Science.gov

Sample records for accelerator beam current

  1. Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude

    DOEpatents

    Bogaty, John M.; Clifft, Benny E.; Bollinger, Lowell M.

    1995-01-01

    A beam current limiter for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity.

  2. Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude

    DOEpatents

    Bogaty, J.M.; Clifft, B.E.; Bollinger, L.M.

    1995-08-08

    A beam current limiter is disclosed for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity. 6 figs.

  3. New high-current Dynamitron accelerators for electron beam processing

    NASA Astrophysics Data System (ADS)

    Cleland, M. R.; Thompson, C. C.; Saito, H.; Lisanti, T. F.; Burgess, R. G.; Malone, H. F.; Loby, R. J.; Galloway, R. A.

    1993-06-01

    The material throughput capabilities of RDI's new 550 keV and 800 keV Dynamitron R accelerators have been enhanced by increasing their beam current ratings from 100 mA to 160 mA. Future requirements up to 200 mA have been anticipated in the designs. The high-voltage power supply, beam scanner and beam window have all been modified to accommodate the higher current ratings. A new programmable control system has also been developed. The basic design concepts are described and performance data are presented in this paper.

  4. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility

    SciTech Connect

    Adonin, A. A. Hollinger, R.

    2014-02-15

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  5. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.

    PubMed

    Adonin, A A; Hollinger, R

    2014-02-01

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  6. Limiting electron beam current for cyclic induction acceleration in a constant guide field

    SciTech Connect

    Kanunnikov, V.N.

    1982-09-01

    Theoretical relations are derived for the limiting beam current in a cyclic induction accelerator (CIA) with a constant guide field. The calculations are in agreement with the available experimental data. It is shown that the limiting average beam current in a CIA is of the order of 100 microamperes, i.e., the level attained in microtrons and linear accelerators. The CIA may find industrial applications.

  7. Application of radiofrequency superconductivity to accelerators for high-current ion beams

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Roche, C.T.; Sagalovsky, L.

    1992-01-01

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high-current, high-brightness ion beam. During the last few years, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm) surface areas. Theoretical studies of beam halo, cumulative beam breakup and alternating-phase focusing have also yielded important results. This paper su-summarizes the recent progress and identifies current and future work in the areas of superconducting accelerator technology for high-current ion beams.

  8. Application of radiofrequency superconductivity to accelerators for high-current ion beams

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Roche, C.T.; Sagalovsky, L.

    1992-12-31

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high-current, high-brightness ion beam. During the last few years, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm) surface areas. Theoretical studies of beam halo, cumulative beam breakup and alternating-phase focusing have also yielded important results. This paper su-summarizes the recent progress and identifies current and future work in the areas of superconducting accelerator technology for high-current ion beams.

  9. Beam envelope, injection, and acceleration in a compact, high-current, strong-focused recirculating accelerator scheme. Technical report

    SciTech Connect

    Prakash, A.

    1988-12-01

    In order to meet the criterion of compactness in developing high-current, high-energy electron accelerators, it is advantageous to recirculate the electron beam through an accelerating module. Various such recirculating-accelerator concepts that use strong-focusing magnetic fields may be conveniently referred to as SFRA (Strong Focused Recirculating Accelerators). The strong-focusing field can be produced by external current-carrying stellarator or torsatron windings. SLIA, Stellatron, RIA and rebatron are examples of SFRA. High current electron beam transport in externally applied stellarator and longitudinal magnetic fields is analyzed. It is shown that a constant of motion exists for a matched beam of rotating elliptical cross section, with self-fields included. A differential equation for the beam envelope is derived and is shown to reduce to the familiar beam envelope equation for a beam of circular cross section when the stellarator field is turned off. A summary description of beam dynamics of acceleration in one SFRA, the rebatron, is given. Although a rebatron with major radius 100 cm and minor radius 10 cm can accelerate electrons to gamma about 65 with a fixed vertical (bending) magnetic field, the insensitivity to energy mismatch poses a problem for beam-trapping and injection. It is shown that a beam trapping scheme, in which a rapidly varying vertical magnetic field is applied before activating the rebatron acceleration gap, would work for a 10-kA beam of 1-cm radius injected near the wall of a rebatron of minor radius 16 cm.

  10. DEVELOPMENT OF ACCELERATOR DATA REPORTING SYSTEM AND ITS APPLICATION TO TREND ANALYSIS OF BEAM CURRENT DATA

    SciTech Connect

    Padilla, M.J.; Blokland, W.

    2009-01-01

    Detailed ongoing information about the ion beam quality is crucial to the successful operation of the Spallation Neutron Source at Oak Ridge National Laboratory. In order to provide the highest possible neutron production time, ion beam quality is monitored to isolate possible problems or performance-related issues throughout the accelerator and accumulator ring. For example, beam current monitor (BCM) data is used to determine the quality of the beam transport through the accelerator. In this study, a reporting system infrastructure was implemented and used to generate a trend analysis report of the BCM data. The BCM data was analyzed to facilitate the identifi cation of monitor calibration issues, beam trends, beam abnormalities, beam deviations and overall beam quality. A comparison between transformed BCM report data and accelerator log entries shows promising results which represent correlations between the data and changes made within the accelerator. The BCM analysis report is one of many reports within a system that assist in providing overall beam quality information to facilitate successful beam operation. In future reports, additional data manipulation functions and analysis can be implemented and applied. Built-in and user-defi ned analytic functions are available throughout the reporting system and can be reused with new data.

  11. A NEW DIFFERENTIAL AND ERRANT BEAM CURRENT MONITOR FOR THE SNS* ACCELERATOR

    SciTech Connect

    Blokland, Willem; Peters, Charles C

    2013-01-01

    A new Differential and errant Beam Current Monitor (DBCM) is being implemented for both the Spallation Neutron Source's Medium Energy Beam Transport (MEBT) and the Super Conducting Linac (SCL) accelerator sections. These new current monitors will abort the beam when the difference between two toroidal pickups exceeds a threshold. The MEBT DBCM will protect the MEBT chopper target, while the SCL DBCM will abort beam to minimize fast beam losses in the SCL cavities. The new DBCM will also record instances of errant beam, such as beam dropouts, to assist in further optimization of the SNS Accelerator. A software Errant Beam Monitor was implemented on the regular BCM hardware to study errant beam pulses. The new system will take over this functionality and will also be able to abort beam on pulse-to-pulse variations. Because the system is based on the FlexRIO hardware and programmed in LabVIEW FPGA, it will be able to abort beam in about 5 us. This paper describes the development, implementation, and initial test results of the DBCM, as well as errant beam examples.

  12. Start-to-end beam dynamics simulation of double triangular current profile generation in Argonne Wakefield Accelerator

    SciTech Connect

    Ha, G.; Power, J.; Kim, S. H.; Gai, W.; Kim, K.-J.; Cho, M. H.; Namkung, W.

    2012-12-21

    Double triangular current profile (DT) gives a high transformer ratio which is the determining factor of the performance of collinear wakefield accelerator. This current profile can be generated using the emittance exchange (EEX) beam line. Argonne Wakefield Accelerator (AWA) facility plans to generate DT using the EEX beam line. We conducted start-to-end simulation for the AWA beam line using PARMELA code. Also, we discuss requirements of beam parameters for the generation of DT.

  13. Optimization of Drive-Bunch Current Profile for Enhanced Transformer Ratio in Beam-Driven Acceleration Techniques

    SciTech Connect

    Lemery, F.; Mihalcea, D.; Prokop, C.R.; Piot, P.; /Northern Illinois U. /Fermilab

    2012-07-08

    In recent years, wakefield acceleration has gained attention due to its high acceleration gradients and cost effectiveness. In beam-driven wakefield acceleration, a critical parameter to optimize is the transformer ratio. It has been shown that current shaping of electron beams allows for enhanced (> 2) transformer ratios. In this paper we present the optimization of the pulse shape of the drive bunch for dielectric-wakefield acceleration.

  14. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    NASA Astrophysics Data System (ADS)

    Lemery, F.; Piot, P.

    2015-08-01

    Collinear high-gradient O (GV /m ) beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2 , a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting "drive" bunch to an accelerated "witness" bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth) current profiles which support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ˜60 MV /m and a transformer ratio ˜5 consistent with a recently proposed multiuser free-electron laser facility.

  15. Obtaining a proton beam with 5-mA current in a tandem accelerator with vacuum insulation

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.; Kasatov, D. A.; Koshkarev, A. M.; Makarov, A. N.; Ostreinov, Yu. M.; Sorokin, I. N.; Taskaev, S. Yu.; Shchudlo, I. M.

    2016-06-01

    Suppression of parasitic electron flows and positive ions formed in the beam tract of a tandem accelerator with vacuum insulation allowed a more than threefold increase (from 1.6 to 5 mA) in the current of accelerated 2-MeV protons. Details of the modification are described. Results of experimental investigation of the suppression of secondary charged particles and data on the characteristics of accelerated proton beam with increased current are presented.

  16. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    SciTech Connect

    Ekdahl, Carl A; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mccuistian, Brian T; Montoya, Nicholas A; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rowton, Lawrence; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Williams, John; Hughes, Thomas; Anaya, Richard; Caporaso, George; Chambers, Frank; Chen, Yu - Jiuan; Falabella, Steve; Guethlein, Gary; Raymond, Brett; Richardson, Roger; Trainham, C; Weir, John; Genoni, Thomas; Toma, Carsten

    2009-01-01

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 {micro}s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  17. New methods for high current fast ion beam production by laser-driven acceleration

    SciTech Connect

    Margarone, D.; Krasa, J.; Prokupek, J.; Velyhan, A.; Laska, L.; Jungwirth, K.; Mocek, T.; Korn, G.; Rus, B.; Torrisi, L.; Gammino, S.; Cirrone, P.; Cutroneo, M.; Romano, F.; Picciotto, A.; Serra, E.; Giuffrida, L.; Mangione, A.; Rosinski, M.; Parys, P.; and others

    2012-02-15

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10{sup 16}-10{sup 19} W/cm{sup 2}. The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  18. Design of a New Acceleration System for High-Current Pulsed Proton Beams from an ECR Source

    NASA Astrophysics Data System (ADS)

    Cooper, Andrew L.; Pogrebnyak, Ivan; Surbrook, Jason T.; Kelly, Keegan J.; Carlin, Bret P.; Champagne, Arthur E.; Clegg, Thomas B.

    2014-03-01

    A primary objective for accelerators at TUNL's Laboratory for Experimental Nuclear Astrophysics (LENA) is to maximize target beam intensity to ensure a high rate of nuclear events during each experiment. Average proton target currents of several mA are needed from LENA's electron cyclotron resonance (ECR) ion source because nuclear cross sections decrease substantially at energies of interest <200 keV. We seek to suppress undesired continuous environmental background by pulsing the beam and detecting events only during beam pulses. To improve beam intensity and transport, we installed a more powerful, stable microwave system for the ECR plasma, and will install a new acceleration system. This system will: reduce defocusing effects of the beam's internal space charge; provide better vacuum with a high gas conductance accelerating column; suppress bremsstrahlung X-rays produced when backstreaming electrons strike internal acceleration tube structures; and provide better heat dissipation by using deionized water to provide the current drain needed to establish the accelerating tube's voltage gradient. Details of beam optical modeling calculations, proposed accelerating tube design, and initial beam pulsing tests will be described. Work supported in part by USDOE Office of HE and Nuclear Physics.

  19. Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators

    SciTech Connect

    Silva, T. F.; Bonini, A. L.; Lima, R. R.; Maidana, N. L.; Malafronte, A. A.; Pascholati, P. R.; Vanin, V. R.; Martins, M. N.

    2012-09-15

    Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

  20. Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators.

    PubMed

    Silva, T F; Bonini, A L; Lima, R R; Maidana, N L; Malafronte, A A; Pascholati, P R; Vanin, V R; Martins, M N

    2012-09-01

    Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

  1. Collective acceleration of electrons and ions in a high current relativistic electron beam. Final report

    SciTech Connect

    Nation, J.A.

    1996-12-31

    The original purpose of this research was an investigation into the use of slow space charge waves on weakly relativistic electron beams for ion acceleration. The work had three main objectives namely, the development of a suitable ion injector, the growth and study of the properties of slow space charge waves on an electron beam, and a combination of the two components parts into a suitable proof of principle demonstration of the wave accelerator. This work focusses on the first two of these objectives.

  2. Application of Magnetically Insulated Transmission Lines for high current, high voltage electron beam accelerators

    SciTech Connect

    Shope, S.L.; Mazarakis, M.G.; Frost, C.A.; Poukey, J.W.; Turman, B.N.

    1991-01-01

    Self Magnetically Insulated Transmission Lines (MITL) adders have been used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently we used at MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (r{sub {rho}} < 2 cm), 11 to 15 MeV, 50 to 100-kA beams with a small transverse velocity v{perpendicular}/c = {beta}{perpendicular} {le} 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. Our success with the MITL technology led us to investigate the application to higher energy accelerator designs. We have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30--50 ns FWHM output pulse. 10 refs.

  3. Application of Magnetically Insulated Transmission Lines for high current, high voltage electron beam accelerators

    SciTech Connect

    Shope, S.L.; Mazarakis, M.G.; Frost, C.A.; Poukey, J.W.; Turman, B.N.

    1991-12-31

    Self Magnetically Insulated Transmission Lines (MITL) adders have been used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently we used at MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (r{sub {rho}} < 2 cm), 11 to 15 MeV, 50 to 100-kA beams with a small transverse velocity v{perpendicular}/c = {beta}{perpendicular} {le} 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. Our success with the MITL technology led us to investigate the application to higher energy accelerator designs. We have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30--50 ns FWHM output pulse. 10 refs.

  4. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  5. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  6. Investigations of Beam Dynamics Issues at Current and Future Hadron Accelerators

    SciTech Connect

    Ellison, James; Lau, Stephen; Heinemann, Klaus; Bizzozero, David

    2015-03-12

    Final Report Abstract for DE-FG02-99ER4110, May 15, 2011- October 15, 2014 There is a synergy between the fields of Beam Dynamics (BD) in modern particle accelerators and Applied Mathematics (AMa). We have formulated significant problems in BD and have developed and applied tools within the contexts of dynamical systems, topological methods, numerical analysis and scientific computing, probability and stochastic processes, and mathematical statistics. We summarize the three main areas of our AMa work since 2011. First, we continued our study of Vlasov-Maxwell systems. Previously, we developed a state of the art algorithm and code (VM3@A) to calculate coherent synchrotron radiation in single pass systems. In this cycle we carefully analyzed the major expense, namely the integral-over-history (IOH), and developed two approaches to speed up integration. The first strategy uses a representation of the Bessel function J0 in terms of exponentials. The second relies on “local sequences” developed recently for radiation boundary conditions, which are used to reduce computational domains. Although motivated by practicality, both strategies involve interesting and rather deep analysis and approximation theory. As an alternative to VM3@A, we are integrating Maxwell’s equations by a time-stepping method, bypass- ing the IOH, using a Discontinuous Galerkin (DG) method. DG is a generalization of Finite Element and Finite Volume methods. It is spectrally convergent, unlike the commonly used Finite Difference methods, and can handle complicated vacuum chamber geometries. We have applied this in several contexts and have obtained very nice results including an explanation of an experiment at the Canadian Light Source, where the geometry is quite complex. Second, we continued our study of spin dynamics in storage rings. There is much current and proposed activity where spin polarized beams are being used in testing the Standard Model and its modifications. Our work has focused

  7. Beam dynamics for induction accelerators

    NASA Astrophysics Data System (ADS)

    Lee, Edward P.

    2014-01-01

    An induction linac uses pulsed power that is applied directly, without any intervening resonant cavities, to accelerate a charged particle pulse. This approach can accommodate a large multiple-beam focusing lattice capable of transporting a large total beam current with a long pulse duration, which may be compressed while accelerating as well as afterward. The mean accelerating gradient is relatively low (less than about 1.5 MV/m), but the potential efficiency of energy transfer can be large up to about 50%. A multiple-beam induction linac is therefore a natural candidate accelerator for a heavy ion fusion (HIF) driver. However, the accelerated beams must meet stringent requirements on occupied phase space volume in order to be focused accurately and with small radius onto the fusion target. Dynamical considerations in the beam injector and linac, as well as in the final compression, final focus, and the fusion chamber, determine the quality of the driver beams as they approach the target. Requirements and tolerances derived from beam dynamics strongly influence the linac configuration and component design.

  8. Current density distribution in a large cross-section beam in an electron accelerator with a multiaperture plasma cathode

    NASA Astrophysics Data System (ADS)

    Vorob'ev, M. S.; Koval', N. N.

    2016-06-01

    An electron accelerator with a multiaperture plasma cathode with grid stabilization of the boundary of emission plasma based on a low-pressure arc discharge generating a large cross-section (750 × 150 mm2) beam with its ejection into the atmosphere or high-pressure gas through the exit foil window is described. A comparatively simple method for decreasing the nonuniformity of the current density distribution over the beam cross section using a mask with variable-diameter holes is proposed and experimentally tested. In this case, the higher the plasma concentration in the emission region, the smaller the diameter of the holes in the mask. When this mask was used, the nonuniformity of the current density distribution was decreased from ±15 and ±10% to ±10 and ±5% on the long and short sides of the beam cross section, respectively.

  9. CLASHING BEAM PARTICLE ACCELERATOR

    DOEpatents

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  10. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  11. Transportation of high-current ion and electron beams in the accelerator drift gap in the presence of an additional electron background

    NASA Astrophysics Data System (ADS)

    Karas', V. I.; Kornilov, E. A.; Manuilenko, O. V.; Tarakanov, V. P.; Fedorovskaya, O. V.

    2015-12-01

    The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov-Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and in the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.

  12. Transportation of high-current ion and electron beams in the accelerator drift gap in the presence of an additional electron background

    SciTech Connect

    Karas’, V. I. Kornilov, E. A.; Manuilenko, O. V.; Tarakanov, V. P.; Fedorovskaya, O. V.

    2015-12-15

    The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov–Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and in the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.

  13. Relativistic klystron two-beam accelerator

    SciTech Connect

    Westenskow, G.A.; Houck, T.L. )

    1994-10-01

    Relativistic klystrons (RKs) are being developed as an RF power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. In a relativistic klystron two-beam accelerator (RK-TBA), the drive beam passes through a large number of RF output structures. High conversion efficiency of electron beam energy to RF energy is achieved in this concept by reacceleration of the modulated drive beam between output structures. The authors have conducted experiments studying the RF power extracted from various RK structures driven by modulated induction accelerator current pulses; the studies include work on improving the transport dynamics of the drive beam. They have started a demonstration in which the modulated induction beam current is reaccelerated by passage through subsequent induction accelerator cells.

  14. Ion beam parameters of a plasma accelerator

    SciTech Connect

    Nazarov, V.G.; Vinogradov, A.M.; Veselovzorov, A.N.; Efremov, V.K.

    1987-08-01

    The aim of this investigation was to determine the dependences of the current density, the energy, and the divergence of the ion beams of an UZDP-type source (a plasma accelerator with closed electron drift in the accelerator channel and an extended zone of ion acceleration) on the parameters which determine its performance, and to establish qualitative relationships between these values.

  15. High efficiency ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1981-01-01

    An ion accelerator system that successfully combines geometrical and electrostatic focusing principles is presented. This accelerator system uses thin, concave, multiple-hole, closely spaced graphite screen and focusing grids which are coupled to single slot accelerator and decelerator grids to provide high ion extraction efficiency and good focusing. Tests with the system showed a substantial improvement in ion beam current density and collimation as compared with a Pierce electrode configuration. Durability of the thin graphite screen and focusing grids has been proven, and tests are being performed to determine the minimum screen and focusing grid spacing and thickness required to extract the maximum reliable beam current density. Compared with present neutral beam injector accelerator systems, this one has more efficient ion extraction, easier grid alignment, easier fabrication, a less cumbersome design, and the capacity to be constructed in a modular fashion. Conceptual neutral beam injector designs using this modular approach have electrostatic beam deflection plates downstream of each module.

  16. Development of a two-beam high-current ion accelerator based on Doppler effect. Final report (1994)

    SciTech Connect

    Ivanov, B.I.; Yegorov, A.M.

    1995-03-01

    This Final Report presents the results of work accomplished in accordance with the Scope of Work to the Purchase Order No 4596310. The amount of works includes the following items: 1. Start of the manufacture of the Experimental Accelerating Stand (EAS)-the section for proton acceleration from 5 MeV to 8 MeV, in which RF fields are excited by an electron beam at the anomalous Doppler effect. 2. Theoretical investigation and computer simulation of field excitation and ion acceleration in the EAS. Under item 1, the EAS manufacturing is begun. To present time, a pedestal for the EAS and a stainless steel vacuum chamber for RF resonator are made (length of the chamber is about 180 cm, diameter is about 40 cm). Besides, parts of the EAS resonator with the acceleration structure are manufactured, and its assembly is begun. Under item 2, it is realized three works: calculation of increment and frequency shift of the EAS resonator excited by electron beam, calculation of the solenoid for creation of magnetic field with required spatial distribution, and theoretical investigation and computer simulation of ion acceleration in the EAS. 14 figs., 16 refs.

  17. Beam Breakup Effects in Dielectric Based Accelerators

    SciTech Connect

    Schoessow, P.; Kanareykin, A.; Jing, C.; Kustov, A.; Altmark, A.; Power, J. G.; Gai, W.

    2009-01-22

    The dynamics of the beam in structure-based wakefield accelerators leads to beam stability issues not ordinarily found in other machines. In particular, the high current drive beam in an efficient wakefield accelerator loses a large fraction of its energy in the decelerator structure, resulting in physical emittance growth, increased energy spread, and the possibility of head-tail instability for an off axis beam, all of which can lead to severe reduction of beam intensity. Beam breakup (BBU) effects resulting from parasitic wakefields provide a potentially serious limitation to the performance of dielectric structure based wakefield accelerators as well. We report on experimental and numerical investigation of BBU and its mitigation. The experimental program focuses on BBU measurements at the AWA facility in a number of high gradient and high transformer ratio wakefield devices. New pickup-based beam diagnostics will provide methods for studying parasitic wakefields that are currently unavailable. The numerical part of this research is based on a particle-Green's function beam breakup code we are developing that allows rapid, efficient simulation of beam breakup effects in advanced linear accelerators. The goal of this work is to be able to compare the results of detailed experimental measurements with the accurate numerical results and to design an external FODO channel for the control of the beam in the presence of strong transverse wakefields.

  18. Generation and control of a powerful electron-beam current in an accelerator based on a secondary-emission source and its application

    NASA Astrophysics Data System (ADS)

    Aizatsky, N. I.; Dovbnya, A. N.; Zakutin, V. V.; Reshetnyak, N. G.; Romas'ko, V. P.; Chertishchev, I. A.; Boriskin, V. N.; Dovbnya, N. A.

    2014-09-01

    An electron accelerator in which magnetron guns with secondary-emission cathodes of two types are used as a particle source is described. The electron-beam parameters are investigated in an electron energy range of 20-150 keV at a pulse length of 10-50 μs. Results of target irradiation by an electron beam are represented. The target surface structure is studied by the metallographic method, and the microhardness and strength of zirconium materials are measured. The possibility of beam current control by factors of 2.5-3.5 with various methods is shown.

  19. Variable energy constant current accelerator structure

    DOEpatents

    Anderson, Oscar A.

    1990-01-01

    A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90.degree. intervals with opposing electrodes maintained at the same potential. Adjacent cylinder electrodes of the quadrupole structure are maintained at different potentials to thereby reshape the cross section of the charged particle beam to an ellipse in cross section at the mid point along each quadrupole electrode unit in the accelerator modules. The beam is maintained in focus by alternating the major axis of the ellipse along the x and y axis respectively at adjacent quadrupoles. In another embodiment, electrostatic ring electrodes may be utilized instead of the quadrupole electrodes.

  20. An MCNPX accelerator beam source

    SciTech Connect

    Durkee, Joe W.; Elson, Jay S.; Jason, Andrew; Johns, Russell C.; Waters, Laurie S.

    2009-06-04

    MCNPX is a powerful Monte Carlo code that can be used to conduct sophisticated radiation-transport simulations involving complex physics and geometry. Although MCNPX possesses a wide assortment of standardized modeling tools, there are instances in which a user's needs can eclipse existing code capabilities. Fortunately, although it may not be widely known, MCNPX can accommodate many customization needs. In this article, we demonstrate source-customization capability for a new SOURCE subroutine as part of our development to enable simulations involving accelerator beams for active-interrogation studies. Simulation results for a muon beam are presented to illustrate the new accelerator-source capability.

  1. Proton Beams from Nanotube Accelerator

    NASA Astrophysics Data System (ADS)

    Murakami, Masakatsu; Tanaka, Motohiko

    2013-10-01

    A carbon nanotube (CNT) is known to have extraordinary material and mechanical properties. Here we propose a novel ion acceleration scheme with nanometer-size CNT working at such an extreme circumstance as temperatures higher than billions of degree and durations shorter than tens of femtosecond, dubbed as nanotube accelerator, with which quasimonoenergetic and collimated MeV-order proton beams are generated. In nanotube accelerators, CNTs with fragments of a hydrogen compound embedded inside are irradiated by an ultrashort ultraintense laser. Under such laser and target conditions, low-Z materials such as hydrogen and carbon will be fully ionized. Substantial amount of electrons of the system are then blown off by the brutal laser electric field within only a few laser cycles. This leads to a new type of ion acceleration, in which the nanotube and embedded materials play the roles of a gun barrel and bullets, respectively, to produce highly collimated and quasimonoenergetic proton beams. Three-dimensional particle simulations, that take all the two-body Coulomb interactions into account, demonstrate generation of quasimonoenergetic 1.5-MeV proton beams under a super-intense electrostatic field ~ 1014 V m-1.

  2. Beam current sensor

    DOEpatents

    Kuchnir, M.; Mills, F.E.

    1984-09-28

    A current sensor for measuring the dc component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivities in the nano-ampere range.

  3. Beam current sensor

    DOEpatents

    Kuchnir, Moyses; Mills, Frederick E.

    1987-01-01

    A current sensor for measuring the DC component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivites in the nano-ampere range.

  4. Development of high current Bi and Au beams for the synchrotron operation at the GSI accelerator facility

    SciTech Connect

    Adonin, A.; Hollinger, R.

    2012-02-15

    In this work, the latest results of developing high current ion beams of Au and Bi at GSI facility are described. The difficulties in the production of required charge state in vacuum arc discharge ion sources using the pure materials in the cathodes are discussed. As a possible solution, admix of a small amount of more refractory metal to the cathode material is considered. As a significant result, a dramatic improvement in the production of high charge state Bi ions using the mixed Bi-Cu cathodes (with 8%-15% of Cu admixed) compared to pure Bi cathodes is presented. The preliminary results of investigation of the material structure of Bi-Cu cathodes are discussed. As a next step, it is planned to test the composition of Au with Pd, Zr, and Fe as cathode materials.

  5. Advanced Accelerating Structures and Their Interaction with Electron Beams

    SciTech Connect

    Gai Wei

    2009-01-22

    In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.

  6. Advanced accelerating structures and their interaction with electron beams.

    SciTech Connect

    Gai, W.; High Energy Physics

    2008-01-01

    In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.

  7. Multi-beam linear accelerator EVT

    NASA Astrophysics Data System (ADS)

    Teryaev, Vladimir E.; Kazakov, Sergey Yu.; Hirshfield, Jay L.

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  8. Colliding-beam-accelerator lattice

    SciTech Connect

    Claus, J.; Cornacchia, M.; Courant, E.D.; Parzen, G.

    1983-01-01

    We describe the lattice of the Colliding Beam Accelerator, a 400 x 400 GeV pp facility proposed for construction at Brookhaven National Laboratory. The structure adopted is very versatile, in part in consequence of its desirable behavior as function of momentum deviation and as function of the betatron tunes. Each of the six insertions can be arranged to meet specific requirements at the crossing points as illustrated by a discussion of the tuneable low-beta insertions. The luminosity in these low-beta insertions (2 x 10/sup 33/ cm/sup -2/ sec/sup -1/) would be an order of magnitude larger than the standard insertions.

  9. High current ion beam transport using solenoids

    SciTech Connect

    Hollinger, R.; Spaedtke, P.

    2008-02-15

    In the framework of the future project FAIR several upgrade programs and construction of new facilities are in progress such as the U{sup 4+} upgrade for the existing high current injector and the new 70 MeV proton injector. For both injectors solenoids in the low energy beam transport section are foreseen to inject the beam into the following rf accelerator. The paper presents beam quality measurements of high current ion beams behind a solenoid using a slit-grid emittance measurement device, viewing targets, and a pepper pot measurement device at the high current test bench at GSI.

  10. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  11. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  12. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  13. Progress Towards Doubling the Beam Power at Fermilab's Accelerator Complex

    SciTech Connect

    Kourbanis, ioanis

    2014-06-01

    After a 14 month shutdown accelerator modifications and upgrades are in place to allow us doubling of the Main Injector beam power. We will discuss the past MI high power operation and the current progress towards doubling the power.

  14. Mismatch Oscillations in High Current Accelerators

    SciTech Connect

    Anderson, O.A.

    2005-05-03

    When planning the design of high-current FODO transport for accelerators, it is useful to have simple, accurate tools for calculating quantities such as the phase advances {sigma}{sub 0} and !given the lattice and beam parameters. Along with the KV beam model, the smooth approximation is often used. It is simple but not very accurate in many cases. Although Struckmeier and Reiser [1] showed that the stable oscillation frequencies of mismatched beams could be obtained accurately, they actually used a hybrid approach where {sigma}{sub 0} and {sigma} were already known precisely. When starting instead with basic quantities such as quadrupole dimensions, field strength, beam line charge density and emittance, the smooth approximation gives substantial errors. Here we derive a simple modification of the smooth approximation formula that improves the accuracy of the predicted frequencies by a factor of five at {sigma}{sub 0} = 83{sup o}.

  15. Studies of beam dynamics in relativistic klystron two- beam accelerators

    NASA Astrophysics Data System (ADS)

    Lidia, Steven Michael

    Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band (~8-12 GHz) through Ka-band (~30-35 GHz) frequency regions. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. A mapping algorithm is used so that tens or hundreds of thousands of macroparticles can be pushed from the solution of a few hundreds of differential equations. This is a great cost-savings device from the standpoint of CPU cycles. It can increase by several orders of magnitude the number of macroparticles that take place in the simulation, enabling more accurate modeling of the evolution of the beam distribution and enhanced sensitivity to effects due to the beam's halo. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split- operator algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The beam-cavity interaction is analyzed and divided naturally into two distinct times scales. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 TW of power from 40 input, gain

  16. Characteristics of an electron-beam rocket pellet accelerator

    SciTech Connect

    Tsai, C.C.; Foster, C.A.; Milora, S.L.; Schechter, D.E.

    1991-01-01

    A proof-of-principle (POP) electron-beam pellet accelerator has been developed and used for accelerating hydrogen and deuterium pellets. An intact hydrogen pellet was accelerated to a speed of 460 m/s by an electron beam of 13.5 keV. 0.3 A, and 2 ms. The maximum speed is limited by the acceleration path length (0.4 m) and pellet integrity. Experimental data have been collected for several hundred hydrogen pellets, which were accelerated by electron beams with parameters of voltage up to 16 kV, current up to 0.4 A, and pulse length up to 10 ms. Preliminary results reveal that the measured burn velocity increases roughly with the square of the beam voltage, as the theoretical model predicts. The final pellet velocity is proportional to the exhaust velocity, which increases with the beam power. To reach the high exhaust velocity needed for accelerating pellets to >1000 m/s, a new electron gun, with its cathode indirectly heated by a graphite heater and an electron beam, is being developed to increase beam current and power. A rocket casing or shell around the pellet has been designed and developed to increase pellet strength and improve the electron-rocket coupling efficiency. We present the characteristics of this pellet accelerator, including new improvements. 13 refs., 6 figs.

  17. Beam break-up in the two beam accelerator

    SciTech Connect

    Whittum, D.H.; Travish, G.A.; Sessler, A.M.; Craig, G.D.; DeFord, J.F.

    1989-03-01

    We have studied numerically beam break-up (BBU) in the drive beam of a Two-Beam Accelerator (TBA), using transverse wakes calculated numerically using the AMOS Code. We examine only cumulative BBU due to the wake of the linear induction accelerator cavities. We do not consider regenerative BBU due to the relativistic klystron (RK) cavities. We find growth lengths of order /approximately/100 m for typical parameters. 14 refs., 2 figs., 1 tab.

  18. Testing of a high current dc ESQ accelerator

    SciTech Connect

    Kwan, J.W.; Ackerman, G.D.; Ackerman, O.A.; Chan, C.F.; Cooper, W.S.; deVries, G.J.; Kunkel, W.B.; Soroka, L.; Steele, W.F.; Wells, R.P.

    1991-05-01

    A high current dc electrostatic quadrupole (ESQ) accelerator is being developed for negative-ion-based neutral beam heating and current drive on the next generation tokamak. Beam energy and current will eventually be in the MeV and multiampere range.l This CCVV (constant- current variable-voltage) accelerator uses a series of identical ESQ modules. We have successfully tested a prototype CCVV accelerator up to 200 keV with a 100 mA He{sub +} beam (with space charge equivalence of 140 mA of D{sup {minus}}) for a pulse length of 1 s. Testing was also done with a 42 mA H{sup {minus}} beam (H{sup {minus}} beam current was limited by source performance). There was almost no beam loss in the ESQ accelerator. no emittance growth was found in the beam injected from the preaccelerator into the ESQ accelerator had low aberration. We are presently designing a proof-of- principle one-channel CCVV accelerator that would accelerate 1.0 A of D{sup {minus}} 1.3 MeV energy. 4 refs., 7 figs.

  19. Acceleration of ampere class H(-) ion beam by MeV accelerator.

    PubMed

    Taniguchi, M; Inoue, T; Umeda, N; Kashiwagi, M; Watanabe, K; Tobari, H; Dairaku, M; Sakamoto, K

    2008-02-01

    The H(-) ion accelerator R&D to realize the international thermonuclear experimental reactor neutral beam is ongoing at Japan Atomic Energy Agency (JAEA). The required performance for the prototype MeV accelerator developed at JAEA is 1 MeV, 500 mA (current density of 200 A/m(2)) H(-) ion beam at the beamlet divergence angle of less than 7 mrad. Up to 2005, 836 keV, 146 A/m(2) H(-) ion beam was successfully accelerated as the highest record of the current density at MeV class energy beams. In the present work, high current negative ion beam acceleration test was performed by increasing the beam extraction apertures from 3 x 3 (9 apertures) to 3 x 5 (15 apertures). By fixing the air leak at the source chamber due to backstream ions as well as the improvement of voltage holding capability by a new fiber reinforced plastic insulator ring, the performance of the MeV accelerator was improved. So far, H(-) ion beam of 320 mA was successfully accelerated up to 796 keV with the beam divergence angle of 5.5 mrad. The accelerated drain current including the electron reaches close to the power supply limit for the MeV test facility. The heat flux by the backstream ion during the above beam acceleration was estimated to be 360 W/cm(2). The Cs leakage to the accelerator during the test campaign (Cs total input of 5.0 g) was 0.26 mg (7.0 microg/cm(2)). This is considered to be the allowable level from the viewpoint of voltage holding. PMID:18315236

  20. Multiple beam induction accelerators for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Seidl, Peter A.; Barnard, John J.; Faltens, Andris; Friedman, Alex; Waldron, William L.

    2014-01-01

    Induction accelerators are appealing for heavy-ion driven inertial fusion energy (HIF) because of their high efficiency and their demonstrated capability to accelerate high beam current (≥10 kA in some applications). For the HIF application, accomplishments and challenges are summarized. HIF research and development has demonstrated the production of single ion beams with the required emittance, current, and energy suitable for injection into an induction linear accelerator. Driver scale beams have been transported in quadrupole channels of the order of 10% of the number of quadrupoles of a driver. We review the design and operation of induction accelerators and the relevant aspects of their use as drivers for HIF. We describe intermediate research steps that would provide the basis for a heavy-ion research facility capable of heating matter to fusion relevant temperatures and densities, and also to test and demonstrate an accelerator architecture that scales well to a fusion power plant.

  1. A New High-Current Proton Accelerator

    NASA Astrophysics Data System (ADS)

    Cleland, M. R.; Galloway, R. A.; DeSanto, L.; Jongen, Y.

    2009-03-01

    A high-current (>20 mA) dc proton accelerator is being developed for applications such as boron neutron capture therapy (BNCT) and the detection of explosive materials by nuclear resonance absorption (NRA) of gamma radiation. The high-voltage dc accelerator (adjustable between 1.4 and 2.8 MeV) will be a single-ended industrial Dynamitron® system equipped with a compact high-current, microwave-driven proton source. A magnetic mass analyzer inserted between the ion source and the acceleration tube will select the protons and reject heavier ions. A sorption pump near the ion source will minimize the flow of neutral hydrogen gas into the acceleration tube. For BNCT, a lithium target for generating epithermal neutrons is being developed that will be capable of dissipating the high power (>40 kW) of the proton beam. For NRA, special targets will be used to generate gamma rays with suitable energies for exciting nuclides typically present in explosive materials. Proton accelerators with such high-current and high-power capabilities in this energy range have not been developed previously.

  2. Induction Accelerator Technology Choices for the Integrated Beam Experiment (IBX)

    SciTech Connect

    Leitner, M.A.; Celata, C.M.; Lee, E.P.; Logan, B.G.; Sabbi, G.; Waldron, W.L.; Barnard, J.J.

    2003-09-15

    Over the next three years the research program of the Heavy Ion Fusion Virtual National Laboratory (HIF-VNL), a collaboration among LBNL, LLNL, and PPPL, is focused on separate scientific experiments in the injection, transport and focusing of intense heavy ion beams at currents from 100 mA to 1 A. As a next major step in the HIF-VNL program, we aim for a complete 'source-to-target' experiment, the Integrated Beam Experiment (IBX). By combining the experience gained in the current separate beam experiments IBX would allow the integrated scientific study of the evolution of a single heavy ion beam at high current ({approx}1 A) through all sections of a possible heavy ion fusion accelerator: the injection, acceleration, compression, and beam focusing.This paper describes the main parameters and technology choices of the planned IBX experiment. IBX will accelerate singly charged potassium or argon ion beams up to 10 MeV final energy and a longitudinal beam compression ratio of 10, resulting in a beam current at target of more than 10 Amperes. Different accelerator cell design options are described in detail: Induction cores incorporating either room temperature pulsed focusing-magnets or superconducting magnets.

  3. Beam losses and beam halos in accelerators for new energy sources

    SciTech Connect

    Jameson, R.A.

    1995-12-31

    Large particle accelerators are proposed as drivers for new ways to produce electricity from nuclear fusion and fission reactions. The accelerators must be designed to deliver large particle beam currents to a target facility with very little beam spill along the accelerator itself, in order that accelerator maintenance can be accomplished without remote manipulators. Typically, particle loss is preceded by the formation of a tenuous halo of particles around the central beam core, caused by beam dynamics effects, often coupled with the slight imperfections inevitable in a practical design. If the halo becomes large enough, particles may be scraped off along the accelerator. The tolerance for beam spill in different applications is discussed, halo mechanisms and recent work to explore and understand their dynamics are reviewed, and possible directions for future investigation are outlined. 17 refs., 10 figs.

  4. Pointing of laser-accelerated proton beams

    SciTech Connect

    Schreiber, J.; Ter-Avetisyan, S.; Risse, E.; Kalachnikov, M.P.; Nickles, P.V.; Sandner, W.; Schramm, U.; Habs, D.; Witte, J.; Schnuerer, M.

    2006-03-15

    Small fluctuations in the acceleration sheath change the pointing of a proton beam accelerated from the rear side of a laser irradiated thin aluminum foil. The proton acceleration was produced with 40 fs pulses of a Ti:sapphire laser at an intensity of approximately 10{sup 19} W/cm{sup 2}. This observation has been made with a high spatial resolution Thomson spectrometer. The proton beam pointing has appeared stable in the energy range between the high energy cutoff (3 MeV) and 50% of this value. Deviations of the beam position at lower energies changes in a range of 0-3 mrad. The recorded pictures show wiggled and continuous proton traces which imply a release of the proton beam from the acceleration zone with a velocity chirp.

  5. Intensity-symmetric accelerating caustic beams.

    PubMed

    Ren, Zhijun; Jin, Hongzhen; Peng, Baojin; Shi, Yile

    2016-09-20

    We construct and generate symmetric accelerating caustic beams (ACBs) by using 3/2-order phase-only masks with elliptical contour based on optical caustics and diffraction theory. The symmetric ACBs are a type of bimodal accelerating caustic beam with two quasi-constant intensity peaks, very similar to the combination of two face-to-face Airy-like beams judging by appearance. Their fundamental optical morphology and force properties of particles in ACBs are subsequently provided. The unique optical properties of ACBs can be exploited for practical uses, such as accelerating electrons and clearing micrometer-sized particles as a laser micrometer-sized "water pump" instead of a laser micrometer-sized "snowblower" of accelerating Airy beams. PMID:27661599

  6. Microwave accelerator E-beam pumped laser

    DOEpatents

    Brau, Charles A.; Stein, William E.; Rockwood, Stephen D.

    1980-01-01

    A device and method for pumping gaseous lasers by means of a microwave accelerator. The microwave accelerator produces a relativistic electron beam which is applied along the longitudinal axis of the laser through an electron beam window. The incident points of the electron beam on the electron beam window are varied by deflection coils to enhance the cooling characteristics of the foil. A thyratron is used to reliably modulate the microwave accelerator to produce electron beam pulses which excite the laser medium to produce laser pulse repetition frequencies not previously obtainable. An aerodynamic window is also disclosed which eliminates foil heating problems, as well as a magnetic bottle for reducing laser cavity length and pressures while maintaining efficient energy deposition.

  7. Low Impedance Bellows for High-current Beam Operations

    SciTech Connect

    Wu, G; Nassiri, A; Waldschmidt, G J; Yang, Y; Feingold, J J; Mammosser, J D; Rimmer, R A; Wang, H; Jang, J; Kim, S H

    2012-07-01

    In particle accelerators, bellows are commonly used to connect beamline components. Such bellows are traditionally shielded to lower the beam impedance. Excessive beam impedance can cause overheating in the bellows, especially in high beam current operation. For an SRF-based accelerator, the bellows must also be particulate free. Many designs of shielded bellows incorporate rf slides or fingers that prevent convolutions from being exposed to wakefields. Unfortunately these mechanical structures tend to generate particulates that, if left in the SRF accelerator, can migrate into superconducting cavities, the accelerator's critical components. In this paper, we describe a prototype unshielded bellows that has low beam impedance and no risk of particulate generation.

  8. High transformer ratio drive beams for wakefield accelerator studies

    SciTech Connect

    England, R. J.; Ng, C.-K.; Frederico, J.; Hogan, M. J.; Litos, M.; Muggli, P.; Joshi, C.; An, W.; Andonian, G.; Mori, W.; Lu, W.

    2012-12-21

    For wakefield based acceleration schemes, use of an asymmetric (or linearly ramped) drive bunch current profile has been predicted to enhance the transformer ratio and generate large accelerating wakes. We discuss plans and initial results for producing such bunches using the 20 to 23 GeV electron beam at the FACET facility at SLAC National Accelerator Laboratory and sending them through plasmas and dielectric tubes to generate transformer ratios greater than 2 (the limit for symmetric bunches). The scheme proposed utilizes the final FACET chicane compressor and transverse collimation to shape the longitudinal phase space of the beam.

  9. Beam Control for Ion Induction Accelerators

    SciTech Connect

    Sangster, T.C.; Ahle, L.

    2000-02-17

    Coordinated bending and acceleration of an intense space-charge-dominated ion beam has been achieved for the first time. This required the development of a variable waveform, precision, bi-polar high voltage pulser and a precision, high repetition rate induction core modulator. Waveforms applied to the induction cores accelerate the beam as the bi-polar high voltage pulser delivers a voltage ramp to electrostatic dipoles which bend the beam through a 90 degree permanent magnet quadrupole lattice. Further work on emittance minimization is also reported.

  10. Direct Current Accelerators for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Hellborg, Ragnar; Whitlow, Harry J.

    2011-02-01

    Direct current accelerators form the basis of many front-line industrial processes. They have many advantages that have kept them at the forefront of technology for many decades, such as a small and easily managed environmental footprint. In this article, the basic principles of the different subsystems (ion and electron sources, high voltage generation, control, etc.) are overviewed. Some well-known (ion implantation and polymer processing) and lesser-known (electron beam lithography and particle-induced X-ray aerosol mapping) applications are reviewed.

  11. Prediction of back-scatter radiations to a beam monitor chamber of medical linear accelerators by use of the digitized target-current-pulse analysis method.

    PubMed

    Suzuki, Yusuke; Hayashi, Naoki; Kato, Hideki; Fukuma, Hiroshi; Hirose, Yasujiro; Kawano, Makoto; Nishii, Yoshio; Nakamura, Masaru; Mukouyama, Takashi

    2013-01-01

    In small-field irradiation, the back-scattered radiation (BSR) affects the counts measured with a beam monitor chamber (BMC). In general, the effect of the BSR depends on the opened-jaw size. The effect is significantly large in small-field irradiation. Our purpose in this study was to predict the effect of BSR on LINAC output accurately with an improved target-current-pulse (TCP) technique. The pulse signals were measured with a system consisting of a personal computer and a digitizer. The pulse signals were analyzed with in-house software. The measured parameters were the number of pulses, the change in the waveform and the integrated signal values of the TCPs. The TCPs were measured for various field sizes with four linear accelerators. For comparison, Yu's method in which a universal counter was used was re-examined. The results showed that the variance of the measurements by the new method was reduced to approximately 1/10 of the variance by the previous method. There was no significant variation in the number of pulses due to a change in the field size in the Varian Clinac series. However, a change in the integrated signal value was observed. This tendency was different from the result of other investigations in the past. Our prediction method is able to define the cutoff voltage for the TCP acquired by digitizer. This functionality provides the capability of clearly classifying TCPs into signals and noise. In conclusion, our TCP analysis method can predict the effect of BSR on the BMC even for small-field irradiations.

  12. Generalized radially self-accelerating helicon beams.

    PubMed

    Vetter, Christian; Eichelkraut, Toni; Ornigotti, Marco; Szameit, Alexander

    2014-10-31

    We report, in theory and experiment, on a new class of optical beams that are radially self-accelerating and nondiffracting. These beams continuously evolve on spiraling trajectories while maintaining their amplitude and phase distribution in their rotating rest frame. We provide a detailed insight into the theoretical origin and characteristics of radial self-acceleration and prove our findings experimentally. As radially self-accelerating beams are nonparaxial and a solution to the full scalar Helmholtz equation, they can be implemented in many linear wave systems beyond optics, from acoustic and elastic waves to surface waves in fluids and soft matter. Our work generalized the study of classical helicon beams to a complete set of solutions for rotating complex fields. PMID:25396370

  13. Annular beam-driven high-gradient accelerators

    SciTech Connect

    Keinigs, R.; Jones, M.E.

    1988-01-01

    During the past several years there has been an increasing interest in using wakefield acceleration techniques as a means for achieving TeV energies with the next generation of linear colliders. The principal design goals for a wakefield accelerator that is to be sued in this context are high accelerating gradients and large transformer ratios. Fundamentally any slow wave structure can function as a wakefield accelerator, and several interesting concepts have been proposed. In this paper we consider for the slow wave structure a dielectrically loaded waveguide. The Dielectric Wakefield Accelerator is a very simple device. The geometry consists of a gapless cavity filled with a dielectric. The dielectric may fill all or just part of the cavity. Here we investigate driving the system with an intense annular beam, so the dielectric is separated from the wall by a vacuum region in which this beam is propagated. The primary advantage of driving with an annular beam is that larger currents can be achieved, and thus larger accelerating gradients can be generated. The drive beam is stabilized by a strong, axial magnetic field. The wall is coated with a dielectric liner to provide for better coupling. A small hole is drilled in the center of the dielectric to allow for the passage of a low current, witness beam.

  14. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    NASA Astrophysics Data System (ADS)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  15. Transformer ratio improvement for beam based plasma accelerators

    SciTech Connect

    O'Shea, Brendan; Rosenzweig, James; Barber, Samuel; Fukasawa, Atsushi; Williams, Oliver; Muggli, Patric; Yakimenko, Vitaly; Kusche, Karl

    2012-12-21

    Increasing the transformer ratio of wakefield accelerating systems improves the viability of present novel accelerating schemes. The use of asymmetric bunches to improve the transformer ratio of beam based plasma systems has been proposed for some time[1, 2] but suffered from lack appropriate beam creation systems. Recently these impediments have been overcome [3, 4] and the ability now exists to create bunches with current profiles shaped to overcome the symmetric beam limit of R {<=} 2. We present here work towards experiments designed to measure the transformer ratio of such beams, including theoretical models and simulations using VORPAL (a 3D capable PIC code) [5]. Specifically we discuss projects to be carried out in the quasi-nonlinear regime [6] at the UCLA Neptune Laboratory and the Accelerator Test Facility at Brookhaven National Lab.

  16. Turn-By Beam Extraction during Acceleration in a Synchrotron

    NASA Astrophysics Data System (ADS)

    Tsoupas, Nicholaos; Trbojevic, Dejan

    2014-02-01

    A synchrotron to accelerate protons or carbon ions for medical applications is being designed at Brookhaven National Laboratory (BNL). Single beam bunches with maximum beam energy of 1.18 GeV and 400 MeV/u for protons and carbon ions respectively will be extracted from the synchrotron at 15 Hz. For protons, the maximum required energy for irradiating a tumor is ˜206 MeV. A pencil-like proton beam containing ˜5.4×107 p/bunch delivers a therapeutic dose of 2.5 Gy in ˜1.5 minutes to treat a tumor of 1 liter volume. It will take ˜80 minutes with bunches containing 4.5×104 ions/bunch to deliver the same dose of 2.5 Gy with a 400 MeV/u pencil-like carbon beam. This extended treatment time when using carbon ions is not acceptable. In addition, the synchrotron cannot be controlled with a beam bunch containing such a low number of carbon ions. To overcome these two problems of the extended treatment time and the low bunch intensity required for the treatment when carbon ions are used, we have devised a method to “peel” the required 4.5×104 carbon-ions/bunch from the accelerating carbon beam bunch containing ˜108 ions/bunch and deliver them to the tumor on a “turn-by-turn” basis. Unlike other methods of beam extraction from a synchrotron, such as resonance extraction, this method does not allow for any beam losses during the extraction and the carbon beam can be peeled off in less than 15 ms during the acceleration or deceleration cycle of the synchrotron. Thus, this turn-by-turn beam extraction method provides beam with variable energy and precisely controlled beam current during the 30 ms acceleration or deceleration time.

  17. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  18. Pulsed power accelerators for particle beam fusion

    SciTech Connect

    Martin, T.H.; Barr, G.W.; VanDevender, J.P.; White, R.A.; Johnson, D.L.

    1980-01-01

    Sandia National Laboratories is completing the construction phase of the Particle Beam Fusion Accelerator-I (PBFA-I). Testing of the 36 module, 30 TW, 1 MJ output accelerator is in the initial stages. The 4 MJ, PBFA Marx generator has provided 3.6 MA into water-copper sulfate load resistors with a spread from first to last Marx firing between 15 to 25 ns and an output power of 5.7 TW. This accelerator is a modular, lower voltage, pulsed power device that is capable of scaling to power levels exceeding 100 TW. The elements of the PBFA technology and their integration into an accelerator system for particle beam fusion will be discussed.

  19. Beam dynamics studies for the relativistic klystron two-beam accelerator experiment

    NASA Astrophysics Data System (ADS)

    Lidia, Steven M.

    2001-04-01

    Two-beam accelerators (TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band \\(~8-12 GHz\\) through Ka-band \\(~30-35 GHz\\) frequency regions. The relativistic klystron two-beam accelerator project, whose aim is to study TBAs based upon extended relativistic klystrons, is described, and a new simulation code is used to design the latter portions of the experiment. Detailed, self-consistent calculations of the beam dynamics and of the rf cavity output are presented and discussed together with a beam line design that will generate nearly 1.2 GW of power from 40 rf cavities over a 10 m distance. The simulations show that beam current losses are acceptable and that longitudinal and transverse focusing techniques are sufficiently capable of maintaining a high degree of beam quality along the entire beam line.

  20. Possibility for ultra-bright electron beam acceleration in dielectric wakefield accelerators

    SciTech Connect

    Simakov, Evgenya I.; Carlsten, Bruce E.; Shchegolkov, Dmitry Yu.

    2012-12-21

    We describe a conceptual proposal to combine the Dielectric Wakefield Accelerator (DWA) with the Emittance Exchanger (EEX) to demonstrate a high-brightness DWA with a gradient of above 100 MV/m and less than 0.1% induced energy spread in the accelerated beam. We currently evaluate the DWA concept as a performance upgrade for the future LANL signature facility MaRIE with the goal of significantly reducing the electron beam energy spread. The preconceptual design for MaRIE is underway at LANL, with the design of the electron linear accelerator being one of the main research goals. Although generally the baseline design needs to be conservative and rely on existing technology, any future upgrade would immediately call for looking into the advanced accelerator concepts capable of boosting the electron beam energy up by a few GeV in a very short distance without degrading the beam's quality. Scoping studies have identified large induced energy spreads as the major cause of beam quality degradation in high-gradient advanced accelerators for free-electron lasers. We describe simulations demonstrating that trapezoidal bunch shapes can be used in a DWA to greatly reduce the induced beam energy spread, and, in doing so, also preserve the beam brightness at levels never previously achieved. This concept has the potential to advance DWA technology to a level that would make it suitable for the upgrades of the proposed Los Alamos MaRIE signature facility.

  1. Electron-beam rocket acceleration of hydrogen pellets

    NASA Astrophysics Data System (ADS)

    Tsai, C. C.; Foster, C. A.; Milora, S. L.; Schechter, D. E.; Whealton, J. H.

    A proof-of-principle device for characterizing electron-beam rocket pellet acceleration has been developed and operated during the last few years. Experimental data have been collected for thousands of accelerated hydrogen pellets under a variety of beam conditions. One intact hydrogen pellet was accelerated to a speed of 578 m/s by an electron beam of 10 kV, 0.8 A, and I ms. The collected data reveal the significant finding that the measured bum velocity of bare hydrogen pellets increases with the square of the beam voltage in a way that is qualitatively consistent with the theoretical prediction based on the neutral gas shielding (NGS) model. The measured bum velocity increases with the beam current or power and then saturates at values two to three times greater than that predicted by the NGS model. The discrepancy may result from low pellet strength and large beam-pellet interaction areas. Moreover, this feature may be the cause of the low measured exhaust velocity, which often exceeds the sonic velocity of the ablated gas. Consistent with the NGS model, the measured exhaust velocity increases in direct proportion to the beam current and in inverse proportion to the beam voltage. To alleviate the pellet strength problem, experiments have been performed with the hydrogen ice contained in a lightweight rocket casing or shell. Pellets in such sabots have the potential to withstand higher beam powers and achieve higher thrust-coupling efficiency. Some experimental results are reported and ways of accelerating pellets to higher velocity are discussed.

  2. Nondestructive synchronous beam current monitor

    SciTech Connect

    Covo, Michel Kireeff

    2014-12-15

    A fast current transformer is mounted after the deflectors of the Berkeley 88-Inch Cyclotron. The measured signal is amplified and connected to the input of a lock-in amplifier. The lock-in amplifier performs a synchronous detection of the signal at the cyclotron second harmonic frequency. The magnitude of the signal detected is calibrated against a Faraday cup and corresponds to the beam intensity. It has exceptional resolution, long term stability, and can measure the beam current leaving the cyclotron as low as 1 nA.

  3. Iron beam acceleration using direct plasma injection scheme

    SciTech Connect

    Okamura, M.; Kanesue, T.; Yamamoto, T.; Fuwa, Y.

    2014-02-15

    A new set of vanes of radio frequency quadrupole (RFQ) accelerator was commissioned using highly charged iron beam. To supply high intensity heavy ion beams to the RFQ, direct plasma injection scheme (DPIS) with a confinement solenoid was adopted. One of the difficulties to utilize the combination of DPIS and a solenoid field is a complexity of electro magnetic field at the beam extraction region, since biasing high static electric field for ion extraction, RFQ focusing field, and the solenoid magnetic field fill the same space simultaneously. To mitigate the complexity, a newly designed magnetic field clamps were used. The intense iron beam was observed with bunched structure and the total accelerated current reached 2.5 nC.

  4. Accelerator Based Neutron Beams for Neutron Capture Therapy

    SciTech Connect

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  5. Achromatic beam transport of High Current Injector

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-02-01

    The high current injector (HCI) provides intense ion beams of high charge state using a high temperature superconducting ECR ion source. The ion beam is accelerated upto a final energy of 1.8 MeV/u due to an electrostatic potential, a radio frequency quadrupole (RFQ) and a drift tube linac (DTL). The ion beam has to be transported to superconducting LINAC which is around 50 m away from DTL. This section is termed as high energy beam transport section (HEBT) and is used to match the beam both in transverse and longitudinal phase space to the entrance of LINAC. The HEBT section is made up of four 90 deg. achromatic bends and interconnecting magnetic quadrupole triplets. Two RF bunchers have been used for longitudinal phase matching to the LINAC. The ion optical design of HEBT section has been simulated using different beam dynamics codes like TRACEWIN, GICOSY and TRACE 3D. The field computation code OPERA 3D has been utilized for hardware design of all the magnets. All the dipole and quadrupole magnets have been field mapped and their test results such as edge angles measurements, homogeneity and harmonic analysis etc. are reported. The whole design of HEBT section has been performed such that the most of the beam optical components share same hardware design and there is ample space for beam diagnostics as per geometry of the building. Many combination of achromatic bends have been simulated to transport the beam in HEBT section but finally the four 90 deg. achromatic bend configuration is found to be the best satisfying all the geometrical constraints with simplified beam tuning process in real time.

  6. The production of accelerated radioactive ion beams

    SciTech Connect

    Olsen, D.K.

    1993-11-01

    During the last few years, substantial work has been done and interest developed in the scientific opportunities available with accelerated radioactive ion beams (RIBs) for nuclear physics, astrophysics, and applied research. This interest has led to the construction, development, and proposed development of both first- and second-generation RIB facilities in Asia, North America, and Europe; international conferences on RIBs at Berkeley and Louvain-la-Neuve; and many workshops on specific aspects of RIB production and science. This paper provides a discussion of both the projectile fragmentation, PF, and isotope separator on-line, ISOL, approach to RIB production with particular emphasis on the latter approach, which employs a postaccelerator and is most suitable for nuclear structure physics. The existing, under construction, and proposed facilities worldwide are discussed. The paper draws heavily from the CERN ISOLDE work, the North American IsoSpin Laboratory (ISL) study, and the operating first-generation RIB facility at Louvain-la-Neuve, and the first-generation RIB project currently being constructed at ORNL.

  7. Production of an Accelerated Oxygen-14 Beam

    SciTech Connect

    Powell, James; O'Neil, James P.; Cerny, Joseph

    2002-05-03

    BEARS is an ongoing project to provide a light-ion radioactive-beam capability at the 88-Inch Cyclotron at LBNL. Light radioactive isotopes are produced at a 10 MeV proton medical cyclotron, transported 350 m via a high-speed gas transport capillary, cryogenically separated, and injected into the 88-Inch Cyclotron's ion source. The first radioactive beam successfully accelerated was Carbon-11 and beams of intensity more than 108 ions/sec have been utilized for experiments. Development of Oxygen-14 as the second BEARS beam presented considerable technical challenges, both due to its short half-life of 71 seconds and the radiation chemistry of oxygen in the target. The usual techniques developed for medical uses of Oxygen-15 involve the addition of significant amounts of carrier oxygen, something that would overload the ion source. As a solution, Oxygen-14 is produced as water in a carrier-free form, and is chemically converted in two steps to carbon dioxide, a form readily usable by the BEARS. This system has been built and is operational, and initial tests of accelerating an Oxygen-14 beam have been performed.

  8. Toward automatic control of particle accelerator beams

    SciTech Connect

    Schultz, D.E.; Silbar, R.R.

    1988-01-01

    We describe a program aiming toward automatic control of particle accelerator beams. A hybrid approach is used, combining knowledge- based system programming techniques and traditional numerical simulations. We use an expert system shell for the symbolic processing and have incorporated the FORTRAN beam optics code TRANSPORT for numerical simulation. The paper discusses the symbolic model we built, the reasoning components, how the knowledge base accesses information from an operating beamline, and the experience gained in merging the two worlds of numeric and symbolic processing. We also discuss plans for a future real-time system. 6 refs., 6 figs.

  9. High-Current Experiments for Accelerator-Based Neutron Capture Therapy Applications

    SciTech Connect

    Gierga, D.P.; Klinkowstein, R.E.; Hughey, B.H.; Shefer, R.E.; Yanch, J.C.; Blackburn, B.W.

    1999-06-06

    Several accelerator-based neutron capture therapy applications are under development. These applications include boron neutron capture therapy for glioblastoma multiform and boron neutron capture synovectomy (BNCS) for rheumatoid arthritis. These modalities use accelerator-based charged-particle reactions to create a suitable neutron source. Neutrons are produced using a high-current, 2-MV terminal tandem accelerator. For these applications to be feasible, high accelerator beam currents must be routinely achievable. An effort was undertaken to explore the operating regime of the accelerator in the milliampere range. In preparation for high-current operation of the accelerator, computer simulations of charged-particle beam optics were performed to establish high-current operating conditions. Herein we describe high beam current simulations and high beam current operation of the accelerator.

  10. Preferential acceleration and magnetic field enhancement in plasmas with e+/e- beam injection

    NASA Astrophysics Data System (ADS)

    Huynh, Cong Tuan; Ryu, Chang-Mo

    2016-03-01

    A theoretical model of current filaments predicting preferential acceleration/deceleration and magnetic field enhancement in a plasma with e+/e- beam injection is presented. When the e+/e- beams are injected into a plasma, current filaments are formed. The beam particles are accelerated or decelerated depending on the types of current filaments in which they are trapped. It is found that in the electron/ion ambient plasma, the e+ beam particles are preferentially accelerated, while the e- beam particles are preferentially decelerated. The preferential particle acceleration/deceleration is absent when the ambient plasma is the e+/e- plasma. We also find that the particle momentum decrease can explain the magnetic field increase during the development of Weibel/filamentation instability. Supporting simulation results of particle acceleration/deceleration and magnetic field enhancement are presented. Our findings can be applied to a wide range of astrophysical plasmas with the e+/e- beam injection.

  11. UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC

    SciTech Connect

    Bakeman, M.S.; Fawley, W.M.; Leemans, W. P.; Nakamura, K.; Robinson, K.E.; Schroeder, C.B.; Toth, C.

    2009-05-04

    to couple the THUNDER undulator to the LOASIS Lawrence Berkeley National Laboratory (LBNL) laser wakefield accelerator (LWFA). Currently the LWFA has achieved quasi-monoenergetic electron beams with energies up to 1 GeV. These ultra-short, high-peak-current, electron beams are ideal for driving a compact XUV free electron laser (FEL). Understanding the electron beam properties such as the energy spread and emittance is critical for achieving high quality light sources with high brightness. By using an insertion device such as an undulator and observing changes in the spontaneous emission spectrum, the electron beam energy spread and emittance can be measured with high precision. The initial experiments will use spontaneous emission from 1.5 m of undulator. Later experiments will use up to 5 m of undulator with a goal of a high gain, XUV FEL.

  12. The beam business: Accelerators in industry

    SciTech Connect

    Hamm, Robert W.; Hamm, Marianne E.

    2011-06-15

    Most physicists know that particle accelerators are widely used for treating cancer. But few are acquainted with the depth and breadth of their use in a myriad of applications outside of pure science and medicine. Society benefits from the use of particle beams in the areas of communications, transportation, the environment, security, health, and safety - in terms both of the global economy and quality of life. On the manufacturing level, the use of industrial accelerators has resulted in the faster and cheaper production of better parts for medical devices, automobiles, aircraft, and virtually all modern electronics. Consumers also benefit from the use of accelerators to explore for oil, gas, and minerals; sterilize food, wastewater, and medical supplies; and aid in the development of drugs and biomaterials.

  13. Nonparaxial accelerating Bessel-like beams

    NASA Astrophysics Data System (ADS)

    Chremmos, Ioannis D.; Efremidis, Nikolaos K.

    2013-12-01

    A class of nonparaxial accelerating optical waves is introduced. These are beams with a Bessel-like profile that are capable of shifting laterally along fairly arbitrary trajectories as the wave propagates in free space. The concept expands on our previous proposal of paraxial accelerating Bessel-like beams to include beams with subwavelength lobes and/or large trajectory angles. Such waves are produced when the phase at the input plane is engineered so that the interfering ray cones are made to focus along the prespecified path. When the angle of these cones is fixed, the beams possess a diffraction-free Bessel profile on planes that stay normal to their trajectory, which can be considered as a generalized definition of diffractionless propagation in the nonparaxial regime. The analytical procedure leading to these results is based on a ray-optics interpretation of Rayleigh-Sommerfeld diffraction and is presented in detail. The evolution of the proposed waves is demonstrated through a series of numerical examples and a variety of trajectories.

  14. The First Observation of Intra Beam Stripping of Negative Hydrogen in a Superconducting Linear Accelerator

    SciTech Connect

    Aleksandrov, Alexander V; Plum, Michael A; Shishlo, Andrei P; Galambos, John D

    2012-01-01

    We report on an experiment in which a negative hydrogen ions beam in the Spallation Neutron Source (SNS) linear accelerator was replaced with a beam of protons with similar size and dynamics. Beam loss in the superconducting part of the SNS accelerator was at least an order of magnitude lower for the proton beam. Also beam loss has a stronger dependence on intensity with H- than with proton beams. These measurements verify a recent theoretical explanation of unexpected beam losses in the SNS superconducting linear accelerator based on an intra beam stripping mechanism for negative hydrogen ions. An identification of the new physics mechanism for beam loss is important for the design of new high current linear ion accelerators and the performance improvement of existing machines

  15. Beam dynamics design for uranium drift tube linear accelerator

    NASA Astrophysics Data System (ADS)

    Dou, Wei-Ping; He, Yuan; Lu, Yuan-Rong

    2014-07-01

    KONUS beam dynamics design of uranium DTL with LORASR code is presented. The 238U34+ beam, whose current is 5.0 emA, is accelerated from injection energy of 0.35 MeV/u to output energy of 1.30 MeV/u by IH-DTL operated at 81.25 MHz in HIAF project at IMP of CAS. It achieves a transmission efficiency of 94.95% with a cavity length of 267.8 cm. The optimization aims are the reduction of emittance growth, beam loss and project costs. Because of the requirements of CW mode operation, the designed average acceleration gradient is about 2.48 MV/m. The maximum axial field is 10.2 MV/m, meanwhile the Kilpatrick breakdown field is 10.56 MV/m at 81.25 MHz.

  16. Neutrino factory and beta beam: accelerator options for future neutrino experiments

    SciTech Connect

    Zisman, Michael S.

    2012-06-03

    Two accelerator options for producing intense neutrino beams a Neutrino Factory based on stored muon beams and a Beta Beam facility based on stored beams of beta unstable ions are described. Technical challenges for each are described and current R&D efforts aimed at mitigating these challenges are indicated. Progress is being made in the design of both types of facility, each of which would extend the state-of-the-art in accelerator science.

  17. Current and future uses of accelerators in particle astrophysics

    NASA Technical Reports Server (NTRS)

    Guzik, T. G.

    1990-01-01

    Beams of artificially accelerated heavy ions, protons, antiprotons, electrons, and positrons currently available at (and planned for) numerous facilities around the world are a valuable resource to the Cosmic Ray community. Such beams have been used to test detector concepts, calibrate balloon-borne and space flight experiments and to measure fundamental nuclear physics parameter necessary for the interpretation of Cosmic Ray data. As new experiments are flown the quality and extent of Cosmic Ray measurements will continue to improve. It will be necessary to increase activity at ground based accelerators in order to test/calibrate these new instruments and to maintain (or possibly improve) the ability to interpret these data. In this area, the newly formed Transport Collaboration, supported by NASA, will be providing new nuclear interaction cross section measurements for beams with Z less than or = 58 and supporting new instrument calibrations at the Lawrence Berkeley Laboratory Bevalac accelerator.

  18. On a theory of two-beam mechanisms of charged particle acceleration in electrodynamic structures

    NASA Astrophysics Data System (ADS)

    Ostrovsky, A. O.

    1993-09-01

    This work is devoted to the theoretical studies of two-beam mechanisms of charged particle acceleration in electronic structures. The first section continues the outline of results of theoretical studies commenced in the intermediate report and considers the two-beam scheme of acceleration in the plasma waveguide. According to this scheme the strong current relativistic electron beam (REB) excites the intensive plasma waves accelerating the electrons of the second beam. The driving beam is assumed to be density modulated. The preliminary modulation of the driving REB is shown to enhance substantially the acceleration efficiency of relativistic electrons of the driven beam. The second section deals with the two-beam acceleration in the vacuum corrugated waveguide. According to this scheme the excitation of electromagnetic waves and acceleration of driven beam electrons by them is accomplished under different Cherenkov resonances between the particles of beams and the corrugated waveguide field. The electromagnetic field in the periodic structure is known to be the superposition of spatial harmonics. With the small depth of the periodic nonuniformity, the amplitudes of these harmonics decrease fast with their number increasing. Therefore, if the driving beam is in the Cherenkov resonance with the first spatial harmonic and the driven beam is in resonance with the zero space harmonic then the force accelerating the driven beam would be considerably bigger than the force decelerating the driving beam electrons.

  19. On a theory of two-beam mechanisms of charged particle acceleration in electrodynamic structures

    SciTech Connect

    Ostrovsky, A.O.

    1993-09-01

    This work is devoted to the theoretical studies of two-beam mechanisms of charged particle acceleration in electronic structures. The first section continues the outline of results of theoretical studies commenced in the intermediate report and considers the two-beam scheme of acceleration in the plasma waveguide. According to this scheme the strong current relativistic electron beam (REB) excites the intensive plasma waves accelerating the electrons of the second beam. The driving beam is assumed to be density-modulated. The preliminary modulation of the driving REB is shown to enhance substantially the acceleration efficiency of relativistic electrons of the driven beam. The second section deals with the two-beam acceleration in the vacuum corrugated waveguide. According to this scheme the excitation of electromagnetic waves and acceleration of driven beam electrons by them is accomplished under different Cherenkov resonances between the particles of beams and the corrugated waveguide field. The electromagnetic field in the periodic structure is known to be the superposition of spatial harmonics. With the small depth of the periodic nonuniformity the amplitudes of these harmonics decrease fast with their number increasing. Therefore, if the driving beam is in the Cherenkov resonance with the first spatial harmonic and the driven beam is in resonance with the zero space harmonic then the force accelerating the driven beam would be considerably bigger than the force decelerating the driving beam electrons.

  20. Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators

    SciTech Connect

    Mastoridis, Themistoklis

    2010-08-01

    The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC

  1. Drift distance survey in DPIS for high current beam production

    SciTech Connect

    Kanesue,T.; Okamura, M.; Kondo, K.; Tamura, J.; Kashiwagi, H.; Zhang, Z.

    2009-09-20

    In a laser ion source, plasma drift distance is one of the most important design parameters. Ion current density and beam pulse width are defined by plasma drift distance between laser target and beam extraction position. In direct plasma injection scheme (DPIS), which uses a laser ion source and Radio Frequency Quadrupole (RFQ) linac, we can apply relatively higher electric field at the beam extraction due to the unique shape of a positively biased electrode. However, when we aim at very high current acceleration like several tens of mA, we observed mismatched beam extraction conditions. We tested three different ion current at ion extraction region by changing plasma drift distance to study better extraction condition. In this experiment, C{sup 6+} beam was accelerated. We confirmed that the matching condition can be improved by controlling plasma drift distance.

  2. Current density compression of intense ion beams

    NASA Astrophysics Data System (ADS)

    Sefkow, Adam Bennett

    Current density compression of intense ion beams in space and time is required for heavy ion fusion, in order to achieve the necessary intensities to implode an inertial confinement fusion target. Longitudinal compression to high current in a short pulse is achieved by imposing a velocity tilt upon the space-charge-dominated charge bunch, and a variety of means exist for simultaneous transverse focusing to a coincident focal plane. Compression to the desired levels requires sufficient neutralization of the beam by a pre-formed plasma during final transport. The physics of current density compression is studied in scaled experiments relevant for the operating regime of a heavy ion driver, and related theory and advanced particle-in-cell simulations provide valuable insight into the physical and technological limitations involved. A fast Faraday cup measures longitudinal compression ratios greater than 50 with pulse durations less than 5 ns, in excellent agreement with reduced models and sophisticated simulations, which account for many experimental parameters and effects. The detailed physics of achieving current density compression in the laboratory is reviewed. Quantitative examples explore the dependency of longitudinal compression on effects such as the finite-size acceleration gap, voltage waveform accuracy, variation in initial beam temperature, pulse length, intended fractional velocity tilt, and energy uncertainty, as well as aberration within focusing elements and plasma neutralization processes. In addition, plasma evolution in experimental sources responsible for the degree of beam neutralization is studied numerically, since compression stagnation occurs under inadequate neutralization conditions, which may excite nonlinear collective excitations due to beam-plasma interactions. The design of simultaneous focusing experiments using both existing and upgraded hardware is provided, and parametric variations important for compression physics are

  3. GEANT4 simulations for beam emittance in a linear collider based on plasma wakefield acceleration

    SciTech Connect

    Mete, O. Xia, G.; Hanahoe, K.; Labiche, M.

    2015-08-15

    Alternative acceleration technologies are currently under development for cost-effective, robust, compact, and efficient solutions. One such technology is plasma wakefield acceleration, driven by either a charged particle or laser beam. However, the potential issues must be studied in detail. In this paper, the emittance evolution of a witness beam through elastic scattering from gaseous media and under transverse focusing wakefields is studied.

  4. Method and apparatus for varying accelerator beam output energy

    DOEpatents

    Young, Lloyd M.

    1998-01-01

    A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.

  5. Experiments and theory of an upstream ionization instability excited by an accelerated electron beam through a current-free double layer

    SciTech Connect

    Aanesland, A.; Lieberman, M. A.; Charles, C.; Boswell, R. W.

    2006-12-15

    A low-frequency instability varying from 10 to 20 kHz has been discovered in the presence of a current-free double layer (DL) in a low-pressure expanding helicon plasma. The instability is observed using various electrostatic probes, such as Langmuir probes floating or biased to ion saturation and emissive probes measuring the plasma potential. A retarding field energy analyzer measuring the ion energy distribution function downstream of the double layer is used together with the LP to simultaneously observe the DL and the instability, confirming their coexistence. The frequency of the instability decreases with increasing neutral pressure, increases with increasing magnetic field in the source and increases with increasing rf power. A theory for an upstream ionization instability has been developed, in which electrons accelerated through the DL increase the ionization upstream and are responsible for the observed instability. The theory is in good agreement with the experimental results and shows that the frequency increases with the potential drop of the double layer and with decreasing chamber radius.

  6. Means and method for the focusing and acceleration of parallel beams of charged particles

    DOEpatents

    Maschke, Alfred W.

    1983-07-05

    A novel apparatus and method for focussing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The quadrupole arrays may comprise electrodes which are shared by two or more quadrupoles. Such quadrupole arrays are particularly adapted to providing strong focussing forces for high current, high brightness, beams of charged particles, said beams further comprising a plurality of parallel beams, or beamlets, each such beamlet being focussed by one quadrupole of the array. Such arrays may be incorporated in various devices wherein beams of charged particles are accelerated or transported, such as linear accelerators, klystron tubes, beam transport lines, etc.

  7. Characterisation of electron beams from laser-driven particle accelerators

    SciTech Connect

    Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A.

    2012-12-21

    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

  8. A merging preaccelerator for high current H - ion beams

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Miyamoto, K.; Mizuno, M.; Okumura, Y.; Ohara, Y.; Ackerman, G. D.; Chan, C. F.; Cooper, W. S.; Kwan, J. W.; Vella, M. C.

    1995-07-01

    The high power ion beams used in the next generation thermonuclear fusion reactors require high current negative ion beams accelerated to high energy, with high efficiency. One way to meet these requirements is to merge multiple low current density H- beamlets into a single high current beam. The feasibility of a high current merging preaccelerator was demonstrated in this experiment by merging 19 beamlets of H- ions distributed over a circular area 80 mm in diameter from a Japan Atomic Energy Research Institute negative ion source. H- ions were extracted at a current density exceeding 10 mA/cm2 at the ion source which operates at 0.13 Pa (1 mTorr), with a low arc power density (70 V×250 A). Spherically curved grids (with built-in magnetic electron suppression) were used in the preaccelerator to focus the extracted beamlets into a single 104 mA, 100 keV beam. The merged beam has a diameter of 23 mm and a converging angle of ±30 mrad at the beam envelope. The rms emittance of the 104 mA merging beam was 1.00 π mrad cm, which is a condition acceptable to the electrostatic quadropole accelerator for further acceleration.

  9. Voltage holding study of 1 MeV accelerator for ITER neutral beam injector.

    PubMed

    Taniguchi, M; Kashiwagi, M; Umeda, N; Dairaku, M; Takemoto, J; Tobari, H; Tsuchida, K; Yamanaka, H; Watanabe, K; Kojima, A; Hanada, M; Sakamoto, K; Inoue, T

    2012-02-01

    Voltage holding test on MeV accelerator indicated that sustainable voltage was a half of that of ideal quasi-Rogowski electrode. It was suggested that the emission of the clumps is enhanced by a local electric field concentration, which leads to discharge initiation at lower voltage. To reduce the electric field concentration in the MeV accelerator, gaps between the grid supports were expanded and curvature radii at the support corners were increased. After the modifications, the accelerator succeeded in sustaining -1 MV in vacuum without beam acceleration. However, the beam energy was still limited at a level of 900 keV with a beam current density of 150 A∕m(2) (346 mA) where the 3 × 5 apertures were used. Measurement of the beam profile revealed that deflection of the H(-) ions was large and a part of the H(-) ions was intercepted at the acceleration grid. This causes high heat load on the grids and the breakdowns during beam acceleration. To suppress the direct interception, new grid system was designed with proper aperture displacement based on a 3D beam trajectory analysis. As the result, the beam deflection was compensated and the voltage holding during the beam acceleration was improved. Beam parameter of the MeV accelerator was increased to 980 keV, 185 A∕m(2) (427 mA), which is close to the requirement of ITER accelerator (1 MeV, 200 A∕m(2)).

  10. A Self-Consistent Beam Loaded Travelling Wave Accelerator Model for use in TRACE-3D

    NASA Astrophysics Data System (ADS)

    Lampel, M. C.

    1997-05-01

    An optics model of a constant gradient traveling wave (CGTW) accelerator structure has been implemented for TRACE-3D. TRACE-3D is an envelope code including space charge that is used to model bunched beams in magnetic transport systems and radio frequency (rf) accelerators when the effects of beam current might be significant. The new matrix model has been developed to allow incorporation of particle beam loading (current) effects on the accelerator gradient and the accelerator structure's beam focusing properties in a self-consistent manner. The beam loaded electric field for a CGTW accelerator structure is constant for only a particular design current (e.g., 0 current), otherwise it can be written as a function of accelerator attenuation and axial position along the structure. The variation of the electric field through the structure has been taken into account in the new model. CGTW structures differ substantially in focusing properties and beam loading properties from standing wave structures. Examples will be presented using the new TW model, propagating electron beams with different currents through the Stanford Linear Accelerator Center's 3 m structure. The results will be compared to the zero current TW structure model in TRANSPORT and the Tank model (a standing wave structure model) in TRACE-3D. A computer demonstration of the code with the new element will also be presented.

  11. A theory of two-beam acceleration of charged particles in a plasma waveguide

    SciTech Connect

    Ostrovsky, A.O.

    1993-11-01

    The progress made in recent years in the field of high-current relativistic electron beam (REB) generation has aroused a considerable interest in studying REB potentialities for charged particle acceleration with a high acceleration rate T = 100MeV/m. It was proposed, in particular, to employ high-current REB in two-beam acceleration schemes (TBA). In these schemes high current REB (driving beam) excites intense electromagnetic waves in the electrodynamic structure which, in their turn, accelerate particles of the other beam (driven beam). The TBA schemes can be divided into two groups. The first group includes the schemes, where the two beams (driving and driven) propagate in different electrodynamic structures coupled with each other through the waveguides which ensure the microwave power transmission to accelerate driven beam particles. The second group includes the TBA schemes, where the driving and driven beams propagate in one electrodynamic structure. The main aim of this work is to demonstrate by theory the possibility of realizing effectively the TBA scheme in the plasma waveguide. The physical model of the TBA scheme under study is formulated. A set of equations describing the excitation of RF fields by a high-current REB and the acceleration of driven beam electrons is also derived. Results are presented on the the linear theory of plasma wave amplification by the driving beam. The range of system parameters, at which the plasma-beam instability develops, is defined. Results of numerical simulation of the TBA scheme under study are also presented. The same section gives the description of the dynamics of accelerated particle bunching in the high-current REB-excited field. Estimates are given for the accelerating field intensities in the plasma and electron acceleration rates.

  12. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    NASA Astrophysics Data System (ADS)

    Teng, Chen; Elias, Luis R.

    1995-02-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations.

  13. H-mode accelerating structures with PMQ focusing for low-beta ion beams

    SciTech Connect

    Kurennoy, Sergey S; O' Hara, James F; Olivas, Eric R; Rybarcyk, Lawrence J

    2010-01-01

    We are developing high-efficiency normal-conducting RF accelerating structures based on inter-digital H-mode (IH) cavities and the transverse beam focusing with permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. Such IH-PMQ accelerating structures following a short RFQ can be used in the front end of ion linacs or in stand-alone applications, e.g. a compact deuteron-beam accelerator up to the energy of several MeV. Results of combined 3-D modeling for a full IH-PMQ accelerator tank - electromagnetic computations, beam-dynamics simulations with high currents, and thermal-stress analysis - are presented. The accelerating field profile in the tank is tuned to provide the best beam propagation using coupled iterations of electromagnetic and beam-dynamics modeling. A cold model of the IH-PMQ tank is being manufactured.

  14. Electrostatic-accelerator free-electron lasers for power beaming

    SciTech Connect

    Pinhasi, Y.; Yakover, I.M.; Gover, A.

    1995-12-31

    Novel concepts of electrostatic-accelerator free-electron lasers (EA-FELs) for energy transfer through the atmosphere are presented. The high average power attained from an EA-FEL makes it an efficient source of mm-wave for power beaming from a ground stations. General aspects of operating the FEL as a high power oscillator (like acceleration voltage, e-beam. current, gain and efficiency) are studied and design considerations are described. The study takes into account requirements of power beaming application such as characteristic dips in the atmospheric absorption spectrum, sizes of transmitting and receiving antennas and meteorological conditions. We present a conceptual design of a moderate voltage (.5-3 MeV) high current (1-10 Amp) EA-FEL operating at mm-wavelength bands, where the atmospheric attenuation allows efficient power beaming to space. The FEL parameters were calculated, employing analytical and numerical models. The performance parameters of the FEL (power, energy conversion efficiency average power) will be discussed in connection to the proposed application.

  15. Progress Towards Doubling the Beam Power at Fermilab's Accelerator Complex

    SciTech Connect

    Kourbanis, Ioanis

    2014-07-01

    After a 16 month shutdown to reconfigure the Fermilab Accelerators for high power operations, the Fermilab Accelerator Complex is again providing beams for numerous Physics Experiments. By using the Recycler to slip stack protons while the Main Injector is ramping, the beam power at 120 GeV can reach 700 KW, a factor of 2 increase. The progress towards doubling the Fermilab's Accelerator complex beam power will be presented.

  16. A DSP based data acquisition module for colliding beam accelerators

    SciTech Connect

    Mead, J.A.; Shea, T.J.

    1995-10-01

    In 1999, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory will accelerate and store two beams of gold ions. The ions will then collide head on at a total energy of nearly 40 trillion electron volts. Attaining these conditions necessitates real-time monitoring of beam parameters and for this purpose a flexible data acquisition platform has been developed. By incorporating a floating point digital signal processor (DSP) and standard input/output modules, this system can acquire and process data from a variety of beam diagnostic devices. The DSP performs real time corrections, filtering, and data buffering to greatly reduce control system computation and bandwidth requirements. We will describe the existing hardware and software while emphasizing the compromises required to achieve a flexible yet cost effective system. Applications in several instrumentation systems currently construction will also be presented.

  17. Correlation of ion and beam current densities in Kaufman thrusters.

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1973-01-01

    In the absence of direct impingement erosion, electrostatic thruster accelerator grid lifetime is defined by the charge exchange erosion that occurs at peak values of the ion beam current density. In order to maximize the thrust from an engine with a specified grid lifetime, the ion beam current density profile should therefore be as flat as possible. Knauer (1970) has suggested this can be achieved by establishing a radial plasma uniformity within the thruster discharge chamber; his tests with the radial field thruster provide an example of uniform plasma properties within the chamber and a flat ion beam profile occurring together. It is shown that, in particular, the ion density profile within the chamber determines the beam current density profile, and that a uniform ion density profile at the screen grid end of the discharge chamber should lead to a flat beam current density profile.

  18. Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    SciTech Connect

    Bakeman, M.S.; Van Tilborg, J.; Nakamura, K.; Gonsalves, A.; Osterhoff, J.; Sokollik, T.; Lin, C.; Robinson, K.E.; Schroeder, C.B.; Toth, Cs.; Weingartner, R.; Gruner, F.; Esarey, E.; Leemans, W.P.

    2010-06-01

    The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.

  19. Study of a multi-beam accelerator driven thorium reactor

    SciTech Connect

    Ludewig, H.; Aronson, A.

    2011-03-01

    The primary advantages that accelerator driven systems have over critical reactors are: (1) Greater flexibility regarding the composition and placement of fissile, fertile, or fission product waste within the blanket surrounding the target, and (2) Potentially enhanced safety brought about by operating at a sufficiently low value of the multiplication factor to preclude reactivity induced events. The control of the power production can be achieved by vary the accelerator beam current. Furthermore, once the beam is shut off the system shuts down. The primary difference between the operation of an accelerator driven system and a critical system is the issue of beam interruptions of the accelerator. These beam interruptions impose thermo-mechanical loads on the fuel and mechanical components not found in critical systems. Studies have been performed to estimate an acceptable number of trips, and the value is significantly less stringent than had been previously estimated. The number of acceptable beam interruptions is a function of the length of the interruption and the mission of the system. Thus, for demonstration type systems and interruption durations of 1sec < t < 5mins, and t > 5mins 2500/yr and 50/yr are deemed acceptable. However, for industrial scale power generation without energy storage type systems and interruption durations of t < 1sec., 1sec < t < 10secs., 10secs < t < 5mins, and t > 5mins, the acceptable number of interruptions are 25000, 2500, 250, and 3 respectively. However, it has also been concluded that further development is required to reduce the number of trips. It is with this in mind that the following study was undertaken. The primary focus of this study will be the merit of a multi-beam target system, which allows for multiple spallation sources within the target/blanket assembly. In this manner it is possible to ameliorate the effects of sudden accelerator beam interruption on the surrounding reactor, since the remaining beams will still

  20. High-energy accelerator for beams of heavy ions

    DOEpatents

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  1. The development of beam current monitors in the APS

    SciTech Connect

    Wang, X.; Lenkszus, F.; Rotela, E.

    1995-07-01

    The Advanced Photon Source (APS) is a third-generation 7-GeV synchrotron radiation source. The precision measurement of beam current is a challenging task in high energy accelerators, such as the APS, with a wide range of beam parameters and complicated noise, radiation, and thermal environments. The beam pulses in the APS injector and storage ring have charge ranging from 50pC to 25nC with pulse durations varying from 30ps to 30ns. A total of nine non- intercepting beam current monitors have been installed in the APS facility (excluding those in the linac) for general current measurement. In addition, several independent current monitors with specially designed redundant interlock electronics are installed for personnel safety and machine protection. This paper documents the design and development of current monitors in the APS,. discusses the commissioning experience in the past year, and presents the results of recent operations.

  2. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  3. In-line beam current monitor

    DOEpatents

    Ekdahl, C.A. Jr.; Frost, C.A.

    1984-11-13

    An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.

  4. In-line beam current monitor

    DOEpatents

    Ekdahl, Jr., Carl A.; Frost, Charles A.

    1986-01-01

    An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.

  5. Accelerating Airy beams in the presence of inhomogeneities

    NASA Astrophysics Data System (ADS)

    Besieris, Ioannis M.; Shaarawi, Amr M.; Zamboni-Rached, Michel

    2016-06-01

    Studies have already been made of accelerating Airy beams in the presence of deterministic inhomogeneities, illustrating, in particular, that the inherent self-healing properties of such beams are preserved. The cases of a range-dependent linear transverse potential and a converging GRIN structure (harmonic oscillator) have been examined thoroughly. Examples will be given in this article of novel accelerating Airy beams in the presence of five other types of potential functions. Three of the resulting exact analytical solutions have a common salient characteristic property: they are constructed using the free-space accelerating Airy beam solution as a seed.

  6. Unveiling the propagation dynamics of self-accelerating vector beams

    PubMed Central

    Bar-David, Jonathan; Voloch-Bloch, Noa; Mazurski, Noa; Levy, Uriel

    2016-01-01

    We study theoretically and experimentally the varying polarization states and intensity patterns of self-accelerating vector beams. It is shown that as these beams propagate, the main intensity lobe and the polarization singularity gradually drift apart. Furthermore, the propagation dynamics can be manipulated by controlling the beams’ acceleration coefficients. We also demonstrate the self-healing dynamics of these accelerating vector beams for which sections of the vector beam are being blocked by an opaque or polarizing obstacle. Our results indicate that the self-healing process is almost insensitive for the obstacles’ polarization direction. Moreover, the spatial polarization structure also shows self- healing properties, and it is reconstructed as the beam propagates further beyond the perturbation plane. These results open various possibilities for generating, shaping and manipulating the intensity patterns and space variant polarization states of accelerating vector beams. PMID:27671745

  7. Post-acceleration of laser-induced ion beams

    NASA Astrophysics Data System (ADS)

    Nassisi, V.; Delle Side, D.

    2015-04-01

    A complete review of the essential and recent developments in the field of post-acceleration of laser-induced ion beams is presented. After a brief introduction to the physics of low-intensity nanosecond laser-matter interaction, the details of ions extraction and acceleration are critically analyzed and the key parameters to obtain good-quality ion beams are illustrated. A description of the most common ion beam diagnosis system is given, together with the associated analytical techniques.

  8. Characteristics of an electron-beam rocket pellet accelerator

    SciTech Connect

    Tsai, C.C.; Foster, C.A.; Schechter, D.E.

    1989-01-01

    An electron-beam rocket pellet accelerator has been designed, built, assembled, and tested as a proof-of-principle (POP) apparatus. The main goal of accelerators based on this concept is to use intense electron-beam heating and ablation of a hydrogen propellant stick to accelerate deuterium and/or tritium pellets to ultrahigh speeds (10 to 20 km/s) for plasma fueling of next-generation fusion devices such as the International Thermonuclear Engineering Reactor (ITER). The POP apparatus is described and initial results of pellet acceleration experiments are presented. Conceptual ultrahigh-speed pellet accelerators are discussed. 14 refs., 8 figs.

  9. Innovative real-time and non-destructive method of beam profile measurement under large beam current irradiation for BNCT

    NASA Astrophysics Data System (ADS)

    Takada, M.; Kamada, S.; Suda, M.; Fujii, R.; Nakamura, M.; Hoshi, M.; Sato, H.; Endo, S.; Hamano, T.; Arai, S.; Higashimata, A.

    2012-10-01

    We developed a real-time and non-destructive method of beam profile measurement on a target under large beam current irradiation, and without any complex radiation detectors or electrical circuits. We measured the beam profiles on a target by observing the target temperature using an infrared-radiation thermometer camera. The target temperatures were increased and decreased quickly by starting and stopping the beam irradiation within 1 s in response speed. Our method could trace beam movements rapidly. The beam size and position were calibrated by measuring O-ring heat on the target. Our method has the potential to measure beam profiles at beam current over 1 mA for proton and deuteron with the energy around 3 MeV and allows accelerator operators to adjust the beam location during beam irradiation experiments without decreasing the beam current.

  10. Symmetric neutralized ion beams: Production, acceleration, propagation, and applications

    NASA Astrophysics Data System (ADS)

    Hicks, Nathaniel Kenneth

    This dissertation presents the first integrated experimental, computational, and theoretical research program on symmetric neutralized ion beams. A beam of this type is composed of positive and negative ions having equal charge-to-mass ratios, such that the beam has overall charge neutrality and its constituent ions respond symmetrically to electromagnetic forces. Under the right conditions, these beams may propagate undeflected across transverse magnetic fields due to beam polarization. Such propagation is studied here computationally, using a three-dimensional particle-in-cell code. Also, key theoretical differences between the propagation ability of these beams and that of beams consisting of positive ions and electrons are elucidated. An experimental method of producing a symmetric neutralized ion beam by merging together separate beams of positive and negative ions is demonstrated, and prototype collector hardware to diagnose the composition and energy distribution of the beam is developed. The ability of radio frequency quadrupole accelerators to simultaneously confine and accelerate the positive and negative ions of such a beam is demonstrated computationally and is confirmed experimentally, and a method to reestablish local charge neutrality in the beam after acceleration is conceived and simulated. The favorable scaling of such accelerators to small size and high frequency is illustrated. Finally, applications of the research to magnetic confinement fusion and topics for future study are presented.

  11. Radiation Safety System for SPIDER Neutral Beam Accelerator

    NASA Astrophysics Data System (ADS)

    Sandri, S.; Coniglio, A.; D'Arienzo, M.; Poggi, C.

    2011-12-01

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports have been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.

  12. Radiation Safety System for SPIDER Neutral Beam Accelerator

    SciTech Connect

    Sandri, S.; Poggi, C.; Coniglio, A.; D'Arienzo, M.

    2011-12-13

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports have been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.

  13. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    SciTech Connect

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Smith, Alan; Rodgers, David; Donahue, Rich; Byrne, Warren; Leemans, Wim

    2011-06-27

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/(ps mm{sup 2}), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within {+-}8%, showing that they all can provide accurate charge measurements for LPAs.

  14. Energy compensation of slow extracted beams with RF acceleration

    NASA Astrophysics Data System (ADS)

    Fujimoto, Tetsuya; Souda, Hikaru; Torikoshi, Masami; Kanai, Tatsuaki; Yamada, Satoru; Noda, Koji

    2016-03-01

    In a conventional carbon-ion radiotherapy facility, a carbon-ion beam is typically accelerated up to an optimum energy, slowly extracted from a synchrotron ring by a resonant slow extraction method, and ultimately delivered to a patient through a beam-delivery system. At Japan's Gunma University, a method employing slow-beam extraction along with beam-acceleration has been adopted. This method slightly alters the extracted-beam's energy owing to the acceleration component of the process, which subsequently results in a residual-range variation of approximately 2 mm in water-equivalent length. However, this range variation does not disturb a distal dose distribution with broad-beam methods such as the single beam-wobbling method. With the pencil-beam 3D scanning method, however, such a range variation disturbs a distal dose distribution because the variation is comparable to slice thickness. Therefore, for pencil-beam 3D scanning, an energy compensation method for a slow extracted beam is proposed in this paper. This method can compensate for the aforementioned energy variances by controlling net energy losses through a rotatable energy absorber set fixed between the synchrotron exit channel and the isocenter. Experimental results demonstrate that beam energies can be maintained constant, as originally hypothesized. Moreover, energy-absorber positions were found to be significantly enhanced by optimizing beam optics for reducing beam-size growth by implementation of the multiple-scattering effect option.

  15. Staging Laser Plasma Accelerators for Increased Beam Energy

    SciTech Connect

    Panasenko, D.; Shu, A. J.; Schroeder, C. B.; Gonsalves, A. J.; Nakamura, K.; Matlis, N. H.; Cormier-Michel, E.; Plateau, G.; Lin, C.; Toth, C.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2009-01-22

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10 m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  16. Staging laser plasma accelerators for increased beam energy

    SciTech Connect

    Panasenko, Dmitriy; Shu, Anthony; Schroeder, Carl; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Cormier-Michel, Estelle; Plateau, Guillaume; Lin, Chen; Toth, Csaba; Geddes, Cameron; Esarey, Eric; Leemans, Wim

    2008-09-29

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  17. Investigation of Beam-RF Interactions in Twisted Waveguide Accelerating Structures Using Beam Tracking Codes

    SciTech Connect

    Holmes, Jeffrey A; Zhang, Yan; Kang, Yoon W; Galambos, John D; Hassan, Mohamed H; Wilson, Joshua L

    2009-01-01

    Investigations of the RF properties of certain twisted waveguide structures show that they support favorable accelerating fields. This makes them potential candidates for accelerating cavities. Using the particle tracking code, ORBIT, We examine the beam - RF interaction in the twisted cavity structures to understand their beam transport and acceleration properties. The results will show the distinctive properties of these new structures for particle transport and acceleration, which have not been previously analyzed.

  18. Charge-state enhancement for radioactive beam post-acceleration

    SciTech Connect

    Nolen, J.A.; Dooling, J.

    1995-08-01

    A critical question for an ISOL-type radioactive-beam facility, such as that being discussed by the North American Isospin Laboratory Committee, is the efficiency and q/m of the ion source for the radioactive species. ISOLDE at CERN demonstrated that high efficiency is obtained for a wide variety of species in the 1{sup +} charge state. These ion sources also generally have excellent transverse emittances and low energy spreads. One possibility is to use this proven technology plus an ionizer stage to increase the output of such sources to 2, 3, or 4{sup +} with high efficiency. We are currently investigating technical options for such charge-state enhancement. There is a proposal by a Heidelberg/ISOLDE collaboration to build a {open_quotes}charge-state breeder{close_quotes} as part of an experiment called REX-ISOLDE. This concept would deliver batches of radioactive ions with low duty cycle, optimized for relatively low-intensity secondary beams, on the order of 10{sup 6}/sec. We are independently doing simulations of an alternative approach, called the Electron-Beam Charge-State Amplifier (EBQA), which would yield DC beams with improved transverse emittance and would not have the intensity limitation of the batch transfer process. The cost and efficiency of the EBQA will have to be compared with those of a normally-conducting CW RFQ followed by ion stripping, as alternatives for the first stage of a secondary ion accelerator.

  19. Intense ion beams accelerated by relativistic laser plasmas

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Cowan, Thomas E.; Gauthier, Jean-Claude J.; Allen, Matthew; Audebert, Patrick; Blazevic, Abel; Fuchs, Julien; Geissel, Matthias; Hegelich, Manuel; Karsch, S.; Meyer-ter-Vehn, Jurgen; Pukhov, Alexander; Schlegel, Theodor

    2001-12-01

    We have studied the influence of the target properties on laser-accelerated proton and ion beams generated by the LULI multi-terawatt laser. A strong dependence of the ion emission on the surface conditions, conductivity, shape and material of the thin foil targets were observed. We have performed a full characterization of the ion beam using magnetic spectrometers, Thompson parabolas, radiochromic film and nuclear activation techniques. The strong dependence of the ion beam acceleration on the conditions on the target back surface was found in agreement with theoretical predictions based on the target normal sheath acceleration (TNSA) mechanism. Proton kinetic energies up to 25 MeV have been observed.

  20. A high current, short pulse electron source for wakefield accelerators

    SciTech Connect

    Ho, Ching-Hung

    1992-12-31

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  1. A high current, short pulse electron source for wakefield accelerators

    SciTech Connect

    Ho, Ching-Hung.

    1992-01-01

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  2. High-gradient two-beam electron accelerator

    SciTech Connect

    Hirshfield, Jay L.

    2014-11-04

    The main goal for this project was to design, build, and evaluate a detuned-cavity, collinear, two-beam accelerator structure. Testing was to be at the Yale University Beam Physics Laboratory, under terms of a sub-grant from Omega-P to Yale. Facilities available at Yale for this project include a 6-MeV S-band RF gun and associated beam line for forming and transporting a ~1 A drive beam , a 300 kV beam source for use as a test beam, and a full panoply of laboratory infrastructure and test equipment. During the first year of this project, availability and functionality of the 6-MeV drive beam and 300 kV test beam were confirmed, and the beam line was restored to a layout to be used with the two-beam accelerator project. Major efforts during the first year were also focused on computational design and simulation of the accelerator structure itself, on beam dynamics, and on beam transport. Effort during the second year was focussed on building and preparing to test the structure, including extensive cold testing. Detailed results from work under this project have been published in twelve archival journal articles, listed in Section IV of the technical report.

  3. Suppression of Multipass, Multibunch Beam Breakup in Two Pass Recirculating Accelerators

    SciTech Connect

    Christopher Tennant; David Douglas; Kevin Jordan; Nikolitsa Merminga; Edvard Pozdeyev; Todd Smith

    2004-08-01

    Beam Breakup (BBU) occurs in all accelerators at sufficiently high currents. In recirculating accelerators, such as the energy recovery linacs used for high power FELs, the maximum current has historically been limited by multipass, multibunch BBU, a form that occurs when the electron beam interacts with the higher-order modes (HOMs) of an accelerating cavity on one pass and then again on the second pass. This effect is of particular concern in the designs of modern high average current energy recovery accelerators utilizing superconducting technology. In such two pass machines rotation of the betatron planes by 90a, first proposed by Smith and Rand in 1980 [1], should significantly increase the threshold current of the multibunch BBU. Using a newly developed two-dimensional tracking code, we study the effect of optical suppression techniques on the threshold current of the JLAB FEL Upgrade. We examine several optical rotator schemes and evaluate their performance in terms of the instability threshold current increase.

  4. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  5. Voltage holding study of 1 MeV accelerator for ITER neutral beam injector

    SciTech Connect

    Taniguchi, M.; Kashiwagi, M.; Umeda, N.; Dairaku, M.; Takemoto, J.; Tobari, H.; Tsuchida, K.; Yamanaka, H.; Watanabe, K.; Kojima, A.; Hanada, M.; Sakamoto, K.; Inoue, T.

    2012-02-15

    Voltage holding test on MeV accelerator indicated that sustainable voltage was a half of that of ideal quasi-Rogowski electrode. It was suggested that the emission of the clumps is enhanced by a local electric field concentration, which leads to discharge initiation at lower voltage. To reduce the electric field concentration in the MeV accelerator, gaps between the grid supports were expanded and curvature radii at the support corners were increased. After the modifications, the accelerator succeeded in sustaining -1 MV in vacuum without beam acceleration. However, the beam energy was still limited at a level of 900 keV with a beam current density of 150 A/m{sup 2} (346 mA) where the 3 x 5 apertures were used. Measurement of the beam profile revealed that deflection of the H{sup -} ions was large and a part of the H{sup -} ions was intercepted at the acceleration grid. This causes high heat load on the grids and the breakdowns during beam acceleration. To suppress the direct interception, new grid system was designed with proper aperture displacement based on a 3D beam trajectory analysis. As the result, the beam deflection was compensated and the voltage holding during the beam acceleration was improved. Beam parameter of the MeV accelerator was increased to 980 keV, 185 A/m{sup 2} (427 mA), which is close to the requirement of ITER accelerator (1 MeV, 200 A/m{sup 2}).

  6. Beam manipulation and acceleration with Dielectric-Lined Waveguides

    SciTech Connect

    Lemery, Francois

    2015-06-01

    The development of next-generation TeV+ electron accelerators will require either immense footprints based on conventional acceleraton techniques or the development of new higher{gradient acceleration methods. One possible alternative is beam-driven acceleration in a high-impedance medium such as a dielectric-lined-waveguide (DLW), where a highcharge bunch passes through a DLW and can excite gradients on the order of GV/m. An important characteristic of this acceleration class is the transformer ratio which characterizes the energy transfer of the scheme. This dissertation discusses alternative methods to improve the transformer ratio for beam-driven acceleration and also considers the use of DLWs for beam manipulation at low energy.

  7. Beam dynamics in a long-pulse linear induction accelerator

    SciTech Connect

    Ekdahl, Carl; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mc Cuistian, Brian T; Montoya, Nicholas A; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rose, Chris R; Sanchez, Manolito; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Trainham, C; Williams, John; Scarpetti, Raymond; Genoni, Thomas; Hughes, Thomas; Toma, Carsten

    2010-01-01

    The second axis of the Dual Axis Radiography of Hydrodynamic Testing (DARHT) facility produces up to four radiographs within an interval of 1.6 microseconds. It accomplishes this by slicing four micro-pulses out of a long 1.8-kA, 16.5-MeV electron beam pulse and focusing them onto a bremsstrahlung converter target. The long beam pulse is created by a dispenser cathode diode and accelerated by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for radiography. High frequency motion, such as from beam breakup instability, would blur the individual spots. Low frequency motion, such as produced by pulsed power variation, would produce spot to spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it.

  8. Electron beam current in high power cylindrical diode

    SciTech Connect

    Roy, Amitava; Menon, R.; Mitra, S.; Sharma, Vishnu; Singh, S. K.; Nagesh, K. V.; Chakravarthy, D. P.

    2010-01-15

    Intense electron beam generation studies were carried out in high power cylindrical diode to investigate the effect of the accelerating gap and diode voltage on the electron beam current. The diode voltage has been varied from 130 to 356 kV, whereas the current density has been varied from 87 to 391 A/cm{sup 2} with 100 ns pulse duration. The experimentally obtained electron beam current in the cylindrical diode has been compared with the Langmuir-Blodgett law. It was found that the diode current can be explained by a model of anode and cathode plasma expanding toward each other. However, the diode voltage and current do not follow the bipolar space-charge limited flow model. It was also found that initially only a part of the cathode take part in the emission process. The plasma expands at 4.2 cm/mus for 1.7 cm anode-cathode gap and the plasma velocity decreases for smaller gaps. The electrode plasma expansion velocity of the cylindrical diode is much smaller as compared with the planar diode for the same accelerating gap and diode voltage. Therefore, much higher voltage can be obtained for the cylindrical diodes as compared with the planar diodes for the same accelerating gap.

  9. Vacuum system of the 3MeV industrial electron beam accelerator

    NASA Astrophysics Data System (ADS)

    Jayaprakash, D.; Mishra, R. L.; Ghodke, S. R.; kumar, M.; kumar, M.; Nanu, K.; Mittal, K. C., Dr

    2008-05-01

    One DC Accelerator, for electron beam of 3 MeV energy and 10 mA beam current, to derive 30 KW beam power for Industrial applications is nearing completion at Electron Beam Centre, Kharghar, Navi Mumbai. Beam-line of the accelerator is six meters long, consists of electron gun at top, followed by the accelerating column and finally the scan horn. Electron gun and the accelerating column is exposed to SF6 gas at six atmospheres. Area exposed to the vacuum is 65,000 sq: cm, and includes a volume of 200 litres. Vacuum of the order of 1×10-7mbar is desired. To ensure a good vacuum gradient, distributive pumping is implemented. Electron beam is scanned to a size of 5cm × 120cm, to get a useful beam coverage, for industrial radiation applications. The beam is extracted through a window of Titanium foil of 50μm thickness. A safety interlock, to protect the electron gun, accelerating column and sputter ion pumps, in case of a foil rupture, is incorporated. Foil change can be done without disturbing the vacuum in the other zones. System will be integrated to a master control system to take care of the various safety aspects, and to make it operator friendly.

  10. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  11. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  12. Beam-commissioning study of high-intensity accelerators using virtual accelerator model

    NASA Astrophysics Data System (ADS)

    Harada, H.; Shigaki, K.; Irie, Y.; Noda, F.; Hotchi, H.; Saha, P. K.; Shobuda, Y.; Sako, H.; Furukawa, K.; Machida, S.

    2009-04-01

    In order to control large-scale accelerators efficiently, a control system with a virtual accelerator model was constructed. The virtual accelerator (VA) is an on-line beam simulator provided with a beam monitor scheme. The VA is based upon the Experimental Physics and Industrial Control System (EPICS) and is configured under the EPICS input/output controller (IOC) in parallel with a real accelerator (RA). Thus, the machine operator can access the parameters of the RA through the channel access client and then feed them to the VA, and vice versa. Such a control scheme facilitates developments of the commissioning tools, feasibility study of the proposed accelerator parameters and examination of the measured accelerator data. This paper describes the beam commissioning results and activities by using the VA at the J-PARC 3-GeV rapid-cycling synchrotron (RCS).

  13. Optimization of Electron Beam Transport for a 3-MeV DC Accelerator

    NASA Astrophysics Data System (ADS)

    Baruah, S.; Bhattacharjee, D.; Tiwari, R.; Sahu, G. K.; Thakur, K. B.; Mittal, K. C.; Gantayet, L. M.

    2012-11-01

    Transport of a low-current-density electron beam is simulated for an electrostatic accelerator system. Representative charged particles are uniformly assigned for emission from a circular indirectly-heated cathode of an axial electron gun. The beam is accelerated stepwise up to energy of 1 MeV electrostatically in a length-span of ~3 m using multiple accelerating electrodes in a column of ten tubes. The simulation is done under relativistic condition and the effect of the magnetic field induced by the cathode-heating filament current is taken into account. The beam diameter is tracked at different axial locations for various settings of the electrode potentials. Attempts have been made to examine and explain data on beam transport efficiency obtained from experimental observations.

  14. Beam trapping in the NRL modified betatron accelerator. Interim report

    SciTech Connect

    Kapetanakos, C.A.; Dialetis, D.; Marsh, S.J.; Len, K.L.; Smith, T.

    1991-05-15

    The experimental results on the trapping of the beam NRL modified betatron accelerator are in good agreement with a revised model of resistive trapping and thus it may be concluded that the wall resistivity is responsible for the inward spiral motion of the beam after injection.

  15. Beam Position Monitoring in the CSU Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Einstein, Joshua; Vankeuren, Max; Watras, Stephen

    2014-03-01

    A Beam Position Monitoring (BPM) system is an integral part of an accelerator beamline, and modern accelerators can take advantage of newer technologies and designs when creating a BPM system. The Colorado State University (CSU) Accelerator Facility will include four stripline detectors mounted around the beamline, a low-noise analog front-end, and digitization and interface circuitry. The design will support a sampling rate greater than 10 Hz and sub-100 μm accuracy.

  16. Efficient Optical Energy Harvesting in Self-Accelerating Beams

    PubMed Central

    Bongiovanni, Domenico; Hu, Yi; Wetzel, Benjamin; Robles, Raul A.; Mendoza González, Gregorio; Marti-Panameño, Erwin A.; Chen, Zhigang; Morandotti, Roberto

    2015-01-01

    We report the experimental observation of energetically confined self-accelerating optical beams propagating along various convex trajectories. We show that, under an appropriate transverse compression of their spatial spectra, these self-accelerating beams can exhibit a dramatic enhancement of their peak intensity and a significant decrease of their transverse expansion, yet retaining both the expected acceleration profile and the intrinsic self-healing properties. We found our experimental results to be in excellent agreement with the numerical simulations. We expect further applications in such contexts where power budget and optimal spatial confinement can be important limiting factors. PMID:26299360

  17. Interaction of the ATA beam with the TM/sub 030/ mode of the accelerating cells

    SciTech Connect

    Neil, V.K.

    1985-02-14

    The interaction of the electron beam in the Advanced Test Accelerator with an azimuthally symmetric mode of the accelerating cells is investigated theoretically. The interaction possibly could cause modulation of the beam current at the resonant frequency of the mode. Values of the shunt impedance and Q value of the mode were obtained from previous measurement and analysis. Lagranian hydrodynamics is employed and a WKB solution to the equation of motion is obtained. Results indicate that the interaction will not be a problem in the accelerator.

  18. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modernmore » ion linear accelerators and beam transport systems.« less

  19. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    SciTech Connect

    Ostroumov, Peter N.; Asseev, Vladislav N.; Mustapha, and Brahim

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modern ion linear accelerators and beam transport systems.

  20. Explore the possibility of accelerating polarized He-3 beam in RHIC

    SciTech Connect

    Bai M.; Courant, E.; Fischer, W.; Ptitsyn, V.; Roser, T.

    2012-05-20

    As the world's first high energy polarized proton collider, RHIC has made significant progresses in measuring the proton spin structure in the past decade. In order to have better understanding of the contribution of up quarks and down quarks to the proton spin structure, collisions of high energy polarized neutron beams are required. Polarized He-3 beams offer an effectiveway to provide polarized neutron beams. In this paper, we present studies of accelerating polarized He-3 in RHIC with the current dual snake configuration. Possibilities of adding two more pairs of snakes for accelerating polarized He-3 were explored. Results of six snake configuration in RHIC are also reported in the paper.

  1. High current heavy ion beam transport experiment at LBL

    SciTech Connect

    Chupp, W.; Faltens, A.; Hartwig, E.C.; Keefe, D.; Kim, C.H.; Pike, C.; Rosenblum, S.S.; Tiefenback, M.; Vanecek, D.; Warwick, A.I.

    1984-01-01

    Information on the current limit in a long quadrupole transport channel is required in designing an accelerator driver for an inertial confinement fusion system. Although a current transport limit was proposed by Maschke, quantitative estimates require a detailed knowledge of the stability of the beam. Analytic calculations based on the Kapchinskij-Vladimirskij (K-V) distribution function have identified transversely unstable modes, but particle simulations have shown that some of the K-V instabilities are benign, i.e., particles redistribute themselves in the 4-D transverse phase space, but the rms emittances do not grow. Some preliminary results of beam transport experiments were reported in the 1983 Particle Accelerator Conference in Santa Fe.

  2. Studies of beam dynamics in relativistic klystron two-beam accelerators

    SciTech Connect

    Lidia, Steven M.

    1999-11-01

    Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band ({approximately}8-12 GHz) through Ka band ({approximately} 30-35 GHz) frequency regions. Provided that further prototyping shows stable beam propagation with minimal current loss and production of good quality, high-power rf fields, this technology is compatible with current schemes for electron-positron colliders in the multi-TeV center-of-mass scale. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split-operation algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 GW of power from 40 input, gain, and output rv cavities over a 10 m distance. The simulations show that beam current losses are acceptable, and that longitudinal and transverse focusing techniques are sufficient capable of maintaining a high degree of beam quality along the entire beamline. Additional

  3. The IFMIF-EVEDA accelerator beam dump design

    NASA Astrophysics Data System (ADS)

    Iglesias, D.; Arranz, F.; Arroyo, J. M.; Barrera, G.; Brañas, B.; Casal, N.; García, M.; López, D.; Martínez, J. I.; Mayoral, A.; Ogando, F.; Parro, M.; Oliver, C.; Rapisarda, D.; Sanz, J.; Sauvan, P.; Ibarra, A.

    2011-10-01

    The IFMIF-EVEDA accelerator will be a 9 MeV, 125 mA cw deuteron accelerator prototype for verifying the validity of the 40 MeV accelerator design for IFMIF. A beam dump designed for maximum power of 1.12 MW will be used to stop the beam at the accelerator exit. The conceptual design for the IFMIF-EVEDA accelerator beam dump is based on a conical beam stop made of OFE copper. The cooling system uses an axial high velocity flow of water pressurized up to 3.4 × 10 5 Pa to avoid boiling. The design has been shown to be compliant with ASME mechanical design rules under nominal full power conditions. A sensitivity analysis has been performed to take into account the possible margin on the beam properties at the beam dump entrance. This analysis together with the study of the maintenance issues and the mounting and dismounting operations has led to the complete design definition.

  4. Summary Report of Working Group 5: Electron Beam Driven Plasma Accelerators

    SciTech Connect

    Hogan, Mark J.; Conde, Manoel E.

    2009-01-22

    Electron beam driven plasma accelerators have seen rapid progress over the last decade. Recent efforts have built on this success by constructing a concept for a plasma wakefield accelerator based linear collider. The needs for any future collider to deliver both energy and luminosity have substantial implications for interpreting current experiments and setting priorities for the future. This working group reviewed current experiments and ideas in the context of the demands of a future collider. The many discussions and presentations are summarized here.

  5. Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER

    SciTech Connect

    Umeda, N. Kojima, A.; Kashiwagi, M.; Tobari, H.; Hiratsuka, J.; Watanabe, K.; Dairaku, M.; Yamanaka, H.; Hanada, M.

    2015-04-08

    R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mm to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.

  6. High efficiency beam splitting for H/sup -/ accelerators

    SciTech Connect

    Kramer, S.L.; Stipp, V.; Krieger, C.; Madsen, J.

    1985-01-01

    Beam splitting for high energy accelerators has typically involved a significant loss of beam and radiation. This paper reports on a new method of splitting beams for H/sup -/ accelerators. This technique uses a high intensity flash of light to strip a fraction of the H/sup -/ beam to H/sup 0/ which are then easily separated by a small bending magnet. A system using a 900-watt (average electrical power) flashlamp and a highly efficient collector will provide 10/sup -3/ to 10/sup -2/ splitting of a 50 MeV H/sup -/ beam. Results on the operation and comparisons with stripping cross sections are presented. Also discussed is the possibility for developing this system to yield a higher stripping fraction.

  7. CCD based beam loss monitor for ion accelerators

    NASA Astrophysics Data System (ADS)

    Belousov, A.; Mustafin, E.; Ensinger, W.

    2014-04-01

    Beam loss monitoring is an important aspect of proper accelerator functioning. There is a variety of existing solutions, but each has its own disadvantages, e.g. unsuitable dynamic range or time resolution, high cost, or short lifetime. Therefore, new options are looked for. This paper shows a method of application of a charge-coupled device (CCD) video camera as a beam loss monitor (BLM) for ion beam accelerators. The system was tested with a 500 MeV/u N+7 ion beam interacting with an aluminum target. The algorithms of camera signal processing with LabView based code and beam loss measurement are explained. Limits of applicability of this monitor system are discussed.

  8. Controlled Electron Acceleration in a Plane Laser Beam

    NASA Astrophysics Data System (ADS)

    Tataronis, J. A.; Petržílka, V.; Krlín, L.

    2002-11-01

    Through numerical modeling of the relativistic test particle motion of an ensemble of electrons in a plane laser beam, we show in the present contribution that a significant electron acceleration arises if an additional perpendicularly propagagating transverse laser beam with a randomized phase is present. We also demonstrate that the acceleration rate can be controlled by the power flux intensity of the additional laser beam. The power flux intensity of the additional beam can be typically much lower than the power flux intensity of the main laser beam. In the main laser beam, the electrons perform also a forward oscillating motion because of the effects of the magnetic field intensity of the beam. The acceleration results from the accumulation of the forward electron motion due to phase changes provided by the additional laser beam. For parameters of the PALS^1 device (Prague Asterix Laser System), the attainable electron energy is about 40 MeV in 10^4 wave periods. [2pt] Acknowledgments: This work has been supported by Czech grant GACR 202/00/1217 and USDOE Grant DE-FG02-97ER54398. [2pt] ^1K.Jungwirth et al., Phys. Plasmas 8 (2001) 2495.

  9. Laser Driven Ion accelerators - current status and perspective

    SciTech Connect

    Zepf, M.; Robinson, A. P. L.

    2009-01-22

    The interaction of ultra-intense lasers with thin foil targets has recently emerged as a route to achieving extreme acceleration gradients and hence ultra-compact proton and ion accelerators. There are a number of distinct physical processes by which the protons/ions can be accelerated to energies in excess of 10 MeV. The recent development is discussed and a new mechanism--Radiation Pressure Acceleration is highlighted as a route to achieving efficient production of relativistic ions beams.

  10. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOEpatents

    Danby, G.T.; Jackson, J.W.

    1990-03-19

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations (dB/dt) in the particle beam.

  11. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOEpatents

    Danby, Gordon T.; Jackson, John W.

    1991-01-01

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations in the particle beam.

  12. K130 beam current measurement system

    NASA Astrophysics Data System (ADS)

    Gustafsson, J.; Kotilainen, P.; Hänninen, V.; Liukkonen, E.; Kaski, K.

    1994-03-01

    A measurement system for very low currents, developed to be used in the K130 cyclotron at University of Jyväskylä, is described. The beam intensity measurement is implemented with a current preamplifier and signal multiplexor. The measurement is controlled and visualised with a commercial data acquisition card integrated in a PC.

  13. Long-pulse beam acceleration of MeV-class H(-) ion beams for ITER NB accelerator.

    PubMed

    Umeda, N; Kashiwagi, M; Taniguchi, M; Tobari, H; Watanabe, K; Dairaku, M; Yamanaka, H; Inoue, T; Kojima, A; Hanada, M

    2014-02-01

    In order to realize neutral beam systems in International Thermonuclear Experimental Reactor whose target is to produce a 1 MeV, 200 A/m(2) during 3600 s D(-) ion beam, the electrostatic five-stages negative ion accelerator so-called "MeV accelerator" has been developed at Japan Atomic Energy Agency. To extend pulse length, heat load of the acceleration grids was reduced by controlling the ion beam trajectory. Namely, the beam deflection due to the residual magnetic field of filter magnet was suppressed with the newly developed extractor with a 0.5 mm off-set aperture displacement. The new extractor improved the deflection angle from 6 mrad to 1 mrad, resulting in the reduction of direct interception of negative ions from 23% to 15% of the total acceleration power, respectively. As a result, the pulse length of 130 A/m(2), 881 keV H(-) ion beam has been successfully extended from a previous value of 0.4 s to 8.7 s. This is the first long pulse negative ion beam acceleration over 100 MW/m(2).

  14. ALPI Setup as the SPES Accelerator of Exotic Beams

    NASA Astrophysics Data System (ADS)

    Bisoffi, G.; Bassato, G.; Battistella, A.; Bermudez, J.; Bortolato, D.; Canella, S.; Chalykh, B.; Comunian, M.; Facco, A.; Fagotti, E.; Galatà, A.; Giacchini, M.; Gramegna, F.; Lamy, T.; Modanese, P.; Palmieri, A.; Pengo, R.; Pisent, A.; Poggi, M.; Porcellato, A.; Roncolato, C.; Scarpa, D.

    2014-03-01

    The SPES (Selective Production of Exotic Species) project for a national exotic beam facility in Legnaro includes pivotal upgrades of the existing superconducting linac ALPI (Acceleratore Lineare Per Ioni), to make it appropriate as the RIB (Radioactive Ion Beam) accelerator. The new injector, consisting of an Electron Cyclotron Resonance (ECR)-type charge breeder and a radiofrequency quadrupole (RFQ), will be described. Upgrade measures in ALPI to improve beam transmission and final energy, and handle low-intensity RIB will be explained, with the aim of increasing transmission to T > 90%, Ef by ~ 20%, reaching 10 MeV/u for the reference beam 132Sn.

  15. Transverse Resistive Wall Instability in the Two-Beam Accelerator

    SciTech Connect

    Whittum, D.H.; Sessler, Andrew M.; Neil, V.K.

    1990-06-01

    The transverse resistive wall instability in the Two-Beam Accelerator (TBA) is investigated analytically and numerically. Without any damping mechanism, we find one to four e-folds in 100 m, depending on the design. It is found that Landau damping, due to energy spread within a beam slice, is not effective, due to rapid synchrotron oscillations in the FEL ponderomotive well. Damping due to an energy sweep along the beam is also considered and it is found that a small variation in energy along the beam, decreasing from head to tail, can significantly reduce growth. We conclude that the resistive wall instability is not a severe design constraint on a TBA.

  16. Electron Accelerators for Radioactive Ion Beams

    SciTech Connect

    Lia Merminga

    2007-10-10

    The summary of this paper is that to optimize the design of an electron drive, one must: (a) specify carefully the user requirements--beam energy, beam power, duty factor, and longitudinal and transverse emittance; (b) evaluate different machine options including capital cost, 10-year operating cost and delivery time. The author is convinced elegant solutions are available with existing technology. There are several design options and technology choices. Decisions will depend on system optimization, in-house infrastructure and expertise (e.g. cryogenics, SRF, lasers), synergy with other programs.

  17. Beam-driven acceleration in ultra-dense plasma media

    DOE PAGES

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r)more » from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.« less

  18. Beam-driven acceleration in ultra-dense plasma media

    SciTech Connect

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r) from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.

  19. Beam-driven acceleration in ultra-dense plasma media

    SciTech Connect

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10{sup 25 }m{sup −3} and 1.6 × 10{sup 28 }m{sup −3} plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers ∼20% higher acceleration gradient by enlarging the channel radius (r) from 0.2 λ{sub p} to 0.6 λ{sub p} in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g., nanotubes) of high electron plasma density.

  20. Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator.

    PubMed

    Cowan, T E; Fuchs, J; Ruhl, H; Kemp, A; Audebert, P; Roth, M; Stephens, R; Barton, I; Blazevic, A; Brambrink, E; Cobble, J; Fernández, J; Gauthier, J-C; Geissel, M; Hegelich, M; Kaae, J; Karsch, S; Le Sage, G P; Letzring, S; Manclossi, M; Meyroneinc, S; Newkirk, A; Pépin, H; Renard-LeGalloudec, N

    2004-05-21

    The laminarity of high-current multi-MeV proton beams produced by irradiating thin metallic foils with ultraintense lasers has been measured. For proton energies >10 MeV, the transverse and longitudinal emittance are, respectively, <0.004 mm mrad and <10(-4) eV s, i.e., at least 100-fold and may be as much as 10(4)-fold better than conventional accelerator beams. The fast acceleration being electrostatic from an initially cold surface, only collisions with the accelerating fast electrons appear to limit the beam laminarity. The ion beam source size is measured to be <15 microm (FWHM) for proton energies >10 MeV.

  1. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  2. Power threshold for neutral beam current drive

    SciTech Connect

    Politzer, P.A. ); Porter, G.D. )

    1989-10-02

    For fully noninductive current drive in tokamaks using neutral beams, there is a power and density threshold condition, setting a minimum value for P{sup 3/2}/n{sup 2}. If this condition is not met, stationary state cannot occur, and a tokamak discharge will collapse. This is a consequence of the coupling between current and electron temperature, or between current drive efficiency and energy confinement time. 4 figs.

  3. Accelerator research on MBE-4, an experimental multi-beam induction linac

    SciTech Connect

    Meuth, H.; Fessenden, T.J.; Keefe, D.; Warwick, A.I.

    1988-06-01

    The multiple beam accelerator MBE-4 is a device for research toward a heavy ion driver for inertial confinement fusion, based on the induction linac concept. Its main goal is proof of the principle of current amplification by acceleration and controlled self-similar beam pulse compression. Into the 16-m long device four beams, each with an initial current of 10 mA are injected from a Marx-driven diode at 200 keV. The current amplification is up to nine-fold, with a final beam energy of about 800 keV in the middle of the bunch. Now that all the apparatus' accelerator sections have been completed, installed and aligned, and its unaccelerated transport properties have been studied, our experimental research has reached the crucial phase of implementing appropriate accelerator schedules that approximate self-similar current-pulse compression. These schedules are established through a close interplay of computations using a one-dimensional simulation code and a manual empirical tuning procedure. In a first approach, with a rather vigorous schedule that uses most of the accelerator modules to their voltage limits, we have determined the limits of our capability for controlled pulse compression, mainly due to waveform shaping of the driving pulse-forming networks. We shall report on these results. In the future, we will also aim for gentler schedules that would model more closely an inertial confinement fusion scenario. 8 refs., 11 figs., 1 tab.

  4. Two-beam, Multi-mode Detuned Accelerating Structure

    SciTech Connect

    Kazakov, S. Yu.; Kuzikov, S. V.; Yakovlev, V. P.; Hirshfield, J. L.

    2009-01-22

    A two-beam accelerator structure is described having several novel features including all metal construction, no transfer structures required between the drive and accelerator channels, symmetric fields at the axes of each channel, RF micropulse widths on cavity irises that are less than half those for a conventional cavity at the same fundamental frequency by virtue of using several harmonically-related cavity modes, and a transformer ratio much greater than unity by the use of detuned cavities. Detuning is also shown to allow either parallel or anti-parallel directions for the drive and accelerated beams. A preliminary calculation for the dilution of emittance due to short-range wakes for drive beam parameters similar to those for CLIC shows this effect to be acceptably small.

  5. Beam breakup in an advanced linear induction accelerator

    DOE PAGES

    Ekdahl, Carl August; Coleman, Joshua Eugene; McCuistian, Brian Trent

    2016-07-01

    Two linear induction accelerators (LIAs) have been in operation for a number of years at the Los Alamos Dual Axis Radiographic Hydrodynamic Test (DARHT) facility. A new multipulse LIA is being developed. We have computationally investigated the beam breakup (BBU) instability in this advanced LIA. In particular, we have explored the consequences of the choice of beam injector energy and the grouping of LIA cells. We find that within the limited range of options presently under consideration for the LIA architecture, there is little adverse effect on the BBU growth. The computational tool that we used for this investigation wasmore » the beam dynamics code linear accelerator model for DARHT (LAMDA). In conclusion, to confirm that LAMDA was appropriate for this task, we first validated it through comparisons with the experimental BBU data acquired on the DARHT accelerators.« less

  6. H-mode accelerating structures with permanent-magnet quadrupole beam focusing

    NASA Astrophysics Data System (ADS)

    Kurennoy, S. S.; Rybarcyk, L. J.; O'Hara, J. F.; Olivas, E. R.; Wangler, T. P.

    2012-09-01

    We have developed high-efficiency normal-conducting rf accelerating structures by combining H-mode resonator cavities and a transverse beam focusing by permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. The shunt impedance of interdigital H-mode (IH-PMQ) structures is 10-20 times higher than that of a conventional drift-tube linac, while the transverse size is 4-5 times smaller. Results of the combined 3D modeling—electromagnetic computations, multiparticle beam-dynamics simulations with high currents, and thermal-stress analysis—for an IH-PMQ accelerator tank are presented. The accelerating-field profile in the tank is tuned to provide the best propagation of a 50-mA deuteron beam using coupled iterations of electromagnetic and beam-dynamics modeling. Measurements of a cold model of the IH-PMQ tank show a good agreement with the calculations. Examples of cross-bar H-mode structures with PMQ focusing for higher beam velocities are also presented. H-PMQ accelerating structures following a short radio-frequency quadrupole accelerator can be used both in the front end of ion linacs or in stand-alone applications.

  7. Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator.

    PubMed

    Laschinsky, Lydia; Baumann, Michael; Beyreuther, Elke; Enghardt, Wolfgang; Kaluza, Malte; Karsch, Leonhard; Lessmann, Elisabeth; Naumburger, Doreen; Nicolai, Maria; Richter, Christian; Sauerbrey, Roland; Schlenvoigt, Hans-Peter; Pawelke, Jörg

    2012-01-01

    The notable progress in laser particle acceleration technology promises potential medical application in cancer therapy through compact and cost effective laser devices that are suitable for already existing clinics. Previously, consequences on the radiobiological response by laser driven particle beams characterised by an ultra high peak dose rate have to be investigated. Therefore, tumour and non-malignant cells were irradiated with pulsed laser accelerated electrons at the JETI facility for the comparison with continuous electrons of a conventional therapy LINAC. Dose response curves were measured for the biological endpoints clonogenic survival and residual DNA double strand breaks. The overall results show no significant differences in radiobiological response for in vitro cell experiments between laser accelerated pulsed and clinical used electron beams. These first systematic in vitro cell response studies with precise dosimetry to laser driven electron beams represent a first step toward the long term aim of the application of laser accelerated particles in radiotherapy.

  8. Accelerators for E-beam and X-ray processing

    NASA Astrophysics Data System (ADS)

    Auslender, V. L.; Bryazgin, A. A.; Faktorovich, B. L.; Gorbunov, V. A.; Kokin, E. N.; Korobeinikov, M. V.; Krainov, G. S.; Lukin, A. N.; Maximov, S. A.; Nekhaev, V. E.; Panfilov, A. D.; Radchenko, V. N.; Tkachenko, V. O.; Tuvik, A. A.; Voronin, L. A.

    2002-03-01

    During last years the demand for pasteurization and desinsection of various food products (meat, chicken, sea products, vegetables, fruits, etc.) had increased. The treatment of these products in industrial scale requires the usage of powerful electron accelerators with energy 5-10 MeV and beam power at least 50 kW or more. The report describes the ILU accelerators with energy range up to 10 MeV and beam power up to 150 kW.The different irradiation schemes in electron beam and X-ray modes for various products are described. The design of the X-ray converter and 90° beam bending system are also given.

  9. An expert system for tuning particle-beam accelerators

    SciTech Connect

    Lager, D.L.; Brand, H.R.; Maurer, W.J.; Searfus, R.M.; Hernandez, J.E.

    1989-01-12

    We have developed a proof-of-concept prototype of an expert system for tuning particle beam accelerators. It is designed to function as an intelligent assistant for an operator. In its present form it implements the strategies and reasoning followed by the operator for steering through the beam transport section of the Advanced Test Accelerator at Lawrence Livermore Laboratory's Site 300. The system is implemented in the language LISP using the Artificial Intelligence concepts of frames, daemons, and a representation we developed called a Monitored Decision Script. 4 refs., 5 figs.

  10. An Expert System For Tuning Particle-Beam Accelerators

    NASA Astrophysics Data System (ADS)

    Lager, Darrel L.; Brand, Hal R.; Maurer, William J.; Searfus, Robert M.; Hernandez, Jose E.

    1989-03-01

    We have developed a proof-of-concept prototype of an expert system for tuning particle beam accelerators. It is designed to function as an intelligent assistant for an operator. In its present form it implements the strategies and reasoning followed by the operator for steering through the beam transport section of the Advanced Test Accelerator at Lawrence Livermore Laboratory's Site 300. The system is implemented in the language LISP using the Artificial Intelligence concepts of frames, daemons, and a representation we developed called a Monitored Decision Script.

  11. Gamma-ray generation using laser-accelerated electron beam

    NASA Astrophysics Data System (ADS)

    Park, Seong Hee; Lee, Ho-Hyung; Lee, Kitae; Cha, Yong-Ho; Lee, Ji-Young; Kim, Kyung-Nam; Jeong, Young Uk

    2011-06-01

    A compact gamma-ray source using laser-accelerated electron beam is being under development at KAERI for nuclear applications, such as, radiography, nuclear activation, photonuclear reaction, and so on. One of two different schemes, Bremsstrahlung radiation and Compton backscattering, may be selected depending on the required specification of photons and/or the energy of electron beams. Compton backscattered gamma-ray source is tunable and quasimonochromatic and requires electron beams with its energy of higher than 100 MeV to produced MeV photons. Bremsstrahlung radiation can generate high energy photons with 20 - 30 MeV electron beams, but its spectrum is continuous. As we know, laser accelerators are good for compact size due to localized shielding at the expense of low average flux, while linear RF accelerators are good for high average flux. We present the design issues for a compact gamma-ray source at KAERI, via either Bremsstrahlung radiation or Compton backscattering, using laser accelerated electron beams for the potential nuclear applications.

  12. A microsecond-pulsewidth, intense, light-ion beam accelerator

    SciTech Connect

    Rej, D.J.; Bartsch, R.R.; Davis, H.A.; Greenly, J.B.; Waganaar, W.J.

    1993-07-01

    A relatively long-pulsewidth (0.1-1 {mu}s) intense ion beam accelerator has been built for materials processing applications. An applied-B{sub r}, magnetically-insulated extraction ion diode with dielectric flashover ion source is installed directly onto the output of a 1.2-MV, 300-kJ Marx generator. Initial operation of the accelerator at 0.4 MV indicates satisfactory performance without the need for additional pulse-shaping.

  13. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    SciTech Connect

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  14. Physics of beam self-modulation in plasma wakefield accelerators

    SciTech Connect

    Lotov, K. V.

    2015-10-15

    The self-modulation instability is a key effect that makes possible the usage of nowadays proton beams as drivers for plasma wakefield acceleration. Development of the instability in uniform plasmas and in plasmas with a small density up-step is numerically studied with the focus at nonlinear stages of beam evolution. The step parameters providing the strongest established wakefield are found, and the mechanism of stable bunch train formation is identified.

  15. Intense ion beams accelerated by ultra-intense laser pulses

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Cowan, T. E.; Gauthier, J. C.; Vehn, J. Meyer-Ter; Allen, M.; Audebert, P.; Blazevic, A.; Fuchs, J.; Geissel, M.; Hegelich, M.; Karsch, S.; Pukhov, A.; Schlegel, T.

    2002-04-01

    The discovery of intense ion beams off solid targets irradiated by ultra-intense laser pulses has become the subject of extensive international interest. These highly collimated, energetic beams of protons and heavy ions are strongly depending on the laser parameters as well as on the properties of the irradiated targets. Therefore we have studied the influence of the target conditions on laser-accelerated ion beams generated by multi-terawatt lasers. The experiments were performed using the 100 TW laser facility at Laboratoire pour l'Utilisation des Laser Intense (LULI). The targets were irradiated by pulses up to 5×1019 W/cm2 (~300 fs,λ=1.05 μm) at normal incidence. A strong dependence on the surface conditions, conductivity, shape and purity was observed. The plasma density on the front and rear surface was determined by laser interferometry. We characterized the ion beam by means of magnetic spectrometers, radiochromic film, nuclear activation and Thompson parabolas. The strong dependence of the ion beam acceleration on the conditions on the target back surface was confirmed in agreement with predictions based on the target normal sheath acceleration (TNSA) mechanism. Finally shaping of the ion beam has been demonstrated by the appropriate tailoring of the target. .

  16. Charged particle beam current monitoring tutorial

    SciTech Connect

    Webber, R.C.

    1994-10-01

    A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed.

  17. Investigation of accelerated neutral atom beams created from gas cluster ion beams

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, A.; Kirkpatrick, S.; Walsh, M.; Chau, S.; Mack, M.; Harrison, S.; Svrluga, R.; Khoury, J.

    2013-07-01

    A new concept for ultra-shallow processing of surfaces known as accelerated neutral atom beam (ANAB) technique employs conversion of energetic gas cluster ions produced by the gas cluster ion beam (GCIB) method into intense collimated beams of coincident neutral gas atoms having controllable average energies from less than 10 eV per atom to beyond 100 eV per atom. A beam of accelerated gas cluster ions is first produced as is usual in GCIB, but conditions within the source ionizer and extraction regions are adjusted such that immediately after ionization and acceleration the clusters undergo collisions with non-ionized gas atoms. Energy transfer during these collisions causes the energetic cluster ions to release many of their constituent atoms. An electrostatic deflector is then used to eliminate charged species, leaving the released neutral atoms to still travel collectively at the same velocities they had as bonded components of their parent clusters. Upon target impact, the accelerated neutral atom beams produce effects similar to those normally associated with GCIB, but to shallower depths, with less surface damage and with superior subsurface interfaces. The paper discusses generation and characterization of the accelerated neutral atom beams, describes interactions of the beams with target surfaces, and presents examples of ongoing work on applications for biomedical devices.

  18. Auto-focusing accelerating hyper-geometric laser beams

    NASA Astrophysics Data System (ADS)

    Kovalev, A. A.; Kotlyar, V. V.; Porfirev, A. P.

    2016-02-01

    We derive a new solution to the paraxial wave equation that defines a two-parameter family of three-dimensional structurally stable vortex annular auto-focusing hyper-geometric (AH) beams, with their complex amplitude expressed via a degenerate hyper-geometric function. The AH beams are found to carry an orbital angular momentum and be auto-focusing, propagating on an accelerating path toward a focus, where the annular intensity pattern is ‘sharply’ reduced in diameter. An explicit expression for the complex amplitude of vortex annular auto-focusing hyper-geometric-Gaussian beams is derived. The experiment has been shown to be in good agreement with theory.

  19. Long ceramic beam tubes for accelerator magnets

    SciTech Connect

    Tilles, E.B.; Adderley, P.A.; Biallas, G.H.; Harrison, M.A.; May, M.P.

    1983-08-01

    The ceramic beam tubes for the fast and abort kickers and the bucker and pinger magnets used at Fermilab must meet a number of exacting requirements. The tubes must be long and sufficiently straight so as not to limit magnet design. They must have wall strength capable of withstanding the atmospheric and mechanical forces encountered during construction and operation. Vacuum tight ceramic to stainless steel transitions must be of reasonable cost; they must also withstand high temperature processing and remain vacuum tight to the 10/sup -9/ Torr range. To remove the possibility of static charge buildup each tube must have a surface coating of indium oxide applied to the inner wall. This thin coating is difficult to achieve and requires the most careful attention to detail. The methods used at Fermilab to achieve these goals are presented in this paper.

  20. Beam Head Erosion in Self-Ionized Plasma Wakefield Accelerators

    SciTech Connect

    Berry, M.K.; Blumenfeld, I.; Decker, F.J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.A.; Siemann, Robert H.; Walz, D.R.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2008-01-28

    In the recent plasma wakefield accelerator experiments at SLAC, the energy of the particles in the tail of the 42 GeV electron beam were doubled in less than one meter [1]. Simulations suggest that the acceleration length was limited by a new phenomenon--beam head erosion in self-ionized plasmas. In vacuum, a particle beam expands transversely in a distance given by {beta}*. In the blowout regime of a plasma wakefield [2], the majority of the beam is focused by the ion channel, while the beam head slowly spreads since it takes a finite time for the ion channel to form. It is observed that in self-ionized plasmas, the head spreading is exacerbated compared to that in pre-ionized plasmas, causing the ionization front to move backward (erode). A simple theoretical model is used to estimate the upper limit of the erosion rate for a bi-gaussian beam by assuming free expansion of the beam head before the ionization front. Comparison with simulations suggests that half this maximum value can serve as an estimate for the erosion rate. Critical parameters to the erosion rate are discussed.

  1. Enabling cost-effective high-current burst-mode operation in superconducting accelerators

    SciTech Connect

    Sheffield, Richard L.

    2015-06-01

    Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current, 90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.

  2. Enabling cost-effective high-current burst-mode operation in superconducting accelerators

    DOE PAGES

    Sheffield, Richard L.

    2015-06-01

    Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current,more » 90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.« less

  3. Thermal imaging diagnostics of high-current electron beams.

    PubMed

    Pushkarev, A; Kholodnaya, G; Sazonov, R; Ponomarev, D

    2012-10-01

    The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm(2), the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm(2) (or with current density over 10 A/cm(2), pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time. PMID:23126757

  4. Thermal imaging diagnostics of high-current electron beams

    SciTech Connect

    Pushkarev, A.; Kholodnaya, G.; Sazonov, R.; Ponomarev, D.

    2012-10-15

    The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm{sup 2}, the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm{sup 2} (or with current density over 10 A/cm{sup 2}, pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time.

  5. Thermal imaging diagnostics of high-current electron beams.

    PubMed

    Pushkarev, A; Kholodnaya, G; Sazonov, R; Ponomarev, D

    2012-10-01

    The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm(2), the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm(2) (or with current density over 10 A/cm(2), pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time.

  6. Error-Induced Beam Degradation in Fermilab's Accelerators

    SciTech Connect

    Yoon, Sung-Young Phil

    2008-01-01

    In Part I, three independent models of Fermilab's Booster synchrotron are presented. All three models are constructed to investigate and explore the effects of unavoidable machine errors on a proton beam under the influence of space-charge effects. The first is a stochastic noise model. Electric current fluctuations arising from power supplies are ubiquitous and unavoidable and are a source of instabilities in accelerators of all types. A new noise module for generating the Ornstein-Uhlenbeck (O-U) stochastic noise is first created and incorporated into the existing Object-oriented Ring Beam Injection and Tracking (ORBIT-FNAL) package. After being convinced with a preliminary model that the noise, particularly non-white noise, does matter to beam quality, we proceeded to measure directly current ripples and common-mode voltages from all four Gradient Magnet Power Supplies (GMPS). Then, the current signals are Fourier-analyzed. Based upon the power spectra of current signals, we tune up the Ornstein-Uhlnbeck noise model. As a result, we are able to closely match the frequency spectra between current measurements and the modeled O-U stochastic noise. The stochastic noise modeled upon measurements is applied to the Booster beam in the presence of the full space-charge effects. This noise model, accompanied by a suite of beam diagnostic calculations, manifests that the stochastic noise, impinging upon the beam and coupled to the space-charge effects, can substantially enhance the beam degradation process throughout the injection period. The second model is a magnet misalignment model. It is the first time to utilize the latest beamline survey data for building a magnet-by-magnet misalignment model. Given as-found survey fiducial coordinates, we calculate all types of magnet alignment errors (station error, pitch, yaw, roll, twists, etc.) are implemented in the model. We then follow up with statistical analysis to understand how each type of alignment errors are

  7. SNS Ring and RTBT Beam Current Monitor

    NASA Astrophysics Data System (ADS)

    Blokland, W.; Armstrong, G.; Deibele, C.; Pogge, J.; Gaidash, V.

    2006-11-01

    The SNS Diagnostics Group has implemented Beam Current Monitors (BCM) for the Ring and RTBT (Ring to Target Beam Transferline). In the Ring, the BCM must handle a thousand-fold increase of intensity during the accumulation, and in the RTBT, the BCM must communicate the integrated charge of the beam pulse in real-time for every shot to the target division for correlation with the produced neutrons. This paper describes the development of a four channel solution for the Ring BCM and the use of FPGA for the RTBT BCM to deliver the total charge to the target over a fiber optic network. Both system versions are based on the same commercial digitizer board.

  8. Observation of laser multiple filamentation process and multiple electron beams acceleration in a laser wakefield accelerator

    SciTech Connect

    Li, Wentao; Liu, Jiansheng; Wang, Wentao; Chen, Qiang; Zhang, Hui; Tian, Ye; Zhang, Zhijun; Qi, Rong; Wang, Cheng; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2013-11-15

    The multiple filaments formation process in the laser wakefield accelerator (LWFA) was observed by imaging the transmitted laser beam after propagating in the plasma of different density. During propagation, the laser first self-focused into a single filament. After that, it began to defocus with energy spreading in the transverse direction. Two filaments then formed from it and began to propagate independently, moving away from each other. We have also demonstrated that the laser multiple filamentation would lead to the multiple electron beams acceleration in the LWFA via ionization-induced injection scheme. Besides, its influences on the accelerated electron beams were also analyzed both in the single-stage LWFA and cascaded LWFA.

  9. Acceleration of electrons in strong beam-plasma interactions

    NASA Astrophysics Data System (ADS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1984-12-01

    The effects of strong beam-plasma interactions on the electron population of the upper atmosphere have been investigated in an electron acceleration experiment performed with a sounding rocket. The rocket carried the Several Complex Experiments (SCEX) payload which included an electron accelerator, three disposable 'throwaway' detectors (TADs), and a stepped electron energy analyzer. The payload was launched in an auroral arc over the rocket at altitudes of 157 and 178 km, respectively. The performance characteristics of the instruments are discussed in detail. The data are combined with the results of laboratory measurements and show that electrons with energies of at least two and probably four times the injection energy of 2 keV were observed during strong beam-plasma interaction events. The interaction events occurred at pitch angles of 54 and 126 degrees. On the basis of the data it is proposed that the superenergization of the electrons is correlated with the length of the beam-plasma interaction region.

  10. Acceleration of electrons in strong beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1984-01-01

    The effects of strong beam-plasma interactions on the electron population of the upper atmosphere have been investigated in an electron acceleration experiment performed with a sounding rocket. The rocket carried the Several Complex Experiments (SCEX) payload which included an electron accelerator, three disposable 'throwaway' detectors (TADs), and a stepped electron energy analyzer. The payload was launched in an auroral arc over the rocket at altitudes of 157 and 178 km, respectively. The performance characteristics of the instruments are discussed in detail. The data are combined with the results of laboratory measurements and show that electrons with energies of at least two and probably four times the injection energy of 2 keV were observed during strong beam-plasma interaction events. The interaction events occurred at pitch angles of 54 and 126 degrees. On the basis of the data it is proposed that the superenergization of the electrons is correlated with the length of the beam-plasma interaction region.

  11. Note: A real-time beam current density meter

    SciTech Connect

    Liu Junliang; Yu Deyang; Ruan Fangfang; Xue Yingli; Wang Wei

    2013-03-15

    We have developed a real-time beam current density meter for charged particle beams. It measures the mean current density by collimating a uniform and large diameter primary beam. The suppression of the secondary electrons and the deflection of the beam were simulated, and it was tested with a 105 keV Ar{sup 7+} ion beam.

  12. A 200 MHz 35 MW Multiple Beam Klystron for Accelerator Applications Final Report

    SciTech Connect

    R. Lawrence Ives; Michael Read; Patrick Ferguson; David Marsden

    2011-11-28

    Calabazas Creek Research, Inc. (CCR) performed initial development of a compact and reliable 35 MW, multiple beam klystron (MBK) at 200 MHz with a pulse length of 0.125 ms and a 30 Hz repetition rate. The device was targeted for acceleration and ionization cooling of a muon collider, but there are several other potential applications in this frequency range. The klystron uses multiple beams propagating in individual beam tunnels to reduce space charge and allow reduction in the accelerating voltage. This allows a significant reduction in length over a single beam source. More importantly this allows more efficient and less expensive power supplies. At 200 MHz, the interaction circuit for a single beam klystron would be more than six meters long to obtain 50% efficiency and 50 dB gain. This would require a beam voltage of approximately 400 kV and current of 251 A for a microperveance of 1.0. For an eight beam MBK with the same beam perveance, a three meter long interaction circuit achieves the same power and gain. Each beam operates at 142 kV and 70A. The Phase I demonstrated that this device could be fabricated with funding available in a Phase II program and could achieve the program specifications.

  13. Possibilities for Beam Stripping Solutions at a Rare Isotope Accelerator (RIA)

    SciTech Connect

    Greife, Uwe

    2006-08-29

    As part of the DOE RIA R&D effort we investigated the possibilities and problems of beam strippers in the different heavy ion accelerator components of a possible Rare Isotope Accelerator (RIA) facility. We focused on two beam stripping positions in the RIA heavy ion driver where benchmark currents of up to 5 particle μA 238-U were projected at energies of 10.5 MeV/u and 85 MeV/u respectively. In order to select feasible stripper materials, data from experiments with Uranium beams at Texas A&M and GSI were evaluated. Based on these results thermal estimates for a possible design were calculated and cooling simulations with commercially available software performed. Additionally, we performed simulations with the GEANT4 code on evaluating the radiation environment for our beam stripping solution at the 85 MeV/u position in the RIA driver.

  14. Beam Dump Design for the Rare Isotope Accelerator Fragmentation Line

    SciTech Connect

    Stein, W; Ahle, L E; Reyes, S

    2006-05-02

    Beam dumps for the heavy ion beams of the fragmentation line of the Rare Isotope Accelerator have been designed. The most severe operational case involves a continuous U beam impacting the beam dump with a power of 295 kW and a nominal spot diameter size of 5 cm. The dump mechanically consists of two rotating barrels with a water cooled outer wall of 2 mm thick aluminum. The barrels are 70 cm in diameter and axially long enough to intercept a variety of other beams. The aluminum wall absorbs approximately 15% of the U beam power with the rest absorbed in the water downstream of the wall. The water acts as an absorber of the beam and as a coolant for the 2 mm aluminum wall. The barrel rotates at less than 400 RPM, maximum aluminum temperatures are less than 100 C and maximum thermal fatigue stresses are low at 3.5 x 10{sup 7} Pa (5 ksi). Rotation of the dump results in relatively low radiation damage levels with an operating lifetime of years for most beams.

  15. Investigation of beam transmission in A 9SDH-2 3.0 MV NEC pelletron tandem accelerator

    SciTech Connect

    Deoli, Naresh T.; Kummari, Venkata C.; Pacheco, Jose L.; Duggan, Jerome L.; Glass, Gary A.; McDaniel, Floyd D.; Reinert, Tilo; Rout, Bibhudutta; Weathers, Duncan L.

    2013-04-19

    Electrostatic tandem accelerators are widely used to accelerate ions for experiments in materials science such as high energy ion implantation, materials modification, and analyses. Many applications require high beam current as well as high beam brightness at the target; thus, maximizing the beam transmission through such electrostatic accelerators becomes important. The Ion Beam Modification and Analysis Laboratory (IBMAL) at University of North Texas is equipped with four accelerators, one of which is a 9SDH-2 3.0 MV National Electrostatic Corporation (NEC) Pelletron Registered-Sign tandem accelerator. The tandem accelerator is equipped with three ion sources: one radio frequency-He ion source (Alphatross) and two ion sources of Cs-sputter type, the SNICS II (Source of Negative Ions by Cesium Sputtering) and a Cs-sputter source for trace-element accelerator based mass spectrometry. This work presents a detailed study of the beam transmission of hydrogen, silicon, and silver ions through the accelerator using the SNICS ion source with injection energies ranging from 20 keV to 70 keV. The beam transmission is quantified for three different terminal voltages: 1.5 MV, 2.0 MV and 2.5 MV. For a given terminal voltage, it has been found that beam transmission is strongly dependent on the ion source injector potential. Details of experiments and data analysis are presented.

  16. Collimated electron beam accelerated at 12 kV from a Penning discharge

    SciTech Connect

    Toader, D.; Oane, M.; Ticoş, C. M.

    2015-01-15

    A pulsed electron beam accelerated at 12 kV with a duration of 40 μs per pulse is obtained from a Penning discharge with a hollow anode and two cathodes. The electrons are extracted through a hole in one of the cathodes and focused by a pair of coils. The electron beam has a diameter of a few mm in the cross section, while the beam current reaches peak values of 400 mA, depending on the magnetic field inside the focussing coils. This relatively inexpensive and compact device is suitable for the irradiation of small material samples placed in high vacuum.

  17. Collimated electron beam accelerated at 12 kV from a Penning discharge.

    PubMed

    Toader, D; Oane, M; Ticoş, C M

    2015-01-01

    A pulsed electron beam accelerated at 12 kV with a duration of 40 μs per pulse is obtained from a Penning discharge with a hollow anode and two cathodes. The electrons are extracted through a hole in one of the cathodes and focused by a pair of coils. The electron beam has a diameter of a few mm in the cross section, while the beam current reaches peak values of 400 mA, depending on the magnetic field inside the focussing coils. This relatively inexpensive and compact device is suitable for the irradiation of small material samples placed in high vacuum.

  18. A large distributed digital camera system for accelerator beam diagnostics

    NASA Astrophysics Data System (ADS)

    Catani, L.; Cianchi, A.; Di Pirro, G.; Honkavaara, K.

    2005-07-01

    Optical diagnostics, providing images of accelerated particle beams using radiation emitted by particles impinging a radiator, typically a fluorescent screen, has been extensively used, especially on electron linacs, since the 1970's. Higher intensity beams available in the last decade allow extending the use of beam imaging techniques to perform precise measurements of important beam parameters such as emittance, energy, and energy spread using optical transition radiation (OTR). OTR-based diagnostics systems are extensively used on the superconducting TESLA Test Facility (TTF) linac driving the vacuum ultraviolet free electron laser (VUV-FEL) at the Deutsches Elektronen-Synchrotron facility. Up to 30 optical diagnostic stations have been installed at various positions along the 250-m-long linac, each equipped with a high-performance digital camera. This paper describes the new approach to the design of the hardware and software setups required by the complex topology of such a distributed camera system.

  19. Undulator radiation driven by laser-wakefield accelerator electron beams

    NASA Astrophysics Data System (ADS)

    Wiggins, S. M.; Anania, M. P.; Welsh, G. H.; Brunetti, E.; Cipiccia, S.; Grant, P. A.; Reboredo, D.; Manahan, G.; Grant, D. W.; Jaroszynski, D. A.

    2015-05-01

    The Advanced Laser-Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme is developing laserplasma accelerators for the production of ultra-short electron bunches with subsequent generation of coherent, bright, short-wavelength radiation pulses. The new Scottish Centre for the Application of Plasma-based Accelerators (SCAPA) will develop a wide range of applications utilising such light sources. Electron bunches can be propagated through a magnetic undulator with the aim of generating fully coherent free-electron laser (FEL) radiation in the ultra-violet and Xrays spectral ranges. Demonstration experiments producing spontaneous undulator radiation have been conducted at visible and extreme ultra-violet wavelengths but it is an on-going challenge to generate and maintain electron bunches of sufficient quality in order to stimulate FEL behaviour. In the ALPHA-X beam line experiments, a Ti:sapphire femtosecond laser system with peak power 20 TW has been used to generate electron bunches of energy 80-150 MeV in a 2 mm gas jet laser-plasma wakefield accelerator and these bunches have been transported through a 100 period planar undulator. High peak brilliance, narrow band spontaneous radiation pulses in the vacuum ultra-violet wavelength range have been generated. Analysis is provided with respect to the magnetic quadrupole beam transport system and subsequent effect on beam emittance and duration. Requirements for coherent spontaneous emission and FEL operation are presented.

  20. Beam instrumentation for future high intense hadron accelerators at Fermilab

    SciTech Connect

    Wendt, M.; Hu, M.; Tassotto, G.; Thurman-Keup, R.; Scarpine, V.; Shin, S.; Zagel, J.; /Fermilab

    2008-08-01

    High intensity hadron beams of up to 2 MW beam power are a key element of new proposed experimental facilities at Fermilab. Project X, which includes a SCRF 8 GeV H{sup -} linac, will be the centerpiece of future HEP activities in the neutrino sector. After a short overview of this, and other proposed projects, we present the current status of the beam instrumentation activities at Fermilab with a few examples. With upgrades and improvements they can meet the requirements of the new beam facilities, however design and development of new instruments is needed, as shown by the prototype and conceptual examples in the last section.

  1. Direct-current proton-beam measurements at Los Alamos

    SciTech Connect

    Sherman, Joseph; Stevens, Ralph R.; Schneider, J. David; Zaugg, Thomas

    1995-09-15

    Recently, a CW proton accelerator complex was moved from Chalk River Laboratories (CRL) to Los Alamos National Laboratory. This includes a 50-keV dc proton injector with a single-solenoid low-energy beam transport system (LEBT) and a CW 1.25-MeV, 267-MHz radiofrequency quadrupole (RFQ). The move was completed after CRL had achieved 55-mA CW operation at 1.25 MeV using 250-kW klystrode tubes to power the RFQ. These accelerator components are prototypes for the front end of a CW linac required for an accelerator-driven transmutation linac, and they provide early confirmation of some CW accelerator components. The injector (ion source and LEBT) and emittance measuring unit are installed and operational at Los Alamos. The dc microwave ion source has been operated routinely at 50-keV, 75-mA hydrogen-ion current. This ion source has demonstrated very good discharge and H2 gas efficiencies, and sufficient reliability to complete CW RFQ measurements at CRL. Proton fraction of 75% has been measured with 550-W discharge power. This high proton fraction removes the need for an analyzing magnet. Proton LEBT emittance measurements completed at Los Alamos suggest that improved transmission through the RFQ may be achieved by increasing the solenoid focusing current. Status of the final CW RFQ operation at CRL and the installation of the RFQ at Los Alamos will be given.

  2. Direct-current proton-beam measurements at Los Alamos

    SciTech Connect

    Sherman, J.; Stevens, R.R.; Schneider, J.D.; Zaugg, T.

    1994-08-01

    Recently, a CW proton accelerator complex was moved from Chalk River Laboratories (CRL) to Los Alamos National Laboratory. This includes a 50-keV dc proton injector with a single-solenoid low-energy beam transport system (LEBT) and a CW 1.25-MeV, 267-MHz radiofrequency quadrupole (RFQ). The move was completed after CRL had achieved 55-mA CW operation at 1.25 MeV using 250-kW klystrode tubes to power the RFQ. These accelerator components are prototypes for the front end of a CW linac required for an accelerator-driven transmutation linac, and they provide early confirmation of some CW accelerator components. The injector (ion source and LEBT) and emittance measuring unit are installed and operational at Los Alamos. The dc microwave ion source has been operated routinely at 50-keV, 75-mA hydrogen-ion current. This ion source has demonstrated very good discharge and H{sub 2} gas efficiencies, and sufficient reliability to complete CW RFQ measurements at CRL. Proton fraction of 75% has been measured with 550-W discharge power. This high proton fraction removes the need for an analyzing magnet. Proton LEBT emittance measurements completed at Los Alamos suggest that improved transmission through the RFQ may be achieved by increasing the solenoid focusing current. Status of the final CW RFQ operation at CRL and the installation of the RFQ at Los Alamos is given.

  3. ELIMED, future hadrontherapy applications of laser-accelerated beams

    NASA Astrophysics Data System (ADS)

    Cirrone, Giuseppe A. P.; Carpinelli, Massimo; Cuttone, Giacomo; Gammino, Santo; Bijan Jia, S.; Korn, Georg; Maggiore, Mario; Manti, Lorenzo; Margarone, Daniele; Prokupek, Jan; Renis, Marcella; Romano, Francesco; Schillaci, Francesco; Tomasello, Barbara; Torrisi, Lorenzo; Tramontana, Antonella; Velyhan, Andriy

    2013-12-01

    Laser-ion acceleration has recently gained a great interest as an alternative to conventional and more expensive acceleration techniques. These ion beams have desirable qualities such as small source size, high luminosity and small emittance to be used in different fields as Nuclear Physics, Medical Physics, etc. This is very promising specially for the future perspective of a new concept of hadrontherapy based on laser-based devices could be developed, replacing traditional accelerating machines. Before delivering laser-driven beams for treatments they have to be handled, cleaned from unwanted particles and characterized in order to have the clinical requirements. In fact ion energy spectra have exponential trend, almost 100% energy spread and a wide angular divergence which is the biggest issue in the beam transport and, hence, in a wider use of this technology. In order to demonstrate the clinical applicability of laser-driven beams new collaboration between ELI-Beamlines project researchers from Prague (Cz) and a INFN-LNS group from Catania (I) has been already launched and scientists from different countries have already express their will in joining the project. This cooperation has been named ELIMED (MEDical application at ELIBeamlines) and will take place inside the ELI-Beamlines infrastructure located in Prague. This work describes the schedule of the ELIMED project and the design of the energy selector which will be realized at INFN-LNS. The device is an important part of the whole transport beam line which will be realised in order to make the ion beams suitable for medical applications.

  4. ACE3P Computations of Wakefield Coupling in the CLIC Two-Beam Accelerator

    SciTech Connect

    Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; Syratchev, I.; Grudiev, A.; Wuensch, W.; /CERN

    2010-10-27

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedented accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.

  5. Electron capture acceleration channel in a slit laser beam

    SciTech Connect

    Wang, P. X.; Scheid, W.; Ho, Y. K.

    2007-03-12

    Using numerical simulations, the authors find that the electrons can be captured and accelerated to high energies (GeV) in a slit laser beam with an intensity of I{lambda}{sup 2}{approx}10{sup 20} W/cm{sup 2} {mu}m{sup 2}, where {lambda} is the laser wavelength in units of {mu}m. The range of the optimum incident energy is very wide, even up to GeV. These results are of interest for experiments because the relatively low intensity can be achieved with present chirped pulse amplification technique and a wide range of incident energies means that a multistage acceleration is possible.

  6. Electron Acceleration by a Tightly Focused Laser Beam

    NASA Astrophysics Data System (ADS)

    Salamin, Yousef I.; Keitel, Christoph H.

    2002-03-01

    State-of-the-art petawatt laser beams may be focused down to few-micron spot sizes and can produce violent electron acceleration as a result of the extremely intense and asymmetric fields. Classical fifth-order calculations in the diffraction angle show that electrons, injected sideways into the tightly focused laser beam, get captured and gain energy in the GeV regime. We point out the most favorable points of injection away from the focus, along with an efficient means of extracting the energetic electron with a static magnetic field.

  7. Transformer ratio saturation in a beam-driven wakefield accelerator

    SciTech Connect

    Farmer, J. P.; Martorelli, R.; Pukhov, A.

    2015-12-15

    We show that for beam-driven wakefield acceleration, the linearly ramped, equally spaced train of bunches typically considered to optimise the transformer ratio only works for flat-top bunches. Through theory and simulation, we explain that this behaviour is due to the unique properties of the plasma response to a flat-top density profile. Calculations of the optimal scaling for a train of Gaussian bunches show diminishing returns with increasing bunch number, tending towards saturation. For a periodic bunch train, a transformer ratio of 23 was achieved for 50 bunches, rising to 40 for a fully optimised beam.

  8. 3D electromagnetic simulation of spatial autoresonance acceleration of electron beams

    NASA Astrophysics Data System (ADS)

    Dugar-Zhabon, V. D.; González, J. D.; Orozco, E. A.

    2016-02-01

    The results of full electromagnetic simulations of the electron beam acceleration by a TE 112 linear polarized electromagnetic field through Space Autoresonance Acceleration mechanism are presented. In the simulations, both the self-sustaned electric field and selfsustained magnetic field produced by the beam electrons are included into the elaborated 3D Particle in Cell code. In this system, the space profile of the magnetostatic field maintains the electron beams in the acceleration regime along their trajectories. The beam current density evolution is calculated applying the charge conservation method. The full magnetic field in the superparticle positions is found by employing the trilinear interpolation of the mesh node data. The relativistic Newton-Lorentz equation presented in the centered finite difference form is solved using the Boris algorithm that provides visualization of the beam electrons pathway and energy evolution. A comparison between the data obtained from the full electromagnetic simulations and the results derived from the motion equation depicted in an electrostatic approximation is carried out. It is found that the self-sustained magnetic field is a factor which improves the resonance phase conditions and reduces the beam energy spread.

  9. Accelerators for the advanced exotic beam facility in the U.S.

    SciTech Connect

    Ostroumov, P. N.; Fuerst, J. D.; Kelly, M. P.; Mustapha, B.; Nolen, J. A.; Shepard, K. W.; Physics

    2007-01-01

    The Office of Science of the Department of Energy is currently considering options for an advanced radioactive beam facility in the U.S which is a reduced scale version of the Rare Isotope Accelerator (RIA) project [1,2]. This facility will have unique capabilities compared with others both existing and planned elsewhere. As envisioned at ANL, the facility, called the Advanced Exotic Beam Laboratory (AEBL), would consist of a heavy-ion driver linac, a post-accelerator and experimental areas. Secondary beams of rare isotopes will be available as high quality reaccelerated or stopped beams from a gas catcher and high power ISOL targets, as well as, high energy beams following in-flight fragmentation or fission of heavy ions. The proposed design of the AEBL driver linac is a cw, fully superconducting, 833 MV linac capable of accelerating uranium ions up to 200 MeV/u and protons to 580 MeV with 400 kW beam power. An extensive research and development effort has resolved many technical issues related to the construction of the driver linac and other systems required for AEBL. This paper presents the status of planning, some options for such a facility, as well as, progress in related R&D.

  10. Operational status of the uranium beam upgrade of the ATLAS accelerator

    SciTech Connect

    Pardo, R.C.; Bollinger, L.M.; Nolen, J.A.

    1993-08-01

    The Positive-Ion Injector (PII) for ATLAS is complete. First beams from the new injector have been accelerated and used for experiments at ATLAS. The PH consists of an ECR ion source on a 350-kV platform and a low-velocity superconducting linac. The first acceleration of uranium for the experimental program has demonstrated the design goals of the project have been met. Since the summer of 1992, the new injecter has been used for the research program approximately 50% of the time. Longitudinal beam quality from the new injector has been measured to be significantly better than comparable beams from the tandem injecter. Changes to the mix of resonators in the main ATLAS accelerator to match better the velocity profile for heavy beams such as uranium are nearly complete and uranium energies up to 6.45 MeV per nucleon have been achieved. The operating experience of the new ATLAS facility will be discussed with emphasis on the measured beam quality as well as achieved beam energies and currents.

  11. Million revolution accelerator beam instrument for logging and evaluation

    SciTech Connect

    Peggs, S.; Saltmarsh, C.; Talman, R.

    1988-03-01

    A data acquisition and analysis instrument for the processing of accelerator beam position monitor (BPM) signals has been assembled and used preliminarily for beam diagnosis of the Fermilab accelerators. Up to eight BPM (or other analogue) channels are digitized and transmitted to an acquisition Sun workstation and from there both to a monitor workstation and a workstation for off-line (but immediate) data analysis. A coherent data description format permits fast data object transfers to and from memory, disk and tape, across the Sun ethernet. This has helped the development of both general purpose and experiment-specific data analysis, presentation and control tools. Flexible software permits immediate graphical display in both time and frequency domains. The instrument acts simultaneously as a digital oscilloscope, as a network analyzer and as a correlating, noise-reducing spectrum analyzer. 2 refs., 3 figs.

  12. 3-D Simulations of Plasma Wakefield Acceleration with Non-Idealized Plasmas and Beams

    SciTech Connect

    Deng, S.; Katsouleas, T.; Lee, S.; Muggli, P.; Mori, W.B.; Hemker, R.; Ren, C.; Huang, C.; Dodd, E.; Blue, B.E.; Clayton, C.E.; Joshi, C.; Wang, S.; Decker, F.J.; Hogan, M.J.; Iverson, R.H.; O'Connell, C.; Raimondi, P.; Walz, D.; /SLAC

    2005-09-27

    3-D Particle-in-cell OSIRIS simulations of the current E-162 Plasma Wakefield Accelerator Experiment are presented in which a number of non-ideal conditions are modeled simultaneously. These include tilts on the beam in both planes, asymmetric beam emittance, beam energy spread and plasma inhomogeneities both longitudinally and transverse to the beam axis. The relative importance of the non-ideal conditions is discussed and a worst case estimate of the effect of these on energy gain is obtained. The simulation output is then propagated through the downstream optics, drift spaces and apertures leading to the experimental diagnostics to provide insight into the differences between actual beam conditions and what is measured. The work represents a milestone in the level of detail of simulation comparisons to plasma experiments.

  13. A microbeam slit system for high beam currents

    NASA Astrophysics Data System (ADS)

    Vallentin, T.; Moser, M.; Eschbaumer, S.; Greubel, C.; Haase, T.; Reichart, P.; Rösch, T.; Dollinger, G.

    2015-04-01

    A new microbeam slit system for high beam currents of 10 μA was built up to improve the brightness transport of a proton beam with a kinetic energy of up to 25 MeV into the microprobe SNAKE. The new slit system features a position accuracy of less than 1 μm under normal operating conditions and less than 2 μm if the beam is switched on and off. The thermal management with a powerful watercooling and potential-free thermocouple feedback controlled heating cables is optimized for constant slit aperture at thermal power input of up to 250 W. The transparent zone is optimized to 0.7 μm due to the use of tungsten formed to a cylindrical surface with a radius r = 100 mm and mechanically lapped surface to minimize small angle scattering effects and to minimize the number of ions passing the slits with low energy loss. Electrical isolation of the slit tip enables slit current monitoring, e.g. for tandem accelerator feedback control. With the ability to transport up to 10 μA of protons with the new microslit system, the brightness Bexp transported into the microprobe was increased by a factor of 2 compared to low current injection using the old slit system.

  14. Current understanding of SEP acceleration and transport

    NASA Astrophysics Data System (ADS)

    Cohen, C. M. S.

    2016-03-01

    Through new missions and unusual solar conditions, solar cycle 24 has afforded the opportunity for expanding our understanding of solar energetic particle (SEP) acceleration and transport. With complementary SEP observations from multiple spacecraft separated significantly in longitude, it has been possible to examine the longitudinal distribution of energetic particles in individual events, rather than relying on statistical event studies. Unprecedented 360° views of the Sun, in multiple wavelengths and coronagraphs, has made it possible to identify solar source regions regardless of where they are located and to more accurately determine the properties of related coronal mass ejections. The unusually quiet conditions during the onset of cycle 24 allowed smaller SEP events to be examined and their source regions to be unambiguously identified. This paper reviews some of the unexpected results from multi-spacecraft SEP observations made over this solar cycle and discusses their implications for particle acceleration near the Sun and transport through the inner heliosphere.

  15. Trends for Electron Beam Accelerator Applications in Industry

    NASA Astrophysics Data System (ADS)

    Machi, Sueo

    2011-02-01

    Electron beam (EB) accelerators are major pieces of industrial equipment used for many commercial radiation processing applications. The industrial use of EB accelerators has a history of more than 50 years and is still growing in terms of both its economic scale and new applications. Major applications involve the modification of polymeric materials to create value-added products, such as heat-resistant wires, heat-shrinkable sheets, automobile tires, foamed plastics, battery separators and hydrogel wound dressing. The surface curing of coatings and printing inks is a growing application for low energy electron accelerators, resulting in an environmentally friendly and an energy-saving process. Recently there has been the acceptance of the use of EB accelerators in lieu of the radioactive isotope cobalt-60 as a source for sterilizing disposable medical products. Environmental protection by the use of EB accelerators is a new and important field of application. A commercial plant for the cleaning flue gases from a coal-burning power plant is in operation in Poland, employing high power EB accelerators. In Korea, a commercial plant uses EB to clean waste water from a dye factory.

  16. Electron Beam Focusing in the Linear Accelerator (linac)

    NASA Astrophysics Data System (ADS)

    Jauregui, Luis

    2015-10-01

    To produce consistent data with an electron accelerator, it is critical to have a well-focused beam. To keep the beam focused, quadrupoles (quads) are employed. Quads are magnets, which focus the beam in one direction (x or y) and defocus in the other. When two or more quads are used in series, a net focusing effect is achieved in both vertical and horizontal directions. At start up there is a 5% calibration error in the linac at Thomas Jefferson National Accelerator Facility. This means that the momentum of particles passing through the quads isn't always what is expected, which affects the focusing of the beam. The objective is to find exactly how sensitive the focusing in the linac is to this 5% error. A linac was simulated, which contained 290 RF Cavities with random electric fields (to simulate the 5% calibration error), and a total momentum kick of 1090 MeV. National Science Foundation, Department of Energy, Jefferson Lab, Old Dominion University.

  17. Trends and applications for MeV electrostatic ion beam accelerators

    NASA Astrophysics Data System (ADS)

    Norton, G. A.; Stodola, S. E.

    2014-08-01

    The 1970s into the 1980s saw a major broadening of applications for electrostatic accelerators. Prior to this time, all accelerators were used primarily for nuclear structure research. In the 70s there was a significant move into production ion implantation with the necessary MeV ion beam analysis techniques such as RBS and ERD. Accelerators are still being built for these materials analysis techniques today. However, there is still a great ongoing expansion of applications for these machines. At the present time, the demand for electrostatic accelerators is near an all time high. The number of applications continues to grow. This paper will touch on some of the current applications which are as diverse as nuclear fission reactor developments and pharmacokinetics. In the field of nuclear engineering, MeV ion beams from electrostatic accelerators are being used in material damage studies and for iodine and actinide accelerator mass spectrometry (AMS). In the field of pharmacokinetics, electrostatic MeV accelerators are being used to detect extremely small amounts of above background 14C. This has significantly reduced the time required to reach first in human studies. These and other applications will be discussed.

  18. High-quality electron beams from beam-driven plasma accelerators by wakefield-induced ionization injection.

    PubMed

    Martinez de la Ossa, A; Grebenyuk, J; Mehrling, T; Schaper, L; Osterhoff, J

    2013-12-13

    We propose a new and simple strategy for controlled ionization-induced trapping of electrons in a beam-driven plasma accelerator. The presented method directly exploits electric wakefields to ionize electrons from a dopant gas and capture them into a well-defined volume of the accelerating and focusing wake phase, leading to high-quality witness bunches. This injection principle is explained by example of three-dimensional particle-in-cell calculations using the code OSIRIS. In these simulations a high-current-density electron-beam driver excites plasma waves in the blowout regime inside a fully ionized hydrogen plasma of density 5×10(17)cm-3. Within an embedded 100  μm long plasma column contaminated with neutral helium gas, the wakefields trigger ionization, trapping of a defined fraction of the released electrons, and subsequent acceleration. The hereby generated electron beam features a 1.5 kA peak current, 1.5  μm transverse normalized emittance, an uncorrelated energy spread of 0.3% on a GeV-energy scale, and few femtosecond bunch length.

  19. Numerical simulation for the accelerator of the KSTAR neutral beam ion source.

    PubMed

    Kim, Tae-Seong; Jeong, Seung Ho; In, Sang Ryul

    2010-02-01

    Recent experiments with a prototype long-pulse, high-current ion source being developed for the neutral beam injection system of the Korea Superconducting Tokamak Advanced Research have shown that the accelerator grid assembly needs a further upgrade to achieve the final goal of 120keV/65A for the deuterium ion beam. The accelerator upgrade concept was determined theoretically by simulations using the IGUN code. The simulation study was focused on finding parameter sets that raise the optimum perveance as large as possible and reduce the beam divergence as low as possible. From the simulation results, it was concluded that it is possible to achieve this goal by sliming the plasma grid (G1), shortening the second gap (G2-G3), and adjusting the G2 voltage ratio.

  20. Beam dynamics studies for the relativistic klystron two-beam accelerator experiment

    SciTech Connect

    Lidia, Steven M.

    2001-06-22

    Two-beam accelerators based upon relativistic klystron s (RK s) have been proposed as power sources for future generation linear electron-positron colliders. These drivers are known to suffer from several transverse beam break-up (BBU) instabilities. A program to study a particular technique (the betatron node scheme ) for ameliorating the high frequency BBU is under way at LBNL. Central to this study are the pillbox RF cavities and RF beam position monitors (BPM s) employed. This paper describes the design, fabrication, and testing of the RF components. Performance details during operation are also discussed.

  1. Current Fragmentation and Particle Acceleration in Solar Flares

    NASA Astrophysics Data System (ADS)

    Cargill, P. J.; Vlahos, L.; Baumann, G.; Drake, J. F.; Nordlund, Å.

    2012-11-01

    Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a "standard flare model" is ill-conceived when the entire distribution of flare energies is considered.

  2. H-mode Accelerating Structures with PMQ Focusing for Low-Beta Beams

    SciTech Connect

    Kurennoy, Sergey S.; O'Hara, James F.; Olivas, Eric R.; Rybarcyk, Lawrence J.

    2011-01-01

    We report on results of the project developing high-efficiency normal-conducting RF accelerating structures based on inter-digital H-mode (IH) cavities and the transverse beam focusing with permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. The shunt impedance of IH-PMQ structures is 10-20 times higher than that of a conventional drift-tube linac, while the transverse size is 4-5 times smaller. The H-PMQ accelerating structures following a short RFQ can be used both in the front end of ion linacs or in stand-alone applications. Results of the combined 3-D modeling -- electromagnetic computations, beam-dynamics simulations with high currents, and thermal-stress analysis -- for a full IH-PMQ accelerator tank are presented. The accelerating field profile in the tank is tuned to provide the best propagation of a 50-mA deuteron beam using coupled iterations of EM and beamdynamics modeling. Multi-particle simulations withParmela and CST Particle Studio have been used to confirm the design. Measurement results of a cold model of the IH-PMQ tank are presented.

  3. Preliminary report on the MBE-4, an experimental multiple-beam induction linear accelerator for heavy ions

    SciTech Connect

    Warwick, A.I.; Gough, D.E.; Meuth, H.

    1988-11-01

    A small-scale experimental accelerator called MBE-4 has been constructed to demonstrate the principle of a current-amplifying induction linac for multiple beams of heavy ions. Four beams of Cs{sup 1+}, initially at 200 keV and each with a current of 10 mA have been accelerated and amplified to a kinetic energy of 700 keV and currents of 90 mA apiece. Transverse focusing is achieved by means of electrostatic quadrupoles; longitudinally the current is amplified and the beam bunch is held together against the space charge forces by special time-dependent accelerating fields. We report on the methods developed for designing and implementing the accelerating pulses and on measurements of the transverse and longitudinal emittance of the accelerated beams. Current fluctuations and the longitudinal emittance are initially almost zero and increase as acceleration errors are accumulated. We discuss the final longitudinal emittance and the current fluctuations in the experiment in terms of their acceptability for a large heavy-ion-fusion driver. 17 refs., 23 figs., 3 tabs.

  4. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator.

    PubMed

    Litos, M; Adli, E; An, W; Clarke, C I; Clayton, C E; Corde, S; Delahaye, J P; England, R J; Fisher, A S; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Lu, W; Marsh, K A; Mori, W B; Muggli, P; Vafaei-Najafabadi, N; Walz, D; White, G; Wu, Z; Yakimenko, V; Yocky, G

    2014-11-01

    High-efficiency acceleration of charged particle beams at high gradients of energy gain per unit length is necessary to achieve an affordable and compact high-energy collider. The plasma wakefield accelerator is one concept being developed for this purpose. In plasma wakefield acceleration, a charge-density wake with high accelerating fields is driven by the passage of an ultra-relativistic bunch of charged particles (the drive bunch) through a plasma. If a second bunch of relativistic electrons (the trailing bunch) with sufficient charge follows in the wake of the drive bunch at an appropriate distance, it can be efficiently accelerated to high energy. Previous experiments using just a single 42-gigaelectronvolt drive bunch have accelerated electrons with a continuous energy spectrum and a maximum energy of up to 85 gigaelectronvolts from the tail of the same bunch in less than a metre of plasma. However, the total charge of these accelerated electrons was insufficient to extract a substantial amount of energy from the wake. Here we report high-efficiency acceleration of a discrete trailing bunch of electrons that contains sufficient charge to extract a substantial amount of energy from the high-gradient, nonlinear plasma wakefield accelerator. Specifically, we show the acceleration of about 74 picocoulombs of charge contained in the core of the trailing bunch in an accelerating gradient of about 4.4 gigavolts per metre. These core particles gain about 1.6 gigaelectronvolts of energy per particle, with a final energy spread as low as 0.7 per cent (2.0 per cent on average), and an energy-transfer efficiency from the wake to the bunch that can exceed 30 per cent (17.7 per cent on average). This acceleration of a distinct bunch of electrons containing a substantial charge and having a small energy spread with both a high accelerating gradient and a high energy-transfer efficiency represents a milestone in the development of plasma wakefield acceleration into a

  5. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Joshi, Chan; Malka, Victor

    2010-04-01

    The ability of short but intense laser pulses to generate high-energy electrons and ions from gaseous and solid targets has been well known since the early days of the laser fusion program. However, during the past decade there has been an explosion of experimental and theoretical activity in this area of laser-matter interaction, driven by the prospect of realizing table-top plasma accelerators for research, medical and industrial uses, and also relatively small and inexpensive plasma accelerators for high-energy physics at the frontier of particle physics. In this focus issue on laser- and beam-driven plasma accelerators, the latest advances in this field are described. Focus on Laser- and Beam-Driven Plasma Accelerators Contents Slow wave plasma structures for direct electron acceleration B D Layer, J P Palastro, A G York, T M Antonsen and H M Milchberg Cold injection for electron wakefield acceleration X Davoine, A Beck, A Lifschitz, V Malka and E Lefebvre Enhanced proton flux in the MeV range by defocused laser irradiation J S Green, D C Carroll, C Brenner, B Dromey, P S Foster, S Kar, Y T Li, K Markey, P McKenna, D Neely, A P L Robinson, M J V Streeter, M Tolley, C-G Wahlström, M H Xu and M Zepf Dose-dependent biological damage of tumour cells by laser-accelerated proton beams S D Kraft, C Richter, K Zeil, M Baumann, E Beyreuther, S Bock, M Bussmann, T E Cowan, Y Dammene, W Enghardt, U Helbig, L Karsch, T Kluge, L Laschinsky, E Lessmann, J Metzkes, D Naumburger, R Sauerbrey, M. Scḧrer, M Sobiella, J Woithe, U Schramm and J Pawelke The optimum plasma density for plasma wakefield excitation in the blowout regime W Lu, W An, M Zhou, C Joshi, C Huang and W B Mori Plasma wakefield acceleration experiments at FACET M J Hogan, T O Raubenheimer, A Seryi, P Muggli, T Katsouleas, C Huang, W Lu, W An, K A Marsh, W B Mori, C E Clayton and C Joshi Electron trapping and acceleration on a downward density ramp: a two-stage approach R M G M Trines, R Bingham, Z Najmudin

  6. Excitation of Accelerating Plasma Waves by Counter-propagating Laser Beams

    SciTech Connect

    Gennady Shvets; Nathaniel J. Fisch; and Alexander Pukhov

    2001-08-30

    Generation of accelerating plasma waves using two counter-propagating laser beams is considered. Colliding-beam accelerator requires two laser pulses: the long pump and the short timing beam. We emphasize the similarities and differences between the conventional laser wakefield accelerator and the colliding-beam accelerator (CBA). The highly nonlinear nature of the wake excitation is explained using both nonlinear optics and plasma physics concepts. Two regimes of CBA are considered: (i) the short-pulse regime, where the timing beam is shorter than the plasma period, and (ii) the parametric excitation regime, where the timing beam is longer than the plasma period. Possible future experiments are also outlined.

  7. A merging preaccelerator for high current H{sup {minus}} ion beams

    SciTech Connect

    Inoue, T.; Miyamoto, K.; Mizuno, M.; Okumura, Y.; Ohara, Y.; Ackerman, G.D.; Chan, C.F.; Cooper, W.S.; Kwan, J.W.; Vella, M.C.

    1995-07-01

    The high power ion beams used in the next generation thermonuclear fusion reactors require high current negative ion beams accelerated to high energy, with high efficiency. One way to meet these requirements is to merge multiple low current density H{sup {minus}} beamlets into a single high current beam. The feasibility of a high current merging preaccelerator was demonstrated in this experiment by merging 19 beamlets of H{sup {minus}} ions distributed over a circular area 80 mm in diameter from a Japan Atomic Energy Research Institute negative ion source. H{sup {minus}} ions were extracted at a current density exceeding 10 mA/cm{sup 2} at the ion source which operates at 0.13 Pa (1 mTorr), with a low arc power density (70 V{times}250 A). Spherically curved grids (with built-in magnetic electron suppression) were used in the preaccelerator to focus the extracted beamlets into a single 104 mA, 100 keV beam. The merged beam has a diameter of 23 mm and a converging angle of {plus_minus}30 mrad at the beam envelope. The rms emittance of the 104 mA merging beam was 1.00 {pi} mrad cm, which is a condition acceptable to the electrostatic quadropole accelerator for further acceleration. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  8. Development of an ion beam analyzing system for the KBSI heavy-ion accelerator

    NASA Astrophysics Data System (ADS)

    Bahng, Jungbae; Hong, Jonggi; Park, Jin Yong; Kim, Seong Jun; Ok, Jung-Woo; Choi, Seyong; Shin, Chang Seouk; Yoon, Jang-Hee; Won, Mi-Sook; Lee, Byoung-Seob; Kim, Eun-San

    2016-02-01

    The Korea Basic Science Institute (KBSI) has been developing a heavy ion accelerator system to accelerate high current, multi-charge state ions produced by a 28 GHz superconducting electron cyclotron ion source. A beam analyzing system as a part of the low energy beam transport apparatus was developed to select charged particles with desirable charge states from the ion beams. The desired species of ion, which is generated and extracted from the ECR ion source including various ion particles, can be selected by 90° dipole electromagnet. Due to the non-symmetrical structure in the coil as well as the non-linear permeability of the yoke material coil, a three dimensional analysis was carried out to confirm the design parameters. In this paper, we present the experimental results obtained as result of an analysis of KBSI accelerator. The effectiveness of beam selection was confirmed during the test of the analyzing system by injecting an ion beam from an ECR ion source.

  9. Commissioning measurements for photon beam data on three TrueBeam linear accelerators, and comparison with Trilogy and Clinac 2100 linear accelerators.

    PubMed

    Beyer, Gloria P

    2013-01-07

    This study presents the beam data measurement results from the commissioning of three TrueBeam linear accelerators. An additional evaluation of the measured beam data within the TrueBeam linear accelerators contrasted with two other linear accelerators from the same manufacturer (i.e., Clinac and Trilogy) was performed to identify and evaluate any differences in the beam characteristics between the machines and to evaluate the possibility of beam matching for standard photon energies. We performed a comparison of commissioned photon beam data for two standard photon energies (6 MV and 15 MV) and one flattening filter-free ("FFF") photon energy (10 FFF) between three different TrueBeam linear accelerators. An analysis of the beam data was then performed to evaluate the reproducibility of the results and the possibility of "beam matching" between the TrueBeam linear accelerators. Additionally, the data from the TrueBeam linear accelerator was compared with comparable data obtained from one Clinac and one Trilogy linear accelerator models produced by the same manufacturer to evaluate the possibility of "beam matching" between the TrueBeam linear accelerators and the previous models. The energies evaluated between the linear accelerator models are the 6 MV for low energy and the 15 MV for high energy. PDD and output factor data showed less than 1% variation and profile data showed variations within 1% or 2 mm between the three TrueBeam linear accelerators. PDD and profile data between the TrueBeam, the Clinac, and Trilogy linear accelerators were almost identical (less than 1% variation). Small variations were observed in the shape of the profile for 15 MV at shallow depths (< 5 cm) probably due to the differences in the flattening filter design. A difference in the penumbra shape was observed between the TrueBeam and the other linear accelerators; the TrueBeam data resulted in a slightly greater penumbra width. The diagonal scans demonstrated significant differences

  10. TeV/m Nano-Accelerator: Current Status of CNT-Channeling Acceleration Experiment

    SciTech Connect

    Shin, Young Min; Lumpkin, Alex H.; Thangaraj, Jayakar Charles; Thurman-Keup, Randy Michael; Shiltsev, Vladimir D.

    2014-09-17

    Crystal channeling technology has offered various opportunities in the accelerator community with a viability of ultrahigh gradient (TV/m) acceleration for future HEP collider. The major challenge of channeling acceleration is that ultimate acceleration gradients might require a high power driver in the hard x-ray regime (~ 40 keV). This x-ray energy exceeds those for x-rays as of today, although x-ray lasers can efficiently excite solid plasma and accelerate particles inside a crystal channel. Moreover, only disposable crystal accelerators are possible at such high externally excited fields which would exceed the ionization thresholds destroying the atomic structure, so acceleration will take place only in a short time before full dissociation of the lattice. Carbon-based nanostructures have great potential with a wide range of flexibility and superior physical strength, which can be applied to channeling acceleration. This paper presents a beam- driven channeling acceleration concept with CNTs and discusses feasible experiments with the Advanced Superconducting Test Accelerator (ASTA) in Fermilab.

  11. Conceptual Design of a 50--100 MW Electron Beam Accelerator System for the National Hypersonic Wind Tunnel Program

    SciTech Connect

    SCHNEIDER,LARRY X.

    2000-06-01

    The National Hypersonic Wind Tunnel program requires an unprecedented electron beam source capable of 1--2 MeV at a beam power level of 50--100 MW. Direct-current electron accelerator technology can readily generate high average power beams to approximately 5 MeV at output efficiencies greater than 90%. However, due to the nature of research and industrial applications, there has never been a requirement for a single module with an output power exceeding approximately 500 kW. Although a 50--100 MW module is a two-order extrapolation from demonstrated power levels, the scaling of accelerator components appears reasonable. This paper presents an evaluation of component and system issues involved in the design of a 50--100 MW electron beam accelerator system with precision beam transport into a high pressure flowing air environment.

  12. Relativistic electron beam acceleration by Compton scattering of extraordinary waves

    SciTech Connect

    Sugaya, R.

    2006-05-15

    Relativistic transport equations, which demonstrate that relativistic and nonrelativistic particle acceleration along and across a magnetic field and the generation of an electric field transverse to the magnetic field, are induced by nonlinear wave-particle scattering (nonlinear Landau and cyclotron damping) of almost perpendicularly propagating electromagnetic waves in a relativistic magnetized plasma were derived from the relativistic Vlasov-Maxwell equations. The relativistic transport equations show that electromagnetic waves can accelerate particles in the k{sup ''} direction (k{sup ''}=k-k{sup '}). Simultaneously, an intense cross-field electric field, E{sub 0}=B{sub 0}xv{sub d}/c, is generated via the dynamo effect owing to perpendicular particle drift to satisfy the generalized Ohm's law, which means that this cross-field particle drift is identical to the ExB drift. On the basis of these equations, acceleration and heating of a relativistic electron beam due to nonlinear wave-particle scattering of electromagnetic waves in a magnetized plasma were investigated theoretically and numerically. Two electromagnetic waves interact nonlinearly with the relativistic electron beam, satisfying the resonance condition of {omega}{sub k}-{omega}{sub k{sup '}}-(k{sub perpendicular}-k{sub perpendicula=} r{sup '})v{sub d}-(k{sub parallel}-k{sub parallel}{sup '})v{sub b}{approx_equal}m{omega}{sub ce}, where v{sub b} and v{sub d} are the parallel and perpendicular velocities of the relativistic electron beam, respectively, and {omega}{sub ce} is the relativistic electron cyclotron frequency. The relativistic transport equations using the relativistic drifted Maxwellian momentum distribution function of the relativistic electron beam were derived and analyzed. It was verified numerically that extraordinary waves can accelerate the highly relativistic electron beam efficiently with {beta}m{sub e}c{sup 2} < or approx. 1 GeV, where {beta}=(1-v{sub b}{sup 2}/c{sup 2}){sup -1/2}.

  13. Laser-driven ion acceleration with hollow laser beams

    SciTech Connect

    Brabetz, C. Kester, O.; Busold, S.; Bagnoud, V.; Cowan, T.; Deppert, O.; Jahn, D.; Roth, M.; Schumacher, D.

    2015-01-15

    The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10{sup 18} W cm{sup −2} to 10{sup 20} W cm{sup −2}. We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot.

  14. Study of a national 2-GeV continuous beam electron accelerator

    SciTech Connect

    Cho, Y.; Holt, R.J.; Jackson, H.E.; Khoe, T.K.; Mavrogenes, G.S.

    1980-08-01

    Current trends in research in medium energy physics with electromagnetic probes are reviewed briefly and design objectives are proposed for a continuous beam 2 GeV electron accelerator. Various types of accelerator systems are discussed and exploratory designs developed for two concepts, the linac-stretcher ring and a double-sided microtron system. Preliminary cost estimates indicate that a linac-ring system which meets all the design objectives with the exception of beam quality and uses state-of-the-art technology can be built for approximately $29 million. However, the double-sided microtron shows promise for development into a substantially less expensive facility meeting all design objectives. Its technical feasibility remains to be established. Specific areas requiring additional engineering studies are discussed, and current efforts at Argonne and elsewhere are identified.

  15. Standing-Wave Free-Electron Laser Two-Beam Accelerator

    SciTech Connect

    Sessler, Andrew M.; Whittum, D.H.; Wurtele, Jonathan S.; Sharp, W.M.; Makowski, M.A.

    1991-02-01

    A free-electron laser (FEL) two-beam accelerator (TBA) is proposed, in which the FEL interaction takes place in a series of drive cavities, rather than in a waveguide. Each drive cavity is 'beat-coupled' to a section of the accelerating structure. This standing-wave TBA is investigated theoretically and numerically, with analyses included of microwave extraction, growth of the FEL signal through saturation, equilibrium longitudinal beam dynamics following saturation, and sensitivity of the microwave amplitude and phase to errors in current and energy. It is found that phase errors due to current jitter are substantially reduced from previous versions of the TBA. Analytic scalings and numerical simulations are used to obtain an illustrative TBA parameter set.

  16. Dynamics of a current bridge in a coaxial plasma accelerator

    NASA Astrophysics Data System (ADS)

    Voronin, A. V.; Gusev, V. K.; Kobyakov, S. V.

    2011-07-01

    The pioneering investigation of the behavior of a current bridge in a coaxial accelerator with pulsed delivery of a working gas liberated from titanium hydride by an electrical discharge is reported. A new method to trace the motion of the current bridge using LEDs is suggested. The behavior of the current bridge in accelerators with axial and radial gas injection is studied. The parameters of an accelerator generating a pure plasma jet with a high kinetic energy (such as the size and polarity of electrodes, gas flow direction, and time delay between the delivery of the gas to the accelerator and its ionization) are optimized. The applicability of an electrodynamic model to this type of accelerator is discussed. Good agreement between experimental data and calculation results is obtained.

  17. Application of rf superconductivity to high-brightness ion-beam accelerators

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Roche, C.T.

    1990-01-01

    A development program is underway to apply rf superconductivity to the design of cw linear accelerators for high-brightness ion beams. The key issues associated with this endeavor have been delineated in an earlier paper. Considerable progress has been made both experimentally and theoretically to resolve a number of these issues. In this paper we summarize this progress. We also identify current and future work in the areas of accelerator technology and superconducting materials which will confront the remaining issues and/or provide added capability to the technology. 13 refs., 2 figs.

  18. High-intensity ion sources for accelerators with emphasis on H-beam formation and transport

    SciTech Connect

    Keller, Roderich

    2009-01-01

    This paper lays out the fundamental working principles of a variety of high-current ion sources for accelerators in a tutorial manner, and gives examples of specific source types such as d. c. discharge- and rf-driven multicusp sources. Penning-type and ECR-based sources while discussing those principles, pointing out general performance limits as well as the performance parameters of specific sources. Laser-based, two-chamber-. and surface-ionization sources are briefly mentioned. Main aspects of this review are particle feed. ionization mechanism, beam formation and beam transport. Issues seen with beam formation and low-energy transport of negative hydrogen-ion beams are treated in detail.

  19. Design of inductively detuned RF extraction cavities for the Relativistic Klystron Two Beam Accelerator

    SciTech Connect

    Henestroza, E.; Yu, S.S.; Li, H.

    1995-04-01

    An inductively detuned traveling wave cavity for the Relativistic Klystron Two Beam Accelerator expected to extract high RF power at 11. 424 GHz for the 1 TeV Center of Mass Next Linear Collider has been designed. Longitudinal beam dynamics studies led to the following requirements on cavity design: (a) Extraction of 360 MW of RF power with RF component of the current being 1.15 kAmps at 11.424 GHz, (b) Inductively detuned traveling wave cavity with wave phase velocity equal to 4/3 the speed of light, (c) Output cavity with appropriate Q{sub ext} and eigenfrequency for proper matching. Furthermore, transverse beam dynamics require low shunt impedances to avoid the beam break-up instability. We describe the design effort to meet these criteria based on frequency-domain and time-domain computations using 2D- and 3D- electromagnetic codes.

  20. Acceleration of Ultra-Low Emittance Proton and Ion Beams with High Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Cowan, Thomas E.

    2002-11-01

    Intense beams of several MeV protons and ions, generated by the interaction of high-intensity short pulse lasers with thin foils, have been observed by many researchers in recent years.(S.P. Hatchett et al., Phys. Plasmas 7, 2076 (2000); T.E. Cowan et al., Nucl. Inst. Meth. A 455, 130 (2000); R.A. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000); S.C. Wilks et al., Phys. Plasmas 8, 532 (2000); E. Clark et al., Phys. Rev. Lett. 84, 670 (2000).) In experiments performed at the 100 TW LULI laser, we have succeeded to control the ion acceleration process to produce ultra high quality proton beams, whose transverse emittance is <0.006 π mm-mrad (rms-normalized), a factor of 100 lower than is typical of conventional RF linear accelerators. Within the envelope of the entire beam, we could focus individual proton beamlets to 100 nm spatial scales. This required control of the laser-plasma interaction, of the transport of MA currents of relativistic electrons through the target substrate, and of the surface topology and source material layering on the target foil rear-surface.(M. Roth et al., Phys. Rev. ST Accel. Beams 5, 061002 (2002).) By varying the source material, we also accelerated light ion beams, such as He-like fluorine, to over 5 MeV/nucleon.(M. Hegelich et al., Phys. Rev. Lett. 89, 085002 (2002).) From PIC simulations we understand the highest-energy and lowest-divergence proton acceleration as a transient laser-driven virtual cathode effect occurring at the target rear-surface. We have also confirmed the acceleration of ions from the front surface (A. Maksimchuk et al., Phys. Rev. Lett. 84, 4108 (2000).), which we find exhibits an intense low-energy component, but only a tenuous high-energy component, in agreement with PIC simulations. This work was performed with corporate support of General Atomics.

  1. The use of a high-current electron beam in plasma relativistic microwave oscillators

    SciTech Connect

    Bekhovskaya, K. S. Bogdankevich, I. L.; Strelkov, P. S.; Tarakanov, V. P.; Ul'yanov, D. K.

    2011-12-15

    Relativistic microwave electronics faces the problem of using high currents of relativistic electron beams; i.e., it is possible to use beams the current of which is lower than that of actually existing high-current accelerators. We show the possibility of increasing the power of radiation generated in a plasma relativistic microwave oscillator (PRMO) due to an increase in the absolute value of current. For the beam currents close to the value of limiting vacuum current, the efficiency of microwave generation decreases; therefore, we study PRMO schemes with a high value of limiting vacuum current, i.e., schemes with a small gap between a hollow relativistic electron beam and the waveguide wall. The results of the experiment and numerical simulation are discussed.

  2. Numerical modeling and experiments by forming electron beam for relativistic klystron on linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Furman, Edvin G.; Isakov, Petr Y.; Sulakshin, Alexander S.; Vasil'ev, Vasilii V.

    1995-09-01

    The results of numercial modeling and experimental investigations of the linear induction accelerator operation where relativistic clystron is applied as a load are presented. The electron gun with the dielectric emitter (DE) is employed as the injector for this system. As a result of this investigation, the electro-optical system has been successfully realized allowing us to form electron beams sufficiently homogeneous in cross-section with current level of no less than 150 A. Compression of the beam from DE at the first stage of moving is supported, essentially, due to a system of focusing electrodes, similar to Pierce optics. Then, compression of the beam to the size required for its free motion in the anode tract and clystron's drift tube occurs in increasing external magnetic field. In this purpose, the configuration of tracking magnetic field was calculated and suitable magnetic system has been made. The results obtained experimentally are in good agreement with calculated data. With emitting dielectric surface of 50mm in diameter the laminar electron beam of 8mm in diameter was obtained. At accelerating voltage of 400kV and pulse duration of 120ns, required for the excitation of the X-band clystron amplifier the value of current was of the order of 200 A. Prints of the beam on targets allow us to make the same findings.

  3. Design of a relativistic Klystron Two-Beam Accelerator Prototype

    SciTech Connect

    Westenskow, G.; Caporaso, G.; Chen, Y.; Houck, T.; Yu, S.; Chattopadhyay, S.; Henestroza, E.; Li, H.; Peters, C.; Reginato, L.; Sessler, Andrew M.

    1995-04-01

    We are designing an experiment to study physics, engineering, and costing issues of an extended Relativistic Klystron Two-Beam Accelerator (RK-TBA). The experiment is a prototype for an RK-TBA based microwave power source suitable for driving a 1 TeV linear collider. Major components of the experiment include a 2.5-MV, 1.5-kA electron source, a 11.4-GHz modulator, a bunch compressor, and a 8-m extraction section. The extraction section will be comprised of 4 traveling-wave output structures, each generating about 360 MW of rf power. Induction cells will be used in the extraction section to maintain the average beam energy at 5 MeV. Status of the design is presented.

  4. Design of a relativistic klystron two-beam accelerator prototype

    SciTech Connect

    Westenskow, G.; Caporaso, G.; Chen, Y.

    1995-10-01

    We are designing an experiment to study physics, engineering, and costing issues of an extended Relativistic Klystron Two-Beam Accelerator (RK-TBA). The experiment is a prototype for an RK-TBA based microwave power source suitable for driving a 1 TeV linear collider. Major components of the experiment include a 2.5-MV, 1.5-kA electron source, a 11.4-GHz modulator, a bunch compressor, and a 8-m extraction section. The extraction section will be comprised of 4 traveling-wave output structures, each generating about 360 MW of rf power. Induction cells will be used in the extraction section to maintain the average beam energy at 5 MeV. Status of the design is presented.

  5. Niobium resonator development for high-brightness ion beam acceleration

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Roche, C.T.

    1990-01-01

    Two niobium resonant cavities for high-brightness ion beam acceleration have been constructed and tested. The first was based on a coaxial quarter-wave geometry and was optimized for phase velocity {beta}{sub o} = 0.15. This cavity, which resonates at 400 MHz in the fundamental mode, operated at an average (wall-to-wall) accelerating gradient of 12.9 MV/m under continuous-wave (cw) fields. At this gradient, a cavity Q of 1.4 {times} 10{sup 8} was measured. The second was based on a coaxial half-wave geometry and was optimized for {beta}{sub o} = 0.12. This cavity, which resonates at 355 MHz in the fundamental mode, operated at an average accelerating gradient of 18.0 MV/m under cw fields. This is the highest average accelerating gradient achieved to date in low-velocity structures designed for cw operation. At this gradient, a cavity Q of 1.2 {times} 10{sup 8} was measured.

  6. Levy-Student distributions for halos in accelerator beams

    SciTech Connect

    Cufaro Petroni, Nicola; De Martino, Salvatore; De Siena, Silvio; Illuminati, Fabrizio

    2005-12-15

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of stochastic mechanics (SM) which produces time reversal invariant diffusion processes. This leads to a linearized theory summarized in a Schroedinger-like (SL) equation. The space charge effects have been introduced in recent papers by coupling this S-L equation with the Maxwell equations. We analyze the space-charge effects to understand how the dynamics produces the actual beam distributions, and in particular we show how the stationary, self-consistent solutions are related to the (external and space-charge) potentials both when we suppose that the external field is harmonic (constant focusing), and when we a priori prescribe the shape of the stationary solution. We then proceed to discuss a few other ideas by introducing generalized Student distributions, namely, non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will discuss this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) SM model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. We show that in the case (a) the longer tails of the power decay of the Student laws and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams.

  7. Electron Beam Transport in Advanced Plasma Wave Accelerators

    SciTech Connect

    Williams, Ronald L

    2013-01-31

    The primary goal of this grant was to develop a diagnostic for relativistic plasma wave accelerators based on injecting a low energy electron beam (5-50keV) perpendicular to the plasma wave and observing the distortion of the electron beam's cross section due to the plasma wave's electrostatic fields. The amount of distortion would be proportional to the plasma wave amplitude, and is the basis for the diagnostic. The beat-wave scheme for producing plasma waves, using two CO2 laser beam, was modeled using a leap-frog integration scheme to solve the equations of motion. Single electron trajectories and corresponding phase space diagrams were generated in order to study and understand the details of the interaction dynamics. The electron beam was simulated by combining thousands of single electrons, whose initial positions and momenta were selected by random number generators. The model was extended by including the interactions of the electrons with the CO2 laser fields of the beat wave, superimposed with the plasma wave fields. The results of the model were used to guide the design and construction of a small laboratory experiment that may be used to test the diagnostic idea.

  8. Mechanisms and control of beam halo formation in intense microwave sources and accelerators

    NASA Astrophysics Data System (ADS)

    Chen, C.; Pakter, R.

    2000-05-01

    Halo formation and control in space-charge-dominated electron and ion beams are investigated in parameter regimes relevant to the development of high-power microwave (HPM) sources and high-intensity electron and ion linear accelerators. In particular, a mechanism for electron beam halo formation is identified in high-power periodic permanent magnet (PPM) focusing klystron amplifiers. It is found in self-consistent simulations that large-amplitude current oscillations induce mismatched beam envelope oscillations and electron beam halo formation. Qualitative agreement is found between simulations and the 50 MW 11.4 GHz PPM focusing klystron experiment at Stanford Linear Accelerator Center (SLAC) (D. Sprehn, G. Caryotakis, E. Jongewaard, and R. M. Phillips, "Periodic permanent magnetic development for linear collider X-band klystrons," Proceedings of the XIXth International Linac Conference, Argonne National Laboratory Report ANL-98/28, 1998, p. 689). Moreover, a new class of cold-fluid corkscrewing elliptic beam equilibria is discovered for ultrahigh-brightness, space-charge dominated electron or ion beam propagation through a linear focusing channel consisting of uniform solenoidal magnetic focusing fields, periodic solenoidal magnetic focusing fields, and/or alternating-gradient quadrupole magnetic focusing fields in an arbitrary arrangement including field tapering. As an important application of such new cold-fluid corkscrewing elliptic beam equilibria, a technique is developed and demonstrated for controlling of halo formation and beam hollowing in a rms-matched ultrahigh-brightness ion beam as it is injected from an axisymmetric Pierce diode into an alternating-gradient magnetic quadrupole focusing channel.

  9. A new method to calculate the beam charge for an integrating current transformer.

    PubMed

    Wu, Yuchi; Han, Dan; Zhu, Bin; Dong, Kegong; Tan, Fang; Gu, Yuqiu

    2012-09-01

    The integrating current transformer (ICT) is a magnetic sensor widely used to precisely measure the charge of an ultra-short-pulse charged particle beam generated by traditional accelerators and new laser-plasma particle accelerators. In this paper, we present a new method to calculate the beam charge in an ICT based on circuit analysis. The output transfer function shows an invariable signal profile for an ultra-short electron bunch, so the function can be used to evaluate the signal quality and calculate the beam charge through signal fitting. We obtain a set of parameters in the output function from a standard signal generated by an ultra-short electron bunch (about 1 ps in duration) at a radio frequency linear electron accelerator at Tsinghua University. These parameters can be used to obtain the beam charge by signal fitting with excellent accuracy. PMID:23020370

  10. Beam quality of the ATA (Advanced Test Accelerator) injector

    SciTech Connect

    Boyd, J.K.; Caporaso, G.J.; Cole, A.G.; Weir, J.T.

    1987-01-01

    The beam quality of the ATA injector has been experimentally measured using a magnetic collimator. These measurements have been performed for a variety of magnetic field profiles, including field strengths where the collimator is shorter than a cyclotron wavelength. The experimental currents transmitted through the collimator have been predicted numerically. The numerical predictions and experimental data are in good agreement.

  11. Beam Dynamics Studies and the Design, Fabrication and Testing of Superconducting Radiofrequency Cavity for High Intensity Proton Accelerator

    SciTech Connect

    Saini, Arun

    2012-03-01

    The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H- linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H- ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.

  12. Superstructure for high current applications in superconducting linear accelerators

    DOEpatents

    Sekutowicz, Jacek; Kneisel, Peter

    2008-03-18

    A superstructure for accelerating charged particles at relativistic speeds. The superstructure consists of two weakly coupled multi-cell subunits equipped with HOM couplers. A beam pipe connects the subunits and an HOM damper is included at the entrance and the exit of each of the subunits. A coupling device feeds rf power into the subunits. The subunits are constructed of niobium and maintained at cryogenic temperatures. The length of the beam pipe between the subunits is selected to provide synchronism between particles and rf fields in both subunits.

  13. The generation and acceleration of low emittance flat beams for future linear colliders

    SciTech Connect

    Raubenheimer, T.O.

    1991-11-01

    Many future linear collider designs call for electron and positron beams with normalized rms horizontal and vertical emittances of {gamma}{epsilon}{sub x} = 3{times}10{sup {minus}6} m-rad and {gamma}{epsilon}{sub y} = 3{times}10{sup {minus}8} m-rad; these are a factor of 10 to 100 below those observed in the Stanford Linear Collider. In this dissertation, we examine the feasibility of achieving beams with these very small vertical emittances. We examine the limitations encountered during both the generation and the subsequent acceleration of such low emittance beams. We consider collective limitations, such as wakefields, space charge effects, scattering processes, and ion trapping; and also how intensity limitations, such as anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general, the minimum emittance in both the generation and the acceleration stages is limited by the transverse misalignments of the accelerator components. We describe a few techniques of correcting the effect of these errors, thereby easing the alignment tolerances by over an order of magnitude. Finally, we also calculate ``fundamental`` limitations on the minimum vertical emittance; these do not constrain the current designs but may prove important in the future.

  14. The generation and acceleration of low emittance flat beams for future linear colliders

    SciTech Connect

    Raubenheimer, T.O.

    1991-11-01

    Many future linear collider designs call for electron and positron beams with normalized rms horizontal and vertical emittances of {gamma}{epsilon}{sub x} = 3{times}10{sup {minus}6} m-rad and {gamma}{epsilon}{sub y} = 3{times}10{sup {minus}8} m-rad; these are a factor of 10 to 100 below those observed in the Stanford Linear Collider. In this dissertation, we examine the feasibility of achieving beams with these very small vertical emittances. We examine the limitations encountered during both the generation and the subsequent acceleration of such low emittance beams. We consider collective limitations, such as wakefields, space charge effects, scattering processes, and ion trapping; and also how intensity limitations, such as anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general, the minimum emittance in both the generation and the acceleration stages is limited by the transverse misalignments of the accelerator components. We describe a few techniques of correcting the effect of these errors, thereby easing the alignment tolerances by over an order of magnitude. Finally, we also calculate fundamental'' limitations on the minimum vertical emittance; these do not constrain the current designs but may prove important in the future.

  15. Design study of low energy beam transport line for ion beams of the post-accelerator at RAON

    NASA Astrophysics Data System (ADS)

    Lee, Yumi; Kim, Eun-San

    2015-07-01

    Low-energy ions produced by the ion source pass through the focusing and acceleration sections. During this process, the ions accumulate energy and are finally transported to the apparatus that utilizes them for a specific purpose. Thus, in order to increase the transmission efficiency of the ion beams, the low energy beam transport (LEBT) system must minimize the beam loss and the emittance growth. The LEBT system is designed and optimized to transmit 132Sn16+ and 58Ni8+ beams of the post-accelerator at RAON that is the accelerator complex for the rare isotope science. The post-accelerator LEBT line comprises solenoids and electrostatic quadrupoles for transverse focusing and a multi-harmonic buncher for longitudinal focusing. This paper presents the results of the optical design and beam tracking for the post-accelerator LEBT obtained by using TraceWIN and TRACK codes.

  16. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy

    SciTech Connect

    Bleuel, D.L. |; Donahue, R.J.; Ludewigt, B.A.; Vujic, J.

    1998-09-01

    The {sup 7}Li(p,n){sup 7}Be reaction has been investigated as an accelerator-driven neutron source for proton energies between 2.1 and 2.6 MeV. Epithermal neutron beams shaped by three moderator materials, Al/AlF{sub 3}, {sup 7}LiF, and D{sub 2}O, have been analyzed and their usefulness for boron neutron capture therapy (BNCT) treatments evaluated. Radiation transport through the moderator assembly has been simulated with the Monte Carlo {ital N}-particle code (MCNP). Fluence and dose distributions in a head phantom were calculated using BNCT treatment planning software. Depth-dose distributions and treatment times were studied as a function of proton beam energy and moderator thickness. It was found that an accelerator-based neutron source with Al/AlF{sub 3} or {sup 7}LiF as moderator material can produce depth-dose distributions superior to those calculated for a previously published neutron beam design for the Brookhaven Medical Research Reactor, achieving up to {approximately}50{percent} higher doses near the midline of the brain. For a single beam treatment, a proton beam current of 20 mA, and a {sup 7}LiF moderator, the treatment time was estimated to be about 40 min. The tumor dose deposited at a depth of 8 cm was calculated to be about 21 Gy-Eq. {copyright} {ital 1998 American Association of Physicists in Medicine.}

  17. Linear analysis of active-medium two-beam accelerator

    NASA Astrophysics Data System (ADS)

    Voin, Miron; Schächter, Levi

    2015-07-01

    We present detailed development of the linear theory of wakefield amplification by active medium and its possible application to a two-beam accelerator (TBA) is discussed. A relativistic train of triggering microbunches traveling along a vacuum channel in an active medium confined by a cylindrical waveguide excites Cherenkov wake in the medium. The wake is a superposition of azimuthally symmetric transverse magnetic modes propagating along a confining waveguide, with a phase velocity equal to the velocity of the triggering bunches. The structure may be designed in such a way that the frequency of one of the modes is close to active-medium resonant frequency, resulting in amplification of the former and domination of a single mode far behind the trigger bunches. Another electron bunch placed in proper phase with the amplified wakefield may be accelerated by the latter. Importantly, the energy for acceleration is provided by the active medium and not the drive bunch as in a traditional TBA. Based on a simplified model, we analyze extensively the impact of various parameters on the wakefield amplification process.

  18. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    SciTech Connect

    Rubel, Oliver; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Wu, Kesheng; Prabhat,; Weber, Gunther H.; Ushizima, Daniela M.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

    2009-10-19

    Numerical simulations of laser wakefield particle accelerators play a key role in the understanding of the complex acceleration process and in the design of expensive experimental facilities. As the size and complexity of simulation output grows, an increasingly acute challenge is the practical need for computational techniques that aid in scientific knowledge discovery. To that end, we present a set of data-understanding algorithms that work in concert in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration in very large simulation datasets. These techniques work cooperatively by first identifying features of interest in individual timesteps, then integrating features across timesteps, and based on the information derived perform analysis of temporally dynamic features. This combination of techniques supports accurate detection of particle beams enabling a deeper level of scientific understanding of physical phenomena than hasbeen possible before. By combining efficient data analysis algorithms and state-of-the-art data management we enable high-performance analysis of extremely large particle datasets in 3D. We demonstrate the usefulness of our methods for a variety of 2D and 3D datasets and discuss the performance of our analysis pipeline.

  19. Electron acceleration in a beam-plasma discharge

    SciTech Connect

    Kochmarev, L.IU.; Liakhov, S.B.; Maiorov, A.D.; Managadze, G.G.; Chmil, A.I.

    1985-05-01

    The results of recent laboratory experiments on the distribution function of electrons, which are scattered from a beam-plasma discharge, are reported. The experimental conditions approximated those during the Gruziya-60-Spurt active rocket-borne experiment to measure the injection of electron beams into space near the earth. The beam plasma-discharge was ignited in a vacuum chamber by means of a pulsed electron beam. The energy of the beam was 2.1 keV, and the current was 150-300 mA. The pressure range corresponding to the plasma discharge was 0.0001-0.001 torr. Electron distribution was measured using an analyzer which was moved along the chamber axis at a distance L = 75-210 cm from the injector. The experimental results support one possible explanation for the anomalously high sonde potential observed in the Gruziya-60-Spurt experiment: spontaneous changes of the interaction regime shortly after the beginning of the injection pulse. 12 references.

  20. Reconstruction of lattice parameters and beam momentum distribution from turn-by-turn beam position monitor readings in circular accelerators

    NASA Astrophysics Data System (ADS)

    Edmonds, C. S.; Gratus, J.; Hock, K. M.; Machida, S.; Muratori, B. D.; Torromé, R. G.; Wolski, A.

    2014-05-01

    In high chromaticity circular accelerators, rapid decoherence of the betatron motion of a particle beam can make the measurement of lattice and bunch values, such as Courant-Snyder parameters and betatron amplitude, difficult. A method for reconstructing the momentum distribution of a beam from beam position measurements is presented. Further analysis of the same beam position monitor data allows estimates to be made of the Courant-Snyder parameters and the amplitude of coherent betatron oscillation of the beam. The methods are tested through application to data taken on the linear nonscaling fixed field alternating gradient accelerator, EMMA.

  1. Modification & alignment of beam line of 10 MeV RF electron beam accelerator

    NASA Astrophysics Data System (ADS)

    Barnwal, R.; Ghodke, S. R.; Bhattacharjee, D.; Kumar, M.; Jayaprakash, D.; Chindarkar, A. R.; Mishra, R. L.; Dolas, S.; Kulkarni, S. Y.; Kumar, M.; P, Dixit K.; S, Acharya; Barje, S. R.; Lawangare, N. K.; C, Saroj P.; Nimje, V. T.; Chandan, S.; Tillu, A. R.; V, Sharma; Chavan, R. B.; V, Yadav; P, Roychowdhury; Mittal, K. C.; Chakravarthy, D. P.; Ray, A. K.

    2008-05-01

    A 10 MeV, 10 kW RF industrial Electron linac designed and developed at BARC is installed at the Electron Beam Center Kharghar, Navi Mumbai. The entire RF accelerator assembly consists of Electron gun, RF source, RF linac structure, Beam diagnostic chamber, Drift tube, Scanning magnet, Beam sensing aperture, Scan horn, and is spread over two floors at EBC. The paper discusses in detail about the alignment procedure adopted for the equipments of 10 MeV RF beamline. The complete electron beamline will be maintained under ultra high vacuum of the order of 10-7 torr. The paper discusses about the present problem of alignment, measurement technique of alignment, reason for misalignment, possible ways to solve the problem, equipment used for alignment, supports & arrestors, verification of alignment under vacuum

  2. Lévy-Student distributions for halos in accelerator beams.

    PubMed

    Cufaro Petroni, Nicola; De Martino, Salvatore; De Siena, Silvio; Illuminati, Fabrizio

    2005-12-01

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of stochastic mechanics (SM) which produces time reversal invariant diffusion processes. This leads to a linearized theory summarized in a Schrödinger-like (SL) equation. The space charge effects have been introduced in recent papers by coupling this S-L equation with the Maxwell equations. We analyze the space-charge effects to understand how the dynamics produces the actual beam distributions, and in particular we show how the stationary, self-consistent solutions are related to the (external and space-charge) potentials both when we suppose that the external field is harmonic (constant focusing), and when we a priori prescribe the shape of the stationary solution. We then proceed to discuss a few other ideas by introducing generalized Student distributions, namely, non-Gaussian, Lévy infinitely divisible (but not stable) distributions. We will discuss this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) SM model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Lévy process whose increments are Student distributed. We show that in the case (a) the longer tails of the power decay of the Student laws and in the case (b) the discontinuities of the Lévy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams.

  3. Lévy-Student distributions for halos in accelerator beams.

    PubMed

    Cufaro Petroni, Nicola; De Martino, Salvatore; De Siena, Silvio; Illuminati, Fabrizio

    2005-12-01

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of stochastic mechanics (SM) which produces time reversal invariant diffusion processes. This leads to a linearized theory summarized in a Schrödinger-like (SL) equation. The space charge effects have been introduced in recent papers by coupling this S-L equation with the Maxwell equations. We analyze the space-charge effects to understand how the dynamics produces the actual beam distributions, and in particular we show how the stationary, self-consistent solutions are related to the (external and space-charge) potentials both when we suppose that the external field is harmonic (constant focusing), and when we a priori prescribe the shape of the stationary solution. We then proceed to discuss a few other ideas by introducing generalized Student distributions, namely, non-Gaussian, Lévy infinitely divisible (but not stable) distributions. We will discuss this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) SM model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Lévy process whose increments are Student distributed. We show that in the case (a) the longer tails of the power decay of the Student laws and in the case (b) the discontinuities of the Lévy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams. PMID:16486070

  4. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    NASA Astrophysics Data System (ADS)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander; Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B.; Bruhwiler, David L.; Smith, Jonathan; Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G.; Hidding, Bernhard

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical "plasma torch" distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  5. 'Accelerators and Beams,' multimedia computer-based training in accelerator physics

    SciTech Connect

    Silbar, R. R.; Browman, A. A.; Mead, W. C.; Williams, R. A.

    1999-06-10

    We are developing a set of computer-based tutorials on accelerators and charged-particle beams under an SBIR grant from the DOE. These self-paced, interactive tutorials, available for Macintosh and Windows platforms, use multimedia techniques to enhance the user's rate of learning and length of retention of the material. They integrate interactive 'On-Screen Laboratories,' hypertext, line drawings, photographs, two- and three-dimensional animations, video, and sound. They target a broad audience, from undergraduates or technicians to professionals. Presently, three modules have been published (Vectors, Forces, and Motion), a fourth (Dipole Magnets) has been submitted for review, and three more exist in prototype form (Quadrupoles, Matrix Transport, and Properties of Charged-Particle Beams). Participants in the poster session will have the opportunity to try out these modules on a laptop computer.

  6. Trapping and dark current in plasma-based accelerators

    SciTech Connect

    Schroder, C.B.; Esarey, E.; Shadwick, B.A.; Leemans, W.P.

    2004-06-01

    The trapping of thermal electrons in a nonlinear plasma wave of arbitrary phase velocity is investigated. The threshold plasma wave amplitude for trapping plasma electrons is calculated, thereby determining the fraction trapped and the expected dark current in a plasma-based accelerator. It is shown that the presence of a laser field (e.g., trapping in the self-modulated regime of the laser wakefield accelerator) increases the trapping threshold. Implications for experimental and numerical laser-plasma studies are discussed.

  7. Investigation of electromagnetic interactions by means of electron--photon beams from proton accelerators

    SciTech Connect

    Govorkov, B.B.

    1980-09-01

    The methods for obtaining electron and photon beams from high-energy proton accelerators are considered. The results of investigations of the electromagnetic interactions of elementary particles obtained by means of these beams are discussed.

  8. Transverse equilibrium and stability of the primary beam in the plasma wake-field accelerator

    SciTech Connect

    Krall, J.; Joyce, G. )

    1995-04-01

    The primary electron beam in the plasma wake-field accelerator is studied, using multidimensional particle simulation, for cases in which a shaped electron beam is used, with length [ital L][gt][lambda][sub [ital p

  9. Subcritical power reactor with irradiation by a beam of accelerated protons

    SciTech Connect

    Ado, Yu.M.; Kryuchkov, V.P.; Lebedev, V.N.

    1995-04-01

    The physical and economic aspects of constructing a reactivity accident-free nuclear reactor are discussed. The approach described is based on uranium fission in a deeply subcritical reactor in which the chain reaction is initiated by an external source of neutrons, thus eliminating runaway. Protons are assumed to be the primary particles because the accelerator technology is best developed for this method of irradiation. A subcritical reactor and a high-power proton accelerator is determined to be sound in principle, and has the advantages of eliminating runaway accidents, decreasing fuel costs, higher efficiency due to increased intervals between fuel loadings, and controlling the reactor power and shielding by changing the beam current of the accelerator. 29 refs., 8 figs., 2 tabs.

  10. The non-orthogonal fixed beam arrangement for the second proton therapy facility at the National Accelerator Center

    NASA Astrophysics Data System (ADS)

    Schreuder, A. N.; Jones, D. T. L.; Conradie, J. L.; Fourie, D. T.; Botha, A. H.; Müller, A.; Smit, H. A.; O'Ryan, A.; Vernimmen, F. J. A.; Wilson, J.; Stannard, C. E.

    1999-06-01

    The medical user group at the National Accelerator Center (NAC) is currently unable to treat all eligible patients with high energy protons. Developing a second proton treatment room is desirable since the 200 MeV proton beam from the NAC separated sector cyclotron is currently under-utilized during proton therapy sessions. During the patient positioning phase in one treatment room, the beam could be used for therapy in a second room. The second proton therapy treatment room at the NAC will be equipped with two non-orthogonal beam lines, one horizontal and one at 30 degrees to the vertical. The two beams will have a common isocentre. This beam arrangement together with a versatile patient positioning system (commercial robot arm) will provide the radiation oncologist with a diversity of possible beam arrangements and offers a reasonable cost-effective alternative to an isocentric gantry.

  11. The non-orthogonal fixed beam arrangement for the second proton therapy facility at the National Accelerator Center

    SciTech Connect

    Schreuder, A. N.; Jones, D. T. L.; Conradie, J. L.; Fourie, D. T.; Botha, A. H.; Mueller, A.; Smit, H. A.; O'Ryan, A.; Vernimmen, F. J. A.; Wilson, J.; Stannard, C. E.

    1999-06-10

    The medical user group at the National Accelerator Center (NAC) is currently unable to treat all eligible patients with high energy protons. Developing a second proton treatment room is desirable since the 200 MeV proton beam from the NAC separated sector cyclotron is currently under-utilized during proton therapy sessions. During the patient positioning phase in one treatment room, the beam could be used for therapy in a second room. The second proton therapy treatment room at the NAC will be equipped with two non-orthogonal beam lines, one horizontal and one at 30 degrees to the vertical. The two beams will have a common isocentre. This beam arrangement together with a versatile patient positioning system (commercial robot arm) will provide the radiation oncologist with a diversity of possible beam arrangements and offers a reasonable cost-effective alternative to an isocentric gantry.

  12. Dose properties of a laser accelerated electron beam and prospects for clinical application.

    PubMed

    Kainz, K K; Hogstrom, K R; Antolak, J A; Almond, P R; Bloch, C D; Chiu, C; Fomytskyi, M; Raischel, F; Downer, M; Tajima, T

    2004-07-01

    (-1) for a 9 MeV beam and 0.03 Gy min(-1) for a 15 MeV beam. It was concluded that current LWFA technology should allow a table-top terawatt (T3) laser to produce therapeutic electron beams that have acceptable flatness, penetration, and falloff of depth dose; however, the dose rate is still 1%-3% of that which would be acceptable, especially for higher-energy electron beams. Further progress in laser technology, e.g., increasing the pulse repetition rate or number of high energy electrons generated per pulse, is necessary to give dose rates acceptable for electron beams. Future measurements confirming dosimetric calculations are required to substantiate our results. In addition to achieving adequate dose rate, significant engineering developments are needed for this technology to compete with current electron acceleration technology. Also, the functional benefits of LWFA electron beams require further study and evaluation.

  13. Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Benedetti, C.; Toth, Cs.; Geddes, C. G. R.; Leemans, W.P.

    2010-06-01

    Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator design and the different physical mechanisms of laser-driven and beam-driven plasma acceleration are discussed. Driver propagation is examined, as well as the effects of the excited plasma wave phase velocity. The driver coupling to subsequent plasma accelerator stages for high-energy physics applications is addressed.

  14. Frequency multiplying oscillator with an electron beam accelerated in a drift space

    SciTech Connect

    Jang, Kyu-Ha; Lee, Kitae; Hee Park, Seong; Uk Jeong, Young; Miginsky, S.

    2012-07-02

    In a uniform acceleration region, the behavior of a velocity-modulated electron beam has been analyzed using a particle-in-cell code. By making use of one of the accelerated harmonic components of the velocity-modulated electron beam, we demonstrate a frequency multiplying oscillator for a compact THz emitter, which employs multiple electron beams and a higher order mode resonator to modulate the electron beam without an additional driving source.

  15. METHOD OF PRODUCING AND ACCELERATING AN ION BEAM

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor)

    2005-01-01

    A method of producing and accelerating an ion beam comprising the steps of providing a magnetic field with a cusp that opens in an outward direction along a centerline that passes through a vertex of the cusp: providing an ionizing gas that sprays outward through at least one capillary-like orifice in a plenum that is positioned such that the orifice is on the centerline in the cusp, outward of the vortex of the cusp; providing a cathode electron source, and positioning it outward of the orifice and off of the centerline; and positively charging the plenum relative to the cathode electron source such that the plenum functions as m anode. A hot filament may be used as the cathode electron source, and permanent magnets may be used to provide the magnetic field.

  16. Vaccine Biotechnology by Accelerated Electron Beam and Microwave Irradiation

    NASA Astrophysics Data System (ADS)

    Craciun, Gabriela D.; Togoe, Iulian I.; Tudor, Laurentiu M.; Martin, Diana I.; Manaila, Elena N.; Ighigeanu, Daniel I.; Iacob, Nicusor I.; Oproiu, Constantin V.

    2007-04-01

    A new biotechnology for obtaining a commercial vaccine that contains either Fusobacterium necrophorum (F.n.) exotoxins inactivated by accelerated electron beam (EB) and microwave (MW) irradiation, or exotoxins isolated from F.n. cultures irradiated with EB+MW, is presented. This vaccine is designed for prophylaxis of ruminant infectious pododermatitis (IP) produced by F.n. Also, the research results concerning the effects of combined chemical adjuvant and EB+MW irradiation on F.n. immune capacity are discussed. The vaccine's efficacy will be tested in ruminant farms in which IP evolves. It is expected that this new vaccine to offer a better protection, more than 60%, which is the best presently obtained result in ruminant farms.

  17. Effect of Driver Impedance on Dense Plasma Focus Z-Pinch Neutron Yield and Beam Acceleration

    NASA Astrophysics Data System (ADS)

    Sears, J.; Link, A.; Ellsworth, J.; Falabella, S.; Rusnak, B.; Tang, V.; Schmidt, A.; Welch, D.

    2014-10-01

    We explore the effect of driver characteristics on dense plasma focus (DPF) neutron yield and beam acceleration using particle-in-cell (PIC) simulations of a kJ-scale DPF. Our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. Simulations are benchmarked to measurements of a table top kJ DPF experiment with neutron yield measured with He3-based detectors. Simulated neutron yield scales approximately with the fourth power of peak current, I4. We also probe the accelerating fields by measuring the acceleration of a 4 MeV deuteron beam and by measuring the DPF self-generated beam energy distribution, finding gradients higher than 50 MV/m. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) at LLNL.

  18. Electron-beam dynamics for an advanced flash-radiography accelerator

    SciTech Connect

    Ekdahl, Carl August Jr.

    2015-06-22

    Beam dynamics issues were assessed for a new linear induction electron accelerator. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Beam physics issues were examined through theoretical analysis and computer simulations, including particle-in cell (PIC) codes. Beam instabilities investigated included beam breakup (BBU), image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. Beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos will result if the same engineering standards and construction details are upheld.

  19. Electron-Beam Dynamics for an Advanced Flash-Radiography Accelerator

    SciTech Connect

    Ekdahl, Carl

    2015-11-17

    Beam dynamics issues were assessed for a new linear induction electron accelerator being designed for multipulse flash radiography of large explosively driven hydrodynamic experiments. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Furthermore, beam physics issues were examined through theoretical analysis and computer simulations, including particle-in-cell codes. Beam instabilities investigated included beam breakup, image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. The beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos National Laboratory will result if the same engineering standards and construction details are upheld.

  20. Electron-Beam Dynamics for an Advanced Flash-Radiography Accelerator

    SciTech Connect

    Ekdahl, Carl

    2015-12-01

    Beam dynamics issues were assessed for a new linear induction electron accelerator being designed for multipulse flash radiography of large explosively driven hydrodynamic experiments. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Furthermore, beam physics issues were examined through theoretical analysis and computer simulations, including particle-in-cell codes. Beam instabilities investigated included beam breakup, image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. The beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos National Laboratory will result if the same engineering standards and construction details are upheld.

  1. X-ray beam size measurements on the Advanced Test Accelerator

    SciTech Connect

    Struve, K.W.; Chambers, F.W.; Lauer, E.J.; Slaughter, D.R.

    1986-01-01

    The electron beam size has been determined on the Advanced Test Accelerator (ATA) by intercepting the beam with a target and measuring the resulting x-ray intensity as a function of time as the target is moved through the beam. Several types of targets have been used. One is a tantalum rod which extends completely across the drift chamber. Another is a tungsten powder filled carbon crucible. Both of these probes are moved from shot to shot so that the x-ray signal intensity varies with probe position. A third is a larger tantalum disk which is inserted on beam axis to allow determining beam size on a one shot basis. The x-ray signals are detected with an MCP photomultiplier tube located at 90/sup 0/ to the beamline. It is sufficiently shielded to reject background x-rays and neutrons. The signals were digitized, recorded and later unfolded to produce plots of x-ray intensity versus probe position for several times during the pulse. The presumption that the x-ray intensity is proportional to beam current density is checked computationally. Details of the probe construction and PMT shielding, as well as sample measurements are given.

  2. Impingement-Current-Erosion Characteristics of Accelerator Grids on Two-Grid Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Barker, Timothy

    1996-01-01

    Accelerator grid sputter erosion resulting from charge-exchange-ion impingement is considered to be a primary cause of failure for electrostatic ion thrusters. An experimental method was developed and implemented to measure erosion characteristics of ion-thruster accel-grids for two-grid systems as a function of beam current, accel-grid potential, and facility background pressure. Intricate accelerator grid erosion patterns, that are typically produced in a short time (a few hours), are shown. Accelerator grid volumetric and depth-erosion rates are calculated from these erosion patterns and reported for each of the parameters investigated. A simple theoretical volumetric erosion model yields results that are compared to experimental findings. Results from the model and experiments agree to within 10%, thereby verifying the testing technique. In general, the local distribution of erosion is concentrated in pits between three adjacent holes and trenches that join pits. The shapes of the pits and trenches are shown to be dependent upon operating conditions. Increases in beam current and the accel-grid voltage magnitude lead to deeper pits and trenches. Competing effects cause complex changes in depth-erosion rates as background pressure is increased. Shape factors that describe pits and trenches (i.e. ratio of the average erosion width to the maximum possible width) are also affected in relatively complex ways by changes in beam current, ac tel-grid voltage magnitude, and background pressure. In all cases, however, gross volumetric erosion rates agree with theoretical predictions.

  3. Fluence and dose measurements for an accelerator neutron beam

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Byun, S. H.; McNeill, F. E.; Mothersill, C. E.; Seymour, C. B.; Prestwich, W. V.

    2007-10-01

    The 3 MV Van de Graaff accelerator at McMaster University accelerator laboratory is extended to a neutron irradiation facility for low-dose bystander effects research. A long counter and an Anderson-Braun type neutron monitor have been used as monitors for the determination of the total fluence. Activation foils were used to determine the thermal neutron fluence rate (around 106 neutrons s-1). Meanwhile, the interactions of neutrons with the monitors have been simulated using a Monte Carlo N Particle (MCNP) code. Bystander effects, i.e. damage occurring in cells that were not traversed by radiation but were in the same radiation environment, have been well observed following both alpha and gamma irradiation of many cell lines. Since neutron radiation involves mixed field (including gamma and neutron radiations), we need to differentiate the doses for the bystander effects from the two radiations. A tissue equivalent proportional counter (TEPC) filled with propane based tissue equivalent gas simulating a 2 μm diameter tissue sphere has been investigated to estimate the neutron and gamma absorbed doses. A photon dose contamination of the neutron beam is less than 3%. The axial dose distribution follows the inverse square law and lateral and vertical dose distributions are relatively uniform over the irradiation area required by the biological study.

  4. Ultrashort Electron Beam Pulses and Diagnosis by Advanced Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Uesaka, M.; Iijima, H.; Muroya, Y.; Watanabe, T.; Hosokai, T.

    2003-08-01

    240fs 18 MeV low emittance(6 pai mm.mrad) electron beam was generated and its pulse shape was diagnosed by the S-band laser photocathode RF gun and linac. The maximum charge per bunch was 7 nC. This electron pulse was synchronized with 100fs 0.3TW Ti:Sapphire laser with the timing jitter of 330fs(rms). Recently, the Cu cathode(QE10∧-4) was replaced by Mg cathode(QE10∧-3). This system is utilized for radiation chemistry analysis for supercritical water. We have adopted the four diagnostic methods(femtosecond streak camera, coherent transition radiation interferometer, far-infrared polychromator, fluctuation method) and checked their time-resolution precisely. Further, we are doing the experiment on laser plasma cathode by 12TW 50fs laser and He gas jet. Laser plasma wakefield acceleration and electron injection via wavebreaking are planned. We have developed a new theory of self-injection scheme to generate ˜10fs electron pulse. We have already succeeded in observing 40 MeV low emittance electron beam of 14 nC.

  5. Ion Beam Transport Simulations for the 1.7 MV Tandem Accelerator at the Michigan Ion Beam Laboratory

    NASA Astrophysics Data System (ADS)

    Naab, F. U.; Toader, O. F.; Was, G. S.

    The Michigan Ion Beam Laboratory houses a 1.7 MV tandem accelerator. For many years this accelerator was configured to run with three ion sources: a TORoidal Volume Ion Source (TORVIS), a Duoplasmatron source and a Sputter source. In this article we describe an application we have created using the SIMION® code to simulate the trajectories of ion beams produced with these sources through the accelerator. The goal of this work is to have an analytical tool to understand the effect of each electromagnetic component on the ion trajectories. This effect is shown in detailed drawings. Each ion trajectory simulation starts at the aperture of the ion source and ends at the position of the target. Using these simulations, new accelerator operators or users quickly understand how the accelerator system works. Furthermore, these simulations allow analysis of modifications in the ion beam optics of the accelerator by adding, removing or replacing components or changing their relative positions.

  6. External-Beam Accelerated Partial Breast Irradiation Using Multiple Proton Beam Configurations

    SciTech Connect

    Wang Xiaochun; Amos, Richard A.; Zhang Xiaodong; Taddei, Phillip J.; Woodward, Wendy A.; Hoffman, Karen E.; Yu, Tse Kuan; Tereffe, Welela; Oh, Julia; Perkins, George H.; Salehpour, Mohammad; Zhang, Sean X.; Sun, Tzou Liang; Gillin, Michael; Buchholz, Thomas A.; Strom, Eric A.

    2011-08-01

    Purpose: To explore multiple proton beam configurations for optimizing dosimetry and minimizing uncertainties for accelerated partial breast irradiation (APBI) and to compare the dosimetry of proton with that of photon radiotherapy for treatment of the same clinical volumes. Methods and Materials: Proton treatment plans were created for 11 sequential patients treated with three-dimensional radiotherapy (3DCRT) photon APBI using passive scattering proton beams (PSPB) and were compared with clinically treated 3DCRT photon plans. Monte Carlo calculations were used to verify the accuracy of the proton dose calculation from the treatment planning system. The impact of range, motion, and setup uncertainty was evaluated with tangential vs. en face beams. Results: Compared with 3DCRT photons, the absolute reduction of the mean of V100 (the volume receiving 100% of prescription dose), V90, V75, V50, and V20 for normal breast using protons are 3.4%, 8.6%, 11.8%, 17.9%, and 23.6%, respectively. For breast skin, with the similar V90 as 3DCRT photons, the proton plan significantly reduced V75, V50, V30, and V10. The proton plan also significantly reduced the dose to the lung and heart. Dose distributions from Monte Carlo simulations demonstrated minimal deviation from the treatment planning system. The tangential beam configuration showed significantly less dose fluctuation in the chest wall region but was more vulnerable to respiratory motion than that for the en face beams. Worst-case analysis demonstrated the robustness of designed proton beams with range and patient setup uncertainties. Conclusions: APBI using multiple proton beams spares significantly more normal tissue, including nontarget breast and breast skin, than 3DCRT using photons. It is robust, considering the range and patient setup uncertainties.

  7. Wakefield-induced ionization injection in beam-driven plasma accelerators

    NASA Astrophysics Data System (ADS)

    Martinez de la Ossa, A.; Mehrling, T. J.; Schaper, L.; Streeter, M. J. V.; Osterhoff, J.

    2015-09-01

    We present a detailed analysis of the features and capabilities of Wakefield-Induced Ionization (WII) injection in the blowout regime of beam driven plasma accelerators. This mechanism exploits the electric wakefields to ionize electrons from a dopant gas and trap them in a well-defined region of the accelerating and focusing wake phase, leading to the formation of high-quality witness-bunches [Martinez de la Ossa et al., Phys. Rev. Lett. 111, 245003 (2013)]. The electron-beam drivers must feature high-peak currents ( Ib 0 ≳ 8.5 kA ) and a duration comparable to the plasma wavelength to excite plasma waves in the blowout regime and enable WII injection. In this regime, the disparity of the magnitude of the electric field in the driver region and the electric field in the rear of the ion cavity allows for the selective ionization and subsequent trapping from a narrow phase interval. The witness bunches generated in this manner feature a short duration and small values of the normalized transverse emittance ( k p σ z ˜ k p ɛ n ˜ 0.1 ). In addition, we show that the amount of injected charge can be adjusted by tuning the concentration of the dopant gas species, which allows for controlled beam loading and leads to a reduction of the total energy spread of the witness beams. Electron bunches, produced in this way, fulfil the requirements to drive blowout regime plasma wakes at a higher density and to trigger WII injection in a second stage. This suggests a promising new concept of self-similar staging of WII injection in steps with increasing plasma density, giving rise to the potential of producing electron beams with unprecedented energy and brilliance from plasma-wakefield accelerators.

  8. A Four Channel Beam Current Monitor Data Acquisition System Using Embedded Processors

    SciTech Connect

    Wheat, Jr., Robert Mitchell; Dalmas, Dale A.; Dale, Gregory E.

    2015-08-11

    Data acquisition from multiple beam current monitors is required for electron accelerator production of Mo-99. A two channel system capable of recording data from two beam current monitors has been developed, is currently in use, and is discussed below. The development of a cost-effective method of extending this system to more than two channels and integrating of these measurements into an accelerator control system is the main focus of this report. Data from these current monitors is digitized, processed, and stored by a digital data acquisition system. Limitations and drawbacks with the currently deployed digital data acquisition system have been identified as have been potential solutions, or at least improvements, to these problems. This report will discuss and document the efforts we've made in improving the flexibility and lowering the cost of the data acquisition system while maintaining the minimum requirements.

  9. Phenomenological Model of Current Sheet Canting in Pulsed Electromagnetic Accelerators

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas; Choueiri, E. Y.

    2003-01-01

    The phenomenon of current sheet canting in pulsed electromagnetic accelerators is the departure of the plasma sheet (that carries the current) from a plane that is perpendicular to the electrodes to one that is skewed, or tipped. Review of pulsed electromagnetic accelerator literature reveals that current sheet canting is a ubiquitous phenomenon - occurring in all of the standard accelerator geometries. Developing an understanding of current sheet canting is important because it can detract from the propellant sweeping capabilities of current sheets and, hence, negatively impact the overall efficiency of pulsed electromagnetic accelerators. In the present study, it is postulated that depletion of plasma near the anode, which results from axial density gradient induced diamagnetic drift, occurs during the early stages of the discharge, creating a density gradient normal to the anode, with a characteristic length on the order of the ion skin depth. Rapid penetration of the magnetic field through this region ensues, due to the Hall effect, leading to a canted current front ahead of the initial current conduction channel. In this model, once the current sheet reaches appreciable speeds, entrainment of stationary propellant replenishes plasma in the anode region, inhibiting further Hall-convective transport of the magnetic field; however, the previously established tilted current sheet remains at a fairly constant canting angle for the remainder of the discharge cycle, exerting a transverse J x B force which drives plasma toward the cathode and accumulates it there. This proposed sequence of events has been incorporated into a phenomenological model. The model predicts that canting can be reduced by using low atomic mass propellants with high propellant loading number density; the model results are shown to give qualitative agreement with experimentally measured canting angle mass dependence trends.

  10. Design of post linac to driver linac transport beam line in rare isotope accelerator

    NASA Astrophysics Data System (ADS)

    Kim, Chanmi; Kim, Eun-San

    2015-07-01

    We investigated the design of a beam transport line connecting the post linac to the driver linac (P2DT) in the Rare Isotope Accelerator (RAON). P2DT beam line is designed by 180° bending scheme to send the radioactive isotope separation on-line (ISOL) beams accelerated in the Linac-3 to Linac-2. The beam line is designed as a 180° bend for the transport of a multi-charge state 132Sn+45,+46,+47 beam. We used the TRACE 3-D, TRACK, and ORBIT codes to design the optics system, which also includes two bunchers and ten sextupole magnets for chromaticity compensation. The transverse emittance growth is minimized by adopting mirror symmetric optics and by correcting second-order aberrations using sextupoles. We report on the multi-charge state beam transport performance of the designed beam line. The main characteristics of the P2DT line are to minimize beam loss and the growth of emittance, and for charge stripping. Beam optics for P2DT is optimized for reducing beam loss and charge stripping. As Linac-3 may accelerate the stable beam and radioactive beam simultaneously, P2DT line also transports the stable beam and radioactive beam simultaneously. Thus, we need a RF switchyard to send the stable beam to the ISOL target and the radioactive beam to the high-energy experimental area in Linac-2 end.

  11. Design of post linac to driver linac transport beam line in rare isotope accelerator.

    PubMed

    Kim, Chanmi; Kim, Eun-San

    2015-07-01

    We investigated the design of a beam transport line connecting the post linac to the driver linac (P2DT) in the Rare Isotope Accelerator (RAON). P2DT beam line is designed by 180° bending scheme to send the radioactive isotope separation on-line (ISOL) beams accelerated in the Linac-3 to Linac-2. The beam line is designed as a 180° bend for the transport of a multi-charge state (132)Sn(+45,+46,+47) beam. We used the TRACE 3-D, TRACK, and ORBIT codes to design the optics system, which also includes two bunchers and ten sextupole magnets for chromaticity compensation. The transverse emittance growth is minimized by adopting mirror symmetric optics and by correcting second-order aberrations using sextupoles. We report on the multi-charge state beam transport performance of the designed beam line. The main characteristics of the P2DT line are to minimize beam loss and the growth of emittance, and for charge stripping. Beam optics for P2DT is optimized for reducing beam loss and charge stripping. As Linac-3 may accelerate the stable beam and radioactive beam simultaneously, P2DT line also transports the stable beam and radioactive beam simultaneously. Thus, we need a RF switchyard to send the stable beam to the ISOL target and the radioactive beam to the high-energy experimental area in Linac-2 end.

  12. High fidelity 3-dimensional models of beam-electron cloud interactions in circular accelerators

    NASA Astrophysics Data System (ADS)

    Feiz Zarrin Ghalam, Ali

    Electron cloud is a low-density electron profile created inside the vacuum chamber of circular machines with positively charged beams. Electron cloud limits the peak current of the beam and degrades the beams' quality through luminosity degradation, emittance growth and head to tail or bunch to bunch instability. The adverse effects of electron cloud on long-term beam dynamics becomes more and more important as the beams go to higher and higher energies. This problem has become a major concern in many future circular machines design like the Large Hadron Collider (LHC) under construction at European Center for Nuclear Research (CERN). Due to the importance of the problem several simulation models have been developed to model long-term beam-electron cloud interaction. These models are based on "single kick approximation" where the electron cloud is assumed to be concentrated at one thin slab around the ring. While this model is efficient in terms of computational costs, it does not reflect the real physical situation as the forces from electron cloud to the beam are non-linear contrary to this model's assumption. To address the existing codes limitation, in this thesis a new model is developed to continuously model the beam-electron cloud interaction. The code is derived from a 3-D parallel Particle-In-Cell (PIC) model (QuickPIC) originally used for plasma wakefield acceleration research. To make the original model fit into circular machines environment, betatron and synchrotron equations of motions have been added to the code, also the effect of chromaticity, lattice structure have been included. QuickPIC is then benchmarked against one of the codes developed based on single kick approximation (HEAD-TAIL) for the transverse spot size of the beam in CERN-LHC. The growth predicted by QuickPIC is less than the one predicted by HEAD-TAIL. The code is then used to investigate the effect of electron cloud image charges on the long-term beam dynamics, particularly on the

  13. Comparing the dosimetric characteristics of the electron beam from dedicated intraoperative and conventional radiotherapy accelerators.

    PubMed

    Baghani, Hamid Reza; Aghamiri, Seyed Mahmoud Reza; Mahdavi, Seyed Rabi; Akbari, Mohammad Esmail; Mirzaei, Hamid Reza

    2015-01-01

    The specific design of the mobile dedicated intraoperative radiotherapy (IORT) accelerators and different electron beam collimation system can change the dosimetric characteristics of electron beam with respect to the conventional accelerators. The aim of this study is to measure and compare the dosimetric characteristics of electron beam produced by intraoperative and conventional radiotherapy accelerators. To this end, percentage depth dose along clinical axis (PDD), transverse dose profile (TDP), and output factor of LIAC IORT and Varian 2100C/D conventional radiotherapy accelerators were measured and compared. TDPs were recorded at depth of maximum dose. The results of this work showed that depths of maximum dose, R90, R50, and RP for LIAC beam are lower than those of Varian beam. Furthermore, for all energies, surface doses related to the LIAC beam are substantially higher than those of Varian beam. The symmetry and flatness of LIAC beam profiles are more desirable compared to the Varian ones. Contrary to Varian accelerator, output factor of LIAC beam substantially increases with a decrease in the size of the applicator. Dosimetric characteristics of beveled IORT applicators along clinical axis were different from those of the flat ones. From these results, it can be concluded that dosimetric characteristics of intraoperative electron beam are substantially different from those of conventional clinical electron beam. The dosimetric characteristics of the LIAC electron beam make it a useful tool for intraoperative radiotherapy purposes.

  14. Recent developments in the application of rf superconductivity to high-brightness and high-gradient ion beam accelerators

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Nichols, G.L.; Roche, C.T.; Sagalovsky, L.

    1991-12-31

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high- brightness ion beams. Since the last workshop, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm{sup 2}) surface areas. Theoretical studies of beam impingement and cumulative beam breakup have also yielded encouraging results. Consequently, a section of superconducting resonators and focusing elements has been designed for tests with high-current deuteron beams. In addition, considerable data pertaining to the rf properties of high-{Tc} superconductors has been collected at rf-field amplitudes and frequencies of interest in connection with accelerator operation. This paper summarizes the recent progress and identifies current and future work in the areas of accelerator technology and superconducting materials which will build upon it.

  15. Recent developments in the application of rf superconductivity to high-brightness and high-gradient ion beam accelerators

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Nichols, G.L.; Roche, C.T.; Sagalovsky, L.

    1991-01-01

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high- brightness ion beams. Since the last workshop, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm{sup 2}) surface areas. Theoretical studies of beam impingement and cumulative beam breakup have also yielded encouraging results. Consequently, a section of superconducting resonators and focusing elements has been designed for tests with high-current deuteron beams. In addition, considerable data pertaining to the rf properties of high-{Tc} superconductors has been collected at rf-field amplitudes and frequencies of interest in connection with accelerator operation. This paper summarizes the recent progress and identifies current and future work in the areas of accelerator technology and superconducting materials which will build upon it.

  16. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    DOE PAGES

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; et al

    2016-06-02

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. In this study, we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel ismore » created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.« less

  17. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    PubMed Central

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-01-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m−1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations. PMID:27250570

  18. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-06-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

  19. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator.

    PubMed

    Gessner, Spencer; Adli, Erik; Allen, James M; An, Weiming; Clarke, Christine I; Clayton, Chris E; Corde, Sebastien; Delahaye, J P; Frederico, Joel; Green, Selina Z; Hast, Carsten; Hogan, Mark J; Joshi, Chan; Lindstrøm, Carl A; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A; Mori, Warren B; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-01-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m(-1) is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

  20. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator.

    PubMed

    Gessner, Spencer; Adli, Erik; Allen, James M; An, Weiming; Clarke, Christine I; Clayton, Chris E; Corde, Sebastien; Delahaye, J P; Frederico, Joel; Green, Selina Z; Hast, Carsten; Hogan, Mark J; Joshi, Chan; Lindstrøm, Carl A; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A; Mori, Warren B; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-01-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m(-1) is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations. PMID:27250570

  1. Preliminary consideration of a double, 480 GeV, fast cycling proton accelerator for production of neutrino beams at Fermilab

    SciTech Connect

    Piekarz, Henryk; Hays, Steven; /Fermilab

    2007-03-01

    We propose to build the DSF-MR (Double Super-Ferric Main Ring), 480 GeV, fast-cycling (2 second repetition rate) two-beam proton accelerator in the Main Ring tunnel of Fermilab. This accelerator design is based on the super-ferric magnet technology developed for the VLHC, and extended recently to the proposed LER injector for the LHC and fast cycling SF-SPS at CERN. The DSF-MR accelerator system will constitute the final stage of the proton source enabling production of two neutrino beams separated by 2 second time period. These beams will be sent alternately to two detectors located at {approx} 3000 km and {approx} 7500 km away from Fermilab. It is expected that combination of the results from these experiments will offer more than 3 order of magnitudes increased sensitivity for detection and measurement of neutrino oscillations with respect to expectations in any current experiment, and thus may truly enable opening the window into the physics beyond the Standard Model. We examine potential sites for the long baseline neutrino detectors accepting beams from Fermilab. The current injection system consisting of 400 MeV Linac, 8 GeV Booster and the Main Injector can be used to accelerate protons to 45 GeV before transferring them to the DSF-MR. The implementation of the DSF-MR will allow for an 8-fold increase in beam power on the neutrino production target. In this note we outline the proposed new arrangement of the Fermilab accelerator complex. We also briefly describe the DSF-MR magnet design and its power supply, and discuss necessary upgrade of the Tevatron RF system for the use with the DSF-MR accelerator. Finally, we outline the required R&D, cost estimate and possible timeline for the implementation of the DSF-MR accelerator.

  2. Use of a wire scanner for monitoring residual gas ionization in Soreq Applied Research Accelerator Facility 20 keV/u proton/deuteron low energy beam transport beam line

    SciTech Connect

    Vainas, B.; Eliyahu, I.; Weissman, L.; Berkovits, D.

    2012-02-15

    The ion source end of the Soreq Applied Research Accelerator Facility accelerator consists of a proton/deuteron ECR ion source and a low energy beam transport (LEBT) beam line. An observed reduction of the radio frequency quadrupole transmission with increase of the LEBT current prompted additional study of the LEBT beam properties. Numerous measurements have been made with the LEBT bream profiler wire biased by a variable voltage. Current-voltage characteristics in presence of the proton beam were measured even when the wire was far out of the beam. The current-voltage characteristic in this case strongly resembles an asymmetric diodelike characteristic, which is typical of Langmuir probes monitoring plasma. The measurement of biased wire currents, outside the beam, enables us to estimate the effective charge density in vacuum.

  3. Development and construction of a neutron beam line for accelerator-based boron neutron capture synovectomy.

    PubMed

    Gierga, D P; Yanch, J C; Shefer, R E

    2000-01-01

    A potential application of the 10B(n, alpha)7Li nuclear reaction for the treatment of rheumatoid arthritis, termed Boron Neutron Capture Synovectomy (BNCS), is under investigation. In an arthritic joint, the synovial lining becomes inflamed and is a source of great pain and discomfort for the afflicted patient. The goal of BNCS is to ablate the synovium, thereby eliminating the symptoms of the arthritis. A BNCS treatment would consist of an intra-articular injection of boron followed by neutron irradiation of the joint. Monte Carlo radiation transport calculations have been used to develop an accelerator-based epithermal neutron beam line for BNCS treatments. The model includes a moderator/reflector assembly, neutron producing target, target cooling system, and arthritic joint phantom. Single and parallel opposed beam irradiations have been modeled for the human knee, human finger, and rabbit knee joints. Additional reflectors, placed to the side and back of the joint, have been added to the model and have been shown to improve treatment times and skin doses by about a factor of 2. Several neutron-producing charged particle reactions have been examined for BNCS, including the 9Be(p,n) reaction at proton energies of 4 and 3.7 MeV, the 9Be(d,n) reaction at deuteron energies of 1.5 and 2.6 MeV, and the 7Li(p,n) reaction at a proton energy of 2.5 MeV. For an accelerator beam current of 1 mA and synovial boron uptake of 1000 ppm, the time to deliver a therapy dose of 10,000 RBEcGy ranges from 3 to 48 min, depending on the treated joint and the neutron producing charged particle reaction. The whole-body effective dose that a human would incur during a knee treatment has been estimated to be 3.6 rem or 0.75 rem, for 1000 ppm or 19,000 ppm synovial boron uptake, respectively, although the shielding configuration has not yet been optimized. The Monte Carlo design process culminated in the construction, installation, and testing of a dedicated BNCS beam line on the high-current

  4. Three-dimensional simulation analysis of the standing-wave free- electron laser two beam accelerator

    SciTech Connect

    Wang, C.; Sessler, A.

    1993-01-01

    We have modified a two-dimensional relativistic klystron code, developed by Ryne and Yu, to simulate both the standing-wave free- electron laser two-beam accelerator and the relativistic klystron two- beam accelerator. In this paper, the code is used to study a standing-wave free-electron laser with three cavities. The effect of the radius of the electron beam on the RF output power; namely, a three-dimensional effect is examined.

  5. Electromagnetic and beam dynamics studies of a high current drift tube linac for LEHIPA

    NASA Astrophysics Data System (ADS)

    Roy, S.; Rao, S. V. L. S.; Pande, R.; Krishnagopal, S.; Singh, P.

    2014-06-01

    We have performed detailed electromagnetic and beam dynamics studies of a 352.21 MHz drift-tube linac (DTL) that will accelerate a 30 mA CW proton beam from 3 to 20 MeV. At such high currents space charge effects are important, and therefore the effect of linear as well as non-linear space charge has been studied (corresponding to uniform and Gaussian initial beam distributions), in order to avoid space charge instabilities. To validate the electromagnetic simulations, a 1.2 m long prototype of the DTL was fabricated. RF measurements performed on the prototype were in good agreement with the simulations. A detailed simulation study of beam halos was also performed, which showed that beyond a current of 10 mA, significant longitudinal beam halos are excited even for a perfectly matched beam, whereas for a mis-matched beam transverse beam halos are also excited. However, these do not lead to any beam loss within the DTL.

  6. Review of Basic Physics of Laser-Accelerated Charged-Particle Beams

    SciTech Connect

    Suk, H.; Hur, M. S.; Jang, H.; Kim, J.

    2007-07-11

    Laser-plasma wake wave can accelerate charged particles, especially electrons with an enormously large acceleration gradient. The electrons in the plasma wake wave have complicated motions in the longitudinal and transverse directions. In this paper, basic physics of the laser-accelerated electron beam is reviewed.

  7. Acceleration of positrons by a relativistic electron beam in the presence of quantum effects

    SciTech Connect

    Niknam, A. R.; Aki, H.; Khorashadizadeh, S. M.

    2013-09-15

    Using the quantum magnetohydrodynamic model and obtaining the dispersion relation of the Cherenkov and cyclotron waves, the acceleration of positrons by a relativistic electron beam is investigated. The Cherenkov and cyclotron acceleration mechanisms of positrons are compared together. It is shown that growth rate and, therefore, the acceleration of positrons can be increased in the presence of quantum effects.

  8. System for producing high-resolution polarized and unpolarized beams with a tandem accelerator

    SciTech Connect

    Westerfeldt, C.R.; Bilpuch, E.G.; Bleck, M.E.; Outlaw, D.A.; Wells, W.K.; Wilkerson, J.F.; Clegg, T.B.

    1983-01-01

    A tandem accelerator beam energy stabilizer, which utilizes an optically coupled fast feedback loop to the accelerator terminal stripper, is described. Emphasis is placed on the components of the feedback system and on the application of this system to production of high energy-resolution beams. This system produces beam energy spreads ranging from 450 to 600 eV FWHM for 2 to 16 MeV unpolarized protons. Polarized beam energy spreads range from 550 to 700 eV FWHM, for the same beam energy range.

  9. A new beam loss detector for low-energy proton and heavy-ion accelerators

    NASA Astrophysics Data System (ADS)

    Liu, Zhengzheng; Crisp, Jenna; Russo, Tom; Webber, Robert; Zhang, Yan

    2014-12-01

    The Facility for Rare Isotope Beams (FRIB) to be constructed at Michigan State University shall deliver a continuous, 400 kW heavy ion beam to the isotope production target. This beam is capable of inflicting serious damage on accelerator components, e.g. superconducting RF accelerating cavities. A Beam Loss Monitoring (BLM) System is essential for detecting beam loss with sufficient sensitivity and promptness to inform the machine protection system (MPS) and operations personnel of impending dangerous losses. Radiation transport simulations reveal shortcomings in the use of ionization chambers for the detection of beam losses in low-energy, heavy-ion accelerators. Radiation cross-talk effects due to the folded geometry of the FRIB LINAC pose further complications to locating specific points of beam loss. We propose a newly developed device, named the Loss Monitor Ring (LMR1

  10. Prototype of a test bench for applied research on Extracted beams of the nuclotron accelerator complex

    NASA Astrophysics Data System (ADS)

    Baldin, A. A.; Berlev, A. I.; Bradnova, V.; Butenko, A. V.; Fedorov, A. N.; Kudashkin, I. V.

    2016-05-01

    The results of the development and testing of elements of a test bench for investigating the impact of accelerated particle beams on biological objects, electronics, and other targets are presented. The systems for beam monitoring and target positioning were tested on extracted argon beams in the framework of experiments on studying the radiation hardness of electronic components.

  11. Rarefied flow diagnostics using pulsed high-current electron beams

    NASA Technical Reports Server (NTRS)

    Wojcik, Radoslaw M.; Schilling, John H.; Erwin, Daniel A.

    1990-01-01

    The use of high-current short-pulse electron beams in low-density gas flow diagnostics is introduced. Efficient beam propagation is demonstrated for pressure up to 300 microns. The beams, generated by low-pressure pseudospark discharges in helium, provide extremely high fluorescence levels, allowing time-resolved visualization in high-background environments. The fluorescence signal frequency is species-dependent, allowing instantaneous visualization of mixing flowfields.

  12. PHYSICS OF THE HIGH CURRENT DENSITY ELECTRON BEAM ION SOURCE (EBIS).

    SciTech Connect

    Vella, M.C.

    1980-02-01

    Interest in upgrading present heavy particle accelerators has led to study of EBIS as a possible source of high Z ions, e.g,, Ar{sup +18}. The present work has been motivated primarily by the results reported by CRYEBIS, which indicate that a space charge neutralized, external electron gun can achieve current densities of 10{sup 5} A/cm{sup 2}. Scaling relationships are developed as a basis for understanding CRYEBIS operation. The relevance of collective effects to beam equilibrium and stability is pointed out, Single electron impact ionization scaling and beam neutralization scaling indicate that higher beam voltage may be the easiest way of increasing both ionization rate and particle intensity. Consideration of radial ion confinement suggests that beam collapse to high current density may be related to the highest charge state which is energetically accessible.

  13. Limiting current of intense electron beams in a decelerating gap

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Beaudoin, B. L.; Thompson, C.; Karakkad, J. A.; Antonsen, T. M.

    2016-02-01

    For numerous applications, it is desirable to develop electron beam driven efficient sources of electromagnetic radiation that are capable of producing the required power at beam voltages as low as possible. This trend is limited by space charge effects that cause the reduction of electron kinetic energy and can lead to electron reflection. So far, this effect was analyzed for intense beams propagating in uniform metallic pipes. In the present study, the limiting currents of intense electron beams are analyzed for the case of beam propagation in the tubes with gaps. A general treatment is illustrated by an example evaluating the limiting current in a high-power, tunable 1-10 MHz inductive output tube (IOT), which is currently under development for ionospheric modification. Results of the analytical theory are compared to results of numerical simulations. The results obtained allow one to estimate the interaction efficiency of IOTs.

  14. Electron beam induced current on carbon nanotubes measured through substrate electrodes

    NASA Astrophysics Data System (ADS)

    Park, J. K.; Ahn, Y. H.

    2015-11-01

    We demonstrate substrate electron-beam-induced current (s-EBIC) measurements of individual single-walled carbon nanotubes (SWNTs) by measuring the current collected by the substrate electrode, which penetrates through the insulating oxide layer. We found that s-EBIC provided better image contrast than ordinary secondary electron imaging methods for locating SWNTs that are in contact with metal electrodes. The s-EBIC has been measured for different acceleration voltages and probe currents. We found that s-EBIC did not depend critically on the acceleration voltage when the e-beam irradiated an insulating layer as compared to the case when it irradiated metal electrodes. Importantly, s-EBIC signals were increased by more than 10%, when the SWNT part was irradiated, and this makes s-EBIC imaging a very useful tool for locating individual SWNTs efficiently.

  15. Development of exploding wire ion source for intense pulsed heavy ion beam accelerator

    NASA Astrophysics Data System (ADS)

    Ito, Hiroaki; Ochiai, Yasushi; Murata, Takuya; Masugata, Katsumi

    2012-10-01

    A Novel exploding wire type ion source device is proposed as a metallic ion source of intense pulsed heavy ion beam (PHIB) accelerator. In the device, multiple shot operations are realized without breaking the vacuum. The basic characteristics of the device are evaluated experimentally with an aluminum wire of diameter 0.2 mm and length 25 mm. A capacitor bank of capacitance 3 μF and a charging voltage of 30 kV was used, and the wire was successfully exploded by a discharge current of 15 kA with a rise time of 5.3 μs. Plasma flux of ion current density around 70 A/cm2 was obtained at 150 mm downstream from the device. The drift velocity of ions evaluated by a time-of-flight method was 2.7×104 m/ s, which corresponds to the kinetic energy of 100 eV for aluminum ions. From the measurement of the ion current density distribution, the ion flow is found to be concentrated toward the direction where the ion acceleration gap is placed. From the experiment, the device is found to be acceptable for applying the PHIB accelerator.

  16. RADLAC II high current electron beam propagation experiment

    SciTech Connect

    Frost, C.A.; Shope, S.L.; Mazarakis, M.G.; Poukey, J.W.; Wagner, J.S.; Turman, B.N.; Crist, C.E.; Welch, D.R.; Struve, K.W.

    1992-08-01

    This resistive hose instability of an electron beam was observed to be convective in recent RADLAC II experiments for higher current shots. The effects of air scattering for these shots were minimal. These experiments and theory suggest low-frequency hose motion which does not appear convective may be due to rapid expansion and subsequent drifting of the beam nose.

  17. Method for measuring and controlling beam current in ion beam processing

    DOEpatents

    Kearney, Patrick A.; Burkhart, Scott C.

    2003-04-29

    A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.

  18. Dynamics of a high-current relativistic electron beam

    SciTech Connect

    Strelkov, P. S.; Tarakanov, V. P.; Ivanov, I. E. Shumeiko, D. V.

    2015-06-15

    The dynamics of a high-current relativistic electron beam is studied experimentally and by numerical simulation. The beam is formed in a magnetically insulated diode with a transverse-blade explosive-emission cathode. It is found experimentally that the radius of a 500-keV beam with a current of 2 kA and duration of 500 ns decreases with time during the beam current pulse. The same effect was observed in numerical simulations. This effect is explained by a change in the shape of the cathode plasma during the current pulse, which, according to calculations, leads to a change in the beam parameters, such as the electron pitch angle and the spread over the longitudinal electron momentum. These parameters are hard to measure experimentally; however, the time evolution of the radial profile of the beam current density, which can be measured reliably, coincides with the simulation results. This allows one to expect that the behavior of the other beam parameters also agrees with numerical simulations.

  19. Polymorphic beams and Nature inspired circuits for optical current

    PubMed Central

    Rodrigo, José A.; Alieva, Tatiana

    2016-01-01

    Laser radiation pressure is a basis of numerous applications in science and technology such as atom cooling, particle manipulation, material processing, etc. This light force for the case of scalar beams is proportional to the intensity-weighted wavevector known as optical current. The ability to design the optical current according to the considered application brings new promising perspectives to exploit the radiation pressure. However, this is a challenging problem because it often requires confinement of the optical current within tight light curves (circuits) and adapting its local value for a particular task. Here, we present a formalism to handle this problem including its experimental demonstration. It consists of a Nature-inspired circuit shaping with independent control of the optical current provided by a new kind of beam referred to as polymorphic beam. This finding is highly relevant to diverse optical technologies and can be easily extended to electron and x-ray coherent beams. PMID:27734940

  20. Polymorphic beams and Nature inspired circuits for optical current

    NASA Astrophysics Data System (ADS)

    Rodrigo, José A.; Alieva, Tatiana

    2016-10-01

    Laser radiation pressure is a basis of numerous applications in science and technology such as atom cooling, particle manipulation, material processing, etc. This light force for the case of scalar beams is proportional to the intensity-weighted wavevector known as optical current. The ability to design the optical current according to the considered application brings new promising perspectives to exploit the radiation pressure. However, this is a challenging problem because it often requires confinement of the optical current within tight light curves (circuits) and adapting its local value for a particular task. Here, we present a formalism to handle this problem including its experimental demonstration. It consists of a Nature-inspired circuit shaping with independent control of the optical current provided by a new kind of beam referred to as polymorphic beam. This finding is highly relevant to diverse optical technologies and can be easily extended to electron and x-ray coherent beams.

  1. Beam loading in a laser-plasma accelerator using a near-hollow plasma channel

    SciTech Connect

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.

    2013-12-15

    Beam loading in laser-plasma accelerators using a near-hollow plasma channel is examined in the linear wake regime. It is shown that, by properly shaping and phasing the witness particle beam, high-gradient acceleration can be achieved with high-efficiency, and without induced energy spread or emittance growth. Both electron and positron beams can be accelerated in this plasma channel geometry. Matched propagation of electron beams can be achieved by the focusing force provided by the channel density. For positron beams, matched propagation can be achieved in a hollow plasma channel with external focusing. The efficiency of energy transfer from the wake to a witness beam is calculated for single ultra-short bunches and bunch trains.

  2. Effective shielding to measure beam current from an ion source

    SciTech Connect

    Bayle, H.; Delferrière, O.; Gobin, R.; Harrault, F.; Marroncle, J.; Senée, F.; Simon, C.; Tuske, O.

    2014-02-15

    To avoid saturation, beam current transformers must be shielded from solenoid, quad, and RFQ high stray fields. Good understanding of field distribution, shielding materials, and techniques is required. Space availability imposes compact shields along the beam pipe. This paper describes compact effective concatenated magnetic shields for IFMIF-EVEDA LIPAc LEBT and MEBT and for FAIR Proton Linac injector. They protect the ACCT Current Transformers beyond 37 mT radial external fields. Measurements made at Saclay on the SILHI source are presented.

  3. Beam position and energy monitoring in compact linear accelerators for radiotherapy.

    PubMed

    Ruf, Marcel; Müller, Sven; Setzer, Stefan; Schmidt, Lorenz-Peter

    2014-02-01

    The experimental verification of a novel sensor topology capable of measuring both the position and energy of an electron beam inside a compact electron linear accelerator for radiotherapy is presented. The method applies microwave sensing techniques and allows for the noninterceptive monitoring of the respective beam parameters within compact accelerators for medical or industrial purposes. A state space feedback approach is described with the help of which beam displacements, once detected, can be corrected within a few system macropulses. The proof-of-principle experiments have been conducted with a prototype accelerator and customized hardware. Additionally, closed-loop operation with high accuracy is demonstrated.

  4. Vacuum laser-driven acceleration by two slits-truncated Bessel beams

    SciTech Connect

    Li, D.; Imasaki, K.

    2005-08-29

    An approach of vacuum acceleration by two laser Bessel beams is presented in this letter. With elaborate arrangement, the two Bessel beams are truncated by a set of special annular slits to form consecutive acceleration field in the electron traveling direction. Therefore, the electron of a certain initial energy can be accelerated in the whole interaction region without experiencing deceleration even though the phase-slippage occurs. Furthermore, the Bessel beam can provide a rather long distance for the effective interaction between the electron and the laser field due to its 'diffraction-free' property, resulting in improvement of the energy exchange.

  5. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.

    PubMed

    Minsky, D M; Kreiner, A J

    2014-06-01

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the (7)Li(p,n)(7)Be neutron production reaction to obtain neutron beams to treat deep seated tumors.

  6. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.

    PubMed

    Minsky, D M; Kreiner, A J

    2014-06-01

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the (7)Li(p,n)(7)Be neutron production reaction to obtain neutron beams to treat deep seated tumors. PMID:24345525

  7. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema

    Andrei Seryi

    2016-07-12

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  8. Design study of double-layer beam trajectory accelerator based on the Rhodotron structure

    NASA Astrophysics Data System (ADS)

    Jabbari, Iraj; Poursaleh, Ali Mohammad; Khalafi, Hossein

    2016-08-01

    In this paper, the conceptual design of a new structure of industrial electron accelerator based on the Rhodotron accelerator is presented and its properties are compared with those of Rhodotron-TT200 accelerator. The main goal of this study was to reduce the power of RF system of accelerator at the same output electron beam energy. The main difference between the new accelerator structure with the Rhodotron accelerator is the length of the coaxial cavity that is equal to the wavelength at the resonant frequency. Also two sets of bending magnets were used around the acceleration cavity in two layers. In the new structure, the beam crosses several times in the coaxial cavity by the bending magnets around the cavity at the first layer and then is transferred to the second layer using the central bending magnet. The acceleration process in the second layer is similar to the first layer. Hence, the energy of the electron beam will be doubled. The electrical power consumption of the RF system and magnet system were calculated and simulated for the new accelerator structure and TT200. Comparing the calculated and simulated results of the TT200 with those of experimental results revealed good agreement. The results showed that the overall electrical power consumption of the new accelerator structure was less than that of the TT200 at the same energy and power of the electron beam. As such, the electrical efficiency of the new structure was improved.

  9. Electron acceleration in the turbulent reconnecting current sheets in solar flares

    NASA Astrophysics Data System (ADS)

    Wu, G. P.; Huang, G. L.

    2009-07-01

    Context: We investigate the nonlinear evolution of the electron distribution in the presence of the strong inductive electric field in the reconnecting current sheets (RCS) of solar flares. Aims: We aim to study the characteristics of nonthermal electron-beam plasma instability and its influence on electron acceleration in RCS. Methods: Including the external inductive field, the one-dimensional Vlasov simulation is performed with a realistic mass ratio for the first time. Results: Our principal findings are as follows: 1) the Buneman instability can be quickly excited on the timescale of 10-7 s for the typical parameters of solar flares. After saturation, the beam-plasma instabilities are excited due to the non-Maxwellian electron distribution; 2) the final velocity of the electrons trapped by these waves is of the same order as the phase speed of the waves, while the untrapped electrons continue to be accelerated; 3) the inferred anomalous resistance of the current sheet and the energy conversion rate are basically of the same order as those previously estimated, e.g., “the analysis of Martens”. Conclusions: The Buneman instability is excited on the timescale of 10-7 s and the wave-particle resonant interaction limits the low-energy electrons to be further accelerated in RCS.

  10. Differential acceleration in the final beam lines of a Heavy Ion Fusion driver

    SciTech Connect

    Friedman, Alex

    2013-10-19

    A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, which each have unique arrival times and may have unique kinetic energies. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: that the path lengths of the beams in a group must be equal, and that any delay of \\main-pulse" beams relative to \\foot-pulse" beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying \\di erential acceleration" to individual beams or sets of beam at strategic stages of the transport lines. That is, by accelerating some beams \\sooner" and others \\later," it is possible to simplify the beam line con guration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use di erential acceleration to e ect the simultaneous arrival on target of a set of beams ( e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model con gurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy.

  11. Differential acceleration in the final beam lines of a Heavy Ion Fusion driver

    DOE PAGES

    Friedman, Alex

    2013-10-19

    A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, which each have unique arrival times and may have unique kinetic energies. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: thatmore » the path lengths of the beams in a group must be equal, and that any delay of \\main-pulse" beams relative to \\foot-pulse" beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying \\di erential acceleration" to individual beams or sets of beam at strategic stages of the transport lines. That is, by accelerating some beams \\sooner" and others \\later," it is possible to simplify the beam line con guration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use di erential acceleration to e ect the simultaneous arrival on target of a set of beams ( e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model con gurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy.« less

  12. Design of the plasma chamber and beam extraction system for SC ECRIS of RAON accelerator.

    PubMed

    Kim, Y; Choi, S; Hong, I S

    2014-02-01

    The RAON accelerator is the heavy ion accelerator being built in Korea. It contains a 3rd generation SC ECRIS which uses 28 GHz/18 GHz microwave power to extract 12 puA uranium ion beams. A plasma chamber for that ECRIS is made of aluminum machined from bulk Al. That chamber contains cooling channels to remove dumped power and another access port for microwave introduction and plasma diagnostics. Beam extraction electrodes were designed considering the engineering issues and preliminary beam extraction analysis was done. That plasma chamber will be assembled with a cryostat, and beam extraction experiment will be done.

  13. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider

    SciTech Connect

    Liu, C.; Marusic, A.; Minty, M.

    2014-09-09

    To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.

  14. Impedance-based analysis and study of phase sensitivity in slow-wave two-beam accelerators

    SciTech Connect

    Wurtele, J.S. ); Whittum, D.H. , Tsukuba, Oho, Ibaraki, 305 ); Sessler, A.M. )

    1992-07-01

    This paper presents a new formalism which makes the analysis and understanding of both the relativistic klystron (RK) and the standing-wave free-electron laser (SWFEL) two-beam accelerator (TBA) available to a wide audience of accelerator physicists. A coupling impedance'' for both the RK and SWFEWL is introduced, which can include realistic cavity features, such as beam and vacuum ports, in a simple manner. The RK and SWFEL macroparticle equations, which govern the energy and phase evolution of successive bunches in the beam, are of identical form, differing only by multiplicative factors. Expressions are derived for the phase and amplitude sensitivities of the TBA schemes to errors (shot-to-shot jitter) in current and energy. The analysis allows, for the first time, relative comparisons of the RK and the SWFEL TBAs.

  15. Impedance-based analysis and study of phase sensitivity in slow-wave two-beam accelerators

    SciTech Connect

    Wurtele, J.S.; Whittum, D.H.; Sessler, A.M.

    1992-06-01

    This paper presents a new formalism which makes the analysis and understanding of both the relativistic klystron (RK) and the standing-wave free-electron laser (SWFEL) two-beam accelerator (TBA) available to a wide audience of accelerator physicists. A ``coupling impedance`` for both the RK and SWFEWL is introduced, which can include realistic cavity features, such as beam and vacuum ports, in a simple manner. The RK and SWFEL macroparticle equations, which govern the energy and phase evolution of successive bunches in the beam, are of identical form, differing only by multiplicative factors. Expressions are derived for the phase and amplitude sensitivities of the TBA schemes to errors (shot-to-shot jitter) in current and energy. The analysis allows, for the first time, relative comparisons of the RK and the SWFEL TBAs.

  16. Radiative damping and electron beam dynamics in plasma-based accelerators.

    PubMed

    Michel, P; Schroeder, C B; Shadwick, B A; Esarey, E; Leemans, W P

    2006-08-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron, the resulting radiation can increase the relative energy spread of the beam to significant levels (e.g., several percent). This effect can be diminished by matching the beam into the channel, which could require micron sized beam radii for typical values of the beam emittance and plasma density.

  17. Radiative damping and electron beam dynamics in plasma-based accelerators

    NASA Astrophysics Data System (ADS)

    Michel, P.; Schroeder, C. B.; Shadwick, B. A.; Esarey, E.; Leemans, W. P.

    2006-08-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron, the resulting radiation can increase the relative energy spread of the beam to significant levels (e.g., several percent). This effect can be diminished by matching the beam into the channel, which could require micron sized beam radii for typical values of the beam emittance and plasma density.

  18. HIGH POWER BEAM DUMP AND TARGET / ACCELERATOR INTERFACE PROCEDURES

    SciTech Connect

    Blokland, Willem; Plum, Michael A; Peters, Charles C; Brown, David L; Galambos, John D

    2013-01-01

    Satisfying operational procedures and limits for the beam target interface is a critical concern for high power operation at spallation neutron sources. At the Oak Ridge Spallation Neutron Source (SNS) a number of protective measures are instituted to ensure that the beam position, beam size and peak intensity are within acceptable limits at the target and high power Ring Injection Dump (RID). The high power beam dump typically handles up to 50 100 kW of beam power and its setup is complicated by the fact that there are two separate beam components simultaneously directed to the dump. The beam on target is typically in the 800-1000 kW average power level, delivered in sub- s 60 Hz pulses. Setup techniques using beam measurements to quantify the beam parameters at the target and dump will be described. However, not all the instrumentation used for the setup and initial qualification is available during high power operation. Additional techniques are used to monitor the beam during high power operation to ensure the setup conditions are maintained, and these are also described.

  19. Change in operating parameters of the Continuous Electron Beam Accelerator Facility and Free Electron Laser, Thomas Jefferson National Accelerator Facility, Newport News, Virginia

    SciTech Connect

    1997-10-01

    In this environmental assessment (EA), the US Department of Energy (DOE) reports the results of an analysis of the potential environmental impacts from a proposed change in operating parameters of the Continuous Electron Beam Accelerator Facility (CEBAF), and operation of the Free Electron Laser (FEL) facility beyond the initial demonstration period. With this proposal, DOE intends to increase CEBAF operating range from its current operating maximum beam energy of 4.0 GeV [giga-(billion) electron volts] to 8.0 GeV at a beam power of no greater than 1,000 kW [1 megawatt (MW)], its maximum attainable level, based on current technology and knowledge, without significant, costly equipment modifications. DOE has prepared an EA for this action to determine the potential for adverse impacts from operation of CEBAF and the FEL at the proposed levels. Changing the operating parameters of CEBAF would require no new major construction and minor modifications to the accelerator, its support systems, the FEL, and onsite utility systems. Modifications and performance improvements would be made to (1) the accelerator housed in the underground tunnels, (2) its support systems located in the above ground service buildings, and (3) the water and equipment cooling systems both in the tunnel and at the ground surface. All work would be performed on previously disturbed land and in, on, or adjacent to existing buildings, structures, and equipment. With the proposed action, the recently constructed FEL facility at the Jefferson Lab would operate in concert with CEBAF beyond its demonstration period and up to its maximum effective electron beam power level of 210 kW. In this EA, DOE evaluates the impacts of the no-action alternative and the proposed action alternative. Alternatives considered, but dismissed from further evaluation, were the use of another accelerator facility and the use of another technology.

  20. Testing general relativity with laser accelerated electron beams

    SciTech Connect

    Gergely, L. A.; Harko, T.

    2012-07-09

    Electron accelerations of the order of 10{sup 21} g obtained by laser fields open up the possibility of experimentally testing one of the cornerstones of general relativity, the weak equivalence principle, which states that the local effects of a gravitational field are indistinguishable from those sensed by a properly accelerated observer in flat space-time. We illustrate how this can be done by solving the Einstein equations in vacuum and integrating the geodesic equations of motion for a uniformly accelerated particle.

  1. Critical current studies on fine filamentary NbTi accelerator wires

    SciTech Connect

    Garber, M.; Suenaga, M.; Sampson, W.B.; Sabatini, R.L.

    1985-01-01

    The magnets for the Superconductig Super Collider, a high energy proton colliding beam accelerator, require a superconductor with very high current density (>2400 A/mm/sup 2/ at 5 T) and very small filaments (approx. 2..mu..m in diameter). Previous work has shown that by controlling the formation of Cu/sub 4/Ti compound particles on the filament surfaces it is possible to make fine filamentary NbTi wire with high critical current density. The performance of multi-filamentary wire is characterized by the current density and the quantity ''n'' which describes the superconducting-normal transition. Micrographs of wires having high J/sub c/ and high n show smooth, uniform filaments. Recently wires of very high critical current and high n have been produced in experimental quantities by commercial manufactures.

  2. Features of accelerated electron beam formation in LHCD experiments on FT-2 tokamak

    NASA Astrophysics Data System (ADS)

    Lashkul, S. I.; Rozhdestvensky, V. V.; Altukhov, A. B.; Dyachenko, V. V.; Esipov, L. A.; Kantor, M. Yu.; Krikunov, S. V.; Kuprienko, D. V.; Stepanov, A. Yu.

    2012-12-01

    In experiments with lower hybrid current drive (LHCD) on the FT-2 tokamak, lower hybrid (LH) waves have been successfully used for the first time to ensure effective additional heating of plasma electrons from 450 to 600 eV ( I Pl = 32 kA, Δ t RF = 14 ms, P RF = 100 kW, F = 920 MHz). Several factors influencing the efficiency of plasma heating have been discovered. In particular, significant growth of radiation losses in the LHCD regime has been found, which is probably related to an increase in the intensity of synchrotron radiation from accelerated electrons. The increase in this intensity in the 53-156 GHz frequency range was accompanied by short spikes of microwave radiation, which were observed only in a narrower frequency range (53-78 GHz) and apparently resulted from interaction of a runaway electron beam with significant local mirrors of toroidal magnetic field. A model of the additional heating of plasma electrons due to absorption of the microwave radiation generated by a beam of accelerated electrons is proposed.

  3. Laser ion acceleration toward future ion beam cancer therapy - Numerical simulation study -

    PubMed Central

    Kawata, Shigeo; Izumiyama, Takeshi; Nagashima, Toshihiro; Takano, Masahiro; Barada, Daisuke; Kong, Qing; Gu, Yan Jun; Wang, Ping Xiao; Ma, Yan Yun; Wang, Wei Min

    2013-01-01

    Background: Ion beam has been used in cancer treatment, and has a unique preferable feature to deposit its main energy inside a human body so that cancer cell could be killed by the ion beam. However, conventional ion accelerator tends to be huge in its size and its cost. In this paper a future intense-laser ion accelerator is proposed to make the ion accelerator compact. Subjects and methods: An intense femtosecond pulsed laser was employed to accelerate ions. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching and the ion particle energy control. In the study particle computer simulations were performed to solve the issues, and each component was designed to control the ion beam quality. Results: When an intense laser illuminates a target, electrons in the target are accelerated and leave from the target; temporarily a strong electric field is formed between the high-energy electrons and the target ions, and the target ions are accelerated. The energy efficiency from the laser to ions was improved by using a solid target with a fine sub-wavelength structure or by a near-critical density gas plasma. The ion beam collimation was realized by holes behind the solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching were successfully realized by a multi-stage laser-target interaction. Conclusions: The present study proposed a novel concept for a future compact laser ion accelerator, based on each component study required to control the ion beam quality and parameters. PMID:24155555

  4. Space charge templates for high-current beam modeling

    SciTech Connect

    Vorobiev, Leonid G.; /Fermilab

    2008-07-01

    A computational method to evaluate space charge potential and gradients of charged particle beam in the presence of conducting boundaries, has been introduced. The three-dimensional (3D) field of the beam can be derived as a convolution of macro Green's functions (template fields), satisfying the same boundary conditions, as the original beam. Numerical experiments gave a confidence that space charge effects can be modeled by templates with enough accuracy and generality within dramatically faster computational times than standard combination: a grid density + Poisson solvers, realized in the most of Particle in Cell codes. The achieved rapidity may significantly broaden the high-current beam design space, making the optimization in automatic mode possible, which so far was only feasible for simplest self-field formulations such as rms envelope equations. The template technique may be used as a standalone program, or as an optional field solver in existing beam dynamics codes both in one-passage structures and in rings.

  5. Excitation of a cylindrical cavity by a helical current and an axial electron beam current

    NASA Astrophysics Data System (ADS)

    Davidovich, M. V.; Bushuev, N. A.

    2013-07-01

    The explicit expressions (in the Vainshtein and Markov forms) are derived for the excitation of a cylindrical cavity with perfectly conducting walls and with impedance end faces. Excitation of a cylindrical cavity and a cylindrical waveguide with a preset nonuniform axial electron-beam current and a helical current with a variable pitch, which is excited by a concentrated voltage source and is loaded by a preset pointlike matched load, is considered. For the helical current, the integro-differential equation is formulated. The traveling-wave tube (TWT) is simulated in the preset beam current approximation taking into account the nonuniform winding of the spiral coil, nonuniform electron beam, and losses.

  6. Acceleration of electrons by a tightly focused intense laser beam.

    PubMed

    Li, Jian-Xing; Zang, Wei-Ping; Li, Ya-Dong; Tian, Jian-Guo

    2009-07-01

    The recent proposal to use Weinger transformation field (WTF) [Opt. Express 17, 4959-4969 (2009)] for describing tightly focused laser beams is investigated here in detail. In order to validate the accuracy of WTF, we derive the numerical field (NF) from the plane wave spectrum method. WTF is compared with NF and Lax series field (LSF). Results show that LSF is accurate close to the beam axis and divergent far from the beam axis, and WTF is always accurate. Moreover, electron dynamics in a tightly focused intense laser beam are simulated by LSF, WTF and NF, respectively. The results obtained by WTF are shown to be accurate.

  7. Acceleration of electrons by a tightly focused intense laser beam.

    PubMed

    Li, Jian-Xing; Zang, Wei-Ping; Li, Ya-Dong; Tian, Jian-Guo

    2009-07-01

    The recent proposal to use Weinger transformation field (WTF) [Opt. Express 17, 4959-4969 (2009)] for describing tightly focused laser beams is investigated here in detail. In order to validate the accuracy of WTF, we derive the numerical field (NF) from the plane wave spectrum method. WTF is compared with NF and Lax series field (LSF). Results show that LSF is accurate close to the beam axis and divergent far from the beam axis, and WTF is always accurate. Moreover, electron dynamics in a tightly focused intense laser beam are simulated by LSF, WTF and NF, respectively. The results obtained by WTF are shown to be accurate. PMID:19582099

  8. Flyer Acceleration by Pulsed Ion Beam Ablation and Application for Space Propulsion

    SciTech Connect

    Harada, Nobuhiro; Buttapeng, Chainarong; Yazawa, Masaru; Kashine, Kenji; Jiang Weihua; Yatsui, Kiyoshi

    2004-02-04

    Flyer acceleration by ablation plasma pressure produced by irradiation of intense pulsed ion beam has been studied. Acceleration process including expansion of ablation plasma was simulated based on fluid model. And interaction between incident pulsed ion beam and a flyer target was considered as accounting stopping power of it. In experiments, we used ETIGO-II intense pulsed ion beam generator with two kinds of diodes; 1) Magnetically Insulated Diode (MID, power densities of <100 J/cm2) and 2) Spherical-focused Plasma Focus Diode (SPFD, power densities of up to 4.3 kJ/cm2). Numerical results of accelerated flyer velocity agreed well with measured one over wide range of incident ion beam energy density. Flyer velocity of 5.6 km/s and ablation plasma pressure of 15 GPa was demonstrated by the present experiments. Acceleration of double-layer target consists of gold/aluminum was studied. For adequate layer thickness, such a flyer target could be much more accelerated than a single layer. Effect of waveform of ion beam was also examined. Parabolic waveform could accelerate more efficiently than rectangular waveform. Applicability of ablation propulsion was discussed. Specific impulse of 7000{approx}8000 seconds and time averaged thrust of up to 5000{approx}6000N can be expected. Their values can be controllable by changing power density of incident ion beam and pulse duration.

  9. A prototype of a beam steering assistant tool for accelerator operations

    SciTech Connect

    M. Bickley; P. Chevtsov

    2006-10-24

    The CEBAF accelerator provides nuclear physics experiments at Jefferson Lab with high quality electron beams. Three experimental end stations can simultaneously receive the beams with different energies and intensities. For each operational mode, the accelerator setup procedures are complicated and require very careful checking of beam spot sizes and positions on multiple beam viewers. To simplify these procedures and make them reproducible, a beam steering assistant GUI tool has been created. The tool is implemented as a multi-window control screen. The screen has an interactive graphical object window, which is an overlay on top of a digitized live video image from a beam viewer. It allows a user to easily create and edit any graphical objects consisting of text, ellipses, and lines, right above the live beam viewer image and then save them in a file that is called a beam steering template. The template can show, for example, the area within which the beam must always be on the viewer. Later, this template can be loaded in the interactive graphical object window to help accelerator operators steer the beam to the specified area on the viewer.

  10. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    PubMed

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  11. Beam transport in the crystal x-ray accelerator

    SciTech Connect

    Tajima, T.; Newberger, B.S. ); Huson, F.R.; Mackay, W.W. ); Covington, B.C.; Payne, J. ); Mahale, N.K.; Ohnuma, S. )

    1989-01-01

    A Fokker-Planck model of charged particle transport in crystal channels which includes the effect of strong accelerating gradients has been developed for application to the crystal x-ray accelerator and other crystal accelerator schemes. We indicate the implications of the analytic solutions found for a harmonic channeling potential for the accelerating gradient and the multiple scattering which, because we consider only the acceleration of positive particles, is dominated by scattering from the valence electrons. In order to relax the constraints imposed by these, we have been exploring the application of novel materials to this problem. One candidate is porous Si and our investigation into this material which is as yet preliminary is discussed and other possible materials are indicated.

  12. Online beam energy measurement of Beijing electron positron collider II linear accelerator.

    PubMed

    Wang, S; Iqbal, M; Liu, R; Chi, Y

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  13. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    NASA Astrophysics Data System (ADS)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  14. The accelerator facility of the Heidelberg Ion-Beam Therapy Centre (HIT)

    NASA Astrophysics Data System (ADS)

    Peters, Andreas

    The following sections are included: * Introduction * Beam parameters * General layout of the HIT facility * The accelerator chain in detail * Operational aspects of a particle therapy facility * 24/7 accelerator operation at 335 days per year * Safety and regulatory aspects * Status and perspectives * References

  15. CEBAF: The Continuous Electron Beam Accelerator Facility and its Physics Program

    SciTech Connect

    Mougey, Jean

    1992-01-01

    With the 4 GeV Continuous Electron Beam Accelerator Facility presently under construction in Newport News, Virginia, a new domain of nuclear and subnuclear phenomena can be investigated, mainly through coincidence experiments. An overview of the characteristic features of the accelerator and associated experimental equipment is given. Some examples of the physics programs are briefly described.

  16. Photoelectron linear accelerator for producing a low emittance polarized electron beam

    SciTech Connect

    Yu, David U.; Clendenin, James E.; Kirby, Robert E.

    2004-06-01

    A photoelectron linear accelerator for producing a low emittance polarized electric beam. The accelerator includes a tube having an inner wall, the inner tube wall being coated by a getter material. A portable, or demountable, cathode plug is mounted within said tube, the surface of said cathode having a semiconductor material formed thereon.

  17. High-Energy Laser-Accelerated Electron Beams for Long-Range Interrogation

    SciTech Connect

    Cummingham, N. J.; Banerjee, Sudeep; Ramanathan, Vidya; Powell, Nathan; Chandler-Smith, Nate; Vane, C Randy; Schultz, David Robert; Pozzi, Sara; Clarke, Shaun; Beene, James R; Umstadter, Donald

    2009-01-01

    We are studying the use of 0.1 1.0 GeV laser-accelerated electron beams as active interrogation probes for long-standoff radiography or nuclear activation of concealed special nuclear material. Use of beams in this energy range is largely unexplored, but such beams could provide notable advantages over lower-energy beams and x-rays. High-energy laser-accelerated electrons exhibit large penetration range through air and solids, and low beam divergence for both direct beams and secondary Bremsstrahlung x-rays. We present laboratory measurements of radiography and activation, using the high-power Diodes laser system at the University of Nebraska, as well as MCNP and GEANT Monte Carlo simulation results used to aid experiment design and interpretation.

  18. Concept for Generation of Warm Dense Matter of Insulator due to Flyer Impact Accelerated by Electron Beam Irradiation using Intense Pulsed Power Generator

    NASA Astrophysics Data System (ADS)

    TAMURA, Fumihiro; HAYASHI, Ryota; KUDO, Takahiro; WATABE, Arata; KASHINE, Kenji; TOKUCHI, Akira; KIKUCHI, Takashi; TAKAHASHI, Kazumasa; SASAKI, Toru; ASO, Tsukasa; HARADA, Nob.; JIANG, Weihua

    2016-03-01

    We have proposed a concept for generation method of warm dense matter (WDM) by using flyer impact accelerated by intense electron beams. To generate the warm dense matter by using flyer impact, the output current of electron beams generated by the intense pulsed-power generator as ETIGO-II is evaluated. The results denote that the beam current and the pulse duration are 11 kA and 50 ns, respectively. The achievable parameters of WDM by using flyer impact are estimated by the simplified model. It indicated that the sample temperature achieves the provided electron beams with lower conversion efficiency.

  19. Analysis of secondary particle behavior in multiaperture, multigrid accelerator for the ITER neutral beam injector.

    PubMed

    Mizuno, T; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Watanabe, K; Dairaku, M; Sakamoto, K; Inoue, T

    2010-02-01

    Heat load on acceleration grids by secondary particles such as electrons, neutrals, and positive ions, is a key issue for long pulse acceleration of negative ion beams. Complicated behaviors of the secondary particles in multiaperture, multigrid (MAMuG) accelerator have been analyzed using electrostatic accelerator Monte Carlo code. The analytical result is compared to experimental one obtained in a long pulse operation of a MeV accelerator, of which second acceleration grid (A2G) was removed for simplification of structure. The analytical results show that relatively high heat load on the third acceleration grid (A3G) since stripped electrons were deposited mainly on A3G. This heat load on the A3G can be suppressed by installing the A2G. Thus, capability of MAMuG accelerator is demonstrated for suppression of heat load due to secondary particles by the intermediate grids.

  20. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    PubMed Central

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-01-01

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276

  1. Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.

    PubMed

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-12-14

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  2. Development of a GVM-based ion beam energy stabilization system at the Bucharest Van de Graaff FN tandem accelerator

    NASA Astrophysics Data System (ADS)

    Mosu, D. V.; Ghit, D. G.; Dobrescu, S.; Sava, T.; Savu, B.; Naghel, G.; Moisa, D.; Calinescu, I. C.; Dumitru, G.; Mitu, I. O.; Petcu, M.; Cata-Danil, Gh.

    2013-04-01

    This paper presents a new, home-made, GVM (Generating Voltmeter) ion beam energy stabilization system, currently in operation at the Bucharest Tandem Van de Graaff accelerator. The new design combines the signal from the GVM preamplifier with the signal of an original digital reference, in order to obtain an error signal needed by the high-voltage stabilization loop. It is shown that the structure of the employed algorithm provides a high efficiency operation mode for the slow variation of accelerating voltage, with the exception of discharges in the high voltage system. The block structure design, construction features, and tests of this new stabilization system are reported in detail.

  3. Current limiting mechanisms in electron and ion beam experiments

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.

    1990-01-01

    The emission and collection of current from satellites or rockets in the ionosphere is a process which, at equilibrium, requires a balance between inward and outward currents. In most active experiments in the ionosphere and magnetosphere, the emitted current exceeds the integrated thermal current by one or more orders of magnitude. The system response is typically for the emitted current to be limited by processes such as differential charging of insulating surfaces, interactions between an emitted beam and the local plasma, and interactions between the beam and local neutral gas. These current limiting mechanisms have been illustrated for 20 years in sounding rocket and satellite experiments, which are reviewed here. Detailed presentations of the Spacecraft Charging at High Altitude (SCATHA) electron and ion gun experiments are used to demonstrate the general range of observed phenomena.

  4. Accelerator systems and instrumentation for the NuMI neutrino beam

    SciTech Connect

    Zwaska, Robert Miles

    2005-12-01

    The neutrinos at the main injector (NuMI) neutrino beam facility began operating at the Fermi National Accelerator Laboratory in 2005. NuMI produces an intense, muon-neutrino beam to a number of experiments. Foremost of these experiments is MINOS-the Main Injector Neutrino Oscillation Search-that uses two neutrino detectors in the beam, one at Fermilab and one in northern Minnesota, to investigate the phenomenon of neutrino oscillations.

  5. Generation of a rectangular beam distribution for irradiation of the accelerator production of tritium target

    SciTech Connect

    Blind, B.

    1990-01-01

    A scheme has been developed to produce a well-confined rectangular beam-intensity distribution of greatly enhanced uniformity from initially-peaked intensity distributions such as Gaussian or parabolic distributions without beam scraping. This scheme employs a system of linear and nonlinear transport-line elements. The linear elements prepare the beam for the nonlinear focusing and govern the beam size at the target. Uniformity is achieved with octupoles, and beam confinement is assured with duodecapoles. The scheme was applied to the target focus for the Accelerator Production of Tritium (APT) system. An initially Gaussian-distributed beam of 1.6-GeV protons was shaped into a rectangular 4 m by 2 m beam spot of acceptably uniform intensity at the tritium-production target. The scheme eliminates the need for sweeping the beam in a raster pattern to produce uniform target illumination. Details of the scheme are discussed.

  6. Energy-angle correlation of electrons accelerated by laser beam in vacuum

    SciTech Connect

    Chen, Z.; Ho, Y.K.; Xie, Y.J.; Zhang, S.Y.; Yan, Z.; Xu, J.J.; Lin, Y.Z.; Hua, J.F.

    2004-09-27

    The correlation between the outgoing energy and the scattering angle of electrons accelerated by a laser beam in vacuum has been investigated. Essentially, the single-valued function of the correlation, derived from classical electrodynamics Compton scattering for a plane wave, is broadened to a band. It means electrons with the same outgoing energy will have an angular spread. An equation to describe this correlation has been derived. Dependence of the spread width of scattering angle on laser beam parameters is examined, and physical explanations of these features are given. The results are found to be consistent with the simulation results for a proposed vacuum laser acceleration scheme: the capture and acceleration scenario.

  7. Routine production of a triton beam for an FN accelerator

    SciTech Connect

    McKay, J.W.; Ashbaugh, P.G.; Stark, J.W.

    1985-10-01

    The use of triton beams from tritiated titanium inserts in a sputter ion source has become a significant part of the McMaster Nuclear Physics programme. Tritium beams have been run on the McMaster University FN Tandem since 1978 on the basis of one scheduled running period per year accumulating a total of over 4000 hours of running time. Beams of up to one microamp are routinely put on target. Procedures for safe maintenance and operation of such a source have been developed, and techniques for handling up to 40 TBq (about 1000 Ci) of tritium have been approved by the Atomic Energy Control Board.

  8. Proton-beam writing channel based on an electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Lapin, A. S.; Rebrov, V. A.; Kolin'ko, S. V.; Salivon, V. F.; Ponomarev, A. G.

    2016-09-01

    We have described the structure of the proton-beam writing channel as a continuation of a nuclear scanning microprobe channel. The problem of the accuracy of positioning a probe by constructing a new high-frequency electrostatic scanning system has been solved. Special attention has been paid to designing the probe-forming system and its various configurations have been considered. The probe-forming system that best corresponds to the conditions of the lithographic process has been found based on solving the problem of optimizing proton beam formation. A system for controlling beam scanning using multifunctional module of integrated programmable logic systems has been developed.

  9. System modeling for the longitudinal beam dynamics control problem in heavy ion induction accelerators

    SciTech Connect

    Payne, A.N.

    1993-05-17

    We address the problem of developing system models that are suitable for studying the control of the longitudinal beam dynamics in induction accelerators for heavy ions. In particular, we present the preliminary results of our efforts to devise a general framework for building detailed, integrated models of accelerator systems consisting of pulsed power modular circuits, induction cells, beam dynamics, and control system elements. Such a framework will permit us to analyze and design the pulsed power modulators and the control systems required to effect precise control over the longitudinal beam dynamics.

  10. Electron-Beam Dynamics for an Advanced Flash-Radiography Accelerator

    DOE PAGES

    Ekdahl, Carl

    2015-11-17

    Beam dynamics issues were assessed for a new linear induction electron accelerator being designed for multipulse flash radiography of large explosively driven hydrodynamic experiments. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Furthermore, beam physics issues were examined through theoretical analysis and computer simulations, including particle-in-cell codes. Beam instabilities investigated included beam breakup, image displacement, diocotron, parametric envelope, ion hose, and themore » resistive wall instability. The beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos National Laboratory will result if the same engineering standards and construction details are upheld.« less

  11. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    NASA Astrophysics Data System (ADS)

    Roychowdhury, P.; Mishra, L.; Kewlani, H.; Patil, D. S.; Mittal, K. C.

    2014-03-01

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20-40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, -2 to -4 kV, and 0 kV, respectively. The total ion beam current of 30-40 mA is recorded on Faraday cup at 40 keV of beam energy at 600-1000 W of microwave power, 800-1000 G axial magnetic field and (1.2-3.9) × 10-3 mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  12. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P. Mishra, L.; Kewlani, H.; Mittal, K. C.; Patil, D. S.

    2014-03-15

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, −2 to −4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10{sup −3} mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  13. Automated detection and analysis of particle beams in laser-plasma accelerator simulations

    SciTech Connect

    Ushizima, Daniela Mayumi; Geddes, C.G.; Cormier-Michel, E.; Bethel, E. Wes; Jacobsen, J.; Prabhat, ,; R.ubel, O.; Weber, G,; Hamann, B.

    2010-05-21

    Numerical simulations of laser-plasma wakefield (particle) accelerators model the acceleration of electrons trapped in plasma oscillations (wakes) left behind when an intense laser pulse propagates through the plasma. The goal of these simulations is to better understand the process involved in plasma wake generation and how electrons are trapped and accelerated by the wake. Understanding of such accelerators, and their development, offer high accelerating gradients, potentially reducing size and cost of new accelerators. One operating regime of interest is where a trapped subset of electrons loads the wake and forms an isolated group of accelerated particles with low spread in momentum and position, desirable characteristics for many applications. The electrons trapped in the wake may be accelerated to high energies, the plasma gradient in the wake reaching up to a gigaelectronvolt per centimeter. High-energy electron accelerators power intense X-ray radiation to terahertz sources, and are used in many applications including medical radiotherapy and imaging. To extract information from the simulation about the quality of the beam, a typical approach is to examine plots of the entire dataset, visually determining the adequate parameters necessary to select a subset of particles, which is then further analyzed. This procedure requires laborious examination of massive data sets over many time steps using several plots, a routine that is unfeasible for large data collections. Demand for automated analysis is growing along with the volume and size of simulations. Current 2D LWFA simulation datasets are typically between 1GB and 100GB in size, but simulations in 3D are of the order of TBs. The increase in the number of datasets and dataset sizes leads to a need for automatic routines to recognize particle patterns as particle bunches (beam of electrons) for subsequent analysis. Because of the growth in dataset size, the application of machine learning techniques for

  14. A study of the structural activation caused by proton beam loss in the {open_quotes}accelerator production of tritium{close_quotes} LINAC

    SciTech Connect

    Daemen, L.L.; Beard, C.A.; Eaton, S.L.; Waters, L.S.; Wilson, W.B.

    1997-01-01

    The Accelerator Production of Tritium (APT) project at Los Alamos National Laboratory makes use of a high power linear proton accelerator to produce neutrons via spallation reactions m a heavy metal target. The fast spallation neutrons are moderated by a heavy water blanket, and used to produce tritium by means of the reaction: {sup 3}He(n,p)T, APT 1993. Various accelerator designs are currently under consideration. At the time when this study was performed, the project called for a 1 GeV proton linear accelerator with a beam current of 200 mA, i.e., a proton beam power of 200 MW. Given the high power at which the APT accelerator is expected to operate, as well as the heavy maintenance that is likely to be required to keep it operating, it is essential to consider health physics issues at an early stage of the design.

  15. A neutron diagnostic for high current deuterium beams

    SciTech Connect

    Rebai, M.; Perelli Cippo, E.; Cavenago, M.; Dalla Palma, M.; Pasqualotto, R.; Tollin, M.; Croci, G.; Gervasini, G.; Ghezzi, F.; Grosso, G.; Tardocchi, M.; Murtas, F.; Gorini, G.

    2012-02-15

    A neutron diagnostic for high current deuterium beams is proposed for installation on the spectral shear interferometry for direct electric field reconstruction (SPIDER, Source for Production of Ion of Deuterium Extracted from RF plasma) test beam facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission on the beam dump surface by placing a detector in close contact, right behind the dump. CNESM uses gas electron multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is made of a thin polythene film and an aluminium film; it is designed for detection of neutrons of energy >2.2 MeV with an incidence angle < 45 deg. CNESM was designed on the basis of simulations of the different steps from the deuteron beam interaction with the beam dump to the neutron detection in the nGEM. Neutron scattering was simulated with the MCNPX code. CNESM on SPIDER is a first step towards the application of this diagnostic technique to the MITICA beam test facility, where it will be used to resolve the horizontal profile of the beam intensity.

  16. Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams.

    PubMed

    Bolton, P R; Borghesi, M; Brenner, C; Carroll, D C; De Martinis, C; Fiorini, Francesca; Flacco, A; Floquet, V; Fuchs, J; Gallegos, P; Giove, D; Green, J S; Green, S; Jones, B; Kirby, D; McKenna, P; Neely, D; Nuesslin, F; Prasad, R; Reinhardt, S; Roth, M; Schramm, U; Scott, G G; Ter-Avetisyan, S; Tolley, M; Turchetti, G; Wilkens, J J

    2014-05-01

    Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on 'Instrumentation for Diagnostics and Control of Laser-accelerated Proton (Ion) Beams' in Abingdon, UK. It includes radiochromic film (RCF), image plates (IP), micro-channel plates (MCP), Thomson spectrometers, prompt inline scintillators, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed.

  17. Industrial application of e-beam accelerators in Korea

    NASA Astrophysics Data System (ADS)

    Han, Bumsoo; Kim, JinKyu; Kim, Yuri; Jeong, Kwang-Young

    2012-07-01

    Electron Accelerators are the most common means of radiation processing, and they are used in diverse industries to enhance the physical and the chemical properties of materials and to reduce undesirable contaminants, such as pathogens or toxic by-products of materials. Fifteen thousand [1,500] electron accelerators are commercially used in the world, and this number is eight or nine times greater than the number of Gamma irradiation facilities. Electron accelerators are reliable and durable electrically-sourced equipment that can produce ionizing radiation when it is needed for a particular commercial use. Electron accelerators were introduced in Korea during the 1970s, firstly for research and later for insulated wire and cable production. At present, over sixty electron accelerators are in commercial use, providing several billion USD annually in Korean industries, mainly for purposes such as, productions of wires, cables, thermo-shrinkable materials, foam sheets, and coating, curing of materials, sterilization of medical products, environmental protection, and others. With the increasing needs in the automobile and electronics industries, applicable areas for electron accelerator will be extended greatly in the future.

  18. DTL cavity design and beam dynamics for a TAC linear proton accelerator

    NASA Astrophysics Data System (ADS)

    Caliskan, A.; Yılmaz, M.

    2012-02-01

    A 30 mA drift tube linac (DTL) accelerator has been designed using SUPERFISH code in the energy range of 3-55 MeV in the framework of the Turkish Accelerator Center (TAC) project. Optimization criteria in cavity design are effective shunt impedance (ZTT), transit-time factor and electrical breakdown limit. In geometrical optimization we have aimed to increase the energy gain in each RF gap of the DTL cells by maximizing the effective shunt impedance (ZTT) and the transit-time factor. Beam dynamics studies of the DTL accelerator have been performed using beam dynamics simulation codes of PATH and PARMILA. The results of both codes have been compared. In the beam dynamical studies, the rms values of beam emittance have been taken into account and a low emittance growth in both x and y directions has been attempted.

  19. A linear accelerator in the space: The beam experiment aboard rocket

    SciTech Connect

    O'Shea, P.G.; Butler, T.A.; Lynch, M.T.; McKenna, K.F.; Pongratz, M.B.

    1990-01-01

    On July 13, 1989 the BEAM experiment Aboard Rocket (BEAR) linear accelerator was successfully launched and operated in space. The flight demonstrated that a neutral hydrogen beam could be successfully propagated in an exoatmospheric environment. The accelerator, which was the result of an extensive collaboration between Los Alamos National Laboratory and industrial partners, was designed to produce a 10 mA (equivalent), 1 MeV neutral hydrogen beam in 50 {mu}s pulses at 5 Hz. The major components were a 30 keV H{sup {minus}} injector a 1 MeV radio frequency quadrupole, two 425 Mhz RF amplifiers, a gas cell neutralizer, beam optics, vacuum system and controls. The design was strongly constrained by the need for a lightweight rugged system that would survive the rigors of launch and operate autonomously. Following the flight the accelerator was recovered and operated again on the laboratory. 6 figs., 2 tabs.

  20. Design study of longitudinal dynamics of the drive beam in 1 TeV relativistic klystron two-beam accelerator

    SciTech Connect

    Li, H.; Yu, S.S.; Sessler, A.M.

    1994-10-01

    In this paper the authors present a design study on the longitudinal dynamics of a relativistic klystron two-beam accelerator (RK-TBA) scheme which has been proposed as a power source candidate for a 1 TeV next linear collider (NLC). They address the issue of maintaining stable power output at desired level for a 300-m long TBA with 150 extraction cavities and present their simulation results to demonstrate that it can be achieved by inductively detuning the extraction cavities to counter the space charge debunching effect on the drive beam. They then carry out simulation study to show that the beam bunches desired by the RK-TBA can be efficiently obtained by first chopping an initially uniform beam of low energy into a train of beam bunches with modest longitudinal dimension and then using the {open_quotes}adiabatic capture{close_quotes} scheme to bunch and accelerate these beam bunches into tight bunches at the operating energy of the drive beam. The authors have also examined the {open_quotes}after burner{close_quotes} scheme which is implemented in their RK-TBA design for efficiency enhancement.

  1. DPSS Laser Beam Quality Optimization Through Pump Current Tuning

    SciTech Connect

    Omohundro, Rob; Callen, Alice; Sukuta, Sydney; /San Jose City Coll.

    2012-03-30

    The goal of this study is to demonstrate how a DPSS laser beam's quality parameters can be simultaneously optimized through pump current tuning. Two DPSS lasers of the same make and model were used where the laser diode pump current was first varied to ascertain the lowest RMS noise region. The lowest noise was found to be 0.13% in this region and the best M{sup 2} value of 1.0 and highest laser output power were simultaneously attained at the same current point. The laser manufacturer reported a M{sup 2} value of 1.3 and RMS noise value of .14% for these lasers. This study therefore demonstrates that pump current tuning a DPSS laser can simultaneously optimize RMS Noise, Power and M{sup 2} values. Future studies will strive to broaden the scope of the beam quality parameters impacted by current tuning.

  2. Beam Test of Multi-Bunch Energy Compensation System in the Accelerator Test Facility at KEK

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Shigeru; Hayano, Hitoshi; Kubo, Kiyoshi; Korhonen, Timo; Nakamura, Shogo; Naito, Takashi; Oide, Katsunobu; Takeda, Seishi; Terunuma, Nobuhiro; Urakawa, Junji

    2004-08-01

    A beam test of the multi-bunch energy compensation system (ECS) was performed using the Δ F method with the 2856± 4.327 MHz accelerating structures in the accelerator test facility (ATF) at KEK. The 1.54 GeV S-band linac of the ATF was designed to accelerate a multi-bunch beam that consists of 20 bunches with 2.8 ns spacing. The multi-bunch beam with 2.0× 1010 electrons/bunch has an energy deviation of about 8.5% at the end of the linac due to transient beam loading without ECS. The ATF linac is the injector of the ATF damping ring (DR), whose energy acceptance is ± 0.5%. The beam loading compensation system is necessary in the ATF linac for the successful injection of multi-bunch into DR. The rf system of the linac consists of 8 regular rf units with the SLED system and 2 ECS rf units without the SLED system. The accelerating structures of the regular units are driven at 2856 MHz and the 2 ECS structures are operated with slightly different rf frequencies of 2856± 4.327 MHz. In the beam test, we have succeeded in compressing the multi-bunch energy spread within the energy acceptance of the DR using Δ F ECS. The principle of the beam loading compensation system of KEK-ATF and the experimental results are described in this paper.

  3. Suppressing beam-centroid motion in a long-pulse linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl; Abeyta, E. O.; Archuleta, R.; Bender, H.; Broste, W.; Carlson, C.; Cook, G.; Frayer, D.; Harrison, J.; Hughes, T.; Johnson, J.; Jacquez, E.; McCuistian, B. Trent; Montoya, N.; Nath, S.; Nielsen, K.; Rose, C.; Schulze, M.; Smith, H. V.; Thoma, C.; Tom, C. Y.

    2011-12-01

    The second axis of the dual-axis radiography of hydrodynamic testing (DARHT) facility produces up to four radiographs within an interval of 1.6μs. It does this by slicing four micropulses out of a 2-μs long electron beam pulse and focusing them onto a bremsstrahlung converter target. The 1.8-kA beam pulse is created by a dispenser cathode diode and accelerated to more than 16 MeV by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for multipulse flash radiography. High-frequency motion, such as from beam-breakup (BBU) instability, would blur the individual spots. Low-frequency motion, such as produced by pulsed-power variation, would produce spot-to-spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it. Using the methods discussed, we have reduced beam motion at the accelerator exit to less than 2% of the beam envelope radius for the high-frequency BBU, and less than 1/3 of the envelope radius for the low-frequency sweep.

  4. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Curzio, G.; d'Errico, F.; Nath, R.; Tinti, R.

    2002-01-01

    Neutron capture in 10B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.

  5. Comparing current cluster, massively parallel, and accelerated systems

    SciTech Connect

    Barker, Kevin J; Davis, Kei; Hoisie, Adolfy; Kerbyson, Darren J; Pakin, Scott; Lang, Mike; Sancho Pitarch, Jose C

    2010-01-01

    Currently there is large architectural diversity in high perfonnance computing systems. They include 'commodity' cluster systems that optimize per-node performance for small jobs, massively parallel processors (MPPs) that optimize aggregate perfonnance for large jobs, and accelerated systems that optimize both per-node and aggregate performance but only for applications custom-designed to take advantage of such systems. Because of these dissimilarities, meaningful comparisons of achievable performance are not straightforward. In this work we utilize a methodology that combines both empirical analysis and performance modeling to compare clusters (represented by a 4,352-core IB cluster), MPPs (represented by a 147,456-core BG/P), and accelerated systems (represented by the 129,600-core Roadrunner) across a workload of four applications. Strengths of our approach include the ability to compare architectures - as opposed to specific implementations of an architecture - attribute each application's performance bottlenecks to characteristics unique to each system, and to explore performance scenarios in advance of their availability for measurement. Our analysis illustrates that application performance is essentially unrelated to relative peak performance but that application performance can be both predicted and explained using modeling.

  6. Generation of heavy ion beams using femtosecond laser pulses in the target normal sheath acceleration and radiation pressure acceleration regimes

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2016-06-01

    Theoretical study of heavy ion acceleration from sub-micron gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations, the time history of the laser pulse is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity 3 × 10 21 W / cm 2 , duration 32 fs, focal spot size 5 μm, and energy 27 J, the calculated reflection, transmission, and coupling coefficients from a 20 nm foil are 80%, 5%, and 15%, respectively. The conversion efficiency into gold ions is 8%. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon, and flux 2 × 10 11 ions / sr . An analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the radiation pressure acceleration regime and the onset of the target normal sheath acceleration regime. The numerical simulations and analytical model point to at least four technical challenges hindering the heavy ion acceleration: low charge-to-mass ratio, limited number of ions amenable to acceleration, delayed acceleration, and high reflectivity of the plasma. Finally, a regime suitable for heavy ion acceleration has been identified in an alternative approach by analyzing the energy absorption and distribution among participating species and scaling of conversion efficiency, maximum energy, and flux with laser intensity.

  7. Accelerator systems and instrumentation for the NuMI neutrino beam

    NASA Astrophysics Data System (ADS)

    Zwaska, Robert Miles

    The Neutrinos at the Main Injector (NuMI) neutrino beam facility began operating at the Fermi National Accelerator Laboratory in 2005. NuMI produces an intense, muon-neutrino beam to a number of experiments. Fore most of these experiments is MINOS---the Main Injector Neutrino Oscillation Search---that uses two neutrino detectors in the beam, one at Fermilab and one in northern Minnesota, to investigate the phenomenon of neutrino oscillations. NuMI is a conventional, horn-focused neutrino beam. It is designed to accept a 400 kW, 120 GeV proton beam from the Fermilab Main Injector accelerator. The proton beam is steered onto a target, producing a secondary beam of mesons which are focused into a long evacuated volume where they decay to muons and neutrinos. Pulsed toroidal magnets (horns) focus an adjustable meson momentum range. Design of the beamline and its components is challenged by the 400 kW average proton beam power. To achieve such high proton power, the Fermilab Main Injector (MI) must store and accelerate ˜ 4x1013 protons per acceleration cycle. This requires the MI to be loaded with 6 or more batches of protons from the 8 GeV Booster accelerator. Such multiple-batch injection involves a synchronization of the two machines not previously required by the Fermilab accelerators. In this dissertation, we investigate timing errors that can arise between the two accelerators, and a feedback system which enables multiple Booster transfers into the Main Injector without significant loss of beam. Using this method of synchronous transfer, the Main Injector has delivered as many as 3x1013 protons per pulse to the NuMI beam. The instrumentation to assess the quality of the neutrino beam includes arrays of radiation-tolerant ionization chambers downstream of the decay volume. These arrays detect the remnant hadrons and tertiary muons produced with the neutrinos. This thesis discusses measurements using the arrays, including diagnostics of potential beam errors and

  8. The Computer Program LIAR for Beam Dynamics Calculations in Linear Accelerators

    SciTech Connect

    Assmann, R.W.; Adolphsen, C.; Bane, K.; Raubenheimer, T.O.; Siemann, R.H.; Thompson, K.; /SLAC

    2011-08-26

    Linear accelerators are the central components of the proposed next generation of linear colliders. They need to provide acceleration of up to 750 GeV per beam while maintaining very small normalized emittances. Standard simulation programs, mainly developed for storage rings, do not meet the specific requirements for high energy linear accelerators. We present a new program LIAR ('LInear Accelerator Research code') that includes wakefield effects, a 6D coupled beam description, specific optimization algorithms and other advanced features. Its modular structure allows to use and to extend it easily for different purposes. The program is available for UNIX workstations and Windows PC's. It can be applied to a broad range of accelerators. We present examples of simulations for SLC and NLC.

  9. Design, fabrication and first beam tests of the C-band RF acceleration unit at SINAP

    NASA Astrophysics Data System (ADS)

    Fang, Wencheng; Gu, Qiang; Sheng, Xing; Wang, Chaopeng; Tong, Dechun; Chen, Lifang; Zhong, Shaopeng; Tan, Jianhao; Lin, Guoqiang; Chen, Zhihao; Zhao, Zhentang

    2016-07-01

    C-band RF acceleration is a crucial technology for the compact Free Electron Laser (FEL) facility at the Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences. A project focusing on C-band RF acceleration technology was launched in 2008, based on high-gradient accelerating structures powered by klystron and pulse compressor units. The target accelerating gradient is 40 MV/m or higher. Recently one prototype of C-band RF unit, consisting of a 1.8 m accelerating structure and a klystron with a TE0115 mode pulse compressor, has been tested with high-power and electron beam. Stable operation at 40 MV/m was demonstrated and, 50 MV/m approached by the end of the test. This paper introduces the C-band R&D program at SINAP and presents the experiment results of high-power and beam tests.

  10. An EBIC equation for solar cells. [Electron Beam Induced Current

    NASA Technical Reports Server (NTRS)

    Luke, K. L.; Von Roos, O.

    1983-01-01

    When an electron beam of a scanning electron microscope (SEM) impinges on an N-P junction, the generation of electron-hole pairs by impact ionization causes a characteristic short circuit current I(sc) to flow. The I(sc), i.e., EBIC (electron beam induced current) depends strongly on the configuration used to investigate the cell's response. In this paper the case where the plane of the junction is perpendicular to the surface is considered. An EBIC equation amenable to numerical computations is derived as a function of cell thickness, source depth, surface recombination velocity, diffusion length, and distance of the junction to the beam-cell interaction point for a cell with an ohmic contact at its back surface. It is shown that the EBIC equation presented here is more general and easier to use than those previously reported. The effects of source depth, ohmic contact, and diffusion length on the normalized EBIC characteristic are discussed.

  11. The beat in laser-accelerated ion beams

    SciTech Connect

    Schnürer, M.; Abicht, F.; Bränzel, J.; Koschitzki, Ch.; Andreev, A. A.; Platonov, K. Yu.; Priebe, G.; Sandner, W.

    2013-10-15

    Regular modulation in the ion velocity distribution becomes detectable if intense femtosecond laser pulses with very high temporal contrast are used for target normal sheath acceleration of ions. Analytical and numerical analysis of the experimental observation associates the modulation with the half-cycle of the driving laser field period. In processes like ion acceleration, the collective and laser-frequency determined electron dynamics creates strong fields in plasma to accelerate the ions. Even the oscillatory motion of electrons and its influence on the acceleration field can dominate over smoothing effects in plasma if a high temporal contrast of the driving laser pulse is given. Acceleration parameters can be directly concluded out of the experimentally observed modulation period in ion velocity spectra. The appearance of the phenomenon at a temporal contrast of ten orders between the intensity of the pulse peak and the spontaneous amplified emission background as well as remaining intensity wings at picosecond time-scale might trigger further parameter studies with even higher contrast.

  12. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    PubMed

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  13. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator

    SciTech Connect

    Chitarin, G.; Agostinetti, P.; Marconato, N.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P.

    2012-02-15

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  14. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC_LAB test facility

    NASA Astrophysics Data System (ADS)

    Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.

  15. Proposed Dark Current Studies at the Argonne Wakefield Accelerator Facility

    SciTech Connect

    Antipov, S.P.; Conde, Manoel Eduardo; Gai, Wei; Power, John Gorham; Yusof, Z.M.; Spentzouris, L.K.; Dolgashev, V.A.; /SLAC

    2008-01-18

    A study of dark currents has been initiated at the Argonne Wakefield Accelerator Facility (AWA). Emission of dark current is closely related to a breakdown. Breakdown may include several factors such as local field enhancement, explosive electron emission, Ohmic heating, tensile stress produced by electric field, and others. The AWA is building a dedicated facility to test various models for breakdown mechanisms and to determine the roles of different factors in the breakdown. An imaging system is being put together to identify single emitters on the cathode surface. This will allow us to study dark current properties in the gun. We also plan to trigger breakdown events with a high-powered laser at various wavelengths (IR to UV). Another experimental idea follows from the recent work on a Schottky-enabled photoemission in an RF photoinjector that allows us to determine in situ the field enhancement factor on a cathode surface. Monitoring the field enhancement factor before and after can shed some light on a modification of metal surface after the breakdown.

  16. Coherent Effects of High Current Beam in Project-X Linac

    SciTech Connect

    Sukhanov, A.; Lunin, A.; Yakovlev, V.; Gonin, I.; Khabiboulline, T.; Saini, A.; Solyak, N.; Yostrikov, A.

    2012-09-01

    Resonance excitation of longitudinal high order modes in superconducting RF structures of Project-X continuous wave linac is studied. We analyze regimes of operation of the linac with high beam current, which can be used to provide an intense muon source for the future Neutrino Factory or Muon Collider, and also important for the Accelerator-Driven Subcritical systems. We calculate power loss and associated heat load to the cryogenic system. Longitudinal emittance growth is estimated. We consider an alternative design of the elliptical cavity for the high energy part of the linac, which is more suitable for high current operation.

  17. Coherent Effects of High Current Beam in Project-X Linac

    SciTech Connect

    Sukhanov, Alexander; Yakovlev, Vyacheslav; Gonin, Ivan; Khabiboulline, Timergali; Lunin, Andrei; Saini, Arun; Solyak, Nikolay; Vostrikov, Alexander

    2013-04-01

    Resonance excitation of longitudinal high order modes in superconducting RF structures of Project-X continuous wave linac is studied. We analyze regimes of operation of the linac with high beam current, which can be used to provide an intense muon source for the future Neutrino Factory or Muon Collider, and also important for the Accelerator-Driven Subcritical systems. We calculate power loss and associated heat load to the cryogenic system. Longitudinal emittance growth is estimated. We consider an alternative design of the elliptical cavity for the high energy part of the linac, which is more suitable for high current operation.

  18. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon: a comparative study

    NASA Astrophysics Data System (ADS)

    de Oliveira Sampa, Maria Helena; Rela, Paulo Roberto; Casas, Alexandre Las; Mori, Manoel Nunes; Duarte, Celina Lopes

    2004-09-01

    This paper presents preliminary results of a study that compares the use of electron beam processing and activated carbon adsorption to clean up a standardized organic aqueous solution and a real industrial effluent. The electron beam treatment was performed in a batch system using the IPEN's Electron Beam Accelerators from Radiation Dynamics Inc., Dynamitron 37.5 kW. The granular activated carbon removal treatment was performed using charcoal made from wood "pinus". If the adequate irradiation dose is delivered to the organic pollutant, it is possible to conclude for the studied compounds that the Electron Beam Process is similar to the activated carbon process in organic removal efficiency.

  19. Transverse stability of the primary beam in the plasma wake-field accelerator

    SciTech Connect

    Krall, J.; Joyce, G.

    1995-06-01

    The stability of the primary electron beam in the plasma wakefield accelerator is studied using a three-dimensional particle code, for cases in which a shaped electron beam, with length {ital L}{approx_gt}{lambda}{sub {ital p}} is used, where {lambda}{sub {ital p}} is the plasma wavelength. The electron-hose and the transverse two-stream instabilities are observed to cause transverse deflections of the beam, with the transverse two-stream instability having a lower growth rate. Operation in the electron-hose regime can be avoided by reducing the beam density. {copyright} 1995 {ital American Institute of Physics}.

  20. Simulation study of accelerator based quasi-mono-energetic epithermal neutron beams for BNCT.

    PubMed

    Adib, M; Habib, N; Bashter, I I; El-Mesiry, M S; Mansy, M S

    2016-01-01

    Filtered neutron techniques were applied to produce quasi-mono-energetic neutron beams in the energy range of 1.5-7.5 keV at the accelerator port using the generated neutron spectrum from a Li (p, n) Be reaction. A simulation study was performed to characterize the filter components and transmitted beam lines. The feature of the filtered beams is detailed in terms of optimal thickness of the primary and additive components. A computer code named "QMNB-AS" was developed to carry out the required calculations. The filtered neutron beams had high purity and intensity with low contamination from the accompanying thermal, fast neutrons and γ-rays.

  1. Potential clinical impact of laser-accelerated beams in cancer ion therapy

    NASA Astrophysics Data System (ADS)

    Obcemea, Ceferino

    2016-09-01

    In this article, I present three advantages of plasma-accelerated ion beams for cancer therapy. I discuss how: 1. low-emittance and well-collimated beams are advantageous in proximal normal tissue-sparing; 2. highly-peaked quasi-monoenergetic beams are ideal for fast energy selection and switching in Pencil Beam Scanning (PBS) as a treatment delivery; 3. high fluence and ultra-short pulse delivery produce collective excitations in the medium and enhance the stopping power. This in turn produces denser ionization track signatures (spurs, blobs, etc.) in target tumors, higher linear energy transfer, higher Bragg peak, and higher radiobiological effectiveness at the micro-level.

  2. Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators

    SciTech Connect

    Osterhoff, Jens; Sokollik, Thomas; Nakamura, Kei; Bakeman, Michael; Weingartner, R; Gonsalves, Anthony; Shiraishi, Satomi; Lin, Chen; vanTilborg, Jeroen; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Toth, Csaba; DeSantis, Stefano; Byrd, John; Gruner, F; Leemans, Wim

    2011-07-20

    The controlled imaging and transport of ultra-relativistic electrons from laser-plasma accelerators is of crucial importance to further use of these beams, e.g. in high peak-brightness light sources. We present our plans to realize beam transport with miniature permanent quadrupole magnets from the electron source through our THUNDER undulator. Simulation results demonstrate the importance of beam imaging by investigating the generated XUV-photon flux. In addition, first experimental findings of utilizing cavity-based monitors for non-invasive beam-position measurements in a noisy electromagnetic laser-plasma environment are discussed.

  3. Electron-beam manipulation techniques in the SINBAD Linac for external injection in plasma wake-field acceleration

    NASA Astrophysics Data System (ADS)

    Marchetti, B.; Assmann, R.; Behrens, C.; Brinkmann, R.; Dorda, U.; Floettmann, K.; Hartl, I.; Huening, M.; Nie, Y.; Schlarb, H.; Zhu, J.

    2016-09-01

    The SINBAD facility (Short and INnovative Bunches and Accelerators at Desy) is foreseen to host various experiments in the field of production of ultra-short electron bunches and novel high gradient acceleration techniques. Besides studying novel acceleration techniques aiming to produce high brightness short electron bunches, the ARD group at DESY is working on the design of a conventional RF accelerator that will allow the production of low charge (0.5 pC - few pC) ultra-short electron bunches (having full width half maximum, FWHM, length ≤ 1 fs - few fs). The setup will allow the direct experimental comparison of the performance achievable by using different compression techniques (velocity bunching, magnetic compression, hybrid compression schemes). At a later stage the SINBAD linac will be used to inject such electron bunches into a laser driven Plasma Wakefield Accelerator, which imposes strong requirements on parameters such as the arrival time jitter and the pointing stability of the beam. In this paper we review the compression techniques that are foreseen at SINBAD and we underline the differences in terms of peak current, beam quality and arrival time stability.

  4. GENERATION AND CONTROL OF HIGH PRECISION BEAMS AT LEPTON ACCELERATORS

    SciTech Connect

    Yu-Chiu Chao

    2007-06-25

    Parity violation experiments require precision manipulation of helicity-correlated beam coordinates on target at the nm/nrad-level. Achieving this unprecedented level of control requires a detailed understanding of the particle optics and careful tuning of the beam transport to keep anomalies from compromising the design adiabatic damping. Such efforts are often hindered by machine configuration and instrumentation limitations at the low energy end. A technique has been developed at CEBAF including high precision measurements, Mathematica-based analysis for obtaining corrective solutions, and control hardware/software developments for realizing such level of control at energies up to 5 GeV.

  5. High current density sheet-like electron beam generator

    NASA Astrophysics Data System (ADS)

    Chow-Miller, Cora; Korevaar, Eric; Schuster, John

    Sheet electron beams are very desirable for coupling to the evanescent waves in small millimeter wave slow-wave circuits to achieve higher powers. In particular, they are critical for operation of the free-electron-laser-like Orotron. The program was a systematic effort to establish a solid technology base for such a sheet-like electron emitter system that will facilitate the detailed studies of beam propagation stability. Specifically, the effort involved the design and test of a novel electron gun using Lanthanum hexaboride (LaB6) as the thermionic cathode material. Three sets of experiments were performed to measure beam propagation as a function of collector current, beam voltage, and heating power. The design demonstrated its reliability by delivering 386.5 hours of operation throughout the weeks of experimentation. In addition, the cathode survived two venting and pump down cycles without being poisoned or losing its emission characteristics. A current density of 10.7 A/sq cm. was measured while operating at 50 W of ohmic heating power. Preliminary results indicate that the nearby presence of a metal plate can stabilize the beam.

  6. On neutral-beam injection counter to the plasma current

    SciTech Connect

    Helander, P.; Akers, R.J.; Eriksson, L.-G.

    2005-11-15

    It is well known that when neutral beams inject ions into trapped orbits in a tokamak, the transfer of momentum between the beam and the plasma occurs through the torque exerted by a radial return current. It is shown that this implies that the angular momentum transferred to the plasma can be larger than the angular momentum of the beam, if the injection is in the opposite direction to the plasma current and the beam ions suffer orbit losses. On the Mega-Ampere Spherical Tokamak (MAST) [R. J. Akers, J. W. Ahn, G. Y. Antar, L. C. Appel, D. Applegate, C. Brickley et al., Plasma Phys. Controlled Fusion 45, A175 (2003)], this results in up to 30% larger momentum deposition with counterinjection than with co-injection, with substantially increased plasma rotation as a result. It is also shown that heating of the plasma (most probably of the ions) can occur even when the beam ions are lost before they have had time to slow down in the plasma. This is the dominant heating mechanism in the outer 40% of the MAST plasma during counterinjection.

  7. Optimization of solenoid based low energy beam transport line for high current H+ beams

    NASA Astrophysics Data System (ADS)

    Pande, R.; Singh, P.; Rao, S. V. L. S.; Roy, S.; Krishnagopal, S.

    2015-02-01

    A 20 MeV, 30 mA CW proton linac is being developed at BARC, Mumbai. This linac will consist of an ECR ion source followed by a Radio Frequency Quadrupole (RFQ) and Drift tube Linac (DTL). The low energy beam transport (LEBT) line is used to match the beam from the ion source to the RFQ with minimum beam loss and increase in emittance. The LEBT is also used to eliminate the unwanted ions like H2+ and H3+ from entering the RFQ. In addition, space charge compensation is required for transportation of such high beam currents. All this requires careful design and optimization. Detailed beam dynamics simulations have been done to optimize the design of the LEBT using the Particle-in-cell code TRACEWIN. We find that with careful optimization it is possible to transport a 30 mA CW proton beam through the LEBT with 100% transmission and minimal emittance blow up, while at the same time suppressing unwanted species H2+ and H3+ to less than 3.3% of the total beam current.

  8. Return Current Electron Beams and Their Generation of "Raman" Scattering

    NASA Astrophysics Data System (ADS)

    Simon, A.

    1998-11-01

    For some years, we(A. Simon and R. W. Short, Phys. Rev. Lett. 53), 1912 (1984). have proposed that the only reasonable explanation for many of the observations of "Raman" scattering is the presence of an electron beam in the plasma. (The beam creates a bump-on-tail instability.) Two major objections to this picture have been observation of Raman when no n_c/4 surface was present, with no likely source for the electron beam, and the necessity for the initially outward directed beam to bounce once to create the proper waves. Now new observations on LLE's OMEGA(R. Petrasso et al), this conference. and at LULI(C. Labaune et al)., Phys. Plasma 5, 234 (1998). have suggested a new origin for the electron beam. This new scenario answers the previous objections, maintains electron beams as the explanation of the older experiments, and may clear up puzzling observations that have remained unexplained. The new scenario is based on two assumptions: (1) High positive potentials develop in target plasmas during their creation. (2) A high-intensity laser beam initiates spark discharges from nearby surfaces to the target plasma. The resulting return current of electrons should be much more delta-like, is initially inwardly directed, and no longer requires the continued presence of a n_c/4 surface. Scattering of the interaction beam from the BOT waves yields the observed Raman signal. Experimental observations that support this picture will be cited. ``Pulsation'' of the scattering and broadband ``flashes'' are a natural part of this scenario. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  9. Target Material Irradiation Studies for High-Intensity Accelerator Beams

    SciTech Connect

    Simos, N.; Kirk, H.; Ludewig, H.; Thieberger, P.; Weng, W.T.; McDonald, K.; Sheppard, J.; Evangelakis, G.; Yoshimura, K.; /KEK, Tsukuba

    2005-08-16

    This paper presents results of recent experimental studies focusing on the behavior of special materials and composites under irradiation conditions and their potential use as accelerator targets. The paper also discusses the approach and goals of on-going investigations on an expanded material matrix geared toward the neutrino superbeam and muon collider initiatives.

  10. Cluster beam ionizer having the self-acceleration mechanism

    SciTech Connect

    Be, S.H.; Yano, K.; Kodaira, K.; Kawai, S.

    1981-01-01

    The purpose of the present paper is to describe the results of the computer simulation and the experiment on the new cluster ionizer proposed before. The gradient of the space-potential in the ionizer has an axial component that favors the cluster ion beam flow. This was ascertained from the results of the computer simulation and the experiment.

  11. Summary II - Fusion Ion sources, Beam Formation, Acceleration and Neutralisation

    SciTech Connect

    Jones, T. T. C.

    2007-08-10

    The 11th International Symposium on the Production and Neutralization of Negative Ions and Beams was held in Santa Fe, New Mexico on 13th - 15th September 2006 and was hosted by Los Alamos National Laboratory. This summary covers the sessions of the Symposium devoted to the topics listed in the title.

  12. CEBAF beam loss accounting

    SciTech Connect

    Ursic, R.; Mahoney, K.; Hovater, C.; Hutton, A.; Sinclair, C.

    1995-12-31

    This paper describes the design and implementation of a beam loss accounting system for the CEBAF electron accelerator. This system samples the beam curent throughout the beam path and measures the beam current accurately. Personnel Safety and Machine Protection systems use this system to turn off the beam when hazardous beam losses occur.

  13. Bragg Resonator Cyclotron Resonance Maser Experiments Driven by a Microsecond, Intense Electron Beam Accelerator

    NASA Astrophysics Data System (ADS)

    Choi, Jin Joo

    The cyclotron resonance maser (CRM) has proven to be attractive for many high power microwave applications such as fusion plasma heating, radar/communications, and high gradient RF accelerators. Most of the previous CRM experiments with MV electron beams have been conducted with short (<0.1 musec) pulses. The present work contains the first comprehensive experimental study on mode competition in a high-Q Bragg resonator CRM employing a microsecond, relativistic electron beam. We have designed and fabricated a high-Q sinusoidal Bragg resonator designed to excite high frequency CARM oscillation of the TE_{31} cylindrical cavity mode at 18.9 GHz. The measured reflectivity of the TE_{31} mode is consistent with the prediction of uncoupled single mode theory. A high quality annular electron beam with low velocity spread and energy spread is produced through an apertured mask-anode. The apertured electron beam has been characterized by the use of glass plate diagnostics. The measured beam velocity ratio, v_{| }/v_{|}, was shown to be in agreement with computer simulation results and the theoretical predictions. Experiments have been performed for 4 cases: (1) Bragg resonator with ripples half-inward, (2) large diameter smooth tube without Bragg resonator, (3) Bragg resonator with ripples fully-outward, and (4) small diameter smooth tube without Bragg resonator. The Bragg resonator with ripples half-inward generated high power microwave radiation from TE_ {11} gyro-BWO interactions, TE _{21} absolute instability, and high harmonic gyrotron modes. Considerably less power from the TE_{11} gyro -BWO was observed for the Bragg resonator with ripples fully -outward. The microwave emission from the TE_ {21} absolute instability in the Bragg resonator with ripples fully-outward was successfully suppressed by lowering the cavity magnetic field. These three undesired oscillations, (TE _{21} absolute instability, TE _{11} gyro-BWO, TE _{51} second and third harmonic), were the most

  14. Broad-beam, high current, metal ion implantation facility

    SciTech Connect

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-07-01

    We have developed a high current metal ion implantation facility with which high current beams of virtually all the solid metals of the Periodic Table can be produced. The facility makes use of a metal vapor vacuum arc ion source which is operated in a pulsed mode, with pulse width 0.25 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion charge state multiplicity; beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we describe the facility and some of the implants that have been carried out using it, including the seeding' of silicon wafers prior to CVD with titanium, palladium or tungsten, the formation of buried iridium silicide layers, and actinide (uranium and thorium) doping of III-V compounds. 16 refs., 6 figs.

  15. Medical linear accelerator mounted mini-beam collimator: design, fabrication and dosimetric characterization.

    PubMed

    Cranmer-Sargison, G; Crewson, C; Davis, W M; Sidhu, N P; Kundapur, V

    2015-09-01

    The goal of this work was to design, build and experimentally characterize a linear accelerator mounted mini-beam collimator for use at a nominal 6 MV beam energy. Monte Carlo simulation was used in the design and dosimetric characterization of a compact mini-beam collimator assembly mounted to a medical linear accelerator. After fabrication, experimental mini-beam dose profiles and central axis relative output were measured and the results used to validate the simulation data. The simulation data was then used to establish traceability back to an established dosimetric code of practice. The Monte Carlo simulation work revealed that changes in collimator blade width have a greater influence on the valley-to-peak dose ratio than do changes in blade height. There was good agreement between the modeled and measured profile data, with the exception of small differences on either side of the central peak dose. These differences were found to be systematic across all depths and result from limitations associated with the collimator fabrication. Experimental mini-beam relative output and simulation data agreed to better than ± 2.0%, which is well within the level of uncertainty required for dosimetric traceability of non-standard field geometries. A mini-beam collimator has now been designed, built and experimentally characterized for use with a commercial linear accelerator operated at a nominal 6 MV beam energy.

  16. Medical linear accelerator mounted mini-beam collimator: design, fabrication and dosimetric characterization.

    PubMed

    Cranmer-Sargison, G; Crewson, C; Davis, W M; Sidhu, N P; Kundapur, V

    2015-09-01

    The goal of this work was to design, build and experimentally characterize a linear accelerator mounted mini-beam collimator for use at a nominal 6 MV beam energy. Monte Carlo simulation was used in the design and dosimetric characterization of a compact mini-beam collimator assembly mounted to a medical linear accelerator. After fabrication, experimental mini-beam dose profiles and central axis relative output were measured and the results used to validate the simulation data. The simulation data was then used to establish traceability back to an established dosimetric code of practice. The Monte Carlo simulation work revealed that changes in collimator blade width have a greater influence on the valley-to-peak dose ratio than do changes in blade height. There was good agreement between the modeled and measured profile data, with the exception of small differences on either side of the central peak dose. These differences were found to be systematic across all depths and result from limitations associated with the collimator fabrication. Experimental mini-beam relative output and simulation data agreed to better than ± 2.0%, which is well within the level of uncertainty required for dosimetric traceability of non-standard field geometries. A mini-beam collimator has now been designed, built and experimentally characterized for use with a commercial linear accelerator operated at a nominal 6 MV beam energy. PMID:26305166

  17. Cumulative beam breakup in linear accelerators with random displacement of cavities and focusing elements

    SciTech Connect

    Jean Delayen

    2004-04-09

    A formalism presented in a previous paper for the analysis of cumulative beam breakup with arbitrary time dependence of the beam current [J. R. Delayen, Phys. Rev. ST Accel Beams 6, 084402 (2003)] is applied to the problem of beam breakup in the presence of random displacements of cavities and focusing elements. A closed-form solution is obtained and is applied to the behavior of a single bunch and to the steady-state and transient behavior of dc beams and beams composed of point-like bunches.

  18. Ion Beam Driven Shock Device Using Accelerated High Density Plasmoid by Phased Z-Pinch

    NASA Astrophysics Data System (ADS)

    Horioka, Kazuhiko; Aizawa, Tatsuhiko; Tsuchida, Minoru

    1997-07-01

    Different from three methods to generate high shock pressure by acceleration of high density plasma or particles (intense ion beams, plasma gun and rail gun) having their intrinsic deficiencies, new frontier is proposed to propel the shock physics and chemistry by using the high density plasma. In the present paper, new scheduled Z-pinch method is developed as a new device to generate high shock pressure. In the present method, plasma density can be compressed to the order of 10^18 to 10^19 cm-3, and high density plasma can be accelerated by zippering together with axial shock pressure, resulting in high-velocity launching of flyer. In the present paper, systematic experimental works are performed to demonstrate that high energy plasma flow can be electro-magnetically driven by the scheduled capillary Z-pinch, and to characterize the ion velocity and its current density. The estimated value of ion speed from the plasma-measurement reaches to 7 x 10^7 cm/s corresponding to 70 to 100 KeV for Ar. Copper flyer can be shot with the velocity range from 1km/s to 3km/s in the standard condition.

  19. Electromagnetic acceleration of material from a plate hit by a pulsed electron beam

    SciTech Connect

    Garcia, M.

    1998-04-16

    An intense pulsed electron beam traversing a thin metal plate creates a volume of dense plasma. Current flows in this plasma as a result of the charge and magnetic field introduced by the relativistic electrons. A magnetic field may linger after the electron beam pulse because of the conductivity of the material. This field decays by both diffusing out of the conducting matter and causing it to expand. If the magnetized matter is of low density and high conductivity it may expand quickly. Scaling laws for this acceleration are sought by analyzing the idealization of a steady axisymmetric flow. This case simplifies a general formulation based on both Euler`s and Maxwell`s equations. As an example, fluid with conductivity {sigma} = 8 x 10{sup 4} Siemens/m, density {rho} = 8 x 10{sup -3} kg/m{sup 3}, and initially magnetized to B = 1 Tesla can accelerate to v = 10{sup 4} m/s within a distance comparable to L = 1 mm and a time comparable to {sigma}{mu}L{sup 2} = 100 ns, which is the magnetic diffusion time. If instead, {sigma} = 8 x 10{sup 3} Siemens/m and {rho} = 8 x 10{sup -5} kg/m{sup 3} then v = 10{sup 5} m/s with a magnetic diffusion time {sigma}{mu}L{sup 2} = 10 ns. These idealized flows have R{sub M} = {sigma}{mu}vL = 1, where R{sub M} is the magnetic Reynolds number. The target magnetizes by a thermal electric effect.

  20. Particle-in-cell/accelerator code for space-charge dominated beam simulation

    2012-05-08

    Warp is a multidimensional discrete-particle beam simulation program designed to be applicable where the beam space-charge is non-negligible or dominant. It is being developed in a collaboration among LLNL, LBNL and the University of Maryland. It was originally designed and optimized for heave ion fusion accelerator physics studies, but has received use in a broader range of applications, including for example laser wakefield accelerators, e-cloud studies in high enery accelerators, particle traps and other areas.more » At present it incorporates 3-D, axisymmetric (r,z) planar (x-z) and transverse slice (x,y) descriptions, with both electrostatic and electro-magnetic fields, and a beam envelope model. The code is guilt atop the Python interpreter language.« less

  1. Validity of the paraxial approximation for electron acceleration with radially polarized laser beams.

    PubMed

    Marceau, Vincent; Varin, Charles; Piché, Michel

    2013-03-15

    In the study of laser-driven electron acceleration, it has become customary to work within the framework of paraxial wave optics. Using an exact solution to the Helmholtz equation as well as its paraxial counterpart, we perform numerical simulations of electron acceleration with a high-power TM(01) beam. For beam waist sizes at which the paraxial approximation was previously recognized valid, we highlight significant differences in the angular divergence and energy distribution of the electron bunches produced by the exact and the paraxial solutions. Our results demonstrate that extra care has to be taken when working under the paraxial approximation in the context of electron acceleration with radially polarized laser beams.

  2. Particle-in-cell/accelerator code for space-charge dominated beam simulation

    SciTech Connect

    2012-05-08

    Warp is a multidimensional discrete-particle beam simulation program designed to be applicable where the beam space-charge is non-negligible or dominant. It is being developed in a collaboration among LLNL, LBNL and the University of Maryland. It was originally designed and optimized for heave ion fusion accelerator physics studies, but has received use in a broader range of applications, including for example laser wakefield accelerators, e-cloud studies in high enery accelerators, particle traps and other areas. At present it incorporates 3-D, axisymmetric (r,z) planar (x-z) and transverse slice (x,y) descriptions, with both electrostatic and electro-magnetic fields, and a beam envelope model. The code is guilt atop the Python interpreter language.

  3. Beam dynamics in resonant plasma wakefield acceleration at SPARC_LAB

    NASA Astrophysics Data System (ADS)

    Romeo, S.; Anania, M. P.; Chiadroni, E.; Croia, M.; Ferrario, M.; Marocchino, A.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    Strategies to mitigate the increase of witness emittance and energy spread in beam driven plasma wakefield acceleration are investigated. Starting from the proposed resonant wakefield acceleration scheme in quasi-non-linear regime that is going to be carried out at SPARC_LAB, we performed systematic scans of the parameters to be used for drivers. The analysis will show that one of the main requirements to preserve witness quality during the acceleration is to have accelerating and focusing fields that are very stable during all the accelerating length. The difference between the dynamics of the leading bunch and the trailing bunch is pointed out. The classical condition on bunch length kpσz =√{ 2 } seems to be an ideal condition for the first driver within long accelerating lengths. The other drivers show to follow different longitudinal matching conditions. In the end a new method for the investigation of the matching for the first driver is introduced.

  4. Beam property measurement of a 300-kV ion source test stand for a 1-MV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Park, Sae-Hoon; Kim, Dae-Il; Kim, Yu-Seok

    2016-09-01

    The KOMAC (Korea Multi-purpose Accelerator Complex) has been developing a 300-kV ion source test stand for a 1-MV electrostatic accelerator for industrial purposes. A RF ion source was operated at 200 MHz with its matching circuit. The beam profile and emittance were measured behind an accelerating column to confirm the beam property from the RF ion source. The beam profile was measured at the end of the accelerating tube and at the beam dump by using a beam profile monitor (BPM) and wire scanner. An Allison-type emittance scanner was installed behind the beam profile monitor (BPM) to measure the beam density in phase space. The measurement results for the beam profile and emittance are presented in this paper.

  5. Focusing of a megavoltage electron beam in a medical accelerator

    NASA Astrophysics Data System (ADS)

    Friedrichs, P. B.; Konrad, G. T.

    1991-05-01

    Due to packaging constraints in the radiotherapy machine gantry of Siemens Mevatrons, the electron linac used in the lower energy models has a long drift tube between the end of the linae and the 270° achromatic bend assembly. Space charge effects cause the electron beam to grow so that it frequently impinges upon the entrance hole to the bend assembly. A compact solenoid has been designed that is effective in increasing the transmitted beam through the bend assembly by over 40%. A permanent magnet design proved to be unsuccessful because of high transverse fields within the magnet. Trajectory calculations obtained through the electron linac design code PARMELA (Public domain code supplied to Siemens Medical Laboratories, Inc. by L.M. Young, Los Alamos National Laboratories, Los Alamos, NM) support the experimentally observed results. Data is presented for several electron energies over the normal operating range of 4-6 MV photons from these Mevatrons.

  6. Multiple quasi-monoenergetic electron beams from laser-wakefield acceleration with spatially structured laser pulse

    SciTech Connect

    Ma, Y.; Li, M. H.; Li, Y. F.; Wang, J. G.; Tao, M. Z.; Han, Y. J.; Zhao, J. R.; Huang, K.; Yan, W. C.; Ma, J. L.; Li, Y. T.; Chen, L. M.; Li, D. Z.; Chen, Z. Y.; Sheng, Z. M.; Zhang, J.

    2015-08-15

    By adjusting the focus geometry of a spatially structured laser pulse, single, double, and treble quasi-monoenergetic electron beams were generated, respectively, in laser-wakefield acceleration. Single electron beam was produced as focusing the laser pulse to a single spot. While focusing the laser pulse to two spots that are approximately equal in energy and size and intense enough to form their own filaments, two electron beams were produced. Moreover, with a proper distance between those two focal spots, three electron beams emerged with a certain probability owing to the superposition of the diffractions of those two spots. The energy spectra of the multiple electron beams are quasi-monoenergetic, which are different from that of the large energy spread beams produced due to the longitudinal multiple-injection in the single bubble.

  7. Effect of beam emittance on self-modulation of long beams in plasma wakefield accelerators

    SciTech Connect

    Lotov, K. V.

    2015-12-15

    The initial beam emittance determines the maximum wakefield amplitude that can be reached as a result of beam self-modulation in the plasma. The wakefield excited by the fully self-modulated beam decreases linearly with the increase in the beam emittance. There is a value of initial emittance beyond which the self-modulation does not develop even if the instability is initiated by a strong seed perturbation. The emittance scale at which the wakefield is suppressed by a factor of two with respect to the zero-emittance case (the so called critical emittance) is determined by inability of the excited wave to confine beam particles radially and is related to beam and plasma parameters by a simple formula. The effect of beam emittance can be observed in several discussed self-modulation experiments.

  8. Beamed neutron emission driven by laser accelerated light ions

    NASA Astrophysics Data System (ADS)

    Kar, S.; Green, A.; Ahmed, H.; Alejo, A.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; Mirfayzi, S. R.; McKenna, P.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.

    2016-05-01

    Highly anisotropic, beam-like neutron emission with peak flux of the order of 109 n/sr was obtained from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by a sub-petawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of ˜ 70^\\circ , with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)1H and d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles is most likely related to the directionality and high energy of the projectile ions.

  9. A direct current rectification scheme for microwave space power conversion using traveling wave electron acceleration

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1993-01-01

    The formation of the Vision-21 conference held three years ago allowed the present author to reflect and speculate on the problem of converting electromagnetic energy to a direct current by essentially reversing the process used in traveling wave tubes that converts energy in the form of a direct current to electromagnetic energy. The idea was to use the electric field of the electromagnetic wave to produce electrons through the field emission process and accelerate these electrons by the same field to produce an electric current across a large potential difference. The acceleration process was that of cyclotron auto-resonance. Since that time, this rather speculative ideas has been developed into a method that shows great promise and for which a patent is pending and a prototype design will be demonstrated in a potential laser power beaming application. From the point of view of the author, a forum such as Vision-21 is becoming an essential component in the rather conservative climate in which our initiatives for space exploration are presently formed. Exchanges such as Vision-21 not only allows us to deviate from the 'by-the-book' approach and rediscover the ability and power in imagination, but provides for the discussion of ideas hitherto considered 'crazy' so that they may be given the change to transcend from the level of eccentricity to applicability.

  10. Reduction of angular divergence of laser-driven ion beams during their acceleration and transport

    NASA Astrophysics Data System (ADS)

    Zakova, M.; Pšikal, Jan; Margarone, Daniele; Maggiore, Mario; Korn, G.

    2015-05-01

    Laser plasma physics is a field of big interest because of its implications in basic science, fast ignition, medicine (i.e. hadrontherapy), astrophysics, material science, particle acceleration etc. 100-MeV class protons accelerated from the interaction of a short laser pulse with a thin target have been demonstrated. With continuing development of laser technology, greater and greater energies are expected, therefore projects focusing on various applications are being formed, e.g. ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration). One of the main characteristic and crucial disadvantage of ion beams accelerated by ultra-short intense laser pulses is their large divergence, not suitable for the most of applications. In this paper two ways how to decrease beam divergence are proposed. Firstly, impact of different design of targets on beam divergence is studied by using 2D Particlein-cell simulations (PIC). Namely, various types of targets include at foils, curved foil and foils with diverse microstructures. Obtained results show that well-designed microstructures, i.e. a hole in the center of the target, can produce proton beam with the lowest divergence. Moreover, the particle beam accelerated from a curved foil has lower divergence compared to the beam from a flat foil. Secondly, another proposed method for the divergence reduction is using of a magnetic solenoid. The trajectories of the laser accelerated particles passing through the solenoid are modeled in a simple Matlab program. Results from PIC simulations are used as input in the program. The divergence is controlled by optimizing the magnetic field inside the solenoid and installing an aperture in front of the device.

  11. Numerical Verification of the Power Transfer and Wakefield Coupling in the Clic Two-Beam Accelerator

    SciTech Connect

    Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; Syratchev, I.; Grudiev, A.; Wuensch, W.; /CERN

    2011-08-19

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its two-beam accelerator (TBA) concept envisions complex 3D structures, which must be modeled to high accuracy so that simulation results can be directly used to prepare CAD drawings for machining. The required simulations include not only the fundamental mode properties of the accelerating structures but also the Power Extraction and Transfer Structure (PETS), as well as the coupling between the two systems. Time-domain simulations will be performed to understand pulse formation, wakefield damping, fundamental power transfer and wakefield coupling in these structures. Applying SLAC's parallel finite element code suite, these large-scale problems will be solved on some of the largest supercomputers available. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel two-beam accelerator scheme.

  12. Investigation of Beam Loading Effects for the Neutrino Factory Muon Accelerator

    SciTech Connect

    J. Pozimski,M. Aslaninejad,C. Bontoiu,S. Berg,Alex Bogacz

    2010-05-01

    The International design study (IDS) study showed that a Neutrino Factory [1] seems to be the most promising candidate for the next phase of high precision neutrino oscillation experiments. One part of the increased precision is due to the fact that in a Neutrino Factory the decay of muons produces a neutrino beam with narrow energy distribution and divergence. The effect of beam loading on the energy distribution of the muon beam in the Neutrino Factory decay rings has been investigated numerically. The simulations have been performed using the baseline accelerator design including cavities for different number of bunch trains and bunch train timing. A detailed analysis of the beam energy distribution expected is given together with a discussion of the energy spread produced by the gutter acceleration in the FFAG and the implications for the neutrino oscillation experiments will be presented.

  13. Beam Quality Requirements of Dosage Control in Laser Ion Acceleration for Radiotherapy

    NASA Astrophysics Data System (ADS)

    Su, Jao-Jang; Shao, Xi; Liu, Tung-Chang; Liu, Chuan; Chen, C. D.; Wilks, Scott

    2010-11-01

    Ion beam accelerated by laser solid target interaction has vested interested in medical applications. Particle therapy for cancer treatment is one of the most promising prospects. Typical proton beam energy spread for cancer treatment is Delta E / E ˜ 0.2% for synchrotron accelerator and Delta E / E ˜1% for cyclotron after energy selection system. Passive scattering irradiation mechanism is a common practice to induce SOBP (spread out Bragg peak) for cancer treatment. We examine depth and lateral dose distribution of hardons energized by radiation pressure via various energy selection criteria. Monte Carol codes use PIC simulation results as the input of particle beams. Dose uniformity, distal falloff and lateral penumbra are discussed in related to beam energy spread, emittance and entrance spot size will be presented.

  14. Electron trapping and acceleration by the plasma wakefield of a self-modulating proton beam

    SciTech Connect

    Lotov, K. V.; Sosedkin, A. P.; Petrenko, A. V.; Amorim, L. D.; Vieira, J.; Fonseca, R. A.; Silva, L. O.; Gschwendtner, E.; Muggli, P.

    2014-12-15

    It is shown that co-linear injection of electrons or positrons into the wakefield of the self-modulating particle beam is possible and ensures high energy gain. The witness beam must co-propagate with the tail part of the driver, since the plasma wave phase velocity there can exceed the light velocity, which is necessary for efficient acceleration. If the witness beam is many wakefield periods long, then the trapped charge is limited by beam loading effects. The initial trapping is better for positrons, but at the acceleration stage a considerable fraction of positrons is lost from the wave. For efficient trapping of electrons, the plasma boundary must be sharp, with the density transition region shorter than several centimeters. Positrons are not susceptible to the initial plasma density gradient.

  15. Tunable monoenergetic electron beams from independently controllable laser-wakefield acceleration and injection

    NASA Astrophysics Data System (ADS)

    Golovin, G.; Chen, S.; Powers, N.; Liu, C.; Banerjee, S.; Zhang, J.; Zeng, M.; Sheng, Z.; Umstadter, D.

    2015-01-01

    We report the results of experiments on laser-wakefield acceleration in a novel two-stage gas target with independently adjustable density and atomic-composition profiles. We were able to tailor these profiles in a way that led to the separation of the processes of electron injection and acceleration and permitted independent control of both. This resulted in the generation of stable, quasimonoenergetic electron beams with central energy tunable in 50-300 MeV range. For the first time, we are able to independently control the beam charge and energy spread over the entire tunability range.

  16. Induction-accelerator heavy-ion fusion: Status and beam physics issues

    SciTech Connect

    Friedman, A.

    1996-01-26

    Inertial confinement fusion driven by beams of heavy ions is an attractive route to controlled fusion. In the U.S., induction accelerators are being developed as {open_quotes}drivers{close_quotes} for this process. This paper is divided into two main sections. In the first section, the concept of induction-accelerator driven heavy-ion fusion is briefly reviewed, and the U.S. program of experiments and theoretical investigations is described. In the second, a {open_quotes}taxonomy{close_quotes} of space-charge-dominated beam physics issues is presented, accompanied by a brief discussion of each area.

  17. Controlled Ion Acceleration in Two Crossed Laser Beams Propagating in Plasmas

    NASA Astrophysics Data System (ADS)

    Tataronis, J. A.; Petržílka, V.; Krlín, L.

    2003-10-01

    Electron acceleration occurs in a single plane laser beam that is in the presence of a secondary perpendicularly propagating plane laser beam with a randomized phase. As the accelerated electrons are pushed away, they leave the heavier ions behind, producing thereby a charge separation electrostatic field and consequent ion flows. The power flux carried by the accelerated ions can be controlled by varying the intensity of the secondary beam. Results of a numerical study of this control process are presented here. The laser beam parameters chosen for the computations of the primary electron acceleration match the parameters available at the Prague Asterix Laser System (PALS)^1. For the modeling, we use an advanced version of our 3-d two-fluid numerical code^2, originally developed for the analysis of fast electron generation and subsequent ion acceleration in front of lower hybrid wave launchers in large tokamaks. [2pt] ^1K. Jungwirth et al., Phys. Plasmas 8, 2495 (2001). [2pt] ^2V. Petržílka et al., Proc. 29th EPS Conference, Montreux, June 2002, paper 2.105.

  18. Optimization and beam control in large-emittance accelerators: Neutrino factories;

    SciTech Connect

    Carol Johnstone

    2004-08-23

    Schemes for intense sources of high-energy muons require collection, rf capture, and transport of particle beams with unprecedented emittances, both longitudinally and transversely. These large emittances must be reduced or ''cooled'' both in size and in energy spread before the muons can be efficiently accelerated. Therefore, formation of muon beams sufficiently intense to drive a Neutrino Factory or Muon Collider requires multi-stage preparation. Further, because of the large beam phase space which must be successfully controlled, accelerated, and transported, the major stages that comprise such a facility: proton driver, production, capture, phase rotation, cooling, acceleration, and storage are complex and strongly interlinked. Each of the stages must be consecutively matched and simultaneously optimized with upstream and downstream systems, meeting challenges not only technically in the optics and component design, but also in the modeling of both new and extended components. One design for transverse cooling, for example, employs meter-diameter solenoids to maintain strong focusing--300-500 mr beam divergences--across ultra-large momentum ranges, {ge} {+-}20% {delta}p/p, defying conventional approximations to the dynamics and field representation. To now, the interplay of the different systems and staging strategies has not been formally addressed. This work discusses two basic, but different approaches to a Neutrino Factory and how the staging strategy depends on beam parameters and method of acceleration.

  19. Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT.

    PubMed

    Herrera, M S; González, S J; Burlon, A A; Minsky, D M; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma.

  20. Studies of beam induced dipole-mode signals in accelerating structures at the SLC

    SciTech Connect

    Seidel, M.

    1997-06-01

    Beam emittance dilution by self induced transverse fields (wakefields) in accelerating structures is a key problem in linear accelerators. To minimize the wakefield effects the beam trajectory must be precisely centered within the structures. An efficient way to achieve this is to detect beam induced microwave signals in the lowest dipole mode band and to steer the beam by minimizing these signals. This paper briefly covers some experiences from SLC S-band structures, but mainly concentrates on results of a wakefield instrumentation scheme applied to a NLC prototype X-band structure and tested with beam in the SLC linac. A beam based in-situ structure straightness measurement is shown as well as results of beam steering experiments based on phase and amplitude detection of two separated modes in the structure. After centering the beam the reduction of the wakefield was demonstrated independently by probing it with a test bunch that is deflected by the residual wakefield at a short distance behind the drive bunch.

  1. Narrowband beam loading compensation in the Fermilab Main Injector accelerating cavities

    SciTech Connect

    Joseph E. Dey; John S. Reid and James Steimel

    2001-07-12

    A narrowband beam loading compensation system was installed for the Main Injector Accelerating Cavities. This feedback operates solely on the fundamental resonant mode of the cavity. This paper describes modifications to the high level Radio Frequency system required to make the system operational. These modifications decreased the effect of steady-state beam loading by a factor of 10 and improved the reliability of paraphasing for coalescing.

  2. High Accuracy Beam Current Monitor System for CEBAF'S Experimental Hall A

    SciTech Connect

    J. Denard; A. Saha; G. Lavessiere

    2001-07-01

    CEBAF accelerator delivers continuous wave (CW) electron beams to three experimental Halls. In Hall A, all experiments require continuous, non-invasive current measurements and a few experiments require an absolute accuracy of 0.2 % in the current range from 1 to 180 {micro}A. A Parametric Current Transformer (PCT), manufactured by Bergoz, has an accurate and stable sensitivity of 4 {micro}A/V but its offset drifts at the muA level over time preclude its direct use for continuous measurements. Two cavity monitors are calibrated against the PCT with at least 50 {micro}A of beam current. The calibration procedure suppresses the error due to PCT's offset drifts by turning the beam on and off, which is invasive to the experiment. One of the goals of the system is to minimize the calibration time without compromising the measurement's accuracy. The linearity of the cavity monitors is a critical parameter for transferring the accurate calibration done at high currents over the whole dynamic range. The method for measuring accurately the linearity is described.

  3. High-quality electron beams from a helical inverse free-electron laser accelerator.

    PubMed

    Duris, J; Musumeci, P; Babzien, M; Fedurin, M; Kusche, K; Li, R K; Moody, J; Pogorelsky, I; Polyanskiy, M; Rosenzweig, J B; Sakai, Y; Swinson, C; Threlkeld, E; Williams, O; Yakimenko, V

    2014-09-15

    Compact, table-top sized accelerators are key to improving access to high-quality beams for use in industry, medicine and academic research. Among laser-based accelerating schemes, the inverse free-electron laser (IFEL) enjoys unique advantages. By using an undulator magnetic field in combination with a laser, GeV m(-1) gradients may be sustained over metre-scale distances using laser intensities several orders of magnitude less than those used in laser wake-field accelerators. Here we show for the first time the capture and high-gradient acceleration of monoenergetic electron beams from a helical IFEL. Using a modest intensity (~10(13) W cm(-2)) laser pulse and strongly tapered 0.5 m long undulator, we demonstrate >100 MV m(-1) accelerating gradient, >50 MeV energy gain and excellent output beam quality. Our results pave the way towards compact, tunable GeV IFEL accelerators for applications such as driving soft X-ray free-electron lasers and producing γ-rays by inverse Compton scattering.

  4. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    SciTech Connect

    Matlis, N. H.; Bakeman, M.; Geddes, C. G. R.; Gonsalves, T.; Lin, C.; Nakamura, K.; Osterhoff, J.; Plateau, G. R.; Schroeder, C. B.; Shiraishi, S.; Sokollik, T.; Tilborg, J. van; Toth, Cs.; Leemans, W. P.

    2010-11-04

    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g. diverse forms of electromagnetic emission) and difficulties (e.g. shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs.

  5. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    SciTech Connect

    Matlis, N. H.; Bakeman, M.; Geddes, C. G. R.; Gonsalves, T.; Lin, C.; Nakamura, K.; Osterhoff, J.; Plateau, G. R.; Schroeder, C. B.; Shiraishi, S.; Sokollik, T.; van Tilborg, J.; Toth, Cs.; Leemans, W. P.

    2010-06-01

    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g., diverse forms of electromagnetic emission) and difficulties (e.g., shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs.

  6. Beam collimation and transport of quasineutral laser-accelerated protons by a solenoid field

    NASA Astrophysics Data System (ADS)

    Harres, K.; Alber, I.; Tauschwitz, A.; Bagnoud, V.; Daido, H.; Günther, M.; Nürnberg, F.; Otten, A.; Schollmeier, M.; Schütrumpf, J.; Tampo, M.; Roth, M.

    2010-02-01

    This article reports about controlling laser-accelerated proton beams with respect to beam divergence and energy. The particles are captured by a pulsed high field solenoid with a magnetic field strength of 8.6 T directly behind a flat target foil that is irradiated by a high intensity laser pulse. Proton beams with energies around 2.3 MeV and particle numbers of 1012 could be collimated and transported over a distance of more than 300 mm. In contrast to the protons the comoving electrons are strongly deflected by the solenoid field. They propagate at a submillimeter gyroradius around the solenoid's axis which could be experimentally verified. The originated high flux electron beam produces a high space charge resulting in a stronger focusing of the proton beam than expected by tracking results. Leadoff particle-in-cell simulations show qualitatively that this effect is caused by space charge attraction due to the comoving electrons. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications such as postacceleration by conventional accelerator structures.

  7. Ti foil light in the ATA (Advanced Test Accelerator) beam

    SciTech Connect

    Slaughter, D.R.; Chong, Y.P.; Goosman, D.R.; Rule, D.W.; Fiorito, R.B.

    1987-09-01

    An experiment is in progress to characterize the visible light produced when a Ti foil is immersed in the ATA 2 kA, 43 MeV beam. Results obtained to date indicate that the optical condition of the foil surface is a critical determinant of these characteristics, with a very narrow angular distribution obtained when a highly polished and flat foil is used. These data are consistent with the present hypothesis that the light is produced by transition radiation. Incomplete experiments to determine the foil angle dependence of the detected light and its polarization are summarized and remaining experiments are described.

  8. Experimental validation of the dual positive and negative ion beam acceleration in the plasma propulsion with electronegative gases thruster

    SciTech Connect

    Rafalskyi, Dmytro Popelier, Lara; Aanesland, Ane

    2014-02-07

    The PEGASES (Plasma Propulsion with Electronegative Gases) thruster is a gridded ion thruster, where both positive and negative ions are accelerated to generate thrust. In this way, additional downstream neutralization by electrons is redundant. To achieve this, the thruster accelerates alternately positive and negative ions from an ion-ion plasma where the electron density is three orders of magnitude lower than the ion densities. This paper presents a first experimental study of the alternate acceleration in PEGASES, where SF{sub 6} is used as the working gas. Various electrostatic probes are used to investigate the source plasma potential and the energy, composition, and current of the extracted beams. We show here that the plasma potential control in such system is key parameter defining success of ion extraction and is sensitive to both parasitic electron current paths in the source region and deposition of sulphur containing dielectric films on the grids. In addition, large oscillations in the ion-ion plasma potential are found in the negative ion extraction phase. The oscillation occurs when the primary plasma approaches the grounded parts of the main core via sub-millimetres technological inputs. By controlling and suppressing the various undesired effects, we achieve perfect ion-ion plasma potential control with stable oscillation-free operation in the range of the available acceleration voltages (±350 V). The measured positive and negative ion currents in the beam are about 10 mA for each component at RF power of 100 W and non-optimized extraction system. Two different energy analyzers with and without magnetic electron suppression system are used to measure and compare the negative and positive ion and electron fluxes formed by the thruster. It is found that at alternate ion-ion extraction the positive and negative ion energy peaks are similar in areas and symmetrical in position with +/− ion energy corresponding to the amplitude of the applied

  9. Beam Polarization at the ILC: the Physics Impact and the Accelerator Solutions

    SciTech Connect

    Aurand, B.; Bailey, I.; Bartels, C.; Brachmann, A.; Clarke, J.; Hartin, A.; Hauptman, J.; Helebrant, C.; Hesselbach, S.; Kafer, D.; List, J.; Lorenzon, W.; Marchesini, I.; Monig, Klaus; Moffeit, K.C.; Moortgat-Pick, G.; Riemann, S.; Schalicke, A.; Schuler, P.; Starovoitov, P.; Ushakov, A.; /DESY /DESY, Zeuthen /Bonn U. /SLAC

    2011-11-23

    In this contribution accelerator solutions for polarized beams and their impact on physics measurements are discussed. Focus are physics requirements for precision polarimetry near the interaction point and their realization with polarized sources. Based on the ILC baseline programme as described in the Reference Design Report (RDR), recent developments are discussed and evaluated taking into account physics runs at beam energies between 100 GeV and 250 GeV, as well as calibration runs on the Z-pole and options as the 1TeV upgrade and GigaZ. The studies, talks and discussions presented at this conference demonstrated that beam polarization and its measurement are crucial for the physics success of any future linear collider. To achieve the required precision it is absolutely decisive to employ multiple devices for testing and controlling the systematic uncertainties of each polarimeter. The polarimetry methods for the ILC are complementary: with the upstream polarimeter the measurements are performed in a clean environment, they are fast and allow to monitor time-dependent variations of polarization. The polarimeter downstream the IP will measure the disrupted beam resulting in high background and much lower statistics, but it allows access to the depolarization at the IP. Cross checks between the polarimeter results give redundancy and inter-calibration which is essential for high precision measurements. Current plans and issues for polarimeters and also energy spectrometers in the Beam Delivery System of the ILC are summarized in reference [28]. The ILC baseline design allows already from the beginning the operation with polarized electrons and polarized positrons provided the spin rotation and the fast helicity reversal for positrons will be implemented. A reversal of the positron helicity significantly slower than that of electrons is not recommended to not compromise the precision and hence the success of the ILC. Recently to use calibration data at the Z

  10. Beam position and total current monitor for heavy ion fusion beams

    SciTech Connect

    Berners, D.; Reginato, L.L.

    1992-10-01

    Heavy Ion Fusion requires moderate currents, 1-10A, for a duration of about 1 {mu}s. For accurate beam transport, the center of charge must be located to within {plus_minus} 100 {mu}m. Beam position and intensity may be excited at frequencies approaching 10 MHz, and the monitoring system must have adequate bandwidth to respond at these frequencies. We have modified the Rogowski technique by using distributed reactance multiturn magnetic loops so that it is suitable for measuring current position as well as amplitude. Four identical stripline coils are wound one per quadrant around a non magnetic core. The sensitivity is similar to that of a lumped coil system, with the added advantage of increased bandwidth. The voltages induced on the four separate coils are compared and suitable signal conditioning is performed to recover beam position and intensity information.

  11. Beam position and total current monitor for heavy ion fusion beams

    SciTech Connect

    Berners, D.; Reginato, L.L.

    1992-10-01

    Heavy Ion Fusion requires moderate currents, 1-10A, for a duration of about 1 [mu]s. For accurate beam transport, the center of charge must be located to within [plus minus] 100 [mu]m. Beam position and intensity may be excited at frequencies approaching 10 MHz, and the monitoring system must have adequate bandwidth to respond at these frequencies. We have modified the Rogowski technique by using distributed reactance multiturn magnetic loops so that it is suitable for measuring current position as well as amplitude. Four identical stripline coils are wound one per quadrant around a non magnetic core. The sensitivity is similar to that of a lumped coil system, with the added advantage of increased bandwidth. The voltages induced on the four separate coils are compared and suitable signal conditioning is performed to recover beam position and intensity information.

  12. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera.

    PubMed

    Baumann, Thomas M; Lapierre, Alain; Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg

    2014-07-01

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r(80%) = (212 ± 19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm(2) is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments. PMID:25085129

  13. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera.

    PubMed

    Baumann, Thomas M; Lapierre, Alain; Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg

    2014-07-01

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r(80%) = (212 ± 19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm(2) is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments.

  14. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera

    SciTech Connect

    Baumann, Thomas M. Lapierre, Alain Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg

    2014-07-15

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r{sub 80%}=(212±19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm{sup 2} is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments.

  15. Photon beam quality variations of a flattening filter free linear accelerator

    SciTech Connect

    Georg, Dietmar; Kragl, Gabriele; Wetterstedt, Sacha af; McCavana, Patrick; McClean, Brendan; Knoeoes, Tommy

    2010-01-15

    Purpose: Recently, there has been an increasing interest in operating conventional linear accelerators without a flattening filter. The aim of this study was to determine beam quality variations as a function of off-axis ray angle for unflattened beams. In addition, a comparison was made with the off-axis energy variation in flattened beams. Methods: Two Elekta Precise linear accelerators were modified in order to enable radiation delivery with and without the flattening filter in the beam line. At the Medical University Vienna (Vienna, Austria), half value layer (HVL) measurements were performed for 6 and 10 MV with an in-house developed device that can be easily mounted on the gantry. At St. Luke's Hospital (Dublin, Ireland), measurements were performed at 6 MV in narrow beam geometry with the gantry tilted around 270 deg. with pinhole collimators, an attenuator, and the chamber positioned on the table. All attenuation measurements were performed with ionization chambers and a buildup cap (2 mm brass) or a PMMA mini phantom (diameter 3 cm, measurement depth 2.5 cm). Results: For flattened 6 and 10 MV photon beams from the Elekta linac the relative HVL({theta}) varies by about 11% for an off-axis ray angle {theta}=10 deg. These results agree within {+-}2% with a previously proposed generic off-axis energy correction. For unflattened beams, the variation was less than 5% in the whole range of off-axis ray angles up to 10 deg. The difference in relative HVL data was less than 1% for unflattened beams at 6 and 10 MV. Conclusions: Off-axis energy variation is rather small in unflattened beams and less than half the one for flattened beams. Thus, ignoring the effect of off-axis energy variation for dose calculations in unflattened beams can be clinically justified.

  16. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probea)

    NASA Astrophysics Data System (ADS)

    Chen, Y. H.; Yang, X. Y.; Lin, C.; Wang, L.; Xu, M.; Wang, X. G.; Xiao, C. J.

    2014-11-01

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  17. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe.

    PubMed

    Chen, Y H; Yang, X Y; Lin, C; Wang, L; Xu, M; Wang, X G; Xiao, C J

    2014-11-01

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  18. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  19. Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams.

    PubMed

    van Tilborg, J; Steinke, S; Geddes, C G R; Matlis, N H; Shaw, B H; Gonsalves, A J; Huijts, J V; Nakamura, K; Daniels, J; Schroeder, C B; Benedetti, C; Esarey, E; Bulanov, S S; Bobrova, N A; Sasorov, P V; Leemans, W P

    2015-10-30

    Compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T/m, enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained. PMID:26565471

  20. Design of a subnanometer resolution beam position monitor for dielectric laser accelerators.

    PubMed

    Soong, Ken; Byer, Robert L

    2012-03-01

    We present a new concept for a beam position monitor with the unique ability to map particle beam position to a measurable wavelength. Coupled with an optical spectrograph, this beam position monitor is capable of subnanometer resolution. We describe one possible design, and through finite-element frequency-domain simulations, we show a resolution of 0.7 nm. Because of its high precision and ultracompact form factor, this device is ideal for future x-ray sources and laser-driven particle accelerators "on a chip."

  1. Proceedings of the workshop on prospects for research with radioactive beams from heavy ion accelerators

    SciTech Connect

    Nitschke, J.M.

    1984-04-01

    The SuperHILAC Users Executive Committee organized a workshop on Prospects for Research with Radioactive Beams from Heavy Ion Accelerators. The main purpose of the workshop was to bring together a diverse group of scientists who had already done experients with radioactive beams or were interested in their use in the future. The topics of the talks ranged from general nuclear physics, astrophysics, production of radioactive beams and high energy projectile fragmentation to biomedical applications. This publication contains the abstracts of the talks given at the workshop and copies of the viewgraphs as they were supplied to the editor.

  2. Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams

    NASA Astrophysics Data System (ADS)

    van Tilborg, J.; Steinke, S.; Geddes, C. G. R.; Matlis, N. H.; Shaw, B. H.; Gonsalves, A. J.; Huijts, J. V.; Nakamura, K.; Daniels, J.; Schroeder, C. B.; Benedetti, C.; Esarey, E.; Bulanov, S. S.; Bobrova, N. A.; Sasorov, P. V.; Leemans, W. P.

    2015-10-01

    Compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T /m , enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained.

  3. Conserved vector current test using low energy beta beams

    SciTech Connect

    Balantekin, A.B.; Jesus, J.H. de; Lazauskas, R.; Volpe, C.

    2006-04-01

    We discuss the possibility of testing the weak currents and, in particular, the weak magnetism term through the measurement of the {nu}{sub e}+p{yields}e{sup +}+n reaction at a low energy beta-beam facility. We analyze the sensitivity using both the total number of events and the angular distribution of the positrons emitted in a water Cerenkov detector. We show that the weak magnetism form factor might be determined with better than several percent accuracy using the angular distribution. This offers a new way of testing the conserved vector current hypothesis.

  4. Development and beam test of a continuous wave radio frequency quadrupole accelerator

    NASA Astrophysics Data System (ADS)

    Ostroumov, P. N.; Mustapha, B.; Barcikowski, A.; Dickerson, C.; Kolomiets, A. A.; Kondrashev, S. A.; Luo, Y.; Paskvan, D.; Perry, A.; Schrage, D.; Sharamentov, S. I.; Sommer, R.; Toter, W.; Zinkann, G.

    2012-11-01

    The front end of any modern ion accelerator includes a radio frequency quadrupole (RFQ). While many pulsed ion linacs successfully operate RFQs, several ion accelerators worldwide have significant difficulties operating continuous wave (CW) RFQs to design specifications. In this paper we describe the development and results of the beam commissioning of a CW RFQ designed and built for the National User Facility: Argonne Tandem Linac Accelerator System (ATLAS). Several innovative ideas were implemented in this CW RFQ. By selecting a multisegment split-coaxial structure, we reached moderate transverse dimensions for a 60.625-MHz resonator and provided a highly stabilized electromagnetic field distribution. The accelerating section of the RFQ occupies approximately 50% of the total length and is based on a trapezoidal vane tip modulation that increased the resonator shunt impedance by 60% in this section as compared to conventional sinusoidal modulation. To form an axially symmetric beam exiting the RFQ, a very short output radial matcher with a length of 0.75βλ was developed. The RFQ is designed as a 100% oxygen-free electronic (OFE) copper structure and fabricated with a two-step furnace brazing process. The radio frequency (rf) measurements show excellent rf properties for the resonator, with a measured intrinsic Q equal to 94% of the simulated value for OFE copper. An O5+ ion beam extracted from an electron cyclotron resonance ion source was used for the RFQ commissioning. In off-line beam testing, we found excellent coincidence of the measured beam parameters with the results of beam dynamics simulations performed using the beam dynamics code TRACK, which was developed at Argonne. These results demonstrate the great success of the RFQ design and fabrication technology developed here, which can be applied to future CW RFQs.

  5. Comparison of measured Varian Clinac 21EX and TrueBeam accelerator electron field characteristics.

    PubMed

    Lloyd, Samantha A M; Zavgorodni, Sergei; Gagne, Isabelle M

    2015-07-08

    Dosimetric comparisons of radiation fields produced by Varian's newest linear accelerator, the TrueBeam, with those produced by older Varian accelerators are of interest from both practical and research standpoints. While photon fields have been compared in the literature, similar comparisons of electron fields have not yet been reported. In this work, electron fields produced by the TrueBeam are compared with those produced by Varian's Clinac 21EX accelerator. Diode measurements were taken of fields shaped with electron applicators and delivered at 100 cm SSD, as well as those shaped with photon MLCs without applicators and delivered at 70 cm SSD for field sizes ranging from 5 × 5 to 25 × 25 cm² at energies between 6 and 20 MeV. Additionally, EBT2 and EBT3 radio-chromic film measurements were taken of an MLC-shaped aperture with closed leaf pairs delivered at 70 cm SSD using 6 and 20 MeV electrons. The 6 MeV fields produced by the TrueBeam and Clinac 21EX were found to be almost indistinguishable. At higher energies, TrueBeam fields shaped by electron applicators were generally flatter and had less photon contamination compared to the Clinac 21EX. Differences in PDDs and profiles fell within 3% and 3 mm for the majority of measurements. The most notable differences for open fields occurred in the profile shoulders for the largest applicator field sizes. In these cases, the TrueBeam and Clinac 21EX data differed by as much as 8%. Our data indicate that an accurate electron beam model of the Clinac 21EX could be used as a starting point to simulate electron fields that are dosimetrically equivalent to those produced by the TrueBeam. Given that the Clinac 21EX shares head geometry with Varian's iX, Trilogy, and Novalis TX accelerators, our findings should also be applicable to these machines.

  6. Excitation of Accelerating Plasma Waves by Counter-Propagating Laser Beams

    SciTech Connect

    Shvets, Gennady; Fisch, Nathaniel J; Pukhov, Alexander

    2002-04-05

    The conventional approach to exciting high phase velocity waves in plasmas is to employ a laser pulse moving in the direction of the desired particle acceleration. Photon downshifting then causes momentum transfer to the plasma and wave excitation. Novel approaches to plasma wake excitation, colliding-beam accelerator (CBA), which involve photon exchange between the long and short counter-propagating laser beams, are described. Depending on the frequency detuning Dw between beams and duration tL of the short pulse, there are two approaches to CBA. The first approach assumes tL ª 2/wp. Photons exchanged between the beams deposit their recoil momentum in the plasma driving the plasma wake. Frequency detuning between the beams determines the direction of the photon exchange, thereby controlling the phase of the plasma wake. This phase control can be used for reversing the slippage of the accelerated particles with respect to the wake. A variation on the same theme, super-beatwave accelerator, is also described. In the second approach, a short pulse with tL >> 2/wp1 detuned by Dw ~ 2wp from the counter-propagating beam is employed. While parametric excitation of plasma waves by the electromagnetic beatwave at 2wp of two co-propagating lasers was first predicted by Rosenbluth and Liu [M.N. Rosenbluth, C.S. Liu, Phys. Rev. Lett. 29 (1972) 701], it is demonstrated that the two excitation beams can be counter-propagating. The advantages of using this geometry (higher instability growth rate, insensitivity to plasma inhomogeneity) are explained, and supporting numerical simulations presented.

  7. Comparison of measured Varian Clinac 21EX and TrueBeam accelerator electron field characteristics.

    PubMed

    Lloyd, Samantha A M; Zavgorodni, Sergei; Gagne, Isabelle M

    2015-01-01

    Dosimetric comparisons of radiation fields produced by Varian's newest linear accelerator, the TrueBeam, with those produced by older Varian accelerators are of interest from both practical and research standpoints. While photon fields have been compared in the literature, similar comparisons of electron fields have not yet been reported. In this work, electron fields produced by the TrueBeam are compared with those produced by Varian's Clinac 21EX accelerator. Diode measurements were taken of fields shaped with electron applicators and delivered at 100 cm SSD, as well as those shaped with photon MLCs without applicators and delivered at 70 cm SSD for field sizes ranging from 5 × 5 to 25 × 25 cm² at energies between 6 and 20 MeV. Additionally, EBT2 and EBT3 radio-chromic film measurements were taken of an MLC-shaped aperture with closed leaf pairs delivered at 70 cm SSD using 6 and 20 MeV electrons. The 6 MeV fields produced by the TrueBeam and Clinac 21EX were found to be almost indistinguishable. At higher energies, TrueBeam fields shaped by electron applicators were generally flatter and had less photon contamination compared to the Clinac 21EX. Differences in PDDs and profiles fell within 3% and 3 mm for the majority of measurements. The most notable differences for open fields occurred in the profile shoulders for the largest applicator field sizes. In these cases, the TrueBeam and Clinac 21EX data differed by as much as 8%. Our data indicate that an accurate electron beam model of the Clinac 21EX could be used as a starting point to simulate electron fields that are dosimetrically equivalent to those produced by the TrueBeam. Given that the Clinac 21EX shares head geometry with Varian's iX, Trilogy, and Novalis TX accelerators, our findings should also be applicable to these machines. PMID:26219015

  8. Hybrid monitor for both beam position and tilt of pulsed high-current beams

    SciTech Connect

    Pang, J. He, X.; Ma, C.; Zhao, L.; Li, Q.; Dai, Z.

    2014-09-15

    A Hybrid beam monitor, integrated with both azimuthal and axial B-dot probes, was designed for simultaneous measurement of both beam position and beam angle for pulsed high-current beams at the same location in beam pipe. The output signals of axial B-dot probes were found to be mixed with signals caused by transverse position deviation. In order to eliminate the unwanted signals, an elimination method was developed and its feasibility tested on a 50-Ω coaxial line test stand. By this method, a waveform, shape-like to that of input current and proportional to the tilt angle, was simulated and processed by following integration step to achieve the tilt angle. The tests showed that the measurement error of displacement and tilt angle less than 0.3 mm and 1.5 mrad, respectively. The latter error could be reduced with improved probes by reducing the inductance of the axial B-dot probe, but the improvement reached a limit due to some unknown systemic mechanism.

  9. Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center

    SciTech Connect

    S. Setiniyaz, T.A. Forest, K. Chouffani, Y. Kim, A. Freyberger

    2012-07-01

    A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.

  10. Beam dynamics simulations of the transverse-to-longitudinal emittance exchange proof-of-principle experiment at the Argonne Wakefield Accelerator

    SciTech Connect

    Rihaoui, M.; Gai, W.; Kim, K.-J.; Power, J. G.; Piot, P.; Sun, Y.-E.

    2009-01-22

    Transverse-to-longitudinal emittance exchange has promising applications in various advanced acceleration and light source concepts. A proof-of-principle experiment to demonstrate this phase space manipulation method is currently being planned at the Argonne Wakefield Accelerator. The experiment focuses on exchanging a low longitudinal emittance with a high transverse horizontal emittance and also incorporates room for possible parametric studies e.g. using an incoming flat beam with tunable horizontal emittance. In this paper, we present realistic start-to-end beam dynamics simulation of the scheme, explore the limitations of this phase space exchange.

  11. Beam dynamics simulations of the transverse-to-longitudinal emittance exchange proof-of-principle experiment at the Argonne Wakefield Accelerator.

    SciTech Connect

    Gao, F.; Gai, W.; Power, J. G.; Kim, K. J.; Sun, Y. E.; Piot, P.; Rihaoui, M.; High Energy Physics; Northern Illinois Univ.; FNAL

    2009-01-01

    Transverse-to-longitudinal emittance exchange has promising applications in various advanced acceleration and light source concepts. A proof-of-principle experiment to demonstrate this phase space manipulation method is currently being planned at the Argonne Wakefield Accelerator. The experiment focuses on exchanging a low longitudinal emittance with a high transverse horizontal emittance and also incorporates room for possible parametric studies e.g. using an incoming flat beam with tunable horizontal emittance. In this paper, we present realistic start-to-end beam dynamics simulation of the scheme, explore the limitations of this phase space exchange.

  12. Beam dynamics simulations of the transverse-to-longitudinal emittance exchange proof-of-principle experiment at the Argonne Wakefield Accelerator

    SciTech Connect

    Rihaoui, M.; Gai, W.; Kim, K.J.; Piot, Philippe; Power, John Gorham; Sun, Y.E.; /Fermilab

    2009-01-01

    Transverse-to-longitudinal emittance exchange has promising applications in various advanced acceleration and light source concepts. A proof-of-principle experiment to demonstrate this phase space manipulation method is currently being planned at the Argonne Wakefield Accelerator. The experiment focuses on exchanging a low longitudinal emittance with a high transverse horizontal emittance and also incorporates room for possible parametric studies e.g. using an incoming flat beam with tunable horizontal emittance. In this paper, we present realistic start-to-end beam dynamics simulation of the scheme, explore the limitations of this phase space exchange.

  13. High Energy Accelerator and Colliding Beam User Group: Progress report, March 1, 1988--February 28, 1989

    SciTech Connect

    Not Available

    1988-09-01

    This report discusses work carried out by the High Energy Accelerator and Colliding Beam User Group at the University of Maryland. Particular topics discussed are: OPAL experiment at LEP; deep inelastic muon interactions; B physics with the CLEO detector at CESR; further results from JADE; and search for ''small'' violation of the Pauli principle. (LSP)

  14. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging.

    PubMed

    Golovin, G; Banerjee, S; Liu, C; Chen, S; Zhang, J; Zhao, B; Zhang, P; Veale, M; Wilson, M; Seller, P; Umstadter, D

    2016-04-19

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.

  15. GeV electron beams from a laser-plasma accelerator

    SciTech Connect

    Schroeder, C.B.; Toth, Cs.; Nagler, B.; Gonsalves, A.J.; Nakamura, K.; Geddes, C.G.R.; Esarey, E.; Hooker, S.M.; Leemans, W.P.

    2006-10-01

    High-quality electron beams with up to 1 GeV energy havebeen generated by a laser-driven plasma-based accelerator by guiding a 40TW peak power laser pulse in a 3.3 cm long gas-filled capillary dischargewaveguide.

  16. Heavy-ion beam dynamics in the RIA post-accelerator.

    SciTech Connect

    Ostroumov, P. N.; Kolomiets, A. A.; Aseev, V. N.; Physics

    2005-01-01

    The RIA post-accelerator (RIB) includes three main sections: a room temperature injector with design ion charge-to-mass ratio 1/240 and output energy of {approx} 93 keV/u, a superconducting (SC) linac for ions with charge-to-mass ratio 1/66 or higher up to an energy of {approx} 1 MeV/u and a higher energy SC linac including existing ATLAS to produce 10 MeV/u beams up to uranium. Two strippers are installed between the sections. Extensive accelerator design studies and end-to-end beam dynamics simulations have been performed to minimize the cost of the linac while providing high-quality and high-intensity radioactive beams. Specifically, we have found that cost-effective acceleration in the front end can be provided by several hybrid RFQs proposed and developed for acceleration of low-velocity heavy ions. For beam focusing in the second section it is appropriate to use electrostatic lenses and SC quadrupoles inside common cryostats with the resonators.

  17. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

    DOE PAGES

    Golovin, G.; Banerjee, S.; Liu, C.; Chen, S.; Zhang, J.; Zhao, B.; Zhang, P.; Veale, M.; Wilson, M.; Seller, P.; et al

    2016-04-19

    Here, the recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense lasermore » probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.« less

  18. Phase control of the microwave radiation in free electron laser two-beam accelerator

    SciTech Connect

    Goren, Y.; Sessler, A.M.

    1987-07-01

    A phase control system for the FEL portion of Two-Beam Accelerator is proposed. The control keeps the phase error within acceptable bounds. The control mechanism is analyzed, both analytically in a ''resonant particle'' approximation and numerically in a multi-particle simulation code. Sensitivity of phase errors to the FEL parameters has been noticed.

  19. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

    PubMed Central

    Golovin, G.; Banerjee, S.; Liu, C.; Chen, S.; Zhang, J.; Zhao, B.; Zhang, P.; Veale, M.; Wilson, M.; Seller, P.; Umstadter, D.

    2016-01-01

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays. PMID:27090440

  20. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging.

    PubMed

    Golovin, G; Banerjee, S; Liu, C; Chen, S; Zhang, J; Zhao, B; Zhang, P; Veale, M; Wilson, M; Seller, P; Umstadter, D

    2016-01-01

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays. PMID:27090440