoshi, Yoshinori; Nagata, Kazuhiro

    2014-03-01

    Moyamoya disease is an idiopathic human cerebrovascular disorder that is characterized by progressive stenosis and abnormal collateral vessels. We recently identified mysterin/RNF213 as its first susceptibility gene, which encodes a 591-kDa protein containing enzymatically active P-loop ATPase and ubiquitin ligase domains and is involved in proper vascular development in zebrafish. Here we demonstrate that mysterin further contains two tandem AAA+ ATPase modules and forms huge ring-shaped oligomeric complex. AAA+ ATPases are known to generally mediate various biophysical and mechanical processes with the characteristic ring-shaped structure. Fluorescence correlation spectroscopy and biochemical evaluation suggested that mysterin dynamically changes its oligomeric forms through ATP/ADP binding and hydrolysis cycles. Thus, the moyamoya disease-associated gene product is a unique protein that functions as ubiquitin ligase and AAA+ ATPase, which possibly contributes to vascular development through mechanical processes in the cell.

  5. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome

    SciTech Connect

    Foerster, Friedrich; Lasker, Keren; Beck, Florian; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2009-10-16

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners.

  6. GPU accelerated solver for nonlinear reaction-diffusion systems. Application to the electrophysiology problem

    NASA Astrophysics Data System (ADS)

    Mena, Andres; Ferrero, Jose M.; Rodriguez Matas, Jose F.

    2015-11-01

    Solving the electric activity of the heart possess a big challenge, not only because of the structural complexities inherent to the heart tissue, but also because of the complex electric behaviour of the cardiac cells. The multi-scale nature of the electrophysiology problem makes difficult its numerical solution, requiring temporal and spatial resolutions of 0.1 ms and 0.2 mm respectively for accurate simulations, leading to models with millions degrees of freedom that need to be solved for thousand time steps. Solution of this problem requires the use of algorithms with higher level of parallelism in multi-core platforms. In this regard the newer programmable graphic processing units (GPU) has become a valid alternative due to their tremendous computational horsepower. This paper presents results obtained with a novel electrophysiology simulation software entirely developed in Compute Unified Device Architecture (CUDA). The software implements fully explicit and semi-implicit solvers for the monodomain model, using operator splitting. Performance is compared with classical multi-core MPI based solvers operating on dedicated high-performance computer clusters. Results obtained with the GPU based solver show enormous potential for this technology with accelerations over 50 × for three-dimensional problems.

  7. Application of Intel Many Integrated Core (MIC) accelerators to the Pleim-Xiu land surface scheme

    NASA Astrophysics Data System (ADS)

    Huang, Melin; Huang, Bormin; Huang, Allen H.

    2015-10-01

    The land-surface model (LSM) is one physics process in the weather research and forecast (WRF) model. The LSM includes atmospheric information from the surface layer scheme, radiative forcing from the radiation scheme, and precipitation forcing from the microphysics and convective schemes, together with internal information on the land's state variables and land-surface properties. The LSM is to provide heat and moisture fluxes over land points and sea-ice points. The Pleim-Xiu (PX) scheme is one LSM. The PX LSM features three pathways for moisture fluxes: evapotranspiration, soil evaporation, and evaporation from wet canopies. To accelerate the computation process of this scheme, we employ Intel Xeon Phi Many Integrated Core (MIC) Architecture as it is a multiprocessor computer structure with merits of efficient parallelization and vectorization essentials. Our results show that the MIC-based optimization of this scheme running on Xeon Phi coprocessor 7120P improves the performance by 2.3x and 11.7x as compared to the original code respectively running on one CPU socket (eight cores) and on one CPU core with Intel Xeon E5-2670.

  8. Application of variance reduction techniques in Monte Carlo simulation of clinical electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Zoubair, M.; El Bardouni, T.; El Gonnouni, L.; Boulaich, Y.; El Bakkari, B.; El Younoussi, C.

    2012-01-01

    Computation time constitutes an important and a problematic parameter in Monte Carlo simulations, which is inversely proportional to the statistical errors so there comes the idea to use the variance reduction techniques. These techniques play an important role in reducing uncertainties and improving the statistical results. Several variance reduction techniques have been developed. The most known are Transport cutoffs, Interaction forcing, Bremsstrahlung splitting and Russian roulette. Also, the use of a phase space seems to be appropriate to reduce enormously the computing time. In this work, we applied these techniques on a linear accelerator (LINAC) using the MCNPX computer Monte Carlo code. This code gives a rich palette of variance reduction techniques. In this study we investigated various cards related to the variance reduction techniques provided by MCNPX. The parameters found in this study are warranted to be used efficiently in MCNPX code. Final calculations are performed in two steps that are related by a phase space. Results show that, comparatively to direct simulations (without neither variance-reduction nor phase space), the adopted method allows an improvement in the simulation efficiency by a factor greater than 700.

  9. MgB{sub 2} for Application to RF Cavities for Accelerators

    SciTech Connect

    Tajima, T.; Canabal, A.; Zhao, Y.; Romanenko, A.; Moeckly, B.H.; Nantista, C.D.; Tantawi, S.; Phillips, L.; Iwashita, Y.; Campisi, I.E.; /Oak Ridge

    2007-10-11

    Magnesium diboride (MgB{sub 2}) has a transition temperature (T{sub c}) of {approx}40 K, i.e., about 4 times as high as that of niobium (Nb).We have been evaluating MgB{sub 2} as a candidate material for radio-frequency (RF) cavities for future particle accelerators. Studies in the last 3 years have shown that it could have about one order of magnitude less RF surface resistance (Rs) than Nb at 4 K. A power dependence test using a 6 GHz TE011 mode cavity has shown little power dependence up to {approx}12 mT (120 Oe), limited by available power, compared to other high-Tc materials such as YBCO. A recent study showed, however, that the power dependence of Rs is dependent on the coating method. A film made with on-axis pulsed laser deposition (PLD) has showed rapid increase in Rs compared to the film deposited by reactive evaporation method. This paper shows these results as well as future plans.

  10. MgB{sub 2} for application to RF cavities for accelerators

    SciTech Connect

    Tajima, T.; Canabal, A.; Yue Zhao; Romanenko, A.; Moeckly, B.H.; Nantista, C.D.; Tantawi, S.; Phillips, L.; Iwashita, Y.; Campisi, I.E.

    2007-06-01

    Magnesium diboride (MgB2) has a transition temperature of (Tc) ~40 K, i.e., about 4 times as high as that of niobium (Nb). We have been evaluating MgB2 as a candidate material for radio-frequency (RF) cavities for future particle accelerators. Studies in the last 3 years have shown that it could have about one order of magnitude less RF surface resistance (Rs) than Nb at 4 K. A power dependence test using a 6 GHz TE011 mode cavity has shown little power dependence up to ~12 mT (120 Oe), limited by available power, compared to other high- materials such as YBCO. A recent study showed, however, that the power dependence of Rs is dependent on the coating method. A film made with on-axis pulsed laser deposition (PLD) has showed rapid increase in compared to the film deposited by reactive evaporation method. This paper shows these results as well as future plans.

  11. GPU accelerated solver for nonlinear reaction-diffusion systems. Application to the electrophysiology problem

    NASA Astrophysics Data System (ADS)

    Mena, Andres; Ferrero, Jose M.; Rodriguez Matas, Jose F.

    2015-11-01

    Solving the electric activity of the heart possess a big challenge, not only because of the structural complexities inherent to the heart tissue, but also because of the complex electric behaviour of the cardiac cells. The multi-scale nature of the electrophysiology problem makes difficult its numerical solution, requiring temporal and spatial resolutions of 0.1 ms and 0.2 mm respectively for accurate simulations, leading to models with millions degrees of freedom that need to be solved for thousand time steps. Solution of this problem requires the use of algorithms with higher level of parallelism in multi-core platforms. In this regard the newer programmable graphic processing units (GPU) has become a valid alternative due to their tremendous computational horsepower. This paper presents results obtained with a novel electrophysiology simulation software entirely developed in Compute Unified Device Architecture (CUDA). The software implements fully explicit and semi-implicit solvers for the monodomain model, using operator splitting. Performance is compared with classical multi-core MPI based solvers operating on dedicated high-performance computer clusters. Results obtained with the GPU based solver show enormous potential for this technology with accelerations over 50 × for three-dimensional problems.

  12. Moment-Based Accelerators for Kinetic Problems with Application to Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Taitano, William Tsubasa-Tsutsui

    In inertial confinement fusion (ICF), the kinetic ion and charge separation field effects may play a significant role in the difference between the measured neutron yield in experiments and the predicted yield from fluid codes. Two distinct of approaches exists in modeling plasma physics phenomena: fluid and kinetic approaches. While the fluid approach is computationally less expensive, robust closures are difficult to obtain for a wide separation in temperature and density. While the kinetic approach is a closed system, it resolves the full 6D phase space and classic explicit numerical schemes restrict both the spatial and time-step size to a point where the method becomes intractable. Classic implicit system require the storage and inversion of a very large linear system which also becomes intractable. This dissertation will develop a new implicit method based on an emerging moment-based accelerator which allows one to step over stiff kinetic time-scales. The new method converges the solution per time-step stably and efficiently compared to a standard Picard iteration. This new algorithm will be used to investigate mixing in Omega ICF fuel-pusher interface at early time of the implosion process, fully kinetically.

  13. SecAAA trimer is fully functional as SecAA dimer in the membrane: Existence of higher oligomers?

    PubMed Central

    Wang, Hongyun; Ma, Yamin; Hsieh, Ying-Hsin; Yang, Hsiuchin; Li, Minyong; Wang, Binghe; Tai, Phang C.

    2014-01-01

    SecA is an essential ATPase in bacterial Sec-dependent protein translocation pathway, and equilibrates between monomers and dimers in solution. The question of whether SecA functions as monomers or dimers in membranes during the protein translocation is controversial. We previously constructed a tail-to-head SecAA tandem dimer, and showed it is fully functional by complementation in vivo and protein translocation in vitro, indicating that SecA can function at least as a dimer in the membrane without dissociating into monomers. In this study, we further constructed genetically a tail-to-head SecAAA trimer, which is functional in complementing a temperature-sensitive secA mutant. The purified SecAAA trimer per protomer is fully active as SecAA tandem dimers in ATPase activity, in protein translocation in vitro and in ion channel activities in the oocytes. With these functional tail-to-head trimer SecAAA and tandem SecAA, we examined their surface topology in the presence of liposomes using AFM. As expected, the soluble SecAAA without lipids are larger than SecAA. However, the ring/pore structures of SecAAA trimers were, surprisingly, almost identical to the SecA 2-monomers and SecAA dimers, raising the intriguing possibility that the SecA may exist and function as hexamer ring-structures in membranes. Cross-linking with formaldehyde showed that SecA, SecAA and SecAAA could form larger oligomers, including the hexamers. The molecular modeling simulation shows that both tail-to-head and tail-to-tail hexamers in the membranes are possible. PMID:24704204

  14. Walker-A threonine couples nucleotide occupancy with the chaperone activity of the AAA+ ATPase ClpB

    PubMed Central

    Nagy, Maria; Wu, Hui-Chuan; Liu, Zhonghua; Kedzierska-Mieszkowska, Sabina; Zolkiewski, Michal

    2009-01-01

    Hexameric AAA+ ATPases induce conformational changes in a variety of macromolecules. AAA+ structures contain the nucleotide-binding P-loop with the Walker A sequence motif: GxxGxGK(T/S). A subfamily of AAA+ sequences contains Asn in the Walker A motif instead of Thr or Ser. This noncanonical subfamily includes torsinA, an ER protein linked to human dystonia and DnaC, a bacterial helicase loader. Role of the noncanonical Walker A motif in the functionality of AAA+ ATPases has not been explored yet. To determine functional effects of introduction of Asn into the Walker A sequence, we replaced the Walker-A Thr with Asn in ClpB, a bacterial AAA+ chaperone which reactivates aggregated proteins. We found that the T-to-N mutation in Walker A partially inhibited the ATPase activity of ClpB, but did not affect the ClpB capability to associate into hexamers. Interestingly, the noncanonical Walker A sequence in ClpB induced preferential binding of ADP vs. ATP and uncoupled the linkage between the ATP-bound conformation and the high-affinity binding to protein aggregates. As a consequence, ClpB with the noncanonical Walker A sequence showed a low chaperone activity in vitro and in vivo. Our results demonstrate a novel role of the Walker-A Thr in sensing the nucleotide's γ-phosphate and in maintaining an allosteric linkage between the P-loop and the aggregate binding site of ClpB. We postulate that AAA+ ATPases with the noncanonical Walker A might utilize distinct mechanisms to couple the ATPase cycle with their substrate-remodeling activity. PMID:19177562

  15. Integrating Online Compression to Accelerate Large-Scale Data Analytics Applications

    SciTech Connect

    Bicer, T.; Yin, Jian; Chiu, David; Agrawal, Gagan; Schuchardt, Karen L.

    2013-05-19

    Abstract—With growing dataset sizes, and as computing cycles are increasing faster than storage and wide-area bandwidths, compression appears like a promising approach for improving the performance of large-scale data analytics applications. In this context, this paper makes the following contributions. First, we develop a new compression methodology, which exploits the similarities between spatial and/or temporal neighbors in a simulation dataset, and enables high compression ratios and low decompression costs. Second, we have developed a framework that can be used to incorporate a variety of compression and decompression algorithms. This framework also supports a simple API to allow integration with an existing application or data processing middleware. Once a compression algorithm is implemented, this framework can allow multi-threaded retrieval, multi-threaded data decompression, and use of informed prefetching and caching. By integrating this framework with a data-intensive middleware, we have applied our compression methodology and framework to three applications over two datasets, including a GCRM climate model dataset. We obtained an average compression ratio of 51.68%, and up to 53.27% improvement in execution time of data analysis applications.

  16. Statistical Method for Nonequilibrium Systems with Application to Accelerator Beam Dynamics

    NASA Astrophysics Data System (ADS)

    Meller, Robert Edwin

    In this thesis, a method is developed for calculating the limit cycle distribution of a many-particle system in weak contact with a heat bath. Both externally driven systems and unstable systems with mean-field collective interaction are considered. The system is described by a Fokker-Planck equation, and then the single particle motion is transformed to action -angle coordinates to separate the thermal and mechanical time dependencies. The equation is then averaged over angle variables to remove the mechanical motion and produce an equation with only thermal motion in action space. The limit cycle is the time-independent solution of the averaged equation. As an example of a driven system, the distribution of driven oscillators is calculated in the region of action space near a nonlinear resonance, and the perpetual currents known as resonance streaming are shown. As an example of collective instability, the thermodynamic stability of a system of oscillators with a long range cosine potential is considered. For the case of an attractive potential, time dependent limit cycles are found with lower free energy than equilibrium. Hence, this is a conservative many-body system which oscillates spontaneously when placed in contact with a heat bath. This prediction is verified with numerical simulations. The phenomenon of accelerator bunch lengthening is then explained as an example of thermal instability which has been enhanced by the nonconservative nature of the wake field coupling force. The threshold of thermal instability is shown to be related to the total energy loss of the charge bunch, rather than to the collective frequency shift as predicted for the threshold of mechanical instability by the linearized Vlasov equation. Numerical calculations of bunch lengthening in the electron storage ring SPEAR are presented, and compared with simulations.

  17. Accelerator mass spectrometry of iodine-129 and its applications in natural water systems

    NASA Astrophysics Data System (ADS)

    Buraglio, Nadia

    During recent decades, huge amount of radioactive waste has been dumped into the earth's surface environments. 129I (T1/2 = 15.6 My) is one of the radioactive products that has been produced through a variety of processes, including atomic weapon testing, reprocessing of nuclear fact and nuclear accidents. This thesis describes development of the Accelerator Mass Spectrometry (AMS) ultra-sensitive atom counting technique at Uppsala Tandem Laboratory to measure 129I and discusses investigations of its distribution in the hydrosphere (marine and fresh water) and precipitation. The AMS technique provides a method for measuring long-lived radioactive isotopes in small samples, relative to other conventional techniques, and thus opens a now line of research. The optimization of the AMS system at Uppsala included testing a time of flight detector, evaluation of the most appropriate charge-state, reduction of molecular interference and improvement of the detection limit. Furthermore, development of a chemical procedure for separation of iodine from natural water samples has been accomplished. The second part of the thesis reports investigations of 129I in natural waters and indicates that high concentrations of 129I (3-4 orders of magnitude higher than in the prenuclear era) are found in most of the considered natural waters. Inventory calculations and results of measurements suggest that the major sources of radioactive iodine are the two main European nuclear reprocessing facilities at Sellafield (U.K.) and La Hague (France). This information provides estimates of the transit time and vertical mixing of water masses in the central Arctic Ocean. Results from precipitation, lakes and runoff are used to elucidate mechanisms of transport of 129I from the point sources and its pathways in the hydrological environment. This study also shows the need for continuous monitoring of the 129I level in the hydrosphere and of its future variability.

  18. Measurement of Beryllium in Biological Samples by Accelerator Mass Spectrometry: Applications for Studying Chronic Beryllium Disease

    SciTech Connect

    Chiarappa-Zucca, M L; Finkel, R C; Martinelli, R E; McAninch, J E; Nelson, D O; Turtletaub, K W

    2004-04-15

    A method using accelerator mass spectrometry (AMS) has been developed for quantifying attomoles of beryllium (Be) in biological samples. This method provides the sensitivity to trace Be in biological samples at very low doses with the purpose of identifying the molecular targets involved in chronic beryllium disease. Proof of the method was tested by administering 0.001, 0.05, 0.5 and 5.0 {micro}g {sup 9}Be and {sup 10}Be by intraperitoneal injection to male mice and removing spleen, liver, femurs, blood, lung, and kidneys after 24 h exposure. These samples were prepared for AMS analysis by tissue digestion in nitric acid, followed by further organic oxidation with hydrogen peroxide and ammonium persulfate and lastly, precipitation of Be with ammonium hydroxide, and conversion to beryllium oxide at 800 C. The {sup 10}Be/{sup 9}Be ratio of the extracted beryllium oxide was measured by AMS and Be in the original sample was calculated. Results indicate that Be levels were dose-dependent in all tissues and the highest levels were measured in the spleen and liver. The measured {sup 10}Be/{sup 9}Be ratios spanned 4 orders of magnitude, from 10{sup -10} to 10{sup -14}, with a detection limit of 3.0 x 10{sup -14}, which is equivalent to 0.8 attomoles of {sup 10}Be. These results show that routine quantification of nanogram levels of Be in tissues is possible and that AMS is a sensitive method that can be used in biological studies to understand the molecular dosimetry of Be and mechanisms of toxicity.

  19. High-Power Millimeter- and Centimeter-Wave Magnicons for Particle Accelerator Application

    NASA Astrophysics Data System (ADS)

    Nezhevenko, O. A.; Yakovlev, V. P.; Hirshfield, J. L.; LaPointe, M. A.; Kozyrev, E. V.; Gold, S. H.; Fliflet, A. W.; Kinkead, A. K.; Shchelkunov, S. V.

    2006-01-01

    Two high power, high frequency magnicons have recently been developed by Omega-P, Inc. The first tube, a frequency-doubling amplifier at 11.424 GHz, was designed and built in collaboration with the Naval Research Laboratory (NRL), to be the prototype of an alternative to the klystron for the Next Linear Collider (NLC); its current use is to furnish RF power for tests of high power components, active pulse compressors, and accelerating structures. The tube is designed to produce ˜60 MW, in ˜1.2 μsec pulses at 58% efficiency and 59 dB gain using a 470 kV, 220 A, 2-mm-diameter beam. Operation of this magnicon has established a research facility at NRL which is only the second laboratory in the USA where high-power microwave R&D at X-band can take place. The second tube is a third harmonic amplifier at 34.272 GHz, with a design power of ˜45 MW in ˜1 μsec pulses at >40% efficiency and 54 dB gain. Its beam voltage is 500 kV, beam current is ˜220 A, and beam diameter is ˜1 mm. This tube, which is now in operation at Yale University, is designed for developing RF technology in the millimeter wavelength domain for a future high-gradient multi-TeV electron-positron linear collider. Design features and latest experimental results for these two magnicons are presented in this paper.

  20. Prototype 1.75 MV X-band linear accelerator testing for medical CT and industrial nondestructive testing applications

    NASA Astrophysics Data System (ADS)

    Clayton, James; Shedlock, Daniel; Vanderet, Steven; Zentai, George; Star-Lack, Josh; LaFave, Richard; Virshup, Gary

    2015-03-01

    Flat panel imagers based on amorphous silicon technology (a-Si) for digital radiography are accepted by the medical and industrial community as having several advantages over radiographic film-based systems. Use of Mega-voltage x-rays with these flat panel systems is applicable to both portal imaging for radiotherapy and for nondestructive testing (NDT) and security applications. In the medical field, one potential application that has not been greatly explored is to radiotherapy treatment planning. Currently, such conventional computed tomographic (CT) data acquired at kV energies is used to help delineate tumor targets and normal structures that are to be spared during treatment. CT number accuracy is crucial for radiotherapy dose calculations. Conventional CT scanners operating at kV X-ray energies typically exhibit significant image reconstruction artifacts in the presence of metal implants in human body. Using the X-ray treatment beams, having energies typically >=6MV, to acquire the CT data may not be practical if it is desired to maintain contrast sensitivity at a sufficiently low dose. Nondestructive testing imaging systems can expand their application space with the development of the higher energy accelerator for use in pipeline, and casting inspection as well as certain cargo screening applications that require more penetration. A new prototype x-band BCL designed to operate up to 1.75 MV has been designed built and tested. The BCL was tested with a prototype portal imager and medical phantoms to determine artifact reductions and a PaxScan 2530HE industrial imager to demonstrate resolution is maintained and penetration is improved.

  1. The ILC P2 Marx and Application of the Marx Topology to Future Accelerators

    SciTech Connect

    Kemp, M.A.; Benwell, A.; Burkhart, C.; Hugyik, J.; Larsen, R.; Macken, K.; MacNair, D.; Nguyen, M.; Olsen, J.; /SLAC

    2011-08-19

    The SLAC P2 Marx is under development as the linac klystron modulator for the ILC. This modulator builds upon the success of the P1 Marx, which is currently undergoing lifetime evaluation. While the SLAC P2 Marx's (henceforth, 'P2 Marx') target application is the ILC, characteristics of the Marx topology make it equally well-suited for operation at different parameter ranges; for example, increased pulse repetition frequency, increased output current, longer pulse width, etc. Marx parameters such as the number of cells, cell capacitance, and component selection can be optimized for the application. This paper provides an overview of the P2 Marx development. In addition, the scalability of the Marx topology to other long-pulse parameter ranges is discussed.

  2. Applicability of time-to-failure analysis to accelerated strain before earthquakes and volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Main, Ian G.

    1999-12-01

    We examine quantitatively the ranges of applicability of the equation Ω=A+B[1-t/tf]m for predicting `system-sized' failure times tf in the Earth. In applications Ω is a proxy measure for strain or crack length, and A, B and the index m are model parameters determined by curve fitting. We consider constitutive rules derived from (a) Charles' law for subcritical crack growth; (b) Voight's equation; and (c) a simple percolation model, and show in each case that this equation holds only when m<0. When m>0, the general solution takes the form Ω=A+B[1+t/T]m, where T is a positive time constant, and no failure time can be defined. Reported values for volcanic precursors based on rate data are found to be within the range of applicability of time-to-failure analysis (m<0). The same applies to seismic moment release before earthquakes, at the expense of poor retrospective predictability of the time of the a posteriori-defined main shock. In contrast, reported values based on increasing cumulative Benioff strain occur in the region where a system-sized failure time cannot be defined (m>0 commonly m~0.3). We conclude on physical grounds that cumulative seismic moment is preferred as the most direct measure of seismic strain. If cumulative Benioff strain is to be retained on empirical grounds, then it is important that these data either be re-examined with the independent constraint m<0, or that for the case 0

  3. Application of accelerated acquisition and highly constrained reconstruction methods to MR

    NASA Astrophysics Data System (ADS)

    Wang, Kang

    2011-12-01

    There are many Magnetic Resonance Imaging (MRI) applications that require rapid data acquisition. In conventional proton MRI, representative applications include real-time dynamic imaging, whole-chest pulmonary perfusion imaging, high resolution coronary imaging, MR T1 or T2 mapping, etc. The requirement for fast acquisition and novel reconstruction methods is either due to clinical demand for high temporal resolution, high spatial resolution, or both. Another important category in which fast MRI methods are highly desirable is imaging with hyperpolarized (HP) contrast media, such as HP 3He imaging for evaluation of pulmonary function, and imaging of HP 13C-labeled substrates for the study of in vivo metabolic processes. To address these needs, numerous MR undersampling methods have been developed and combined with novel image reconstruction techniques. This thesis aims to develop novel data acquisition and image reconstruction techniques for the following applications. (I) Ultrashort echo time spectroscopic imaging (UTESI). The need for acquiring many echo images in spectroscopic imaging with high spatial resolution usually results in extended scan times, and thus requires k-space undersampling and novel imaging reconstruction methods to overcome the artifacts related to the undersampling. (2) Dynamic hyperpolarized 13C spectroscopic imaging. HP 13C compounds exhibit non-equilibrium T1 decay and rapidly evolving spectral dynamics, and therefore it is vital to utilize the polarized signal wisely and efficiently to observe the entire temporal dynamic of the injected "C compounds as well as the corresponding downstream metabolites. (3) Time-resolved contrast-enhanced MR angiography. The diagnosis of vascular diseases often requires large coverage of human body anatomies with high spatial resolution and sufficient temporal resolution for the separation of arterial phases from venous phases. The goal of simultaneously achieving high spatial and temporal resolution has

  4. Application of Chemically Accelerated Biotreatment to Reduce Risk in Oil-Impacted Soils

    SciTech Connect

    Paterek, J.R.; Bogan, W.W.; Lahner, L.M.; Trbovic, V.

    2003-03-06

    Conducted research in the following major focus areas: (1) Development of mild extraction approaches to estimate bioavailable fraction of crude oil residues in contaminated soils; (2) Application of these methods to understand decreases in toxicity and increases in sequestration of hydrocarbons over time, as well as the influence of soil properties on these processes; (3) Measurements of the abilities of various bacteria (PAH-degraders and others more representative of typical soil bacteria) to withstand oxidative treatments (i.e. Fenton's reaction) which would occur in CBT; and (4) Experiments into the biochemical/genetic inducibility of PAH degradation by compounds formed by the chemical oxidation of PAH.

  5. Lytic Water Dynamics Reveal Evolutionarily Conserved Mechanisms of ATP Hydrolysis by TIP49 AAA+ ATPases

    PubMed Central

    Afanasyeva, Arina; Hirtreiter, Angela; Schreiber, Anne; Grohmann, Dina; Pobegalov, Georgii; McKay, Adam R.; Tsaneva, Irina; Petukhov, Michael; Käs, Emmanuel; Grigoriev, Mikhail; Werner, Finn

    2014-01-01

    Summary Eukaryotic TIP49a (Pontin) and TIP49b (Reptin) AAA+ ATPases play essential roles in key cellular processes. How their weak ATPase activity contributes to their important functions remains largely unknown and difficult to analyze because of the divergent properties of TIP49a and TIP49b proteins and of their homo- and hetero-oligomeric assemblies. To circumvent these complexities, we have analyzed the single ancient TIP49 ortholog found in the archaeon Methanopyrus kandleri (mkTIP49). All-atom homology modeling and molecular dynamics simulations validated by biochemical assays reveal highly conserved organizational principles and identify key residues for ATP hydrolysis. An unanticipated crosstalk between Walker B and Sensor I motifs impacts the dynamics of water molecules and highlights a critical role of trans-acting aspartates in the lytic water activation step that is essential for the associative mechanism of ATP hydrolysis. PMID:24613487

  6. Distinct quaternary structures of the AAA+ Lon protease control substrate degradation.

    PubMed

    Vieux, Ellen F; Wohlever, Matthew L; Chen, James Z; Sauer, Robert T; Baker, Tania A

    2013-05-28

    Lon is an ATPase associated with cellular activities (AAA+) protease that controls cell division in response to stress and also degrades misfolded and damaged proteins. Subunits of Lon are known to assemble into ring-shaped homohexamers that enclose an internal degradation chamber. Here, we demonstrate that hexamers of Escherichia coli Lon also interact to form a dodecamer at physiological protein concentrations. Electron microscopy of this dodecamer reveals a prolate structure with the protease chambers at the distal ends and a matrix of N domains forming an equatorial hexamer-hexamer interface, with portals of ∼45 Å providing access to the enzyme lumen. Compared with hexamers, Lon dodecamers are much less active in degrading large substrates but equally active in degrading small substrates. Our results support a unique gating mechanism that allows the repertoire of Lon substrates to be tuned by its assembly state.

  7. Invited Review Article: "Hands-on" laser-driven ion acceleration: A primer for laser-driven source development and potential applications.

    PubMed

    Schreiber, J; Bolton, P R; Parodi, K

    2016-07-01

    An overview of progress and typical yields from intense laser-plasma acceleration of ions is presented. The evolution of laser-driven ion acceleration at relativistic intensities ushers prospects for improved functionality and diverse applications which can represent a varied assortment of ion beam requirements. This mandates the development of the integrated laser-driven ion accelerator system, the multiple components of which are described. Relevant high field laser-plasma science and design of controlled optimum pulsed laser irradiation on target are dominant single shot (pulse) considerations with aspects that are appropriate to the emerging petawatt era. The pulse energy scaling of maximum ion energies and typical differential spectra obtained over the past two decades provide guidance for continued advancement of laser-driven energetic ion sources and their meaningful applications. PMID:27475539

  8. Invited Review Article: "Hands-on" laser-driven ion acceleration: A primer for laser-driven source development and potential applications

    NASA Astrophysics Data System (ADS)

    Schreiber, J.; Bolton, P. R.; Parodi, K.

    2016-07-01

    An overview of progress and typical yields from intense laser-plasma acceleration of ions is presented. The evolution of laser-driven ion acceleration at relativistic intensities ushers prospects for improved functionality and diverse applications which can represent a varied assortment of ion beam requirements. This mandates the development of the integrated laser-driven ion accelerator system, the multiple components of which are described. Relevant high field laser-plasma science and design of controlled optimum pulsed laser irradiation on target are dominant single shot (pulse) considerations with aspects that are appropriate to the emerging petawatt era. The pulse energy scaling of maximum ion energies and typical differential spectra obtained over the past two decades provide guidance for continued advancement of laser-driven energetic ion sources and their meaningful applications.

  9. The AAA-ATPase NVL2 is a telomerase component essential for holoenzyme assembly

    SciTech Connect

    Her, Joonyoung; Chung, In Kwon

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Identification of the AAA-ATPase NVL2 as a novel hTERT-interacting protein. Black-Right-Pointing-Pointer NVL2 associates with catalytically active telomerase via an interaction with hTERT. Black-Right-Pointing-Pointer NVL2 is a telomerase component essential for holoenzyme assembly. Black-Right-Pointing-Pointer ATP-binding activity of NVL2 is required for hTERT binding and telomerase assembly. -- Abstract: Continued cell proliferation requires telomerase to maintain functional telomeres that are essential for chromosome integrity. Although the core enzyme includes a telomerase reverse transcriptase (TERT) and a telomerase RNA component (TERC), a number of auxiliary proteins have been identified to regulate telomerase assembly, localization, and enzymatic activity. Here we describe the characterization of the AAA-ATPase NVL2 as a novel hTERT-interacting protein. NVL2 interacts and co-localizes with hTERT in the nucleolus. NLV2 is also found in association with catalytically competent telomerase in cell lysates through an interaction with hTERT. Depletion of endogenous NVL2 by small interfering RNA led to a decrease in hTERT without affecting the steady-state levels of hTERT mRNA, thereby reducing telomerase activity, suggesting that NVL2 is an essential component of the telomerase holoenzyme. We also found that ATP-binding activity of NVL2 is required for hTERT binding as well as telomerase assembly. Our findings suggest that NVL2, in addition to its role in ribosome biosynthesis, is essential for telomerase biogenesis and provides an alternative approach for inhibiting telomerase activity in cancer.

  10. Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p.

    PubMed Central

    Babst, M; Sato, T K; Banta, L M; Emr, S D

    1997-01-01

    In a late-Golgi compartment of the yeast Saccharomyces cerevisiae, vacuolar proteins such as carboxypeptidase Y (CPY) are actively sorted away from the secretory pathway and transported to the vacuole via a pre-vacuolar, endosome-like intermediate. The vacuolar protein sorting (vps) mutant vps4 accumulates vacuolar, endocytic and late-Golgi markers in an aberrant multilamellar pre-vacuolar compartment. The VPS4 gene has been cloned and found to encode a 48 kDa protein which belongs to the protein family of AAA-type ATPases. The Vps4 protein was purified and shown to exhibit an N-ethylmaleimide-sensitive ATPase activity. A single amino acid change within the AAA motif of Vps4p yielded a protein that lacked ATPase activity and did not complement the protein sorting or morphological defects of the vps4 delta1 mutant. Indeed, when expressed at normal levels in wild-type cells, the mutant vps4 gene acted as a dominant-negative allele. The phenotypic characterization of a temperature-sensitive vps4 allele showed that the immediate consequence of loss of Vps4p function is a defect in vacuolar protein delivery. In this mutant, precursor CPY was not secreted but instead accumulated in an intracellular compartment, presumably the pre-vacuolar endosome. Electron microscopy revealed that upon temperature shift, exaggerated stacks of curved cisternal membranes (aberrant endosome) also accumulated in the vps4ts mutant. Based on these and other observations, we propose that Vps4p function is required for efficient transport out of the pre-vacuolar endosome. PMID:9155008

  11. [Series: Medical Applications of the PHITS Code (2): Acceleration by Parallel Computing].

    PubMed

    Furuta, Takuya; Sato, Tatsuhiko

    2015-01-01

    Time-consuming Monte Carlo dose calculation becomes feasible owing to the development of computer technology. However, the recent development is due to emergence of the multi-core high performance computers. Therefore, parallel computing becomes a key to achieve good performance of software programs. A Monte Carlo simulation code PHITS contains two parallel computing functions, the distributed-memory parallelization using protocols of message passing interface (MPI) and the shared-memory parallelization using open multi-processing (OpenMP) directives. Users can choose the two functions according to their needs. This paper gives the explanation of the two functions with their advantages and disadvantages. Some test applications are also provided to show their performance using a typical multi-core high performance workstation.

  12. Student-Athlete Perceptions of a Summer Pre-Enrollment Experience at an NCAA Division I-AAA Institution

    ERIC Educational Resources Information Center

    Dalgety, Michael Franklin

    2012-01-01

    The purpose of this exploratory qualitative study was to examine student-athlete perceptions of the role of summer pre-enrollment in their adjustment and transition to college. The study focused on student-athletes who received athletically-related financial aid at a National Collegiate Athletic Association (NCAA) Division I-AAA institution. The…

  13. Pareto front analysis of 6 and 15 MV dynamic IMRT for lung cancer using pencil beam, AAA and Monte Carlo

    NASA Astrophysics Data System (ADS)

    Ottosson, R. O.; Karlsson, A.; Behrens, C. F.

    2010-08-01

    The pencil beam dose calculation method is frequently used in modern radiation therapy treatment planning regardless of the fact that it is documented inaccurately for cases involving large density variations. The inaccuracies are larger for higher beam energies. As a result, low energy beams are conventionally used for lung treatments. The aim of this study was to analyze the advantages and disadvantages of dynamic IMRT treatment planning for high and low photon energy in order to assess if deviating from the conventional low energy approach could be favorable in some cases. Furthermore, the influence of motion on the dose distribution was investigated. Four non-small cell lung cancer cases were selected for this study. Inverse planning was conducted using Varian Eclipse. A total number of 31 dynamic IMRT plans, distributed amongst the four cases, were created ranging from PTV conformity weighted to normal tissue sparing weighted. All optimized treatment plans were calculated using three different calculation algorithms (PBC, AAA and MC). In order to study the influence of motion, two virtual lung phantoms were created. The idea was to mimic two different situations: one where the GTV is located centrally in the PTV and another where the GTV was close to the edge of the PTV. PBC is in poor agreement with MC and AAA for all cases and treatment plans. AAA overestimates the dose, compared to MC. This effect is more pronounced for 15 than 6 MV. AAA and MC both predict similar perturbations in dose distributions when moving the GTV to the edge of the PTV. PBC, however, predicts results contradicting those of AAA and MC. This study shows that PB-based dose calculation algorithms are clinically insufficient for patient geometries involving large density inhomogeneities. AAA is in much better agreement with MC, but even a small overestimation of the dose level by the algorithm might lead to a large part of the PTV being underdosed. It is advisable to use low energy as a

  14. Pareto front analysis of 6 and 15 MV dynamic IMRT for lung cancer using pencil beam, AAA and Monte Carlo.

    PubMed

    Ottosson, R O; Karlsson, A; Behrens, C F

    2010-08-21

    The pencil beam dose calculation method is frequently used in modern radiation therapy treatment planning regardless of the fact that it is documented inaccurately for cases involving large density variations. The inaccuracies are larger for higher beam energies. As a result, low energy beams are conventionally used for lung treatments. The aim of this study was to analyze the advantages and disadvantages of dynamic IMRT treatment planning for high and low photon energy in order to assess if deviating from the conventional low energy approach could be favorable in some cases. Furthermore, the influence of motion on the dose distribution was investigated. Four non-small cell lung cancer cases were selected for this study. Inverse planning was conducted using Varian Eclipse. A total number of 31 dynamic IMRT plans, distributed amongst the four cases, were created ranging from PTV conformity weighted to normal tissue sparing weighted. All optimized treatment plans were calculated using three different calculation algorithms (PBC, AAA and MC). In order to study the influence of motion, two virtual lung phantoms were created. The idea was to mimic two different situations: one where the GTV is located centrally in the PTV and another where the GTV was close to the edge of the PTV. PBC is in poor agreement with MC and AAA for all cases and treatment plans. AAA overestimates the dose, compared to MC. This effect is more pronounced for 15 than 6 MV. AAA and MC both predict similar perturbations in dose distributions when moving the GTV to the edge of the PTV. PBC, however, predicts results contradicting those of AAA and MC. This study shows that PB-based dose calculation algorithms are clinically insufficient for patient geometries involving large density inhomogeneities. AAA is in much better agreement with MC, but even a small overestimation of the dose level by the algorithm might lead to a large part of the PTV being underdosed. It is advisable to use low energy as a

  15. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    SciTech Connect

    Chibani, Omar C-M Ma, Charlie

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  16. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  17. The pulsed beam facility at the 3 MV Van de Graaff accelerator in Florence: Overview and examples of applications

    NASA Astrophysics Data System (ADS)

    Taccetti, N.; Giuntini, L.; Casini, G.; Stefanini, A. A.; Chiari, M.; Fedi, M. E.; Mandò, P. A.

    2002-04-01

    An electrostatic chopper has been installed at the KN 3000 accelerator in Florence to obtain short beam pulses with a number of particles per pulse whose average value can be chosen by varying the current intensity at the deflector plates input. Beam pulses can be obtained containing an average number of particles per pulse from less than one to thousands. The transmitted beam pulses can be as short as 200 ps FWHM, at a repetition rate up to about 100 kHz. Among the many applications of the facility, the direct measurement of energy loss and straggling of protons in Kapton and aluminium is reported. In this measurement, the facility has been tuned for transmission of mainly single-proton pulses; the beam energy is directly measured downstream with a good energy-resolution detector, without and with absorbers in front. In general, measurements of this kind can be directed both to study the basic processes of charged particles interactions in materials, or more practically to obtain the effective values of energy parameters useful in many IBA applications, avoiding the need to rely on simulations or theoretical estimates. Also briefly described is an application to Si-detector testing. In this case, the facility has been tuned for transmission of pulses containing many hundreds of protons of energy Ep=2.5 MeV and the detector is directly exposed to the pulses. Spectra containing equally spaced peaks at energies multiple of Ep are obtained and the response linearity of the detector plus electronics system can thus be checked.

  18. US Particle Accelerators at Age 50.

    ERIC Educational Resources Information Center

    Wilson, R. R.

    1981-01-01

    Reviews the development of accelerators over the past 50 years. Topics include: types of accelerators, including cyclotrons; sociology of accelerators (motivation, financing, construction, and use); impact of war; national laboratories; funding; applications; future projects; foreign projects; and international collaborations. (JN)

  19. Microelectromechanical acceleration-sensing apparatus

    DOEpatents

    Lee, Robb M.; Shul, Randy J.; Polosky, Marc A.; Hoke, Darren A.; Vernon, George E.

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  20. Application of optimal control principles to describe the supervisory control behavior of AAA crew members

    NASA Technical Reports Server (NTRS)

    Hale, C.; Valentino, G. J.

    1982-01-01

    Supervisory decision making and control behavior within a C(3) oriented, ground based weapon system is being studied. The program involves empirical investigation of the sequence of control strategies used during engagement of aircraft targets. An engagement is conceptually divided into several stages which include initial information processing activity, tracking, and ongoing adaptive control decisions. Following a brief description of model parameters, two experiments which served as initial investigation into the accuracy of assumptions regarding the importance of situation assessment in procedure selection are outlined. Preliminary analysis of the results upheld the validity of the assumptions regarding strategic information processing and cue-criterion relationship learning. These results indicate that this model structure should be useful in studies of supervisory decision behavior.

  1. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  2. Accelerating dissipative particle dynamics simulations on GPUs: Algorithms, numerics and applications

    NASA Astrophysics Data System (ADS)

    Tang, Yu-Hang; Karniadakis, George Em

    2014-11-01

    We present a scalable dissipative particle dynamics simulation code, fully implemented on the Graphics Processing Units (GPUs) using a hybrid CUDA/MPI programming model, which achieves 10-30 times speedup on a single GPU over 16 CPU cores and almost linear weak scaling across a thousand nodes. A unified framework is developed within which the efficient generation of the neighbor list and maintaining particle data locality are addressed. Our algorithm generates strictly ordered neighbor lists in parallel, while the construction is deterministic and makes no use of atomic operations or sorting. Such neighbor list leads to optimal data loading efficiency when combined with a two-level particle reordering scheme. A faster in situ generation scheme for Gaussian random numbers is proposed using precomputed binary signatures. We designed custom transcendental functions that are fast and accurate for evaluating the pairwise interaction. The correctness and accuracy of the code is verified through a set of test cases simulating Poiseuille flow and spontaneous vesicle formation. Computer benchmarks demonstrate the speedup of our implementation over the CPU implementation as well as strong and weak scalability. A large-scale simulation of spontaneous vesicle formation consisting of 128 million particles was conducted to further illustrate the practicality of our code in real-world applications. Catalogue identifier: AETN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 1 602 716 No. of bytes in distributed program, including test data, etc.: 26 489 166 Distribution format: tar.gz Programming language: C/C++, CUDA C/C++, MPI. Computer: Any computers having nVidia GPGPUs with compute capability 3.0. Operating system: Linux. Has the code been

  3. The Development of Biomedical Applications of Nuclear Physics Detector Technology at the Thomas Jefferson National Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Weisenberger, Andrew

    2003-10-01

    The Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility (Jefferson Lab) for the United States Department of Energy. As a user facility for physicists worldwide, its primary mission is to conduct basic nuclear physics research of the atom's nucleus at the quark level. Within the Jefferson Lab Physics Division is the Jefferson Lab Detector Group which was formed to support the design and construction of new detector systems during the construction phase of the major detector systems at Jefferson Lab and to act as technical consultants for the lab scientists and users. The Jefferson Lab Detector Group, headed by Dr. Stan Majewski, has technical capabilities in the development and use of radiation detection systems. These capabilities include expertise in nuclear particle detection through the use of gas detectors, scintillation and light guide techniques, standard and position-sensitive photomultiplier tubes (PSPMTs), fast analog readout electronics and data acquisition, and on-line image formation and analysis. In addition to providing nuclear particle detector support to the lab, the group has for several years (starting in 1996) applied these technologies to the development of novel high resolution gamma-ray imaging systems for biomedical applications and x-ray imaging techniques. The Detector Group has developed detector systems for breast cancer detection, brain cancer therapy and small animal imaging to support biomedical research. An overview will be presented of how this small nuclear physics detector research group by teaming with universities, medical facilities, industry and other national laboratories applies technology originating from basic nuclear physics research to biomedical applications.

  4. Combined generating-accelerating buncher for compact linear accelerators

    NASA Astrophysics Data System (ADS)

    Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Sokolov, I. D.; Zavadtsev, A. A.

    2016-09-01

    Described in the previous article [1] method of the power extraction from the modulated electron beam has been applied to the compact standing wave electron linear accelerator feeding system, which doesnt require any connection waveguides between the power source and the accelerator itself [2]. Generating and accelerating bunches meet in the hybrid accelerating cell operating at TM020 mode, thus the accelerating module is placed on the axis of the generating module, which consists from the pulsed high voltage electron sources and electrons dumps. This combination makes the accelerator very compact in size which is very valuable for the modern applications such as portable inspection sources. Simulations and geometry cold tests are presented.

  5. Relative importance of aneurysm diameter and body size for predicting AAA rupture in men and women

    PubMed Central

    Lo, Ruby C.; Lu, Bing; Fokkema, Margriet T.M.; Conrad, Mark; Patel, Virendra I.; Fillinger, Mark; Matyal, Robina; Schermerhorn, Marc L.

    2014-01-01

    Objectives Women have been shown to have up to a four-fold higher risk of abdominal aortic aneurysm (AAA) rupture at any given aneurysm diameter compared to men, leading to recommendations to offer repair to women at lower diameter thresholds. Although this higher risk of rupture may simply reflect greater relative aortic dilatation in women who have smaller aortas to begin with, this has never been quantified. Our objective was therefore to quantify the relationship between rupture and aneurysm diameter relative to body size and to determine whether a differential association between aneurysm diameter, body size, and rupture risk exists for men and women. Methods We performed a retrospective review of all patients in the Vascular Study Group of New England (VSGNE) database who underwent endovascular or open AAA repair. Using each patient’s height and weight, body mass index (BMI) and body surface area (BSA) were calculated. Next, indices of each measure of body size (height, weight, BMI, BSA) relative to aneurysm diameter were calculated for each patient. To generate these indices, we divided aneurysm diameter (in cm) by the measure of body size [e.g. aortic size index (ASI) = aneurysm diameter (cm) / BSA (m2)]. Along with other relevant clinical variables, we used these indices to construct different age-adjusted and multivariable-adjusted logistic regression models to determine predictors of ruptured repair vs. elective repair. Models for men and women were developed separately and different models were compared using the area under the curve (AUC). Results We identified 4045 patients who underwent AAA repair (78% male, 53% EVAR). Women had significantly smaller diameter aneurysms, lower BSA, and higher BSA indices than men (Table 1). For men, the variable that increased the odds of rupture the most was aneurysm diameter (AUC = 0.82). Men exhibited an increased rupture risk with increasing aneurysm diameter (<5.5cm: OR 1.0; 5.5–6.4cm: OR 0.9, 95% CI 0.5–1

  6. Ion Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Barnard, John J.; Horioka, Kazuhiko

    The description of beams in RF and induction accelerators share many common features. Likewise, there is considerable commonality between electron induction accelerators (see Chap. 7) and ion induction accelerators. However, in contrast to electron induction accelerators, there are fewer ion induction accelerators that have been operated as application-driven user facilities. Ion induction accelerators are envisioned for applications (see Chap. 10) such as Heavy Ion Fusion (HIF), High Energy Density Physics (HEDP), and spallation neutron sources. Most ion induction accelerators constructed to date have been limited scale facilities built for feasibility studies for HIF and HEDP where a large numbers of ions are required on target in short pulses. Because ions are typically non-relativistic or weakly relativistic in much of the machine, space-charge effects can be of crucial importance. This contrasts the situation with electron machines, which are usually strongly relativistic leading to weaker transverse space-charge effects and simplified longitudinal dynamics. Similarly, the bunch structure of ion induction accelerators relative to RF machines results in significant differences in the longitudinal physics.

  7. AAAS Mass Media Science and Engineering Fellowship Program: Building Communication Skills in Young Scientists

    NASA Astrophysics Data System (ADS)

    Pasco, S.

    2006-12-01

    The AAAS Mass Media Science &Engineering Fellowship program has succeeded in training scientists to become more effective communicators for more than 30 years. The program places advanced science, engineering and mathematics students at media sites to work as science reporters for ten weeks each summer. AAAS places between 15 to 20 students a year at newspapers, magazines and radio stations. Our goal is to create better science communicators who understand their role in fostering the public's understanding of science. Fellows leave the program with a greater awareness of how to communicate complex issues by making the connection as to why people should be interested in certain developments, and more specifically, how they will impact their communities. 2004 AGU Fellow Rei Ueyama put her lessons learned to good use during her Fellowship at the Sacramento Bee. "In a regional paper like The Bee, a (story) also had to have a local touch. I needed to show why people in Sacramento (or California) should bother to read the story. One example is the story I wrote about seeding the ocean with iron particles to fight global warming. Since ocean fertilization is a global issue, I had to clearly specify the reason why The Bee and not The New York Times was running the story. The local angle I chose was to point out that the core group of scientists involved in this study was from Monterey Bay, Calif." Many alumni tell us the program has been an integral force in shaping the course of their career. Similarly, sites often report that having a scientist on staff is an invaluable resource that allows them to cover additional science stories as well as report some technical stories in more depth. The American Geophysical Union has sponsored a Mass Media Fellow since 1997. Sponsorship allows affiliate program partners to establish connections with young professionals in their field. They are then also able to take advantage of the communication skills resident in their alumni base

  8. Preventing the accelerated low-temperature oxidation of MoSi{sub 2} (pesting) by the application of superficial alkali-salt layers

    SciTech Connect

    Cockeram, B.V.; Wang, G.; Rapp, R.A.

    1996-02-01

    Previous work showed that MoSi{sub 2} diffusion coatings formed by a NaF-activated pack cementation process did not pest. A Na-Al-oxide by-product layer resulting from the NaF activator formed a Na-silicate layer to passivate MoSi{sub 2}. Superficial NaF layers were then used to prevent the pesting of MoSi{sub 2} diffusion coatings that were otherwise susceptible to pest disintegration. In this study, the use of superficial alkali-salt layers to prevent the accelerated oxidation of bulk MoSi{sub 2} at 500{degrees}C is investigated more broadly. The application of Na-halide, KF, LiF, Na{sub 2}B{sub 4}O{sub 7}, or Na-silicate layers prior to oxidation prevented accelerated oxidation and pesting for at least 2000 hr at 500{degrees}C in air. The formation of a fast-growing, Na-silicate layer passivates MoSi{sub 2}. The MoO{sub 3} that forms during oxidation absorbs sodium by intercalation to form stable Na-molybdate precipitates. Na{sub 2}B{sub 4}O{sub 7}, Na-silicate, LiF, and KF prevented accelerated oxidation at 500{degrees}C by a similar mechanism. The application of alkali-halide salts is a simple, effective solution to prevent the accelerated oxidation and pesting of MoSi{sub 2}.

  9. Overview of accelerators in medicine

    SciTech Connect

    Lennox, A.J. |

    1993-06-01

    Accelerators used for medicine include synchrotrons, cyclotrons, betatrons, microtrons, and electron, proton, and light ion linacs. Some accelerators which were formerly found only at physics laboratories are now being considered for use in hospital-based treatment and diagnostic facilities. This paper presents typical operating parameters for medical accelerators and gives specific examples of clinical applications for each type of accelerator, with emphasis on recent developments in the field.

  10. The new external ion beam analysis setup at the Demokritos Tandem accelerator and first applications in cultural heritage

    NASA Astrophysics Data System (ADS)

    Sokaras, Dimosthenis; Bistekos, Euthimios; Georgiou, Lambros; Salomon, Joseph; Bogovac, Mladen; Aloupi-Siotis, Eleni; Paschalis, Vasilis; Aslani, Ioanna; Karabagia, Sofia; Lagoyannis, Anastasios; Harissopulos, Sotirios; Kantarelou, Vasiliki; Karydas, Andreas-Germanos

    2011-03-01

    At the 5.5 MV Tandem VdG accelerator of the Institute of Nuclear Physics of N.C.S.R. "Demokritos", Athens, Greece, an external ion-beam set-up has been recently developed and installed. The aim of this development was to integrate the analytical capabilities of the PIXE, RBS and PIGE ion beam techniques in one experimental set-up, so that to attain a complete elemental and near surface structural characterization of samples in an almost non-destructive way and without any limitation concerning their size or conductive state. A careful 3D mechanical drawing optimized the set-up experimental parameters achieving probe dimensions at the millimeter range (1 mm 2) and fulfilling the special requirements imposed for optimum performance of the aforementioned techniques, including the possibility to use heavier, than protons, ion beams. For the digital pulse processing of the X-ray, γ-ray and charged particle detector signals, novel hardware and software tools were developed based on a custom FPGA configuration. The first applications were focused in the quality control of materials that have been intentionally contaminated with a particular tracer-element ("tagged" materials). The tagged materials which were developed and tested are technologically authentic replicas of ancient attic ceramics with black glazed decoration. Analytical diagnostic studies were carried out for a few representative paintings of contemporary Greek painters in order to identify and document materials/pigments and techniques and eventually to prevent trade of fakes. Finally, ancient glass beads were also examined with respect to the sodium concentration and its in-depth homogeneity.

  11. GPU-Accelerated Monte Carlo Electron Transport Methods: Development and Application for Radiation Dose Calculations Using Six GPU cards

    NASA Astrophysics Data System (ADS)

    Su, Lin; Du, Xining; Liu, Tianyu; Xu, X. George

    2014-06-01

    An electron-photon coupled Monte Carlo code ARCHER - Accelerated Radiation-transport Computations in Heterogeneous EnviRonments - is being developed at Rensselaer Polytechnic Institute as a software testbed for emerging heterogeneous high performance computers that utilize accelerators such as GPUs. This paper presents the preliminary code development and the testing involving radiation dose related problems. In particular, the paper discusses the electron transport simulations using the class-II condensed history method. The considered electron energy ranges from a few hundreds of keV to 30 MeV. For photon part, photoelectric effect, Compton scattering and pair production were modeled. Voxelized geometry was supported. A serial CPU code was first written in C++. The code was then transplanted to the GPU using the CUDA C 5.0 standards. The hardware involved a desktop PC with an Intel Xeon X5660 CPU and six NVIDIA Tesla™ M2090 GPUs. The code was tested for a case of 20 MeV electron beam incident perpendicularly on a water-aluminum-water phantom. The depth and later dose profiles were found to agree with results obtained from well tested MC codes. Using six GPU cards, 6x106 electron histories were simulated within 2 seconds. In comparison, the same case running the EGSnrc and MCNPX codes required 1645 seconds and 9213 seconds, respectively. On-going work continues to test the code for different medical applications such as radiotherapy and brachytherapy.

  12. Critical clamp loader processing by an essential AAA+ protease in Caulobacter crescentus.

    PubMed

    Vass, Robert H; Chien, Peter

    2013-11-01

    Chromosome replication relies on sliding clamps that are loaded by energy-dependent complexes. In Escherichia coli, the ATP-binding clamp loader subunit DnaX exists as both long (τ) and short (γ) forms generated through programmed translational frameshifting, but the need for both forms is unclear. Here, we show that in Caulobacter crescentus, DnaX isoforms are unexpectedly generated through partial proteolysis by the AAA+ protease casein lytic proteinase (Clp) XP. We find that the normally processive ClpXP protease partially degrades DnaX to produce stable fragments upon encountering a glycine-rich region adjacent to a structured domain. Increasing the sequence complexity of this region prevents partial proteolysis and generates a τ-only form of DnaX in vivo that is unable to support viability on its own. Growth is restored when γ is provided in trans, but these strains are more sensitive to DNA damage compared with strains that can generate γ through proteolysis. Our work reveals an unexpected mode of partial processing by the ClpXP protease to generate DnaX isoforms, demonstrates that both τ and γ forms of DnaX are required for Caulobacter viability, and identifies a role for clamp loader diversity in responding to DNA damage. The conservation of distinct DnaX isoforms throughout bacteria despite fundamentally different mechanisms for producing them suggests there may be a conserved need for alternate clamp loader complexes during DNA damaging conditions.

  13. Abo1, a conserved bromodomain AAA-ATPase, maintains global nucleosome occupancy and organisation.

    PubMed

    Gal, Csenge; Murton, Heather E; Subramanian, Lakxmi; Whale, Alex J; Moore, Karen M; Paszkiewicz, Konrad; Codlin, Sandra; Bähler, Jürg; Creamer, Kevin M; Partridge, Janet F; Allshire, Robin C; Kent, Nicholas A; Whitehall, Simon K

    2016-01-01

    Maintenance of the correct level and organisation of nucleosomes is crucial for genome function. Here, we uncover a role for a conserved bromodomain AAA-ATPase, Abo1, in the maintenance of nucleosome architecture in fission yeast. Cells lacking abo1(+) experience both a reduction and mis-positioning of nucleosomes at transcribed sequences in addition to increased intragenic transcription, phenotypes that are hallmarks of defective chromatin re-establishment behind RNA polymerase II. Abo1 is recruited to gene sequences and associates with histone H3 and the histone chaperone FACT. Furthermore, the distribution of Abo1 on chromatin is disturbed by impaired FACT function. The role of Abo1 extends to some promoters and also to silent heterochromatin. Abo1 is recruited to pericentromeric heterochromatin independently of the HP1 ortholog, Swi6, where it enforces proper nucleosome occupancy. Consequently, loss of Abo1 alleviates silencing and causes elevated chromosome mis-segregation. We suggest that Abo1 provides a histone chaperone function that maintains nucleosome architecture genome-wide.

  14. Simulation of bifurcated stent grafts to treat abdominal aortic aneurysms (AAA)

    NASA Astrophysics Data System (ADS)

    Egger, J.; Großkopf, S.; Freisleben, B.

    2007-03-01

    In this paper a method is introduced, to visualize bifurcated stent grafts in CT-Data. The aim is to improve therapy planning for minimal invasive treatment of abdominal aortic aneurysms (AAA). Due to precise measurement of the abdominal aortic aneurysm and exact simulation of the bifurcated stent graft, physicians are supported in choosing a suitable stent prior to an intervention. The presented method can be used to measure the dimensions of the abdominal aortic aneurysm as well as simulate a bifurcated stent graft. Both of these procedures are based on a preceding segmentation and skeletonization of the aortic, right and left iliac. Using these centerlines (aortic, right and left iliac) a bifurcated initial stent is constructed. Through the implementation of an ACM method the initial stent is fit iteratively to the vessel walls - due to the influence of external forces (distance- as well as balloonforce). Following the fitting process, the crucial values for choosing a bifurcated stent graft are measured, e.g. aortic diameter, right and left common iliac diameter, minimum diameter of distal neck. The selected stent is then simulated to the CT-Data - starting with the initial stent. It hereby becomes apparent if the dimensions of the bifurcated stent graft are exact, i.e. the fitting to the arteries was done properly and no ostium was covered.

  15. CODAS syndrome is associated with mutations of LONP1, encoding mitochondrial AAA+ Lon protease.

    PubMed

    Strauss, Kevin A; Jinks, Robert N; Puffenberger, Erik G; Venkatesh, Sundararajan; Singh, Kamalendra; Cheng, Iteen; Mikita, Natalie; Thilagavathi, Jayapalraja; Lee, Jae; Sarafianos, Stefan; Benkert, Abigail; Koehler, Alanna; Zhu, Anni; Trovillion, Victoria; McGlincy, Madeleine; Morlet, Thierry; Deardorff, Matthew; Innes, A Micheil; Prasad, Chitra; Chudley, Albert E; Lee, Irene Nga Wing; Suzuki, Carolyn K

    2015-01-01

    CODAS syndrome is a multi-system developmental disorder characterized by cerebral, ocular, dental, auricular, and skeletal anomalies. Using whole-exome and Sanger sequencing, we identified four LONP1 mutations inherited as homozygous or compound-heterozygous combinations among ten individuals with CODAS syndrome. The individuals come from three different ancestral backgrounds (Amish-Swiss from United States, n = 8; Mennonite-German from Canada, n = 1; mixed European from Canada, n = 1). LONP1 encodes Lon protease, a homohexameric enzyme that mediates protein quality control, respiratory-complex assembly, gene expression, and stress responses in mitochondria. All four pathogenic amino acid substitutions cluster within the AAA(+) domain at residues near the ATP-binding pocket. In biochemical assays, pathogenic Lon proteins show substrate-specific defects in ATP-dependent proteolysis. When expressed recombinantly in cells, all altered Lon proteins localize to mitochondria. The Old Order Amish Lon variant (LONP1 c.2161C>G[p.Arg721Gly]) homo-oligomerizes poorly in vitro. Lymphoblastoid cell lines generated from affected children have (1) swollen mitochondria with electron-dense inclusions and abnormal inner-membrane morphology; (2) aggregated MT-CO2, the mtDNA-encoded subunit II of cytochrome c oxidase; and (3) reduced spare respiratory capacity, leading to impaired mitochondrial proteostasis and function. CODAS syndrome is a distinct, autosomal-recessive, developmental disorder associated with dysfunction of the mitochondrial Lon protease.

  16. Development and Analysis of Synthetic Composite Materials Emulating Patient AAA Wall Material Properties

    NASA Astrophysics Data System (ADS)

    Margossian, Christa M.

    Abdominal Aortic Aneurysm (AAA) rupture accounts for 14,000 deaths a year in the United States. Since the number of ruptures has not decreased significantly in recent years despite improvements in imaging and surgical procedures, there is a need for an accurate, noninvasive technique capable of establishing rupture risk for specific patients and discriminating lesions at high risk. In this project, synthetic composite materials replicating patient-specific wall stiffness and strength were developed and their material properties evaluated. Composites utilizing various fibers were developed to give a range of stiffness from 1825.75 kPa up through 8187.64 kPa with one base material, Sylgard 170. A range of strength from 631.12 kPa to 1083 kPa with the same base material was also found. By evaluating various base materials and various reinforcing fibers, a catalogue of stiffnesses and strengths was started to allow for adaptation to specific patient properties. Three specific patient properties were well-matched with two composites fabricated: silk thread-reinforced Sylgard 170 and silk thread-reinforced Dragon Skin 20. The composites showed similar stiffnesses to the specific patients while reaching target stresses at particular strains. Not all patients were matched with composites as of yet, but recommendations for future matches are able to be determined. These composites will allow for the future evaluation of flow-induced wall stresses in models replicating patient material properties and geometries.

  17. AAA-ATPase FIDGETIN-LIKE 1 and Helicase FANCM Antagonize Meiotic Crossovers by Distinct Mechanisms

    PubMed Central

    Girard, Chloe; Chelysheva, Liudmila; Choinard, Sandrine; Froger, Nicole; Macaisne, Nicolas; Lehmemdi, Afef; Mazel, Julien; Crismani, Wayne; Mercier, Raphael

    2015-01-01

    Meiotic crossovers (COs) generate genetic diversity and are critical for the correct completion of meiosis in most species. Their occurrence is tightly constrained but the mechanisms underlying this limitation remain poorly understood. Here we identified the conserved AAA-ATPase FIDGETIN-LIKE-1 (FIGL1) as a negative regulator of meiotic CO formation. We show that Arabidopsis FIGL1 limits CO formation genome-wide, that FIGL1 controls dynamics of the two conserved recombinases DMC1 and RAD51 and that FIGL1 hinders the interaction between homologous chromosomes, suggesting that FIGL1 counteracts DMC1/RAD51-mediated inter-homologue strand invasion to limit CO formation. Further, depleting both FIGL1 and the previously identified anti-CO helicase FANCM synergistically increases crossover frequency. Additionally, we showed that the effect of mutating FANCM on recombination is much lower in F1 hybrids contrasting from the phenotype of inbred lines, while figl1 mutation equally increases crossovers in both contexts. This shows that the modes of action of FIGL1 and FANCM are differently affected by genomic contexts. We propose that FIGL1 and FANCM represent two successive barriers to CO formation, one limiting strand invasion, the other disassembling D-loops to promote SDSA, which when both lifted, leads to a large increase of crossovers, without impairing meiotic progression. PMID:26161528

  18. Critical clamp loader processing by an essential AAA+ protease in Caulobacter crescentus

    PubMed Central

    Vass, Robert H.; Chien, Peter

    2013-01-01

    Chromosome replication relies on sliding clamps that are loaded by energy-dependent complexes. In Escherichia coli, the ATP-binding clamp loader subunit DnaX exists as both long (τ) and short (γ) forms generated through programmed translational frameshifting, but the need for both forms is unclear. Here, we show that in Caulobacter crescentus, DnaX isoforms are unexpectedly generated through partial proteolysis by the AAA+ protease casein lytic proteinase (Clp) XP. We find that the normally processive ClpXP protease partially degrades DnaX to produce stable fragments upon encountering a glycine-rich region adjacent to a structured domain. Increasing the sequence complexity of this region prevents partial proteolysis and generates a τ-only form of DnaX in vivo that is unable to support viability on its own. Growth is restored when γ is provided in trans, but these strains are more sensitive to DNA damage compared with strains that can generate γ through proteolysis. Our work reveals an unexpected mode of partial processing by the ClpXP protease to generate DnaX isoforms, demonstrates that both τ and γ forms of DnaX are required for Caulobacter viability, and identifies a role for clamp loader diversity in responding to DNA damage. The conservation of distinct DnaX isoforms throughout bacteria despite fundamentally different mechanisms for producing them suggests there may be a conserved need for alternate clamp loader complexes during DNA damaging conditions. PMID:24145408

  19. CODAS Syndrome Is Associated with Mutations of LONP1, Encoding Mitochondrial AAA+ Lon Protease

    PubMed Central

    Strauss, Kevin A.; Jinks, Robert N.; Puffenberger, Erik G.; Venkatesh, Sundararajan; Singh, Kamalendra; Cheng, Iteen; Mikita, Natalie; Thilagavathi, Jayapalraja; Lee, Jae; Sarafianos, Stefan; Benkert, Abigail; Koehler, Alanna; Zhu, Anni; Trovillion, Victoria; McGlincy, Madeleine; Morlet, Thierry; Deardorff, Matthew; Innes, A. Micheil; Prasad, Chitra; Chudley, Albert E.; Lee, Irene Nga Wing; Suzuki, Carolyn K.

    2015-01-01

    CODAS syndrome is a multi-system developmental disorder characterized by cerebral, ocular, dental, auricular, and skeletal anomalies. Using whole-exome and Sanger sequencing, we identified four LONP1 mutations inherited as homozygous or compound-heterozygous combinations among ten individuals with CODAS syndrome. The individuals come from three different ancestral backgrounds (Amish-Swiss from United States, n = 8; Mennonite-German from Canada, n = 1; mixed European from Canada, n = 1). LONP1 encodes Lon protease, a homohexameric enzyme that mediates protein quality control, respiratory-complex assembly, gene expression, and stress responses in mitochondria. All four pathogenic amino acid substitutions cluster within the AAA+ domain at residues near the ATP-binding pocket. In biochemical assays, pathogenic Lon proteins show substrate-specific defects in ATP-dependent proteolysis. When expressed recombinantly in cells, all altered Lon proteins localize to mitochondria. The Old Order Amish Lon variant (LONP1 c.2161C>G[p.Arg721Gly]) homo-oligomerizes poorly in vitro. Lymphoblastoid cell lines generated from affected children have (1) swollen mitochondria with electron-dense inclusions and abnormal inner-membrane morphology; (2) aggregated MT-CO2, the mtDNA-encoded subunit II of cytochrome c oxidase; and (3) reduced spare respiratory capacity, leading to impaired mitochondrial proteostasis and function. CODAS syndrome is a distinct, autosomal-recessive, developmental disorder associated with dysfunction of the mitochondrial Lon protease. PMID:25574826

  20. Maintenance of mitochondrial genome distribution by mitochondrial AAA+ protein ClpX.

    PubMed

    Kasashima, Katsumi; Sumitani, Megumi; Endo, Hitoshi

    2012-11-01

    The segregation of mitochondrial DNA (mtDNA) is important for the maintenance and transmission of the genome between generations. Recently, we clarified that human mitochondrial transcription factor A (TFAM) is required for equal distribution and symmetric segregation of mtDNA in cultured cells; however, the molecular mechanism involved is largely unknown. ClpX is an ATPase associated with various cellular activities (AAA+) proteins that localize to the mitochondrial matrix and is suggested to associate with mtDNA. In this study, we found that RNAi-mediated knockdown of ClpX in HeLa cells resulted in enlarged mtDNA nucleoids, which is very similar to that observed in TFAM-knockdown cells in several properties. The expression of TFAM protein was not significantly reduced in ClpX-knockdown cells. However, the enlarged mtDNA nucleoids caused by ClpX-knockdown were suppressed by overexpression of recombinant TFAM and the phenotype was not observed in knockdown with ClpP, a protease subunit of ClpXP. Endogenous ClpX and TFAM exist in close vicinity, and ClpX enhanced DNA-binding activity of TFAM in vitro. These results suggest that human ClpX, a novel mtDNA regulator, maintains mtDNA nucleoid distribution through TFAM function as a chaperone rather than as a protease and its involvement in mtDNA segregation. PMID:22841477

  1. ATP-binding sites in brain p97/VCP (valosin-containing protein), a multifunctional AAA ATPase.

    PubMed Central

    Zalk, Ran; Shoshan-Barmatz, Varda

    2003-01-01

    VCP (valosin-containing protein) or p97 is a member of the AAA family (ATPases associated with a variety of cellular activities family), a diverse group of proteins sharing a key conserved AAA module containing duplicate putative ATP-binding sites. Although the functions of the AAA family are related to their putative ATP-binding sites, the binding of ATP to these sites has not yet been demonstrated. In the present study, the ATP-binding site(s) of brain VCP was characterized using the photoreactive ATP analogue, BzATP [3'- O -(4-benzoylbenzoyl)ATP]. Photo-activation of Bz-[alpha-(32)P]ATP resulted in its covalent binding to a 97-kDa purified soluble or membrane-associated protein, identified by amino acid sequencing as VCP. Bz-[alpha-(32)P]ATP covalently bound to the purified homo-hexameric VCP with an apparent high affinity (74-111 nM). A molar stoichiometry of 2.23+/-0.14 BzATP bound per homo-hexameric VCP (n =6) was determined using different methods for analysis of radiolabelling and protein determination. Nucleotides inhibited the binding of Bz-[alpha-(32)P]ATP to VCP with the following efficiency: BzATP>ATP>ADP>>adenosine 5'-[beta,gamma-imido]triphosphate>or=adenosine 5'-[beta,gamma-methylene]triphosphate, whereas AMP, GTP and CTP were ineffective. VCP was observed to possess very low ATPase activity, with nucleotide specificity similar to that for BzATP binding. Conformational changes induced by an alternating site mechanism for ATP binding are suggested as a molecular mechanism for coupling ATP binding to the diverse activities of the AAA family. PMID:12747802

  2. Color stability of modern composites subjected to different periods of accelerated artificial aging.

    PubMed

    Drubi-Filho, Brahim; Garcia, Lucas da Fonseca Roberti; Cruvinel, Diogo Rodrigues; Sousa, Ana Beatriz Silva; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2012-01-01

    The aim of this study was to evaluate the color stability of composites subjected to different periods of accelerated artificial aging (AAA). A polytetrafluorethylene matrix (10 x 2 mm) was used to fabricate 24 test specimens of three different composites (n=8): Tetric Ceram (Ivoclar/Vivadent); Filtek P90 and Z250 (3M ESPE), shade A3. After light activation for 20 s (FlashLite 1401), polishing and initial color readout (Spectrophotometer PCB 687; BYK Gardner), the test specimens were subjected to AAA (C-UV; Comexim), in 8-h cycles: 4 h exposure to UV-B rays at 50°C and 4 h condensation at 50°C. At the end of each cycle, color readouts were taken and the test ended when the mean value of ΔE attained a level ≥3.30. Tetric Ceram presented alteration in ΔE equal to 3.33 in the first aging cycle. For Filtek P90 and Z250, two (ΔE=3.60) and four (ΔE=3.42) AAA cycles were necessary. After each cycle, there was a reduction of luminosity in all the samples (ΔL). It was concluded that a short period of AAA was sufficient to promote clinically unacceptable color alteration in composites, and that this alteration was material-dependent. PMID:23306237

  3. Color stability of modern composites subjected to different periods of accelerated artificial aging.

    PubMed

    Drubi-Filho, Brahim; Garcia, Lucas da Fonseca Roberti; Cruvinel, Diogo Rodrigues; Sousa, Ana Beatriz Silva; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2012-01-01

    The aim of this study was to evaluate the color stability of composites subjected to different periods of accelerated artificial aging (AAA). A polytetrafluorethylene matrix (10 x 2 mm) was used to fabricate 24 test specimens of three different composites (n=8): Tetric Ceram (Ivoclar/Vivadent); Filtek P90 and Z250 (3M ESPE), shade A3. After light activation for 20 s (FlashLite 1401), polishing and initial color readout (Spectrophotometer PCB 687; BYK Gardner), the test specimens were subjected to AAA (C-UV; Comexim), in 8-h cycles: 4 h exposure to UV-B rays at 50°C and 4 h condensation at 50°C. At the end of each cycle, color readouts were taken and the test ended when the mean value of ΔE attained a level ≥3.30. Tetric Ceram presented alteration in ΔE equal to 3.33 in the first aging cycle. For Filtek P90 and Z250, two (ΔE=3.60) and four (ΔE=3.42) AAA cycles were necessary. After each cycle, there was a reduction of luminosity in all the samples (ΔL). It was concluded that a short period of AAA was sufficient to promote clinically unacceptable color alteration in composites, and that this alteration was material-dependent.

  4. KEK digital accelerator

    NASA Astrophysics Data System (ADS)

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  5. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  6. Time-dependent shock acceleration of particles. Effect of the time-dependent injection, with application to supernova remnants

    NASA Astrophysics Data System (ADS)

    Petruk, O.; Kopytko, B.

    2016-11-01

    Three approaches are considered to solve the equation which describes the time-dependent diffusive shock acceleration of test particles at the non-relativistic shocks. At first, the solution of Drury for the particle distribution function at the shock is generalized to any relation between the acceleration time-scales upstream and downstream and for the time-dependent injection efficiency. Three alternative solutions for the spatial dependence of the distribution function are derived. Then, the two other approaches to solve the time-dependent equation are presented, one of which does not require the Laplace transform. At the end, our more general solution is discussed, with a particular attention to the time-dependent injection in supernova remnants. It is shown that, comparing to the case with the dominant upstream acceleration time-scale, the maximum momentum of accelerated particles shifts towards the smaller momenta with increase of the downstream acceleration time-scale. The time-dependent injection affects the shape of the particle spectrum. In particular, (i) the power-law index is not solely determined by the shock compression, in contrast to the stationary solution; (ii) the larger the injection efficiency during the first decades after the supernova explosion, the harder the particle spectrum around the high-energy cutoff at the later times. This is important, in particular, for interpretation of the radio and gamma-ray observations of supernova remnants, as demonstrated on a number of examples.

  7. AAA+ proteases and their role in distinct stages along the Vibrio cholerae lifecycle.

    PubMed

    Pressler, Katharina; Vorkapic, Dina; Lichtenegger, Sabine; Malli, Gerald; Barilich, Benjamin P; Cakar, Fatih; Zingl, Franz G; Reidl, Joachim; Schild, Stefan

    2016-09-01

    The facultative human pathogen Vibrio cholerae has to adapt to different environmental conditions along its lifecycle by means of transcriptional, translational and post-translational regulation. This study provides a first comprehensive analysis regarding the contribution of the cytoplasmic AAA+ proteases Lon, ClpP and HslV to distinct features of V. cholerae behaviour, including biofilm formation, motility, cholera toxin expression and colonization fitness in the mouse model. While absence of HslV did not yield to any altered phenotype compared to wildtype, absence of Lon or ClpP resulted in significantly reduced colonization in vivo. In addition, a Δlon deletion mutant showed altered biofilm formation and increased motility, which could be correlated with higher expression of V. cholerae flagella gene class IV. Concordantly, we could show by immunoblot analysis, that Lon is the main protease responsible for proteolytic control of FliA, which is required for class IV flagella gene transcription, but also downregulates virulence gene expression. FliA becomes highly sensitive to proteolytic degradation in absence of its anti-sigma factor FlgM, a scenario reported to occur during mucosal penetration due to FlgM secretion through the broken flagellum. Our results confirm that the high stability of FliA in the absence of Lon results in less cholera toxin and toxin corgulated pilus production under virulence gene inducing conditions and in the presence of a damaged flagellum. Thus, the data presented herein provide a molecular explanation on how V. cholerae can achieve full expression of virulence genes during early stages of colonization, despite FliA getting liberated from the anti-sigma factor FlgM. PMID:27345492

  8. A proteomic study of Corynebacterium glutamicum AAA+ protease FtsH

    PubMed Central

    Lüdke, Alja; Krämer, Reinhard; Burkovski, Andreas; Schluesener, Daniela; Poetsch, Ansgar

    2007-01-01

    Background The influence of the membrane-bound AAA+ protease FtsH on membrane and cytoplasmic proteins of Corynebacterium glutamicum was investigated in this study. For the analysis of the membrane fraction, anion exchange chromatography was combined with SDS-PAGE, while the cytoplasmic protein fraction was studied by conventional two-dimensional gel electrophoresis. Results In contrast to the situation in other bacteria, deletion of C. glutamicum ftsH has no significant effect on growth in standard minimal medium or response to heat or osmotic stress. On the proteome level, deletion of the ftsH gene resulted in a strong increase of ten cytoplasmic and membrane proteins, namely biotin carboxylase/biotin carboxyl carrier protein (accBC), glyceraldehyde-3-phosphate dehydrogenase (gap), homocysteine methyltransferase (metE), malate synthase (aceB), isocitrate lyase (aceA), a conserved hypothetical protein (NCgl1985), succinate dehydrogenase A (sdhA), succinate dehydrogenase B (sdhB), succinate dehydrogenase CD (sdhCD), and glutamate binding protein (gluB), while 38 cytoplasmic and membrane-associated proteins showed a decreased abundance. The decreasing amount of succinate dehydrogenase A (sdhA) in the cytoplasmic fraction of the ftsH mutant compared to the wild type and its increasing abundance in the membrane fraction indicates that FtsH might be involved in the cleavage of a membrane anchor of this membrane-associated protein and by this changes its localization. Conclusion The data obtained hint to an involvement of C. glutamicum FtsH protease mainly in regulation of energy and carbon metabolism, while the protease is not involved in stress response, as found in other bacteria. PMID:17254330

  9. Crystal structure of a novel archaeal AAA+ ATPase SSO1545 from Sulfolobus solfataricus

    SciTech Connect

    Xu, Qingping; Rife, Christopher L.; Carlton, Dennis; Miller, Mitchell D.; Krishna, S. Sri; Elsliger, Marc-André; Abdubek, Polat; Astakhova, Tamara; Chiu, Hsiu-Ju; Clayton, Thomas; Duan, Lian; Feuerhelm, Julie; Grzechnik, Slawomir K.; Hale, Joanna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kumar, Abhinav; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Reyes, Ron; van den Bedem, Henry; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2009-08-28

    Signal transduction ATPases with numerous domains (STAND), a large class of P-loop NTPases, belong to AAA+ ATPases. They include AP(apoptotic)-ATPases (e.g., animal apoptosis regulators CED4/Apaf-1, plant disease resistance proteins, and bacterial AfsR-like transcription regulators), NACHT NTPases (e.g. CARD4, NAIP, Het-E-1, TLP1), and several other less well-characterized families. STAND differ from other P-loop NTPases by their unique sequence motifs, which include an hhGRExE (h, hydrophobic; x, any residue) motif at the N-terminal region, a GxP/GxxP motif at the C-terminal region of the NTPase domain, in addition to a C-terminal helical domain and additional domains such as WD40, TPR, LRR or catalytic modules. Despite significant biological interests, structural coverage of STAND proteins is very limited and only two other structures are currently known: the cell death regulators Apaf-1 and CED-4. Here, we report the crystal structure of SSO1545 from Sulfolobus solfataricus, which was determined using the semi-automated, high-throughput pipeline of the Joint Center for Structural Genomics (JCSG; http://www.jcsg.org), as part of the National Institute of General Medical Sciences' Protein Structure Initiative (PSI). SSO1545 (NP-342973.1), a representative of the archaeal STANDs, is a member of Pfam PF01637 and encodes a protein of 356 residues with calculated molecular weight and isoelectric point of 41.7 kD and 8.2, respectively.

  10. Application of ERTS-1 multispectral imagery to monitoring the present episode of accelerated erosion in southern Arizona

    NASA Technical Reports Server (NTRS)

    Morrison, R. B.; Cooley, M. E.

    1973-01-01

    An episode of accelerated arroyo-cutting and sheet erosion commenced about 1890 in southern Arizona, following several thousand years of generally sluggish erosion. For a 17,000-square-mile study area, ERTS-1 images, supplemented by ultrahigh-altitude (U-2 and RB-57) airphotos, are proving effective for producing the first comprehensive maps showing the distribution and seriousness of the post-1890 erosion features, for monitoring new erosion changes, and for assessing the effectiveness of ameliorative measures. Such data are essential for understanding and controlling the accelerated erosion, a key environmental problem in this region.

  11. Effect of artificial accelerated aging on the optical properties and monomeric conversion of composites used after expiration date.

    PubMed

    Garcia, Lucas da Fonseca Roberti; Mundim, Fabricio Mariano; Pires-de-Souza, Fernanda de Carvalho Panzeri; Puppin Rontani, Regina Maria; Consani, Simonides

    2013-01-01

    This study sought to evaluate how artificial accelerated aging (AAA) affected color stability (ΔE), opacity (ΔOP), and degree of conversion (DOC) for 3 composite materials (Tetric Ceram, Tetric Ceram HB, and Tetric Flow) used both 180 days before and 180 days after their expiration dates. To evaluate the materials' optical properties, 10 specimens of each composite-5 prior to expiration and 5 after the materials' expiration date-were made in a teflon matrix. After polishing, the specimens were submitted to initial color and opacity readings and submitted to AAA for 384 hours; at that point, new readings were taken to determine ΔE and ΔOP. To evaluate monomeric conversion evaluation, 6 specimens from each composite and expiration date-3 prior to AAA and 3 after-were submitted to DOC analysis. Results of the 2-way ANOVA and Bonferroni's tests (P < 0.05) demonstrated that all composites had ΔE values above the clinically acceptable level (ΔE ≥ 3.3). When expiration dates were compared, only Tetric Flow showed a statistically significant difference (P < 0.05). Regardless of the expiration date, ΔOP values for all composites increased after AAA, but not significantly (P > 0.05). The expired Tetric Flow had the highest DOC values (71.42% ± 4.21) before AAA, significantly different than that of the other composites (P > 0.05). It was concluded that both expiration date and AAA affected the properties of the composites tested.

  12. Effect of artificial accelerated aging on the optical properties and monomeric conversion of composites used after expiration date.

    PubMed

    Garcia, Lucas da Fonseca Roberti; Mundim, Fabricio Mariano; Pires-de-Souza, Fernanda de Carvalho Panzeri; Puppin Rontani, Regina Maria; Consani, Simonides

    2013-01-01

    This study sought to evaluate how artificial accelerated aging (AAA) affected color stability (ΔE), opacity (ΔOP), and degree of conversion (DOC) for 3 composite materials (Tetric Ceram, Tetric Ceram HB, and Tetric Flow) used both 180 days before and 180 days after their expiration dates. To evaluate the materials' optical properties, 10 specimens of each composite-5 prior to expiration and 5 after the materials' expiration date-were made in a teflon matrix. After polishing, the specimens were submitted to initial color and opacity readings and submitted to AAA for 384 hours; at that point, new readings were taken to determine ΔE and ΔOP. To evaluate monomeric conversion evaluation, 6 specimens from each composite and expiration date-3 prior to AAA and 3 after-were submitted to DOC analysis. Results of the 2-way ANOVA and Bonferroni's tests (P < 0.05) demonstrated that all composites had ΔE values above the clinically acceptable level (ΔE ≥ 3.3). When expiration dates were compared, only Tetric Flow showed a statistically significant difference (P < 0.05). Regardless of the expiration date, ΔOP values for all composites increased after AAA, but not significantly (P > 0.05). The expired Tetric Flow had the highest DOC values (71.42% ± 4.21) before AAA, significantly different than that of the other composites (P > 0.05). It was concluded that both expiration date and AAA affected the properties of the composites tested. PMID:24192739

  13. Prevalence of previously undiagnosed abdominal aortic aneurysms in the area of Como: the ComoCuore "looking for AAA" ultrasonography screening.

    PubMed

    Corrado, Giovanni; Durante, Alessandro; Genchi, Vincenzo; Trabattoni, Loris; Beretta, Sandro; Rovelli, Enza; Foglia-Manzillo, Giovanni; Ferrari, Giovanni

    2016-08-01

    The prognosis for abdominal aortic aneurysm (AAA) rupture is poor. Long-term follow-up of population-based randomized trials has demonstrated that ultrasound (US) screening for abdominal aortic aneurysms (AAAs) measuring 3 cm or greater decreases AAA-related mortality rates and is cost-effective. We though to prospectively perform during a 26-month period a limited US examination of the infrarenal aorta in volunteers of both gender aged 60-85 years without history of AAA living in the area of Como, Italy. From September 2010 to November 2013 ComoCuore, a no-profit nongovernmental association, enrolled 1555 people (aged 68.8 ± 6.8 years; 48.6 % males). Clinical data and a US imaging of the aorta were collected for each participant. AAA was found in 22 volunteers (1.4 %) mainly males (2.5 % in males vs. 0.4 % in females p = 0.005). Overall, the prevalence of cardiovascular risk factors was higher in patients with vs. without AAA (mean 2.9 ± 3.0 vs. 1.4 ± 1.0 respectively, p < 0.0001). Independent predictors of AAA on multivariate analysis were age (OR 1.14, 1.06-1.22; p < 0.0001), male gender (OR 8.23, 1.79-37.91; p = 0.007), and both current (OR 4.98, 1.57-15.79; p = 0.007) and previous smoking (OR 2.76, 1.12-8.94; p = 0.03). Our study confirms the feasibility of one time US screening for AAA in a large cohort of asymptomatic people. Independent predictors of AAA were male sex, older age and a history of smoking. Accordingly to recent data the prevalence of AAA seems to be declining, maybe due to a reduction of smoking in Italy. PMID:27215751

  14. Prevalence of previously undiagnosed abdominal aortic aneurysms in the area of Como: the ComoCuore "looking for AAA" ultrasonography screening.

    PubMed

    Corrado, Giovanni; Durante, Alessandro; Genchi, Vincenzo; Trabattoni, Loris; Beretta, Sandro; Rovelli, Enza; Foglia-Manzillo, Giovanni; Ferrari, Giovanni

    2016-08-01

    The prognosis for abdominal aortic aneurysm (AAA) rupture is poor. Long-term follow-up of population-based randomized trials has demonstrated that ultrasound (US) screening for abdominal aortic aneurysms (AAAs) measuring 3 cm or greater decreases AAA-related mortality rates and is cost-effective. We though to prospectively perform during a 26-month period a limited US examination of the infrarenal aorta in volunteers of both gender aged 60-85 years without history of AAA living in the area of Como, Italy. From September 2010 to November 2013 ComoCuore, a no-profit nongovernmental association, enrolled 1555 people (aged 68.8 ± 6.8 years; 48.6 % males). Clinical data and a US imaging of the aorta were collected for each participant. AAA was found in 22 volunteers (1.4 %) mainly males (2.5 % in males vs. 0.4 % in females p = 0.005). Overall, the prevalence of cardiovascular risk factors was higher in patients with vs. without AAA (mean 2.9 ± 3.0 vs. 1.4 ± 1.0 respectively, p < 0.0001). Independent predictors of AAA on multivariate analysis were age (OR 1.14, 1.06-1.22; p < 0.0001), male gender (OR 8.23, 1.79-37.91; p = 0.007), and both current (OR 4.98, 1.57-15.79; p = 0.007) and previous smoking (OR 2.76, 1.12-8.94; p = 0.03). Our study confirms the feasibility of one time US screening for AAA in a large cohort of asymptomatic people. Independent predictors of AAA were male sex, older age and a history of smoking. Accordingly to recent data the prevalence of AAA seems to be declining, maybe due to a reduction of smoking in Italy.

  15. Wakefield accelerators

    SciTech Connect

    Simpson, J.D.

    1990-01-01

    The search for new methods to accelerate particle beams to high energy using high gradients has resulted in a number of candidate schemes. One of these, wakefield acceleration, has been the subject of considerable R D in recent years. This effort has resulted in successful proof of principle experiments and in increased understanding of many of the practical aspects of the technique. Some wakefield basics plus the status of existing and proposed experimental work is discussed, along with speculations on the future of wake field acceleration. 10 refs., 6 figs.

  16. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  17. Accelerators for America's Future

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  18. EXTREME PARTICLE ACCELERATION IN MAGNETIC RECONNECTION LAYERS: APPLICATION TO THE GAMMA-RAY FLARES IN THE CRAB NEBULA

    SciTech Connect

    Cerutti, Benoit; Uzdensky, Dmitri A.; Begelman, Mitchell C. E-mail: uzdensky@colorado.edu

    2012-02-20

    The gamma-ray space telescopes AGILE and Fermi detected short and bright synchrotron gamma-ray flares at photon energies above 100 MeV in the Crab Nebula. This discovery suggests that electron-positron pairs in the nebula are accelerated to PeV energies in a milligauss magnetic field, which is difficult to explain with classical models of particle acceleration and pulsar wind nebulae. We investigate whether particle acceleration in a magnetic reconnection layer can account for the puzzling properties of the flares. We numerically integrate relativistic test-particle orbits in the vicinity of the layer, including the radiation reaction force, and using analytical expressions for the large-scale electromagnetic fields. As they get accelerated by the reconnection electric field, the particles are focused deep inside the current layer where the magnetic field is small. The electrons suffer less from synchrotron losses and are accelerated to extremely high energies. Population studies show that, at the end of the layer, the particle distribution piles up at the maximum energy given by the electric potential drop and is focused into a thin fan beam. Applying this model to the Crab Nebula, we find that the emerging synchrotron emission spectrum peaks above 100 MeV and is close to the spectral shape of a single electron. The flare inverse Compton emission is negligible and no detectable emission is expected at other wavelengths. This mechanism provides a plausible explanation for the gamma-ray flares in the Crab Nebula and could be at work in other astrophysical objects such as relativistic jets in active galactic nuclei.

  19. Extreme Particle Acceleration in Magnetic Reconnection Layers: Application to the Gamma-Ray Flares in the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Cerutti, Benoît; Uzdensky, Dmitri A.; Begelman, Mitchell C.

    2012-02-01

    The gamma-ray space telescopes AGILE and Fermi detected short and bright synchrotron gamma-ray flares at photon energies above 100 MeV in the Crab Nebula. This discovery suggests that electron-positron pairs in the nebula are accelerated to PeV energies in a milligauss magnetic field, which is difficult to explain with classical models of particle acceleration and pulsar wind nebulae. We investigate whether particle acceleration in a magnetic reconnection layer can account for the puzzling properties of the flares. We numerically integrate relativistic test-particle orbits in the vicinity of the layer, including the radiation reaction force, and using analytical expressions for the large-scale electromagnetic fields. As they get accelerated by the reconnection electric field, the particles are focused deep inside the current layer where the magnetic field is small. The electrons suffer less from synchrotron losses and are accelerated to extremely high energies. Population studies show that, at the end of the layer, the particle distribution piles up at the maximum energy given by the electric potential drop and is focused into a thin fan beam. Applying this model to the Crab Nebula, we find that the emerging synchrotron emission spectrum peaks above 100 MeV and is close to the spectral shape of a single electron. The flare inverse Compton emission is negligible and no detectable emission is expected at other wavelengths. This mechanism provides a plausible explanation for the gamma-ray flares in the Crab Nebula and could be at work in other astrophysical objects such as relativistic jets in active galactic nuclei.

  20. Vibration control in accelerators

    SciTech Connect

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  1. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  2. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  3. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  4. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  5. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  6. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  7. EM Structure Based and Vacuum Acceleration

    SciTech Connect

    Colby, E.R.; /SLAC

    2005-09-27

    The importance of particle acceleration may be judged from the number of applications which require some sort of accelerated beam. In addition to accelerator-based high energy physics research, non-academic applications include medical imaging and treatment, structural biology by x-ray diffraction, pulse radiography, cargo inspection, material processing, food and medical instrument sterilization, and so on. Many of these applications are already well served by existing technologies and will profit only marginally from developments in accelerator technology. Other applications are poorly served, such as structural biology, which is conducted at synchrotron radiation facilities, and medical treatment using proton accelerators, the machines for which are rare because they are complex and costly. Developments in very compact, high brightness and high gradient accelerators will change how accelerators are used for such applications, and potentially enable new ones. Physical and technical issues governing structure-based and vacuum acceleration of charged particles are reviewed, with emphasis on practical aspects.

  8. THE ROLE OF STOCHASTIC ACCELERATION IN THE PROMPT EMISSION OF GAMMA-RAY BURSTS: APPLICATION TO HADRONIC INJECTION

    SciTech Connect

    Murase, Kohta; Asano, Katsuaki; Terasawa, Toshio; Meszaros, Peter

    2012-02-20

    We study effects of particle re-acceleration (or heating) in the post-shock region via magnetohydrodynamic/plasma turbulence, in the context of a mixed hadronic-leptonic model for the prompt emission of gamma-ray bursts, using both analytical and numerical methods. We show that stochastically accelerated (or heated) leptons, which are injected via pp and p{gamma} reactions and subsequent pair cascades, are plausibly able to reproduce the Band function spectra with {alpha} {approx} 1 and {beta} {approx} 2-3 in the {approx}MeV range. An additional hard component coming from the proton-induced cascade emission is simultaneously expected, which can be compatible with observed extra power-law spectra far above the MeV range. We also discuss the specific implications of hadronic models for ongoing high-energy neutrino observations.

  9. Short latency vestibular evoked responses to linear acceleration stimuli in small mammals: masking effects and experimental applications.

    PubMed

    Böhmer, A

    1995-01-01

    Different potential were recorded from a site close to the 8th nerve in chinchillas in response to linear acceleration pulses. Acoustic masking allowed us to distinguish between an early response (within 1 ms after initiation of the acceleration) of probable vestibular origin and later responses of probable cochlear origin. The latter were abolished by intense acoustic masking and by surgical ablation of the cochlea. The early potential was slightly reduced by simultaneous acoustic masking with white noise above 65 dB SPL and was most sensitive to 1 kHz narrow band masking. Vestibular neurons seem to be stimulated by high frequency movements of their hair cell cilia, and vestibular compound action potentials can be recorded as soon as a sufficient number of neurons are brought to a synchronized response. These vestibular evoked potentials may provide a tool for experimental studies on vestibular function in laboratory animals. PMID:8749097

  10. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    SciTech Connect

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  11. Fluence Uniformity Measurements in an Electron Accelerator Used for Irradiation of Extended Area Solar Cells and Electronic Circuits for Space Applications

    NASA Technical Reports Server (NTRS)

    Uribe, Roberto M.; Filppi, Ed; Zhang, Shubo

    2007-01-01

    It is common to have liquid crystal displays and electronic circuit boards with area sizes of the order of 20x20 sq cm on board of satellites and space vehicles. Usually irradiating them at different fluence values assesses the radiation damage in these types of devices. As a result, there is a need for a radiation source with large spatial fluence uniformity for the study of the damage by radiation from space in those devices. Kent State University s Program on Electron Beam Technology has access to an electron accelerator used for both research and industrial applications. The electron accelerator produces electrons with energies in the interval from 1 to 5 MeV and a maximum beam power of 150 kW. At such high power levels, the electron beam is continuously scanned back and forth in one dimension in order to provide uniform irradiation and to prevent damage to the sample. This allows for the uniform irradiation of samples with an area of up to 1.32 sq m. This accelerator has been used in the past for the study of radiation damage in solar cells (1). However in order to irradiate extended area solar cells there was a need to measure the uniformity of the irradiation zone in terms of fluence. In this paper the methodology to measure the fluence uniformity on a sample handling system (linear motion system), used for the irradiation of research samples, along the irradiation zone of the above-mentioned facility is described and the results presented. We also illustrate the use of the electron accelerator for the irradiation of large area solar cells (of the order of 156 sq cm) and include in this paper the electrical characterization of these types of solar cells irradiated with 5 MeV electrons to a total fluence of 2.6 x 10(exp 15) e/sq cm.

  12. Laser Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Malka, Victor

    The continuing development of powerful laser systems has permitted to extend the interaction of laser beams with matter far into the relativistic domain, and to demonstrate new approaches for producing energetic particle beams. The extremely large electric fields, with amplitudes exceeding the TV/m level, that are produced in plasma medium are of relevance particle acceleration. Since the value of this longitudinal electric field, 10,000 times larger than those produced in conventional radio-frequency cavities, plasma accelerators appear to be very promising for the development of compact accelerators. The incredible progresses in the understanding of laser plasma interaction physic, allows an excellent control of electron injection and acceleration. Thanks to these recent achievements, laser plasma accelerators deliver today high quality beams of energetic radiation and particles. These beams have a number of interesting properties such as shortness, brightness and spatial quality, and could lend themselves to applications in many fields, including medicine, radio-biology, chemistry, physics and material science,security (material inspection), and of course in accelerator science.

  13. Biomedical accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  14. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    PubMed Central

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-01-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources. PMID:25589504

  15. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy.

    PubMed

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-03-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 10(5) n/cm(2)/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources.

  16. The AAA+ proteins Pontin and Reptin enter adult age: from understanding their basic biology to the identification of selective inhibitors.

    PubMed

    Matias, Pedro M; Baek, Sung Hee; Bandeiras, Tiago M; Dutta, Anindya; Houry, Walid A; Llorca, Oscar; Rosenbaum, Jean

    2015-01-01

    Pontin and Reptin are related partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) family. They are implicated in multiple and seemingly unrelated processes encompassing the regulation of gene transcription, the remodeling of chromatin, DNA damage sensing and repair, and the assembly of protein and ribonucleoprotein complexes, among others. The 2nd International Workshop on Pontin and Reptin took place at the Instituto de Tecnologia Química e Biológica António Xavier in Oeiras, Portugal on October 10-12, 2014, and reported significant new advances on the mechanisms of action of these two AAA+ ATPases. The major points under discussion were related to the mechanisms through which these proteins regulate gene transcription, their roles as co-chaperones, and their involvement in pathophysiology, especially in cancer and ciliary biology and disease. Finally, they may become anticancer drug targets since small chemical inhibitors were shown to produce anti-tumor effects in animal models.

  17. The AAA+ ATPase ATAD3A Controls Mitochondrial Dynamics at the Interface of the Inner and Outer Membranes ▿

    PubMed Central

    Gilquin, Benoît; Taillebourg, Emmanuel; Cherradi, Nadia; Hubstenberger, Arnaud; Gay, Olivia; Merle, Nicolas; Assard, Nicole; Fauvarque, Marie-Odile; Tomohiro, Shiho; Kuge, Osamu; Baudier, Jacques

    2010-01-01

    Dynamic interactions between components of the outer (OM) and inner (IM) membranes control a number of critical mitochondrial functions such as channeling of metabolites and coordinated fission and fusion. We identify here the mitochondrial AAA+ ATPase protein ATAD3A specific to multicellular eukaryotes as a participant in these interactions. The N-terminal domain interacts with the OM. A central transmembrane segment (TMS) anchors the protein in the IM and positions the C-terminal AAA+ ATPase domain in the matrix. Invalidation studies in Drosophila and in a human steroidogenic cell line showed that ATAD3A is required for normal cell growth and cholesterol channeling at contact sites. Using dominant-negative mutants, including a defective ATP-binding mutant and a truncated 50-amino-acid N-terminus mutant, we showed that ATAD3A regulates dynamic interactions between the mitochondrial OM and IM sensed by the cell fission machinery. The capacity of ATAD3A to impact essential mitochondrial functions and organization suggests that it possesses unique properties in regulating mitochondrial dynamics and cellular functions in multicellular organisms. PMID:20154147

  18. Unfolding the mechanism of the AAA+ unfoldase VAT by a combined cryo-EM, solution NMR study.

    PubMed

    Huang, Rui; Ripstein, Zev A; Augustyniak, Rafal; Lazniewski, Michal; Ginalski, Krzysztof; Kay, Lewis E; Rubinstein, John L

    2016-07-19

    The AAA+ (ATPases associated with a variety of cellular activities) enzymes play critical roles in a variety of homeostatic processes in all kingdoms of life. Valosin-containing protein-like ATPase of Thermoplasma acidophilum (VAT), the archaeal homolog of the ubiquitous AAA+ protein Cdc48/p97, functions in concert with the 20S proteasome by unfolding substrates and passing them on for degradation. Here, we present electron cryomicroscopy (cryo-EM) maps showing that VAT undergoes large conformational rearrangements during its ATP hydrolysis cycle that differ dramatically from the conformational states observed for Cdc48/p97. We validate key features of the model with biochemical and solution methyl-transverse relaxation optimized spectroscopY (TROSY) NMR experiments and suggest a mechanism for coupling the energy of nucleotide hydrolysis to substrate unfolding. These findings illustrate the unique complementarity between cryo-EM and solution NMR for studies of molecular machines, showing that the structural properties of VAT, as well as the population distributions of conformers, are similar in the frozen specimens used for cryo-EM and in the solution phase where NMR spectra are recorded.

  19. New directions in linear accelerators

    SciTech Connect

    Jameson, R.A.

    1984-01-01

    Current work on linear particle accelerators is placed in historical and physics contexts, and applications driving the state of the art are discussed. Future needs and the ways they may force development are outlined in terms of exciting R and D challenges presented to today's accelerator designers. 23 references, 7 figures.

  20. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  1. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  2. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  3. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  4. Union of Compact Accelerator-Driven Neutron Sources (UCANS) I & II Neutron applications laboratory for ESS-Bilbao

    NASA Astrophysics Data System (ADS)

    Terrón, S.; Magán, M.; Sordo, F.; Ghiglino, A.; Mart«ınez, F.; Bermejo, F. J.; Perlado, J. M.

    The ESS-Bilbao Accelerator Center site at Lejoa UPV/EHU campus will be provided with a proton accelerator up to 300-400 MeV. In the first construction phase, a beam extraction will be set at the end of the DTL, which will produce a 50 MeV proton beam with an average current of 2.25 mA and 1.5 ms pulses at a frequency of 20 Hz. These beam characteristics allow to configure a low intensity neutron source based on Be (p, n) reactions, which enables experimentation with cold neutrons similar to that of LENS. The total beam power will be 112 kW, so the configuration of the neutron production target will be based on a rotating disk of beryllium slabs facing the beam on one side and a cryogenic methane moderator on the other, with the target-moderator system surrounded by a beryllium reflector. In this paper, first estimates will be presented for thermomechanical conditions of the target cooling scheme, neutron source intensities, and cold neutron pulses.

  5. Calorimetric low temperature detectors for low-energetic heavy ions and their application in accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kraft-Bermuth, S.; Andrianov, V. A.; Bleile, A.; Echler, A.; Egelhof, P.; Kiseleva, A.; Kiselev, O.; Meier, H. J.; Meier, J. P.; Shrivastava, A.; Weber, M.; Golser, R.; Kutschera, W.; Priller, A.; Steier, P.; Vockenhuber, C.

    2009-10-01

    The energy-sensitive detection of heavy ions with calorimetric low temperature detectors was investigated in the energy range of E =0.1-1 MeV/amu, commonly used for accelerator mass spectrometry (AMS). The detectors used consist of sapphire absorbers and superconducting aluminum transition edge thermometers operated at T ˜1.5 K. They were irradiated with various ion beams (C13,A197u,U238) provided by the VERA tandem accelerator in Vienna, Austria. The relative energy resolution obtained was ΔE /E=(5-9)×10-3, even for the heaviest ions such as U238. In addition, no evidence for a pulse height defect was observed. This performance allowed for the first time to apply a calorimetric low temperature detector in an AMS experiment. The aim was to precisely determine the isotope ratio of U236/U238 for several samples of natural uranium, U236 being known as a sensitive monitor for neutron fluxes. Replacing a conventionally used detection system at VERA by the calorimetric detector enabled to substantially reduce background from neighboring isotopes and to increase the detection efficiency. Due to the high sensitivity achieved, a value of U236/U238=6.1×10-12 could be obtained, representing the smallest U236/U238 ratio measured at the time. In addition, we contributed to establishing an improved material standard of U236/U238, which can be used as a reference for future AMS measurements.

  6. Noninteracting control of dynamically tuned dry gyro and its application to measurement of two-axis angular accelerations

    NASA Astrophysics Data System (ADS)

    Shingu, H.; Otsuki, M.

    This paper presents a method of reducing the interaction effect between the input and output peculiar to the dynamically tuned dry gyro (TDG), and the possibility of measuring angular accelerations about two axes, through improvements of the rebalance control circuit (RCC) installed on the TDG. First, the use of the TDG as a two-axis rate sensor is shown along with direct and cross transfer functions relating two outputs and two inputs; and it is shown that the TDG makes it possible to simultaneously measure two-axis angular velocities and two-axis angular accelerations if the RCC is improved to facilitate noninteracting control. Next, the design procedure and the results of the trial manufacture on the hardware of each element of the RCC necessary to meet its capability are shown. Third, from the results of the experiments using this manufactured RCC it is clarified that the frequency characteristics of direct transfer functions which prescribe the system performance are hardly influenced by the manufacturing accuracy of the RCC, but the gain characteristics of cross transfer functions, which correspond to the degree of reduction of the interaction effect, are significantly influenced by the manufacturing accuracy.

  7. HIGH GRADIENT INDUCTION ACCELERATOR

    SciTech Connect

    Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2007-06-21

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.

  8. Interfacing to accelerator instrumentation

    SciTech Connect

    Shea, T.J.

    1995-12-31

    As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed.

  9. Introduction to Korean Accelerator Science and Activities in Industrial Accelerators

    NASA Astrophysics Data System (ADS)

    Namkung, Won

    2012-03-01

    After 20 years of the first large-scale accelerator in Korea, the Pohang Light Source (PLS) of 2.0 GeV at POSTECH, its upgrade (PLS-II) is now under commissioning with energy of 3.0 GeV. The users' service for synchrotron radiation is scheduled in April 2012. There are five big accelerator projects in various stages of construction, namely a high-intensity proton linac of 100 MeV, the PAL-XFEL of 10-GeV, a carbon therapy cyclotron of 400 MeV/u, and rare isotope accelerators for isotope separator on-line (ISOL) and In-flight Fragmentation (IFF). There are also strong demands for industrial uses of accelerators, especially in sterilization applications. In this paper, we report the current status of accelerator projects and its science in Korea, along with a brief review of accelerator R&D going back to the early 1960s at universities.

  10. A multiparameter wearable physiologic monitoring system for space and terrestrial applications

    NASA Technical Reports Server (NTRS)

    Mundt, Carsten W.; Montgomery, Kevin N.; Udoh, Usen E.; Barker, Valerie N.; Thonier, Guillaume C.; Tellier, Arnaud M.; Ricks, Robert D.; Darling, Robert B.; Cagle, Yvonne D.; Cabrol, Nathalie A.; Ruoss, Stephen J.; Swain, Judith L.; Hines, John W.; Kovacs, Gregory T A.

    2005-01-01

    A novel, unobtrusive and wearable, multiparameter ambulatory physiologic monitoring system for space and terrestrial applications, termed LifeGuard, is presented. The core element is a wearable monitor, the crew physiologic observation device (CPOD), that provides the capability to continuously record two standard electrocardiogram leads, respiration rate via impedance plethysmography, heart rate, hemoglobin oxygen saturation, ambient or body temperature, three axes of acceleration, and blood pressure. These parameters can be digitally recorded with high fidelity over a 9-h period with precise time stamps and user-defined event markers. Data can be continuously streamed to a base station using a built-in Bluetooth RF link or stored in 32 MB of on-board flash memory and downloaded to a personal computer using a serial port. The device is powered by two AAA batteries. The design, laboratory, and field testing of the wearable monitors are described.

  11. From AAA to Acuros XB-clinical implications of selecting either Acuros XB dose-to-water or dose-to-medium.

    PubMed

    Zifodya, Jackson M; Challens, Cameron H C; Hsieh, Wen-Long

    2016-06-01

    When implementing Acuros XB (AXB) as a substitute for anisotropic analytic algorithm (AAA) in the Eclipse Treatment Planning System, one is faced with a dilemma of reporting either dose to medium, AXB-Dm or dose to water, AXB-Dw. To assist with decision making on selecting either AXB-Dm or AXB-Dw for dose reporting, a retrospective study of treated patients for head & neck (H&N), prostate, breast and lung is presented. Ten patients, previously treated using AAA plans, were selected for each site and re-planned with AXB-Dm and AXB-Dw. Re-planning was done with fixed monitor units (MU) as well as non-fixed MUs. Dose volume histograms (DVH) of targets and organs at risk (OAR), were analyzed in conjunction with ICRU-83 recommended dose reporting metrics. Additionally, comparisons of plan homogeneity indices (HI) and MUs were done to further highlight the differences between the algorithms. Results showed that, on average AAA overestimated dose to the target volume and OARs by less than 2.0 %. Comparisons between AXB-Dw and AXB-Dm, for all sites, also showed overall dose differences to be small (<1.5 %). However, in non-water biological media, dose differences between AXB-Dw and AXB-Dm, as large as 4.6 % were observed. AXB-Dw also tended to have unexpectedly high 3D maximum dose values (>135 % of prescription dose) for target volumes with high density materials. Homogeneity indices showed that AAA planning and optimization templates would need to be adjusted only for the H&N and Lung sites. MU comparison showed insignificant differences between AXB-Dw relative to AAA and between AXB-Dw relative to AXB-Dm. However AXB-Dm MUs relative to AAA, showed an average difference of about 1.3 % signifying an underdosage by AAA. In conclusion, when dose is reported as AXB-Dw, the effect that high density structures in the PTV has on the dose distribution should be carefully considered. As the results show overall small dose differences between the algorithms, when

  12. From AAA to Acuros XB-clinical implications of selecting either Acuros XB dose-to-water or dose-to-medium.

    PubMed

    Zifodya, Jackson M; Challens, Cameron H C; Hsieh, Wen-Long

    2016-06-01

    When implementing Acuros XB (AXB) as a substitute for anisotropic analytic algorithm (AAA) in the Eclipse Treatment Planning System, one is faced with a dilemma of reporting either dose to medium, AXB-Dm or dose to water, AXB-Dw. To assist with decision making on selecting either AXB-Dm or AXB-Dw for dose reporting, a retrospective study of treated patients for head & neck (H&N), prostate, breast and lung is presented. Ten patients, previously treated using AAA plans, were selected for each site and re-planned with AXB-Dm and AXB-Dw. Re-planning was done with fixed monitor units (MU) as well as non-fixed MUs. Dose volume histograms (DVH) of targets and organs at risk (OAR), were analyzed in conjunction with ICRU-83 recommended dose reporting metrics. Additionally, comparisons of plan homogeneity indices (HI) and MUs were done to further highlight the differences between the algorithms. Results showed that, on average AAA overestimated dose to the target volume and OARs by less than 2.0 %. Comparisons between AXB-Dw and AXB-Dm, for all sites, also showed overall dose differences to be small (<1.5 %). However, in non-water biological media, dose differences between AXB-Dw and AXB-Dm, as large as 4.6 % were observed. AXB-Dw also tended to have unexpectedly high 3D maximum dose values (>135 % of prescription dose) for target volumes with high density materials. Homogeneity indices showed that AAA planning and optimization templates would need to be adjusted only for the H&N and Lung sites. MU comparison showed insignificant differences between AXB-Dw relative to AAA and between AXB-Dw relative to AXB-Dm. However AXB-Dm MUs relative to AAA, showed an average difference of about 1.3 % signifying an underdosage by AAA. In conclusion, when dose is reported as AXB-Dw, the effect that high density structures in the PTV has on the dose distribution should be carefully considered. As the results show overall small dose differences between the algorithms, when

  13. Acceleration radioisotope production simulations

    SciTech Connect

    Waters, L.S.; Wilson, W.B.

    1996-12-31

    We have identified 96 radionuclides now being used or under consideration for use in medical applications. Previously, we calculated the production of {sup 99}Mo from enriched and depleted uranium targets at the 800-MeV energy used in the LAMPF accelerator at Los Alamos. We now consider the production of isotopes using lower energy beams, which may become available as a result of new high-intensity spallation target accelerators now being planned. The production of four radionuclides ({sup 7}Be, {sup 67}Cu, {sup 99}Mo, and {sup 195m}Pt) in a simplified proton accelerator target design is being examined. The LAHET, MCNP, and CINDER90 codes were used to model the target, transport a beam of protons and secondary produced particles through the system, and compute the nuclide production from spallation and low-energy neutron interactions. Beam energies of 200 and 400 MeV were used, and several targets were considered for each nuclide.

  14. Determination of CA-41, I-129 and OS-187 in the Rochester tandem accelerator and some applications of these isotopes

    NASA Technical Reports Server (NTRS)

    Fehn, U.; Elmore, D.; Gove, H. E.; Kubik, P.; Teng, R.; Tubbs, L.

    1986-01-01

    The measurement of Ca-41 and I-129 utilizing the Rochester Tanden Accelerator Mass Spectrometer (TAMS) is discussed. Ca-41, having a half-life of 100,000 yrs., is of potential use for the dating of ground water as well as of bones in the age range between 50,000 and 1 million yrs. A major problem for the measurement of Ca-41 with TAMS is the fact that calcium does not readily form negative atomic ions. It does, however, form negative molecular ions. The production of CaO ions from compounds such as CaO and CaCO3 and from free Ca molecules sprayed with oxygen gas was studied. A project to utilize I-129 as a tracer for hydrothermal convection in sediment-covered oceanic crust is also briefly described. Finally, plans to use the Os-187/Os-186 ratio for the determination of extraterrestrial material in the Ries crater in Germany are summarized.

  15. Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells

    NASA Astrophysics Data System (ADS)

    Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Oishi, Y.; Sugiyama, H.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sasao, H.; Wakai, D.; Bolton, P. R.; Daido, H.

    2009-05-01

    We report the demonstrated irradiation effect of laser-accelerated protons on human cancer cells. In vitro (living) A549 cells are irradiated with quasimonoenergetic proton bunches of 0.8-2.4 MeV with a single bunch duration of 15 ns. Irradiation with the proton dose of 20 Gy results in a distinct formation of γ-H2AX foci as an indicator of DNA double-strand breaks generated in the cancer cells. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. Unique high-current and short-bunch features make laser-driven proton bunches an excitation source for time-resolved determination of radical yields.

  16. Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells

    SciTech Connect

    Yogo, A.; Nishikino, M.; Mori, M.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Bolton, P. R.

    2009-05-04

    We report the demonstrated irradiation effect of laser-accelerated protons on human cancer cells. In vitro (living) A549 cells are irradiated with quasimonoenergetic proton bunches of 0.8-2.4 MeV with a single bunch duration of 15 ns. Irradiation with the proton dose of 20 Gy results in a distinct formation of {gamma}-H2AX foci as an indicator of DNA double-strand breaks generated in the cancer cells. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. Unique high-current and short-bunch features make laser-driven proton bunches an excitation source for time-resolved determination of radical yields.

  17. Laser acceleration and its future

    PubMed Central

    Tajima, Toshiki

    2010-01-01

    Laser acceleration is based on the concept to marshal collective fields that may be induced by laser. In order to exceed the material breakdown field by a large factor, we employ the broken-down matter of plasma. While the generated wakefields resemble with the fields in conventional accelerators in their structure (at least qualitatively), it is their extreme accelerating fields that distinguish the laser wakefield from others, amounting to tiny emittance and compact accelerator. The current research largely falls on how to master the control of acceleration process in spatial and temporal scales several orders of magnitude smaller than the conventional method. The efforts over the last several years have come to a fruition of generating good beam properties with GeV energies on a table top, leading to many applications, such as ultrafast radiolysis, intraoperative radiation therapy, injection to X-ray free electron laser, and a candidate for future high energy accelerators. PMID:20228616

  18. NIFTI and DISCOS: New concepts for a compact accelerator neutron source for boron neutron capture therapy applications

    SciTech Connect

    Powell, J.; Ludewig, H.; Todosow, M.; Reich, M.

    1995-06-01

    Two new concepts, NIFTI and DISCOS, are described. These concepts enable the efficient production of epithermal neutrons for BNCT (Boron Neutron Capture Therapy) medical treatment, utilizing a low current, low energy proton beam impacting on a lithium target. The NIFTI concept uses fluoride compounds, such as lead or beryllium fluoride, to efficiently degrade high energy neutrons from the lithium target to the lower energies required for BNCT. The fluoride compounds are in turn encased in an iron layer that strongly impedes the transmission of neutrons with energies above 24 KeV. Lower energy neutrons readily pass through this iron filter, which has a deep window in its scattering cross section at 24 KeV. The DISCOS concept uses a rapidly rotating, high g disc to create a series of thin ({approximately} 1 micron thickness) liquid lithium targets in the form of continuous films or sheets of discrete droplets--through which the proton beam passes. The average energy lost by a proton as it passes through a single target is small, approximately 10 KeV. Between the targets, the proton beam is re-accelerated by an applied DC electric field. The DISCOS approach enables the accelerator--target facility to operate with a beam energy only slightly above the threshold value for neutron production--resulting in an output beam of low-energy epithermal neutrons--while achieving a high yield of neutrons per milliamp of proton beam current. Parametric trade studies of the NIFTI and DISCOS concepts are described. These include analyses of a broad range of NIFTI designs using the Monte carlo MCNP neutronics code, as well as mechanical and thermal-hydraulic analyses of various DISCOS designs.

  19. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  20. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  1. SU-E-T-137: Dosimetric Validation for Pinnacle, Acuros, AAA, and Brainlab Algorithms with Induced Inhomogenieties

    SciTech Connect

    Lopez, P; Tambasco, M; LaFontaine, R; Burns, L

    2014-06-01

    Purpose: To compare the dosimetric accuracy of the Eclipse 11.0 Acuros XB and Anisotropic Analytical Algorithm (AAA), Pinnacle-3 9.2 Collapsed Cone Convolution, and the iPlan 4.1 Monte Carlo (MC) and Pencil Beam (PB) algorithms using measurement as the gold standard. Methods: Ion chamber and diode measurements were taken for 6, 10, and 18 MV beams in a phantom made up of slab densities corresponding to solid water, lung, and bone. The phantom was setup at source-to-surface distance of 100 cm, and the field sizes were 3.0 × 3.0, 5.0 × 5.0, and 10.0 × 10.0 cm2. Data from the planning systems were computed along the central axis of the beam. The measurements were taken using a pinpoint chamber and edge diode for interface regions. Results: The best agreement between data from the algorithms and our measurements occurs away from the slab interfaces. For the 6 MV beam, iPlan 4.1 MC software performs the best with 1.7% absolute average percent difference from measurement. For the 10 MV beam, iPlan 4.1 PB performs the best with 2.7% absolute average percent difference from measurement. For the 18 MV beam, Acuros performs the best with 2.0% absolute average percent difference from measurement. It is interesting to note that the steepest drop in dose occurred the at lung heterogeneity-solid water interface of the18 MV, 3.0 × 3.0 cm2 field size setup. In this situation, Acuros and AAA performed best with an average percent difference within −1.1% of measurement, followed by iPlan 4.1 MC, which was within 4.9%. Conclusion: This study shows that all of the algorithms perform reasonably well in computing dose in a heterogeneous slab phantom. Moreover, Acuros and AAA perform particularly well at the lung-solid water interfaces for higher energy beams and small field sizes.

  2. Quick-hardening problems are eliminated with spray gun modification which mixes resin and accelerator liquids during application

    NASA Technical Reports Server (NTRS)

    Johnson, O. W.

    1964-01-01

    A modified spray gun, with separate containers for resin and additive components, solves the problems of quick hardening and nozzle clogging. At application, separate atomizers spray the liquids in front of the nozzle face where they blend.

  3. Color stability of repaired composite submitted to accelerated artificial aging.

    PubMed

    Souza, Ana Beatriz Silva; Silame, Francisca Daniele Jardilino; Alandia-Roman, Carla Cecilia; Cruvinel, Diogo Rodrigues; Garcia, Lucas da Fonseca Roberti; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2012-01-01

    The aim of this study was to evaluate the color stability (ΔE) of nanoparticulate composite, with consideration for the type of surface treatment performed before repair. A Teflon matrix was used to fabricate 50 test specimens from composite. After initial color readout, the specimens were submitted to 100 hours of accelerated artificial aging (AAA). The samples were divided into five groups (n = 10), according to the surface treatment performed: sandblasting with aluminum oxide powder, phosphoric acid, and an adhesive system (Group 1); sandblasting with aluminum oxide powder, phosphoric acid, and a flowable composite (Group 2); abrasion with a diamond bur, phosphoric acid, and an adhesive system (Group 3); abrasion with a diamond bur, phosphoric acid, and a nanoparticulate composite (Group 4); and a control group (Group 5). After repair, a new color readout was taken, the test specimens were submitted to a new AAA cycle (300 hours), and the final color readout was taken. Comparison of the ΔE means (one-way ANOVA and Tukey tests, p < 0.05) demonstrated no statistically significant differences among the groups (p > 0.05) after 100 hours of AAA. After repair, Group 1 (4.61 ± 2.03) presented the highest color alteration with a statistically significant difference compared with the other groups (p < 0.05). After 300 hours, Group 4 specimens (13.84 ± 0.71) presented the lowest color alteration in comparison with the other groups, with a statistically significant difference (p < 0.05). It was concluded that the repair performed in Group 4 provided greater esthetic recovery, made possible by the regression in the ΔE values of the restorations after repair, and less color alteration of the restorations over the course of time. PMID:23032241

  4. Prospects for Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  5. Diffusion Synthetic Acceleration for High-Order Discontinuous Finite Element SN Transport Schemes and Application to Locally Refined Unstructured Meshes

    SciTech Connect

    Yaqi Wang; Jean C. Ragusa

    2011-10-01

    Diffusion synthetic acceleration (DSA) schemes compatible with adaptive mesh refinement (AMR) grids are derived for the SN transport equations discretized using high-order discontinuous finite elements. These schemes are directly obtained from the discretized transport equations by assuming a linear dependence in angle of the angular flux along with an exact Fick's law and, therefore, are categorized as partially consistent. These schemes are akin to the symmetric interior penalty technique applied to elliptic problems and are all based on a second-order discontinuous finite element discretization of a diffusion equation (as opposed to a mixed or P1 formulation). Therefore, they only have the scalar flux as unknowns. A Fourier analysis has been carried out to determine the convergence properties of the three proposed DSA schemes for various cell optical thicknesses and aspect ratios. Out of the three DSA schemes derived, the modified interior penalty (MIP) scheme is stable and effective for realistic problems, even with distorted elements, but loses effectiveness for some highly heterogeneous configurations. The MIP scheme is also symmetric positive definite and can be solved efficiently with a preconditioned conjugate gradient method. Its implementation in an AMR SN transport code has been performed for both source iteration and GMRes-based transport solves, with polynomial orders up to 4. Numerical results are provided and show good agreement with the Fourier analysis results. Results on AMR grids demonstrate that the cost of DSA can be kept low on locally refined meshes.

  6. Application of a relational data base for documenting the Ground Test Accelerator cable routing and wiring interconnections

    SciTech Connect

    Blackwell, D.B.; Rogers, W.L.; Brown, V.W.; Ekeroth, G.A.; McGill, T.O.

    1990-01-01

    The Ground Test Accelerator (GTA) has many different types of equipment and interconnections to support the operation. Various functions are performed by these equipments such as signal generation, instrument control, and diagnostics. All of the thousands of signals must be routed from the protected tunnel area into the operational control area of the building. Tabulating the routing of these cables, interconnections, terminations, and even the installation status, results in an enormous amount of data collection and maintenance. A relational data base program called Wireflex was written to allow real-time storage, instant recall, and reporting of this information. The operational environment is the VAX network with password security to protect the integrity of the stored data. The format of the program data bases, with the relatioships and interchange of information, will be described. Examples of input forms will show the type of information being stored and the indexing for searching specific entries. Reports will also be included displaying the flexibility of types as well as the ability to recover specific entries or ranges of information.

  7. Analyzing Nuclear Fuel Cycles from Isotopic Ratios of Waste Products Applicable to Measurement by Accelerator Mass Spectrometry

    SciTech Connect

    Biegalski, S R; Whitney, S M; Buchholz, B

    2005-08-24

    An extensive study was conducted to determine isotopic ratios of nuclides in spent fuel that may be utilized to reveal historical characteristics of a nuclear reactor cycle. This forensic information is important to determine the origin of unknown nuclear waste. The distribution of isotopes in waste products provides information about a nuclear fuel cycle, even when the isotopes of uranium and plutonium are removed through chemical processing. Several different reactor cycles of the PWR, BWR, CANDU, and LMFBR were simulated for this work with the ORIGEN-ARP and ORIGEN 2.2 codes. The spent fuel nuclide concentrations of these reactors were analyzed to find the most informative isotopic ratios indicative of irradiation cycle length and reactor design. Special focus was given to long-lived and stable fission products that would be present many years after their creation. For such nuclides, mass spectrometry analysis methods often have better detection limits than classic gamma-ray spectroscopy. The isotopic ratios {sup 151}Sm/{sup 146}Sm, {sup 149}Sm/{sup 146}Sm, and {sup 244}Cm/{sup 246}Cm were found to be good indicators of fuel cycle length and are well suited for analysis by accelerator mass spectroscopy.

  8. Targeting the AAA ATPase p97 as an approach to treat cancer through disruption of protein homeostasis

    PubMed Central

    Anderson, Daniel J.; Le Moigne, Ronan; Djakovic, Stevan; Kumar, Brajesh; Rice, Julie; Wong, Steve; Wang, Jinhai; Yao, Bing; Valle, Eduardo; von Soly, Szerenke Kiss; Madriaga, Antonett; Soriano, Ferdie; Menon, Mary-Kamala; Wu, Zhi Yong; Kampmann, Martin; Chen, Yuwen; Weissman, Jonathan S.; Aftab, Blake T.; Yakes, F. Michael; Shawver, Laura; Zhou, Han-Jie; Wustrow, David; Rolfe, Mark

    2016-01-01

    Summary p97 is a AAA-ATPase with multiple cellular functions, one of which is critical regulation of protein homeostasis pathways. We describe the characterization of CB-5083, a potent, selective and orally bioavailable inhibitor of p97. Treatment of tumor cells with CB-5083 leads to accumulation of poly-ubiquitinated proteins, retention of endoplasmic reticulum associated degradation (ERAD) substrates and generation of irresolvable proteotoxic stress leading to activation of the apoptotic arm of the unfolded protein response (UPR). In xenograft models, CB-5083 causes modulation of key p97-related pathways, induces apoptosis and has antitumor activity in a broad range of both hematological and solid tumor models. Molecular determinants of CB-5083 activity include expression of genes in the ERAD pathway providing a potential strategy for patient selection. PMID:26555175

  9. The Pex1/Pex6 complex is a heterohexameric AAA+ motor with alternating and highly coordinated subunits

    PubMed Central

    Gardner, Brooke M.; Chowdhury, Saikat; Lander, Gabriel C.; Martin, Andreas

    2015-01-01

    Pex1 and Pex6 are Type-2 AAA+ ATPases required for the de-novo biogenesis of peroxisomes. Mutations in Pex1 and Pex6 account for the majority of the most severe forms of peroxisome biogenesis disorders in humans. Here we show that the ATP-dependent complex of Pex1 and Pex6 from S. cerevisiae is a heterohexamer with alternating subunits. Within the Pex1/Pex6 complex, only the D2 ATPase ring hydrolyzes ATP, while nucleotide binding in the D1 ring promotes complex assembly. ATP hydrolysis by Pex1 is highly coordinated with that of Pex6. Furthermore, Pex15, the membrane anchor required for Pex1/Pex6 recruitment to peroxisomes inhibits the ATP-hydrolysis activity of Pex1/Pex6. PMID:25659908

  10. The talent endoluminal AAA stent-graft system. Report of the phase I USA trial, and summary of worldwide experience.

    PubMed

    Criado, F J; Fry, P D; Machan, L S; Twena, M; Patten, P

    1998-12-01

    In the United States, the Phase I Feasibility Study under IDE G970065 was approved by the Food and Drug Administration on 04/11/97. The approved protocol called for implantation of the bifurcated Talent spring stent-graft system on patients who are high-risk candidates for conventional surgery because of cardio-respiratory, medical, general, or local anatomical reasons which would likely complicate the technical execution of the operation or be accompanied by a high expected mortality rate. Patient enrollment was complete with 16 cases as of September 26, 1997. This was a multicenter experience involving five different sites. This is an ongoing study and patients, of course, will continue to be followed longitudinally. Phase II will likely be approved by the FDA for initiation in January or February of 1998. Standard-risk AAA patients will be entered into the study at this time; comparison with concurrent controls will be used for comparison with conventional surgery. PMID:9894193

  11. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  12. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  13. Program system for three-dimensional coupled Monte Carlo-deterministic shielding analysis with application to the accelerator-based IFMIF neutron source

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Fischer, U.

    2005-10-01

    A program system for three-dimensional coupled Monte Carlo-deterministic shielding analysis has been developed to solve problems with complex geometry and bulk shield by integrating the Monte Carlo transport code MCNP, the three-dimensional discrete ordinates code TORT and a coupling interface program. A newly-proposed mapping approach is implemented in the interface program to calculate the angular flux distribution from the scored Monte Carlo particle tracks and generate the boundary source file for the use of TORT. Test calculations were performed with comparison to MCNP solutions. Satisfactory agreements were obtained between the results calculated by these two approaches. The program system has been chosen to treat the complicated shielding problem of the accelerator-based IFMIF neutron source. The successful application demonstrates that coupling scheme with the program system is a useful computational tool for the shielding analysis of complex and large nuclear facilities.

  14. Structural Characterization of a Newly Identified Component of α-Carboxysomes: The AAA+ Domain Protein CsoCbbQ

    SciTech Connect

    Sutter, Markus; Roberts, Evan W.; Gonzalez, Raul C.; Bates, Cassandra; Dawoud, Salma; Landry, Kimberly; Cannon, Gordon C.; Heinhorst, Sabine; Kerfeld, Cheryl A.

    2015-11-05

    Carboxysomes are bacterial microcompartments that enhance carbon fixation by concentrating ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and its substrate CO2 within a proteinaceous shell. They are found in all cyanobacteria, some purple photoautotrophs and many chemoautotrophic bacteria. Carboxysomes consist of a protein shell that encapsulates several hundred molecules of RuBisCO, and contain carbonic anhydrase and other accessory proteins. Genes coding for carboxysome shell components and the encapsulated proteins are typically found together in an operon. The α-carboxysome operon is embedded in a cluster of additional, conserved genes that are presumably related to its function. In many chemoautotrophs, products of the expanded carboxysome locus include CbbO and CbbQ, a member of the AAA+ domain superfamily. We bioinformatically identified subtypes of CbbQ proteins and show that their genes frequently co-occur with both Form IA and Form II RuBisCO. The α-carboxysome-associated ortholog, CsoCbbQ, from Halothiobacillus neapolitanus forms a hexamer in solution and hydrolyzes ATP. The crystal structure shows that CsoCbbQ is a hexamer of the typical AAA+ domain; the additional C-terminal domain, diagnostic of the CbbQ subfamily, structurally fills the inter-monomer gaps, resulting in a distinctly hexagonal shape. Finally, we show that CsoCbbQ interacts with CsoCbbO and is a component of the carboxysome shell, the first example of ATPase activity associated with a bacterial microcompartment.

  15. Structural Characterization of a Newly Identified Component of α-Carboxysomes: The AAA+ Domain Protein CsoCbbQ

    DOE PAGES

    Sutter, Markus; Roberts, Evan W.; Gonzalez, Raul C.; Bates, Cassandra; Dawoud, Salma; Landry, Kimberly; Cannon, Gordon C.; Heinhorst, Sabine; Kerfeld, Cheryl A.

    2015-11-05

    Carboxysomes are bacterial microcompartments that enhance carbon fixation by concentrating ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and its substrate CO2 within a proteinaceous shell. They are found in all cyanobacteria, some purple photoautotrophs and many chemoautotrophic bacteria. Carboxysomes consist of a protein shell that encapsulates several hundred molecules of RuBisCO, and contain carbonic anhydrase and other accessory proteins. Genes coding for carboxysome shell components and the encapsulated proteins are typically found together in an operon. The α-carboxysome operon is embedded in a cluster of additional, conserved genes that are presumably related to its function. In many chemoautotrophs, products of the expanded carboxysome locusmore » include CbbO and CbbQ, a member of the AAA+ domain superfamily. We bioinformatically identified subtypes of CbbQ proteins and show that their genes frequently co-occur with both Form IA and Form II RuBisCO. The α-carboxysome-associated ortholog, CsoCbbQ, from Halothiobacillus neapolitanus forms a hexamer in solution and hydrolyzes ATP. The crystal structure shows that CsoCbbQ is a hexamer of the typical AAA+ domain; the additional C-terminal domain, diagnostic of the CbbQ subfamily, structurally fills the inter-monomer gaps, resulting in a distinctly hexagonal shape. Finally, we show that CsoCbbQ interacts with CsoCbbO and is a component of the carboxysome shell, the first example of ATPase activity associated with a bacterial microcompartment.« less

  16. Structural Characterization of a Newly Identified Component of α-Carboxysomes: The AAA+ Domain Protein CsoCbbQ

    PubMed Central

    Sutter, Markus; Roberts, Evan W.; Gonzalez, Raul C.; Bates, Cassandra; Dawoud, Salma; Landry, Kimberly; Cannon, Gordon C.; Heinhorst, Sabine; Kerfeld, Cheryl A.

    2015-01-01

    Carboxysomes are bacterial microcompartments that enhance carbon fixation by concentrating ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and its substrate CO2 within a proteinaceous shell. They are found in all cyanobacteria, some purple photoautotrophs and many chemoautotrophic bacteria. Carboxysomes consist of a protein shell that encapsulates several hundred molecules of RuBisCO, and contain carbonic anhydrase and other accessory proteins. Genes coding for carboxysome shell components and the encapsulated proteins are typically found together in an operon. The α-carboxysome operon is embedded in a cluster of additional, conserved genes that are presumably related to its function. In many chemoautotrophs, products of the expanded carboxysome locus include CbbO and CbbQ, a member of the AAA+ domain superfamily. We bioinformatically identified subtypes of CbbQ proteins and show that their genes frequently co-occur with both Form IA and Form II RuBisCO. The α-carboxysome-associated ortholog, CsoCbbQ, from Halothiobacillus neapolitanus forms a hexamer in solution and hydrolyzes ATP. The crystal structure shows that CsoCbbQ is a hexamer of the typical AAA+ domain; the additional C-terminal domain, diagnostic of the CbbQ subfamily, structurally fills the inter-monomer gaps, resulting in a distinctly hexagonal shape. We show that CsoCbbQ interacts with CsoCbbO and is a component of the carboxysome shell, the first example of ATPase activity associated with a bacterial microcompartment. PMID:26538283

  17. Development and practical application of accelerated solvent extraction for the isolation of cocaine/crack biomarkers in meconium samples.

    PubMed

    Mantovani, Cínthia de Carvalho; Lima, Marcela Bittar; Oliveira, Carolina Dizioli Rodrigues de; Menck, Rafael de Almeida; Diniz, Edna Maria de Albuquerque; Yonamine, Mauricio

    2014-04-15

    A method using accelerated solvent extraction (ASE) for the isolation of cocaine/crack biomarkers in meconium samples, followed by solid phase extraction (SPE) and the simultaneous quantification by gas chromatography-mass spectrometry (GC-MS) was developed and validated. Initially, meconium samples were submitted to an ASE procedure, which was followed by SPE with Bond Elut Certify I cartridges. The analytes were derivatizated with PFP/PFPA and analyzed by GC-MS. The limits of detection (LOD) were between 11 and 17ng/g for all analytes. The limits of quantification (LOQ) were 30ng/g for anhydroecgonine methyl ester, and 20ng/g for cocaine, benzoylecgonine, ecgonine methyl ester and cocaethylene. Linearity ranged from the LOQ to 1500ng/g for all analytes, with a coefficients of determination greater than 0.991, except for m-hydroxybenzoylecgonine, which was only qualitatively detected. Precision and accuracy were evaluated at three concentration levels. For all analytes, inter-assay precision ranged from 3.2 to 18.1%, and intra-assay precision did not exceed 12.7%. The accuracy results were between 84.5 and 114.2% and the average recovery ranged from 17 to 84%. The method was applied to 342 meconium samples randomly collected in the University Hospital-University of São Paulo (HU-USP), Brazil. Cocaine biomarkers were detected in 19 samples, which represent 5.6% of exposure prevalence. Significantly lower birth weight, length and head circumference were found for the exposed newborns compared with the non-exposed group. This is the first report in which ASE was used as a sample preparation technique to extract cocaine biomarkers from a complex biological matrix such as meconium samples. The advantages of the developed method are the smaller demand for organic solvents and the minor sample handling, which allows a faster and accurate procedure, appropriate to confirm fetal exposure to cocaine/crack. PMID:24657406

  18. Composites Associated with Pulp-Protection Material: Color-Stability Analysis after Accelerated Artificial Aging

    PubMed Central

    Cruvinel, Diogo Rodrigues; Garcia, Lucas da Fonseca Roberti; Consani, Simonides; de Carvalho Panzeri Pires-de-Souza, Fernanda

    2010-01-01

    Objectives: This study assessed the color stability of two composites associated with two pulp protectors submitted to accelerated artificial aging (AAA). Methods: 60 test specimens were made with 0.5 mm of protection material (calcium hydroxide - CH or glass ionomer cement - GIC) and 2.5 mm of restoration material (Concept or QuixFil) and divided into 3 groups (n=10) according to the type of protection material/composite, and the control group (no protection). After polishing, color readings were obtained with a spectrophotometer (PCB 6807 Byk Gardner) before and after AAA for 384 hours, and L*, a*, and b* coordinates and total color variation (ΔE) were analyzed (2-way ANOVA, Bonferroni, α=05). Results: Composites placed on CH presented lower L* levels than those on GIC, which presented higher L* values than the control group and lower b* values than those of the CH group. The Concept composite presented higher ΔE levels for all groups, differing statistically from QuixFil, except when placed on GIC. Conclusions: It was concluded that the protection material could affect the color stability and AAA is a factor that enhances this effect, depending on the type of composite used. PMID:20046473

  19. Accelerated learning approaches for maintenance training

    SciTech Connect

    Erickson, E.J.

    1991-01-01

    As a training tool, Accelerated Learning techniques have been in use since 1956. Trainers from a variety of applications and disciplines have found success in using Accelerated Learning approaches, such as training aids, positive affirmations, memory aids, room arrangement, color patterns, and music. Some have thought that maintenance training and Accelerated Learning have nothing in common. Recent training applications by industry and education of Accelerated Learning are proving very successful by several standards. This paper cites available resource examples and challenges maintenance trainers to adopt new ideas and concepts to accelerate learning in all training setting. 7 refs.

  20. Precision and accuracy in the quantitative analysis of biological samples by accelerator mass spectrometry: application in microdose absolute bioavailability studies.

    PubMed

    Gao, Lan; Li, Jing; Kasserra, Claudia; Song, Qi; Arjomand, Ali; Hesk, David; Chowdhury, Swapan K

    2011-07-15

    Determination of the pharmacokinetics and absolute bioavailability of an experimental compound, SCH 900518, following a 89.7 nCi (100 μg) intravenous (iv) dose of (14)C-SCH 900518 2 h post 200 mg oral administration of nonradiolabeled SCH 900518 to six healthy male subjects has been described. The plasma concentration of SCH 900518 was measured using a validated LC-MS/MS system, and accelerator mass spectrometry (AMS) was used for quantitative plasma (14)C-SCH 900518 concentration determination. Calibration standards and quality controls were included for every batch of sample analysis by AMS to ensure acceptable quality of the assay. Plasma (14)C-SCH 900518 concentrations were derived from the regression function established from the calibration standards, rather than directly from isotopic ratios from AMS measurement. The precision and accuracy of quality controls and calibration standards met the requirements of bioanalytical guidance (U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Veterinary Medicine. Guidance for Industry: Bioanalytical Method Validation (ucm070107), May 2001. http://www.fda.gov/downloads/Drugs/GuidanceCompilanceRegulatoryInformation/Guidances/ucm070107.pdf ). The AMS measurement had a linear response range from 0.0159 to 9.07 dpm/mL for plasma (14)C-SCH 900158 concentrations. The CV and accuracy were 3.4-8.5% and 94-108% (82-119% for the lower limit of quantitation (LLOQ)), respectively, with a correlation coefficient of 0.9998. The absolute bioavailability was calculated from the dose-normalized area under the curve of iv and oral doses after the plasma concentrations were plotted vs the sampling time post oral dose. The mean absolute bioavailability of SCH 900518 was 40.8% (range 16.8-60.6%). The typical accuracy and standard deviation in AMS quantitative analysis of drugs from human plasma samples have been reported for the first time, and the impact of these

  1. Maximal acceleration and radiative processes

    NASA Astrophysics Data System (ADS)

    Papini, Giorgio

    2015-08-01

    We derive the radiation characteristics of an accelerated, charged particle in a model due to Caianiello in which the proper acceleration of a particle of mass m has the upper limit 𝒜m = 2mc3/ℏ. We find two power laws, one applicable to lower accelerations, the other more suitable for accelerations closer to 𝒜m and to the related physical singularity in the Ricci scalar. Geometrical constraints and power spectra are also discussed. By comparing the power laws due to the maximal acceleration (MA) with that for particles in gravitational fields, we find that the model of Caianiello allows, in principle, the use of charged particles as tools to distinguish inertial from gravitational fields locally.

  2. Optical property dimensionality reduction techniques for accelerated radiative transfer performance: Application to remote sensing total ozone retrievals

    NASA Astrophysics Data System (ADS)

    Efremenko, Dmitry; Doicu, Adrian; Loyola, Diego; Trautmann, Thomas

    2014-01-01

    In this paper, we introduce several dimensionality reduction techniques for optical parameters. We consider the principal component analysis, the local linear embedding methods (locality pursuit embedding, locality preserving projection, locally embedded analysis), and discrete orthogonal transforms (cosine, Legendre, wavelet). The principle component analysis has already been shown to be an effective and accurate method of enhancing radiative transfer performance for simulations in an absorbing and a scattering atmosphere. By linearizing the corresponding radiative transfer model, we analyze the applicability of the proposed methods to a practical problem of total ozone column retrieval from UV-backscatter measurements.

  3. Integrating Science and Management - Evaluation of a Collaborative Model to Accelerate the Transition of Sea Level Rise Research Results into Application

    NASA Astrophysics Data System (ADS)

    Kidwell, D.; DeLorme, D.; Lewitus, A.

    2015-12-01

    The development and implementation of applied research programs that maximize stakeholder collaboration and utility is a well-documented struggle for funding agencies. In 2007, NOAA initiated multi-year stakeholder engagement process to develop a regional-scale, inter-disciplinary research project that resulted in a novel approach to accelerate the application of research results into management. This process culminated in a 2009 federal funding opportunity and resultant 6-year Ecological Effects of Sea Level Rise-Northern Gulf of Mexico (EESLR-NGOM) project focused on the dynamic integration of biological models (wetlands and oysters) with inundation and storm surge models at three National Estuarine Research Reserves in Florida, Alabama, and Mississippi. The project implemented a co-management approach between a traditional principle investigator (PI) and newly created applications co-PI that led a management advisory committee. Our goal was to provide the dedicated funding and infrastructure necessary to ensure the initial relevancy of the proposed project results, to guide ongoing research efforts, and to aid the efficient incorporation of key scientific results and tools into direct management application. As the project nears completion in 2016 and modeling applications reach maturity, this presentation will discuss the programmatic approach that resulted in EESLR-NGOM as well as an evaluation of nearly 6-years of collaborative science. This evaluation will focus on the funding agency perspective, with an emphasis on assessing the pros and cons of project implementation to establish lessons-learned for related collaborative science efforts. In addition, with increased attention in the Gulf of Mexico on projected sea level rise impacts to coastal ecosystem restoration and management, a core benchmark for this evaluation will be the use of project models and tools by coastal managers and planners at local, state, and/or federal agencies.

  4. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  5. Dosimetric considerations and early clinical experience of accelerated partial breast irradiation using multi-lumen applicators in the setting of breast augmentation

    PubMed Central

    Akhtari, Mani; Pino, Ramiro; Scarboro, Sarah B.; Bass, Barbara L.; Miltenburg, Darlene M.; Butler, E. Brian

    2015-01-01

    Purpose Accelerated partial breast irradiation (APBI) is an accepted treatment option in breast-conserving therapy for early stage breast cancer. However, data regarding outcomes of patients treated with multi-lumen catheter systems who have existing breast implants is limited. The purpose of this study was to report treatment parameters, outcomes, and possible dosimetric correlation with cosmetic outcome for this population of patients at our institution. Material and methods We report the treatment and outcome of seven consecutive patients with existing breast implants and early stage breast cancer who were treated between 2009 and 2013 using APBI following lumpectomy. All patients were treated twice per day for five days to a total dose of 34 Gy using a high-dose-rate 192Ir source. Cosmetic outcomes were evaluated using the Harvard breast cosmesis scale, and late toxicities were reported using the Radiation Therapy Oncology Group (RTOG) late radiation morbidity schema. Results After a mean follow-up of 32 months, all patients have remained cancer free. Six out of seven patients had an excellent or good cosmetic outcome. There were no grade 3 or 4 late toxicities. The average total breast implant volume was 279.3 cc, received an average mean dose of 12.1 Gy, and a maximum dose of 234.1 Gy. The average percentage of breast implant volume receiving 50%, 75%, 100%, 150%, and 200% of the prescribed dose was 15.6%, 7.03%, 4.6%, 1.58%, and 0.46%, respectively. Absolute volume of breast implants receiving more than 50% of prescribed dose correlated with worse cosmetic outcomes. Conclusions Accelerated partial breast irradiation using a multi-lumen applicator in patients with existing breast implants can safely be performed with promising early clinical results. The presence of the implant did not compromise the ability to achieve dosimetric criteria; however, dose to the implant and the irradiated implant volume may be related with worse cosmetic outcomes. PMID:26816499

  6. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered

  7. Measurement of cosmogenic /sup 36/Cl/Cl in young volcanic rocks: An application of accelerator mass spectrometry in geochronology

    SciTech Connect

    Leavy, B.D.; Phillips, F.M.; Elmore, D.; Kubik, P.W.

    1987-01-01

    We have measured /sup 36/Cl/Cl ratios in a number of young volcanic rocks in order to test the feasibility of using /sup 36/Cl buildup as a geochronometer for materials less than about 700,000 years old. All of the analyzed rocks have been dated independently using K-Ar or other radiometric dating methods and have exposure histories that are known or can be reasonably assumed. Measured /sup 36/Cl/Cl ratios in these rocks are in good agreement with the calculated in-situ /sup 36/Cl buildup curve. These analyses indicate that AMS measurement of /sup 36/Cl buildup in young rocks is a potentially powerful new method for dating materials that had previously been undatable, and as such will have broad applications in volcanology, tectonics, geophysics, and Quaternary research.

  8. Accelerator physics and modeling: Proceedings

    SciTech Connect

    Parsa, Z.

    1991-01-01

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings.

  9. Accelerator physics and modeling: Proceedings

    SciTech Connect

    Parsa, Z.

    1991-12-31

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings.

  10. Dynamics of Radiation Pressure Acceleration

    SciTech Connect

    Macchi, A.; Benedetti, C.; Pegoraro, F.; Veghini, S.

    2010-02-02

    We describe recent theoretical results on Radiation Pressure Acceleration of ions by ultraintense, circularly polarized laser pulses, giving an insight on the underlying dynamics and suggestions for the development of applications. In thick targets, we show how few-cycle pulses may generate single ion bunches in inhomogeneous density profiles. In thin targets, we present a refinement of the simple model of the accelerating mirror and a comparison of its predictions with simulation results, solving an apparent paradox.

  11. CCC for AAA: Tapping Creativity, Collaboration & Cooperation for Quality in Teacher Education

    ERIC Educational Resources Information Center

    Praveen, C.

    2006-01-01

    Information and Communication Technology in education is changing the way we teach, learn and conduct research. Today we have WIRE, WEB and WINDOWS leading to CONNECTIVITY, NETWORKING and APPLICATIONS. Not surprisingly the National Council of Teacher Education, (NCTE) India, decided to make ICT Literacy a compulsory part of the Pre-service course…

  12. Hardware Accelerated Simulated Radiography

    SciTech Connect

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-04-12

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists.

  13. Adaptive control for accelerators

    DOEpatents

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  14. Evaluation of a multiple spin- and gradient-echo (SAGE) EPI acquisition with SENSE acceleration: applications for perfusion imaging in and outside the brain.

    PubMed

    Skinner, Jack T; Robison, Ryan K; Elder, Christopher P; Newton, Allen T; Damon, Bruce M; Quarles, C Chad

    2014-12-01

    Perfusion-based changes in MR signal intensity can occur in response to the introduction of exogenous contrast agents and endogenous tissue properties (e.g. blood oxygenation). MR measurements aimed at capturing these changes often implement single-shot echo planar imaging (ssEPI). In recent years ssEPI readouts have been combined with parallel imaging (PI) to allow fast dynamic multi-slice imaging as well as the incorporation of multiple echoes. A multiple spin- and gradient-echo (SAGE) EPI acquisition has recently been developed to allow measurement of transverse relaxation rate (R2 and R2(*)) changes in dynamic susceptibility contrast (DSC)-MRI experiments in the brain. With SAGE EPI, the use of PI can influence image quality, temporal resolution, and achievable echo times. The effect of PI on dynamic SAGE measurements, however, has not been evaluated. In this work, a SAGE EPI acquisition utilizing SENSE PI and partial Fourier (PF) acceleration was developed and evaluated. Voxel-wise measures of R2 and R2(*) in healthy brain were compared using SAGE EPI and conventional non-EPI multiple echo acquisitions with varying SENSE and PF acceleration. A conservative SENSE factor of 2 with PF factor of 0.73 was found to provide accurate measures of R2 and R2(*) in white (WM) (rR2=[0.55-0.79], rR2*=[0.47-0.71]) and gray (GM) matter (rR2=[0.26-0.59], rR2*=[0.39-0.74]) across subjects. The combined use of SENSE and PF allowed the first dynamic SAGE EPI measurements in muscle, with a SENSE factor of 3 and PF factor of 0.6 providing reliable relaxation rate estimates when compared to multi-echo methods. Application of the optimized SAGE protocol in DSC-MRI of high-grade glioma patients provided T1 leakage-corrected estimates of CBV and CBF as well as mean vessel diameter (mVD) and simultaneous measures of DCE-MRI parameters K(trans) and ve. Likewise, application of SAGE in a muscle reperfusion model allowed dynamic measures of R2', a parameter that has been shown to correlate

  15. Evaluation of a multiple spin- and gradient-echo (SAGE) EPI acquisition with SENSE acceleration: applications for perfusion imaging in and outside the brain.

    PubMed

    Skinner, Jack T; Robison, Ryan K; Elder, Christopher P; Newton, Allen T; Damon, Bruce M; Quarles, C Chad

    2014-12-01

    Perfusion-based changes in MR signal intensity can occur in response to the introduction of exogenous contrast agents and endogenous tissue properties (e.g. blood oxygenation). MR measurements aimed at capturing these changes often implement single-shot echo planar imaging (ssEPI). In recent years ssEPI readouts have been combined with parallel imaging (PI) to allow fast dynamic multi-slice imaging as well as the incorporation of multiple echoes. A multiple spin- and gradient-echo (SAGE) EPI acquisition has recently been developed to allow measurement of transverse relaxation rate (R2 and R2(*)) changes in dynamic susceptibility contrast (DSC)-MRI experiments in the brain. With SAGE EPI, the use of PI can influence image quality, temporal resolution, and achievable echo times. The effect of PI on dynamic SAGE measurements, however, has not been evaluated. In this work, a SAGE EPI acquisition utilizing SENSE PI and partial Fourier (PF) acceleration was developed and evaluated. Voxel-wise measures of R2 and R2(*) in healthy brain were compared using SAGE EPI and conventional non-EPI multiple echo acquisitions with varying SENSE and PF acceleration. A conservative SENSE factor of 2 with PF factor of 0.73 was found to provide accurate measures of R2 and R2(*) in white (WM) (rR2=[0.55-0.79], rR2*=[0.47-0.71]) and gray (GM) matter (rR2=[0.26-0.59], rR2*=[0.39-0.74]) across subjects. The combined use of SENSE and PF allowed the first dynamic SAGE EPI measurements in muscle, with a SENSE factor of 3 and PF factor of 0.6 providing reliable relaxation rate estimates when compared to multi-echo methods. Application of the optimized SAGE protocol in DSC-MRI of high-grade glioma patients provided T1 leakage-corrected estimates of CBV and CBF as well as mean vessel diameter (mVD) and simultaneous measures of DCE-MRI parameters K(trans) and ve. Likewise, application of SAGE in a muscle reperfusion model allowed dynamic measures of R2', a parameter that has been shown to correlate

  16. GiMMiK-Generating bespoke matrix multiplication kernels for accelerators: Application to high-order Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Wozniak, Bartosz D.; Witherden, Freddie D.; Russell, Francis P.; Vincent, Peter E.; Kelly, Paul H. J.

    2016-05-01

    Matrix multiplication is a fundamental linear algebra routine ubiquitous in all areas of science and engineering. Highly optimised BLAS libraries (cuBLAS and clBLAS on GPUs) are the most popular choices for an implementation of the General Matrix Multiply (GEMM) in software. In this paper we present GiMMiK-a generator of bespoke matrix multiplication kernels for the CUDA and OpenCL platforms. GiMMiK exploits a prior knowledge of the operator matrix to generate highly performant code. The performance of GiMMiK's kernels is particularly apparent in a block-by-panel type of matrix multiplication, where the block matrix is typically small (e.g. dimensions of 96 × 64). Such operations are characteristic to our motivating application in PyFR-an implementation of Flux Reconstruction schemes for high-order fluid flow simulations on mixed unstructured meshes. GiMMiK fully unrolls the matrix-vector product and embeds matrix entries directly in the code to benefit from the use of the constant cache and compiler optimisations. Further, it reduces the number of floating-point operations by removing multiplications by zeros. Together with the ability of our kernels to avoid the poorly optimised cleanup code, executed by library GEMM, we are able to outperform cuBLAS on two NVIDIA GPUs: GTX 780 Ti and Tesla K40c. We observe speedups of our kernels over cuBLAS GEMM of up to 9.98 and 63.30 times for a 294×1029 99% sparse PyFR matrix in double precision on the Tesla K40c and GTX 780 Ti correspondingly. In single precision, observed speedups reach 12.20 and 13.07 times for a 4×8 50% sparse PyFR matrix on the two aforementioned cards. Using GiMMiK as the matrix multiplication kernel provider allows us to achieve a speedup of up to 1.70 (2.19) for a simulation of an unsteady flow over a cylinder executed with PyFR in double (single) precision on the Tesla K40c. All results were generated with GiMMiK version 1.0.

  17. Progress of Laser-Driven Plasma Accelerators

    SciTech Connect

    Nakajima, Kazuhisa

    2007-07-11

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world.Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called ''dream beams on a table top'', which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators.

  18. The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects.

    PubMed

    Herruzo, Esther; Ontoso, David; González-Arranz, Sara; Cavero, Santiago; Lechuga, Ana; San-Segundo, Pedro A

    2016-09-19

    Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes. PMID:27257060

  19. Thyroid Hormone Receptor Interacting Protein 13 (TRIP13) AAA-ATPase Is a Novel Mitotic Checkpoint-silencing Protein*

    PubMed Central

    Wang, Kexi; Sturt-Gillespie, Brianne; Hittle, James C.; Macdonald, Dawn; Chan, Gordon K.; Yen, Tim J.; Liu, Song-Tao

    2014-01-01

    The mitotic checkpoint (or spindle assembly checkpoint) is a fail-safe mechanism to prevent chromosome missegregation by delaying anaphase onset in the presence of defective kinetochore-microtubule attachment. The target of the checkpoint is the E3 ubiquitin ligase anaphase-promoting complex/cyclosome. Once all chromosomes are properly attached and bioriented at the metaphase plate, the checkpoint needs to be silenced. Previously, we and others have reported that TRIP13 AAA-ATPase binds to the mitotic checkpoint-silencing protein p31comet. Here we show that endogenous TRIP13 localizes to kinetochores. TRIP13 knockdown delays metaphase-to-anaphase transition. The delay is caused by prolonged presence of the effector for the checkpoint, the mitotic checkpoint complex, and its association and inhibition of the anaphase-promoting complex/cyclosome. These results suggest that TRIP13 is a novel mitotic checkpoint-silencing protein. The ATPase activity of TRIP13 is essential for its checkpoint function, and interference with TRIP13 abolished p31comet-mediated mitotic checkpoint silencing. TRIP13 overexpression is a hallmark of cancer cells showing chromosomal instability, particularly in certain breast cancers with poor prognosis. We suggest that premature mitotic checkpoint silencing triggered by TRIP13 overexpression may promote cancer development. PMID:25012665

  20. Disassembly of mitotic checkpoint complexes by the joint action of the AAA-ATPase TRIP13 and p31comet

    PubMed Central

    Eytan, Esther; Wang, Kexi; Miniowitz-Shemtov, Shirly; Sitry-Shevah, Danielle; Kaisari, Sharon; Yen, Tim J.; Liu, Song-Tao; Hershko, Avram

    2014-01-01

    The mitotic (or spindle assembly) checkpoint system delays anaphase until all chromosomes are correctly attached to the mitotic spindle. When the checkpoint is active, a Mitotic Checkpoint Complex (MCC) assembles and inhibits the ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C). MCC is composed of the checkpoint proteins Mad2, BubR1, and Bub3 associated with the APC/C activator Cdc20. When the checkpoint signal is turned off, MCC is disassembled and the checkpoint is inactivated. The mechanisms of the disassembly of MCC are not sufficiently understood. We have previously observed that ATP hydrolysis is required for the action of the Mad2-binding protein p31comet to disassemble MCC. We now show that HeLa cell extracts contain a factor that promotes ATP- and p31comet-dependent disassembly of a Cdc20–Mad2 subcomplex and identify it as Thyroid Receptor Interacting Protein 13 (TRIP13), an AAA-ATPase known to interact with p31comet. The joint action of TRIP13 and p31comet also promotes the release of Mad2 from MCC, participates in the complete disassembly of MCC and abrogates checkpoint inhibition of APC/C. We propose that TRIP13 plays centrally important roles in the sequence of events leading to MCC disassembly and checkpoint inactivation. PMID:25092294

  1. Multiple sequence signals direct recognition and degradation of protein substrates by the AAA+ protease HslUV.

    PubMed

    Sundar, Shankar; McGinness, Kathleen E; Baker, Tania A; Sauer, Robert T

    2010-10-29

    Proteolysis is important for protein quality control and for the proper regulation of many intracellular processes in prokaryotes and eukaryotes. Discerning substrates from other cellular proteins is a key aspect of proteolytic function. The Escherichia coli HslUV protease is a member of a major family of ATP-dependent AAA+ degradation machines. HslU hexamers recognize and unfold native protein substrates and then translocate the polypeptide into the degradation chamber of the HslV peptidase. Although a wealth of structural information is available for this system, relatively little is known about mechanisms of substrate recognition. Here, we demonstrate that mutations in the unstructured N-terminal and C-terminal sequences of two model substrates alter HslUV recognition and degradation kinetics, including changes in V(max). By introducing N- or C-terminal sequences that serve as recognition sites for specific peptide-binding proteins, we show that blocking either terminus of the substrate interferes with HslUV degradation, with synergistic effects when both termini are obstructed. These results support a model in which one terminus of the substrate is tethered to the protease and the other terminus is engaged by the translocation/unfolding machinery in the HslU pore. Thus, degradation appears to consist of discrete steps, which involve the interaction of different terminal sequence signals in the substrate with different receptor sites in the HslUV protease. PMID:20837023

  2. In-situ monitoring of blood glucose level for dialysis machine by AAA-battery-size ATR Fourier spectroscopy

    NASA Astrophysics Data System (ADS)

    Hosono, Satsuki; Sato, Shun; Ishida, Akane; Suzuki, Yo; Inohara, Daichi; Nogo, Kosuke; Abeygunawardhana, Pradeep K.; Suzuki, Satoru; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2015-07-01

    For blood glucose level measurement of dialysis machines, we proposed AAA-battery-size ATR (Attenuated total reflection) Fourier spectroscopy in middle infrared light region. The proposed one-shot Fourier spectroscopic imaging is a near-common path and spatial phase-shift interferometer with high time resolution. Because numerous number of spectral data that is 60 (= camera frame rare e.g. 60[Hz]) multiplied by pixel number could be obtained in 1[sec.], statistical-averaging improvement realize high-accurate spectral measurement. We evaluated the quantitative accuracy of our proposed method for measuring glucose concentration in near-infrared light region with liquid cells. We confirmed that absorbance at 1600[nm] had high correlations with glucose concentrations (correlation coefficient: 0.92). But to measure whole-blood, complex light phenomenon caused from red blood cells, that is scattering and multiple reflection or so, deteriorate spectral data. Thus, we also proposed the ultrasound-assisted spectroscopic imaging that traps particles at standing-wave node. Thus, if ATR prism is oscillated mechanically, anti-node area is generated around evanescent light field on prism surface. By elimination complex light phenomenon of red blood cells, glucose concentration in whole-blood will be quantify with high accuracy. In this report, we successfully trapped red blood cells in normal saline solution with ultrasonic standing wave (frequency: 2[MHz]).

  3. Roles of the N domain of the AAA+ Lon protease in substrate recognition, allosteric regulation and chaperone activity.

    PubMed

    Wohlever, Matthew L; Baker, Tania A; Sauer, Robert T

    2014-01-01

    Degron binding regulates the activities of the AAA+ Lon protease in addition to targeting proteins for degradation. The sul20 degron from the cell-division inhibitor SulA is shown here to bind to the N domain of Escherichia coli Lon, and the recognition site is identified by cross-linking and scanning for mutations that prevent sul20-peptide binding. These N-domain mutations limit the rates of proteolysis of model sul20-tagged substrates and ATP hydrolysis by an allosteric mechanism. Lon inactivation of SulA in vivo requires binding to the N domain and robust ATP hydrolysis but does not require degradation or translocation into the proteolytic chamber. Lon-mediated relief of proteotoxic stress and protein aggregation in vivo can also occur without degradation but is not dependent on robust ATP hydrolysis. In combination, these results demonstrate that Lon can function as a protease or a chaperone and reveal that some of its ATP-dependent biological activities do not require translocation.

  4. The IbpA and IbpB small heat-shock proteins are substrates of the AAA+ Lon protease.

    PubMed

    Bissonnette, Sarah A; Rivera-Rivera, Izarys; Sauer, Robert T; Baker, Tania A

    2010-03-01

    Small heat-shock proteins (sHSPs) are a widely conserved family of molecular chaperones, all containing a conserved alpha-crystallin domain flanked by variable N- and C-terminal tails. We report that IbpA and IbpB, the sHSPs of Escherichia coli, are substrates for the AAA+ Lon protease. This ATP-fueled enzyme degraded purified IbpA substantially more slowly than purified IbpB, and we demonstrate that this disparity is a consequence of differences in maximal Lon degradation rates and not in substrate affinity. Interestingly, however, IbpB stimulated Lon degradation of IbpA both in vitro and in vivo. Furthermore, although the variable N- and C-terminal tails of the Ibps were dispensable for proteolytic recognition, these tails contain critical determinants that control the maximal rate of Lon degradation. Finally, we show that E. coli Lon degrades variants of human alpha-crystallin, indicating that Lon recognizes conserved determinants in the folded alpha-crystallin domain itself. These results suggest a novel mode for Lon substrate recognition and provide a highly suggestive link between the degradation and sHSP branches of the protein quality-control network.

  5. Random amplified polymorphic DNA (RAPD) detection of dwarf off-types in micropropagated Cavendish (Musa spp. AAA) bananas.

    PubMed

    Damasco, O P; Graham, G C; Henry, R J; Adkins, S W; Smiths, M K; Godwin, I D

    1996-11-01

    A RAPD marker specific to the dwarf off-type (hereafter known as dwarf) from micropropagation of Cavendish banana (Musa spp. AAA) cultivars New Guinea Cavendish and Williams was identified following an analysis of 57 normal (true-to-type) and 59 dwarf plants generated from several different micropropagation events. Sixty-six random decamer primers were used in the initial screen, of which 19 (28.8%) revealed polymorphisms between normal and dwarf plants. Primer OPJ-04 (5'-CCGAACACGG-3') was found to amplify an approx. 1.5 kb band which was consistently present in all normal but absent in all dwarf plants of both cultivars. Reliable detection of dwarf plants was achieved using this marker, providing the only available means ofin vitro detection of dwarfs. The use of this marker could facilitate early detection and elimination of dwarfs from batches of micropropagated bananas, and may be a useful tool in determining what factors in the tissue culture process lead to this off type production.Other micropropagation-induced RAPD polymorphisms were observed but were not associated with the dwarf trait. PMID:24178669

  6. The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects

    PubMed Central

    Herruzo, Esther; Ontoso, David; González-Arranz, Sara; Cavero, Santiago; Lechuga, Ana; San-Segundo, Pedro A.

    2016-01-01

    Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes. PMID:27257060

  7. Thyroid hormone receptor interacting protein 13 (TRIP13) AAA-ATPase is a novel mitotic checkpoint-silencing protein.

    PubMed

    Wang, Kexi; Sturt-Gillespie, Brianne; Hittle, James C; Macdonald, Dawn; Chan, Gordon K; Yen, Tim J; Liu, Song-Tao

    2014-08-22

    The mitotic checkpoint (or spindle assembly checkpoint) is a fail-safe mechanism to prevent chromosome missegregation by delaying anaphase onset in the presence of defective kinetochore-microtubule attachment. The target of the checkpoint is the E3 ubiquitin ligase anaphase-promoting complex/cyclosome. Once all chromosomes are properly attached and bioriented at the metaphase plate, the checkpoint needs to be silenced. Previously, we and others have reported that TRIP13 AAA-ATPase binds to the mitotic checkpoint-silencing protein p31(comet). Here we show that endogenous TRIP13 localizes to kinetochores. TRIP13 knockdown delays metaphase-to-anaphase transition. The delay is caused by prolonged presence of the effector for the checkpoint, the mitotic checkpoint complex, and its association and inhibition of the anaphase-promoting complex/cyclosome. These results suggest that TRIP13 is a novel mitotic checkpoint-silencing protein. The ATPase activity of TRIP13 is essential for its checkpoint function, and interference with TRIP13 abolished p31(comet)-mediated mitotic checkpoint silencing. TRIP13 overexpression is a hallmark of cancer cells showing chromosomal instability, particularly in certain breast cancers with poor prognosis. We suggest that premature mitotic checkpoint silencing triggered by TRIP13 overexpression may promote cancer development.

  8. Loss of the m-AAA protease subunit AFG₃L₂ causes mitochondrial transport defects and tau hyperphosphorylation.

    PubMed

    Kondadi, Arun Kumar; Wang, Shuaiyu; Montagner, Sara; Kladt, Nikolay; Korwitz, Anne; Martinelli, Paola; Herholz, David; Baker, Michael J; Schauss, Astrid C; Langer, Thomas; Rugarli, Elena I

    2014-05-01

    The m-AAA protease subunit AFG₃L₂ is involved in degradation and processing of substrates in the inner mitochondrial membrane. Mutations in AFG₃L₂ are associated with spinocerebellar ataxia SCA28 in humans and impair axonal development and neuronal survival in mice. The loss of AFG₃L₂ causes fragmentation of the mitochondrial network. However, the pathogenic mechanism of neurodegeneration in the absence of AFG₃L₂ is still unclear. Here, we show that depletion of AFG₃L₂ leads to a specific defect of anterograde transport of mitochondria in murine cortical neurons. We observe similar transport deficiencies upon loss of AFG₃L₂ in OMA1-deficient neurons, indicating that they are not caused by OMA1-mediated degradation of the dynamin-like GTPase OPA1 and inhibition of mitochondrial fusion. Treatment of neurons with antioxidants, such as N-acetylcysteine or vitamin E, or decreasing tau levels in axons restored mitochondrial transport in AFG₃L₂-depleted neurons. Consistently, tau hyperphosphorylation and activation of ERK kinases are detected in mouse neurons postnatally deleted for Afg3l2. We propose that reactive oxygen species signaling leads to cytoskeletal modifications that impair mitochondrial transport in neurons lacking AFG₃L₂.

  9. The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects.

    PubMed

    Herruzo, Esther; Ontoso, David; González-Arranz, Sara; Cavero, Santiago; Lechuga, Ana; San-Segundo, Pedro A

    2016-09-19

    Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes.

  10. Structural insights into the Escherichia coli lysine decarboxylases and molecular determinants of interaction with the AAA+ ATPase RavA

    PubMed Central

    Kandiah, Eaazhisai; Carriel, Diego; Perard, Julien; Malet, Hélène; Bacia, Maria; Liu, Kaiyin; Chan, Sze W. S.; Houry, Walid A.; Ollagnier de Choudens, Sandrine; Elsen, Sylvie; Gutsche, Irina

    2016-01-01

    The inducible lysine decarboxylase LdcI is an important enterobacterial acid stress response enzyme whereas LdcC is its close paralogue thought to play mainly a metabolic role. A unique macromolecular cage formed by two decamers of the Escherichia coli LdcI and five hexamers of the AAA+ ATPase RavA was shown to counteract acid stress under starvation. Previously, we proposed a pseudoatomic model of the LdcI-RavA cage based on its cryo-electron microscopy map and crystal structures of an inactive LdcI decamer and a RavA monomer. We now present cryo-electron microscopy 3D reconstructions of the E. coli LdcI and LdcC, and an improved map of the LdcI bound to the LARA domain of RavA, at pH optimal for their enzymatic activity. Comparison with each other and with available structures uncovers differences between LdcI and LdcC explaining why only the acid stress response enzyme is capable of binding RavA. We identify interdomain movements associated with the pH-dependent enzyme activation and with the RavA binding. Multiple sequence alignment coupled to a phylogenetic analysis reveals that certain enterobacteria exert evolutionary pressure on the lysine decarboxylase towards the cage-like assembly with RavA, implying that this complex may have an important function under particular stress conditions. PMID:27080013

  11. High-speed atomic force microscopic observation of ATP-dependent rotation of the AAA+ chaperone p97.

    PubMed

    Noi, Kentaro; Yamamoto, Daisuke; Nishikori, Shingo; Arita-Morioka, Ken-ichi; Kato, Takayuki; Ando, Toshio; Ogura, Teru

    2013-11-01

    p97 (also called VCP and CDC-48) is an AAA+ chaperone, which consists of a substrate/cofactor-binding N domain and two ATPase domains (D1 and D2), and forms a homo-hexameric ring. p97 plays crucial roles in a variety of cellular processes such as the ubiquitin-proteasome pathway, the endoplasmic reticulum-associated protein degradation, autophagy, and modulation of protein aggregates. Mutations in human p97 homolog VCP are linked to neurodegenerative diseases. The key mechanism of p97 in these various functions has been proposed to be the disassembly of protein complexes. To understand the molecular mechanism of p97, we studied the conformational changes of hexameric CDC-48.1, a Caenorhabditis elegans p97 homolog, using high-speed atomic force microscopy. In the presence of ATP, the N-D1 ring repeatedly rotates ~23 ± 8° clockwise and resets relative to the D2 ring. Mutational analysis reveals that this rotation is induced by ATP binding to the D2 domain. PMID:24055316

  12. Acceleration of bone regeneration by local application of lithium: Wnt signal-mediated osteoblastogenesis and Wnt signal-independent suppression of osteoclastogenesis.

    PubMed

    Arioka, Masaki; Takahashi-Yanaga, Fumi; Sasaki, Masanori; Yoshihara, Tatsuya; Morimoto, Sachio; Hirata, Masato; Mori, Yoshihide; Sasaguri, Toshiyuki

    2014-08-15

    Inhibition of glycogen synthase kinase (GSK)-3 and the consequent activation of the Wnt/β-catenin signaling pathway have been reported to increase bone volume. To develop a novel pharmacotherapy for injured bone, we investigated whether GSK-3 inhibitor was effective in promoting bone formation. In in vitro experiments, we examined the effects of GSK-3 inhibitors LiCl and SB216763 on osteoblastogenesis of mesenchymal progenitor C3H10T1/2 cells and osteoclastogenesis of osteoclast precursor RAW-D cells. Both inhibitors promoted osteoblast differentiation, assessed by alkaline phosphatase activity and calcium deposition, stimulating the Wnt/β-catenin signaling pathway and thereby inducing Runx2. On the other hand, the GSK-3 inhibitors suppressed osteoclast differentiation, assessed by tartrate-resistant acid phosphatase staining and number of nuclei in the cells, reducing NFATc1 expression independently of the Wnt/β-catenin signaling pathway. In subsequently performed in vivo studies, we examined the effect of locally administered Li2CO3 on the recovery from a partial defect made on the rat tibia. Computerized tomography and bone histomorphometry showed that Li2CO3 accelerated bone regeneration in defect lesion with increased lamellar bone ratio compared with the controls. These results suggested that local application of lithium (or other GSK-3 inhibitors) might effectively facilitate recovery from bone injury by promoting osteoblastogenesis and inhibiting osteoclastogenesis.

  13. A library of L-tyrosine-derived biodegradable polyarylates for potential biomaterial applications, part I: synthesis, characterization and accelerated hydrolytic degradation.

    PubMed

    Huang, Xia; Shen, Chang-Yu; Chen, Jia-Chang; Li, Qian

    2009-01-01

    A combinatorial library of biodegradable polyarylates derived from L-tyrosine was synthesized and characterized. These polyarylates are A-B-type co-polymers consisting of a cyclic dipeptide and a diacid. General structure-property correlations were established by comparing aryl diacid co-polymers and aliphatic diacid co-polymers. The synthesized polymers were characterized by FT-IR, (1)H-NMR, (13)C-NMR for their chemical structure, by DSC and TGA for their thermal characteristics and by GPC for their molecular weight distribution. The T(g) of polymers decreased and water absorption increased with increasing number of methylene groups in the polymer backbone. Using a cyclic peptide derived from L-tyrosine as co-monomer we obtained optimum bioactivity and biocompatibility. Combinatorial approaches of designing material increased effectively the number of available degradable polymers which can be used in different biomaterials applications. General structure-property correlation makes polymers' properties varied in a predictable and systematic fashion. Accelerated hydrolytic degradation studies of polyarylates were performed at 70 degrees C in acid and alkali medium. The degradation rates of polymers were in accordance with their water absorption. The degradation rates of samples in acid medium were lower than those in alkali medium. PMID:19454161

  14. Acceleration of bone regeneration by local application of lithium: Wnt signal-mediated osteoblastogenesis and Wnt signal-independent suppression of osteoclastogenesis.

    PubMed

    Arioka, Masaki; Takahashi-Yanaga, Fumi; Sasaki, Masanori; Yoshihara, Tatsuya; Morimoto, Sachio; Hirata, Masato; Mori, Yoshihide; Sasaguri, Toshiyuki

    2014-08-15

    Inhibition of glycogen synthase kinase (GSK)-3 and the consequent activation of the Wnt/β-catenin signaling pathway have been reported to increase bone volume. To develop a novel pharmacotherapy for injured bone, we investigated whether GSK-3 inhibitor was effective in promoting bone formation. In in vitro experiments, we examined the effects of GSK-3 inhibitors LiCl and SB216763 on osteoblastogenesis of mesenchymal progenitor C3H10T1/2 cells and osteoclastogenesis of osteoclast precursor RAW-D cells. Both inhibitors promoted osteoblast differentiation, assessed by alkaline phosphatase activity and calcium deposition, stimulating the Wnt/β-catenin signaling pathway and thereby inducing Runx2. On the other hand, the GSK-3 inhibitors suppressed osteoclast differentiation, assessed by tartrate-resistant acid phosphatase staining and number of nuclei in the cells, reducing NFATc1 expression independently of the Wnt/β-catenin signaling pathway. In subsequently performed in vivo studies, we examined the effect of locally administered Li2CO3 on the recovery from a partial defect made on the rat tibia. Computerized tomography and bone histomorphometry showed that Li2CO3 accelerated bone regeneration in defect lesion with increased lamellar bone ratio compared with the controls. These results suggested that local application of lithium (or other GSK-3 inhibitors) might effectively facilitate recovery from bone injury by promoting osteoblastogenesis and inhibiting osteoclastogenesis. PMID:24955980

  15. Electric rail gun projectile acceleration to high velocity

    NASA Technical Reports Server (NTRS)

    Bauer, D. P.; Mccormick, T. J.; Barber, J. P.

    1982-01-01

    Electric rail accelerators are being investigated for application in electric propulsion systems. Several electric propulsion applications require that the rail accelerator be capable of launching projectiles at velocities above 10 km/s. An experimental program was conducted to develop rail accelerator technology for high velocity projectile launch. Several 6 mm bore, 3 m long rail accelerators were fabricated. Projectiles with a mass of 0.2 g were accelerated by plasmas, carrying currents up to 150 kA. Experimental design and results are described. Results indicate that the accelerator performed as predicted for a fraction of the total projectile acceleration. The disparity between predicted and measured results are discussed.

  16. Simulation Accelerator

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under a NASA SBIR (Small Business Innovative Research) contract, (NAS5-30905), EAI Simulation Associates, Inc., developed a new digital simulation computer, Starlight(tm). With an architecture based on the analog model of computation, Starlight(tm) outperforms all other computers on a wide range of continuous system simulation. This system is used in a variety of applications, including aerospace, automotive, electric power and chemical reactors.

  17. Teleportation with Multiple Accelerated Partners

    NASA Astrophysics Data System (ADS)

    Sagheer, A.; Hamdoun, H.; Metwally, N.

    2015-09-01

    As the current revolution in communication is underway, quantum teleportation can increase the level of security in quantum communication applications. In this paper, we present a quantum teleportation procedure that capable to teleport either accelerated or non-accelerated information through different quantum channels. These quantum channels are based on accelerated multi-qubit states, where each qubit of each of these channels represents a partner. Namely, these states are the W state, Greenberger-Horne-Zeilinger (GHZ) state, and the GHZ-like state. Here, we show that the fidelity of teleporting accelerated information is higher than the fidelity of teleporting non-accelerated information, both through a quantum channel that is based on accelerated state. Also, the comparison among the performance of these three channels shows that the degree of fidelity depends on type of the used channel, type of the measurement, and value of the acceleration. The result of comparison concludes that teleporting information through channel that is based on the GHZ state is more robust than teleporting information through channels that are based on the other two states. For future work, the proposed procedure can be generalized later to achieve communication through a wider quantum network.

  18. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect

    Spentzouris, P.; Cary, J.; McInnes, L.C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization

  19. Accelerator mass spectrometry.

    PubMed

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples.

  20. Electrostatic Plasma Accelerator (EPA)

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1995-01-01

    The application of electric propulsion to communications satellites, however, has been limited to the use of hydrazine thrusters with electric heaters for thrust and specific impulse augmentation. These electrothermal thrusters operate at specific impulse levels of approximately 300 s with heater powers of about 500 W. Low power arcjets (1-3 kW) are currently being investigated as a way to increase specific impulse levels to approximately 500 s. Ion propulsion systems can easily produce specific impulses of 3000 s or greater, but have yet to be applied to communications satellites. The reasons most often given for not using ion propulsion systems are their high level of overall complexity, low thrust with long burn times, and the difficulty of integrating the propulsion system into existing commercial spacecraft busses. The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass.

  1. Accelerating Commercial Remote Sensing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Visiting Investigator Program (VIP) at Stennis Space Center, Community Coffee was able to use satellites to forecast coffee crops in Guatemala. Using satellite imagery, the company can produce detailed maps that separate coffee cropland from wild vegetation and show information on the health of specific crops. The data can control coffee prices and eventually may be used to optimize application of fertilizers, pesticides and irrigation. This would result in maximal crop yields, minimal pollution and lower production costs. VIP is a mechanism involving NASA funding designed to accelerate the growth of commercial remote sensing by promoting general awareness and basic training in the technology.

  2. Fall of blood ionized calcium on watching a provocative TV program and its prevention by active absorbable algal calcium (AAA Ca).

    PubMed

    Fujita, T; Ohgitani, S; Nomura, M

    1999-01-01

    In December 1997, more than 680 children developed convulsive seizures while watching a notorious audiovisually provocative TV program, "Pocket Monster." Emotional stimulation via hyperventilation may cause respiratory alkalosis, fall of blood ionized calcium (Ca), and sensitization of the nervous system to excessive emotional stress. A study was therefore undertaken to follow the changes of blood ionized Ca in eight healthy volunteers after watching the "Pocket Monster" and also a quiet program, "Classical Music," as a control for 20min from 4 P.M. Although neither marked hyperventilation nor convulsions developed in any of these adult volunteers, blood ionized Ca showed a significantly more pronounced fall during and after watching "Pocket Monster," and their plasma intact parathyroid hormone (iPTH) was significantly higher 120min after the beginning of "Pocket Monster" than the "Classical Music" program. Plasma total Ca, pH, and albumin were free of detectable changes. Ingestion of 600mg Ca as active absorbable algal Ca (AAA Ca) with high bioavailability completely prevented the fall of ionized Ca and suppressed iPTH. Plama osteocalcin was also significantly suppressed after ingestion of AAA Ca. It may be worthwhile to ingest AAA Ca before anticipated emotional stress such as watching a provocative TV program to prevent possible neuromuscular instability. PMID:10340641

  3. Elements in nucleotide sensing and hydrolysis of the AAA+ disaggregation machine ClpB: a structure-based mechanistic dissection of a molecular motor

    SciTech Connect

    Zeymer, Cathleen Barends, Thomas R. M.; Werbeck, Nicolas D.; Schlichting, Ilme; Reinstein, Jochen

    2014-02-01

    High-resolution crystal structures together with mutational analysis and transient kinetics experiments were utilized to understand nucleotide sensing and the regulation of the ATPase cycle in an AAA+ molecular motor. ATPases of the AAA+ superfamily are large oligomeric molecular machines that remodel their substrates by converting the energy from ATP hydrolysis into mechanical force. This study focuses on the molecular chaperone ClpB, the bacterial homologue of Hsp104, which reactivates aggregated proteins under cellular stress conditions. Based on high-resolution crystal structures in different nucleotide states, mutational analysis and nucleotide-binding kinetics experiments, the ATPase cycle of the C-terminal nucleotide-binding domain (NBD2), one of the motor subunits of this AAA+ disaggregation machine, is dissected mechanistically. The results provide insights into nucleotide sensing, explaining how the conserved sensor 2 motif contributes to the discrimination between ADP and ATP binding. Furthermore, the role of a conserved active-site arginine (Arg621), which controls binding of the essential Mg{sup 2+} ion, is described. Finally, a hypothesis is presented as to how the ATPase activity is regulated by a conformational switch that involves the essential Walker A lysine. In the proposed model, an unusual side-chain conformation of this highly conserved residue stabilizes a catalytically inactive state, thereby avoiding unnecessary ATP hydrolysis.

  4. Substrate delivery by the AAA+ ClpX and ClpC1 unfoldases activates the mycobacterial ClpP1P2 peptidase

    PubMed Central

    Schmitz, Karl R.; Sauer, Robert T.

    2014-01-01

    Summary Mycobacterial Clp-family proteases function via collaboration of the heteromeric ClpP1P2 peptidase with a AAA+ partner, ClpX or ClpC1. These enzymes are essential for M. tuberculosis viability and are validated antibacterial drug targets, but the requirements for assembly and regulation of functional proteolytic complexes are poorly understood. Here, we report the reconstitution of protein degradation by mycobacterial Clp proteases in vitro and describe novel features of these enzymes that distinguish them from orthologs in other bacteria. Both ClpX and ClpC1 catalyze ATP-dependent unfolding and degradation of native protein substrates in conjunction with ClpP1P2, but neither mediates protein degradation with just ClpP1 or ClpP2. ClpP1P2 alone has negligible peptidase activity, but is strongly stimulated by translocation of protein substrates into ClpP1P2 by either AAA+ partner. Interestingly, our results support a model in which both binding of a AAA+ partner and protein-substrate delivery are required to stabilize active ClpP1P2. Our model has implications for therapeutically targeting ClpP1P2 in dormant M. tuberculosis, and our reconstituted systems should facilitate identification of novel Clp protease inhibitors and activators. PMID:24976069

  5. FY05 LDRD Fianl Report Investigation of AAA+ protein machines that participate in DNA replication, recombination, and in response to DNA damage LDRD Project Tracking Code: 04-LW-049

    SciTech Connect

    Sawicka, D; de Carvalho-Kavanagh, M S; Barsky, D; Venclovas, C

    2006-12-04

    The AAA+ proteins are remarkable macromolecules that are able to self-assemble into nanoscale machines. These protein machines play critical roles in many cellular processes, including the processes that manage a cell's genetic material, but the mechanism at the molecular level has remained elusive. We applied computational molecular modeling, combined with advanced sequence analysis and available biochemical and genetic data, to structurally characterize eukaryotic AAA+ proteins and the protein machines they form. With these models we have examined intermolecular interactions in three-dimensions (3D), including both interactions between the components of the AAA+ complexes and the interactions of these protein machines with their partners. These computational studies have provided new insights into the molecular structure and the mechanism of action for AAA+ protein machines, thereby facilitating a deeper understanding of processes involved in DNA metabolism.

  6. Accelerator and electrodynamics capability review

    SciTech Connect

    Jones, Kevin W

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  7. High-intensity interval exercise training before abdominal aortic aneurysm repair (HIT-AAA): protocol for a randomised controlled feasibility trial

    PubMed Central

    Tew, Garry A; Weston, Matthew; Kothmann, Elke; Batterham, Alan M; Gray, Joanne; Kerr, Karen; Martin, Denis; Nawaz, Shah; Yates, David; Danjoux, Gerard

    2014-01-01

    Introduction In patients with large abdominal aortic aneurysm (AAA), open surgical or endovascular aneurysm repair procedures are often used to minimise the risk of aneurysm-related rupture and death; however, aneurysm repair itself carries a high risk. Low cardiopulmonary fitness is associated with an increased risk of early post-operative complications and death following elective AAA repair. Therefore, fitness should be enhanced before aneurysm repair. High-intensity interval exercise training (HIT) is a potent, time-efficient strategy for enhancing cardiopulmonary fitness. Here, we describe a feasibility study for a definitive trial of a pre-operative HIT intervention to improve post-operative outcomes in patients undergoing elective AAA repair. Methods and analysis A minimum of 50 patients awaiting elective repair of a 5.5–7.0 cm infrarenal AAA will be allocated by minimisation to HIT or usual care control in a 1:1 ratio. The patients allocated to HIT will complete three hospital-based exercise sessions per week, for 4 weeks. Each session will include 2 or 4 min of high-intensity stationary cycling followed by the same duration of easy cycling or passive recovery, repeated until a total of 16 min of high-intensity exercise is accumulated. Outcomes to be assessed before randomisation and 24–48 h before aneurysm repair include cardiopulmonary fitness, maximum AAA diameter and health-related quality of life. In the post-operative period, we will record destination (ward or critical care unit), organ-specific morbidity, mortality and the durations of critical care and hospital stay. Twelve weeks after the discharge, participants will be interviewed to reassess quality of life and determine post-discharge healthcare utilisation. The costs associated with the exercise intervention and healthcare utilisation will be calculated. Ethics and dissemination Ethics approval was secured through Sunderland Research Ethics Committee. The findings of the trial

  8. PARTICLE ACCELERATOR AND METHOD OF CONTROLLING THE TEMPERATURE THEREOF

    DOEpatents

    Neal, R.B.; Gallagher, W.J.

    1960-10-11

    A method and means for controlling the temperature of a particle accelerator and more particularly to the maintenance of a constant and uniform temperature throughout a particle accelerator is offered. The novel feature of the invention resides in the provision of two individual heating applications to the accelerator structure. The first heating application provided is substantially a duplication of the accelerator heat created from energization, this first application being employed only when the accelerator is de-energized thereby maintaining the accelerator temperature constant with regard to time whether the accelerator is energized or not. The second heating application provided is designed to add to either the first application or energization heat in a manner to create the same uniform temperature throughout all portions of the accelerator.

  9. Multi-beam linear accelerator EVT

    NASA Astrophysics Data System (ADS)

    Teryaev, Vladimir E.; Kazakov, Sergey Yu.; Hirshfield, Jay L.

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  10. Introduction to Particle Acceleration in the Cosmos

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Horwitz, J. L.; Perez, J.; Quenby, J.

    2005-01-01

    Accelerated charged particles have been used on Earth since 1930 to explore the very essence of matter, for industrial applications, and for medical treatments. Throughout the universe nature employs a dizzying array of acceleration processes to produce particles spanning twenty orders of magnitude in energy range, while shaping our cosmic environment. Here, we introduce and review the basic physical processes causing particle acceleration, in astrophysical plasmas from geospace to the outer reaches of the cosmos. These processes are chiefly divided into four categories: adiabatic and other forms of non-stochastic acceleration, magnetic energy storage and stochastic acceleration, shock acceleration, and plasma wave and turbulent acceleration. The purpose of this introduction is to set the stage and context for the individual papers comprising this monograph.

  11. Experimental verification of the Acuros XB and AAA dose calculation adjacent to heterogeneous media for IMRT and RapidArc of nasopharygeal carcinoma

    SciTech Connect

    Kan, Monica W. K.; Leung, Lucullus H. T.; So, Ronald W. K.; Yu, Peter K. N.

    2013-03-15

    Purpose: To compare the doses calculated by the Acuros XB (AXB) algorithm and analytical anisotropic algorithm (AAA) with experimentally measured data adjacent to and within heterogeneous medium using intensity modulated radiation therapy (IMRT) and RapidArc{sup Registered-Sign} (RA) volumetric arc therapy plans for nasopharygeal carcinoma (NPC). Methods: Two-dimensional dose distribution immediately adjacent to both air and bone inserts of a rectangular tissue equivalent phantom irradiated using IMRT and RA plans for NPC cases were measured with GafChromic{sup Registered-Sign} EBT3 films. Doses near and within the nasopharygeal (NP) region of an anthropomorphic phantom containing heterogeneous medium were also measured with thermoluminescent dosimeters (TLD) and EBT3 films. The measured data were then compared with the data calculated by AAA and AXB. For AXB, dose calculations were performed using both dose-to-medium (AXB{sub Dm}) and dose-to-water (AXB{sub Dw}) options. Furthermore, target dose differences between AAA and AXB were analyzed for the corresponding real patients. The comparison of real patient plans was performed by stratifying the targets into components of different densities, including tissue, bone, and air. Results: For the verification of planar dose distribution adjacent to air and bone using the rectangular phantom, the percentages of pixels that passed the gamma analysis with the {+-} 3%/3mm criteria were 98.7%, 99.5%, and 97.7% on the axial plane for AAA, AXB{sub Dm}, and AXB{sub Dw}, respectively, averaged over all IMRT and RA plans, while they were 97.6%, 98.2%, and 97.7%, respectively, on the coronal plane. For the verification of planar dose distribution within the NP region of the anthropomorphic phantom, the percentages of pixels that passed the gamma analysis with the {+-} 3%/3mm criteria were 95.1%, 91.3%, and 99.0% for AAA, AXB{sub Dm}, and AXB{sub Dw}, respectively, averaged over all IMRT and RA plans. Within the NP region where

  12. Dusty-Plasma Particle Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  13. Network acceleration techniques

    NASA Technical Reports Server (NTRS)

    Crowley, Patricia (Inventor); Awrach, James Michael (Inventor); Maccabe, Arthur Barney (Inventor)

    2012-01-01

    Splintered offloading techniques with receive batch processing are described for network acceleration. Such techniques offload specific functionality to a NIC while maintaining the bulk of the protocol processing in the host operating system ("OS"). The resulting protocol implementation allows the application to bypass the protocol processing of the received data. Such can be accomplished this by moving data from the NIC directly to the application through direct memory access ("DMA") and batch processing the receive headers in the host OS when the host OS is interrupted to perform other work. Batch processing receive headers allows the data path to be separated from the control path. Unlike operating system bypass, however, the operating system still fully manages the network resource and has relevant feedback about traffic and flows. Embodiments of the present disclosure can therefore address the challenges of networks with extreme bandwidth delay products (BWDP).

  14. Visions for the future of particle accelerators

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    The ambitions of accelerator based science, technology and applications far exceed the present accelerator possibilities. Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results and visions for the future in the domain of accelerator science and technology in Europe, shown during the final fourth annual meeting of the EuCARD - European Coordination of Accelerator Research and Development. The conference concerns building of the research infrastructure, including advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution. The main subject is however the vision for the future of particle accelerators and next generation light sources.

  15. 2011 Dielectric Laser Acceleration Workshop (DLA2011)

    SciTech Connect

    Bermel, Peter; Byer, Robert L.; Colby, Eric R.; Cowan, Benjamin M.; Dawson, Jay; England, R.Joel; Noble, Robert J.; Qi, Ming-Hao; Yoder, Rodney B.; /Manhattanville Coll., Purchase

    2012-04-17

    The first ICFA Mini-workshop on Dielectric Laser Accelerators was held on September 15-16, 2011 at SLAC National Accelerator Laboratory. We present the results of the Workshop, and discuss the main conclusions of the Accelerator Applications, Photonics, and Laser Technologies working groups. Over 50 participants from 4 countries participated, discussing the state of the art in photonic structures, laser science, and nanofabrication as it pertains to laser-driven particle acceleration in dielectric structures. Applications of this new and promising acceleration concept to discovery science and industrial, medical, and basic energy sciences were explored. The DLA community is presently focused on making demonstrations of high gradient acceleration and a compatible attosecond injector source - two critical steps towards realizing the potential of this technology.

  16. The AAA-ATPase molecular chaperone Cdc48/p97 disassembles sumoylated centromeres, decondenses heterochromatin, and activates ribosomal RNA genes

    PubMed Central

    Mérai, Zsuzsanna; Chumak, Nina; García-Aguilar, Marcelina; Hsieh, Tzung-Fu; Nishimura, Toshiro; Schoft, Vera K.; Bindics, János; Ślusarz, Lucyna; Arnoux, Stéphanie; Opravil, Susanne; Mechtler, Karl; Zilberman, Daniel; Fischer, Robert L.; Tamaru, Hisashi

    2014-01-01

    Centromeres mediate chromosome segregation and are defined by the centromere-specific histone H3 variant (CenH3)/centromere protein A (CENP-A). Removal of CenH3 from centromeres is a general property of terminally differentiated cells, and the persistence of CenH3 increases the risk of diseases such as cancer. However, active mechanisms of centromere disassembly are unknown. Nondividing Arabidopsis pollen vegetative cells, which transport engulfed sperm by extended tip growth, undergo loss of CenH3; centromeric heterochromatin decondensation; and bulk activation of silent rRNA genes, accompanied by their translocation into the nucleolus. Here, we show that these processes are blocked by mutations in the evolutionarily conserved AAA-ATPase molecular chaperone, CDC48A, homologous to yeast Cdc48 and human p97 proteins, both of which are implicated in ubiquitin/small ubiquitin-like modifier (SUMO)-targeted protein degradation. We demonstrate that CDC48A physically associates with its heterodimeric cofactor UFD1-NPL4, known to bind ubiquitin and SUMO, as well as with SUMO1-modified CenH3 and mutations in NPL4 phenocopy cdc48a mutations. In WT vegetative cell nuclei, genetically unlinked ribosomal DNA (rDNA) loci are uniquely clustered together within the nucleolus and all major rRNA gene variants, including those rDNA variants silenced in leaves, are transcribed. In cdc48a mutant vegetative cell nuclei, however, these rDNA loci frequently colocalized with condensed centromeric heterochromatin at the external periphery of the nucleolus. Our results indicate that the CDC48ANPL4 complex actively removes sumoylated CenH3 from centromeres and disrupts centromeric heterochromatin to release bulk rRNA genes into the nucleolus for ribosome production, which fuels single nucleus-driven pollen tube growth and is essential for plant reproduction. PMID:25344531

  17. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  18. RHIC sextant test: Accelerator systems and performance

    SciTech Connect

    Pilat, F.; Trbojevic, D.; Ahrens, L.

    1997-08-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning.

  19. Application of overall dynamic body acceleration as a proxy for estimating the energy expenditure of grazing farm animals: relationship with heart rate.

    PubMed

    Miwa, Masafumi; Oishi, Kazato; Nakagawa, Yasuhiro; Maeno, Hiromichi; Anzai, Hiroki; Kumagai, Hajime; Okano, Kanji; Tobioka, Hisaya; Hirooka, Hiroyuki

    2015-01-01

    Estimating the energy expenditure of farm animals at pasture is important for efficient animal management. In recent years, an alternative technique for estimating energy expenditure by measuring body acceleration has been widely performed in wildlife and human studies, but the availability of the technique in farm animals has not yet been examined. In the present study, we tested the potential use of an acceleration index, overall dynamic body acceleration (ODBA), as a new proxy for estimating the energy expenditure of grazing farm animals (cattle, goats and sheep) at pasture with the simultaneous evaluation of a conventional proxy, heart rate. Body accelerations in three axes and heart rate for cows (n = 8, two breeds), goats (n = 6) and sheep (n = 5) were recorded, and the effect of ODBA calculated from the body accelerations on heart rate was analyzed. In addition, the effects of the two other activity indices, the number of steps and vectorial dynamic body acceleration (VeDBA), on heart rate were also investigated. The results of the comparison among three activity indices indicated that ODBA was the best predictor for heart rate. Although the relationship between ODBA and heart rate was different between the groups of species and breeds and between individuals (P<0.01), the difference could be explained by different body weights; a common equation could be established by correcting the body weights (M: kg): heart rate (beats/min) = 147.263∙M-0.141 + 889.640∙M-0.179∙ODBA (g). Combining this equation with the previously reported energy expenditure per heartbeat, we estimated the energy expenditure of the tested animals, and the results indicated that ODBA is a good proxy for estimating the energy expenditure of grazing farm animals across species and breeds. The utility and simplicity of the procedure with acceleration loggers could make the accelerometry technique a worthwhile option in field research and commercial farm use.

  20. Application of Overall Dynamic Body Acceleration as a Proxy for Estimating the Energy Expenditure of Grazing Farm Animals: Relationship with Heart Rate

    PubMed Central

    Miwa, Masafumi; Oishi, Kazato; Nakagawa, Yasuhiro; Maeno, Hiromichi; Anzai, Hiroki; Kumagai, Hajime; Okano, Kanji; Tobioka, Hisaya; Hirooka, Hiroyuki

    2015-01-01

    Estimating the energy expenditure of farm animals at pasture is important for efficient animal management. In recent years, an alternative technique for estimating energy expenditure by measuring body acceleration has been widely performed in wildlife and human studies, but the availability of the technique in farm animals has not yet been examined. In the present study, we tested the potential use of an acceleration index, overall dynamic body acceleration (ODBA), as a new proxy for estimating the energy expenditure of grazing farm animals (cattle, goats and sheep) at pasture with the simultaneous evaluation of a conventional proxy, heart rate. Body accelerations in three axes and heart rate for cows (n = 8, two breeds), goats (n = 6) and sheep (n = 5) were recorded, and the effect of ODBA calculated from the body accelerations on heart rate was analyzed. In addition, the effects of the two other activity indices, the number of steps and vectorial dynamic body acceleration (VeDBA), on heart rate were also investigated. The results of the comparison among three activity indices indicated that ODBA was the best predictor for heart rate. Although the relationship between ODBA and heart rate was different between the groups of species and breeds and between individuals (P<0.01), the difference could be explained by different body weights; a common equation could be established by correcting the body weights (M: kg): heart rate (beats/min) = 147.263∙M-0.141 + 889.640∙M-0.179∙ODBA (g). Combining this equation with the previously reported energy expenditure per heartbeat, we estimated the energy expenditure of the tested animals, and the results indicated that ODBA is a good proxy for estimating the energy expenditure of grazing farm animals across species and breeds. The utility and simplicity of the procedure with acceleration loggers could make the accelerometry technique a worthwhile option in field research and commercial farm use. PMID:26030931

  1. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered

  2. Thermodynamics of Accelerating Black Holes

    NASA Astrophysics Data System (ADS)

    Appels, Michael; Gregory, Ruth; KubizÅák, David

    2016-09-01

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon—even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  3. Accelerated dynamics simulations of nanotubes.

    SciTech Connect

    Uberuaga, B. P.; Stuart, S. J.; Voter, A. F.

    2002-01-01

    We report on the application of accelerated dynamics techniques to the study of carbon nanotubes. We have used the parallel replica method and temperature accelerated dynamics simulations are currently in progress. In the parallel replica study, we have stretched tubes at a rate significantly lower than that used in previous studies. In these preliminary results, we find that there are qualitative differences in the rupture of the nanotubes at different temperatures. We plan on extending this investigation to include nanotubes of various chiralities. We also plan on exploring unique geometries of nanotubes.

  4. OpenMP for Accelerators

    SciTech Connect

    Beyer, J C; Stotzer, E J; Hart, A; de Supinski, B R

    2011-03-15

    OpenMP [13] is the dominant programming model for shared-memory parallelism in C, C++ and Fortran due to its easy-to-use directive-based style, portability and broad support by compiler vendors. Similar characteristics are needed for a programming model for devices such as GPUs and DSPs that are gaining popularity to accelerate compute-intensive application regions. This paper presents extensions to OpenMP that provide that programming model. Our results demonstrate that a high-level programming model can provide accelerated performance comparable to hand-coded implementations in CUDA.

  5. The Lon AAA+ protease.

    PubMed

    Gur, Eyal

    2013-01-01

    As the first ATP-dependent protease to be identified, Lon holds a special place in the history of cellular biology. In fact, the concept of ATP-dependent protein degradation was established through the findings that led to the discovery of Lon. Therefore, this chapter begins with a historical perspective, describing the milestones that led to the discovery of Lon and ATP-dependent proteolysis, starting from the early findings in the 1960s until the demonstration of Lon's ATP-dependent proteolytic activity in vitro, in 1981. Most of our knowledge on Lon derives from studies of the Escherichia coli Lon ortholog, and, therefore, most of this chapter relates to this particular enzyme. Nonetheless, Lon is not only found in most bacterial species, it is also found in Archaea and in the mitochondrion and chloroplast of eukaryotic cells. Therefore many of the conclusions gained from studies on the E. coli enzyme are relevant to Lon proteases in other organisms. Lon, more than any other bacterial or organellar protease, is associated with the degradation of misfolded proteins and protein quality control. In addition, Lon also degrades many regulatory proteins that are natively folded, thus it also plays a prominent role in regulation of physiological processes. Throughout the years, many Lon substrates have been identified, confirming its role in the regulation of diverse cellular processes, including cell division, DNA replication, differentiation, and adaptation to stress conditions. Some examples of these functions are described and discussed here, as is the role of Lon in the degradation of misfolded proteins and in protein quality control. Finally, this chapter deals with the exquisite sensitivity of protein degradation inside a cell. How can a protease distinguish so many substrates from cellular proteins that should not be degraded? Can the specificity of a protease be regulated according to the physiological needs of a cell? This chapter thus broadly discusses the substrate specificity of Lon and its allosteric regulation.

  6. A Portable Accelerator Control Toolkit

    NASA Astrophysics Data System (ADS)

    Watson, W. A., III

    1997-05-01

    In recent years, the expense of creating good control software has led to a number of collaborative efforts between laboratories to share this effort and expense. The EPICS collaboration is a particularly successful example of this trend. More recently another collaborative effort has addressed the need for sophisticated high level software, including model driven accelerator controls. This work builds upon the cdev (Common DEVice) software framework, which provides a generic abstraction of a control system, and maps that abstraction onto a number of site-specific control systems including EPICS, the SLAC control system, CERN/PS and others. With the advent of cdev, it is now possible to create portable accelerator control applications which have no knowledge of the underlying and site-specific control system. Applications based on cdev now provide a large suite of tools for accelerator operations, including general purpose displays, on-line accelerator models, beamline steering, machine status displays incorporating both hardware and model information (for example beam positions overlaid with beta functions) and more. A survey of cdev compatible portable applications will be presented, as well as plans for future enhancements.

  7. A portable accelerator control toolkit

    SciTech Connect

    Watson, W.A. III

    1997-06-01

    In recent years, the expense of creating good control software has led to a number of collaborative efforts among laboratories to share this cost. The EPICS collaboration is a particularly successful example of this trend. More recently another collaborative effort has addressed the need for sophisticated high level software, including model driven accelerator controls. This work builds upon the CDEV (Common DEVice) software framework, which provides a generic abstraction of a control system, and maps that abstraction onto a number of site-specific control systems including EPICS, the SLAC control system, CERN/PS and others. In principle, it is now possible to create portable accelerator control applications which have no knowledge of the underlying and site-specific control system. Applications based on CDEV now provide a growing suite of tools for accelerator operations, including general purpose displays, an on-line accelerator model, beamline steering, machine status displays incorporating both hardware and model information (such as beam positions overlaid with beta functions) and more. A survey of CDEV compatible portable applications will be presented, as well as plans for future development.

  8. Accelerating the loop expansion

    SciTech Connect

    Ingermanson, R.

    1986-07-29

    This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi/sup 4/ theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs.

  9. New accelerators in high-energy physics

    SciTech Connect

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting.

  10. STATUS OF THE DIELECTRIC WALL ACCELERATOR

    SciTech Connect

    Caporaso, G J; Chen, Y; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Carroll, J; Cook, E; Falabella, S; Guethlein, G; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-04-22

    The dielectric wall accelerator (DWA) system being developed at the Lawrence Livermore National Laboratory (LLNL) uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. High electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The system is capable of accelerating any charge to mass ratio particle. Applications of high gradient proton and electron versions of this accelerator will be discussed. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, photoconductive switches and compact proton sources.

  11. Determination of the self-association residues within a homomeric and a heteromeric AAA+ enhancer binding protein.

    PubMed

    Lawton, Edward; Jovanovic, Milija; Joly, Nicolas; Waite, Christopher; Zhang, Nan; Wang, Baojun; Burrows, Patricia; Buck, Martin

    2014-04-17

    The σ(54)-dependent transcription in bacteria requires specific activator proteins, bacterial enhancer binding protein (bEBP), members of the AAA+ (ATPases Associated with various cellular Activities) protein family. The bEBPs usually form oligomers in order to hydrolyze ATP and make open promoter complexes. The bEBP formed by HrpR and HrpS activates transcription from the σ(54)-dependent hrpL promoter responsible for triggering the Type Three Secretion System in Pseudomonas syringae pathovars. Unlike other bEBPs that usually act as homohexamers, HrpR and HrpS operate as a highly co-dependent heterohexameric complex. To understand the organization of the HrpRS complex and the HrpR and HrpS strict co-dependence, we have analyzed the interface between subunits using the random and directed mutagenesis and available crystal structures of several closely related bEBPs. We identified key residues required for the self-association of HrpR (D32, E202 and K235) with HrpS (D32, E200 and K233), showed that the HrpR D32 and HrpS K233 residues form interacting pairs directly involved in an HrpR-HrpS association and that the change in side-chain length at position 233 in HrpS affects self-association and interaction with the HrpR and demonstrated that the HrpS D32, E200 and K233 are not involved in negative regulation imposed by HrpV. We established that the equivalent residues K30, E200 and E234 in a homo-oligomeric bEBP, PspF, are required for the subunit communication and formation of an oligomeric lock that cooperates with the ATP γ-phosphate sensing PspF residue R227, providing insights into their roles in the heteromeric HrpRS co-complex. PMID:24434682

  12. Noncanonical Role for the Host Vps4 AAA+ ATPase ESCRT Protein in the Formation of Tomato Bushy Stunt Virus Replicase

    PubMed Central

    Pogany, Judit; Risco, Cristina; Nagy, Peter D.

    2014-01-01

    Assembling of the membrane-bound viral replicase complexes (VRCs) consisting of viral- and host-encoded proteins is a key step during the replication of positive-stranded RNA viruses in the infected cells. Previous genome-wide screens with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host have revealed the involvement of eleven cellular ESCRT (endosomal sorting complexes required for transport) proteins in viral replication. The ESCRT proteins are involved in endosomal sorting of cellular membrane proteins by forming multiprotein complexes, deforming membranes away from the cytosol and, ultimately, pinching off vesicles into the lumen of the endosomes. In this paper, we show an unexpected key role for the conserved Vps4p AAA+ ATPase, whose canonical function is to disassemble the ESCRT complexes and recycle them from the membranes back to the cytosol. We find that the tombusvirus p33 replication protein interacts with Vps4p and three ESCRT-III proteins. Interestingly, Vps4p is recruited to become a permanent component of the VRCs as shown by co-purification assays and immuno-EM. Vps4p is co-localized with the viral dsRNA and contacts the viral (+)RNA in the intracellular membrane. Deletion of Vps4p in yeast leads to the formation of crescent-like membrane structures instead of the characteristic spherule and vesicle-like structures. The in vitro assembled tombusvirus replicase based on cell-free extracts (CFE) from vps4Δ yeast is highly nuclease sensitive, in contrast with the nuclease insensitive replicase in wt CFE. These data suggest that the role of Vps4p and the ESCRT machinery is to aid building the membrane-bound VRCs, which become nuclease-insensitive to avoid the recognition by the host antiviral surveillance system and the destruction of the viral RNA. Other (+)RNA viruses of plants and animals might also subvert Vps4p and the ESCRT machinery for formation of VRCs, which require membrane deformation and spherule formation. PMID:24763736

  13. Severity of the Aggression/Anxiety-Depression/Attention (A-A-A) CBCL Profile Discriminates between Different Levels of Deficits in Emotional Regulation in Youth with ADHD

    PubMed Central

    Biederman, Joseph; Petty, Carter R.; Day, Helen; Goldin, Rachel L.; Spencer, Thomas; Faraone, Stephen V.; Surman, Craig B.H.; Wozniak, Janet

    2012-01-01

    Objective We examined whether severity scores (1SD vs. 2SDs) of a unique profile of the Child Behavior Checklist (CBCL) consisting of the Anxiety/Depression, Aggression, and Attention (A-A-A) scales would help differentiate levels of deficits in children with ADHD. Study Design Subjects were 197 children with and 224 without ADHD. We defined deficient emotional selfregulation (DESR) as an aggregate cut-off score of >180 but <210 (1SD) on the A-A-A scales of the CBCL (CBCL-DESR) and Severe Dysregulation as an aggregate cut-off score of ≥210 on the same scales (CBCL-Severe Dysregulation). All subjects were assessed with structured diagnostic interviews and a range of functional measures. Results 36% of children with ADHD had a positive CBCL-DESR profile vs. 2% of controls (p<0.001) and 19% had a positive CBCL-Severe Dysregulation profile vs. 0% of controls (p<0.001). The subjects positive for the CBCL-Severe Dysregulation profile differed selectively from those with the CBCL-DESR profile in having higher rates of unipolar and bipolar mood disorders, oppositional defiant and conduct disorders, psychiatric hospitalization at both baseline and follow up assessments, and a higher rate of the CBCL-Severe Dysregulation in siblings. In contrast, the CBCL-DESR was associated with higher rates of comorbid disruptive behavior, anxiety disorders, and impaired interpersonal functioning compared to other ADHD children. Conclusion Severity scores of the A-A-A CBCL profiles can help distinguish two groups of emotional regulation problems in children with ADHD. PMID:22278125

  14. A Screen for Dominant Negative Mutants of SEC18 Reveals a Role for the AAA Protein Consensus Sequence in ATP Hydrolysis

    PubMed Central

    Steel, Gregor J.; Harley, Carol; Boyd, Alan; Morgan, Alan

    2000-01-01

    An evolutionarily ancient mechanism is used for intracellular membrane fusion events ranging from endoplasmic reticulum–Golgi traffic in yeast to synaptic vesicle exocytosis in the human brain. At the heart of this mechanism is the core complex of N-ethylmaleimide-sensitive fusion protein (NSF), soluble NSF attachment proteins (SNAPs), and SNAP receptors (SNAREs). Although these proteins are accepted as key players in vesicular traffic, their molecular mechanisms of action remain unclear. To illuminate important structure–function relationships in NSF, a screen for dominant negative mutants of yeast NSF (Sec18p) was undertaken. This involved random mutagenesis of a GAL1-regulated SEC18 yeast expression plasmid. Several dominant negative alleles were identified on the basis of galactose-inducible growth arrest, of which one, sec18-109, was characterized in detail. The sec18-109 phenotype (abnormal membrane trafficking through the biosynthetic pathway, accumulation of a membranous tubular network, growth suppression, increased cell density) is due to a single A-G substitution in SEC18 resulting in a missense mutation in Sec18p (Thr394→Pro). Thr394 is conserved in most AAA proteins and indeed forms part of the minimal AAA consensus sequence that serves as a signature of this large protein family. Analysis of recombinant Sec18-109p indicates that the mutation does not prevent hexamerization or interaction with yeast α-SNAP (Sec17p), but instead results in undetectable ATPase activity that cannot be stimulated by Sec17p. This suggests a role for the AAA protein consensus sequence in regulating ATP hydrolysis. Furthermore, this approach of screening for dominant negative mutants in yeast can be applied to other conserved proteins so as to highlight important functional domains in their mammalian counterparts. PMID:10749934

  15. Acceleration effect of an allylic hydroxy group on ring-closing enyne metathesis of terminal alkynes: scope, application, and mechanistic insights.

    PubMed

    Imahori, Tatsushi; Ojima, Hidetomo; Yoshimura, Yuichi; Takahata, Hiroki

    2008-01-01

    An interesting acceleration effect of an allylic hydroxy group on ring-closing enyne metathesis has been found. Ring-closing enyne metathesis of terminal alkynes possessing an allylic hydroxy group proceeded smoothly without the ethylene atmosphere generally necessary to promote the reaction. The synthesis of (+)-isofagomine with the aid of this efficient reaction has been demonstrated. Mechanistic studies of the acceleration effect were also carried out. Results of NMR studies suggested that the reaction proceeded via an "ene-then-yne" pathway. Kinetic studies indicated switching of the rate-determining step as a consequence of the presence of an allylic hydroxy group. These results suggest acceleration of the reentry step of Ru-carbene species by the allylic hydroxy group.

  16. Dynamically Reconfigurable Systolic Array Accelerator

    NASA Technical Reports Server (NTRS)

    Dasu, Aravind; Barnes, Robert

    2012-01-01

    A polymorphic systolic array framework has been developed that works in conjunction with an embedded microprocessor on a field-programmable gate array (FPGA), which allows for dynamic and complimentary scaling of acceleration levels of two algorithms active concurrently on the FPGA. Use is made of systolic arrays and a hardware-software co-design to obtain an efficient multi-application acceleration system. The flexible and simple framework allows hosting of a broader range of algorithms, and is extendable to more complex applications in the area of aerospace embedded systems. FPGA chips can be responsive to realtime demands for changing applications needs, but only if the electronic fabric can respond fast enough. This systolic array framework allows for rapid partial and dynamic reconfiguration of the chip in response to the real-time needs of scalability, and adaptability of executables.

  17. TURBULENT SHEAR ACCELERATION

    SciTech Connect

    Ohira, Yutaka

    2013-04-10

    We consider particle acceleration by large-scale incompressible turbulence with a length scale larger than the particle mean free path. We derive an ensemble-averaged transport equation of energetic charged particles from an extended transport equation that contains the shear acceleration. The ensemble-averaged transport equation describes particle acceleration by incompressible turbulence (turbulent shear acceleration). We find that for Kolmogorov turbulence, the turbulent shear acceleration becomes important on small scales. Moreover, using Monte Carlo simulations, we confirm that the ensemble-averaged transport equation describes the turbulent shear acceleration.

  18. The direction of acceleration

    NASA Astrophysics Data System (ADS)

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.

  19. Dosimetric accuracy and clinical quality of Acuros XB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans

    PubMed Central

    2013-01-01

    Introduction The main aim of the current study was to assess the dosimetric accuracy and clinical quality of volumetric modulated arc therapy (VMAT) plans for stereotactic (stage I) and conventional (stage III) lung cancer treatments planned with Eclipse version 10.0 Anisotropic Analytical Algorithm (AAA) and Acuros XB (AXB) algorithm. Methods The dosimetric impact of using AAA instead of AXB, and grid size 2.5 mm instead of 1.0 mm for VMAT treatment plans was evaluated. The clinical plan quality of AXB VMAT was assessed using 45 stage I and 73 stage III patients, and was compared with published results, planned with VMAT and hybrid-VMAT techniques. Results The dosimetric impact on near-minimum PTV dose (D98%) using AAA instead of AXB was large (underdose up to 12.3%) for stage I and very small (underdose up to 0.8%) for stage III lung treatments. There were no significant differences for dose volume histogram (DVH) values between grid sizes. The calculation time was significantly higher for AXB grid size 1.0 than 2.5 mm (p < 0.01). The clinical quality of the VMAT plans was at least comparable with clinical qualities given in literature of lung treatment plans with VMAT and hybrid-VMAT techniques. The average mean lung dose (MLD), lung V20Gy and V5Gy in this study were respectively 3.6 Gy, 4.1% and 15.7% for 45 stage I patients and 12.4 Gy, 19.3% and 46.6% for 73 stage III lung patients. The average contra-lateral lung dose V5Gy-cont was 35.6% for stage III patients. Conclusions For stereotactic and conventional lung treatments, VMAT calculated with AXB grid size 2.5 mm resulted in accurate dose calculations. No hybrid technique was needed to obtain the dose constraints. AXB is recommended instead of AAA for avoiding serious overestimation of the minimum target doses compared to the actual delivered dose. PMID:23800024

  20. An investigation of accelerating mode and decelerating mode constant-momentum mass spectrometry and their application to a residual gas analyzer

    NASA Technical Reports Server (NTRS)

    Ng, Y. S.

    1977-01-01

    A theoretical analysis of constant momentum mass spectrometry was made. A maximum resolving power for the decelerating mode constant momentum mass spectrometer was shown theoretically to exist for a beam of ions of known energy. A vacuum system and an electron beam ionization source was constructed. Supporting electronics for a residual gas analyzer were built. Experimental investigations of various types of accelerating and decelerating impulsive modes of a constant momentum mass spectrometer as applied to a residual gas analyzer were made. The data indicate that the resolving power for the decelerating mode is comparable to that of the accelerating mode.