Science.gov

Sample records for accelerator centre slac

  1. SLAC accelerator operations report: 1992-1995

    SciTech Connect

    Erickson, R.; Allen, C.W.; Inman, T.K.; Linebarger, W.; Stanek, M.

    1995-05-01

    Operational statistics for the linear accelerator programs at SLAC are presented, including run-time records for the SLC, FFTB, and fixed target programs. Also included are summaries of reliability and maintenance-related statistics and a discussion of the analysis tools used to study error messages generated by the control system.

  2. A New Control Room for SLAC Accelerators

    SciTech Connect

    Erickson, Roger; Guerra, E.; Stanek, M.; Hoover, Z.Van; Warren, J.; /SLAC

    2012-06-04

    We are planning to construct a new control room at SLAC to unify and improve the operation of the LCLS, SPEAR3, and FACET accelerator facilities, and to provide the space and flexibility needed to support the LCLS-II and proposed new test beam facilities. The existing control rooms for the linac and SPEAR3 have been upgraded in various ways over the last decade, but their basic features have remained unchanged. We propose to build a larger modern Accelerator Control Room (ACR) in the new Research Support Building (RSB) which is currently under construction at SLAC. Shifting the center of control for the accelerator facilities entails both technical and administrative challenges. In this paper, we describe the history, concept, and status of this project.

  3. R&D of Accelerator Structures at SLAC

    SciTech Connect

    Wang, J.W.; /SLAC

    2007-01-17

    The research activities for accelerator structures at SLAC are reviewed including the achievement via the main linac design for the Next Linear Collider (NLC), the program adjustment after the decision of the International Linear Collider (ILC) to be based on superconducting technology, and the work progress for the ILC, photon science at SLAC and basic accelerator structure studies.

  4. Accelerator physics: Surf's up at SLAC

    NASA Astrophysics Data System (ADS)

    Downer, Mike; Zgadzaj, Rafal

    2014-11-01

    A 'plasma afterburner' just 30 centimetres long accelerates electrons hundreds of times faster than giant conventional accelerators. The result may ultimately open up a low-cost technology for particle colliders. See Letter p.92

  5. ORION: An Advanced Accelerator Facility at SLAC

    SciTech Connect

    Palmer, Dennis

    2002-08-20

    Extending the center-of-mass energy frontier for high-energy physics depends on the research and development that is conducted now in the area of advanced accelerator physics and technology. In this article, we present the design and beam dynamics simulations for the emittance-compensated, RF photoinjector of the ORION Facility.

  6. Radiation Protection in the NLC Test Accelerator at SLAC

    NASA Astrophysics Data System (ADS)

    Lavine, Theodore L.; Vylet, Vaclav

    1997-05-01

    This paper describes the elements of the design of the NLC Test Accelerator pertaining to ionizing radiation protection and safety. The NLC Test Accelerator is an accelerator physics research facility at SLAC designed to validate 2.6-cm microwave linear accelerator technology for a future high-energy linear collider (the "Next Linear Collider"). The NLC Test Accelerator is designed for average beam power levels up to 1.5 kW, at energies up to 1 GeV (roughly equivalent to 1/500 of an NLC linac). The design for radiation protection incorporates shielding, configuration controls, safety interlock systems for personnel protection and beam containment, and operations procedures. The design was guided by the DOE Accelerator Safety Order, internal Laboratory policy, and the general principle of keeping radiation doses as low as reasonably achievable.

  7. SLC status and SLAC (Stanford Linear Accelerator Center) future plans

    SciTech Connect

    Richter, B.

    1989-08-01

    In this presentation, I shall discuss the linear collider program at the Stanford Linear Accelerator Center as it is now, and as we hope to see it evolve over the next few years. Of greatest interest to the high energy accelerator physics community gathered here is the development of the linear collider concept, and so I shall concentrate most of this paper on a discussion of the present status and future evolution of the SLC. I will also briefly discuss the research and development program that we are carrying out aimed at the realization of the next generation of high-energy linear colliders. SLAC had a major colliding-beam storage-ring program as well, including present rings and design studies on future high-luminosity projects, but time constraints preclude a discussion of them. 8 figs., 3 tabs.

  8. Acceleration of high charge density electron beams in the SLAC linac

    SciTech Connect

    Sheppard, J.C.; Clendenin, J.E.; Jobe, R.K.; Lueth, V.G.; Millich, A.; Ross, M.C.; Seeman, J.T.; Stiening, R.F.

    1984-01-01

    The SLAC Linear Collider (SLC) will require both electron and positron beams of very high charge density and low emittance to be accelerated to about 50 GeV in the SLAC 3-km linac. The linac is in the process of being improved to meet this requirement. The program to accelerate an electron beam of high charge density through the first third of the SLC linac is described and the experimental results are discussed. 7 references, 5 figures.

  9. Structure Loaded Vacuum Laser-Driven Particle Acceleration Experiments at SLAC

    SciTech Connect

    Plettner, T.; Byer, R.L.; Colby, E.R.; Cowan, B.M.; Ischebeck, R.; McGuinness, C.; Lincoln, M.R.; Sears, C.M.; Siemann, R.H.; Spencer, J.E.; /SLAC /Stanford U., Phys. Dept.

    2007-04-09

    We present an overview of the future laser-driven particle acceleration experiments. These will be carried out at the E163 facility at SLAC. Our objectives include a reconfirmation of the proof-of-principle experiment, a staged buncher laser-accelerator experiment, and longer-term future experiments that employ dielectric laser-accelerator microstructures.

  10. Using The SLAC Two-Mile Accelerator for Powering an FEL

    SciTech Connect

    Barletta, W.A.; Sessler, A.M.; Yu, L.H.; /Brookhaven

    2012-06-29

    A parameter survey is made, employing the recently developed 2D formalism for an FEL, of the characteristics of an FEL using the SLAC accelerator. Attention is focused upon a wavelength of 40 {angstrom} (the water window) and 1 {angstrom} case is also presented. They consider employing the SLAC linac with its present operating parameters and with improved parameters such as would be supplied by a new photo-cathode injector. They find that improved parameters are necessary, but that the parameters presently achieved with present-day photo-cathode guns are adequate to reach the water window.

  11. High Frequency, High Gradient Dielectric Wakefield Acceleration Experiments at SLAC and BNL

    NASA Astrophysics Data System (ADS)

    Rosenzweig, J. B.; Andonian, G.; Muggli, P.; Niknejadi, P.; Travish, G.; Williams, O.; Xuan, K.; Yakimenko, V.

    2010-11-01

    Given the recent success of >GV/m dielectric wakefield accelerator (DWA) breakdown experiments at SLAC, and follow-on coherent Cerenkov radiation (CCR) production at the UCLA Neptune, a UCLA-USC-SLAC collaboration is now implementing a new set of experiments that explore various DWA scenarios. These experiments are motivated by the opportunities presented by the approval of the FACET facility at SLAC, as well as unique pulse-train wakefield drivers at BNL. The SLAC experiments permit further exploration of the multi-GeV/m envelope in DWAs, and will entail investigations of novel materials (e.g. CVD diamond) and geometries (Bragg cylindrical structures, slab-symmetric DWAs), and have an over-riding goal of demonstrating >GeV acceleration in ˜33 cm DWA tubes. In the nearer term before FACET's commissioning, we are performing measurements at the BNL ATF, in which we drive ˜50-200 MV/m fields with single pulses or pulse trains, and observe resonantly driven CCR as well as deflection modes. These experiments are of high relevance to enhancing linear collider DWA designs, as they will demonstrate potential for high efficiency operation with pulse trains, and explore transverse modes for the first time.

  12. High Frequency, High Gradient Dielectric Wakefield Acceleration Experiments at SLAC and BNL

    SciTech Connect

    Rosenzweig, J. B.; Andonian, G.; Niknejadi, P.; Travish, G.; Williams, O.; Xuan, K.; Muggli, P.; Yakimenko, V.

    2010-11-04

    Given the recent success of >GV/m dielectric wakefield accelerator (DWA) breakdown experiments at SLAC, and follow-on coherent Cerenkov radiation (CCR) production at the UCLA Neptune, a UCLA-USC-SLAC collaboration is now implementing a new set of experiments that explore various DWA scenarios. These experiments are motivated by the opportunities presented by the approval of the FACET facility at SLAC, as well as unique pulse-train wakefield drivers at BNL. The SLAC experiments permit further exploration of the multi-GeV/m envelope in DWAs, and will entail investigations of novel materials (e.g. CVD diamond) and geometries (Bragg cylindrical structures, slab-symmetric DWAs), and have an over-riding goal of demonstrating >GeV acceleration in {approx}33 cm DWA tubes. In the nearer term before FACET's commissioning, we are performing measurements at the BNL ATF, in which we drive {approx}50-200 MV/m fields with single pulses or pulse trains, and observe resonantly driven CCR as well as deflection modes. These experiments are of high relevance to enhancing linear collider DWA designs, as they will demonstrate potential for high efficiency operation with pulse trains, and explore transverse modes for the first time.

  13. High Frequency, High Gradient Dielectric Wakefield Acceleration Experiments at SLAC and BNL

    SciTech Connect

    Rosenzweig, James; Travish, Gil; Hogan, Mark; Muggli, Patric; /Southern California U.

    2012-07-05

    Given the recent success of >GV/m dielectric wakefield accelerator (DWA) breakdown experiments at SLAC, and follow-on coherent Cerenkov radiation production at the UCLA Neptune, a UCLA-USC-SLAC collaboration is now implementing a new set of experiments that explore various DWA scenarios. These experiments are motivated by the opportunities presented by the approval of FACET facility at SLAC, as well as unique pulse-train wakefield drivers at BNL. The SLAC experiments permit further exploration of the multi-GeV/m envelope in DWAs, and will entail investigations of novel materials (e.g. CVD diamond) and geometries (Bragg cylindrical structures, slab-symmetric DWAs), and have an over-riding goal of demonstrating >GeV acceleration in {approx}33 cm DWA tubes. In the nearer term before FACET's commissioning, we are planning measurements at the BNL ATF, in which we drive {approx}50-200 MV/m fields with single pulses or pulse trains. These experiments are of high relevance to enhancing linear collider DWA designs, as they will demonstrate potential for efficient operation with pulse trains.

  14. Summary of SLAC's SEY Measurement On Flat Accelerator Wall Materials

    SciTech Connect

    Le Pimpec, F.; /PSI, Villigen /SLAC

    2007-06-08

    The electron cloud effect (ECE) causes beam instabilities in accelerator structures with intense positively charged bunched beams. Reduction of the secondary electron yield (SEY) of the beam pipe inner wall is effective in controlling cloud formation. We summarize SEY results obtained from flat TiN, TiZrV and Al surfaces carried out in a laboratory environment. SEY was measured after thermal conditioning, as well as after low energy, less than 300 eV, particle exposure.

  15. Wakefield Simulations for the Laser Acceleration Experiment at SLAC

    SciTech Connect

    Ng, Johnny

    2012-04-18

    Laser-driven acceleration in dielectric photonic band gap structures can provide gradients on the order of GeV/m. The small transverse dimension of the structure, on the order of the laser wavelength, presents interesting wakefield-related issues. Higher order modes can seriously degrade beam quality, and a detailed understanding is needed to mitigate such effects. On the other hand, wakefields also provide a direct way to probe the interaction of a relativistic bunch with the synchronous modes supported by the structure. Simulation studies have been carried out as part of the effort to understand the impact on beam dynamics, and to compare with data from beam experiments designed to characterize candidate structures. In this paper, we present simulation results of wakefields excited by a sub-wavelength bunch in optical photonic band gap structures.

  16. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    SciTech Connect

    Weathersby, S. P.; Brown, G.; Centurion, M.; Chase, T. F.; Coffee, R.; Corbett, J.; Eichner, J. P.; Frisch, J. C.; Fry, A. R.; Gühr, M.; Hartmann, N.; Hast, C.; Hettel, R.; Jobe, R. K.; Jongewaard, E. N.; Lewandowski, J. R.; Li, R. K.; Lindenberg, A. M.; Makasyuk, I.; May, J. E.; McCormick, D.; Nguyen, M. N.; Reid, A. H.; Shen, X.; Sokolowski-Tinten, K.; Vecchione, T.; Vetter, S. L.; Wu, J.; Yang, J.; Dürr, H. A.; Wang, X. J.

    2015-07-01

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  17. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory.

    PubMed

    Weathersby, S P; Brown, G; Centurion, M; Chase, T F; Coffee, R; Corbett, J; Eichner, J P; Frisch, J C; Fry, A R; Gühr, M; Hartmann, N; Hast, C; Hettel, R; Jobe, R K; Jongewaard, E N; Lewandowski, J R; Li, R K; Lindenberg, A M; Makasyuk, I; May, J E; McCormick, D; Nguyen, M N; Reid, A H; Shen, X; Sokolowski-Tinten, K; Vecchione, T; Vetter, S L; Wu, J; Yang, J; Dürr, H A; Wang, X J

    2015-07-01

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability. PMID:26233391

  18. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    SciTech Connect

    Weathersby, S. P.; Brown, G.; Chase, T. F.; Coffee, R.; Corbett, J.; Eichner, J. P.; Frisch, J. C.; Fry, A. R.; Gühr, M.; Hartmann, N.; Hast, C.; Hettel, R.; Jobe, R. K.; Jongewaard, E. N.; Lewandowski, J. R.; Li, R. K. Lindenberg, A. M.; Makasyuk, I.; May, J. E.; McCormick, D.; and others

    2015-07-15

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  19. The UCLA/SLAC Ultra-High Gradient Cerenkov Wakefield Accelerator Experiment

    SciTech Connect

    Thompson, M.C.; Badakov, H.; Rosenzweig, J.B.; Travish, G.; Hogan, M.; Ischebec, R.; Siemann, R.; Walz, D.; Scott, A.; Yoder, R.; /Manhattan Coll., Riverdale

    2006-01-25

    An experiment is planned to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range. This new UCLA/SLAC/USC collaboration will take advantage of the unique SLAC FFTB electron beam and its demonstrated ultra-short pulse lengths and high currents (e.g., {delta}{sub z} = 20 {micro}m at Q = 3 nC). The electron beam will be focused down and sent through varying lengths of fused silica capillary tubing with two different sizes: ID = 200 {micro}m/OD = 325 {micro}m and ID = 100 {micro}m/OD = 325 {micro}m. The pulse length of the electron beam will be varied in order to alter the accelerating gradient and probe the breakdown threshold of the dielectric structures. In addition to breakdown studies, we plan to collect and measure coherent Cerenkov radiation emitted from the capillary tube to gain information about the strength of the accelerating fields.

  20. Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC and its Radiological Considerations

    SciTech Connect

    Mao, X.S.; Leitner, M.Santana; Vollaire, J.

    2011-08-22

    Facility for Advanced Accelerator Experimental Tests (FACET) in SLAC will be used to study plasma wakefield acceleration. FLUKA Monte Carlo code was used to design a maze wall to separate FACET project and LCLS project to allow persons working in FACET side during LCLS operation. Also FLUKA Monte Carlo code was used to design the shielding for FACET dump to get optimum design for shielding both prompt and residual doses, as well as reducing environmental impact. FACET will be an experimental facility that provides short, intense pulses of electrons and positrons to excite plasma wakefields and study a variety of critical issues associated with plasma wakefield acceleration [1]. This paper describes the FACET beam parameters, the lay-out and its radiological issues.

  1. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema

    Andrei Seryi

    2010-01-08

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  2. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    SciTech Connect

    Andrei Seryi

    2009-09-09

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  3. Advocacy for the Archives and History Office of the SLAC National Accelerator Laboratory: Stages and Methods

    SciTech Connect

    Deken, Jean Marie; /SLAC

    2009-06-19

    Advocating for the good of the SLAC Archives and History Office (AHO) has not been a one-time affair, nor has it been a one-method procedure. It has required taking time to ascertain the current and perhaps predict the future climate of the Laboratory, and it has required developing and implementing a portfolio of approaches to the goal of building a stronger archive program by strengthening and appropriately expanding its resources. Among the successful tools in the AHO advocacy portfolio, the Archives Program Review Committee has been the most visible. The Committee and the role it serves as well as other formal and informal advocacy efforts are the focus of this case study My remarks today will begin with a brief introduction to advocacy and outreach as I understand them, and with a description of the Archives and History Office's efforts to understand and work within the corporate culture of the SLAC National Accelerator Laboratory. I will then share with you some of the tools we have employed to advocate for the Archives and History Office programs and activities; and finally, I will talk about how well - or badly - those tools have served us over the past decade.

  4. SLAC site design aesthetics

    SciTech Connect

    Hall, F.F.

    1985-10-01

    Stanford Linear Accelerator Center (SLAC) is a single mission laboratory dedicated to basic research in high energy particle physics. SLAC site also houses Stanford Synchrotron Radiation Laboratory (SSRL) which is a multi-mission laboratory for research using beams of ultraviolet light and low energy photons as emitted tangentially from SLAC colliding beam facilities. This paper discusses various aspects of SLAC site design aesthetics under the following headings: (1) imposed footprint of SLAC, (2) description of selected site, (3) use of earth cover for radiation and sight screens, (4) use of landscaping for cosmetic purposes, (5) use of exterior paint colors to soften SLAC impact on neighbors, (6) relocation of SLAC main entrance, (7) relocation of SLAC collider arcs and experimental hall, (8) parking lots and storage yards, and (9) land use zoning at SLAC.

  5. 600 kV modulator design for the SLAC Next Linear Collider Test Accelerator

    SciTech Connect

    Harris, K.; de Lamare, J.; Nesterov, V.; Cassel, R.

    1992-07-01

    Preliminary design for the SLAC Next Linear Collider Test Accelerator (NLCTA) requires a pulse power source to produce a 600 kV, 600 A, 1.4 {mu}s, 0.1% flat top pulse with rise and fall times of approximately 100 ns to power an X-Band klystron with a microperveance of 1.25 at {approx} 100 MW peak RF power. The design goals for the modulator, including those previously listed, are peak modulator pulse power of 340 MW operating at 120 Hz. A three-stage darlington pulse-forming network, which produces a >100 kV, 1.4 {mu}s pulse, is coupled to the klystron load through a 6:1 pulse transformer. Careful consideration of the transformer leakage inductance, klystron capacitance, system layout, and component choice is necessary to produce the very fast rise and fall times at 600 kV operating continuously at 120 Hz.

  6. An Ultra-High Gradient Cherenkov Wakefield Acceleration Experiment at SLAC FFTB

    SciTech Connect

    Rosenzweig, J.B.; Hoover, S.; Hogan, M.J.; Muggli, P.; Thompson, M.; Travish, G.; Yoder, R.; /UCLA /SLAC /Southern California U.

    2005-08-02

    The creation of ultra-high current, ultra-short pulse beams Q=3 nC, {sigma}{sub z} = 20{micro}m at the SLAC FFTB has opened the way for very high gradient plasma wakefield acceleration experiments. We study here the use of these beams in a proposed Cherenkov wakefield experiment, where one may excite electromagnetic wakes in a simple dielectric tube with inner diameter of few 100 microns that exceed the GV/m level. We discuss the scaling of the fields with design geometric design parameters, and choice of dielectric. We also examine measurable aspects of the experiment, such as the total coherent Cerenkov radiation energy one may collect, and the expected aspects of dielectric breakdown at high fields.

  7. Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report

    SciTech Connect

    Amann, J.; Bane, K.; /SLAC

    2009-10-30

    This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

  8. Preliminary Results from the UCLA/SLAC Ultra-High Gradient CerenkovWakefield Accelerator Experiment

    SciTech Connect

    Thompson, M.C.; Badakov, H.; Rosenzweig, J.B.; Travish, G.; Hogan, M.; Ischebeck, R.; Kirby, N.; Siemann, R.; Walz, D.; Muggli, P.; Scott, A.; Yoder, R.; /Manhattan Coll., Riverdale

    2008-02-06

    The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. This experiment takes advantage of the unique SLAC FFTB electron beam and its demonstrated ultra-short pulse lengths and high currents (e.g., {sigma}{sub z} = 20 {micro}m at Q = 3 nC). The FFTB electron beam has been successfully focused down and sent through varying lengths of fused silica capillary tubing with two different sizes: ID = 200 {micro}m/OD = 325 {micro}m and ID = 100 {micro}m/OD = 325 {micro}m. The pulse length of the electron beam was varied in the range 20 {micro}m < {sigma}{sub z} < 100 {micro}m which produced a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments we plan to collect and measure coherent Cerenkov radiation emitted from the capillary tube to gain more information about the strength of the accelerating fields.

  9. SLAC All Access: FACET

    ScienceCinema

    Hogan, Mark

    2014-09-15

    SLAC's Facility for Advanced Accelerator Experimental Tests, or FACET, is a test-bed where researchers are developing the technologies required for particle accelerators of the future. Scientists from all over the world come to explore ways of improving the power and efficiency of the particle accelerators used in basic research, medicine, industry and other areas important to society. In this video, Mark Hogan, head of SLAC's Advanced Accelerator Research Department, offers a glimpse into FACET, which uses part of SLAC's historic two-mile-long linear accelerator.

  10. SLAC All Access: FACET

    SciTech Connect

    Hogan, Mark

    2012-07-05

    SLAC's Facility for Advanced Accelerator Experimental Tests, or FACET, is a test-bed where researchers are developing the technologies required for particle accelerators of the future. Scientists from all over the world come to explore ways of improving the power and efficiency of the particle accelerators used in basic research, medicine, industry and other areas important to society. In this video, Mark Hogan, head of SLAC's Advanced Accelerator Research Department, offers a glimpse into FACET, which uses part of SLAC's historic two-mile-long linear accelerator.

  11. Observation and Characterization of Coherent Optical Radiation and Microbunching Instability in the SLAC Next Linear Collider Test Accelerator

    SciTech Connect

    Weathersby, S.; Dunning, M.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Xiang, D.; /SLAC

    2011-06-02

    The NLC Test Accelerator (NLCTA) at SLAC is currently configured for a proof-of-principle echo-enabled harmonic generation (EEHG) experiment using an 120 MeV beam. During commissioning, unexpected coherent optical undulator radiation (CUR) and coherent optical transition radiation (COTR) was observed when beam is accelerated off-crest and compressed after the chicanes. The CUR and COTR is likely due to a microbunching instability where the initial small ripples in cathode drive laser is compressed and amplified. In this paper we present the observation and characterization of the CUR, COTR and microbunching instability at NLCTA.

  12. Introduction to high-energy physics and the Stanford Linear Accelerator Center (SLAC)

    SciTech Connect

    Clearwater, S.

    1983-03-01

    The type of research done at SLAC is called High Energy Physics, or Particle Physics. This is basic research in the study of fundamental particles and their interactions. Basic research is research for the sake of learning something. Any practical application cannot be predicted, the understanding is the end in itself. Interactions are how particles behave toward one another, for example some particles attract one another while others repel and still others ignore each other. Interactions of elementary particles are studied to reveal the underlying structure of the universe.

  13. GPS Activities at SLAC

    SciTech Connect

    Behrend, Dirk

    2002-11-19

    The Alignment Engineering Group of the Stanford Linear Accelerator Center (SLAC) started to use RTK (real-time kinematic) GPS equipment in order to perform structure mapping and GIS-related tasks on the SLAC campus. In a first step a continuously observing GPS station (SLAC M40) was set up. This station serves as master control station for all differential GPS activities on site and its coordinates have been determined in the well-defined global geodetic datum ITRF2000 at a given reference epoch. Some trials have been performed to test the RTK method. The tests have proven RTK to be very fast and efficient.

  14. SLAC linear collider

    SciTech Connect

    Richter, B.; Bell, R.A.; Brown, K.L.

    1980-06-01

    The SLAC LINEAR COLLIDER is designed to achieve an energy of 100 GeV in the electron-positron center-of-mass system by accelerating intense bunches of particles in the SLAC linac and transporting the electron and positron bunches in a special magnet system to a point where they are focused to a radius of about 2 microns and made to collide head on. The rationale for this new type of colliding beam system is discussed, the project is described, some of the novel accelerator physics issues involved are discussed, and some of the critical technical components are described.

  15. Acceleration of petaelectronvolt protons in the Galactic Centre.

    PubMed

    2016-03-24

    Galactic cosmic rays reach energies of at least a few petaelectronvolts (of the order of 10(15) electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators ('PeVatrons'), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies. Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 10(13) electronvolts) were inferred from recent γ-ray observations. However, none of the currently known accelerators--not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays--has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of γ-rays extending without a cut-off or a spectral break to tens of teraelectronvolts. Here we report deep γ-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outburstsand an outflow from the Galactic Centre. Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 10(6)-10(7) years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays. PMID:26982725

  16. Acceleration of petaelectronvolt protons in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    HESS Collaboration; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balzer, A.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Dewilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lefranc, V.; Lemiére, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Lui, R.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Valerius, K.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Żywucka, N.

    2016-03-01

    Galactic cosmic rays reach energies of at least a few petaelectronvolts (of the order of 1015 electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators (‘PeVatrons’), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies. Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 1013 electronvolts) were inferred from recent γ-ray observations. However, none of the currently known accelerators—not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays—has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of γ-rays extending without a cut-off or a spectral break to tens of teraelectronvolts. Here we report deep γ-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outburstsand an outflow from the Galactic Centre. Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 106-107 years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays.

  17. FACET: SLAC___s New User Facility

    SciTech Connect

    Clarke, C.I.; Decker, F.-J.; England, R.J.; Erickson, R.A.; Hast, C.; Hogan, M.J.; Li, S.Z.; Litos, M.D.; Nosochkov, Y.; Seeman, J.T.; Sheppard, J.; Wienands, U.; Woodley, M.; Yocky, G.; /SLAC

    2012-05-16

    FACET (Facility for Advanced Accelerator Experimental Tests) is a new User Facility at SLAC National Accelerator Laboratory. The first User Run started in spring 2012 with 20 GeV, 3 nC electron beams. The facility is designed to provide short (20 {micro}m) bunches and small (20 {micro}m wide) spot sizes, producing uniquely high power beams. FACET supports studies from many fields but in particular those of Plasma Wakefield Acceleration and Dielectric Wakefield Acceleration. The creation of drive and witness bunches and shaped bunch profiles is possible with 'Notch' Collimation. FACET is also a source of THz radiation for material studies. Positrons will be available at FACET in future user runs. We present the User Facility and the available tools and opportunities for future experiments.

  18. A summary of ground motion effects at SLAC (Stanford Linear Accelerator Center) resulting from the Oct 17th 1989 earthquake

    SciTech Connect

    Ruland, R.E.

    1990-08-01

    Ground motions resulting from the October 17th 1989 (Loma Prieta) earthquake are described and can be correlated with some geologic features of the SLAC site. Recent deformations of the linac are also related to slow motions observed over the past 20 years. Measured characteristics of the earthquake are listed. Some effects on machine components and detectors are noted. 18 refs., 16 figs.

  19. Beam dynamics enhancement due to accelerating field symmetrization in the BNL/SLAC/UCLA 1.6 cell S-band photocathode RF gun

    SciTech Connect

    Palmer, D.T.; Miller, R.H.; Wang, X.J.; Ben-Zvi, I.

    1997-07-01

    A 1.6 cell photocathode S-Band gun developed by the BNL/SLAC/UCLA collaboration is now in operation at the Brookhaven Accelerator Test Facility (ATF). One of the main features of this RF gun is the symmetrization of the RF coupling iris with an identical vacuum pumping port located in the full cell. The effects of the asymmetry caused by the RF coupling iris were experimentally investigated by positioning a metallic plunger at the back wall of the vacuum port iris. The higher order modes produced were studied using electron beamlets with 8-fold symmetry. The 8-fold beamlets were produced by masking the laser beam. These experimental results indicate that the integrated electrical center and the geometrical center of the gun are within 175 {micro}m. Which is within the laser alignment tolerance of 250 {micro}m.

  20. Future Proof for Physics: Preserving the Record of SLAC

    ERIC Educational Resources Information Center

    Deken, Jean Marie

    2005-01-01

    This article provides a brief introduction to the Stanford Linear Accelerator Center (SLAC), discusses the origins of the SLAC Archives and History Office, its present-day operations, and the present and future challenges it faces in attempting to preserve an accurate historical record of SLAC's activities. (Contains 21 notes.)

  1. SLAC All Access: Vacuum Microwave Device Department

    SciTech Connect

    Haase, Andy

    2012-10-09

    The Vacuum Microwave Device Department (VMDD) builds the devices that make SLAC's particle accelerators go. These devices, called klystrons, generate intense waves of microwave energy that rocket subatomic particles up to nearly the speed of light.

  2. SLAC All Access: Vacuum Microwave Device Department

    ScienceCinema

    Haase, Andy

    2014-06-13

    The Vacuum Microwave Device Department (VMDD) builds the devices that make SLAC's particle accelerators go. These devices, called klystrons, generate intense waves of microwave energy that rocket subatomic particles up to nearly the speed of light.

  3. SLAC Linac Preparations for FACET

    SciTech Connect

    Erickson, R.; Bentson, L.; Kharakh, D.; Owens, A.; Schuh, P.; Seeman, J.; Sheppard, J.C.; Stanek, M.; Wittmer, W.; Yocky, G.; Wienands, U.; /SLAC

    2011-02-07

    The SLAC 3km linear electron accelerator has been cut at the two-thirds point to provide beams to two independent programs. The last third provides the electron beam for the Linac Coherent Light Source (LCLS), leaving the first two-thirds available for FACET, the new experimental facility for accelerator science and test beams. In this paper, we describe this separation and projects to prepare the linac for the FACET experimental program.

  4. SLC Energy Upgrade Program at SLAC

    SciTech Connect

    Loew, G.A.; Allen, M.A.; Cassel, R.L.; Dean, N.R.; Konrad, G.T.; Koontz, R.F.; Lebacqz, J.V.

    1985-03-01

    The SLAC Linear Collider (SLC) must reach a nominal center-of-mass energy of 100 GeV to fulfill its high energy physics goals. This paper describes the energy upgrade program that is being implemented on the SLAC linear accelerator to meet these goals. It includes a discussion of the design requirements and available technical options, the rationale for the adopted solution, and the technical problems involved in the engineering and production of klystrons and modulators.

  5. Computer control of rf at SLAC

    SciTech Connect

    Schwarz, H.D.

    1985-03-01

    The Stanford Linear Accelerator is presently upgraded for the SLAC Linear Collider project. The energy is to be increased from approximately 31 GeV to 50 GeV. Two electron beams and one positron beam are to be accelerated with high demands on the quality of the beams. The beam specifications are shown. To meet these specifications, all parameters influencing the beams have to be under tight control and continuous surveillance. This task is accomplished by a new computer system implemented at SLAC which has, among many other functions, control over rf accelerating fields. 13 refs., 8 figs., 2 tabs.

  6. A new AMS facility at Inter University Accelerator Centre, New Delhi

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Chopra, S.; Pattanaik, J. K.; Ojha, S.; Gargari, S.; Joshi, R.; Kanjilal, D.

    2015-10-01

    Inter University Accelerator Centre (IUAC), a national facility of government of India, is having a 15UD Pelletron accelerator for multidisciplinary ion beam based research programs. Recently, a new accelerator mass spectrometry (AMS) facility has been developed after incorporating many changes in the existing 15UD Pelletron accelerator. A clean chemistry laboratory for 10Be and 26Al with all the modern facilities has also been developed for the chemical processing of samples. 10Be measurements on sediment samples, inter laboratory comparison results and 26Al measurements on standard samples are presented in this paper. In addition to the 10Be and 26Al AMS facilities, a new 14C AMS facility based on a dedicated 500 kV tandem ion accelerator with two cesium sputter ion sources, is also being setup at IUAC.

  7. RF breakdown experiments at SLAC

    SciTech Connect

    Laurent, L.; Vlieks, A.; Pearson, C.; Caryotakis, G.; Luhmann, N.C.

    1999-05-01

    RF breakdown is a critical issue in the conditioning of klystrons, accelerator sections, and rf components for the next linear collider (NLC), as well as other high gradient accelerators and high power microwave sources. SLAC is conducting a series of experiments using an X-band traveling wave ring to characterize the processes and trigger mechanisms associated with rf breakdown. The goal of the research is to identify materials, processes, and manufacturing methods that will increase the breakdown threshold and minimize the time required for conditioning. {copyright} {ital 1999 American Institute of Physics.}

  8. Linear collider development at SLAC

    SciTech Connect

    Irwin, J.

    1993-08-01

    Linear collider R&D at SLAC comprises work on the present Stanford Linear Collider (SLC) and work toward the next linear collider (NLC). Recent SLC developments are summarized. NLC studies are divided into hardware-based and theoretical. We report on the status of the NLC Test Accelerator (NLCTA) and the final focus test beam (FFTB), describe plans for ASSET, an installation to measure accelerator structure wakefields, and mention IR design developments. Finally we review recent NLC theoretical studies, ending with the author`s view of next linear collider parameter sets.

  9. The SLAC P2 Marx

    SciTech Connect

    Kemp, Mark; Benwell, Andrew; Burkhart, Craig; MacNair, David; Nguyen1, Minh; /SLAC

    2012-07-05

    A proposed high energy physics accelerator, the International Linear Collider, will require greater than five hundred rf stations. Each station is composed of a klystron driven by a modulator. Recently, the SLAC P2 Marx was designated the baseline modulator for the ILC. This paper describes some key features of this modulator and presents recent experimental results. The P2 Marx is presently being transported to another facility for lifetime testing. Here, we will gain understanding of how the Marx performs into a klystron load and gain experience operating the Marx for longer periods. Long term plans include the possibility of using this rf station for L-band technology demonstration at SLAC. While the Marx was designed with the ILC in mind, the topology can be readily applied to several different applications. We are currently evaluating the use of the topology for ESS, CLIC, and upgrades for systems at Fermi National Accelerator Laboratory. Because of the modular nature of the cell and the robustness of the control system, many different combinations of series and parallel operation are possible along with different load currents and pulse shapes.

  10. Physics results with polarized electrons at SLAC

    SciTech Connect

    Prescott, C.Y.

    1996-03-01

    Polarized electron beams can play an important role in the dynamics of interactions at high energies. Polarized electron beams at SLAC have been an important part of the physics program since 1970, when they were first proposed for use in testing the spin structure of the proton. Since 1992, the SLAC linear accelerator and the SLC have operated solely with polarized electrons, providing data for tests of QCD in studies of the spin structure of the nucleon and tests of the electroweak sector of the Standard Model. In the following sections, the performance of the source is summarized, and some of the recent results using the polarized beams are discussed.

  11. Polarization at SLAC

    SciTech Connect

    Woods, M.

    1995-01-01

    A highly polarized electron beam is a key feature. for the Current physics program at SLAC. An electron beam polarization of 80% can now be routinely achieved for typically 5000 hours of machine operation per year. Two main Physics programs utilize the polarized beam. Fixed target experiments in End Station A study the collision of polarized electrons with polarized nuclear targets to elucidate the spin structure of the nucleon and to provide an important test of QCD. Using the SLAC Linear Collider, collisions of polarized electrons with unpolarized positrons allow precise measurements of parity violation in the Z-fermion couplings and provide a very precise measurement of tile weak mixing angle. This paper discusses polarized beam operation at SLAC, and gives an overview of the polarized physics program.

  12. Wakefields in SLAC linac collimators

    NASA Astrophysics Data System (ADS)

    Novokhatski, A.; Decker, F.-J.; Smith, H.; Sullivan, M.

    2014-12-01

    When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible for the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. We also present results from experimental measurements that confirm our model.

  13. SLAC Linear Collider

    SciTech Connect

    Richter, B.

    1985-12-01

    A report is given on the goals and progress of the SLAC Linear Collider. The status of the machine and the detectors are discussed and an overview is given of the physics which can be done at this new facility. Some ideas on how (and why) large linear colliders of the future should be built are given.

  14. Accelerator on a Chip

    SciTech Connect

    England, Joel

    2014-06-30

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  15. Accelerator on a Chip

    ScienceCinema

    England, Joel

    2014-07-16

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  16. Sleepless at SLAC

    SciTech Connect

    Dement, William

    2006-01-23

    Feeling tired? More than 30 million Americans suffer from sleep disorders. Nevertheless, as a society we remain largely ignorant of the significance of sleep in determining the quality of our waking lives. Dr. William Dement, Stanford Professor and one of the world's foremost experts on sleep and sleep deprivation, joins SLAC's Colloquium Series to present exciting new findings in the field of sleep research. You'll never sleep the same again!

  17. SLAC B Factory computing

    SciTech Connect

    Kunz, P.F.

    1992-02-01

    As part of the research and development program in preparation for a possible B Factory at SLAC, a group has been studying various aspects of HEP computing. In particular, the group is investigating the use of UNIX for all computing, from data acquisition, through analysis, and word processing. A summary of some of the results of this study will be given, along with some personal opinions on these topics.

  18. An overview of the SLAC results

    SciTech Connect

    Prescott, C.Y.

    1996-03-01

    The history of nucleon spin-structure measurements goes back to the early days of inelastic electron scattering at SLAC, when Vernon Hughes came with a proposal to accelerate polarized electrons to high energy and to study inelastic scattering from a polarized proton target. The quark model of the proton was new at the time, and the spin-dependent structure functions were an excellent testing ground for that model. The proposal developed into an experiment which became SLAC experiment E80. Subsequent experiments followed those early studies, leading to E130 at SLAC, then EMC at CERN, and a host of later experiments. In 1988 the EMC Collaboration published the first data to reach low x. The asymmetries EMC observed fell below quark model expectations, and the experimentally measured proton sum rule indicated that the spin of the quarks contributed little to the proton spin. The subject of nucleon spin-dependent structure functions was stimulated by this surprising result from EMC. The continuation of the spin-structure studies at SLAC, which have been very active in recent years, was stimulated by the successful development of high-intensity beams of polarized electrons. Table 1 lists the past, present, and planned programs and experiments that grew out of the early work. The rest of the report is divided into the following topics: polarized electrons; polarimetry; the SLAC spectrometers; radiative corrections; the proton measurements; neutron targets; the deuterium and {sup 3}He data; the g{sub 2} structure function; and the 50 GeV upgrade of the SLC.

  19. Luminosity enhancements at SLAC

    SciTech Connect

    Coward, D.H.

    1984-04-01

    Several ideas are discussed that have been proposed to improve the luminosity at the SPEAR and PEP electron-positron storage rings and to insure good luminosity at the SLAC Linear Collider. There have been two proposals studied recently for SPEAR: a Microbeta insertion using Samarium Cobalt permanent magnets, and a Minibeta insertion using conventional quadrupole magnets. The notations Microbeta and minibeta used here are somewhat arbitrary since the front faces of the first quadrupole magnets for both insertions are at nearly the same distance from the interaction point.

  20. The SLAC Damped Detuned Structure: Concept and design

    SciTech Connect

    Kroll, N.M. |

    1997-05-01

    The SLAC Damped Detuned Structure (DDS) is an accelerator structure designed to suppress the long range transverse wakefields which limit the performance of high current multibunch accelerators. We discuss the conceptual considerations which have led to its development and discuss the steps involved in arriving at a design.

  1. FACET: The New User Facility at SLAC

    SciTech Connect

    Clarke, C.I.; Decker, F.J.; Erikson, R.; Hast, C.; Hogan, M.J.; Iverson, R.; Li, S.Z.; Nosochkov, Y.; Phinney, N.; Sheppard, J.; Wienands, U.; Woodley, M.; Yocky, G.; Seryi, A.; Wittmer, W.; /Michigan State U.

    2011-12-13

    FACET (Facility for Advanced Accelerator and Experimental Tests) is a new User Facility at SLAC National Accelerator Laboratory. Its high power electron and positron beams make it a unique facility, ideal for beam-driven Plasma Wakefield Acceleration studies. The first 2 km of the SLAC linac produce 23 GeV, 3.2 nC electron and positron beams with short bunch lengths of 20 {mu}m. A final focusing system can produce beam spots 10 {mu}m wide. User-aided Commissioning took place in summer 2011 and FACET will formally come online in early 2012. We present the User Facility, the current features, planned upgrades and the opportunities for further experiments. Accelerators are our primary tool for discovering the fundamental laws to the universe. Each new frontier we probe requires a new, more powerful method. Accelerators are therefore increasing in size and cost. The future of this field requires new accelerating techniques that can reach the high energies required over shorter distances. New concepts for high gradient acceleration include utilizing the wakes in plasma and dielectric and metallic structures. FACET was built to provide a test bed for novel accelerating concepts with its high charge and highly compressed beams. As a test facility unlike any other, it has also attracted groups interested in beam diagnostic techniques and terahertz studies. The first phase of the construction was completed in May 2011. Beam commissioning began in June and was interleaved with the installation of five experiments. Users were invited to aid with the commissioning for the month of August during which time experimental hardware and software were checked out and some first measurements were taken. FACET is currently in the process of becoming a Department of Energy User Facility for High Energy Physics.

  2. X-ray Astronomy at SLAC

    SciTech Connect

    Saz Parkinson, P

    2005-04-06

    The USA (Unconventional Stellar Aspect) experiment was launched in February of 1999 and operated for approximately 18 months. Group K at SLAC (Stanford Linear Accelerator Center) participated in this experiment along with the Naval Research Laboratory (NRL). The author discusses the USA experiment and the data accumulated, along with some of the results obtained from the observations of such objects as the extragalactic BL Lac object 1ES1959+65, the Black Hole Candidate (BHC) XTE J1118+480, and the eccentric X-ray binary system Circinus X-1.

  3. SLAC All Access: Laser Labs

    ScienceCinema

    Minitti, Mike; Woods Mike

    2014-06-03

    From supermarket checkouts to video game consoles, lasers are ubiquitous in our lives. Here at SLAC, high-power lasers are critical to the cutting-edge research conducted at the laboratory. But, despite what you might imagine, SLAC's research lasers bear little resemblance to the blasters and phasers of science fiction. In this edition of All Access we put on our safety goggles for a peek at what goes on inside some of SLAC's many laser labs. LCLS staff scientist Mike Minitti and SLAC laser safety officer Mike Woods detail how these lasers are used to study the behavior of subatomic particles, broaden our understanding of cosmic rays and even unlock the mysteries of photosynthesis.

  4. SLAC All Access: Laser Labs

    SciTech Connect

    Minitti, Mike; Woods Mike

    2013-03-01

    From supermarket checkouts to video game consoles, lasers are ubiquitous in our lives. Here at SLAC, high-power lasers are critical to the cutting-edge research conducted at the laboratory. But, despite what you might imagine, SLAC's research lasers bear little resemblance to the blasters and phasers of science fiction. In this edition of All Access we put on our safety goggles for a peek at what goes on inside some of SLAC's many laser labs. LCLS staff scientist Mike Minitti and SLAC laser safety officer Mike Woods detail how these lasers are used to study the behavior of subatomic particles, broaden our understanding of cosmic rays and even unlock the mysteries of photosynthesis.

  5. SLAC linear collider: the machine, the physics, and the future

    SciTech Connect

    Richter, B.

    1981-11-01

    The SLAC linear collider, in which beams of electrons and positrons are accelerated simultaneously, is described. Specifications of the proposed system are given, with calculated preditions of performance. New areas of research made possible by energies in the TeV range are discussed. (GHT)

  6. SLAC pulsed x-ray facility

    SciTech Connect

    Ipe, N.E.; McCall, R.C.; Baker, E.D.

    1986-05-01

    The Stanford Linear Accelerator Center (SLAC) operates a high energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the rf power for the accelerator. Hence, a pulsed x-ray facility has been built at SLAC mainly for the purpose of testing the response of different radiation detection instruments to pulsed radiation fields. The x-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that can be accelerated towards a confined target-window. The window is made up of aluminium 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of gold 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 ..mu..s. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The major part of the x-ray tube is enclosed in a large walk-in-cabinet made of 1.9 cm (3/4 in) plywood and lined with 0.32 cm (1/8 in) lead to make a very versatile facility. 3 refs., 5 figs.

  7. SLAC pulsed X-ray facility

    NASA Astrophysics Data System (ADS)

    Ipe, N. E.; McCall, R. C.; Baker, E. D.

    1986-05-01

    The Stanford Linear Accelerator Center (SLAC) operates a high energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the RF power for the accelerator. Hence, a pulsed X-ray facility has been built at SLAC mainly for the purpose of testing the response of different radiation detection instruments to pulsed radiation fields. The X-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that can be accelerated towards a confined target-window. The window is made up of aluminum 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of gold 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 ms. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The major part of the X-ray tube is enclosed in a large walk-in-cabinet made of 1.9 cm (3/4 in) plywood and lined with 0.32 cm (1/8 in) lead to make a very versatile facility.

  8. Muscle contributions to centre of mass acceleration during turning gait in typically developing children: A simulation study.

    PubMed

    Dixon, Philippe C; Jansen, Karen; Jonkers, Ilse; Stebbins, Julie; Theologis, Tim; Zavatsky, Amy B

    2015-12-16

    Turning while walking requires substantial joint kinematic and kinetic adaptations compared to straight walking in order to redirect the body centre of mass (COM) towards the new walking direction. The role of muscles and external forces in controlling and redirecting the COM during turning remains unclear. The aim of this study was to compare the contributors to COM medio-lateral acceleration during 90° pre-planned turns about the inside limb (spin) and straight walking in typically developing children. Simulations of straight walking and turning gait based on experimental motion data were implemented in OpenSim. The contributors to COM global medio-lateral acceleration during the approach (outside limb) and turn (inside limb) stance phase were quantified via an induced acceleration analysis. Changes in medio-lateral COM acceleration occurred during both turning phases, compared to straight walking (p<0.001). During the approach, outside limb plantarflexors (soleus and medial gastrocnemius) contribution to lateral (away from the turn side) COM acceleration was reduced (p<0.001), whereas during the turn, inside limb plantarflexors (soleus and gastrocnemii) contribution to lateral acceleration (towards the turn side) increased (p≤0.013) and abductor (gluteus medius and minimus) contribution medially decreased (p<0.001), compared to straight walking, together helping accelerate the COM towards the new walking direction. Knowledge of the changes in muscle contributions required to modulate the COM position during turning improves our understanding of the control mechanisms of gait and may be used clinically to guide the management of gait disorders in populations with restricted gait ability. PMID:26555714

  9. A Solid State Modulator for Driving SLAC 5045 Klystrons

    SciTech Connect

    Lamare, Jeffrey E

    2002-09-19

    A test is ongoing at the Stanford Linear Accelerator Center (SLAC) where a solid state induction modulator is driving a SLAC 5045 klystron. The modulator generates 22 kV, 6 kA pulses that are stepped up by a 15.1 transformer that is a part of the klystron's pulse tank. The modulator's pulse duration is adjustable up to the volt-second limit of its cores, and it is capable of a pulse repetition frequency up to 120 Hz. The modulator's design, construction, and experimental results are the focus of this paper.

  10. SLAC Cosmic Ray Telescope Facility

    SciTech Connect

    Va'vra, J.

    2010-02-15

    SLAC does not have a test beam for the HEP detector development at present. We have therefore created a cosmic ray telescope (CRT) facility, which is presently being used to test the FDIRC prototype. We have used it in the past to debug this prototype with the original SLAC electronics before going to the ESA test beam. Presently, it is used to test a new waveform digitizing electronics developed by the University of Hawaii, and we are also planning to incorporate the new Orsay TDC/ADC electronics. As a next step, we plan to put in a full size DIRC bar box with a new focusing optics, and test it together with a final SuberB electronics. The CRT is located in building 121 at SLAC. We anticipate more users to join in the future. This purpose of this note is to provide an introductory manual for newcomers.

  11. Accelerated Training Centres for Workers in the Peoples' Republic of Mozambique.

    ERIC Educational Resources Information Center

    Fumo, Carlos A.

    1984-01-01

    Explains the role of one type of adult education--Accelerated Training for Workers--in combating underdevelopment in Mozambique. Presents a response to the needs of a nation that is changing rapidly after centuries of neglect and foreign domination. (JOW)

  12. Status of the SLAC Linear Collider Project

    SciTech Connect

    Stiening, R.

    1983-01-01

    The SLAC Linear Collider Project has two principal goals. The first is to serve as a prototype for a future very high energy linear electron-positron collider. The second is to quickly, at low cost, achieve sufficient luminosity at 100 GeV center-of-mass energy to explore the physics of the Z/sup 0/. The first goal is important to the future of electron-positron physics because the rapid increase of synchrotron radiation with energy causes the cost of circular storage ring colliders to whereas the cost of linear colliders increases only in proportion to the center-of-mass energy. The second is important because the existance at SLAC of a linear accelerator which can be converted at low cost to collider operation makes possible a unique opportunity to quickly achieve 100 GeV center-of-mass collisions. At the design luminosity of 6.0 x 10/sup 30/ many thousands of Z/sup 0/ decays should be observed in each day of operation.

  13. Network resource and applications management at SLAC

    SciTech Connect

    Logg, C.A.; Cottrell, R.L.A.

    1996-02-01

    The Stanford Linear Accelerator Center (SLAC) has a heterogeneous networked computing environment with a variety of transmission media, protocols, equipment from multiple vendors, Local Areas Network (LAN) and Wide Area Network (WAN) connections, workstations, servers, legacy mainframes, operating systems, network services and applications, and users of various skill levels. New technologies are continually being deployed as they become available. All of these components work together (most of the time) but result in a complex distributed computing environment (henceforth referred to as the system) which requires automated monitoring and management for the maintenance of high quality performance with limited personnel and budgets. There is no Network Management Station (NMS) product which comes close to doing the job of monitoring and managing the LAN and WAN for SLAC. However, by making use of Ping, Simple Network Management Protocol (SNMP) and its Management Information Bases (MIBs), as well as network applications (trace-route, File Transfer Protocol (FTP), Remote Procedure Calls (RPCs), Remote Shell (rsh), et.al.), an NMS (Netview for AIX), and the accounting and monitoring facilities provided by the server operating systems, the challenge is surmountable.

  14. Binary rf pulse compression experiment at SLAC

    SciTech Connect

    Lavine, T.L.; Spalek, G.; Farkas, Z.D.; Menegat, A.; Miller, R.H.; Nantista, C.; Wilson, P.B.

    1990-06-01

    Using rf pulse compression it will be possible to boost the 50- to 100-MW output expected from high-power microwave tubes operating in the 10- to 20-GHz frequency range, to the 300- to 1000-MW level required by the next generation of high-gradient linacs for linear for linear colliders. A high-power X-band three-stage binary rf pulse compressor has been implemented and operated at the Stanford Linear Accelerator Center (SLAC). In each of three successive stages, the rf pulse-length is compressed by half, and the peak power is approximately doubled. The experimental results presented here have been obtained at low-power (1-kW) and high-power (15-MW) input levels in initial testing with a TWT and a klystron. Rf pulses initially 770 nsec long have been compressed to 60 nsec. Peak power gains of 1.8 per stage, and 5.5 for three stages, have been measured. This corresponds to a peak power compression efficiency of about 90% per stage, or about 70% for three stages, consistent with the individual component losses. The principle of operation of a binary pulse compressor (BPC) is described in detail elsewhere. We recently have implemented and operated at SLAC a high-power (high-vacuum) three-stage X-band BPC. First results from the high-power three-stage BPC experiment are reported here.

  15. Wake fields in SLAC Linac Collimators

    SciTech Connect

    Novokhatski, Alexander; Decker, F. -J.; Smith, H.; Sullivan, M.

    2014-12-02

    When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible for the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. In addition, we also present results from experimental measurements that confirm our model.

  16. Accelerating Particles with Plasma

    SciTech Connect

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  17. Calibration of a new experimental chamber for PIXE analysis at the Accelerator Facilities Division of Atomic Energy Centre Dhaka (AECD)

    NASA Astrophysics Data System (ADS)

    Hassan, Md. Taufique; Shariff, Md. Asad; Hossein, Amzad; Abedin, Md. Joynal; Fazlul Hoque, A. K. M.; Chowdhuri, M. S.

    2015-05-01

    A new experimental chamber has been installed at the 3 MV Van de Graaff Accelerator Facilities Division in the Atomic Energy Centre, Dhaka, to perform different Ion Beam Analysis (IBA) techniques. The calibration of this new setup for Particle Induced X-ray Emission (PIXE) technique has been done using a set of thin MicroMatter standards and GUPIX (PIXE spectrum analysis software), which is explicated in this paper. The effective thicknesses of the beryllium window of the X-ray detector and of the different absorbers used were determined. For standardization, the so called instrumental constant H (product of detector solid angle and the correction factor for the setup) as function of X-ray energy were determined and stored inside the GUPIX library for further PIXE analysis.

  18. Pulsed rf superconductivity program at SLAC

    SciTech Connect

    Campisi, I.E.; Farkas, Z.D.

    1984-08-01

    Recent tests performed at SLAC on superconducting TM/sub 010/ caavities using short rf pulses (less than or equal to 2.5 ..mu..s) have established that at the cavity surface magnetic fields can be reached in the vicinity of the theoretical critical fields without an appreciable increase in average losses. Tests on niobium and lead cavities are reported. The pulse method seems to be best suited to study peak field properties of superconductors in the microwave band, without the limitations imposed by defects. The short pulses also seem to be more effective in decreasing the causes of field emission by rf processing. Applications of the pulsed rf superconductivity to high-gradient linear accelerators are also possible.

  19. Resonant Kicker System Development at SLAC

    SciTech Connect

    Beukers, Tony; Krzaszczak, John; Larrus, Marc; Lira, Antonio de; /SLAC

    2009-04-27

    The design and installation of the Linear Coherent Light Source [1] at SLAC National Accelerator Laboratory has included the development of a kicker system for selective beam bunch dumping. The kicker is based on an LC resonant topology formed by the 50 uF energy storage capacitor and the 64 uH air core magnet load which has a sinusoidal pulse period of 400us. The maximum magnet current is 500 A. The circuit is weakly damped, allowing most of the magnet energy to be recovered in the energy storage capacitor. The kicker runs at a repetition rate of 120Hz. A PLC-based control system provides remote control and monitoring of the kicker via EPICS protocol. Fast timing and interlock signals are converted by discrete peak-detect and sample-hold circuits into DC signals that can be processed by the PLC. The design and experimental characterization of the system are presented.

  20. GLAST beam test at SLAC

    SciTech Connect

    Engovatov, D.; Anthony, P.; Atwood, W.

    1996-10-01

    In May and June, a beam test for GLAST calorimeter technologies was conducted. A parasitic low intensity electron/tagged photon beam line into the End Station A at SLAC was commissioned and used. The preliminary stage of the test was devoted to measuring the performance of the parasitic beam. In the main test we studied the response of GLAST prototype CsI and scintillating fiber calorimeters to the electrons and photons. Results of this work are discussed.

  1. Observing two dark accelerators around the Galactic Centre with Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Hui, C. Y.; Yeung, P. K. H.; Ng, C. W.; Lin, L. C. C.; Tam, P. H. T.; Cheng, K. S.; Kong, A. K. H.; Chernyshov, D. O.; Dogiel, V. A.

    2016-04-01

    We report the results from a detailed γ-ray investigation in the field of two `dark accelerators', HESS J1745-303 and HESS J1741-302, with 6.9 yr of data obtained by the Fermi Large Area Telescope. For HESS J1745-303, we found that its MeV-GeV emission is mainly originated from the `Region A' of the TeV feature. Its γ-ray spectrum can be modelled with a single power law with a photon index of Γ ˜ 2.5 from few hundreds MeV-TeV. Moreover, an elongated feature, which extends from `Region A' towards north-west for ˜1.3°, is discovered for the first time. The orientation of this feature is similar to that of a large-scale atomic/molecular gas distribution. For HESS J1741-302, our analysis does not yield any MeV-GeV counterpart for this unidentified TeV source. On the other hand, we have detected a new point source, Fermi J1740.1-3013, serendipitously. Its spectrum is apparently curved which resembles that of a γ-ray pulsar. This makes it possibly associated with PSR B1737-20 or PSR J1739-3023.

  2. Recent GPS Results at SLAC

    SciTech Connect

    Behrend, Dirk; Imfeld, Hans L.; /SLAC

    2005-08-17

    The Alignment Engineering Group (AEG) makes use of GPS technology for fulfilling part of its above ground surveying tasks at SLAC since early 2002. A base station (SLAC M40) has been set up at a central location of the SLAC campus serving both as master station for real-time kinematic (RTK) operations and as datum point for local GPS campaigns. The Leica RS500 system is running continuously and the GPS data are collected both externally (logging PC) and internally (receiver flashcard). The external logging is facilitated by a serial to Ethernet converter and an Ethernet connection at the station. Internal logging (ring buffer) is done for data security purposes. The weatherproof boxes for the instrumentation are excellent shelters against rain and wind, but do heat up considerably in sun light. Whereas the GPS receiver showed no problems, the Pacific Crest PDL 35 radio shut down several times due to overheating disrupting the RTK operations. In order to prevent heat-induced shutdowns, a protection against direct sun exposure (shading) and a constant air circulation system (ventilation) were installed. As no further shutdowns have occurred so far, it appears that the two measures successfully mended the heat problem.

  3. Preliminary results of the echo-seeding experiment at SLAC

    SciTech Connect

    Xiang, D.; Colby, E.; Ding, Y.; Dunning, M.; Frederico, J.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodley, M.; Corlett, J.; Qiang, J.; Penn, G.; Prestemon, S.; Schlueter, R.; Venturini, M.; Wan, W.; Pernet, P-L.

    2010-05-23

    ECHO-7 is a proof-of-principle echo-enabled harmonic generation FEL experiment in the Next Linear Collider Test Accelerator (NLCTA) at SLAC. The experiment aims to generate coherent radiation at 318 nm and 227 nm, which are the 5th and 7th harmonic of the infrared seed laser. In this paper we present the preliminary results from the commissioning run of the completed experimental setup which started in April 2010.

  4. Review of trigger and on-line processors at SLAC

    SciTech Connect

    Lankford, A.J.

    1984-07-01

    The role of trigger and on-line processors in reducing data rates to manageable proportions in e/sup +/e/sup -/ physics experiments is defined not by high physics or background rates, but by the large event sizes of the general-purpose detectors employed. The rate of e/sup +/e/sup -/ annihilation is low, and backgrounds are not high; yet the number of physics processes which can be studied is vast and varied. This paper begins by briefly describing the role of trigger processors in the e/sup +/e/sup -/ context. The usual flow of the trigger decision process is illustrated with selected examples of SLAC trigger processing. The features are mentioned of triggering at the SLC and the trigger processing plans of the two SLC detectors: The Mark II and the SLD. The most common on-line processors at SLAC, the BADC, the SLAC Scanner Processor, the SLAC FASTBUS Controller, and the VAX CAMAC Channel, are discussed. Uses of the 168/E, 3081/E, and FASTBUS VAX processors are mentioned. The manner in which these processors are interfaced and the function they serve on line is described. Finally, the accelerator control system for the SLC is outlined. This paper is a survey in nature, and hence, relies heavily upon references to previous publications for detailed description of work mentioned here. 27 references, 9 figures, 1 table.

  5. Short wavelength FELs using the SLAC linac

    NASA Astrophysics Data System (ADS)

    Winick, H.; Bane, K.; Boyce, R.; Cobb, J.; Loew, G.; Morton, P.; Nuhn, H.-D.; Paterson, J.; Pianetta, P.; Raubenheimer, T.; Seeman, J.; Tatchyn, R.; Vylet, V.; Pellegrini, C.; Rosenzweig, J.; Travish, G.; Prosnitz, D.; Scharlemann, E. T.; Halbach, K.; Kim, K.-J.; Schlueter, R.; Xie, M.; Bonifacio, R.; De Salvo, L.; Pierini, P.

    1994-08-01

    Recent technological developments have opened the possibility to construct a device which we call a linac coherent light source (LCLS) (C. Pellegrini et al., Nucl. Instr. and Meth. A 331 (1993) 223; H. Winick et al., Proc. IEEE 1993 Particle Accelerator Conf., Washington, DC, May 1993; C. Pellegrini, Nucl. Instr. and Meth. A 341 (1994) 326; J. Seeman, SPIE Meet. on Electron Beam Sources of High Brightness Radiation, San Diego, CA, July 1993 [1-4]); it would be a fourth-generation light source, with brightness, coherence, and peak power far exceeding other sources. Operating on the principle of the free electron laser (FEL), the LCLS would extend the range of FEL operation to much shorter wavelength than the 240 nm that has so far been reached. We report the results of studies of the use of the SLAC linac to drive an LCLS at wavelengths from about 3 to 100 nm initially and possibly even shorter wavelengths in the future. Lasing would be achieved in a single pass of a low emittance, high peak current, high-energy electron beam through a long undulator. Most present FELs use an optical cavity to build up the intensity of the light to achieve lasing action in a low-gain oscillator configuration. By eliminating the optical cavity, which is difficult to make at short wavelengths, laser action can be extended to shorter wavelengths by self-amplified-spontaneous-emission (SASE), or by harmonic generation from a longer wavelength seed laser. Short wavelength, single pass lasers have been extensively studied at several laboratories and at recent workshops (M. Cornacchia and H. Winick (eds.), SLAC Report 92/02; I. Ben-Zvi and H. Winick (eds.), BNL report 49651 [5,6]). The required low-emittance electron beam can be achieved with recently-developed rf photocathode electron guns (B.E. Carlsten, Nucl. Instr. and Meth. A 285 (1989) 313; J. Rosenzweig and L. Serafini, Proc. IEEE 1993 Particle Accelerator Conf., Washington, DC, 1993 [7,8]). The peak current is increased by about an

  6. The SLAC polarized electron source

    SciTech Connect

    Tang, H.; Alley, R.; Frisch, J.

    1995-06-01

    The SLAC polarized electron source employs a photocathode DC high voltage gun with a loadlock and a YAG pumped Ti:sapphire laser system for colliding beam experiments or a flash lamp pumped Ti:sapphire laser for fixed target experiments. It uses a thin, strained GaAs(100) photocathode, and is capable of producing a pulsed beam with a polarization of {ge}80% and a peak current exceeding 10 A. Its operating efficiency has reached 99%. The physics and technology of producing high polarization electron beams from a GaAs photocathode will be reviewed. The prospects of realizing a polarized electron source for future linear colliders will also be discussed.

  7. Recent Upgrade of the Klystron Modulator at SLAC

    SciTech Connect

    Nguyen, M.N.; Burkhart, C.P.; Lam, B.K.; Morris, B.; /SLAC

    2011-11-04

    The SLAC National Accelerator Laboratory employs 244 klystron modulators on its two-mile-long linear accelerator that has been operational since the early days of the SLAC establishment in the sixties. Each of these original modulators was designed to provide 250 kV, 262 A and 3.5 {mu}S at up to 360 pps using an inductance-capacitance resonant charging system, a modified type-E pulse-forming network (PFN), and a pulse transformer. The modulator internal control comprised of large step-start resistor-contactors, vacuum-tube amplifiers, and 120 Vac relays for logical signals. A major, power-component-only upgrade, which began in 1983 to accommodate the required beam energy of the SLAC Linear Collider (SLC) project, raised the modulator peak output capacity to 360 kV, 420 A and 5.0 {mu}S at a reduced pulse repetition rate of 120 pps. In an effort to improve safety, performance, reliability and maintainability of the modulator, this recent upgrade focuses on the remaining three-phase AC power input and modulator controls. The upgrade includes the utilization of primary SCR phase control rectifiers, integrated fault protection and voltage regulation circuitries, and programmable logic controllers (PLC) -- with an emphasis on component physical layouts for safety and maintainability concerns. In this paper, we will describe the design and implementation of each upgraded component in the modulator control system. We will also report the testing and present status of the modified modulators.

  8. SLAC E144 Plots, Simulation Results, and Data

    DOE Data Explorer

    The 1997 E144 experiments at the Stanford Linear Accelerator Center (SLAC) utilitized extremely high laser intensities and collided huge groups of photons together so violently that positron-electron pairs were briefly created, actual particles of matter and antimatter. Instead of matter exploding into heat and light, light actually become matter. That accomplishment opened a new path into the exploration of the interactions of electrons and photons or quantum electrodynamics (QED). The E144 information at this website includes Feynmann Diagrams, simulation results, and data files. See also aseries of frames showing the E144 laser colliding with a beam electron and producing an electron-positron pair at http://www.slac.stanford.edu/exp/e144/focpic/focpic.html and lists of collaborators' papers, theses, and a page of press articles.

  9. SLAC Next-Generation High Availability Power Supply

    SciTech Connect

    Bellomo, P.; MacNair, D.; ,

    2010-06-11

    SLAC recently commissioned forty high availability (HA) magnet power supplies for Japan's ATF2 project. SLAC is now developing a next-generation N+1 modular power supply with even better availability and versatility. The goal is to have unipolar and bipolar output capability. It has novel topology and components to achieve very low output voltage to drive superconducting magnets. A redundant, embedded, digital controller in each module provides increased bandwidth for use in beam-based alignment, and orbit correction systems. The controllers have independent inputs for connection to two external control nodes. Under fault conditions, they sense failures and isolate the modules. Power supply speed mitigates the effects of fault transients and obviates subsequent magnet standardization. Hot swap capability promises higher availability and other exciting benefits for future, more complex, accelerators, and eventually the International Linear Collider project.

  10. An X-Band Gun Test Area at SLAC

    SciTech Connect

    Limborg-Deprey, C.; Adolphsen, C.; Chu, T.S.; Dunning, M.P.; Jobe, R.K.; Jongewaard, E.N.; Hast, C.; Vlieks, A.E.; Wang, F.; Walz, D.R.; Marsh, R.A.; Anderson, S.G.; Hartemann, F.V.; Houck, T.L.; /LLNL, Livermore

    2012-09-07

    The X-Band Test Area (XTA) is being assembled in the NLCTA tunnel at SLAC to serve as a test facility for new RF guns. The first gun to be tested will be an upgraded version of the 5.6 cell, 200 MV/m peak field X-band gun designed at SLAC in 2003 for the Compton Scattering experiment run in ASTA. This new version includes some features implemented in 2006 on the LCLS gun such as racetrack couplers, increased mode separation and elliptical irises. These upgrades were developed in collaboration with LLNL since the same gun will be used in an injector for a LLNL Gamma-ray Source. Our beamline includes an X-band acceleration section which takes the electron beam up to 100 MeV and an electron beam measurement station. Other X-Band guns such as the UCLA Hybrid gun will be characterized at our facility.

  11. RF Gun Photocathode Research at SLAC

    SciTech Connect

    Jongewaard, E.; Akre, R.; Brachmann, A.; Corbett, J.; Gilevich, S.; Grouev, K.; Hering, P.; P.Krejcik,; Lewandowski, J.; Loos, H.; Montagne, T.; Sheppard, J.C.; Stefan, P.; Vlieks, A.; Weathersby, S.; Zhou, F.; /SLAC

    2012-05-16

    LCLS is presently operating with a third copper photocathode in the original rf gun, with a quantum efficiency (QE) of {approx}1 x 10{sup -4} and projected emittance {gamma}{var_epsilon}{sub x,y} = 0.45 {micro}m at 250 pC bunch charge. The spare LCLS gun is installed in the SLAC Accelerator Structure Test Area (ASTA), fully processed to high rf power. As part of a wider photocathode R and D program, a UV laser system and additional gun diagnostics are being installed at ASTA to measure QE, QE lifetime, and electron beam emittance under a variety of operating conditions. The near-term goals are to test and verify the spare photocathode production/installation sequence, including transfer from the final holding chamber to the rf gun. Mid- and longer-term goals include development of a rigorous understanding of plasma and laser-assisted surface conditioning and investigation of new, high-QE photocathode materials. In parallel, an x-ray photoemission spectroscopy station is nearing completion, to analyze Cu photocathode surface chemistry. In this paper we review the status and anticipated operating parameters of ASTA and the spectroscopy test chamber.

  12. The SLAC Vertical Comparator for the Calibration of Digital Levels

    SciTech Connect

    Woschitz, Helmut; Gassner, Georg; Ruland, Robert; /SLAC

    2006-12-06

    Digital levels replaced spirit levels in most fields of precise height measurements because of the automation of the height readings. Three manufacturers offer digital levels with a single reading resolution of 10 {micro}m, and for all of them systematic effects are known. In Europe several facilities for system calibration of digital levels using vertical comparators were established within the last decade. However, there still was no system calibration facility in North America. In order to guarantee the accuracy required for the alignment of experiments at the Stanford Linear Accelerator Center (SLAC) a calibration facility for the system calibration of digital levels was built. In this paper the setup of the SLAC vertical comparator is described in detail and its standard uncertainty is derived. In order to perform traditional rod calibration of conventional line-scaled rods, a CCD camera was integrated into the SLAC comparator. The CCD camera setup is also briefly described. To demonstrate the capabilities of the comparator, results of system and rod calibration are shown.

  13. Latest Results in SLAC 75-MW PPM Klystrons

    SciTech Connect

    Sprehn, D.; Caryotakis, G.; Haase, A.; Jongewaard, E.; Laurent, L.; Pearson, C.; Phillips, R.; /SLAC

    2006-03-06

    75 MW X-band klystrons utilizing Periodic Permanent Magnet (PPM) focusing have been undergoing design, fabrication and testing at the Stanford Linear Accelerator Center (SLAC) for almost nine years. The klystron development has been geared toward realizing the necessary components for the construction of the Next Linear Collider (NLC). The PPM devices built to date which fit this class of operation consist of a variety of 50 MW and 75 MW devices constructed by SLAC, KEK (Tsukuba, Japan) and industry. All these tubes follow from the successful SLAC design of a 50 MW PPM klystron in 1996. In 2004 the latest two klystrons were constructed and tested with preliminary results reported at EPAC2004. The first of these two devices was tested to the full NLC specifications of 75 MW, 1.6 microseconds pulse length, and 120 Hz. This 14.4 kW average power operation came with a tube efficiency >50%. The most recent testing of these last two devices will be presented here. Design and manufacturing issues of the latest klystron, due to be tested by the Fall of 2005, are also discussed.

  14. Reliability of Operation at SLAC in the LCLS Era

    SciTech Connect

    Wienands, U.; Allen, W.B.; Colocho, W.; Erickson, R.; Stanek, M.; /SLAC

    2009-06-19

    LCLS hardware availability has been above 90% for the first two commissioning runs of the accelerator. In this paper we compare the reliability data for LCLS (availability, MTBF and MTTR) to those of PEP-II, the e{sup +}e{sup -} collider operating previously at SLAC. It may be seen that the linac availability is not significantly different now than it was before, while the availability of the whole LCLS facility is significantly higher than that of the PEP-II facility as a whole (which was about 87%). Most of the improvement is in the MTTR. Ways to improve availability towards the goal of 95% are discussed.

  15. Commissioning the Echo-Seeding Experiment Echo-7 at SLAC

    SciTech Connect

    Weathersby, S.a E.Colby; Dunning, M.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Woodley, M.; Xiang, D.; Pernet, P-L.; /Ecole Polytechnique, Lausanne

    2011-06-02

    ECHO-7 is a proof-of-principle echo-enabled harmonic generation (EEHG) FEL experiment in the Next Linear Collider Test Accelerator (NLCTA) at SLAC. The experiment is intended to test the EEHG principle at low electron beam energy, 120 MeV, and determine the sensitivities and limitations to understand the expected performance at the higher energy scales and harmonic numbers required for x-ray FELs. In this paper we present the experimental results from the commissioning run of the completed experimental setup which started in April 2010.

  16. X-BAND KLYSTRON DEVELOPMENT AT SLAC

    SciTech Connect

    Vlieks, Arnold E.; /SLAC

    2009-08-03

    The development of X-band klystrons at SLAC originated with the idea of building an X-band Linear Collider in the late 1980's. Since then much effort has been expended in developing a reliable X-band Power source capable of delivering >50 MW RF power in pulse widths >1.5 {micro}s. I will report on some of the technical issues and design strategies which have led to the current SLAC klystron designs.

  17. SLAC 5045 klystron technical specification SC-700-866-45-R3 (Engineering Materials)

    SciTech Connect

    Not Available

    1984-05-09

    The purpose of this specification is to define the performance characteristics of improved klystrons for operation at the Stanford Linear Accelerator Center. Each klystron shall be capable of supplying 50 megawatts peak, 45 kilowatts average rf power at 2856 Megahertz. It is expected that over the next few years, existing SLAC klystrons will be replaced by the improved klystrons covered by this specification. It is desirable that the klystrons covered by this specification be usable with magnets designed by SLAC under specification No. SC-700-866-46. Recently SLAC has been able to achieve a klystron efficiency in excess of 45% and design information of tubes which have exhibited this efficiency is available. It must be emphasized that one of the most important features of tubes designed to operate to these specifications must be long life. The overall economy of the SLAC linear accelerator program is strongly influenced by klystron life and it is expected that the design of this tube can lead to a minimum operating life equal to that experienced with the older klystrons. In order to increase the probability of long life, SLAC expects to operate the tubes conservatively at 315 kV beam voltage which is approximately 5 kV below the maximum allowed by the specifications. However, it is expected that from time to time, as required by physics experiments, the tubes will be operated at the maximum power allowed.

  18. Basic concepts in plasma accelerators.

    PubMed

    Bingham, Robert

    2006-03-15

    In this article, we present the underlying physics and the present status of high gradient and high-energy plasma accelerators. With the development of compact short pulse high-brightness lasers and electron and positron beams, new areas of studies for laser/particle beam-matter interactions is opening up. A number of methods are being pursued vigorously to achieve ultra-high-acceleration gradients. These include the plasma beat wave accelerator (PBWA) mechanism which uses conventional long pulse ( approximately 100 ps) modest intensity lasers (I approximately 10(14)-10(16) W cm(-2)), the laser wakefield accelerator (LWFA) which uses the new breed of compact high-brightness lasers (<1 ps) and intensities >10(18) W cm(-2), self-modulated laser wakefield accelerator (SMLWFA) concept which combines elements of stimulated Raman forward scattering (SRFS) and electron acceleration by nonlinear plasma waves excited by relativistic electron and positron bunches the plasma wakefield accelerator. In the ultra-high intensity regime, laser/particle beam-plasma interactions are highly nonlinear and relativistic, leading to new phenomenon such as the plasma wakefield excitation for particle acceleration, relativistic self-focusing and guiding of laser beams, high-harmonic generation, acceleration of electrons, positrons, protons and photons. Fields greater than 1 GV cm(-1) have been generated with monoenergetic particle beams accelerated to about 100 MeV in millimetre distances recorded. Plasma wakefields driven by both electron and positron beams at the Stanford linear accelerator centre (SLAC) facility have accelerated the tail of the beams. PMID:16483948

  19. Low energy highly charged ion beam facility at Inter University Accelerator Centre: Measurement of the plasma potential and ion energy distributions

    SciTech Connect

    Sairam, T. Bhatt, Pragya; Safvan, C. P.; Kumar, Ajit; Kumar, Herendra

    2015-11-15

    A deceleration lens coupled to one of the beam lines of the electron cyclotron resonance based low energy beam facility at Inter University Accelerator Centre is reported. This system is capable of delivering low energy (2.5 eV/q–1 keV/q) highly charged ion beams. The presence of plasma potential hinders the measurements of low energies (<50 eV), therefore, plasma potential measurements have been undertaken using a retarding plate analyzer in unison with the deceleration assembly. The distributions of the ion energies have been obtained and the effect of different source parameters on these distributions is studied.

  20. Big Machines and Big Science: 80 Years of Accelerators at Stanford

    SciTech Connect

    Loew, Gregory

    2008-12-16

    Longtime SLAC physicist Greg Loew will present a trip through SLAC's origins, highlighting its scientific achievements, and provide a glimpse of the lab's future in 'Big Machines and Big Science: 80 Years of Accelerators at Stanford.'

  1. ESTB: A New Beam Test Facility at SLAC

    SciTech Connect

    Pivi, M.; Fieguth, T.; Hast, C.; Iverson, R.; Jaros, J.; Jobe, K.; Keller, L.; Walz, D.; Weathersby, S.; Woods, M.; /SLAC

    2011-04-05

    End Station A Test Beam (ESTB) is a beam line at SLAC using a small fraction of the bunches of the 13.6 GeV electron beam from the Linac Coherent Light Source (LCLS), restoring test beam capabilities in the large End Station A (ESA) experimental hall. ESTB will provide one of a kind test beam essential for developing accelerator instrumentation and accelerator R&D, performing particle and particle astrophysics detector research, linear collider machine and detector interface (MDI) R&D studies, development of radiation-hard detectors, and material damage studies with several distinctive features. In the past, 18 institutions participated in the ESA program at SLAC. In stage I, 4 new kicker magnets will be added to divert 5 Hz of the LCLS beam to the A-line. A new beam dump will be installed and a new Personnel Protection System (PPS) is being built in ESA. In stage II, a secondary hadron target will be installed, able to produce pions up to about 12 GeV/c at 1 particle/pulse.

  2. The SLAC linac as used in the SLC collider

    SciTech Connect

    Seeman, J.T.; Abrams, G.; Adolphsen, C.; Atwood, W.; Bane, K.L.F.; Iverson, R.; Jacobsen, R.; Himel, T.M.; Jobe, R.K.; Lavine, T.L.

    1989-06-01

    The linac of the SLAC Linear Collider (SLC) must accelerate three high intensity bunches on each linac pulse from 1.2 GeV to 50 GeV with minimal increase of the small transverse emittance. The procedures and adjustments used to obtain this goal are outlined. Some of the accelerator parameters and components which interact are the beam energy, transverse position, component alignment, RF manipulation, feedback systems, quadrupole lattice, BNS damping, energy spectra, phase space matching, collimation, instrumentation and modelling. The method to bring these interdependent parameters collectively into specification has evolved over several years. This review is ordered in the sequence which is used to turn on the linac from a cold start and produce acceptable beams for the final focus and collisions. Approximate time estimates for the various activities are given. 21 refs.

  3. High voltage pulse cable and connector experience in the kicker systems at SLAC

    SciTech Connect

    Harris, K.; Artusy, M.; Donaldson, A.; Mattison, T.

    1991-05-01

    The SLAC 2-mile linear accelerator uses a wide variety of pulse kicker systems that require high voltage cable and connectors to deliver pulses from the drivers to the magnet loads. Many of the drivers in the SLAC kicker systems use cable lengths up to 80 feet and are required to deliver pulses up to 40 kV, with rise and fall time on the order of 20 ns. Significant pulse degradation from the cable and connector assembly cannot be tolerated. Other drivers are required to deliver up to 80 kV, 20 {mu}s pulses over cables 20 feet long. Several combinations of an applicable high voltage cable and matching connector have been used at SLAC to determine the optimum assembly that meets the necessary specifications and is reliable. 14 refs., 3 figs., 1 tab.

  4. SLAC modulator operation and reliability in the SLC Era

    SciTech Connect

    Donaldson, A.R.; Ashton, J.R.

    1992-06-01

    A discussion of the operation and reliability of the 244 modulators in the SLAC linac with an emphasis on the past three years of operation. The linac modulators were designed and built in the 60's, upgraded for the SLAC Linear Collider (SLC) in the mid 80s, and despite their age are still reliable accelerator components. The 60s modulator operated at 65 MW peak and 83 kW average power. The upgrade resulted in 150 MW peak output at an average power of 87 kW, a modest increase since the repetition rate was dropped from 360 to 120 Hz. In the present accelerator configuration, the Linac operates as a source of electrons and positrons to a single pass coillider. The classic collider is a storage ring filled with oppositely charged, counter-rotating particles which are allowed to collide until an accelerator fault occurs and the stored beams are aborted. A reasonable storage ring can store and collide particles for as long as eight hours with a 10 or 20 minute filling time. A single pass collider, + on the other hand, can only produce e{sup {minus}} and e{sup +} collisions at whatever rate the source operates. To be effective the SLC must operate at 120 Hz with a very high degree of reliability and on a continuous basis. Fortunately, the linac has a modest excess of modulator/klystron systems which allows some measure of redundancy and hence some freedom from the constraint that all 244 modulator/klystrons operate simultaneously. Nonetheless, high importance is placed on modulator MTBF and MTRR or, in the parlance of reliability experts and accelerator physicists, availability. This is especially true of the modulators associated with the fundamental requirements of a collider such as injection, compression and positron production.

  5. SLAC modulator operation and reliability in the SLC Era

    SciTech Connect

    Donaldson, A.R.; Ashton, J.R.

    1992-06-01

    A discussion of the operation and reliability of the 244 modulators in the SLAC linac with an emphasis on the past three years of operation. The linac modulators were designed and built in the 60`s, upgraded for the SLAC Linear Collider (SLC) in the mid 80s, and despite their age are still reliable accelerator components. The 60s modulator operated at 65 MW peak and 83 kW average power. The upgrade resulted in 150 MW peak output at an average power of 87 kW, a modest increase since the repetition rate was dropped from 360 to 120 Hz. In the present accelerator configuration, the Linac operates as a source of electrons and positrons to a single pass coillider. The classic collider is a storage ring filled with oppositely charged, counter-rotating particles which are allowed to collide until an accelerator fault occurs and the stored beams are aborted. A reasonable storage ring can store and collide particles for as long as eight hours with a 10 or 20 minute filling time. A single pass collider, + on the other hand, can only produce e{sup {minus}} and e{sup +} collisions at whatever rate the source operates. To be effective the SLC must operate at 120 Hz with a very high degree of reliability and on a continuous basis. Fortunately, the linac has a modest excess of modulator/klystron systems which allows some measure of redundancy and hence some freedom from the constraint that all 244 modulator/klystrons operate simultaneously. Nonetheless, high importance is placed on modulator MTBF and MTRR or, in the parlance of reliability experts and accelerator physicists, availability. This is especially true of the modulators associated with the fundamental requirements of a collider such as injection, compression and positron production.

  6. Laser Safety for the Experimental Halls at SLAC_s Linac Coherent Light Source (LCLS)

    SciTech Connect

    Woods, Michael; Anthony, Perry; Barat, Ken; Gilevich, Sasha; Hays, Greg; White, William E.; /SLAC

    2009-01-15

    The LCLS at the SLAC National Accelerator Laboratory will be the world's first source of an intense hard x-ray laser beam, generating x-rays with wavelengths of 1nm and pulse durations less than 100fs. The ultrafast x-ray pulses will be used in pump-probe experiments to take stop-motion pictures of atoms and molecules in motion, with pulses powerful enough to take diffraction images of single molecules, enabling scientists to elucidate fundamental processes of chemistry and biology. Ultrafast conventional lasers will be used as the pump. In 2009, LCLS will deliver beam to the Atomic Molecular and Optical (AMO) Experiment, located in one of 3 x-ray Hutches in the Near Experimental Hall (NEH). The NEH includes a centralized Laser Hall, containing up to three Class 4 laser systems, three x-ray Hutches for experiments and vacuum transport tubes for delivering laser beams to the Hutches. The main components of the NEH laser systems are a Ti:sapphire oscillator, a regen amplifier, green pump lasers for the oscillator and regen, a pulse compressor and a harmonics conversion unit. Laser safety considerations and controls for the ultrafast laser beams, multiple laser controlled areas, and user facility issues are discussed.

  7. S-Band Loads for SLAC Linac

    SciTech Connect

    Krasnykh, A.; Decker, F.-J.; LeClair, R.; /INTA Technologies, Santa Clara

    2012-08-28

    The S-Band loads on the current SLAC linac RF system were designed, in some cases, 40+ years ago to terminate 2-3 MW peak power into a thin layer of coated Kanthal material as the high power absorber [1]. The technology of the load design was based on a flame-sprayed Kanthal wire method onto a base material. During SLAC linac upgrades, the 24 MW peak klystrons were replaced by 5045 klystrons with 65+ MW peak output power. Additionally, SLED cavities were introduced and as a result, the peak power in the current RF setup has increased up to 240 MW peak. The problem of reliable RF peak power termination and RF load lifetime required a careful study and adequate solution. Results of our studies and three designs of S-Band RF load for the present SLAC RF linac system is discussed. These designs are based on the use of low conductivity materials.

  8. Recording PEP2 Ring Beam Losses at SLAC

    SciTech Connect

    Zelazny, M.; Gromme, T.; Himel, T.; Hendrickson, L.; Krauter, K.; /SLAC

    2005-09-30

    The PEP2 (e+)(e-) storage rings contain many complex interrelated systems. When the beam aborts, examining a record of the orbit from the time just before the abort can help identify the root cause. At the Stanford Linear Accelerator Center (SLAC) a system has been developed to continuously record beam orbits from Beam Position Monitors (BPMS) into a circular buffer. When the beam is aborted the buffers are frozen and their contents are stored for later analysis. BPM orbits are saved on a turn by turn basis for 2800 turns in both the high energy ring (HER) and the low energy ring (LER). Each BPM Processor (BPMP) can either monitor the HER or the LER, but not both as the readout of the two rings is multiplexed into a single readout channel. Tools exist as part of the SLAC Control Program (SCP) to collect, display, and save the data. A physicist or operator can choose a few BPMS in which to view all 2800 turns to identify the turn in which the beam went awry; then ask for that specific orbit from all of the BPMS in the storage ring to determine the root cause of the abort.

  9. Recent Ground Motion Studies at SLAC

    SciTech Connect

    Seryi, Andrei

    2000-06-28

    Studies of slow ground motion have recently been performed at SLAC using the linac laser alignment system over a period of one month. Two significant effects responsible for the observed motion have been identified, namely tidal forces and variation of external atmospheric pressure. The latter is of particular interest as it may result in misalignments with rather short wavelength.

  10. SLAC All Access: X-ray Microscope

    SciTech Connect

    Nelson, Johanna; Liu, Yijin

    2012-08-14

    SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

  11. SLAC All Access: X-ray Microscope

    ScienceCinema

    Nelson, Johanna; Liu, Yijin

    2014-06-13

    SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

  12. PEP-II Large Power Supplies Rebuild Program at SLAC

    SciTech Connect

    Bellomo, P.; Lipari, J.J.; de Lira, A.C.; Rafael, F.S.; /SLAC

    2005-05-17

    Seven large power supplies (LGPS) with output ratings from 72kW to 270kW power PEP-II quad magnets in the electron-positron collider region. These supplies have posed serious maintenance and reliability problems since they were installed in 1997, resulting in loss of accelerator availability. A redesign/rebuild program was undertaken by the SLAC Power Conversion Department. During the 2004 summer shutdown all the control circuits in these supplies were redesigned and replaced. A new PWM control board, programmable logic controller, and touch panel have been installed to improve LGPS reliability, and to make troubleshooting easier. In this paper we present the details of this rebuilding program and results.

  13. Electron Bunch Length Measurement for LCLS at SLAC

    SciTech Connect

    Zelazny, M.; Allison, S.; Chevtsov, Sergei; Emma, P.; Kotturi, K.d.; Loos, H.; Peng, S.; Rogind, D.; Straumann, T.; /SLAC

    2007-10-04

    At Stanford Linear Accelerator Center (SLAC) a Bunch Length Measurement system has been developed to measure the length of the electron bunch for its new Linac Coherent Light Source (LCLS). This destructive measurement uses a transverse-mounted RF deflector (TCAV) to vertically streak the electron beam and an image taken with an insertable screen and a camera. The device control software was implemented with the Experimental Physics and Industrial Control System (EPICS) toolkit. The analysis software was implemented in Matlab{trademark} using the EPICS/Channel Access Interface for Scilab{trademark} and Matlab{trademark} (labCA). This architecture allowed engineers and physicists to develop and integrate their control and analysis without duplication of effort.

  14. The development of the Next Linear Collider at SLAC

    SciTech Connect

    Ruth, R.D.

    1992-02-01

    At SLAC, we are pursuing the design of a Next Linear Collider (NLC) which would begin with a center-of-mass energy of 0.5 TeV and be upgradable to at least 1.0 TeV, and possibly 1.5 TeV. The luminosity is designed to be 10{sup 33} cm{sup {minus}2}s{sup {minus}1} at the lower energy and 10{sup 34} cm{sup {minus}2}s{sup {minus}1} at the top energy. In this paper, we discuss the accelerator physics issues which are important in our approach, and also the present state of the technology development. We also review the impact that the SLC has had in the evolution of our basic approach.

  15. The ILC Marx Modulator Development Program at SLAC

    SciTech Connect

    Leyh, G.E.; /SLAC

    2005-06-07

    The International Linear Collider [ILC] baseline design requires 576 L-band klystron stations, each supplying 10MW peak RF power to the accelerating structures. Each klystron requires a modulator capable of delivering 120kV, 140A 1.6ms pulses, at 5Hz. Solid-state Marx modulator topologies are rapidly becoming feasible with the advent of PC-board-level 4500V IGBTs, fast single junction HV diodes, high density capacitors, and sophisticated modeling software. Making full use of recent technology advances, the ILC Marx Modulator program at SLAC plans to pursue a 120kV solid-state Marx design, which appears to offer significantly higher efficiency, availability, and cost savings than existing modulator options.

  16. Nelson's syndrome: single centre experience using the linear accelerator (LINAC) for stereotactic radiosurgery and fractionated stereotactic radiotherapy.

    PubMed

    Wilson, Peter J; Williams, Janet R; Smee, Robert I

    2014-09-01

    Nelson's syndrome is a unique clinical phenomenon of growth of a pituitary adenoma following bilateral adrenalectomies for the control of Cushing's disease. Primary management is surgical, with limited effective medical therapies available. We report our own institution's series of this pathology managed with radiation: prior to 1990, 12 patients were managed with conventional radiotherapy, and between 1990 and 2007, five patients underwent stereotactic radiosurgery (SRS) and two patients fractionated stereotactic radiotherapy (FSRT), both using the linear accelerator (LINAC). Tumour control was equivocal, with two of the five SRS patients having a reduction in tumour volume, one patient remaining unchanged, and two patients having an increase in volume. In the FSRT group, one patient had a decrease in tumour volume whilst the other had an increase in volume. Treatment related morbidity was low. Nelson's syndrome is a challenging clinical scenario, with a highly variable response to radiation in our series. PMID:24825407

  17. LLRF System Upgrade for the SLAC Linac

    SciTech Connect

    Hong, Bo; Akre, Ron; Pacak, Vojtech; /SLAC

    2012-07-06

    The Linac Coherent Light Source (LCLS) at SLAC is in full user operation and has met the stability goals for stable lasing. The 250pC bunch can be compressed to below 100fS before passing through an undulator. In a new mode of operation a 20pC bunch is compressed to about 10fS. Experimenters are regularly using this shorter X-ray pulse and getting pristine data. The 10fS bunch has timing jitter on the order of 100fS. Physicists are requesting that the RF system achieve better stability to reduce timing jitter. Drifts in the RF system require longitudinal feedbacks to work over large ranges and errors result in reduced performance of the LCLS. A new RF system is being designed to help diagnose and reduce jitter and drift in the SLAC linac.

  18. LCLS LLRF Upgrades to the SLAC Linac

    SciTech Connect

    Akre, R.; Dowell, D.; Emma, P.; Frisch, J.; Hong, B.; Kotturi, K.; Krejcik, P.; Wu, J.; Byrd, J.; /LBL, Berkeley

    2007-10-04

    The Linac Coherent Light Source (LCLS) at SLAC will be the brightest X-ray laser in the world when it comes on line. In order to achieve the brightness a 200fS length electron bunch is passed through an undulator. To create the 200fS, 3kA bunch, a 10pS electron bunch, created from a photo cathode in an RF gun, is run off crest on the RF to set up a position to energy correlation. The bunch is then compressed by chicanes. The stability of the RF system is critical in setting up the position to energy correlation. Specifications derived from simulations require the RF system to be stable to below 200fS in several critical injector stations and the last kilometer of linac. The SLAC linac RF system is being upgraded to meet these requirements.

  19. Liquid Hydrogen Target Experience at SLAC

    SciTech Connect

    Weisend, J.G.; Boyce, R.; Candia, A.; Kaminskas, W.; Mark, J.; Racine, M.; St. Lorant, S.; Weber, T.; Arnold, R.; Bosted, P.; Carr, R.; Gao, J.; Jones, C.E.; McKeown, R.; /Caltech

    2005-08-29

    Liquid hydrogen targets have played a vital role in the physics program at SLAC for the past 40 years. These targets have ranged from small ''beer can'' targets to the 1.5 m long E158 target that was capable of absorbing up to 800 W without any significant density changes. Successful use of these targets has required the development of thin wall designs, liquid hydrogen pumps, remote positioning and alignment systems, safety systems, control and data acquisition systems, cryogenic cooling circuits and heat exchangers. Detailed operating procedures have been created to ensure safety and operational reliability. This paper surveys the evolution of liquid hydrogen targets at SLAC and discusses advances in several of the enabling technologies that made these targets possible.

  20. A Look Inside SLAC's Battery Lab

    ScienceCinema

    Wei Seh, Zhi

    2014-07-21

    In this video, Stanford materials science and engineering graduate student Zhi Wei Seh shows how he prepares battery materials in SLAC's energy storage laboratory, assembles dime-sized prototype "coin cells" and then tests them to see how many charge-discharge cycles they can endure without losing their ability to hold a charge. Results to date have already set records: After 1,000 cycles, they retain 70 percent of their original charge.

  1. A Look Inside SLAC's Battery Lab

    SciTech Connect

    Wei Seh, Zhi

    2014-07-17

    In this video, Stanford materials science and engineering graduate student Zhi Wei Seh shows how he prepares battery materials in SLAC's energy storage laboratory, assembles dime-sized prototype "coin cells" and then tests them to see how many charge-discharge cycles they can endure without losing their ability to hold a charge. Results to date have already set records: After 1,000 cycles, they retain 70 percent of their original charge.

  2. Progress report on the SLAC Linear Collider

    SciTech Connect

    Rees, J.

    1986-06-01

    The SLAC Linear Collider project (SLC) is reported as being near completion. The performance specifications are tabulated both for the initial form and for eventual goals. Various parts of the SLC are described and the status of their construction is reported, including the front end electron gun and booster, the linac, damping ring, positron source, SLC arcs, and conventional facilities. 5 refs., 12 figs. (LEW)

  3. Preliminary Results of the Echo-Seeding Experiment ECHO-7 at SLAC

    SciTech Connect

    Xiang, D.; Colby, E.; Ding, Y.; Dunning, M.; Frederico, J.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodley, M.; Corlett, J.; Qiang, J.; Penn, G.; Prestemon, S.; /LBL, Berkeley /LPHE, Lausanne

    2010-06-15

    ECHO-7 is a proof-of-principle echo-enabled harmonic generation FEL experiment in the Next Linear Collider Test Accelerator (NLCTA) at SLAC. The experiment aims to generate coherent radiation at 318 nm and 227 nm, which are the 5th and 7th harmonic of the infrared seed laser. In this paper we present the preliminary results from the commissioning run of the completed experimental setup which started in April 2010.

  4. Mathematical models for the control program of the SLAC linear collider

    SciTech Connect

    Lee, M.J.; Blocker, C.; Chao, A.W.

    1981-02-01

    The operation of the SLAC two-mile linear accelerator in the single pass collider mode will be computer controlled. Mathematical models will be used in the control program to set up and restore the beam optics and to correct orbits. Some of the requirements imposed upon the on-line model calculations and the ways to satisfy these requirements will be described in this paper.

  5. SLAC collider injector, RF-drive synchronization and trigger electronics, and 15-AMP thermionic-gun development

    SciTech Connect

    Koontz, R.; Miller, R.; McKinney, T.; Wilmunder, A.

    1981-02-01

    The rf drive system for the Collider Injector Development (EL CID) including laser timing, subharmonic buncher drive and phasing, and accelerator rf drive is described. The rf synchronized master trigger generation scheme for the collider is outlined. Also, a 15 amp peak, 200 kV short pulse gun being developed at SLAC as a backup to the Sinclair laser gun is described.

  6. UCLA accelerator research & development. Progress report

    SciTech Connect

    1997-09-01

    This report discusses work on advanced accelerators and beam dynamics at ANL, BNL, SLAC, UCLA and Pulse Sciences Incorporated. Discussed in this report are the following concepts: Wakefield acceleration studies; plasma lens research; high gradient rf cavities and beam dynamics studies at the Brookhaven accelerator test facility; rf pulse compression development; and buncher systems for high gradient accelerator and relativistic klystron applications.

  7. The SLAC Comparator for the Calibration of Digital Leveling Equipment

    SciTech Connect

    Gassner, G.L.; Ruland, R.E.; /SLAC

    2006-11-07

    At SLAC digital levels are used for precise leveling, both for setting out and monitoring. A very high precision of 30 {micro}m is required, which can only be achieved by regularly calibrating the leveling equipment. The calibration facility is also used for detailed investigations to refine the SLAC leveling procedure. In this paper the setup of the SLAC vertical comparator is described. In order to also perform traditional staff calibration a CCD camera was integrated into the SLAC comparator. Finally an overview of further investigations of our leveling equipment is presented.

  8. Survey and Alignment of SLAC's B Factory

    SciTech Connect

    Pietryka, Matthew J.; Gaydosh, Michael L.; /SLAC

    2011-09-08

    The survey and alignment of SLAC's B-factory injector and high energy ring will be complete in March 1997. Modern digital electronic surveying tools are contributing to new, efficient alignment procedures. A laser tracker was used to fiducialize almost 300 quadrupole magnets. Digital levels were used to pre-set base plate elevations. Theodolites with very accurate co-axial distance meters were used for everything from layout to 3D magnet positioning to network surveys, all in free stationing mode. A number of procedures and measurement results are outlined.

  9. Intensity Effects of the FACET Beam in the SLAC Linac

    SciTech Connect

    Decker, F.-J.; Lipkowitz, N.; Sheppard, J.; White, G.R.; Wienands, U.; Woodley, M.; Yocky, G.; /SLAC

    2012-07-03

    The beam for FACET (Facility for Advanced aCcelerator Experimental Tests) at SLAC requires an energy-time correlation ('chirp') along the linac, so it can be compressed in two chicanes, one at the midpoint in sector 10 and one W-shaped chicane just before the FACET experimental area. The induced correlation has the opposite sign to the typical used for BNS damping, and therefore any orbit variations away from the center kick the tail of the beam more than the head, causing a shear in the beam and emittance growth. Any dispersion created along the linac has similar effects due to the high (>1.2% rms) energy spread necessary for compression. The initial huge emittances could be reduced by a factor of 10, but were still bigger than expected by a factor of 2-3. Normalized emittance of 3 {micro}m-rad in Sector 2 blew up to 150 {micro}m-rad in Sector 11 but could be reduced to about 6-12 {micro}m-rad, for the vertical plane although the results were not very stable. Investigating possible root causes for this, we found locations where up to 10 mm dispersion was created along the linac, which were finally verified with strong steering and up to 7 mm settling of the linac accelerator at these locations.

  10. Radiation Dose Measurement for High-Intensity Laser Interactions with Solid Targets at SLAC

    SciTech Connect

    Liang, Taiee

    2015-09-25

    A systematic study of photon and neutron radiation doses generated in high-intensity laser-solid interactions is underway at SLAC National Accelerator Laboratory. We found that these laser-solid experiments are being performed using a 25 TW (up to 1 J in 40 fs) femtosecond pulsed Ti:sapphire laser at the Linac Coherent Light Source’s (LCLS) Matter in Extreme Conditions (MEC) facility. Additionally, radiation measurements were performed with passive and active detectors deployed at various locations inside and outside the target chamber. Results from radiation dose measurements for laser-solid experiments at SLAC MEC in 2014 with peak intensity between 1018 to 7.1x1019 W/cm2 are presented.

  11. SLAC three-body partial wave analysis system

    SciTech Connect

    Aston, D.; Lasinski, T.A.; Sinervo, P.K.

    1985-10-01

    We present a heuristic description of the SLAC-LBL three-meson partial wave model, and describe how we have implemented it at SLAC. The discussion details the assumptions of the model and the analysis, and emphasizes the methods we have used to prepare and fit the data. 28 refs., 12 figs., 1 tab.

  12. Linac Coherent Light Source (LCLS) at 2--4 nm using the SLAC linac

    SciTech Connect

    Seeman, J.T.; Bane, K.; Boyce, R.; Loew, G.; Morton, P.; Nuhn, H.D.; Paterson, J.; Pianetta, P.; Raubenheimer, T.; Tatchyn, R.; Vylet, V.; Winick, H.; Pellegrini, C.; Rosenzweig, J.; Travish, G.; Prosnitz, D.; Scharlemann, E.T.; Halbach, K.; Kim, K.J.; Xie, M.

    1993-08-01

    The authors describe the possible use of the SLAC linac to drive a unique, powerful, short wavelength Linac Coherent Light Source (LCLS). Using the FEL principle, lasing is achieved in a single pass of a high peak current electron beam through a long undulator by self-amplified-spontaneous-emission (SASE). The main components are a high-brightness electron RF gun with a photocathode, two electron bunch length compressors, the existing SLAC linac, beam diagnostics, and a long undulator combined with a FODO quadrupole focusing system. The RF gun, to be installed about 1 km from the end of the SLAC linac, would produce a single bunch of 6 x 10{sup 9} electrons with an invariant emittance of about 3 mm-mrad and a bunch length of about 500 {mu}m. That bunch is then accelerated to 100 MeV and compressed to a length of about 200 {mu}m. The main SLAC linac accelerates the bunch to 2 GeV were a second bunch compressor reduces the length to 30--40 {mu}m and produces a peak current of 2--3 kA. The bunch is then accelerated to 7--8 GeV and transported to a 50--70 m long undulator. Using electrons below 8 GeV, the undulator could operate at wavelengths down to 2 nm, producing about 10 GW peak power in sub-ps light pulses. At a linac repetition rate of 120 Hz, the average power is about 1 W. Linac operation at lower beam energies provides longer wavelength radiation. After the undulator, the beam is deposited in a dump. The LCLS light pulses are then distributed to multiple user stations using grazing incident mirrors. Length compression, emittance control, phase stability, FEL design criteria, and parameter tolerances are discussed. A demonstration experiment is also described which uses the SLAC linac and (possibly) the PALADIN undulator to study SASE to power saturation at wavelengths of 40--360 nm.

  13. ILC Linac R&D at SLAC

    SciTech Connect

    Adolphsen, C.; /SLAC

    2006-08-09

    Since the ITRP recommendation in August 2004 to use superconducting rf technology for a next generation linear collider, the former NLC Group at SLAC has been actively pursuing a broad range of R&D for this collider (the ILC). In this paper, the programs concerning linac technology are reviewed. Current activities include the development of a Marx-style modulator and a 10 MW sheet-beam klystron, operation of an L-band (1.3 GHz) rf source using an SNS HVCM modulator and commercial klystrons, design of a more efficient and less costly rf distribution system, construction of a coupler component test stand, fabrication of a prototype positron capture cavity, beam tests of prototype S-band linac beam position monitors and preparations for magnetic center stability measurements of a prototype SC linac quad.

  14. Cerenkov ring imaging detector development at SLAC

    SciTech Connect

    Williams, S.H.

    1984-06-01

    The imaging of Cerenkov light on to photosensitive detectors promises to be a powerful technique for identifying particles in colliding beam spectrometers. Toward this end two and three dimensional imaging photon detectors are being developed at SLAC. The present techniques involve photon conversion using easily ionized exotic chemicals like tetrakisdimethyl-amino-ethylene (TMAE) in a drift and amplifying gas mixture of methane and isobutane. Single photoelectrons from Cerenkov light are currently being drifted 20 cm and a new device under study will be used to study drifting up to 80 cm along a magnetic field. A short description of a large device currently being designed for the SLD spectrometer at the Stanford Linear Collider will be given.

  15. Lattice Design for ERL Options at SLAC

    SciTech Connect

    Nosochkov, Yuri; Cai, Yunhai; Huang, Xiaobiao; Wang, Min-Huey; /SLAC

    2011-06-02

    SLAC is investigating long-range options for building a high performance light source machine while reusing the existing linac and PEP-II tunnels. One previously studied option is the PEP-X low emittance storage ring. The alternative option is based on a superconducting Energy Recovery Linac (ERL) and the PEP-X design. The ERL advantages are the low beam emittance, short bunch length and small energy spread leading to better qualities of the X-ray beams. Two ERL configurations differed by the location of the linac have been studied. Details of the lattice design and the results of beam transport simulations with the coherent synchrotron radiation effects are presented.

  16. Microprocessors in physics experiments at SLAC

    SciTech Connect

    Rochester, L.S.

    1981-04-01

    The increasing size and complexity of high energy physics experiments is changing the way data are collected. To implement a trigger or event filter requires complex logic which may have to be modified as the experiment proceeds. Simply to monitor a detector, large amounts of data must be processed on line. The use of microprocessors or other programmable devices can help to achieve these ends flexibly and economically. At SLAC, a number of microprocessor-based systems have been built and are in use in experimental setups, and others are now being developed. This talk is a review of existing systems and their use in experiments, and of developments in progress and future plans.

  17. 100 MW klystron development at SLAC

    SciTech Connect

    Vlieks, A.E.; Callin, R.S.; Caryotakis, G.; Fant, K.S.; Fowkes, W.R.; Lee, T.G.; Wright, E.L.

    1991-05-01

    A klystron designed to operate at 11.4 GHz and 440 kV is presently SLAC's strongest rf power source candidate for the Next Linear Collider. It is expected to provide 100 MW of rf power with a pulse width of 1 microsecond. Many of the conventional tube technologies are being pushed to their limits. High electron beam power densities, rf electric gradients in cavity gaps and stresses on the ceramic rf output windows are among the most severe problems to be dealt with. This paper describes progress in the development of this device including results from single and double gap output cavities and various styles of rf output windows. 6 refs., 3 figs., 1 tab.

  18. Ground motions and its effects in accelerator design

    SciTech Connect

    Fischer, G.E.

    1984-07-01

    This lecture includes a discussion of types of motion, frequencies of interest, measurements at SLAC, some general comments regarding local sources of ground motion at SLAC, and steps that can be taken to minimize the effects of ground motion on accelerators. (GHT)

  19. Microwave measurements of azimuthal asymmetries in accelerating fields of disk-loaded waveguides

    SciTech Connect

    Loew, G.A.; Deruyter, H.; Defa, W.

    1983-03-01

    This paper presents microwave measurements of azimuthal asymmetries in the accelerating fields of the SLAC disk-loaded waveguide. These field asymmetries lead to rf phase-dependent beam steering which can be detrimental to operation of linear accelerators in general and of the SLAC Linear Collider in particular.

  20. Design of an Optical Diffraction Radiation Beam Size Monitor at SLAC FETB

    SciTech Connect

    Fukui, Yasuo; Cline, D.; Zhou, F.; Tobiyama, M.; Urakawa, J.; Bolton, P.R.; Ross, M.C.; Hamatsu, R.; Karataev, P.V.; Muto, T.; Aryshev, A.S.; Naumenko, G.A.; Potylitsyn, A.P.; /UCLA /KEK, Tsukuba /SLAC /Tokyo Metropolitan U., Math. Dept. /Tomsk Polytechnic U.

    2008-03-17

    We design a single bunch transverse beam size monitor which will be tested to measure the 28.5 GeV electron/positron beam at the SLAC FFTB beam line. The beam size monitor uses the CCD images of the interference pattern of the optical diffraction radiation from two slit edges which are placed close to the beam path. In this method, destruction of the accelerated electron/positron beam bunches due to the beam size monitoring is negligible, which is vital to the operation of the Linear Collider project.

  1. Progress in L-Band Power Distribution System R&D at SLAC

    SciTech Connect

    Nantista, Christopher; Adolphsen, Chris; Wang, Faya; /SLAC

    2008-10-20

    We report on the L-band RF power distribution system (PDS) developed at SLAC for Fermilab's NML superconducting test accelerator facility. The makeup of the system, which allows tailoring of the power distribution to cavities by pairs, is briefly described. Cold test measurements of the system and the results of high power processing are presented. We also investigate the feasibility of eliminating the expensive, lossy circulators from the PDS by pair-feeding cavities through custom 3-dB hybrids. A computational model is used to simulate the impact on cavity field stability due to the reduced cavity-to-cavity isolation.

  2. Upgrade of the SLAC SLED II Pulse Compression System Based on Recent High Power Tests

    SciTech Connect

    Vlieks, A.E.; Fowkes, W.R.; Loewen, R.J.; Tantawi, S.G.; /SLAC

    2011-09-06

    In the Next Linear Collider (NLC) it is expected that the high power rf components be able to handle peak power levels in excess of 400 MW. We present recent results of high power tests designed to investigate the RF breakdown limits of the X-band pulse compression system used at SLAC. (SLED-II). Results of these tests show that both the TE{sub 01}-TE{sub 10} mode converter and the 4-port hybrid have a maximum useful power limit of 220-250 MW. Based on these tests, modifications of these components have been undertaken to improve their peak field handling capability. Results of these modifications will be presented. As part of an international effort to develop a new 0.5-1.5 TeV electron-positron linear collider for the 21st century, SLAC has been working towards a design, referred to as 'The Next Linear Collider' (NLC), which will operate at 11.424 GHz and utilize 50-75 MW klystrons as rf power sources. One of the major challenges in this design, or any other design, is how to generate and efficiently transport extremely high rf power from a source to an accelerator structure. SLAC has been investigating various methods of 'pulse compressing' a relatively wide rf pulse ({ge} 1 {mu}s) from a klystron into a narrower, but more intense, pulse. Currently a SLED-II pulse compression scheme is being used at SLAC in the NLC Test Accelerator (NLCTA) and in the Accelerator Structures Test Area (ASTA) to provide high rf power for accelerator and component testing. In ASTA, a 1.05 {mu}s pulse from a 50 MW klystron was successfully pulse compressed to 205 MW with a pulse width of 150 ns. Since operation in NLC will require generating and transporting rf power in excess of 400 MW it was decided to test the breakdown limits of the SLED-II rf components in ASTA with rf power up to the maximum available of 400 MW. This required the combining of power from two 50 MW klystrons and feeding the summed power into the SLED-II pulse compressor. Results from this experiment demonstrated

  3. Relativistic klystron research at SLAC and LLNL

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Takeuchi, Y.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.; Hopkins, D.B.; Sessler, A.M.; Barletta, W.A.; Birx, D.L.; Boyd, J.K.; Houck, T.; Westenskow, G.A.; Yu, S.S.

    1988-06-01

    We are developing relativistic klystrons as a power source for high gradient accelerator applications such as large linear electron-positron colliders and compact accelerators. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here briefly on our experiments so far. 5 refs., 1 fig., 1 tab.

  4. Emittance Studies of the BNL/SLAC/UCLA 1.6 Cell Photocathode RF Gun

    SciTech Connect

    Palmer, D.T.; Wang, X.J.; Miller, R.H.; Babzien, M.; Ben-Zvi, I.; Pellegrini, C.; Sheehan, J.; Skaritka, J.; Winick, H.; Woodle, M.; Yakimenko, V.; /Brookhaven

    2011-09-09

    The symmetrized 1.6 cell S-band photocathode gun developed by the BNL/SLAC/UCLA collaboration is in operation at the Brookhaven Accelerator Test Facility (ATF). A novel emittance compensation solenoid magnet has also been designed, built and is in operation at the ATF. These two subsystems form an emittance compensated photoinjector used for beam dynamics, advanced acceleration and free electron laser experiments at the ATF. The highest acceleration field achieved on the copper cathode is 150 MV/m, and the guns normal operating field is 130 MV/m. The maximum rf pulse length is 3 {mu}s. The transverse emittance of the photoelectron beam were measured for various injection parameters. The 1 nC emittance results are presented along with electron bunch length measurements that indicated that at above the 400 pC, space charge bunch lengthening is occurring. The thermal emittance, {epsilon}{sub o}, of the copper cathode has been measured.

  5. Short wavelength FELs using the SLAC linac

    SciTech Connect

    Winick, H.; Bane, K.; Boyce, R.

    1993-08-01

    Recent technological developments have opened the possibility to construct a device which we call a Linac Coherent Light Source (LCLS); a fourth generation light source, with brightness, coherence, and peak power far exceeding other sources. Operating on the principle of the free electron laser (FEL), the LCLS would extend the range of FEL operation to much aborter wavelength than the 240 mn that has so far been reached. We report the results of studies of the use of the SLAC linac to drive an LCLS at wavelengths from about 3-100 nm initially and possibly even shorter wavelengths in the future. Lasing would be achieved in a single pass of a low emittance, high peak current, high energy electron beam through a long undulator. Most present FELs use an optical cavity to build up the intensity of the light to achieve lasing action in a low gain oscillator configuration. By eliminating the optical cavity, which is difficult to make at short wavelengths, laser action can be extended to shorter wavelengths by Self-Amplified-Spontaneous-Emission (SASE), or by harmonic generation from a longer wavelength seed laser. Short wavelength, single pass lasers have been extensively studied at several laboratories and at recent workshops.

  6. Search milli-charged particles at SLAC

    SciTech Connect

    Langeveld, W.G.J.

    1997-01-01

    Particles with electric charge q {triple_bond} Qe {le} 10{sup -3} e and masses in the range 1-1000 MeV/c{sup 2} are not excluded by present experiments or by astrophysical or cosmological arguments. A beam dump experiment uniquely suited to the detection of such {open_quotes}milli-charged{close_quotes} particles has been carried out at SLAC, utilizing the short-duration pulses of the SLC electron beam to establish a tight coincidence window for the signal. The detector, a large scintillation counter sensitive to very small energy depositions, provided much greater sensitivity than previous searches. Analysis of the data leads to the exclusion of a substantial portion of the charge-mass plane. In this report, a preliminary mass-dependent upper limit is presented for the charge of milli-charged particles, ranging from Q = 1.7 x 10{sup -5} at milli-charged particle mass 0.1 MeV/c{sup 2} to Q = 9.5 x 10{sup -4} at 100 MeV/c{sup 2}.

  7. Essay: Bob Siemann-SLC Days at SLAC

    SciTech Connect

    Raubenheimer, Tor O.; /SLAC

    2011-11-14

    Bob Siemann was a great experimentalist and an excellent teacher.We will greatly miss him. Bob came to SLAC in early 1991 to work on the Stanford Linear Collider (SLC). The SLC was a challenging accelerator which began operating in the late 1980's but still had numerous obstacles to be overcome years into operation. One of the compounding difficulties was making reproducible measurements, since the stability of the collider was poor and the diagnostics were insufficient. Bob dove into this challenge and helped design experiments and diagnostics that provided further clarity. I first got to know Bob while I was still a graduate student, trying to finish my thesis and performing some experimental studies on the SLC, which, at the time, was proving to be very difficult. Most of my expertise had been in beam theory and simulation. Dealing with the real issues of the accelerator was challenging. Bob helped me understand the difference between systematic and statistical errors, and separate operational issues from the fundamental physics. His way of teaching was not to provide an explanation but to ask enough questions so that I could find the answer on my own - this was the best way to learn. I later asked Bob to be a reader on my thesis. As in all things, he took this role extremely seriously. He read through the draft and marked every page to the point where I was regretting my decision. However, his questions again helped me understand my own work better and greatly improved my thesis. Bob was also the de facto leader of an effort focused on the damping rings and the bunch compressors. He was great to work with. He made people think for themselves and refused to simply provide answers. He also worked hard himself, expressing real interest and curiosity. After the studies of the SLC damping rings identified a sawtooth instability due to the vacuum chamber impedance as a source of many downstream fluctuations, Bob took charge of upgrading the rings. As part of this

  8. High-power microwaves for defense and accelerator applications

    SciTech Connect

    Manheimer, W. )

    1992-03-11

    This paper discusses high-power microwaves for application to the Defense Department and to the powering of large accelerators. The microwave sources discussed are the SLAC klystron, the relativistic klystron, the magnetron and the vircator.

  9. Final Design of the SLAC P2 Marx Klystron Modulator

    SciTech Connect

    Kemp, M.A.; Benwell, A.; Burkhart, C.; Larsen, R.; MacNair, D.; Nguyen, M.; Olsen, J.; /SLAC

    2011-11-08

    The SLAC P2 Marx has been under development for two years, and follows on the P1 Marx as an alternative to the baseline klystron modulator for the International Linear Collider. The P2 Marx utilizes a redundant architecture, air-insulation, a control system with abundant diagnostic access, and a novel nested droop correction scheme. This paper is an overview of the design of this modulator. There are several points of emphasis for the P2 Marx design. First, the modulator must be compatible with the ILC two-tunnel design. In this scheme, the modulator and klystron are located within a service tunnel with limited access and available footprint for a modulator. Access to the modulator is only practical from one side. Second, the modulator must have high availability. Robust components are not sufficient alone to achieve availability much higher than 99%. Therefore, redundant architectures are necessary. Third, the modulator must be relatively low cost. Because of the large number of stations in the ILC, the investment needed for the modulator components is significant. High-volume construction techniques which take advantage of an economy of scale must be utilized. Fourth, the modulator must be simple and efficient to maintain. If a modulator does become inoperable, the MTTR must be small. Fifth, even though the present application for the modulator is for the ILC, future accelerators can also take advantage of this development effort. The hardware, software, and concepts developed in this project should be designed such that further development time necessary for other applications is minimal.

  10. Radiation aspects of the B-Factory at SLAC

    SciTech Connect

    Liu, J.C.; Nelson, W.R.; Mao, X.S.

    1996-11-01

    The B-Factor is a high-energy physics project at SLAC that studies the phenomenon of CP violation from collisions between two stored beams; high energy electrons (HER, maximum 12-GeV) and low energy positrons (LER, maximum 4-GeV). Both the HER and LER are located in an underground tunnel of 2,200-m-long circumference with a maximum stored current of 3 A. The injector consists of the existing SLAC 2-mile-long LINAC with two extraction and transport lines for both rings. Radiation aspects of the machine are addressed in the context of machine protection and personnel protection. Specific illustrations (e.g., the estimations of neutron, photon and synchrotron radiation environment in the ring tunnel and the radiation levels outside a typical Interaction Region, etc.) are given to show a few natures of the radiation issues for the B-Factory and to reflect the appropriate SLAC policies on radiation safety.

  11. PEP 2: SLAC-based Asymmetric B Factory

    SciTech Connect

    Fieguth, T.

    1992-09-01

    The proposal for upgrading the existing PEP collider at SLAC to enable the copious production of boosted B mesons is the result of several years of collaborative study by groups representing LBL, LLNL and SLAC. The PEP II design has evolved in a considered fashion from its initial conceptualization to a very advanced level of understanding, well-substantiated by R&D results on the key design issues. We describe the proposed upgrade, review the early conceptual decisions, outline the significant remaining questions, and briefly describe current results from the ongoing R&D effort which have shown these questions to be tractable and the initial concepts to be sound.

  12. PEP 2: SLAC-based Asymmetric B Factory

    SciTech Connect

    Fieguth, T.

    1992-09-01

    The proposal for upgrading the existing PEP collider at SLAC to enable the copious production of boosted B mesons is the result of several years of collaborative study by groups representing LBL, LLNL and SLAC. The PEP II design has evolved in a considered fashion from its initial conceptualization to a very advanced level of understanding, well-substantiated by R D results on the key design issues. We describe the proposed upgrade, review the early conceptual decisions, outline the significant remaining questions, and briefly describe current results from the ongoing R D effort which have shown these questions to be tractable and the initial concepts to be sound.

  13. Production of high intensity electron bunches for the SLAC Linear Collider

    SciTech Connect

    James, M.B.

    1987-08-01

    This thesis describes the design and performance of a high intensity electron injecfor for the SLAC Linear Collider. Motivation for the collider and the specifications for the injector are discussed. An analytic theory of the bunching and capture of electrons by rf fields is discussed in the limit of low space charge and small signal. The design and performance of SLAC's main injector are described to illustrate a successful application of this theory. The bunching and capture of electrons by rf fields are then discussed in the limit of high space charge and large signal, and a description of the design of the collider injector follows. In the limit of high space charge forces and large rf signals, the beam dynamics are considerably more complex and numerical simulations are required to predict particle motion. A computer code which models the longitudinal dynamics of electrons in the presence of space charge and rf fields is described. The results of the simulations, the resulting collider injector design and the various components which make up the collider injector are described. These include the gun, subharmonic bunchers, traveling-wave buncher and velocity-of-light accelerator section. Finally, the performance of the injector is described including the beam intensity, bunch length, transverse emittance and energy spectrum. While the final operating conditions differ somewaht from the design, the performance of the collider injector is in good agreement with the numerical simulations and meets all of the collider specifications. 28 refs.

  14. SLAC modulator system improvements and reliability results

    SciTech Connect

    Donaldson, A.R.

    1998-06-01

    In 1995, an improvement project was completed on the 244 klystron modulators in the linear accelerator. The modulator system has been previously described. This article offers project details and their resulting effect on modulator and component reliability. Prior to the project, the authors had collected four operating cycles (1991 through 1995) of MTTF data. In this discussion, the '91 data will be excluded since the modulators operated at 60 Hz. The five periods following the '91 run were reviewed due to the common repetition rate at 120 Hz.

  15. SLAC linear collider conceptual design report

    SciTech Connect

    Not Available

    1980-06-01

    The linear collider system is described in detail, including the transport system, the collider lattice, final focusing system, positron production, beam damping and compression, high current electron source, instrumentation and control, and the beam luminosity. The experimental facilities and the experimental uses are discussed along with the construction schedule and estimated costs. Appendices include a discussion of space charge effects in the linear accelerator, emittance growth in the collider, the final focus system, beam-beam instabilities and pinch effects, and detector backgrounds. (GHT)

  16. Electron transport of a Linac Coherent Light Source (LCLS) using the SLAC linac

    SciTech Connect

    Bane, K.L.; Raubenheimer, T.O.; Seeman, J.T.

    1993-05-01

    A linac configuration providing a low emittance high peak current electron beam is under study for a potential Linac Coherent Light Source (LCLS) based on the SLAC accelerator. The parameters of the final electron bunch are nearing the technological limits of present accelerators in both transverse and longitudinal phase space. In this note we describe a layout of the RF gun, linac, and bunch compressors to deliver the required bunch properties. We consider a bunch that is generated by an rf gun and accelerated to 7 GeV in 900 m of SLAC linac structure before it enters the wiggler. We assume that the rf gun generates a gaussian beam with an energy of 10 MeV, a population N = 6 {times} 10{sup 9}e{sup {minus}}, an rms length {sigma}{sub z} = 0.5 mm, an rms energy spread {sigma}{sub {delta}} = 0.2%, and normalized rms emittances {gamma}{epsilon}{sub x,y} = 3 mm-mrad. At the end of the linac, we require that the peak current {cflx I} {approx_gt} 2.5 kA and the peak-to-peak energy spread {Delta}{delta} {approx_lt} 0.2%. To obtain the required high peak current, we need to compress the bunch length by a factor greater than 10. In deciding at what position in the linac to compress we need to consider three issues: the longitudinal wakefield in the linac, this increases the beam`s energy spread and is harder to compensate with short bunches, the transverse wakefield and rf deflections in the linac, these increase the transverse emittance of the beam and are more severe for long bunches, and the effects of phase and current jitter which will change the bunch length and therefore the peak current of the beam. In this paper, we will describe how we compress the bunch to meet these three criteria. Then, we will briefly describe the bunch compressor optics and finally we will mention some details specific to the SLAC site.

  17. SLAC Users Bulletin No. 102, November 1985-April 1986

    SciTech Connect

    Keller, L. P.; Edminster, D.

    1986-01-01

    The status experimental activities at SLAC is reported, including the long-range schedule and a list of approved high-energy experiments. Work on PEP, SPEAR, and the SLC is included, as well as computing. Such operational data as operating hours and experimental hours are given. (LEW)

  18. SLAC: A Tool for Addressing Chaos in the Ecology Classroom

    ERIC Educational Resources Information Center

    Hamilton, A. J.

    2005-01-01

    Until the early 1970s, ecologists generally assumed that erratic fluctuations observed in natural populations were a product of stochastic noise. It is now known that extremely complex dynamics can arise from basic deterministic processes. This field of study is generally called chaos theory. Here, a computer program, SLAC (Stability, Limits, And…

  19. Recent Advances in Plasma Acceleration

    SciTech Connect

    Hogan, Mark

    2007-03-19

    The costs and the time scales of colliders intended to reach the energy frontier are such that it is important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators a drive beam, either laser or particle, produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultra-high accelerating fields over a substantial length to achieve a significant energy gain. More than 42 GeV energy gain was achieved in an 85 cm long plasma wakefield accelerator driven by a 42 GeV electron drive beam in the Final Focus Test Beam (FFTB) Facility at SLAC. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx}52 GV/m. This effectively doubles their energy, producing the energy gain of the 3 km long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. Prospects for a drive-witness bunch configuration and high-gradient positron acceleration experiments planned for the SABER facility will be discussed.

  20. Transverse wakefield control and feedback in the SLC (SLAC Linear Collider) linear

    SciTech Connect

    Seeman, J.T.; Campisi, I.E.; Herrmannsfeldt, W.; Lee, M.; Petersen, A.; Phinney, N.; Ross, M.; Abrams, G.S.; Adolphsen, C.; Soderstrom, E.

    1987-01-01

    Transverse wakefields in the linac of the SLAC Linear Collider (SLC) have been observed to enlarge the effective emittance of beams which are not properly centered in the accelerating structure. A fast feedback system has been constructed to minimize the enlargement under changing conditions by controlling the beam launching parameters. Theoretical aspects of this transverse feedback system are reviewed as well as the design of the beam sensors, launch controllers, communication equipment and data processing micro-computer. A variety of beam observations have been made. They show that dispersion as well as wakefield effects are important. In the near future the fast transverse feedback system will be beam tested, and algorithms tailored to the noise environment of the SLC will be tried.

  1. Optics Design for a Soft X-ray FEL at the SLAC A-Line

    SciTech Connect

    Geng, H; Ding, Y.; Emma, P.; Huang, Z.; Nosochkov, Y.; Woodley, M.; /SLAC

    2009-05-15

    LCLS capabilities can be significantly extended with a second undulator aiming at the soft x-ray spectrum (1-5 nm). To allow for simultaneous hard and soft x-ray operations, 14 GeV beams at the end of the LCLS accelerator can be intermittently switched into the SLAC A-line (the beam transport line to End Station A) where the second undulator may be located. In this paper, we discuss the A-line optics design for transporting the high-brightness LCLS beams using the existing tunnel. To preserve the high brightness of the LCLS beams, special attention is paid to effects of incoherent and coherent synchrotron radiation. Start-to-end simulations using realistic LCLS beam distributions are carried out.

  2. Organizational cultural survey of the Stanford Linear Accelerator Center

    SciTech Connect

    Not Available

    1991-11-01

    At the request of the Department of Energy, an Organizational Survey (OS) was administered at the Stanford Accelerator Center (SLAC). The OS measured employees' opinions on subjects such as organizational culture, communication, commitment, group cohesion, coordination, safety, environmental issues, and job satisfaction. The result of this work was a quantitative measure of the notion of culture at the SLAC site. This report presents these results and discusses their interpretation.

  3. An organizational survey of the Stanford Linear Accelerator Center

    SciTech Connect

    Shurberg, D.A.; Haber, S.B.

    1991-11-01

    At the request of the Department of Energy, an Organizational Survey (OS) was administered at the Stanford Accelerator Center (SLAC). The OS measured employees` opinions on subjects such as organizational culture, communication, commitment, group cohesion, coordination, safety, environmental issues, and job satisfaction. The result of this work was a quantitative measure of the notion of culture at the SLAC site. This report presents these results and discusses their interpretation.

  4. Organizational cultural survey of the Stanford Linear Accelerator Center

    SciTech Connect

    Not Available

    1991-11-01

    At the request of the Department of Energy, an Organizational Survey (OS) was administered at the Stanford Linear Accelerator Center (SLAC). The OS measured employees' opinions on subjects such as organizational culture, communication, commitment, group cohesion, coordination, safety, environmental issues, and job satisfaction. The result of this work was a quantitative measure of the notion of culture at the SLAC site. This report presents these results and discusses their interpretation.

  5. An organizational survey of the Stanford Linear Accelerator Center

    SciTech Connect

    Shurberg, D.A.; Haber, S.B.

    1991-11-01

    At the request of the Department of Energy, an Organizational Survey (OS) was administered at the Stanford Accelerator Center (SLAC). The OS measured employees' opinions on subjects such as organizational culture, communication, commitment, group cohesion, coordination, safety, environmental issues, and job satisfaction. The result of this work was a quantitative measure of the notion of culture at the SLAC site. This report presents these results and discusses their interpretation.

  6. Scaphoidectomy and Capsulodesis for SNAC or SLAC Stage II

    PubMed Central

    Trumble, Thomas E.; Rafijah, Gregory; Alexander, Hayley; Waitayawinyu, Thanapong

    2012-01-01

    Two common types of wrist arthritis are scapholunate advanced collapse (SLAC) and scaphoid nonunion advanced collapse (SNAC). In stage II SLAC or SNAC, there is arthritis between the scaphoid and the radius, sparing the cartilage between the capitate and the lunate and between the lunate and the radius. When nonsurgical treatment failed, scaphoidectomy plus capsulorrhaphy was used in 8 patients to provide pain relief without requiring an arthrodesis or compromising the radiolunate articulation. After surgery the pain scores improved from 8.5 preoperatively to 2.4 postoperatively. The Disabilities of the Arm, Shoulder, and Hand (DASH) score averaged 21, and the grip strength improved from 18 to 28 kg (81% of the contralateral side). PMID:24179716

  7. The X-band klystron program at SLAC

    SciTech Connect

    Caryotakis, G.

    1996-04-01

    The X-band rf source development at SLAC can be considered a qualified success. A total of twelve klystrons were built. Six of them are still in use. The latest tube, XL4, produced 75 MW at an efficiency of 47.5 percent. However, victory cannot be declared as yet, since an NLC prototype has not been fully designed and the decision between permanent magnet focusing and a super-conducting solenoid has not been formally made. Daryl Sprehn`s paper will present the status of the PPM klystron development. The authors believe that a PPM X-band source will work, at 50 as well as at 75 megawatts. But they are prepared to adapt the XL4 design to a super-conducting solenoid, should the PPM klystron develop unexpected problems. The SLAC program is now in its seventh year. It may well be the longest and most expensive microwave tube development on record, in a government laboratory or in industry. Direct and related costs for the total effort are probably of the order of $10 million. In these circumstances it is perhaps not surprising that it has been possible to produce a klystron with the performance of XL4. At the same time, it must be said that the necessary leap in technology from the SLAC 60-megawatt S-band production klystrons to a klystron of comparable performance at four times the frequency could not be realized without some very careful experimentation and, most importantly, without the infrastructure for tube fabrication and testing available at SLAC. The design of an 11.4 GHz 50--100 MW klystron, with microsecond pulses and a pulse repetition frequency of 180 Hz presents a number of technical challenges which are listed here.

  8. Compliance of SLAC_s Laser Safety Program with OSHA Requirements for the Control of Hazardous Energy

    SciTech Connect

    Woods, Michael; /SLAC

    2009-01-15

    SLAC's COHE program requires compliance with OSHA Regulation 29CFR1910.147, 'The control of hazardous energy (lockout/tagout)'. This regulation specifies lockout/tagout requirements during service and maintenance of equipment in which the unexpected energization or start up of the equipment, or release of stored energy, could cause injury to workers. Class 3B and Class 4 laser radiation must be considered as hazardous energy (as well as electrical energy in associated equipment, and other non-beam energy hazards) in laser facilities, and therefore requires careful COHE consideration. This paper describes how COHE is achieved at SLAC to protect workers against unexpected Class 3B or Class 4 laser radiation, independent of whether the mode of operation is normal, service, or maintenance.

  9. Arthroscopic Resection Arthroplasty of the Radial Column for SLAC Wrist

    PubMed Central

    Cobb, Tyson K.; Walden, Anna L.; Wilt, Jessica M.

    2014-01-01

    Background Symptomatic advanced scapholunate advanced collapse (SLAC) wrists are typically treated with extensive open procedures, including but not limited to scaphoidectomy plus four-corner fusion (4CF) and proximal row carpectomy (PRC). Although a minimally invasive arthroscopic option would be desirable, no convincing reports exist in the literature. The purpose of this paper is to describe a new surgical technique and outcomes on 14 patients who underwent arthroscopic resection arthroplasty of the radial column (ARARC) for arthroscopic stage II through stage IIIB SLAC wrists and to describe an arthroscopic staging classification of the radiocarpal joint for patients with SLAC wrist. Patients and Methods Data were collected prospectively on 17 patients presenting with radiographic stage I through III SLAC wrist who underwent ARARC in lieu of scaphoidectomy and 4CF or PRC. Fourteen patients (12 men and 2 women) subject to 1-year follow-up were included. The average age was 57 years (range 41 to 78). The mean follow-up was 24 months (range 12 to 61). Arthroscopic resection arthroplasty of the radial column is described for varying stages of arthritic changes of the radioscaphoid joint. Midcarpal resection was not performed. Results The mean Disabilities of the Arm, Shoulder, and Hand (DASH) score was 66 preoperatively and 28 at final follow-up. The mean satisfaction (0 = not satisfied, 5 = completely satisfied) at final follow-up was 4.5 (range 3 to 5). The pain level (on 0–10 scale) improved from 6.6 to 1.3. The total arc of motion changed from 124° preoperatively to 142° postoperatively following an ARARC. Grip was 16 kg preoperatively and 18 kg postoperatively. Radiographic stages typically underestimated arthroscopic staging. Although four of our patients appeared to be radiographic stage I, all were found to have arthritis involving some or all of the radioscaphoid articulation at the time of arthroscopy. Clinical Relevance

  10. A Proof-Of-Principle Echo-Enabled Harmonic Generation Experiment at SLAC

    SciTech Connect

    Dunning, Michael; Colby, Eric; Ding, Yuantao; Frederico, Joel; Gilevich, Sasha; Hast, Carsten; Jobe, R.; McCormick, Douglas; Nelson, Janice; Raubenheimer, Tor; Soong, Ken; Stupakov, Gennady; Szalata, Zenon; Walz, Dieter; Weathersby, Stephen; Woodley, Mark; Xiang, Dao; Corlett, John; Penn, Gregory; Prestemon, Soren; Qiang, Ji; /LBL, Berkeley /LBL, Berkeley /LBL, Berkeley /LBL, Berkeley /LPHE, Lausanne

    2011-05-20

    In this paper we describe the technical design of an ongoing proof-of-principle echo-enabled harmonic generation (EEHG) experiment at the Next Linear Collider Test Accelerator (NLCTA) at SLAC.We present the design considerations and the technical details of the experiment. Recently a new method, entitled echo-enabled harmonic generation, was proposed for generation of high harmonics using the beam echo effect. In an EEHG free electron laser (FEL), an electron beam is energy modulated in a modulator and then sent through a dispersive section with a high dispersion strength. After this first stage, the modulation obtained in the modulator is macroscopically washed out, while simultaneously introducing complicated fine structure (separated energy bands) into the phase space of the beam. A second laser is used to further modulate the beam energy in a second modulator. After passing through a second dispersive section, the separated energy bands will be converted into current modulation and the echo signal then occurs as a recoherence effect caused by the mixing of the correlations between the modulation in the second modulator and the fine structures in the beam. The EEHG scheme has a remarkable up-frequency conversion efficiency; it has been shown that the EEHG FEL scheme may allow generation of soft x-rays directly from a UV seed laser in a single stage. In order to confirm the physics behind the EEHG technique and benchmark the theory, a proof-of-principleEEHG experimentwas planned at SLAC. The experiment is now in a commissioning stage and the preliminary results are reported in a separate paper of these proceedings. In this paper we present the design considerations and the details of the experiment setup.

  11. Tiger Team Assessment of the Stanford Linear Accelerator Center

    SciTech Connect

    Not Available

    1991-11-01

    This report documents the Tiger Team Assessment of the buildings, facilities, and activities at the Stanford Linear Accelerator Center (SLAC) and the Stanford Synchrotron Radiation Laboratory (SSRL) near San Francisco, California. SLAC/SSRL is the twenty-eighth DOE site to be assessed by a Tiger Team. SLAC and SSRL are single-purpose laboratories. SLAC is dedicated to experimental and theoretical research in elementary particle physics and to the development of new techniques in high-energy accelerators and elementary particle detectors. SSRL is dedicated to research in atomic and solid-state physics, chemistry, biology, and medicine. The purpose of the SLAC/SSRL Tiger Team Assessment is to provide the Secretary of Energy with concise information on the following: current ES H compliance status at the site and the vulnerabilities associated with that compliance status; root causes for noncompliance; adequacy of DOE and SLAC/SSRL ES H management programs; response actions to address identified problem areas; and effectiveness of self-assessment.

  12. Tiger Team Assessment of the Stanford Linear Accelerator Center

    SciTech Connect

    Not Available

    1991-11-01

    This report documents the Tiger Team Assessment of the buildings, facilities, and activities at the Stanford Linear Accelerator Center (SLAC) and the Stanford Synchrotron Radiation Laboratory (SSRL) near San Francisco, California. SLAC/SSRL is the twenty-eighth DOE site to be assessed by a Tiger Team. SLAC and SSRL are single-purpose laboratories. SLAC is dedicated to experimental and theoretical research in elementary particle physics and to the development of new techniques in high-energy accelerators and elementary particle detectors. SSRL is dedicated to research in atomic and solid-state physics, chemistry, biology, and medicine. The purpose of the SLAC/SSRL Tiger Team Assessment is to provide the Secretary of Energy with concise information on the following: current ES&H compliance status at the site and the vulnerabilities associated with that compliance status; root causes for noncompliance; adequacy of DOE and SLAC/SSRL ES&H management programs; response actions to address identified problem areas; and effectiveness of self-assessment.

  13. Experiments with very-high-power RF pulses at SLAC

    SciTech Connect

    Hogg, H.A.; Loew, G.A.; Price, V.G.

    1983-03-01

    Experiments in which the powers of two SLAC klystrons were combined and fed into a resonant cavity pulse-compression system (SLED) are described. Pulse powers up to 65 MW into SLED were reached. The corresponding instantaneous peak power out of SLED was 390 MW. After normal initial aging, no persistent RF breakdown problems were encountered. X-radiation at the SLED cavities was generally less than 400 mR/h after aging. The theoretical relationship between x-radiation intensity and RF electric field strength is discussed.

  14. Superconducting final focus for the SLAC Linear Collider

    SciTech Connect

    Ash, W.W.; Barrera, F.; Burgess, W.; Cook, K.; Cutler, H.; Ferrie, J.; Petersen, H.; Sawyer, D.; Rinta, R.

    1992-05-01

    Triplets composed of superconducting quadrupoles have been built and installed as the final focusing element for the high-energy positron and electron beams of the SLAC Linear Collider. Special features include independent alignment to 100-micron tolerance inside a common cryostat; non-magnetic materials to allow operation inside the detector`s solenoid field; a continuous-flow helium-only system using 50-meter-long flexible transfer lines; and complete operation of the system before installation. The mechanical design and cryogenic operation experience are presented.

  15. Superconducting final focus for the SLAC Linear Collider

    SciTech Connect

    Ash, W.W.; Barrera, F.; Burgess, W.; Cook, K.; Cutler, H.; Ferrie, J.; Petersen, H.; Sawyer, D.; Rinta, R.

    1992-05-01

    Triplets composed of superconducting quadrupoles have been built and installed as the final focusing element for the high-energy positron and electron beams of the SLAC Linear Collider. Special features include independent alignment to 100-micron tolerance inside a common cryostat; non-magnetic materials to allow operation inside the detector's solenoid field; a continuous-flow helium-only system using 50-meter-long flexible transfer lines; and complete operation of the system before installation. The mechanical design and cryogenic operation experience are presented.

  16. Laser Development for Future Photocathode Research at SLAC

    NASA Astrophysics Data System (ADS)

    Brachmann, A.; Cone, K.; Clendenin, J. E.; Garwin, E. L.; Kirby, R. E.; Luh, D.; Maruyama, T.; Prepost, R.; Prescott, C. Y.

    2005-08-01

    This report summarizes results of recent upgrades to SLAC's polarized source drive laser system. A Q-switching system has been incorporated into the flashlamp-pumped Ti:Sapphire laser system. The Q-switched laser provides energies up to 5 mJ for a 200 ns long pulse. Slow Q-switching provides control over length and shape of the laser pulse. A peak current of > 5.5 A has been demonstrated using a GaAs photocathode illuminated by this laser system.

  17. Using the SLAC VHF and UHF radio systems

    SciTech Connect

    Struven, W.

    1987-02-01

    The use of the SLAC VHF and UHF Radio Systems and the Tunnel Antenna Systems as they are presently configured is described. The original radio system was built in 1966 and has grown in scope over the years. The Tunnel Antenna Systems were developed for, and first installed in, the PEP ring, and later added to other tunnels and redesigned to cover the UHF range, as well as VHF. The UHF radio system was designed and built for SLC use, and was first used in the SLC Arcs. The three radio systems will be described and the capabilities of each system will be defined.

  18. High-power rf pulse compression with SLED-II at SLAC

    SciTech Connect

    Nantista, C.; Kroll, N.M.; Farkas, Z.D.; Lavine, T.L.; Menegat, A.; Ruth, R.D.; Tantawi, S.G.; Vlieks, A.E.; Wilson, P.B.

    1993-04-01

    Increasing the peak rf power available from X-band microwave tubes by means of rf pulse compression is envisioned as a way of achieving the few-hundred-megawatt power levels needed to drive a next-generation linear collider with 50--100 MW klystrons. SLED-II is a method of pulse compression similar in principal to the SLED method currently in use on the SLC and the LEP injector linac. It utilizes low-los resonant delay lines in place of the storage cavities of the latter. This produces the added benefit of a flat-topped output pulse. At SLAC, we have designed and constructed a prototype SLED-II pulse-compression system which operates in the circular TE{sub 01} mode. It includes a circular-guide 3-dB coupler and other novel components. Low-power and initial high-power tests have been made, yielding a peak power multiplication of 4.8 at an efficiency of 40%. The system will be used in providing power for structure tests in the ASTA (Accelerator Structures Test Area) bunker. An upgraded second prototype will have improved efficiency and will serve as a model for the pulse compression system of the NLCTA (Next Linear Collider Test Accelerator).

  19. Enabling Technologies for Petascale Electromagnetic Accelerator Simulation

    SciTech Connect

    Lee, Lie-Quan; Akcelik, Volkan; Chen, Sheng; Ge, Li-Xin; Prudencio, Ernesto; Schussman, Greg; Uplenchwar, Ravi; Ng, Cho; Ko, Kwok; Luo, Xiaojun; Shephard, Mark; /Rensselaer Poly.

    2007-11-09

    The SciDAC2 accelerator project at SLAC aims to simulate an entire three-cryomodule radio frequency (RF) unit of the International Linear Collider (ILC) main Linac. Petascale computing resources supported by advances in Applied Mathematics (AM) and Computer Science (CS) and INCITE Program are essential to enable such very large-scale electromagnetic accelerator simulations required by the ILC Global Design Effort. This poster presents the recent advances and achievements in the areas of CS/AM through collaborations.

  20. The DESY Grid Centre

    NASA Astrophysics Data System (ADS)

    Haupt, A.; Gellrich, A.; Kemp, Y.; Leffhalm, K.; Ozerov, D.; Wegner, P.

    2012-12-01

    DESY is one of the world-wide leading centers for research with particle accelerators, synchrotron light and astroparticles. DESY participates in LHC as a Tier-2 center, supports on-going analyzes of HERA data, is a leading partner for ILC, and runs the National Analysis Facility (NAF) for LHC and ILC in the framework of the Helmholtz Alliance, Physics at the Terascale. For the research with synchrotron light major new facilities are operated and built (FLASH, PETRA-III, and XFEL). DESY furthermore acts as Data-Tier1 centre for the Neutrino detector IceCube. Established within the EGI-project DESY operates a grid infrastructure which supports a number of virtual Organizations (VO), incl. ATLAS, CMS, and LHCb. Furthermore, DESY hosts some of HEP and non-HEP VOs, such as the HERA experiments and ILC as well as photon science communities. The support of the new astroparticle physics VOs IceCube and CTA is currently set up. As the global structure of the grid offers huge resources which are perfect for batch-like computing, DESY has set up the National Analysis Facility (NAF) which complements the grid to allow German HEP users for efficient data analysis. The grid infrastructure and the NAF use the same physics data which is distributed via the grid. We call the conjunction of grid and NAF the DESY Grid Centre. In the contribution to CHEP2012 we will in depth discuss the conceptional and operational aspects of our multi-VO and multi-community Grid Centre and present the system setup. We will in particular focus on the interplay of Grid and NAF and present experiences of the operations.

  1. Development of X-band klystron technology at SLAC

    SciTech Connect

    Caryotakis, G.

    1997-05-01

    The SLAC design for a 1-TeV collider (NLC) requires klystrons with a performance which is well beyond the state-of-the-art for microwave tubes in the United States or abroad. The electrical specifications for the NLC klystrons are not fully established, but they are approximately as follows: Frequency, 11.4 GHz; Peak Power, 75 MW; Pulse Length, 1.5 {mu}s; Repetition Rate, 180 Hz; Gain, 50 dB; Efficiency, (including beam focusing) 50%. SLAC is in the seventh year of a program to develop these klystrons. The choice of X-band as the operating frequency, along with the sheer size of the NLC, have resulted in some new, most demanding standards for the klystrons which may power this future machine. These are related to the overall efficiency required, to the high rf gradients that must be supported at the output circuit without vacuum breakdown, and to the manufacturing cost of the 5,000-10,000 klystrons needed for the collider.

  2. Elementary principles of linear accelerators

    NASA Astrophysics Data System (ADS)

    Loew, G. A.; Talman, R.

    1983-09-01

    A short chronology of important milestones in the field of linear accelerators is presented. Proton linacs are first discussed and elementary concepts such as transit time, shunt impedance, and Q are introduced. Critical issues such as phase stability and transverse forces are addressed. An elementary discussion of waveguide acclerating structures is also provided. Finally, electron accelerators addressed. Taking SLAC as an exmple, various topics are discussed such as structure design, choice of parameters, frequency optmization, beam current, emittance, bunch length and beam loading. Recent developments and future challenges are mentioned briefly.

  3. Centralized digital control of accelerators

    SciTech Connect

    Melen, R.E.

    1983-09-01

    In contrasting the title of this paper with a second paper to be presented at this conference entitled Distributed Digital Control of Accelerators, a potential reader might be led to believe that this paper will focus on systems whose computing intelligence is centered in one or more computers in a centralized location. Instead, this paper will describe the architectural evolution of SLAC's computer based accelerator control systems with respect to the distribution of their intelligence. However, the use of the word centralized in the title is appropriate because these systems are based on the use of centralized large and computationally powerful processors that are typically supported by networks of smaller distributed processors.

  4. Alteration of Arabidopsis SLAC1 promoter and its association with natural variation in drought tolerance.

    PubMed

    Imai, Hiroe; Noda, Yusaku; Tamaoki, Masanori

    2015-01-01

    Natural variation for drought tolerance is a major issue in adaptation and geographic distribution of terrestrial plants. Despite the importance, little is known about the genes and molecular mechanisms that determine its naturally occurring diversity. We analyzed the intraspecific drought tolerance variation between 2 accessions of Arabidopsis thaliana, Columbia (Col)-0 and Wassilewskija (Ws)-2. Measurement of weight loss in detached seedlings demonstrated a clear difference between drought-tolerant Col-0 and drought-sensitive Ws-2. They also differed in their stomatal response under drought condition. Using a quantitative genetic approach, we found a significant quantitative locus on chromosome 1. Surveying in the locus, we extrapolated that the SLAC1 gene, which is associated with stomatal closure, was likely responsible for the difference of drought tolerance. Comparison of their nucleotide and amino acid sequences revealed that there were few differences in regions encoding SLAC1 protein but was a large deletion in SLAC1 promoter of Ws-2. Histochemical GUS staining showed that the SLAC1 expressed dominantly in guard cells of Col-0, but did less in guard cells of Ws-2. Quantitative PCR analysis also showed that transcript level of SLAC1 in guard cells was higher in Col-0 than in Ws-2. The SLAC1 transcription analyses indicate low accumulation of SLAC1 in guard cells of Ws-2. When taken together, our results suggest that the low drought tolerance of Ws-2 was associated with the deletion of the promoter region of Ws-2 SLAC1. PMID:25695335

  5. 17 GHz High Gradient Accelerator Research

    SciTech Connect

    Temkin, Richard J.; Shapiro, Michael A.

    2013-07-10

    This is a report on the MIT High Gradient Accelerator Research program which has included: Operation of the 17 GHz, 25 MeV MIT/Haimson Research Corp. electron accelerator at MIT, the highest frequency, stand-alone accelerator in the world; collaboration with members of the US High Gradient Collaboration, including the design and test of novel structures at SLAC at 11.4 GHz; the design, construction and testing of photonic bandgap structures, including metallic and dielectric structures; the investigation of the wakefields in novel structures; and the training of the next generation of graduate students and postdoctoral associates in accelerator physics.

  6. Critical Issues in Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Uesaka, M.; Hosokai, T.

    2004-10-01

    Updated achievements and critical issues in plasma accelerators are summarized. As to laser plasma accelerators, we cover the results of plasma cathodes by U.Michigan, LBNL, LOA and U.Tokyo. Although many new results of accelerated electrons have been reported, the electrons do not yet form a bunch with narrow energy spread. Several injection schemes and measurements to verify ultrashort bunch (tens fs) with narrow energy spread, low emittance and many charges are planned. E-162 experiments by UCLA / USC / SLAC and a newly proposed experiment on density transition trapping are introduced for electron beam driven plasma accelerators. Their main purpose is realization of GeV plasma accelerator, but application to pump-and-probe analysis for investigation of ultrafast quantum phenomena is also promising.

  7. Research and Development Toward a 4.5-1.5 {Angstrom} Linac Coherent Light Source (LCLS) at SLAC

    SciTech Connect

    Tatchyn, R.; Arthur, J.; Baltay, M.

    1995-08-01

    In recent years significant studies have been initiated on the feasibility of utilizing a portion of the 3km S-band accelerator at SLAC to drive a short wavelength (4.5-1.5 A) Linac Coherent Light Source (LCLS), a Free Electron Laser (FEL) operating in the Self- Amplified Spontaneous Emission (SASE) regime. Electron beam requirements for single-pass saturation in a minimal time include: (1) a peak current in the 7 kA range, (2) a relative energy spread of {lt}0.05%, and (3) a transverse emittance, {epsilon}[r-m], approximating the diffraction limit condition {epsilon} = {lambda} / 4{pi}, where lambda(m) is the output wavelength. Requirements on the insertion device include field error levels of 0.02% for keeping the electron bunch centered on and in phase with the amplified photons, and a focusing beta of 8 m/rad for inhibiting the dilution of its transverse density. Although much progress has been made in developing individual components and beam processing techniques necessary for LCLS operation down to approx. 20 A, a substantial amount of research and development is still required in a number of theoretical and experimental areas leading to the construction and operation of a 4.5-1.5 A LCLS. In this paper we report on a research and development program underway and in planning at SLAC for addressing critical questions in these areas.

  8. SLAC All Access: Atomic, Molecular and Optical Science Instrument

    SciTech Connect

    Bozek, John

    2013-11-05

    John Bozek, a staff scientist at SLAC's Linac Coherent Light Source (LCLS) X-ray laser who manages the LCLS Soft X-ray Department, takes us behind the scenes at the Atomic, Molecular and Optical Science (AMO) instrument, the first of six experimental stations now operating at LCLS. Samples used in AMO experiments include atoms, molecules, clusters, and nanoscale objects such as protein crystals or viruses. Science performed at AMO includes fundamental studies of light-matter interactions in the extreme X-ray intensity of the LCLS pules, time-resolved studies of increasingly charged states of atoms and molecules, X-ray diffraction imaging of nanocrystals, and single-shot imaging of a variety of objects.

  9. SLAC All Access: Atomic, Molecular and Optical Science Instrument

    ScienceCinema

    Bozek, John

    2014-06-03

    John Bozek, a staff scientist at SLAC's Linac Coherent Light Source (LCLS) X-ray laser who manages the LCLS Soft X-ray Department, takes us behind the scenes at the Atomic, Molecular and Optical Science (AMO) instrument, the first of six experimental stations now operating at LCLS. Samples used in AMO experiments include atoms, molecules, clusters, and nanoscale objects such as protein crystals or viruses. Science performed at AMO includes fundamental studies of light-matter interactions in the extreme X-ray intensity of the LCLS pules, time-resolved studies of increasingly charged states of atoms and molecules, X-ray diffraction imaging of nanocrystals, and single-shot imaging of a variety of objects.

  10. Physics prospects for the SLAC B-Factory

    SciTech Connect

    Coward, D.H.

    1996-11-01

    CP violation has been an enigma since its discovery in the decays of neutral kaons in 1964. The present version of the Standard Model can accommodate CP violation by means of a non-zero phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix. However, CP violation in the kaon system occurs at the part per mille level and the Standard Model`s predictions for CP violation have not been conclusively tested. In contrast to the kaon system, B-mesons decay into a variety of final states, many of which could exhibit CP violation and therefore offer multiple tests of the Standard Model. Several large efforts currently are in progress to create dedicated experiments or factories which will provide large quantities of B-mesons which, in turn, should give large numbers of CP-violating decays. Here, a very brief presentation of the physics prospects for the SLAC B-Factory, now under construction, is presented.

  11. A damping ring design for the SLAC Next Linear Collider

    SciTech Connect

    Raubenheimer, T.O.; Byrd, J.; Corlett, J.

    1995-05-01

    In this paper, we describe the design of the main damping rings and the positron pre-damping ring for the SLAC Next Linear Collider, a future linear collider with a center-of-mass energy of 0.5 to 1.5 TeV. The rings will operate at an energy of 2 GeV with a maximum repetition rate of 180 Hz. The normalized extracted beam emittances are {gamma}{epsilon}{sub x} = 3 mm-mrad and {gamma}{epsilon}{sub y} = 0.03 mm-mrad. To provide the necessary damping, the rings must damp multiple trains of bunches. Thus, the beam current is large, roughly 1 A. We will present the optical layout, magnet designs, and RF systems, along with the dynamic aperture and required alignment tolerances; collective effects will be discussed in another paper.

  12. SLAC users Bulletin No. 96, August-December 1983

    SciTech Connect

    Keller, L. P.; Edminster, D.

    1983-01-01

    Operational activities for the months of August through December 1983, are reported in the areas of accelerator and research operations, research area and experiment status, accelerator improvements, research division developments, PEP division developments, and publications for the month. (GHT)

  13. Loss-of-function mutation of rice SLAC7 decreases chloroplast stability and induces a photoprotection mechanism in rice.

    PubMed

    Fan, Xiaolei; Wu, Jiemin; Chen, Taiyu; Tie, Weiwei; Chen, Hao; Zhou, Fei; Lin, Yongjun

    2015-12-01

    Plants absorb sunlight to power the photochemical reactions of photosynthesis, which can potentially damage the photosynthetic machinery. However, the mechanism that protects chloroplasts from the damage remains unclear. In this work, we demonstrated that rice (Oryza sativa L.) SLAC7 is a generally expressed membrane protein. Loss-of-function of SLAC7 caused continuous damage to the chloroplasts of mutant leaves under normal light conditions. Ion leakage indicators related to leaf damage such as H2 O2 and abscisic acid levels were significantly higher in slac7-1 than in the wild type. Consistently, the photosynthesis efficiency and Fv/Fm ratio of slac7-1 were significantly decreased (similar to photoinhibition). In response to chloroplast damage, slac7-1 altered its leaf morphology (curled or fused leaf) by the synergy between plant hormones and transcriptional factors to decrease the absorption of light, suggesting that a photoprotection mechanism for chloroplast damage was activated in slac7-1. When grown in dark conditions, slac7-1 displayed a normal phenotype. SLAC7 under the control of the AtSLAC1 promoter could partially complement the phenotypes of Arabidopsis slac1 mutants, indicating a partial conservation of SLAC protein functions. These results suggest that SLAC7 is essential for maintaining the chloroplast stability in rice. PMID:25739330

  14. Availability Performance and Considerations for LCLS X-Ray FEL at SLAC

    SciTech Connect

    Allen, W.B.; Brachmann, A.; Colocho, W.; Stanek, M.; Warren, J.; /SLAC

    2011-08-16

    The Linac Coherent Light Source (LCLS) is an X-ray Free Electron Laser (FEL) facility located at the SLAC National Accelerator Laboratory. LCLS has been in operation since spring 2009, and it has completed its 3rd user run. LCLS is the first in its class of X-ray FEL user facilities, and presents different availability challenges compared to storage ring light sources. This paper presents recent availability performance of the FEL as well as factors to consider when defining the operational availability figure of merit for user runs. During LCLS [1] user runs, an availability of 95% has been set as a goal. In run III, LCLS photon and electron beam systems achieved availabilities of 94.8% and 96.7%, respectively. The total availability goal can be distributed among subsystems to track performance and identify areas that need attention in order to maintain and improve hardware reliability and operational availability. Careful beam time accounting is needed to understand the distribution of down time. The LCLS complex includes multiple experimental hutches for X-ray science, and each user program has different requirements of a set of parameters that the FEL can be configured to deliver. Since each user may have different criteria for what is considered 'acceptable beam', the quality of the beam must be considered to determine the X-ray beam availability.

  15. Recent Measurements And Plans for the SLAC Compton X-Ray Source

    SciTech Connect

    Vlieks, A.E.; Akre, R.; Caryotakis, G.; DeStefano, C.; Frederick, W.J.; Heritage, J.P.; Luhmann, N.C.; Martin, D.; Pellegrini, C.; /SLAC /UC, Davis /UCLA

    2006-02-14

    A compact source of monoenergetic X-rays, generated via Compton backscattering, has been developed in a collaboration between U.C Davis and SLAC. The source consists of a 5.5 cell X-band photoinjector, a 1.05 m long high gradient accelerator structure and an interaction chamber where a high power (TW), short pulse (sub-ps) infrared laser beam is brought into a nearly head-on collision with a high quality focused electron beam. Successful completion of this project will result in the capability of generating a monoenergetic X-ray beam, continuously tunable from 20 - 85 keV. We have completed a series of measurements leading up to the generation of monoenergetic X-rays. Measurements of essential electron beam parameters and the techniques used in establishing electron/photon collisions will be presented. We discuss the design of an improved interaction chamber, future electro-optic experiments using this chamber and plans for expanding the overall program to the generation of Terahertz radiation.

  16. Recent Measurements and Plans for the SLAC Compton X- Ray Source

    SciTech Connect

    Vlieks, A. E.; Akre, R.; Caryotakis, G.; Martin, D.; DeStefano, C.; Frederick, W. J.; Heritage, J. P.; Luhmann, N. C. Jr.; Pellegrini, C.

    2006-01-03

    A compact source of monoenergetic x-rays, generated via Compton backscattering, has been developed in a collaboration between UC Davis and SLAC. The source consists of a 5.5 cell X-band photoinjector, a 1.05 m long high gradient accelerator structure and an interaction chamber where a high power (TW), short pulse (sub-ps) infrared laser beam is brought into a nearly head-on collision with a high quality focused electron beam. Successful completion of this project will result in the capability of generating a monoenergetic x-ray beam, continuously tunable from 20 - 85 keV.We have completed a series of measurements leading up to the generation of monoenergetic X-rays. Measurements of essential electron beam parameters and the techniques used in establishing electron/photon collisions will be presented.We discuss the design of an improved interaction chamber, future electro-optic experiments using this chamber and plans for expanding the overall program to the generation of Terahertz radiation.

  17. Performance of the PEP-II B-Factory Collider at SLAC

    SciTech Connect

    Seeman, J.; Browne, M.; Cai, Y.; Colocho, W.; Decker, F.J.; Donald, M.H.; Ecklund, S.; Erickson, R.A.; Fisher, A.S.; Fox, J.D.; Heifets, S.A.; Iverson, R.H.; Kulikov, A.; Li, N.; Novokhatski, A.; Ross, M.C.; Schuh, P.; Smith, T.J.; Sonnad, K.G.; Stanek, M.; Sullivan, M.K.; /SLAC /Frascati /DSM, DAPNIA, Saclay /LBL, Berkeley /Orsay, IPN

    2006-03-03

    PEP-II is an e{sup +}e{sup -} asymmetric B-Factory Collider located at SLAC operating at the Upsilon 4S resonance (3.1 GeV x 9 GeV). It has reached a luminosity of 9.21 x 10{sup 33}/cm{sup 2}/s and has delivered an integrated luminosity of 710 pb{sup -1} in one day. PEP-II has delivered, over the past six years, an integrated luminosity to the BaBar detector of over 262 fb{sup -1}. PEP-II operates in continuous injection mode for both beams boosting the integrated luminosity. The peak positron current has reached 2.45 A in 1588 bunches. Steady progress is being made in reaching higher luminosity. The goal over the next several years is to reach a luminosity of 2.1 x 10{sup 34}/cm{sup 2}/s. The accelerator physics issues being addressed in PEP-II to reach this goal include the electron cloud instability, beam-beam effects, parasitic beam-beam effects, high RF beam loading, shorter bunches, lower {beta}*{sub y} interaction region operation, and coupling control. Figure 1 shows the PEP-II tunnel.

  18. Accelerators for America's Future

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  19. Documenting the Physical Universe:Preserving the Record of SLAC from 1962 to 2005

    SciTech Connect

    Deken, Jean Marie; /SLAC

    2006-03-10

    Since 1905, Albert Einstein's ''miraculous year'', modern physics has advanced explosively. In 2005, the World Year of Physics, a session at the SAA Annual meeting discusses three institutional initiatives--Einstein's collected papers, an international geophysical program, and a research laboratory--to examine how physics and physicists are documented and how that documentation is being collected, preserved, and used. This paper provides a brief introduction to the research laboratory (SLAC), discusses the origins of the SLAC Archives and History Office, its present-day operations, and the present and future challenges it faces in attempting to preserve an accurate historical record of SLAC's activities.

  20. Accelerator structure work for NLC

    SciTech Connect

    Miller, R.H.; Adolphsen, C.; Bane, K.L.F.; Deruyter, H.; Farkas, Z.D.; Hoag, H.A.; Holtkamp, N.; Lavine, T.; Loew, G.A.; Nelson, E.M.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Thompson, K.A.; Vlieks, A.; Wang, J.W.; Wilson, P.B. ); Gluckstern, R. ); Ko, K.; Kroll, N. (Stanford Linear Accelerator Ce

    1992-07-01

    The NLC design achieves high luminosity with multiple bunches in each RF pulse. Acceleration of a train of bunches without emittance growth requires control of long range dipole wakefields. SLAC is pursuing a structure design which suppresses the effect of wakefields by varying the physical dimensions of successive cells of the disk-loaded traveling wave structure in a manner which spreads the frequencies of the higher mode while retaining the synchronism between the electrons and the accelerating mode. The wakefields of structures incorporating higher mode detuning have been measured at the Accelerator Test Facility at Argonne. Mechanical design and brazing techniques which avoid getting brazing alloy into the interior of the accelerator are being studied. A test facility for high-power testing of these structures is complete and high power testing has begun.

  1. Research and development toward a 4.5-1.5{angstrom} linac coherent light source (LCLS) at SLAC

    SciTech Connect

    Tatchyn, R.; Arthur, J.; Baltay, M.

    1995-12-31

    In recent years significant studies have been initiated on the theoretical and technical feasibility of utilizing a portion of the 3km S-band accelerator at the Stanford Linear Accelerator Center (SLAC) to drive a short wavelength (4.5-1.5 {Angstrom}) Linac Coherent Light Source (LCLS), a Free-Electron Laser (FEL) operating in the Self-Amplified Spontaneous Emission (SASE) regime. Electron beam requirements for single-pass saturation include: (1) a peak current in the 3-7 kA range, (2) a relative energy spread of <0.05%, ad (3) a transverse emittance, {epsilon}{le}{lambda}/4{pi}, where {lambda}[m] is the output wavelength. Requirements on the insertion device include field error levels of 0.1-0.2% for keeping the electron bunch centered on and in phase with the amplified photons, and a focusing beta of 4-8 m for inhibiting the dilution of its transverse density. Although much progress techniques necessary for LCLS operation down to {approximately}20 {angstrom}, a substantial amount of research and development is still required in a number of theoretical and experimental areas leading to the construction and operation of a 4.5-1.5 {angstrom} LCLS. In this paper we report on a research and development program underway and in planning at SLAC for addressing critical questions in these areas. These include the construction and operation of a linac test stand for developing laser-driven photocathode rf guns with normalized emittances approaching 1 mm-mr; development of advanced beam compression, stability, an emittance control techniques at multi-GeV energies; the construction and operation of a FEL Amplifier Test Experiment (FATE) for theoretical and experimental studies of SASE at IR wavelengths; an undulator development program to investigate superconducting, hybrid/permanent magnet (hybrid/PM), and pulsed-Cu technologies; theoretical and computational studies of high-gain FEL physics and LCLS component designs.

  2. Next linear collider test accelerator injector upgrade

    SciTech Connect

    Yeremian, A.D.; Miller, R.H.

    1995-12-31

    The Next Linear Collider Test Accelerator (NLCTA) is being constructed at SLAC to demonstrate multibunch beam loading compensation, suppression of higher order deflecting modes and measure transverse components of the accelerating fields in X-band accelerating structures. Currently a simple injector which provides the average current necessary for the beam loading compensations studies is under construction. An injector upgrade is planned to produce bunch trains similar to that of the NLC with microbunch intensity, separation and energy spread, identical to that of NLC. We discuss the design of the NLCTA injector upgrade.

  3. Science Learning Centres Roundup

    ERIC Educational Resources Information Center

    Education in Science, 2010

    2010-01-01

    The national network of Science Learning Centres aims to raise the quality of science teaching from Key Stage 1 through post-16 (ages 5-19). Short courses are provided locally through the regional Science Learning Centres and longer, more intensive programmes are available at the National Science Learning Centre in York. There are a growing number…

  4. Homologue Structure of the SLAC1 Anion Channel for Closing Stomata in Leaves

    SciTech Connect

    Y Chen; L Hu; M Punta; R Bruni; B Hillerich; B Kloss; B Rost; J Love; S Siegelbaum; W Hendrickson

    2011-12-31

    The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. Here we determine the crystal structure of a bacterial homologue (Haemophilus influenzae) of SLAC1 at 1.20 {angstrom} resolution, and use structure-inspired mutagenesis to analyse the conductance properties of SLAC1 channels. SLAC1 is a symmetrical trimer composed from quasi-symmetrical subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated by an extremely conserved phenylalanine residue. Conformational features indicate a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics indicate that selectivity among different anions is largely a function of the energetic cost of ion dehydration.

  5. Support and utilization of the LSI-11 processor family at SLAC

    SciTech Connect

    Kieffer, J.; Logg, C.A.; Farwell, D.E.

    1981-01-01

    Microcomputer systems based on the DEC LSI-11 processor family have been in use at SLAC for five years. They are used for a wide variety of applications. The support of these systems is divided into three general areas: engineering, maintenance, and software. Engineering specifies the system to match user requirements. SLAC has been able to design one general purpose system which can be tailored to fit many specific requirements. Maintenance provides system and component diagnostic services and repair. Software support includes software consulting services, assistance in systems design, and the development and support of special purpose operating systems and programs. These support functions are handled as subtasks by three teams in the SLAC Electronics Instrumentation Group. Each of these teams utilizes several LSI-11 systems in the performance of its primary tasks. They work closely together to jointly provide overall support for the larger SLAC community.

  6. Beam Profile Monitor Tests at the SLAC FFTB^1

    NASA Astrophysics Data System (ADS)

    Norem, J.; Dawson, J.; Haberichter, W.; Reed, L.; Yang, X.-F.; Spencer, J.; Saleski, M.

    1996-05-01

    The next generation linear colliders require beam sizes as small as 5 nm for efficient collisions between electron and positron beams. The difficulty of producing and maintaining such beams in stable collision means that bunch-to-bunch measurements need to be made quickly and precisely. We are developing a new technique using non-imaging gamma optics having good time resolution and sensitivity to correlations when the expected resolution is a few nm. Apparatus has been set up and made operational in the Final Focus Test Beam at SLAC and we have begun to tune and test components. We will describe this setup and our initial measurements together with Monte Carlo simulations based on using foils and wires (bremsstrahlung) and laser backscattering (Compton) as gamma sources to measure the beam size at IP1 of experiment E144. For the NLC we could also use beamsstrahlung generated by the strong beam-beam interaction at the IP to provide a comparable nonintercepting monitor. \\overline ^1Funded by the US Department of Energy under contracts W-31-109-ENG-38 and DE-AC03-76SF00515.

  7. Measurements of the neutron polarized structure function at SLAC

    SciTech Connect

    Young, C.C.; E-142 Collaboration

    1995-08-01

    Detailed measurements of unpolarized or spin-averaged nucleon structure functions over the past two decades have led to detailed knowledge of the nucleon`s internal momentum distribution. Polarized nucleon structure function measurements, which probe the nucleon`s internal spin distribution, started at SLAC in 1976. E-142 has recently measured the neutron polarized structure function g{sub 1}{sup n}(x) over the range 0.03 {le} {times} {le} 0.6 at an average Q{sup 2} of 2 GeV{sup 2} and found the integral I{sup n} = {integral}{sub 0}{sup 1}g{sub 1}{sup n}(x)dx={minus}0.022{plus_minus}0.011. E-143, which took data recently, has measured g{sub 1}{sup p} and g{sub 1}{sup 4}. Two more experiments (E-154 and E-155) will extend these measurements to lower x and higher Q{sup 2}.

  8. A hybrid anode reactor for the SLAC modulator

    SciTech Connect

    Donaldson, A.R.

    1994-06-01

    The SLAC modulators operate at 150 MW ak outputs at 120 pps with an average power of 87 kW. In an effect to improve modulator performance and reliability, we describe the design of a hybrid anode reactor using ferrite to decrease the ringing of the output pulse, and incidentally reduce thyratron commutation loss. The design uses MnZn ferrite as a saturable lossy element to decrease the ringing in combination with NiZn ferrite as a saturable reactor for reducing the switching loss. The output ringing is product of the PFN stray capacitance and the leakage inductance of the pulse transformer, and if not suppressed causes premature failures of the output cable. The saturable switch aspect then offers the necessary rise time and pulse width recovery. While these two goals seem contrary, our initial performance objectives were met Ringing on the output pulse is decreased by 50%. Switching loss reduction is measured by a thyratron temperature decrease of 15% as measured on the anode with a cathode reference temperature. The reactor packaging is very simple, and it is separated from the thyratron space so not to complicate thyratron replacement or modulator repairs and maintenance.

  9. SLAC P2 Marx Control System and Regulation Scheme

    SciTech Connect

    MacNair, David; Kemp, Mark A.; Macken, Koen; Nguyen, Minh N.; Olsen, Jeff; /SLAC

    2011-05-20

    The SLAC P2 MARX Modulator consists of 32 cells charged in parallel by a -4 kV supply and discharged in series to provide a -120 kV 140 amp 1.7 millisecond pulse. Each cell has a 350 uF main storage capacitor. The voltage on the capacitor will droop approximately 640 volts during each pulse. Each cell will have a boost supply that can add up to 700 V to the cell output. This allows the output voltage of the cell to remain constant within 0.1% during the pulse. The modulator output voltage control is determined by the -4 kV charging voltage. A voltage divider will measure the modulator voltage on each pulse. The charging voltage will be adjusted by the data from previous pulses to provide the desired output. The boost supply in each cell consists of a 700 V buck regulator in series with the main capacitor. The supply uses a lookup table for PWM control. The lookup table is calculated from previous pulse data to provide a constant cell output. The paper will describe the modulator and cell regulation used by the MARX modulator. Measured data from a single cell and three cell string will be included.

  10. A Possible CO2 Conducting and Concentrating Mechanism in Plant Stomata SLAC1 Channel

    PubMed Central

    Du, Qi-Shi; Fan, Xina-Wei; Wang, Cheng-Hua; Huang, Ri-Bo

    2011-01-01

    Background The plant SLAC1 is a slow anion channel in the membrane of stomatal guard cells, which controls the turgor pressure in the aperture-defining guard cells, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought, high levels of carbon dioxide, and bacterial invasion. Recent study demonstrated that bicarbonate is a small-molecule activator of SLAC1. Higher CO2 and HCO3– concentration activates S-type anion channel currents in wild-type Arabidopsis guard cells. Based on the SLAC1 structure a theoretical model is derived to illustrate the activation of bicarbonate to SLAC1 channel. Meanwhile a possible CO2 conducting and concentrating mechanism of the SLAC1 is proposed. Methodology The homology structure of Arabidopsis thaliana SLAC1 (AtSLAC1) provides the structural basis for study of the conducting and concentrating mechanism of carbon dioxide in SLAC1 channels. The pKa values of ionizable amino acid side chains in AtSLAC1 are calculated using software PROPKA3.0, and the concentration of CO2 and anion HCO3– are computed based on the chemical equilibrium theory. Conclusions The AtSLAC1 is modeled as a five-region channel with different pH values. The top and bottom layers of channel are the alkaline residue-dominated regions, and in the middle of channel there is the acidic region surrounding acidic residues His332. The CO2 concentration is enhanced around 104 times by the pH difference between these regions, and CO2 is stored in the hydrophobic region, which is a CO2 pool. The pH driven CO2 conduction from outside to inside balances the back electromotive force and maintain the influx of anions (e.g. Cl– and NO3–) from inside to outside. SLAC1 may be a pathway providing CO2 for photosynthesis in the guard cells. PMID:21931667

  11. Some initial results from the new SLAC (Stanford Linear Accelerator Center) permeameter

    SciTech Connect

    Cobb, J.K.; Early, R.A.

    1990-01-01

    A new permeameter has been built and is now available for testing samples of steel and other ferromagnetic materials for their magnetic characteristics such as permeability, remanent induction, coercive force and saturation induction. The present range of operation for the permeameter is from 0.5 Oe to 1250 Oe. Results are presented for two samples of low-carbon steel as well as some preliminary results for Vanadium Permendur. 4 refs., 8 figs.

  12. Design of a semi-custom integrated circuit for the SLAC SLC timing control system

    SciTech Connect

    Linstadt, E.

    1984-10-01

    A semi-custom (gate array) integrated circuit has been designed for use in the SLAC Linear Collider timing and control system. The design process and SLAC's experiences during the phases of the design cycle are described. Issues concerning the partitioning of the design into semi-custom and standard components are discussed. Functional descriptions of the semi-custom integrated circuit and the timing module in which it is used are given.

  13. Experimental Tests of the GDH and Other Sum Rules at SLAC

    SciTech Connect

    Bosted, P.E.; /Massachusetts U., Amherst

    2005-06-14

    Recent measurements from SLAC of the polarized nucleon structure functions g{sub 1} and g{sub 2} have been used to experimentally test the Bjorken, Ellis-Jaffe, Burkhardt-Cottingham, and Efremov-Leader-Teryaev sum rules. In the future, the SLAC E159 experiment will extend structure function measurements using real photons to 40 GeV, enabling a definitive test of the high energy convergence of the GDH sum rule for both proton and deuteron targets.

  14. 2011 Dielectric Laser Acceleration Workshop (DLA2011)

    SciTech Connect

    Bermel, Peter; Byer, Robert L.; Colby, Eric R.; Cowan, Benjamin M.; Dawson, Jay; England, R.Joel; Noble, Robert J.; Qi, Ming-Hao; Yoder, Rodney B.; /Manhattanville Coll., Purchase

    2012-04-17

    The first ICFA Mini-workshop on Dielectric Laser Accelerators was held on September 15-16, 2011 at SLAC National Accelerator Laboratory. We present the results of the Workshop, and discuss the main conclusions of the Accelerator Applications, Photonics, and Laser Technologies working groups. Over 50 participants from 4 countries participated, discussing the state of the art in photonic structures, laser science, and nanofabrication as it pertains to laser-driven particle acceleration in dielectric structures. Applications of this new and promising acceleration concept to discovery science and industrial, medical, and basic energy sciences were explored. The DLA community is presently focused on making demonstrations of high gradient acceleration and a compatible attosecond injector source - two critical steps towards realizing the potential of this technology.

  15. Functional analysis of Slac2-c/MyRIP as a linker protein between melanosomes and myosin VIIa.

    PubMed

    Kuroda, Taruho S; Fukuda, Mitsunori

    2005-07-29

    Slac2-c/MyRIP, an in vitro Rab27A- and myosin Va/VIIa-binding protein, has recently been proposed to regulate retinal melanosome transport in retinal pigment epithelium cells by directly linking melanosome-bound Rab27A and myosin VIIa; however, the exact function of Slac2-c in melanosome transport has never been clarified. In this study, we used melanosome transport in skin melanocytes as a model for retinal melanosome transport and analyzed the in vivo function of Slac2-c in melanosome transport by the ectopic expression of Slac2-c, together with myosin VIIa, in Slac2-a-depleted melanocytes. In vitro binding experiments revealed that myosin VIIa had a greater affinity for Slac2-c, compared with the binding affinity of myosin Va, and that the myosin VIIa-binding domain of Slac2-c is different from the previously characterized myosin Va-binding domain that is conserved between Slac2-a/melanophilin and Slac2-c. Consistent with this result, cyan fluorescent protein-tagged Slac2-c expressed in melanocytes was localized on melanosomes via the specific interaction with Rab27A and recruited co-expressed yellow fluorescent protein-tagged myosin VIIa to the melanosomes without interfering with the normal peripheral melanosome distribution, whereas when myosin VIIa alone was expressed in melanocytes, it was not localized on the melanosomes. Moreover, Slac2-c ectopically expressed in melanocytes did not rescue the perinuclear aggregation phenotype induced by the knockdown of endogenous Slac2-a with a specific small interfering RNA, whereas the expression of the Slac2-c x myosin VIIa complex supported the normal melanosome distribution in Slac2-a-depleted melanocytes, indicating that Slac2-c functions as a myosin VIIa receptor rather than a myosin Va receptor in melanosome transport. Based on these findings, we propose that Slac2-c acts as a functional myosin VIIa receptor and that the Rab27A.Slac2-c x myosin VIIa tripartite protein complex regulates the transport of retinal

  16. Plasma Wakefield Acceleration of Positrons

    NASA Astrophysics Data System (ADS)

    Gessner, Spencer

    2016-03-01

    Recent particle beam and laser-driven plasma wakefield experiments have produced high-quality electron beams accelerated by a GeV or more in less than a meter. Efforts are underway to put these beams to work as sources for free-electron lasers. By contrast, little work has been done to demonstrate the tractability of plasma wakefield acceleration (PWFA) of positrons beams. The reasons for this are threefold: 1) positron beams are only useful for high-energy physics experiments, whereas electron beams are also useful as light sources, 2) there is a dearth of positron sources for PWFA experiments, and 3) the dynamics of accelerating positron beams in plasma is fundamentally different than that of electron beams. This talk will focus on the physics of accelerating positrons in plasma and contrast the dynamics of electron and positron beam-driven nonlinear plasma wakes. We describe recent experiments at the FACET test facility at SLAC National Accelerator Laboratory that for the first time demonstrate high-gradient acceleration of a positron beams in plasma. We also discuss an alternative acceleration technique called hollow channel acceleration that aims to symmetrize the dynamics of electron and positron beam-driven wakes.

  17. Environmental Survey preliminary report, Stanford Linear Accelerator Center, Stanford, California

    SciTech Connect

    Not Available

    1988-07-01

    This report presents the preliminary findings from the first phase of the Survey of the US Department of Energy (DOE) Stanford Linear Accelerator Center (SLAC) at Stanford, California, conducted February 29 through March 4, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the SLAC. The Survey covers all environmental media and all areas of environmental regulation and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the SLAC, and interviews with site personnel. The Survey team is developing a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the SLAC facility. The Interim Report will reflect the final determinations of the SLAC Survey. 95 refs., 25 figs., 25 tabs.

  18. SLAC modulator availability and impact on SLC operation

    SciTech Connect

    Donaldson, A.R.; Ashton, J.R.

    1995-05-01

    In 1991, the Stanford Linear Collider (SLC) operated, with diverse accelerator systems, at 60% availability. In the more auspicious 1992 and 1993 runs availability improved to over 80%. For the 94/95 run, the availability was also about 80%. Ignoring the eclectic-accelerator, this discussion will assess the dependence of the SLC on the reliability and hence, availability, of 244 klystron modulator systems that provide power to the machine`s bunched-particle beams. Klystron modulator availability must be 99% for the accelerator to function at the 75% level. Fortunately, an excess of modulator/klystrons provides some redundancy and, therefore, allows some freedom from the requirement that all 244 systems perform simultaneously. There are, however, 15 specific exceptions. They populate strategic positions at the injector, damping rings, and positron production area of the accelerator complex. These, systems-without-spares, directly influence overall accelerator availability. Their calculated availability as an ensemble is 90%, but by chance they have operated at up to 99%. Individually, a malfunction can bring an experimental program to a halt. The discussion includes a description of several improvements to increase future availability for the modulator system.

  19. Mass decomposition of SLACS lens galaxies in Weyl conformal gravity

    NASA Astrophysics Data System (ADS)

    Potapov, Alexander A.; Izmailov, Ramil N.; Nandi, Kamal K.

    2016-06-01

    We study here, using the Mannheim-Kazanas solution of Weyl conformal theory, the mass decomposition in the representative subsample of 57 early-type elliptical lens galaxies of the Sloan Lens Advanced Camera for Surveys (SLACS) on board the Hubble Space Telescope. We begin by showing that the solution need not be an exclusive solution of conformal gravity but can also be viewed as a solution of a class of f (R ) gravity theories coupled to nonlinear electrodynamics thereby rendering the ensuing results more universal. Since lensing involves light bending, we shall first show that the solution adds to Schwarzschild light bending caused by the luminous mass (M*) a positive contribution +γ R contrary to the previous results in the literature, thereby resolving a long-standing problem. The cause of the error is critically examined. Next, applying the expressions for light bending together with an input equating Einstein and Weyl angles, we develop a novel algorithm for separating the luminous component from the total lens mass (luminous+dark ) within the Einstein radius. Our results indicate that the luminous mass estimates differ from the observed total lens masses by a linear proportionality factor across the subsample, which qualitatively agrees with the common conclusion from a number of different simulations in the literature. In quantitative detail, we observe that the ratios of luminous over total lens mass (f*) within the Einstein radius of individual galaxies take on values near unity, many of which remarkably fall inside or just marginally outside the specified error bars obtained from a simulation based on the Bruzual-Charlot stellar population synthesis model together with the Salpeter initial mass function favored on the ground of metallicity [Grillo et al., Astron. Astrophys. 501, 461 (2009)]. We shall also calculate the average dark matter density ⟨ρ⟩ av of individual galaxies within their respective Einstein spheres. To our knowledge, the present

  20. Centres of excellence.

    PubMed

    Watson, J M

    1980-05-16

    The present Government may not be enthusiastic about health centres. But Dr Joyce M. Watson, of Glasgow University Department of General Practice and based at Woodside Health Centre in Glasgow, writes with enthusiasm of their advantages for the practice of medicine and the care of patients. PMID:10247174

  1. Initial Testing of the Mark-0 X-Band RF Gun at SLAC

    SciTech Connect

    Vlieks, Arnold; Adolphsen, C.; Dolgashev, V.; Lewandowski, J.; Limborg, Cecile; Weathersby, S.; /SLAC

    2012-06-06

    A new X-band RF gun (Mark-0) has been assembled, tuned and was tested in the ASTA facility at SLAC. This gun has been improved from an earlier gun used in Compton-scattering experiments at SLAC by the introduction of a racetrack dual-input coupler to reduce quadrupole fields. Waveguide-to-coupler irises were also redesigned to reduce surface magnetic fields and therefore peak pulse surface heating. Tests of this photocathode gun will allow us to gain early operational experience for beam tests of a new gun with further improvements (Mark-1) being prepared for SLAC's X-Band Test Area (XTA) program and the LLNL MEGa-ray program. Results of current testing up to {approx} 200 MV/m peak surface Electric fields are presented.

  2. Laser-and Beam-Driven Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Joshi, Chandrashekhar

    2006-10-01

    Scientists have been trying to use the tremendous electric fields in relativistic plasma waves to accelerate charged particles, and are now making substantial progress. If they succeed, future high energy accelerators will use plasma waves rather than microwave cavities as accelerating structures.Some accelerators, such as those used for radiation therapy will fit on a tabletop. Research on using plasma waves to accelerate particles began in earnest following the suggestion by John Dawson and his colleagues [1-3] that a relativistically propagating plasma wave or a wake field could be excited by using a powerful but short laser -or electron -beam as a driver pulse.Since their original suggestion the research on plasma --based accelerators has spread worldwide A series of experiments by the UCLA/USC/SLAC collaboration ,using the 30 GeV beam of the Stanford Linear Accelerator Center (SLAC), has demonstrated high-gradient acceleration of electrons and positrons using the the wake left by the SLAC beam as it passes through a lithium plasma. Electrons have been accelerated by more than 30 GeV in less than one meter. This acceleration gradient is about a thousand times larger than in conventional microwave-driven accelerators. It is a first step toward a ``plasma afterburner,'' which would be placed at the end of a kilometers-long conventional accelerator and double its beam energy in a few tens of meters. In addition to the acceleration of particle beams, these experiments have demonstrated the rich physics bounty to be reaped from relativistic beam-plasma interactions. This includes the generation of intense and narrowly collimated x-ray beams, refraction of particles at a plasma interface, and the creation of intense beams of positrons. These results are leading the way to similar tabletop accelerators based on plasma wakes excited by lasers rather than electron beams. Applications for tabletop accelerators include gamma radiography, radiation therapy, and ultra

  3. Electroweak Radiative Corrections to the Parity-violating Asymmetry for SLAC Experiment E158

    SciTech Connect

    Zykunov, Vladimir A.; /Gomel State Tech. U.

    2012-04-04

    Electroweak radiative corrections to observable quantities of Moeller scattering of polarized particles are calculated. We emphasize the contribution induced by infrared divergent parts of cross section. The covariant method is used to remove infrared divergences, so that our results do not involve any unphysical parameters. When applied to the kinematics of SLAC E158 experiment, these corrections reduce the parity violating asymmetry by about -6.5% at E = 48 GeV and y = 0.5, and kinematically weighted 'hard' bremsstrahlung effect for SLAC E158 is {approx} 1%.

  4. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    SciTech Connect

    Byer, Robert L.

    2013-11-07

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  5. Archimedes: Accelerator Reveals Ancient Text

    SciTech Connect

    Bergmann, Uwe

    2004-02-24

    Archimedes (287-212 BC), who is famous for shouting 'Eureka' (I found it) is considered one of the most brilliant thinkers of all times. The 10th-century parchment document known as the 'Archimedes Palimpsest' is the unique source for two of the great Greek's treatises. Some of the writings, hidden under gold forgeries, have recently been revealed at the Stanford Synchrotron Radiation Laboratory at SLAC. An intense x-ray beam produced in a particle accelerator causes the iron in original ink, which has been partly erased and covered, to send out a fluorescence glow. A detector records the signal and a digital image showing the ancient writings is produced. Please join us in this fascinating journey of a 1,000-year-old parchment from its origin in the Mediterranean city of Constantinople to a particle accelerator in Menlo Park.

  6. Elementary principles of linear accelerators

    SciTech Connect

    Loew, G.A.; Talman, R.

    1983-09-01

    These lectures come in five sections. The first is this introduction. The second is a short chronology of what are viewed as important milestones in the field. The third covers proton linacs. It introduces elementary concepts such as transit time, shunt impedance, and Q. Critical issues such as phase stability and transverse forces are discussed. The fourth section contains an elementary discussion of waveguide accelerating structures. It can be regarded as an introduction to some of the more advanced treatments of the subject. The final section is devoted to electron accelerators. Taking SLAC as an example, various topics are discussed such as structure design, choice of parameters, frequency optimization, beam current, emittance, bunch length and beam loading. Recent developments and future challenges are mentioned briefly. 41 figures, 4 tables.

  7. Nuclear Science Centre, New Delhi

    SciTech Connect

    Mehta, G.; Potukuchi, P.; Roy, A.

    1995-08-01

    Argonne is collaborating with the Nuclear Science Centre (NSC), New Delhi, to develop a new type of superconducting accelerating structure for low-velocity heavy ions. A copper model has been evaluated and tests on the niobium prototype are currently in progress. Some technical details of this project are described in the Superconducting Linac Development section of this report. All funding for the prototype has come from the NSC, and they have also stationed two staff members at ATLAS for the past two years to gain experience and work on this project. Additional NSC personnel visited ATLAS for extended periods during 1994 for electronics and cryogenics experience and training. Two NSC staff members are scheduled to spend several months at ANL during 1995 to continue tests and developments of the prototype resonators and to initiate fabrication of the production models for their linac project.

  8. Pretoria Centre Reaches Out

    NASA Astrophysics Data System (ADS)

    Bosman, Olivier

    2014-08-01

    On 5 July 2014 six members of the Pretoria Centre of ASSA braved the light pollution of one of the shopping malls in Centurion to reach out to shoppers a la John Dobson and to show them the moon, Mars and Saturn. Although the centre hosts regular monthly public observing evenings, it was felt that we should take astronomy to the people rather than wait for the people to come to us.

  9. dE/dx electronics for MARK II experiment at SLAC

    SciTech Connect

    Bernstein, D.; Boyarski, A.; Coupal, D.; Feldman, G.; Paffrath, L.

    1985-10-01

    This paper describes a 100 MHz pulse digitizer for dE/dx measurements on the MARK II drift chamber at SLAC. The electronics provides the read-out of the detector's 5832 sense based on a 16-channel FASTBUS module. The basic element of the module is the TRW 6-bit Flash-ADC.

  10. Coil-winding fixture for SLAC's Mark III detector (Engineering Materials)

    SciTech Connect

    Not Available

    1980-01-01

    The two drawings listed provide the construction information for the modification to a previously-used coil form. The second drawing provides the information for construction of the form's drive sprocket. This basic form and drive mechanism with appropriate modifications was used to wind coils for the Mark II, Mark III and TPC experiment magnets as used at SLAC.

  11. A user's guide to particle physics computer-searchable databases on the SLAC-SPIRES system

    SciTech Connect

    Rittenberg, A.; Armstrong, F.E.; Levine, B.S.; Trippe, T.G.; Wohl, C.G.; Yost, G.P.; Whalley, M.R.; Addis, L.

    1986-09-01

    This report discusses five computer-searchable databases located at SLAC which are of interest to particle physicists. These databases assist the user in literature-searching, provide numerical data extracted from papers, and contain information about experiments. We describe the databases briefly, tell how to use the SPIRES database management system to access them interactively, and give several examples of their use.

  12. Design of the detuned accelerator structure

    SciTech Connect

    Wang, J.W.; Nelson, E.M.

    1993-05-01

    This is a summary of the design procedure for the detuned accelerator structure for SLAC`s Next Linear Collider (NLC) program. The 11.424 GHz accelerating mode of each cavity must be synchronous with the beam. The distribution of the disk thicknesses and lowest synchronous dipole mode frequencies of the cavities in the structure is Gaussian in order to reduce the effect of wake fields. The finite element field solver YAP calculated the accelerating mode frequency and the lowest synchronous dipole mode frequency for various cavity diameters, aperture diameters and disk thicknesses. Polynomial 3-parameter fits are used to calculate the dimensions for a 1.8 m detuned structure. The program SUPERFISH was used to calculate the shunt impedances, quality factors and group velocities. The RF parameters of the section like filling time, attenuation factor, accelerating gradient and maximum surface field along the section are evaluated. Error estimates will be discussed and comparisons with conventional constant gradient and constant impedance structures will be presented.

  13. Molecular Evolution of Slow and Quick Anion Channels (SLACs and QUACs/ALMTs)

    PubMed Central

    Dreyer, Ingo; Gomez-Porras, Judith Lucia; Riaño-Pachón, Diego Mauricio; Hedrich, Rainer; Geiger, Dietmar

    2012-01-01

    Electrophysiological analyses conducted about 25 years ago detected two types of anion channels in the plasma membrane of guard cells. One type of channel responds slowly to changes in membrane voltage while the other responds quickly. Consequently, they were named SLAC, for SLow Anion Channel, and QUAC, for QUick Anion Channel. Recently, genes SLAC1 and QUAC1/ALMT12, underlying the two different anion current components, could be identified in the model plant Arabidopsis thaliana. Expression of the gene products in Xenopus oocytes confirmed the quick and slow current kinetics. In this study we provide an overview on our current knowledge on slow and quick anion channels in plants and analyze the molecular evolution of ALMT/QUAC-like and SLAC-like channels. We discovered fingerprints that allow screening databases for these channel types and were able to identify 192 (177 non-redundant) SLAC-like and 422 (402 non-redundant) ALMT/QUAC-like proteins in the fully sequenced genomes of 32 plant species. Phylogenetic analyses provided new insights into the molecular evolution of these channel types. We also combined sequence alignment and clustering with predictions of protein features, leading to the identification of known conserved phosphorylation sites in SLAC1-like channels along with potential sites that have not been yet experimentally confirmed. Using a similar strategy to analyze the hydropathicity of ALMT/QUAC-like channels, we propose a modified topology with additional transmembrane regions that integrates structure and function of these membrane proteins. Our results suggest that cross-referencing phylogenetic analyses with position-specific protein properties and functional data could be a very powerful tool for genome research approaches in general. PMID:23226151

  14. The development of seismic guidelines for the Stanford Linear Accelerator Center

    SciTech Connect

    Huggins, R.

    1996-08-01

    This paper describes the development of Seismic Guidelines for the Stanford Linear Accelerator Center (SLAC). Although structures have always been built conservatively, SLAC management decided to review and update their seismic guidelines. SLAC is about mid-way between the epicenters of the 8.3 Richter magnitude 1906 San Francisco and the 7.2 Loma Prieta Earthquakes. The west end of the two mile long electron/positron particle accelerator lies a half mile from the large San Andreas Fault. Suggestions for seismic planning processes were solicited from local computer manufacturing firms, universities, and federal laboratories. A Committee of the various stakeholders in SLAC`s seismic planning retained an internationally known Seismic Planning Consultant and reviewed relevant standards and drafted Guidelines. A panel of seismic experts was convened to help define the hazard, site response spectra, probabilistic analysis of shaking, and near field effects. The Facility`s structures were assigned to seismic classes of importance, and an initial assessment of a sample of a dozen buildings conducted. This assessment resulted in emergency repairs to one structure, and provided a {open_quotes}reality basis{close_quotes} for establishing the final Guidelines and Administrative Procedures, and a program to evaluate remaining buildings, shielding walls, tunnels, and other special structures.

  15. High transformer ratio drive beams for wakefield accelerator studies

    SciTech Connect

    England, R. J.; Ng, C.-K.; Frederico, J.; Hogan, M. J.; Litos, M.; Muggli, P.; Joshi, C.; An, W.; Andonian, G.; Mori, W.; Lu, W.

    2012-12-21

    For wakefield based acceleration schemes, use of an asymmetric (or linearly ramped) drive bunch current profile has been predicted to enhance the transformer ratio and generate large accelerating wakes. We discuss plans and initial results for producing such bunches using the 20 to 23 GeV electron beam at the FACET facility at SLAC National Accelerator Laboratory and sending them through plasmas and dielectric tubes to generate transformer ratios greater than 2 (the limit for symmetric bunches). The scheme proposed utilizes the final FACET chicane compressor and transverse collimation to shape the longitudinal phase space of the beam.

  16. Plasma Dark Current in Self-Ionized Plasma Wakefield Accelerators

    SciTech Connect

    Oz, E.; Deng, S.; Katsouleas, T.; Muggli, P.; Iverson, R.; Johnson, D.K.; Krejcik, P.; O'Connell, C.; Siemann, R.H.; Walz, D.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA

    2006-01-30

    Evidence of particle trapping has been observed in a beam driven Plasma Wake Field Accelerator (PWFA) experiment, E164X, conducted at the Stanford Linear Accelerator Center by a collaboration which includes USC, UCLA and SLAC. Such trapping produces plasma dark current when the wakefield amplitude is above a threshold value and may place a limit on the maximum acceleration gradient in a PWFA. Trapping and dark current are enhanced when in an ionizing plasma, that is self-ionized by the beam. Here we present experimental results.

  17. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  18. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  19. Lidar Calibration Centre

    NASA Astrophysics Data System (ADS)

    Pappalardo, Gelsomina; Freudenthaler, Volker; Nicolae, Doina; Mona, Lucia; Belegante, Livio; D'Amico, Giuseppe

    2016-06-01

    This paper presents the newly established Lidar Calibration Centre, a distributed infrastructure in Europe, whose goal is to offer services for complete characterization and calibration of lidars and ceilometers. Mobile reference lidars, laboratories for testing and characterization of optics and electronics, facilities for inspection and debugging of instruments, as well as for training in good practices are open to users from the scientific community, operational services and private sector. The Lidar Calibration Centre offers support for trans-national access through the EC HORIZON2020 project ACTRIS-2.

  20. Implementing Responsibility Centre Budgeting

    ERIC Educational Resources Information Center

    Vonasek, Joseph

    2011-01-01

    Recently, institutes of higher education (universities) have shown a renewed interest in organisational structures and operating methodologies that generate productivity and innovation; responsibility centre budgeting (RCB) is one such process. This paper describes the underlying principles constituting RCB, its origin and structural elements, and…

  1. Maple Leaf Outdoor Centre.

    ERIC Educational Resources Information Center

    Maguire, Molly; Gunton, Ric

    2000-01-01

    Maple Leaf Outdoor Centre (Ontario) has added year-round outdoor education facilities and programs to help support its summer camp for disadvantaged children. Schools, youth centers, religious groups, and athletic teams conduct their own programs, collaborate with staff, or use staff-developed programs emphasizing adventure education and personal…

  2. Winnipeg Centre Project.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education, Winnipeg.

    The Winnipeg Centre Project is a field-based, work-study program that attempts to create more appropriate education for the inner-city child. Sponsored by the Planning and Research Branch of the Department of Colleges and Universities Affairs and administered by Brandon University in consultation with the Winnipeg School Division, the project is…

  3. The GSO Data Centre

    NASA Astrophysics Data System (ADS)

    Paletou, F.; Glorian, J.-M.; Génot, V.; Rouillard, A.; Petit, P.; Palacios, A.; Caux, E.; Wakelam, V.

    2015-12-01

    Hereafter we describe the activities of the Grand Sud-Ouest Data Centre operated for INSU (CNRS) by the OMP--IRAP and the Université Paul Sabatier in Toulouse, in a collaboration with the OASU--LAB in Bordeaux and OREME--LUPM in Montpellier.

  4. Wycheproof Education Centre.

    ERIC Educational Resources Information Center

    Sweetnam and Godfrey, Melbourne (Australia).

    The Wycheproof township in New South Wales (Australia) is the regional center for a grain farming community. The Wycheproof Education Centre was formed by the merger of a separate primary and secondary school (on one site with existing buildings), into a single governing body that is educationally structured into junior, middle, and senior…

  5. Measurement of the Decelerating Wake in a Plasma Wakefield Accelerator

    SciTech Connect

    Blumenfeld, I.; Decker, F. J.; Hogan, M. J.; Ischebeck, R.; Iverson, R. H.; Kirby, N.; Siemann, R. H.; Walz, D. R.; Clayton, C. E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W. B.; Zhou, M.; Katsouleas, T.; Muggli, P.; Oz, E.

    2009-01-22

    Recent experiments at SLAC have shown that high gradient acceleration of electrons is achievable in meter scale plasmas. Results from these experiments show that the wakefield is sensitive to parameters in the electron beam which drives it. In the experiment the bunch lengths were varied systematically at constant charge. The effort to extract a measurement of the decelerating wake from the maximum energy loss of the electron beam is discussed.

  6. Energy Measurements of Trapped Electrons from a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, Neal; Auerbach, David; Berry, Melissa; Blumenfeld, Ian; Clayton, Christopher E.; Decer, Franz-Josef; Hogan, Mark J.; Huang, Chengkun; Ischebeck, Rasmus; Iverson, Richard; Johnson, Devon; Joshi, Chadrashekhar; Katsouleas, Thomas; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Muggli, Patric; Oz, Erdem; Siemann, Robert H.; Walz, Dieter; Zhou, Miaomiao; /SLAC /UCLA /Southern California U.

    2007-01-03

    Recent electron beam driven plasma wakefield accelerator experiments carried out at SLAC indicate trapping of plasma electrons. More charge came out of than went into the plasma. Most of this extra charge had energies at or below the 10 MeV level. In addition, there were trapped electron streaks that extended from a few GeV to tens of GeV, and there were mono-energetic trapped electron bunches with tens of GeV in energy.

  7. Experimental Results from a Resonant Dielectric Laser Accelerator

    NASA Astrophysics Data System (ADS)

    Yoder, Rodney; McNeur, Joshua; Sozer, Esin; Travish, Gil; Hazra, Kiran Shankar; Matthews, Brian; England, Joel; Peralta, Edgar; Wu, Ziran

    2015-04-01

    Laser-powered accelerators have the potential to operate with very large accelerating gradients (~ GV/m) and represent a path toward extremely compact colliders and accelerator technology. Optical-scale laser-powered devices based on field-shaping structures (known as dielectric laser accelerators, or DLAs) have been described and demonstrated recently. Here we report on the first experimental results from the Micro-Accelerator Platform (MAP), a DLA based on a slab-symmetric resonant optical-scale structure. As a resonant (rather than near-field) device, the MAP is distinct from other DLAs. Its cavity resonance enhances its accelerating field relative to the incoming laser fields, which are coupled efficiently through a diffractive optic on the upper face of the device. The MAP demonstrated modest accelerating gradients in recent experiments, in which it was powered by a Ti:Sapphire laser well below its breakdown limit. More detailed results and some implications for future developments will be discussed. Supported in part by the U.S. Defense Threat Reduction Agency (UCLA); U.S. Dept of Energy (SLAC); and DARPA (SLAC).

  8. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  9. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  10. Direct measurements of Ab and Ac using vertex and kaon charge tags at the SLAC detector.

    PubMed

    Abe, Koya; Abe, Kenji; Abe, T; Adam, I; Akimoto, H; Aston, D; Baird, K G; Baltay, C; Band, H R; Barklow, T L; Bauer, J M; Bellodi, G; Berger, R; Blaylock, G; Bogart, J R; Bower, G R; Brau, J E; Breidenbach, M; Bugg, W M; Burke, D; Burnett, T H; Burrows, P N; Calcaterra, A; Cassell, R; Chou, A; Cohn, H O; Coller, J A; Convery, M R; Cook, V; Cowan, R F; Crawford, G; Damerell, C J S; Daoudi, M; Dasu, S; de Groot, N; de Sangro, R; Dong, D N; Doser, M; Dubois, R; Erofeeva, I; Eschenburg, V; Etzion, E; Fahey, S; Falciai, D; Fernandez, J P; Flood, K; Frey, R; Hart, E L; Hasuko, K; Hertzbach, S S; Huffer, M E; Huynh, X; Iwasaki, M; Jackson, D J; Jacques, P; Jaros, J A; Jiang, Z Y; Johnson, A S; Johnson, J R; Kajikawa, R; Kalelkar, M; Kang, H J; Kofler, R R; Kroeger, R S; Langston, M; Leith, D W G; Lia, V; Lin, C; Mancinelli, G; Manly, S; Mantovani, G; Markiewicz, T W; Maruyama, T; McKemey, A K; Messner, R; Moffeit, K C; Moore, T B; Morii, M; Muller, D; Murzin, V; Narita, S; Nauenberg, U; Neal, H; Nesom, G; Oishi, N; Onoprienko, D; Osborne, L S; Panvini, R S; Park, C H; Peruzzi, I; Piccolo, M; Piemontese, L; Plano, R J; Prepost, R; Prescott, C Y; Ratcliff, B N; Reidy, J; Reinertsen, P L; Rochester, L S; Rowson, P C; Russell, J J; Saxton, O H; Schalk, T; Schumm, B A; Schwiening, J; Serbo, V V; Shapiro, G; Sinev, N B; Snyder, J A; Staengle, H; Stahl, A; Stamer, P; Steiner, H; Su, D; Suekane, F; Sugiyama, A; Suzuki, A; Swartz, M; Taylor, F E; Thom, J; Torrence, E; Usher, T; Va'vra, J; Verdier, R; Wagner, D L; Waite, A P; Walston, S; Weidemann, A W; Weiss, E R; Whitaker, J S; Williams, S H; Willocq, S; Wilson, R J; Wisniewski, W J; Wittlin, J L; Woods, M; Wright, T R; Yamamoto, R K; Yashima, J; Yellin, S J; Young, C C; Yuta, H

    2005-03-11

    Exploiting the manipulation of the SLAC Linear Collider electron-beam polarization, we present precise direct measurements of the parity-violation parameters A(c) and A(b) in the Z-boson-c-quark and Z-boson-b-quark coupling. Quark-antiquark discrimination is accomplished via a unique algorithm that takes advantage of the precise SLAC Large Detector charge coupled device vertex detector, employing the net charge of displaced vertices as well as the charge of kaons that emanate from those vertices. From the 1996-1998 sample of 400 000 Z decays, produced with an average beam polarization of 73.4%, we find A(c)=0.673+/-0.029(stat)+/-0.023(syst) and A(b)=0.919+/-0.018(stat)+/-0.017(syst). PMID:15783953

  11. Longitudinal Wakefield Study in SLAC Rotatable Collimator Design for the LHC Phase II Upgrade

    SciTech Connect

    Xiao, Liling; Lundgren, Steven; Markiewicz, Thomas; Ng, Cho-Kuen; Smith, Jeffrey; /SLAC

    2010-08-25

    SLAC proposed a rotatable collimator design for the LHC Phase II collimation upgrade. There are 20 facet faces on each cylindrical jaw surface and two jaws are rotatable in order to introduce a clean surface in case of a beam hitting a jaw during operation. When the beam crosses the collimator, it will excite broad-band and narrow-band modes. The longitudinal modes can contribute to beam energy loss and power dissipation on the vacuum chamber wall. In this paper, the parallel finite element eigensolver Omega3P is used to search for all the longitudinal trapped modes in the SLAC collimator design. The power dissipation generated by the beam in collimators with different vacuum chamber and RF contact designs is discussed. It is found that a wider RF foil connecting the jaw and the vacuum flange can reduce efficiently the beam heating caused by the longitudinal modes.

  12. Final Report: BaBar Detector and Experimental at SLAC, September 30, 1998 - September 29, 1999

    SciTech Connect

    Judd, Dennis J.

    2000-01-20

    The Prairie View A&M University High Energy Physics Group with its contingent of three undergraduates physics majors, joined the BaBar Collaboration at SLAC in September 1994. BaBar is the experiment and detector running in the PEP-II ring at SLAC as part of the Asymmetric B Factory project there to study CP violation and heavy flavor physics. The focus of our effort before this year was with the Muon/Neutral Hadron Detector/Instrumented Flux Return (IFD) subgroup within the BaBar collaboration, and particularly with the GEANT simulation of the IFR. With the GEANT3 simulation essentially frozen, and the GEANT4 full simulation of the IFR done, we have decided to redirect our efforts toward other areas.

  13. Lattice design and optimization for the PEP-X ultra low emittance storage ring at SLAC

    SciTech Connect

    Wang, Min-Huey; Nosochkov, Yuri; Bane, Karl; Cai, Yunhai; Hettel, Robert; Huang, Xiaobiao; /SLAC

    2011-08-12

    SLAC is developing a long-range plan to transfer the evolving scientific programs at SSRL from the SPEAR3 light source to a much higher performing photon source. One of the possibilities is a new PEP-X 4.5 GeV storage ring that would be housed in the 2.2 km PEP-II tunnel. The PEP-X is designed to produce photon beams having brightness near 10{sup 22} (ph/s/mm{sup 2}/mrad{sup 2}/0.1% BW) at 10 keV with 3.5 m undulator at beam current of 1.5 A. This report presents an overview of the PEP-X baseline lattice design and describes the lattice optimization procedures in order to maximize the beam dynamic aperture. The complete report of PEP-X baseline design is published in SLAC report.

  14. A portable accelerator control toolkit

    SciTech Connect

    Watson, W.A. III

    1997-06-01

    In recent years, the expense of creating good control software has led to a number of collaborative efforts among laboratories to share this cost. The EPICS collaboration is a particularly successful example of this trend. More recently another collaborative effort has addressed the need for sophisticated high level software, including model driven accelerator controls. This work builds upon the CDEV (Common DEVice) software framework, which provides a generic abstraction of a control system, and maps that abstraction onto a number of site-specific control systems including EPICS, the SLAC control system, CERN/PS and others. In principle, it is now possible to create portable accelerator control applications which have no knowledge of the underlying and site-specific control system. Applications based on CDEV now provide a growing suite of tools for accelerator operations, including general purpose displays, an on-line accelerator model, beamline steering, machine status displays incorporating both hardware and model information (such as beam positions overlaid with beta functions) and more. A survey of CDEV compatible portable applications will be presented, as well as plans for future development.

  15. Nucleon resonance electroproduction at high momentum transers: Results from SLAC and suggestions for CEBAF

    SciTech Connect

    Keppel, C.

    1994-04-01

    Nucleon resonance electroproduction results from SLAC Experiment E14OX are presented. A CEBAF facility with doubled energy would enable similar high momentum transfer measurements to be made with greater accuracy. Of particular interest are the Delta P{sub 33}(1232) resonance form factor and R = {sigma}{sub L}/{sigma}{sub T}, the ratio of the longitudinal and transverse components of the cross section. A suggestion is made to study these quantities in conjunction with Bloom-Gilman duality.

  16. Relativistic klystrons for high-gradient accelerators

    SciTech Connect

    Westenskow, G.A.; Aalberts, D.P.; Boyd, J.K.; Deis, G.A.; Houck, T.L.; Orzechowski, T.J.; Ryne, R.D.; Yu, S.S. ); Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Miller, R.H.; Ruth, R.D.; Vlieks, A.E.; Wang, J.W. ); Haimson, J.; Mecklen

    1990-09-05

    Experimental work is being performed by collaborators at LLNL, SLAC, and LBL to investigate relativistic klystrons as a possible rf power source for future high-gradient accelerators. We have learned how to overcome or previously reported problem of high power rf pulse shortening and have achieved peak rf power levels of 330 MW using an 11.4-GHz high-gain tube with multiple output structures. In these experiments the rf pulse is of the same duration as the beam current pulse. In addition, experiments have been performed on two short sections of a high-gradient accelerator using the rf power from a relativistic klystron. An average accelerating gradient of 84 MV/m has been achieved with 80-MW of rf power.

  17. SPOT4 Management Centre

    NASA Technical Reports Server (NTRS)

    Labrune, Yves; Labbe, X.; Roussel, A.; Vielcanet, P.

    1994-01-01

    In the context of the CNES SPOT4 program CISI is particularly responsible for the development of the SPOT4 Management Centre, part of the SPOT4 ground control system located at CNES Toulouse (France) designed to provide simultaneous control over two satellites. The main operational activities are timed to synchronize with satellite visibilities (ten usable passes per day). The automatic capability of this system is achieved through agenda services (sequence of operations as defined and planned by operator). Therefore, the SPOT4 Management Centre offers limited, efficient and secure human interventions for supervision and decision making. This paper emphasizes the main system characteristics as degree of automation, level of dependability and system parameterization.

  18. Elderly Care Centre

    NASA Astrophysics Data System (ADS)

    Wagiman, Aliani; Haja Bava Mohidin, Hazrina; Ismail, Alice Sabrina

    2016-02-01

    The demand for elderly centre has increased tremendously abreast with the world demographic change as the number of senior citizens rose in the 21st century. This has become one of the most crucial problems of today's era. As the world progress into modernity, more and more people are occupied with daily work causing the senior citizens to lose the care that they actually need. This paper seeks to elucidate the best possible design of an elderly care centre with new approach in order to provide the best service for them by analysing their needs and suitable activities that could elevate their quality of life. All these findings will then be incorporated into design solutions so as to enhance the living environment for the elderly especially in Malaysian context.

  19. SPOT4 Management Centre

    NASA Astrophysics Data System (ADS)

    Labrune, Yves; Labbe, X.; Roussel, A.; Vielcanet, P.

    1994-11-01

    In the context of the CNES SPOT4 program CISI is particularly responsible for the development of the SPOT4 Management Centre, part of the SPOT4 ground control system located at CNES Toulouse (France) designed to provide simultaneous control over two satellites. The main operational activities are timed to synchronize with satellite visibilities (ten usable passes per day). The automatic capability of this system is achieved through agenda services (sequence of operations as defined and planned by operator). Therefore, the SPOT4 Management Centre offers limited, efficient and secure human interventions for supervision and decision making. This paper emphasizes the main system characteristics as degree of automation, level of dependability and system parameterization.

  20. Anomalous electron loading in SLAC 5045 klystron and relativistic klystron input cavities

    SciTech Connect

    Koontz, R.F.; Fowkes, R.W.; Lavine, T.L.; Miller, R.H.; Vlieks, A.E.

    1989-03-01

    Recent studies of RF breakup and instability in the SLAC 5045 klystrons have revealed that many production klystrons show loading of the input cavity by low energy electrons even under cold cathode no beam conditions. Sometime after the onset of the RF drive pulse, the input cavity absorbs a portion of the incident RF drive that would otherwise be reflected from the not-beam-loaded cavity. This power absorption is a function of drive level, and of axial magnetic field surrounding the cavity. No power absorption is present when the axial magnetic field is zero. This same phenomenon has been observed in the input cavity of relativistic klystron experiments being conducted as part of the SLAC-LBL-LLNL development program. The phenomenon may be associated with RF breakup and RF instability in SLAC 5045 klystrons, and with unstable pulse shortening in the relativistic klystron experiments. This paper outlines some old and new observations of microwave beam device malfunctions that probably are associated with low energy electron fluxes in the vacuum environments of microwave power devices. 2 refs., 5 figs.

  1. Technological Issues and High Gradient Test Results on X-Band Molybdenum Accelerating Structures

    SciTech Connect

    Spataro, B.; Alesini, D.; Chimenti, V.; Dolgashev, V.; Haase, A.; Tantawi, S.G.; Higashi, Y.; Marrelli, C.; Mostacci, A.; Parodi, R.; Yeremian, A.D.; /SLAC

    2012-04-24

    Two 11.424 GHz single cell standing wave accelerating structures have been fabricated for high gradient RF breakdown studies. Both are brazed structures: one made from copper and the other from sintered molybdenum bulk. The tests results are presented and compared to those of similar devices constructed at SLAC (Stanford Linear Accelerator Center) and KEK (Ko Enerugi Kasokuki Kenkyu Kiko). The technological issues to build both sections are discussed.

  2. Can Chemistry Teachers' Centres Survive?

    ERIC Educational Resources Information Center

    Garforth, F. M.

    1972-01-01

    The difficulties faced by the Hull Chemistry Teachers' Centre in England are discussed. The lack of finances and time, as well as organizational difficulties in relationship with Science Centres and universities are among the problems. (TS)

  3. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    NASA Astrophysics Data System (ADS)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  4. Germline Mutation in EXPH5 Implicates the Rab27B Effector Protein Slac2-b in Inherited Skin Fragility

    PubMed Central

    McGrath, John A.; Stone, Kristina L.; Begum, Rumena; Simpson, Michael A.; Dopping-Hepenstal, Patricia J.; Liu, Lu; McMillan, James R.; South, Andrew P.; Pourreyron, Celine; McLean, W.H. Irwin; Martinez, Anna E.; Mellerio, Jemima E.; Parsons, Maddy

    2012-01-01

    The Rab GTPase Rab27B and one of its effector proteins, Slac2-b (also known as EXPH5, exophilin-5), have putative roles in intracellular vesicle trafficking but their relevance to human disease is not known. By using whole-exome sequencing, we identified a homozygous frameshift mutation in EXPH5 in three siblings with inherited skin fragility born to consanguineous Iraqi parents. All three individuals harbor the mutation c.5786delC (p.Pro1929Leufs∗8) in EXPH5, which truncates the 1,989 amino acid Slac2-b protein by 52 residues. The clinical features comprised generalized scale-crusts and occasional blisters, mostly induced by trauma, as well as mild diffuse pigmentary mottling on the trunk and proximal limbs. There was no increased bleeding tendency, no neurologic abnormalities, and no increased incidence of infection. Analysis of an affected person's skin showed loss of Slac2-b immunostaining (C-terminal antibody), disruption of keratinocyte adhesion within the lower epidermis, and an increased number of perinuclear vesicles. A role for Slac2-b in keratinocyte biology was supported by findings of cytoskeletal disruption (mainly keratin intermediate filaments) and decreased keratinocyte adhesion in both keratinocytes from an affected subject and after shRNA knockdown of Slac2-b in normal keratinocytes. Slac2-b was also shown to colocalize with Rab27B and β4 integrin to early adhesion initiation sites in spreading normal keratinocytes. Collectively, our findings identify an unexpected role for Slac2-b in inherited skin fragility and expand the clinical spectrum of human disorders of GTPase effector proteins. PMID:23176819

  5. Plasma accelerators

    SciTech Connect

    Ruth, R.D.; Chen, P.

    1986-03-01

    In this paper we discuss plasma accelerators which might provide high gradient accelerating fields suitable for TeV linear colliders. In particular we discuss two types of plasma accelerators which have been proposed, the Plasma Beat Wave Accelerator and the Plasma Wake Field Accelerator. We show that the electric fields in the plasma for both schemes are very similar, and thus the dynamics of the driven beams are very similar. The differences appear in the parameters associated with the driving beams. In particular to obtain a given accelerating gradient, the Plasma Wake Field Accelerator has a higher efficiency and a lower total energy for the driving beam. Finally, we show for the Plasma Wake Field Accelerator that one can accelerate high quality low emittance beams and, in principle, obtain efficiencies and energy spreads comparable to those obtained with conventional techniques.

  6. Search for neutral, penetrating, metastable particles produced in the SLAC beam dump

    SciTech Connect

    Bjorken, J.

    1984-03-01

    A search was made for neutral objects which might be produced by 20 GeV electrons incident on the SLAC beam dump, penetrate the downstream natural shielding, and decay upstream of an electromagnetic shower calorimeter. With about 30 coulombs of electrons dumped, no candidate events were found above an energy of approx. 2 GeV. Preliminary analysis implies the 95% confidence level limit on the product of mass and lifetime of light axion-like bosons decaying primarily into two photons to be greater than 0.8 keV-sec. Preliminary limits on photino parameters are also given.

  7. Requirements for use of nonmedical x-ray generators at SLAC

    SciTech Connect

    Busick, D.D.

    1984-09-01

    The risks associated with use of x-ray equipment have long been recognized. While the relative frequency of x-ray damage is small, machine produced x-rays and large radiography sources continue to account for a large percentage of preventable radiation injuries reported worldwide. The intent of this report is to formalize SLAC's radiation safety program as it applies to radiation producing equipment (diffraction, fluorescence analysis and nondestructive testing). It does not apply to the two-mile linac, experimental areas or other x-ray producing equipment directly related to the high energy physics program. 4 refs., 3 figs., 1 tab.

  8. A 4 to 0.1 nm FEL Based on the SLAC Linac

    SciTech Connect

    Pellegrini, C.; /UCLA

    2012-06-05

    The author show that using existing electron gun technology and a high energy linac like the one at SLAC, it is possible to build a Free Electron Laser operating around the 4 nm water window. A modest improvement in the gun performance would further allow to extend the FEL to the 0.1 nm region. Such a system would produce radiation with a brightness many order of magnitude above that of any synchrotron radiation source, existing or under construction, with laser power in the multigawatt region and subpicosecond pulse length.

  9. [The primary healthcare centres].

    PubMed

    Brambilla, Antonio; Maciocco, Gavino

    2014-04-01

    The central attributes of primary care are: first contact (accessibility), longitudinality (person- focused preventive and curative care overtime), patient-oriented comprehensiveness and coordination (including navigation towards secondary and tertiary care). Besides taking care of the needs of the individuals, primary health care teams are also looking at the community, especially when addressing social determinants of health. The rationale for the benefits for primary care for health has been found in: 1) greater access to needed services; 2) better quality of care; 3) a greater focus on prevention; 4) early management of health problems; 5) organizing and delivering high quality care for chronic non-communicable diseases. This paper describes the role of primary healthcare centres in strengthening community primary services and in reducing health inequalities. Furthemore, the experiences of Regional Health Services from Tuscany and Emilia-Romagna are discussed, with a brief overview of the literature. PMID:24770539

  10. Biology of the Mi-2/NuRD Complex in SLAC (Stemness, Longevity/Ageing, and Cancer)

    PubMed Central

    Zhang, Yue

    2011-01-01

    The dynamic chromatin activities of Mi-2/Nucleosome Remodeling and Histone deacetylation (Mi-2/NuRD) complexes in mammals are at the basis of current research on stemness, longevity/ageing, and cancer (4-2-1/SLAC), and have been widely studied over the past decade in mammals and the elegant model organism, Caenorhabditis elegans. Interestingly, a common emergent theme from these studies is that of distinct coregulator-recruited Mi-2/NuRD complexes largely orchestrating the 4-2-1/SLAC within a unique paradigm by maintaining genome stability via DNA repair and controlling three types of transcriptional programs in concert in a number of cellular, tissue, and organism contexts. Thus, the core Mi-2/NuRD complex plays a central role in 4-2-1/SLAC. The plasticity and robustness of 4-2-1/SLAC can be interpreted as modulation of specific coregulator(s) within cell-specific, tissue-specific, stage-specific, or organism-specific niches during stress induction, ie, a functional module and its networking, thereby conferring differential responses to different environmental cues. According to “Occam’s razor”, a simple theory is preferable to a complex one, so this simplified notion might be useful for exploring 4-2-1/SLAC with a holistic view. This thought could also be valuable in forming strategies for future research, and could open up avenues for cancer prevention and antiageing strategies. PMID:21523247

  11. The Role of Research Universities in Helping Solve our Energy Challenges: A Case Study at Stanford and SLAC (2011 EFRC Summit)

    ScienceCinema

    Hennessey, John (President, Stanford University)

    2012-03-14

    The first speaker in the 2011 EFRC Summit session titled "Leading Perspectives in Energy Research" was John Hennessey, President of Stanford University. He discussed the important role that the academic world plays as a partner in innovative energy research by presenting a case study involving Stanford and SLAC. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  12. [Experiment studies of electron-positron interactions at the Stanford Linear Accelerator Center]. Progress report, calendar year 1993

    SciTech Connect

    Hertzbach, S.S.; Kofler, R.R.

    1993-12-31

    The High Energy Physics group at the University of Massachusetts has continued its` program of experimental studies of electron-positron interactions at the Stanford Linear Accelerator Center (SLAC). The group activities have included: analysis of data taken between 1982 and 1990 with the TPC detector at the PEP facility, continuing data collection and data analysis using the SLC/SLD facility, planning for the newly approved B-factory at SLAC, and participation in design studies for future high energy linear colliders. This report will briefly summarize these activities.

  13. Guard cell SLAC1-type anion channels mediate flagellin-induced stomatal closure.

    PubMed

    Guzel Deger, Aysin; Scherzer, Sönke; Nuhkat, Maris; Kedzierska, Justyna; Kollist, Hannes; Brosché, Mikael; Unyayar, Serpil; Boudsocq, Marie; Hedrich, Rainer; Roelfsema, M Rob G

    2015-10-01

    During infection plants recognize microbe-associated molecular patterns (MAMPs), and this leads to stomatal closure. This study analyzes the molecular mechanisms underlying this MAMP response and its interrelation with ABA signaling. Stomata in intact Arabidopsis thaliana plants were stimulated with the bacterial MAMP flg22, or the stress hormone ABA, by using the noninvasive nanoinfusion technique. Intracellular double-barreled microelectrodes were applied to measure the activity of plasma membrane ion channels. Flg22 induced rapid stomatal closure and stimulated the SLAC1 and SLAH3 anion channels in guard cells. Loss of both channels resulted in cells that lacked flg22-induced anion channel activity and stomata that did not close in response to flg22 or ABA. Rapid flg22-dependent stomatal closure was impaired in plants that were flagellin receptor (FLS2)-deficient, as well as in the ost1-2 (Open Stomata 1) mutant, which lacks a key ABA-signaling protein kinase. By contrast, stomata of the ABA protein phosphatase mutant abi1-1 (ABscisic acid Insensitive 1) remained flg22-responsive. These data suggest that the initial steps in flg22 and ABA signaling are different, but that the pathways merge at the level of OST1 and lead to activation of SLAC1 and SLAH3 anion channels. PMID:25932909

  14. Personnel dose equivalent monitoring at SLAC using lithium-fluoride TLD's (thermoluminescent dosimeters)

    SciTech Connect

    Jenkins, T.M.; Busick, D.D.

    1987-03-01

    TLD's replaced film badges in the early 1970's for all dose equivalent monitoring, both neutron and photon, and for all locations at SLAC. The photon TLD's, composed of Li-7 loaded teflon discs, are calibrated using conventional gamma-ray sources; i.e., Co-60, Cs-137, etc. For these TLD's a nominal value of 1 nC/mrem is used, and is independent of source energy for 100 keV to 3 MeV. Since measured dose equivalents at SLAC are only a small fraction of the allowable levels, it was not deemed necessary to develop neutron dosimeters which would measure dose equivalent accurately for all possible neutron spectra. Today, wallet TLD's, composed of pairs of Li-7 and Li-6 discs, are used, with the Li-6 measuring only thermal neutrons; i.e., they aren't moderated in any way to make them sensitive to neutrons with energies greater than thermal. The assumption is made that there is a correlation between thermal neutron fluences and fast neutron fluences around the research area where almost all neutron doses (exclusive of sealed sources) are received. The calibration factor for these Li-6 TLD's is 1 nC/mrem of fast neutrons. The method of determining the validity of this calibration is the subject of this note. 4 refs., 9 figs., 1 tab.

  15. Results of the SLAC LCLS Gun High-Power RF Tests

    SciTech Connect

    Dowell, D.H.; Jongewaard, E.; Limborg-Deprey, C.; Schmerge, J.F.; Li, Z.; Xiao, L.; Wang, J.; Lewandowski, J.; Vlieks, A.; /SLAC

    2007-11-02

    The beam quality and operational requirements for the Linac Coherent Light Source (LCLS) currently being constructed at SLAC are exceptional, requiring the design of a new RF photocathode gun for the electron source. Based on operational experience at SLAC's GTF and SDL and ATF at BNL as well as other laboratories, the 1.6cell s-band (2856MHz) gun was chosen to be the best electron source for the LCLS, however a significant redesign was necessary to achieve the challenging parameters. Detailed 3-D analysis and design was used to produce near-perfect rotationally symmetric rf fields to achieve the emittance requirement. In addition, the thermo-mechanical design allows the gun to operate at 120Hz and a 140MV/m cathode field, or to an average power dissipation of 4kW. Both average and pulsed heating issues are addressed in the LCLS gun design. The first LCLS gun is now fabricated and has been operated with high-power RF. The results of these high-power tests are presented and discussed.

  16. Parameters for the PEP-II B-Factory at SLAC in 2008

    SciTech Connect

    Seeman, J.; Akre, R.; Bellomo, P.; Bertsche, Kirk J.; Chai, Y.; Chestnut, R.; Clendenin, J.; DeBarger, S.; Decker, F.J.; Dorfan, J.; Ecklund, S.; Erickson, R.; Fisher, A.; Fox, J.; Heifets, S.; Himel, T.; Iverson, R.; Humphrey, R.; Irwin, J.; Klaisner, L.; Kharakh, D.; /SLAC /LBL, Berkeley /Frascati

    2011-11-22

    The PEP-II B-Factory at SLAC (3.1 GeV e{sup +} x 9.0 GeV e{sup -}) operated from 1999 to 2008, delivering luminosity to the BaBar experiment. The design luminosity was reached after one and a half years of operation. In the end PEP-II surpassed, by four times, its design luminosity reaching 1.21 x 10{sup 34} cm{sup -2}s{sup -1}. It also set world stored beam current records of 2.1 A e{sup -} and 3.2 A e{sup +}. Continuous injection was implemented with BaBar successfully taking data. The total delivered luminosity to the BaBar detector was 557.4 fb{sup -1} spanning five upsilon resonances. PEP-II was constructed by SLAC, LBNL, and LLNL with help from BINP, IHEP, the BaBar collaboration, and the US DOE OHEP.

  17. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling

    PubMed Central

    Vahisalu, Triin; Kollist, Hannes; Wang, Yong-Fei; Nishimura, Noriyuki; Chan, Wai-Yin; Valerio, Gabriel; Lamminmäki, Airi; Brosché, Mikael; Moldau, Heino; Desikan, Radhika; Schroeder, Julian I.; Kangasjärvi, Jaakko

    2010-01-01

    Stomatal pores, formed by two surrounding guard cells in the epidermis of plant leaves, allow influx of atmospheric carbon dioxide in exchange for transpirational water loss. Stomata also restrict the entry of ozone—an important air pollutant that has an increasingly negative impact on crop yields, and thus global carbon fixation1 and climate change2. The aperture of stomatal pores is regulated by the transport of osmotically active ions and metabolites across guard cell membranes3,4. Despite the vital role of guard cells in controlling plant water loss3,4, ozone sensitivity1,2 and CO2 supply2,5–7, the genes encoding some of the main regulators of stomatal movements remain unknown. It has been proposed that guard cell anion channels function as important regulators of stomatal closure and are essential in mediating stomatal responses to physiological and stress stimuli3,4,8. However, the genes encoding membrane proteins that mediate guard cell anion efflux have not yet been identified. Here we report the mapping and characterization of an ozone-sensitive Arabidopsis thaliana mutant, slac1. We show that SLAC1 (SLOW ANION CHANNEL-ASSOCIATED 1) is preferentially expressed in guard cells and encodes a distant homologue of fungal and bacterial dicarboxylate/malic acid transport proteins. The plasma membrane protein SLAC1 is essential for stomatal closure in response to CO2, abscisic acid, ozone, light/dark transitions, humidity change, calcium ions, hydrogen peroxide and nitric oxide. Mutations in SLAC1 impair slow (S-type) anion channel currents that are activated by cytosolic Ca2+ and abscisic acid, but do not affect rapid (R-type) anion channel currents or Ca2+ channel function. A low homology of SLAC1 to bacterial and fungal organic acid transport proteins, and the permeability of S-type anion channels to malate9 suggest a vital role for SLAC1 in the function of S-type anion channels. PMID:18305484

  18. Dielectric Wakefield Accelerator Experiments at the SABER Facility

    SciTech Connect

    Kanareykin, A.; Thompson, M.C.; Berry, M.K.; Blumenfeld, I.; Decker, F.J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.A.; Siemann, Robert H.; Walz, D.R.; Badakov, H.; Cook, A.M.; Rosenzweig, J.B.; Tikhoplav, R.; Travish, G.; Muggli, P.; /Southern California U.

    2008-01-28

    Electron bunches with the unparalleled combination of high charge, low emittances, and short time duration, as first produced at the SLAC Final Focus Test Beam (FFTB), are foreseen to be produced at the SABER facility. These types of bunches have enabled wakefield driven accelerating schemes of multi-GV/m in plasmas. In the context of the Dielectric Wakefield Accelerators (DWA) such beams, having rms bunch length as short as 20 um, have been used to drive 100 um and 200 um ID hollow tubes above 20 GV/m surface fields. These FFTB tests enabled the measurement of a breakdown threshold in fused silica (with full data analysis still ongoing) [1]. With the construction and commissioning of the SABER facility at SLAC, new experiments would be made possible to test further aspects of DWAs including materials, tube geometrical variations, direct measurements of the Cerenkov fields, and proof of acceleration in tubes >10 cm in length. This collaboration will investigate breakdown thresholds and accelerating fields in new materials including CVD diamond. Here we describe the experimental plans, beam parameters, simulations, and progress to date as well as future prospects for machines based of DWA structures.

  19. Patient-centred care: making cancer treatment centres accountable.

    PubMed

    Zucca, Alison; Sanson-Fisher, Rob; Waller, Amy; Carey, Mariko

    2014-07-01

    Patient-centred care is argued to be an essential component in the delivery of quality health and cancer care. This manuscript discusses the need to generate credible data which indicates the quality of patient-centred care provided by cancer treatment centres. Patient-centred care covers six domains including physical comfort; emotional support; respect for patients' preferences and values; integration and coordination; involvement of family and friends; and the provision of information, communication and education to enable patients to understand and make informed decisions about their care. First, we identify priority areas within each domain. Next, we propose three questions that should be asked of every patient across the six domains of patient-centred care. The first question explores whether patients were specifically asked by a healthcare provider at the cancer treatment centre about their concerns, values and preferences. Research indicates that it cannot be assumed that clinicians are aware of patient's needs or preferences in these six areas. Second, if the answer from the patient suggests that they would like assistance, then it would be expected that this would be offered. Thirdly, if the patient indicates that they would like such assistance and it is provided, then it might be expected that the patient would report that the provided assistance did relieve their suffering, or the assistance provided was consistent with their preferences, needs and values. Regular measurement and reporting of these aspects of patient-centred cancer care has the potential to identify deficits and inequities in care delivery, allow for comparisons across treatment centres and stimulate an improvement in the patient-centred care provided to cancer patients. PMID:24696084

  20. CMCC Data Distribution Centre

    NASA Astrophysics Data System (ADS)

    Aloisio, Giovanni; Fiore, Sandro; Negro, A.

    2010-05-01

    The CMCC Data Distribution Centre (DDC) is the primary entry point (web gateway) to the CMCC. It is a Data Grid Portal providing a ubiquitous and pervasive way to ease data publishing, climate metadata search, datasets discovery, metadata annotation, data access, data aggregation, sub-setting, etc. The grid portal security model includes the use of HTTPS protocol for secure communication with the client (based on X509v3 certificates that must be loaded into the browser) and secure cookies to establish and maintain user sessions. The CMCC DDC is now in a pre-production phase and it is currently used only by internal users (CMCC researchers and climate scientists). The most important component already available in the CMCC DDC is the Search Engine which allows users to perform, through web interfaces, distributed search and discovery activities by introducing one or more of the following search criteria: horizontal extent (which can be specified by interacting with a geographic map), vertical extent, temporal extent, keywords, topics, creation date, etc. By means of this page the user submits the first step of the query process on the metadata DB, then, she can choose one or more datasets retrieving and displaying the complete XML metadata description (from the browser). This way, the second step of the query process is carried out by accessing to a specific XML document of the metadata DB. Finally, through the web interface, the user can access to and download (partially or totally) the data stored on the storage device accessing to OPeNDAP servers and to other available grid storage interfaces. Requests concerning datasets stored in deep storage will be served asynchronously.

  1. Theory of factors limiting high gradient operation of warm accelerating structures

    SciTech Connect

    Nusinovich, Gregory S.

    2014-07-22

    This report consists of two parts. In the first part we describe a study of the heating of microprotrusions on surfaces of accelerating structures. This ;process is believed to lead to breakdown in these structures. Our study revealed that for current accelerator parameters melting should not occur due to space charge limitations of the current emitted by a protrusion. The second part describes a novel concept to develop THz range sources based on harmonic cyclotron masers for driving future colliders. This work was stimulated by a recent request of SLAC to develop high power, high-efficiency sources of sub-THz radiation for future high-gradient accelerators.

  2. Development of a 20-MeV Dielectric-Loaded Accelerator Test Facility

    SciTech Connect

    Gold, S.H.; Kinkead, A.K.; Gai, W.; Power, J.G.; Konecny, R.; Jing, C.G.; Tantawi, S.G.; Nantista, C.D.; Hu, Y.; Chen, H.; Tang, C.; Lin, Y.; Bruce, R.W.; Bruce, R.L.; Fliflet, A.W.; Lewis, D.; /Naval Research Lab, Wash., D.C. /LET Corp., Washington /Argonne /SLAC /Tsinghua U., Beijing

    2005-06-22

    This paper describes a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded accelerator (DLA) test facility powered by a high-power 11.424-GHz magnicon amplifier. The magnicon can presently produce 25 MW of output power in a 250-ns pulse at 10 Hz, and efforts are in progress to increase this to 50 MW. The facility will include a 5 MeV electron inector being developed by the Accelerator Laboratory of Tsinghua University in Beijing, China. The DLA test structures are being developed by ANL, and some have undergone testing at NRL at gradients up to {approx} 8 MV/m. SLAC is developing a means to combine the two magnicon output arms, and to drive an injector and accelerator with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRl, is developing a means to join short ceramic sections into a continuous accelerator tube by ceramic brazing using an intense millimeter-wave beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year. The facility will be used for testing DLA structures using a variety of materials and configurations, and also for testing other X-band accelerator concepts. The initial goal is to produce a compact 20 MeV dielectric-loaded test accelerator.

  3. Minister unveils new nanotech centres

    NASA Astrophysics Data System (ADS)

    Dumé, Belle

    2009-06-01

    Three new nanotechnology research centres are to be set up in France as part of a €70m government plan to help French companies in the sector. Researchers at the new centres, which will be located in Grenoble, Saclay (near Paris) and Toulouse, will be encouraged to collaborate with industry to develop new nanotech-based products. Dubbed NANO-INNOV, the new plan includes €46m for two new buildings at Saclay, with the rest being used to buy new equipment at the three centres and to fund grant proposals from staff to the French National Research Agency (ANR).

  4. Integrating Newer Technology Software Systems into the SLAC Legacy Control System - Two Case Histories and New CMLOG Developments

    SciTech Connect

    MacKenzie, Ronald R.

    2001-12-11

    It has been the goal of SLAC Controls Software to offload processing from the aging Alpha/VMS based control system onto machines that are more widely accepted and used. An additional goal has been to provide more modern software tools to our user community. This paper presents two software products which satisfy those goals.

  5. Test of QED using a laser at the SLAC final focus test beam

    SciTech Connect

    Spencer, J.E.

    1992-04-01

    Experiment {number sign}144 at SLAC has three parts: the search for low-mass states excited in {gamma}{gamma} collisions and observed in pair decay, the study of nonlinear, nonperturbative QED in {gamma}e and {gamma}{gamma} collisions, and its possible applications to general purpose linear colliders. Such colliders could produce the full range of J{sub q{center dot}{center dot}{bar q}}/{sup PC} states, leptoquarks J{sub l{center dot}{center dot}{bar q}}/{sup PC}, the particles of supersymmetry, the top quark or Higgs. However, to realize them a number of technical problems need resolution that are addressed in E144 together with interesting possibilities for highly polarized, high brightness {gamma}/{sup {yields}} e{sup {yields}{plus minus}} beams that are needed for electroweak studies.

  6. Test of QED using a laser at the SLAC final focus test beam

    SciTech Connect

    Spencer, J.E.

    1992-04-01

    Experiment {number_sign}144 at SLAC has three parts: the search for low-mass states excited in {gamma}{gamma} collisions and observed in pair decay, the study of nonlinear, nonperturbative QED in {gamma}e and {gamma}{gamma} collisions, and its possible applications to general purpose linear colliders. Such colliders could produce the full range of J{sub q{center_dot}{center_dot}{bar q}}/{sup PC} states, leptoquarks J{sub l{center_dot}{center_dot}{bar q}}/{sup PC}, the particles of supersymmetry, the top quark or Higgs. However, to realize them a number of technical problems need resolution that are addressed in E144 together with interesting possibilities for highly polarized, high brightness {gamma}/{sup {yields}} e{sup {yields}{plus_minus}} beams that are needed for electroweak studies.

  7. Lattice design for the high energy ring of the SLAC B-Factory (PEP-II)

    SciTech Connect

    Donald, M.H.R.; Cai, Y.; Irwin, J.

    1995-04-01

    The design of the lattice for the High Energy Ring (HER) of the SLAC B-Factory has several special features, notably provision for octupole compensation of amplitude dependent tune shift effects and a beta-beat scheme for semi-local chromaticity correction. In the arcs adjacent to the interaction point (IP) the beta functions are enhanced to allow the use of non-interlaced sextupoles to compensate the chromaticity of the interaction region. A closed bump of beta {open_quotes}mismatch{close_quotes} is generated by two vertically focusing quadrupoles spaced 2 betatron wavelengths apart. The beta-beat has two advantages: it enhances the ratio between the horizontal and vertical beta functions at the sextupoles and, because of the locally higher beta function, allows weaker sextupoles to be used. The standard design uses a 60 degree/cell lattice but a 90 degree/cell lattice may also be used if lower emittances and momentum compaction factor are desired.

  8. The Linac Coherent Light Source at SLAC. Radiological Considerations and Shielding calculations

    SciTech Connect

    Mao, X.S.; Fasso, A.; Nakao, N.; Rokni, S.H.; Vincke, H.; /SLAC

    2005-12-02

    The Linac Coherent Light Source (LCLS) at SLAC will be the world's first X-ray free electron laser when it becomes operational in 2009. Pulses of X-ray laser light from LCLS will be many orders of magnitude brighter and several orders of magnitude shorter than what can be produced by other X-ray sources available in the world. These characteristics will enable frontier new science in many areas. This paper describes the LCLS beam parameters and its lay-out. Results of the Monte Carlo calculations for the shielding design of the electron dump line, radiation damage to undulator, the residual radiation and the soil activation around the electron dump are presented.

  9. Analysis of the Wakefield Effects in the PEP-II SLAC B-FACTORY

    SciTech Connect

    Novokhatski, A; Seeman, J.; Sullivan, M.; Wienands, U.; /SLAC

    2009-07-06

    We present the history and analysis of different wake field effects throughout the operational life of the PEP-II SLAC B-factory. Although the impedance of the high and low energy rings is small, the intense high current beams generated a lot of power. The effects from these wake fields are: heating and damage of vacuum beam chamber elements like RF seals, vacuum valves , shielded bellows, BPM buttons and ceramic tiles; vacuum spikes, vacuum instabilities and high detector background; beam longitudinal and transverse instabilities. We also discuss the methods used to eliminate these effects. Results of this analysis and the PEP-II experience may be very useful in the design of new storage rings and light sources.

  10. 3D Modeling Activity for Novel High Power Electron Guns at SLAC

    SciTech Connect

    Krasnykh, Anatoly

    2003-07-29

    The next generation of powerful electronic devices requires new approaches to overcome the known limitations of existing tube technology. Multi-beam and sheet beam approaches are novel concepts for the high power microwave devices. Direct and indirect modeling methods are being developed at SLAC to meet the new requirements in the 3D modeling. The direct method of solving of Poisson's equations for the multi-beam and sheet beam guns is employed in the TOPAZ 3D tool. The combination of TOPAZ 2D and EGUN (in the beginning) with MAFIA 3D and MAGIC 3D (at the end) is used in an indirect method to model the high power electron guns. Both methods complement each other to get reliable representation of the beam trajectories. Several gun ideas are under consideration at the present time. The collected results of these simulations are discussed.

  11. Computer modelling of bunch-by-bunch feedback for the SLAC B-factory design

    SciTech Connect

    Briggs, D.; Fox, J.D.; Hosseini, W.; Klaisner, L.; Morton, P.; Pellegrin, J.L.; Thompson, K.A. ); Lambertson, G. )

    1991-05-01

    The SLAC B-factory design, with over 1600 high current bunches circulating in each ring, will require a feedback system to avoid coupled-bunch instabilities. A computer model of the storage ring, including the RF system, wave fields, synchrotron radiation loss, and the bunch-by-bunch feedback system is presented. The feedback system model represents the performance of a fast phase detector front end (including system noise and imperfections), a digital filter used to generate a correction voltage, and a power amplifier and beam kicker system. The combined ring-feedback system model is used to study the feedback system performance required to suppress instabilities and to quantify the dynamics of the system. Results are presented which show the time development of coupled bunch instabilities and the damping action of the feedback system. 3 refs., 5 figs., 2 tabs.

  12. SLAC E155 and E155x Numeric Data Results and Data Plots: Nucleon Spin Structure Functions

    DOE Data Explorer

    The nucleon spin structure functions g1 and g2 are important tools for testing models of nucleon structure and QCD. Experiments at CERN, DESY, and SLAC have measured g1 and g2 using deep inelastic scattering of polarized leptons on polarized nucleon targets. The results of these experiments have established that the quark component of the nucleon helicity is much smaller than naive quark-parton model predictions. The Bjorken sum rule has been confirmed within the uncertainties of experiment and theory. The experiment E155 at SLAC collected data in March and April of 1997. Approximately 170 million scattered electron events were recorded to tape. (Along with several billion inclusive hadron events.) The data were collected using three independent fixed-angle magnetic spectrometers, at approximately 2.75, 5.5, and 10.5 degrees. The momentum acceptance of the 2.75 and 5.5 degree spectrometers ranged from 10 to 40 GeV, with momentum resolution of 2-4%. The 10.5 degree spectrometer, new for E155, accepted events of 7 GeV to 20 GeV. Each spectrometer used threshold gas Cerenkov counters (for particle ID), a segmented lead-glass calorimeter (for energy measurement and particle ID), and plastic scintillator hodoscopes (for tracking and momentum measurement). The polarized targets used for E155 were 15NH3 and 6LiD, as targets for measuring the proton and deuteron spin structure functions respectively. Experiment E155x recently concluded a successful two-month run at SLAC. The experiment was designed to measure the transverse spin structure functions of the proton and deuteron. The E155 target was also recently in use at TJNAF's Hall C (E93-026) and was returned to SLAC for E155x. E155x hopes to reduce the world data set errors on g2 by a factor of three. [Copied from http://www.slac.stanford.edu/exp/e155/e155_nickeltour.html, an information summary linked off the E155 home page at http://www.slac.stanford.edu/exp/e155/e155_home.html. The extension run, E155x, also makes

  13. ILC Reference Design Report: Accelerator Executive Summary

    SciTech Connect

    Phinney, Nan; /SLAC

    2007-12-14

    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radiofrequency (SCRF) accelerating cavities. The use of the SCRF technology was recommended by the International Technology Recommendation Panel (ITRP) in August 2004 [1], and shortly thereafter endorsed by the International Committee for Future Accelerators (ICFA). In an unprecedented milestone in high-energy physics, the many institutes around the world involved in linear collider R&D united in a common effort to produce a global design for the ILC. In November 2004, the 1st International Linear Collider Workshop was held at KEK, Tsukuba, Japan. The workshop was attended by some 200 accelerator physicists from around the world, and paved the way for the 2nd ILC Workshop in August 2005, held at Snowmass, Colorado, USA, where the ILC Global Design Effort (GDE) was officially formed. The GDE membership reflects the global nature of the collaboration, with accelerator experts from all three regions (Americas, Asia and Europe). The first major goal of the GDE was to define the basic parameters and layout of the machine--the Baseline Configuration. This was achieved at the first GDE meeting held at INFN, Frascati, Italy in December 2005 with the creation of the Baseline Configuration Document (BCD). During the next 14 months, the BCD was used as the basis for the detailed design work and value estimate (as described in section 1.6) culminating in the completion of the second major milestone, the publication of the draft ILC Reference Design Report (RDR). The technical design and cost estimate for the ILC is based on two decades of world-wide Linear Collider R&D, beginning with the construction and operation of the SLAC Linear Collider (SLC). The SLC is acknowledged as a proof-of-principle machine for the linear collider concept. The ILC SCRF linac technology was pioneered by the TESLA collaboration*, culminating in

  14. Accelerated Reader.

    ERIC Educational Resources Information Center

    Education Commission of the States, Denver, CO.

    This paper provides an overview of Accelerated Reader, a system of computerized testing and record-keeping that supplements the regular classroom reading program. Accelerated Reader's primary goal is to increase literature-based reading practice. The program offers a computer-aided reading comprehension and management program intended to motivate…

  15. Detecting Energy Modulation in a Dielectric Laser Accelerator

    SciTech Connect

    Lukaczyk, Louis

    2015-08-21

    The Dielectric Laser Acceleration group at SLAC uses micro-fabricated dielectric grating structures and conventional infrared lasers to accelerator electrons. These structures have been estimated to produce an accelerating gradient up to 2 orders of magnitude greater than that produced by conventional RF accelerators. The success of the experiment depends on both the laser damage threshold of the structure and the timing overlap of femtosecond duration laser pulses with the electron bunch. In recent dielectric laser acceleration experiments, the laser pulse was shorter both temporally and spatially than the electron bunch. As a result, the laser is theorized to have interacted with only a small portion of the electron bunch. The detection of this phenomenon, referred to as partial population modulation, required a new approach to the data analysis of the electron energy spectra. A fitting function was designed to separate the accelerated electron population from the un-accelerated electron population. The approach was unsuccessful in detecting acceleration in the partial population modulation data. However, the fitting functions provide an excellent figure of merit for previous data known to contain signatures of acceleration.

  16. Contemporary design for 'landmark' centre.

    PubMed

    2009-08-01

    As one of the UK's largest builders of healthcare facilities, construction company Morgan Ashurst is accustomed to delivering complex, challenging hospital projects. The construction of a new oncology centre at Musgrove Park Hospital, Taunton for Taunton and Somerset NHS Foundation Trust-- said to be the first new stand-alone radiotherapy centre to be built in the UK for almost 20 years--was no exception. Health Estate Journal reports. PMID:19711668

  17. RTEMS Centre - Support and Maintenance Centre to RTEMS Operating System

    NASA Astrophysics Data System (ADS)

    Silva, H.; Constantino, A.; Freitas, D.; Coutinho, M.; Faustino, S.; Mota, M.; Colaço, P.; Sousa, J.; Dias, L.; Damjanovic, B.; Zulianello, M.; Rufino, J.

    2009-05-01

    RTEMS CENTRE - Support and Maintenance Centre to RTEMS Operating System is a joint ESA/Portuguese Task Force initiative to develop a support and maintenance centre to the Real-Time Executive for Multiprocessor Systems (RTEMS). This paper gives a high level visibility of the progress, the results obtained and the future work in the RTEMS CENTRE [6] and in the RTEMS Improvement [7] projects. RTEMS CENTRE started officially in November 2006, with the RTEMS 4.6.99.2 version. A full analysis of RTEMS operating system was produced. The architecture was analysed in terms of conceptual, organizational and operational concepts. The original objectives [1] of the centre were primarily to create and maintain technical expertise and competences in this RTOS, to develop a website to provide the European Space Community an entry point for obtaining support (http://rtemscentre.edisoft.pt), to design, develop, maintain and integrate some RTEMS support tools (Timeline Tool, Configuration and Management Tools), to maintain flight libraries and Board Support Packages, to develop a strong relationship with the World RTEMS Community and finally to produce some considerations in ARINC-653, DO-178B and ECSS E-40 standards. RTEMS Improvement is the continuation of the RTEMS CENTRE. Currently the RTEMS, version 4.8.0, is being facilitated for a future qualification. In this work, the validation material is being produced following the Galileo Software Standards Development Assurance Level B [5]. RTEMS is being completely tested, errors analysed, dead and deactivated code removed and tests produced to achieve 100% statement and decision coverage of source code [2]. The SW to exploit the LEON Memory Management Unit (MMU) hardware will be also added. A brief description of the expected implementations will be given.

  18. Development of a 20 MeV Dielectric-Loaded Test Accelerator

    SciTech Connect

    Gold, S.H.; Kinkead, A.K.; Gai, W.; Power, J.G.; Konecny, R.; Jing, C.; Long, J.; Tantawi, S.G.; Nantista, C.D.; Fliflet, A.W.; Lombardi, M.; Lewis, D.; Bruce, R.W.; /Unlisted

    2007-04-13

    This paper presents a progress report on a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded test accelerator in the magnicon facility at NRL. The accelerator will be powered by an experimental 11.424-GHz magnicon amplifier that presently produces 25 MW of output power in a {approx}250-ns pulse at up to 10 Hz. The accelerator will include a 5-MeV electron injector originally developed at the Tsinghua University in Beijing, China, and can incorporate DLA structures up to 0.5 m in length. The DLA structures are being developed by ANL, and shorter test structures fabricated from a variety of dielectric materials have undergone testing at NRL at gradients up to {approx}8 MV/m. SLAC has developed components to distribute the power from the two magnicon output arms to the injector and to the DLA accelerating structure with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, has investigated means to join short ceramic sections into a continuous accelerator tube by a brazing process using an intense 83-GHz beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA test structure, and spectrometer, should take place within the next year.

  19. Development of a 20 MeV Dielectric-Loaded Test Accelerator

    SciTech Connect

    Gold, Steven H.; Fliflet, Arne W.; Lombardi, Marcie; Kinkead, Allen K.; Gai, Wei; Power, John G.; Konecny, Richard; Long, Jidong; Jing, Chunguang; Tantawi, Sami G.; Nantista, Christopher D.; Bruce, Ralph W.; Lewis, David III

    2006-11-27

    This paper presents a progress report on a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded test accelerator in the magnicon facility at NRL. The accelerator will be powered by an experimental 11.424-GHz magnicon amplifier that presently produces 25 MW of output power in a {approx}250-ns pulse at up to 10 Hz. The accelerator will include a 5-MeV electron injector originally developed at the Tsinghua University in Beijing, China, and can incorporate DLA structures up to 0.5 m in length. The DLA structures are being developed by ANL, and shorter test structures fabricated from a variety of dielectric materials have undergone testing at NRL at gradients up to {approx}8 MV/m. SLAC has developed components to distribute the power from the two magnicon output arms to the injector and to the DLA accelerating structure with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, has investigated means to join short ceramic sections into a continuous accelerator tube by a brazing process using an intense 83-GHz beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA test structure, and spectrometer, should take place within the next year.

  20. Ultra-High Gradient Dielectric Wakefield Accelerator Experiments

    SciTech Connect

    Thompson, M. C.; Badakov, H.; Rosenzweig, J. B.; Travis, G.; Hogan, M.; Ischebeck, R.; Kirby, N.; Siemann, R.; Walz, D.; Muggli, P.; Scott, A.; Yoder, R.

    2006-11-27

    Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., {sigma}z = 20 {mu}m at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 {mu}m / OD = 325 {mu}m). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

  1. Ultra-High Gradient Dielectric Wakefield Accelerator Experiments

    NASA Astrophysics Data System (ADS)

    Thompson, M. C.; Badakov, H.; Rosenzweig, J. B.; Travis, G.; Hogan, M.; Ischebeck, R.; Kirby, N.; Siemann, R.; Walz, D.; Muggli, P.; Scott, A.; Yoder, R.

    2006-11-01

    Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., σz = 20 μm at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 μm / OD = 325 μm). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

  2. Ultra-High Gradient Dielectric Wakefield Accelerator Experiments

    SciTech Connect

    Thompson, M.C.; Badakov, H.; Rosenzweig, J.B.; Travish, G.; Hogan, M.; Ischebeck, R.; Kirby, N.; Siemann, R.; Walz, D.; Muggli, P.; Scott, A.; Yoder, R.; /LLNL, Livermore /UCLA /SLAC /Southern California U. /UC, Santa Barbara /Manhattan Coll., Riverdale

    2007-03-27

    Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., {sigma}{sub z} = 20 {micro}m at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 {micro}m/OD = 325 {micro}m). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

  3. Ultra-High Gradient Dielectric Wakefield Accelerator Experiments

    SciTech Connect

    Thompson, M C; Badakov, H; Rosenzweig, J B; Travish, G; Hogan, M; Ischebeck, R; Kirby, N; Siemann, R; Walz, D; Muggli, P; Scott, A; Yoder, R

    2006-08-04

    Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., {sigma}{sub z} = 20 {micro}m at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 {micro}m/OD = 325 {micro}m). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

  4. Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid.

    PubMed

    Maierhofer, Tobias; Diekmann, Marion; Offenborn, Jan Niklas; Lind, Christof; Bauer, Hubert; Hashimoto, Kenji; S Al-Rasheid, Khaled A; Luan, Sheng; Kudla, Jörg; Geiger, Dietmar; Hedrich, Rainer

    2014-09-01

    Under drought stress, abscisic acid (ABA) triggers closure of leaf cell pores called stomata, which are formed by two specialized cells called guard cells in plant epidermis. Two pathways downstream of ABA stimulate phosphorylation of the S-type anion channels SLAC1 (slow anion channel associated 1) and SLAH3 (SLAC1 homolog 3), which causes these channels to open, reducing guard cell volume and triggering stomatal closure. One branch involves OST1 (open stomata 1), a calcium-independent SnRK2-type kinase, and the other branch involves calcium-dependent protein kinases of the CPK (calcium-dependent protein kinase) family. We used coexpression analyses in Xenopus oocytes to show that the calcineurin B-like (CBL) calcium sensors CBL1 and CBL9 and their interacting protein kinase CIPK23 also triggered SLAC1 and SLAH3 opening. We analyzed whether regulation of SLAC1 opening by these different families of kinases involved the same or different sites on SLAC1 by measuring channel conductance of SLAC1 with mutations in the putative phosphorylation sites in the amino or carboxyl termini coexpressed with specific kinases in Xenopus oocytes. SLAC1 mutants lacking the OST1-phosphorylated site were still activated by CPK or by CBL/CIPK complexes. Phosphorylation and activation of SLAC1 by any of the kinases were inhibited by the phosphatase ABI1 (ABA insensitive 1), which is inactivated in response to ABA signaling. These findings identified CBL/CIPK complexes as potential regulators of stomatal aperture through S-type anion channels and indicated that phosphorylation at distinct sites enables SLAC1 activation by both calcium-dependent and calcium-independent pathways downstream of ABA. PMID:25205850

  5. Design of the detuned accelerator structure

    SciTech Connect

    Wang, J.W.; Nelson, E.M.

    1993-05-01

    This is a summary of the design procedure for the detuned accelerator structure for SLAC's Next Linear Collider (NLC) program. The 11.424 GHz accelerating mode of each cavity must be synchronous with the beam. The distribution of the disk thicknesses and lowest synchronous dipole mode frequencies of the cavities in the structure is Gaussian in order to reduce the effect of wake fields. The finite element field solver YAP calculated the accelerating mode frequency and the lowest synchronous dipole mode frequency for various cavity diameters, aperture diameters and disk thicknesses. Polynomial 3-parameter fits are used to calculate the dimensions for a 1.8 m detuned structure. The program SUPERFISH was used to calculate the shunt impedances, quality factors and group velocities. The RF parameters of the section like filling time, attenuation factor, accelerating gradient and maximum surface field along the section are evaluated. Error estimates will be discussed and comparisons with conventional constant gradient and constant impedance structures will be presented.

  6. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  7. Performance Limiting Effects in X-Band Accelerators

    SciTech Connect

    Wang Faya; Adolphsen, Chris; Nantista, Christopher

    2010-11-04

    Acceleration gradient is a critical parameter for the design of future TeV-scale linear colliders. The major obstacle to higher gradient in room-temperature accelerators is rf breakdown, which is still a very mysterious phenomenon that depends on the geometry and material of the accelerator as well as the input power and operating frequency. Pulsed heating has been associated with breakdown for many years however there have been no experiments that clearly separate field and heating effects on the breakdown rate. Recently, such experiments have been performed at SLAC with both standing-wave and travelling-wave structures. These experiments have demonstrated that pulsed heating is limiting the gradient. Also, a dual-moded cavity has been designed to better distinguish the electric field, magnetic field and pulsed heating effects on breakdown.

  8. COAXIAL TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    SciTech Connect

    Hirshfield, Jay L.

    2013-04-30

    Theory, computations, and experimental apparatus are presented that describe and are intended to confirm novel properties of a coaxial two-channel dielectric wake field accelerator. In this configuration, an annular drive beam in the outer coaxial channel excites multimode wakefields which, in the inner channel, can accelerate a test beam to an energy much higher than the energy of the drive beam. This high transformer ratio is the result of judicious choice of the dielectric structure parameters, and of the phase separation between drive bunches and test bunches. A structure with cm-scale wakefields has been build for tests at the Argonne Wakefield Accelerator Laboratory, and a structure with mm-scale wakefields has been built for tests at the SLAC FACET facility. Both tests await scheduling by the respective facilities.

  9. SIMULATING ACCELERATOR STRUCTURE OPERATION AT HIGH POWER

    SciTech Connect

    Ivanov, V

    2004-09-15

    The important limiting factors in high-gradient accelerator structure operation are dark current capture, RF breakdown and electron multipacting. These processes involve both primary and secondary electron field emission and produce plasma and X-rays. To better understand these phenomena, they have simulated dark current generation and transport in a linac structure and a square-bend waveguide, both high power tested at SLAC. For these simulations, they use the parallel, time-domain, unstructured-grid code Tau3P and the particle tracking module Track3P. In this paper, they present numerical results and their comparison with measurements on energy spectrum of electrons transmitted in a 30-cell structure and of X-rays emitted from the square-bend waveguide.

  10. The Linac Cooherent Light Source (LCLS) Accelerator

    SciTech Connect

    Wu, Juhao; Emma, P.; /SLAC

    2007-03-21

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. Such an FEL requires a high energy, high brightness electron beam to drive the FEL instability to saturation. When fed by an RF-photocathode gun, and modified to include two bunch compressor chicanes, the SLAC linac will provide such a high quality beam at 14 GeV and 1-{micro}m normalized emittance. In this paper, we report on recent linac studies, including beam stability and tolerances, longitudinal and transverse feedback systems, conventional and time-resolved diagnostics, and beam collimation systems. Construction and installation of the injector through first bunch compressor will be completed by December 2006, and electron commissioning is scheduled to begin in January of 2007.

  11. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  12. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  13. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  14. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  15. Energy Doubling of 42 GeV Electrons in a Meter-scale Plasma Wakefield Accelerator

    SciTech Connect

    Blumenfeld, Ian; Clayton, Christopher E.; Decker, Franz-Josef; Hogan, Mark J.; Huang, Chengkun; Ischebeck, Rasmus; Iverson, Richard; Joshi, Chandrashekhar; Katsouleas, Thomas; Kirby, Neil; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Muggli, Patric; Oz, Erdem; Siemann, Robert H.; Walz, Dieter; Zhou, Miaomiao; /SLAC /UCLA /Southern California U.

    2007-03-14

    The energy frontier of particle physics is several trillion electron volts, but colliders capable of reaching this regime (such as the Large Hadron Collider and the International Linear Collider) are costly and time-consuming to build; it is therefore important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators, a drive beam (either laser or particle) produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultrahigh accelerating fields over a substantial length to achieve a significant energy gain. Here we show that an energy gain of more than 42 GeV is achieved in a plasma wakefield accelerator of 85 cm length, driven by a 42 GeV electron beam at the Stanford Linear Accelerator Center (SLAC). The results are in excellent agreement with the predictions of three-dimensional particle-in-cell simulations. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx} 52GV m{sup -1}. This effectively doubles their energy, producing the energy gain of the 3-km-long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. This is an important step towards demonstrating the viability of plasma accelerators for high-energy physics applications.

  16. The Turn-on of LCLS: the X-Ray Free Electron Laser at SLAC ( Keynote - 2011 JGI User Meeting)

    ScienceCinema

    Drell, Persis [SLAC Director

    2011-06-08

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. SLAC National Laboratory Director Persis Drell gives a keynote talk on "The Turn-on of LCLS: the X-Ray Free-Electron Laser at SLAC" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011

  17. The Turn-on of LCLS: the X-Ray Free Electron Laser at SLAC ( Keynote - 2011 JGI User Meeting)

    SciTech Connect

    Drell, Persis

    2011-03-22

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. SLAC National Laboratory Director Persis Drell gives a keynote talk on "The Turn-on of LCLS: the X-Ray Free-Electron Laser at SLAC" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011

  18. Development of Modulator Pulse Stability Measurement Device and Test Results at SLAC

    SciTech Connect

    Huang, C.; Burkhart, C.; Kemp, M.; Morris, B.; Beukers, T.; Ciprian, R.; Nguyen, M.; /SLAC

    2011-08-19

    In this paper, the development of a pulse stability measurement device is presented. The measurement accuracy is better than 250uV, about 4.2ppm of a typical 60V input pulse. Pulse signals up to +/- 80V peak can be measured. The device works together with an oscilloscope. The primary function of the measurement device is to provide a precision offset, such that variations in the flattop of the modulator voltage pulse can be accurately resolved. The oscilloscope records the difference between the pulse flattop and the reference for a series of waveforms. The scope math functions are utilized to calculate the rms variations over the series. The frequency response of the device is characterized by the measured cutoff frequency of about 6.5MHz. In addition to detailing the design and calibration of the precision pulse stability device, measurements of SLAC line-type linac modulators and recently developed induction modulators will be presented. Factors affecting pulse stability will be discussed.

  19. A Proof-of-Principle Echo-enabled Harmonic Generation Free Electron Laser Experiment at SLAC

    SciTech Connect

    Pernet, Pierre-Louis

    2010-06-24

    With the advent of X-ray Free Electron Lasers (FELs), new methods have been developed to extend capabilities at short wavelengths beyond Self-Amplified Spontaneous Emission (SASE). In particular, seeding of a FEL allows for temporal control of the radiation pulse and increases the peak brightness by orders of magnitude. Most recently, Gennady Stupakov and colleagues at SLAC proposed a new technique: Echo-Enabled Harmonic Generation (EEHG). Here a laser microbunches the beam in an undulator and the beam is sheared in a chicane. This process is repeated with a second laser, undulator and chicane. The interplay between these allows a seeding of the X-ray laser up to the 100th harmonic of the first laser. After introducing the physics of FELs and the EEHG seeding technique, we describe contributions to the experimental effort. We will present detailed studies of the experiment including the choice of parameters and their optimization, the emittance effect, spontaneous emission in the undulators, the second laser phase effect, and measurements of the jitter between RF stations. Finally, the status and preliminary results of the Echo-7 experiment will be outlined.

  20. Two-body photodisintegration of the deutron at high energy: Experiment NE17 at SLAC

    SciTech Connect

    Geesaman, D.F.; Jackson, H.E.; Hansen, J.O.

    1995-08-01

    Experiment NE17 was granted three days of beam time during the last NPAS run at SLAC. During that time, the cross section data for the {gamma}d {yields} pn reaction were extended up to 2.8 GeV at {theta}{sub cm} = 90{degrees} and up to 4.2 GeV at {theta}{sub cm} = 37{degrees}. Data were also taken at {theta}{sub cm} = 37{degrees} 53{degrees}, and 90{degrees} at E{gamma} = 1.6 GeV so that a complete angular distribution would be available at this energy where an Enhancement at a large angle (143{degrees}) was found during experiment NE8. The results indicate the surprising feature that the cross sections at 90{degrees} and 53{degrees} follow the quark counting rule prediction, while those at 37{degrees} do not. Perhaps this indicates that p{sub T}{sup 2} is a controlling variable in the approach to asymptotic scaling. A manuscript was accepted for publication.

  1. The physics program of a high-luminosity asymmetric B Factory at SLAC

    SciTech Connect

    Not Available

    1989-10-01

    A high-luminosity asymmetric energy B Factory, proposed as an upgrade to the PEP storage ring at SLAC, provides the best opportunity to study CP violation as a means of testing the consistency of the Standard Model. If the phenomenon of CP violation is explained by the Standard Model simply through the non-zero angles and phase of the Kobayashi-Maskawa matrix, then there are precise relations between the K-M parameters and the various measurable CP-violating asymmetries in B meson decay. Should these consistency relations fail, the origin of CP violation must lie outside the Standard Model framework. Our measurements would then lead to the first experiment-driven extensions of the Standard Model. The B Factory will also carry out a varied, high-quality program of studies of other aspects of the physics of b quarks, as well as high-precision measurements in {tau} and charm physics. We describe a detailed series of measurements to be carried out in the first few years at a peak luminosity of 3 {times} 10{sup 33} cm{sup -2}sec{sup -1}, the initial luminosity goal of the B Factory, as well as the program accessible to a larger data sample.

  2. The Physics Program of a High-Luminosity Asymmetric B Factory at SLAC

    SciTech Connect

    Eisner, A.; Mandelkern, M.; Morrison, R.; Witherell, M.; Burchat, P.; Kent, J.; Erbacher, R.; Vernon, W.; Eigen, G.; Hitlin, D.; Porter, F.; Weinstein, A.; Wisniewski, W.; Wagner, S.; Franzini, P.; Tuts, M.; Averill, D.; Snyder, A.; Goldhaber, G.; Oddone, P.; Roe, N.; Ronan, M.; Spahn, M.; MacFarlane, D.; Bartelt, J.; Bloom, E.; Bulos, F.; Cords, D.; Dib, C.; Dorfan, J.; Dunietz, I.; Gilman, F.; Godfrey, G.; Hyer, T.; Jensen, G.; Leith, D.; Marsiske, H.; Nir, Y.; Lee-Franzini, J.

    1989-10-01

    A high-luminosity asymmetric energy B Factory, proposed as an upgrade to the PEP storage ring at SLAC, provides the best opportunity to study CP violation as a means of testing the consistency of the Standard Model. If the phenomenon of CP violation is xplained by the Standard Model simply through the non-zero angles and phase of the Kobayashi-Maskawa matrix, then there are precise relations between the K-M parameters and the various measurable CP-violating asymmetries in B meson decay. Should these onsistency relations fail, the origin of CP violation must lie outside the Standard Model framework. Our measurements would then lead to the first experiment-driven extensions of the Standard Model. The B Factory will also carry out a varied, high-quality program of studies f other aspects of the physics of b quarks, as well as high-precision measurements in r and charm physics. We describe a detailed series of measurements to be carried out in the first few years at a peak luminosity of 3 x 10{sup 33} cm{sup -2}sec{sup -1}, the initial luminosity goal of the B Factory, as well as the program accessible to a larger data sample.

  3. Beam Stabilization in the SLAC A-line Using a Skew Quadrupole

    SciTech Connect

    Woodley, Mark D

    2002-09-27

    The E158 experiment at SLAC is a precision measurement of the left-right asymmetry in Moeller scattering at low Q{sup 2} utilizing a high-current long-pulse polarized electron beam scattering off unpolarized electrons in a liquid hydrogen target [1]. Tolerances on beam size and position/angle stability for E158 are extremely tight, but the electron beam is subject to intensity jitter, dispersion, and wakefield effects in the linac which tend to make it unstable. Horizontal emittance growth due to synchrotron radiation in the transport line from the linac to the target (''A-line'') reduces the sensitivity of the horizontal beam parameters at the target to incoming changes, but instability in the vertical plane was observed during the E158 pilot run. A skew quadrupole recently installed in the A-line 90 m upstream of the target has been used to couple the projected transverse emittances, increasing the vertical emittance of the beam and thereby reducing its sensitivity to incoming changes. Simulations of the performance of this skew quadrupole, along with measured beam data with and without the skew quadrupole, will be presented.

  4. Performance of the beam position monitor system for the SLAC PEP-II B factory

    SciTech Connect

    Johnson, Ronald G.; Smith, Stephen R.; Aiello, G. Roberto

    1998-12-10

    The beam position monitor (BPM) system for the SLAC PEP-II B Factory was designed to measure the positions of single-bunch single-turn to multibunch multi-turn beams in both rings of the facility. Each BPM is based on four button-style pickups. At most locations the buttons are connected to provide single-axis information (x only or y only). Operating at a harmonic (952 MHz) of the bunch spacing, the BPM system combines broadband and narrowband capabilities and provides data at a high rate. The active electronics system is multiplexed for signals from the high-energy ring (HER) and low-energy ring (LER). The system will be briefly described; however, the main purpose of the present paper is to present operational results. The BPM system operated successfully during commissioning of the HER (primarily) and the LER over the past year. Results to be presented include on-line calibration, single-bunch single-turn resolution (<100 {mu}m), and multibunch multi-turn resolution (<3 {mu}m), multiplexing, and absolute calibration. Thus far, the system has met or exceeded all the requirements that have been tested. The remaining requirements will be tested when both rings are completed and commissioned this summer. In addition, typical results of beam physics studies relying on the BPM system will be presented.

  5. Performance of the beam position monitor system for the SLAC PEP-II {ital B} factory

    SciTech Connect

    Johnson, R.G.; Smith, S.R.; Aiello, G.R.

    1998-12-01

    The beam position monitor (BPM) system for the SLAC PEP-II {ital B} Factory was designed to measure the positions of single-bunch single-turn to multibunch multi-turn beams in both rings of the facility. Each BPM is based on four button-style pickups. At most locations the buttons are connected to provide single-axis information ({ital x} only or {ital y} only). Operating at a harmonic (952 MHz) of the bunch spacing, the BPM system combines broadband and narrowband capabilities and provides data at a high rate. The active electronics system is multiplexed for signals from the high-energy ring (HER) and low-energy ring (LER). The system will be briefly described; however, the main purpose of the present paper is to present operational results. The BPM system operated successfully during commissioning of the HER (primarily) and the LER over the past year. Results to be presented include on-line calibration, single-bunch single-turn resolution ({lt}100 {mu}m), and multibunch multi-turn resolution ({lt}3 {mu}m), multiplexing, and absolute calibration. Thus far, the system has met or exceeded all the requirements that have been tested. The remaining requirements will be tested when both rings are completed and commissioned this summer. In addition, typical results of beam physics studies relying on the BPM system will be presented. {copyright} {ital 1998 American Institute of Physics.}

  6. Lattice Design of PEP-X as a Light Source Machine at SLAC

    SciTech Connect

    Wang, Min-Huey; Cai, Yunhai; Hettel, Robert; Nosochkov, Yuri; /SLAC

    2008-07-03

    SLAC is studying an option of building a high brightness synchrotron light source machine, PEP-X, in the existing PEP-II tunnel [1]. The new machine will replace the PEPII High Energy Ring (HER) with the goal of achieving an ultra low emittance of {approx} 0.1 nm-rad at 4.5 GeV. The PEPX will utilize the same layout as in the PEP-II with 6 arcs and 6 long straight sections. The existing RF and injection systems will be re-used. The two HER FODO arcs will be replaced with the DBA arcs providing 30 dispersion free 4.26 m sections for magnetic undulators. The other four arcs will be replaced with the TME lattice for attaining the low emittance. Finally, a 89.3 m long damping wiggler with 10 cm period and 1.5 T maximum magnetic field will be installed in a long straight section to reduce the natural emittance to 0.094 nm-rad. The PEP-X dynamic aperture was studied and found sufficient for a vertical injection.

  7. Vacuum Brazing of Accelerator Components

    NASA Astrophysics Data System (ADS)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  8. A combined analysis of SLAC experiments on deep inelastic e-p and e-d scattering

    SciTech Connect

    Whitlow, L.W.; Bodek, A.; deBarbaro, P.; Dasu, S.; Harada, H.; Krasny, M.W.; Lang, K.; Riordan, E.M.; Rock, S.; Arnold, R.; Benton, D.; Bosted, P.; Button-Shafer, J.; deChambrier, G.; Clogher, L.; Lung, A.; Szalata, Z.M.; Alster, J.; Debebe, B.; Hicks, R.; Dietrich, F.; Van Bibber, K.; Filippone, B.; Jourdan, J.; Milner, R.; McKeown, R.; Potterveld, D.; Walker, R.C.; Gearhart, R.; Para, A.

    1989-08-01

    We report recent work on the extraction of R = {sigma}{sub L}/{sigma}{sub T} and the structure function F{sub 2} over a large kinematic range, which is based on a reanalysis of deep inelastic {var_epsilon} {minus} p and {var_epsilon} {minus} d scattering cross sections measured at SLAC between 1970 and 1985. All these data were corrected for radiative effects using improved versions of external and internal radiative correction procedures. The data from seven individual experiments were normalized to those from the recent high-precision SLAC experiment E140. We find that R{sub p} = R{sub d}, as expected in QCD. The value of R is higher than predicted by QCD even when target-mass effects are included. This difference indicates that additional dynamical higher-twist effects may be present. The structure functions F{sub 2}p and F{sub 2}d were also extracted from the full data sets of normalized cross sections using an empirical fit to R. These structure functions were then compared with data from the CERN muon scattering experiments BCDMS and EMC. We find that our data are consistent with the EMC data, if the latter are multiplied by a normalization factor of 1.07. No single, uniform normalization factor can be applied to the BCDMS data that will bring them into agreement with the SLAC data in the region of overlap.

  9. A combined analysis of SLAC experiments on deep inelastic e-p and e-d scattering

    SciTech Connect

    Whitlow, L.W. ); Bodek, A.; deBarbaro, P.; Dasu, S.; Harada, H.; Krasny, M.W.; Lang, K.; Riordan, E.M. ); Rock, S.; Arnold, R.; Benton, D.; Bosted, P.; Button-Shafer, J.; deChambrier, G.; Clogher, L.; Lung, A.; Szalata, Z.M. ); Alster, J. ); Debebe, B.; Hicks, R. (Massach

    1989-08-01

    We report recent work on the extraction of R = {sigma}{sub L}/{sigma}{sub T} and the structure function F{sub 2} over a large kinematic range, which is based on a reanalysis of deep inelastic {var epsilon} {minus} p and {var epsilon} {minus} d scattering cross sections measured at SLAC between 1970 and 1985. All these data were corrected for radiative effects using improved versions of external and internal radiative correction procedures. The data from seven individual experiments were normalized to those from the recent high-precision SLAC experiment E140. We find that R{sub p} = R{sub d}, as expected in QCD. The value of R is higher than predicted by QCD even when target-mass effects are included. This difference indicates that additional dynamical higher-twist effects may be present. The structure functions F{sub 2}p and F{sub 2}d were also extracted from the full data sets of normalized cross sections using an empirical fit to R. These structure functions were then compared with data from the CERN muon scattering experiments BCDMS and EMC. We find that our data are consistent with the EMC data, if the latter are multiplied by a normalization factor of 1.07. No single, uniform normalization factor can be applied to the BCDMS data that will bring them into agreement with the SLAC data in the region of overlap.

  10. Development of a Dielectric-Loaded Accelerator Test Facility Based on an X-Band Magnicon Amplifier

    SciTech Connect

    Gold, S. H.; Fliflet, A. W.; Kinkead, A. K.; Gai, W.; Power, J. G.; Konecny, R.; Jing, C.; Tantawi, S. G.; Nantista, C. D.; Hu, Y.; Du, X.; Tang, C.; Lin, Y.; Bruce, R. W.; Bruce, R. L.; Lewis, D. III

    2006-01-03

    The Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), are developing a dielectric-loaded accelerator (DLA) test facility powered by the 11.424-GHz magnicon amplifier that was developed jointly by NRL and Omega-P, Inc. Thus far, DLA structures developed by ANL have been tested at the NRL Magnicon Facility without injected electrons, including tests of alumina and magnesium calcium titanate structures at gradients up to {approx}8 MV/m. The next step is to inject electrons in order to build a compact DLA test accelerator. The Accelerator Laboratory of Tsinghua University in Beijing, China has developed a 5-MeV electron injector for the accelerator, and SLAC is developing a means to combine the two magnicon output arms, and to drive the injector and an accelerator section with separate control of the power ratio and relative phase. Also, RWBruce Associates, working with NRL, is developing a means to join ceramic tubes to produce long accelerating sections using a microwave brazing process. The installation and commissioning of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year.

  11. Questioning Centre-Periphery Platforms

    ERIC Educational Resources Information Center

    Postiglione, Gerard A.

    2005-01-01

    How much is hegemony and how much is self-determination in the higher education systems in Southeast Asia? This paper argues that while the question of centre and periphery is still relevant to the analysis of international university systems, the analytical frameworks from which it has arisen may lose viability in the long term. Southeast Asian…

  12. Studies of Multipactor in Dielectric-Loaded Accelerator Structures: Comparison of Simulation Results with Experimental Data

    SciTech Connect

    Sinitsyn, Oleksandr; Nusinovich, Gregory; Antonsen, Thomas Jr.

    2010-11-04

    In this paper new results of numerical studies of multipactor in dielectric-loaded accelerator structures are presented. The results are compared with experimental data obtained during recent studies of such structures performed by Argonne National Laboratory, the Naval Research Laboratory, SLAC National Accelerator Laboratory and Euclid TechLabs, LLC. Good agreement between the theory and experiment was observed for the structures with larger inner diameter, however the structures with smaller inner diameter demonstrated a discrepancy between the two. Possible reasons for such discrepancy are discussed.

  13. Acceleration Studies

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.

    1993-01-01

    Work to support the NASA MSFC Acceleration Characterization and Analysis Project (ACAP) was performed. Four tasks (analysis development, analysis research, analysis documentation, and acceleration analysis) were addressed by parallel projects. Work concentrated on preparation for and implementation of near real-time SAMS data analysis during the USMP-1 mission. User support documents and case specific software documentation and tutorials were developed. Information and results were presented to microgravity users. ACAP computer facilities need to be fully implemented and networked, data resources must be cataloged and accessible, future microgravity missions must be coordinated, and continued Orbiter characterization is necessary.

  14. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered

  15. The Transmembrane Region of Guard Cell SLAC1 Channels Perceives CO2 Signals via an ABA-Independent Pathway in Arabidopsis.

    PubMed

    Yamamoto, Yoshiko; Negi, Juntaro; Wang, Cun; Isogai, Yasuhiro; Schroeder, Julian I; Iba, Koh

    2016-02-01

    The guard cell S-type anion channel, SLOW ANION CHANNEL1 (SLAC1), a key component in the control of stomatal movements, is activated in response to CO2 and abscisic acid (ABA). Several amino acids existing in the N-terminal region of SLAC1 are involved in regulating its activity via phosphorylation in the ABA response. However, little is known about sites involved in CO2 signal perception. To dissect sites that are necessary for the stomatal CO2 response, we performed slac1 complementation experiments using transgenic plants expressing truncated SLAC1 proteins. Measurements of gas exchange and stomatal apertures in the truncated transgenic lines in response to CO2 and ABA revealed that sites involved in the stomatal CO2 response exist in the transmembrane region and do not require the SLAC1 N and C termini. CO2 and ABA regulation of S-type anion channel activity in guard cells of the transgenic lines confirmed these results. In vivo site-directed mutagenesis experiments targeted to amino acids within the transmembrane region of SLAC1 raise the possibility that two tyrosine residues exposed on the membrane are involved in the stomatal CO2 response. PMID:26764376

  16. The Stanford Linear Accelerator Center pulsed x-ray facility.

    PubMed

    Ipe, N E; McCall, R C; Baker, E D

    1987-04-01

    The Stanford Linear Accelerator Center (SLAC) operates a high-energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the radio-frequency power for the accelerator. Hence, a pulsed x-ray facility has been built at SLAC mainly for testing the response of different radiation detection instruments to pulsed radiation fields. The x-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that can be accelerated towards a confined target window. The window consists of Al 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of Au 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 microseconds. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The maximum absorbed dose rate obtained at 6.35 cm below the target window as measured by an ionization chamber is 258 Gy/h. The major part of the x-ray tube is enclosed in a large walk-in cabinet made of 1.9-cm-thick (3/4-inch-thick) plywood and lined with 0.32-cm-thick (1/8-inch-thick) Pb to make a very versatile facility. PMID:3570789

  17. SuperB Progress Report for Accelerator

    SciTech Connect

    Biagini, M.E.; Boni, R.; Boscolo, M.; Buonomo, B.; Demma, T.; Drago, A.; Esposito, M.; Guiducci, S.; Mazzitelli, G.; Pellegrino, L.; Preger, M.A.; Raimondi, P.; Ricci, R.; Rotundo, U.; Sanelli, C.; Serio, M.; Stella, A.; Tomassini, S.; Zobov, M.; Bertsche, K.; Brachman, A.; /SLAC /Novosibirsk, IYF /INFN, Pisa /Pisa U. /Orsay, LAL /Annecy, LAPP /LPSC, Grenoble /IRFU, SPP, Saclay /DESY /Cockroft Inst. Accel. Sci. Tech. /U. Liverpool /CERN

    2012-02-14

    This report details the progress made in by the SuperB Project in the area of the Collider since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. With this document we propose a new electron positron colliding beam accelerator to be built in Italy to study flavor physics in the B-meson system at an energy of 10 GeV in the center-of-mass. This facility is called a high luminosity B-factory with a project name 'SuperB'. This project builds on a long history of successful e+e- colliders built around the world, as illustrated in Figure 1.1. The key advances in the design of this accelerator come from recent successes at the DAFNE collider at INFN in Frascati, Italy, at PEP-II at SLAC in California, USA, and at KEKB at KEK in Tsukuba Japan, and from new concepts in beam manipulation at the interaction region (IP) called 'crab waist'. This new collider comprises of two colliding beam rings, one at 4.2 GeV and one at 6.7 GeV, a common interaction region, a new injection system at full beam energies, and one of the two beams longitudinally polarized at the IP. Most of the new accelerator techniques needed for this collider have been achieved at other recently completed accelerators including the new PETRA-3 light source at DESY in Hamburg (Germany) and the upgraded DAFNE collider at the INFN laboratory at Frascati (Italy), or during design studies of CLIC or the International Linear Collider (ILC). The project is to be designed and constructed by a worldwide collaboration of accelerator and engineering staff along with ties to industry. To save significant construction costs, many components from the PEP-II collider at SLAC will be recycled and used in this new accelerator. The interaction region will be designed in collaboration with the particle physics detector to guarantee successful mutual use. The accelerator collaboration will consist of several groups at present universities and national

  18. A Massively Parallel Solver for the Mechanical Harmonic Analysis of Accelerator Cavities

    SciTech Connect

    O. Kononenko

    2015-02-17

    ACE3P is a 3D massively parallel simulation suite that developed at SLAC National Accelerator Laboratory that can perform coupled electromagnetic, thermal and mechanical study. Effectively utilizing supercomputer resources, ACE3P has become a key simulation tool for particle accelerator R and D. A new frequency domain solver to perform mechanical harmonic response analysis of accelerator components is developed within the existing parallel framework. This solver is designed to determine the frequency response of the mechanical system to external harmonic excitations for time-efficient accurate analysis of the large-scale problems. Coupled with the ACE3P electromagnetic modules, this capability complements a set of multi-physics tools for a comprehensive study of microphonics in superconducting accelerating cavities in order to understand the RF response and feedback requirements for the operational reliability of a particle accelerator. (auth)

  19. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  20. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  1. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  2. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  3. Design of the SLAC RCE Platform: A General Purpose ATCA Based Data Acquisition System

    SciTech Connect

    Herbst, R.; Claus, R.; Freytag, M.; Haller, G.; Huffer, M.; Maldonado, S.; Nishimura, K.; O'Grady, C.; Panetta, J.; Perazzo, A.; Reese, B.; Ruckman, L.; Thayer, J. G.; Weaver, M.

    2015-01-23

    The SLAC RCE platform is a general purpose clustered data acquisition system implemented on a custom ATCA compliant blade, called the Cluster On Board (COB). The core of the system is the Reconfigurable Cluster Element (RCE), which is a system-on-chip design based upon the Xilinx Zynq family of FPGAs, mounted on custom COB daughter-boards. The Zynq architecture couples a dual core ARM Cortex A9 based processor with a high performance 28nm FPGA. The RCE has 12 external general purpose bi-directional high speed links, each supporting serial rates of up to 12Gbps. 8 RCE nodes are included on a COB, each with a 10Gbps connection to an on-board 24-port Ethernet switch integrated circuit. The COB is designed to be used with a standard full-mesh ATCA backplane allowing multiple RCE nodes to be tightly interconnected with minimal interconnect latency. Multiple shelves can be clustered using the front panel 10-gbps connections. The COB also supports local and inter-blade timing and trigger distribution. An experiment specific Rear Transition Module adapts the 96 high speed serial links to specific experiments and allows an experiment-specific timing and busy feedback connection. This coupling of processors with a high performance FPGA fabric in a low latency, multiple node cluster allows high speed data processing that can be easily adapted to any physics experiment. RTEMS and Linux are both ported to the module. The RCE has been used or is the baseline for several current and proposed experiments (LCLS, HPS, LSST, ATLAS-CSC, LBNE, DarkSide, ILC-SiD, etc).

  4. EAC: The European Astronauts Centre

    NASA Astrophysics Data System (ADS)

    Ripoll, Andres

    The newly established European Astronauts Centre (EAC) in Cologne represents the European Astronauts Home Base and will become a centre of expertise on European astronauts activities. The paper gives an overview of the European approach to man-in-space, describes the European Astronauts Policy and presents the major EAC roles and responsibilities including the management of selection, recruitment and flight assignment of astronauts; the astronauts support and medical surveillance; the supervision of the astronauts' non-flight assignments; crew safety; the definition of the overall astronauts training programme; the scheduling and supervision of the training facilities; the implementation of Basic Training; the recruitment, training and certification of instructors, and the interface to NASA in the framework of the Space Station Freedom programme. An overview is given on the organisation of EAC, and on the European candidate astronauts selection performed in 1991.

  5. Hybrid Paper/Electronic Archival Collecting, Processing, and Reference: A View from SLAC

    SciTech Connect

    Deken, Jean M.; /SLAC

    2008-05-23

    Real-time archiving of mixed paper and digital collections presents challenges not encountered in the primarily paper environment. A few recent examples from the archives of the Stanford Linear Accelerator Center highlight obstacles encountered, and attempted and contemplated solutions.

  6. Finite element analyses of a linear-accelerator electron gun

    SciTech Connect

    Iqbal, M. E-mail: muniqbal@ihep.ac.cn; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-02-15

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  7. Advances in Parallel Electromagnetic Codes for Accelerator Science and Development

    SciTech Connect

    Ko, Kwok; Candel, Arno; Ge, Lixin; Kabel, Andreas; Lee, Rich; Li, Zenghai; Ng, Cho; Rawat, Vineet; Schussman, Greg; Xiao, Liling; /SLAC

    2011-02-07

    Over a decade of concerted effort in code development for accelerator applications has resulted in a new set of electromagnetic codes which are based on higher-order finite elements for superior geometry fidelity and better solution accuracy. SLAC's ACE3P code suite is designed to harness the power of massively parallel computers to tackle large complex problems with the increased memory and solve them at greater speed. The US DOE supports the computational science R&D under the SciDAC project to improve the scalability of ACE3P, and provides the high performance computing resources needed for the applications. This paper summarizes the advances in the ACE3P set of codes, explains the capabilities of the modules, and presents results from selected applications covering a range of problems in accelerator science and development important to the Office of Science.

  8. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  9. The Notting Dale Urban Studies Centre

    ERIC Educational Resources Information Center

    Webb, Chris; Lynas, Sue

    1976-01-01

    Founded in 1974, the Centre is one of the most intensively used resource centres in the United Kingdom. Adults and students from elementary to college level use its facilities to learn about the urban environment. (BD)

  10. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  11. Reconstitution of CO2 Regulation of SLAC1 Anion Channel and Function of CO2-Permeable PIP2;1 Aquaporin as CARBONIC ANHYDRASE4 Interactor.

    PubMed

    Wang, Cun; Hu, Honghong; Qin, Xue; Zeise, Brian; Xu, Danyun; Rappel, Wouter-Jan; Boron, Walter F; Schroeder, Julian I

    2016-02-01

    Dark respiration causes an increase in leaf CO2 concentration (Ci), and the continuing increases in atmospheric [CO2] further increases Ci. Elevated leaf CO2 concentration causes stomatal pores to close. Here, we demonstrate that high intracellular CO2/HCO3 (-) enhances currents mediated by the Arabidopsis thaliana guard cell S-type anion channel SLAC1 upon coexpression of any one of the Arabidopsis protein kinases OST1, CPK6, or CPK23 in Xenopus laevis oocytes. Split-ubiquitin screening identified the PIP2;1 aquaporin as an interactor of the βCA4 carbonic anhydrase, which was confirmed in split luciferase, bimolecular fluorescence complementation, and coimmunoprecipitation experiments. PIP2;1 exhibited CO2 permeability. Mutation of PIP2;1 in planta alone was insufficient to impair CO2- and abscisic acid-induced stomatal closing, likely due to redundancy. Interestingly, coexpression of βCA4 and PIP2;1 with OST1-SLAC1 or CPK6/23-SLAC1 in oocytes enabled extracellular CO2 enhancement of SLAC1 anion channel activity. An inactive PIP2;1 point mutation was identified that abrogated water and CO2 permeability and extracellular CO2 regulation of SLAC1 activity. These findings identify the CO2-permeable PIP2;1 as key interactor of βCA4 and demonstrate functional reconstitution of extracellular CO2 signaling to ion channel regulation upon coexpression of PIP2;1, βCA4, SLAC1, and protein kinases. These data further implicate SLAC1 as a bicarbonate-responsive protein contributing to CO2 regulation of S-type anion channels. PMID:26764375

  12. Communicating astronomy by the Unizul Science Centre

    NASA Astrophysics Data System (ADS)

    Beesham, A.; Beesham, N.

    2015-03-01

    The University of Zululand, situated along the east coast of KwaZulu-Natal, has a thriving Science Centre (USC) situated in the developing port city of Richards Bay. Over 30 000 learners visit the centre annually, and it consists of an exhibition area, an auditorium, lecture areas and offices. The shows consist of interactive games, science shows, competitions, quizzes and matriculation workshops. Outreach activities take place through a mobile science centre for schools and communities that cannot visit the centre.

  13. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  14. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  15. Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein

    PubMed Central

    Kusumi, Kensuke

    2012-01-01

    In rice (Oryza sativa L.), leaf photosynthesis is known to be highly correlated with stomatal conductance; however, it remains unclear whether stomatal conductance dominantly limits the photosynthetic rate. SLAC1 is a stomatal anion channel protein controlling stomatal closure in response to environmental [CO2]. In order to examine stomatal limitations to photosynthesis, a SLAC1-deficient mutant of rice was isolated and characterized. A TILLING screen of N-methyl-N-nitrosourea-derived mutant lines was conducted for the rice SLAC1 orthologue gene Os04g0674700, and four mutant lines containing mutations within the open reading frame were obtained. A second screen using an infrared thermography camera revealed that one of the mutants, named slac1, had a constitutive low leaf temperature phenotype. Measurement of leaf gas exchange showed that slac1 plants grown in the greenhouse had significantly higher stomatal conductance (g s), rates of photosynthesis (A), and ratios of internal [CO2] to ambient [CO2] (C i/C a) compared with wild-type plants, whereas there was no significant difference in the response of photosynthesis to internal [CO2] (A/C i curves). These observations demonstrate that in well-watered conditions, stomatal conductance is a major determinant of photosynthetic rate in rice. PMID:22915747

  16. Numerical Verification of the Power Transfer and Wakefield Coupling in the Clic Two-Beam Accelerator

    SciTech Connect

    Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; Syratchev, I.; Grudiev, A.; Wuensch, W.; /CERN

    2011-08-19

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its two-beam accelerator (TBA) concept envisions complex 3D structures, which must be modeled to high accuracy so that simulation results can be directly used to prepare CAD drawings for machining. The required simulations include not only the fundamental mode properties of the accelerating structures but also the Power Extraction and Transfer Structure (PETS), as well as the coupling between the two systems. Time-domain simulations will be performed to understand pulse formation, wakefield damping, fundamental power transfer and wakefield coupling in these structures. Applying SLAC's parallel finite element code suite, these large-scale problems will be solved on some of the largest supercomputers available. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel two-beam accelerator scheme.

  17. Sensing data centres for energy efficiency.

    PubMed

    Liu, Jie; Terzis, Andreas

    2012-01-13

    Data centres are large energy consumers today, and their consumption is expected to increase further, driven by the growth in cloud services. The large monetary cost and the environmental impact of this consumption have motivated operators to optimize data centre management. We argue that one of the underlying reasons for the low-energy utilization is the lack of visibility into a data centre's highly dynamic operating conditions. Wireless sensor networks promise to remove this veil of uncertainty by delivering large volumes of data collected at high spatial and temporal fidelities. The paper summarizes data centre operations in order to describe the parameters that a data centre sensing network should collect and motivate the challenges that such a network faces. We present technical approaches for the problems of data collection and management and close with an overview of a data centre genome, an end-to-end data centre sensing system. PMID:22124086

  18. Perceptual centres in speech - an acoustic analysis

    NASA Astrophysics Data System (ADS)

    Scott, Sophie Kerttu

    Perceptual centres, or P-centres, represent the perceptual moments of occurrence of acoustic signals - the 'beat' of a sound. P-centres underlie the perception and production of rhythm in perceptually regular speech sequences. P-centres have been modelled both in speech and non speech (music) domains. The three aims of this thesis were toatest out current P-centre models to determine which best accounted for the experimental data bto identify a candidate parameter to map P-centres onto (a local approach) as opposed to the previous global models which rely upon the whole signal to determine the P-centre the final aim was to develop a model of P-centre location which could be applied to speech and non speech signals. The first aim was investigated by a series of experiments in which a) speech from different speakers was investigated to determine whether different models could account for variation between speakers b) whether rendering the amplitude time plot of a speech signal affects the P-centre of the signal c) whether increasing the amplitude at the offset of a speech signal alters P-centres in the production and perception of speech. The second aim was carried out by a) manipulating the rise time of different speech signals to determine whether the P-centre was affected, and whether the type of speech sound ramped affected the P-centre shift b) manipulating the rise time and decay time of a synthetic vowel to determine whether the onset alteration was had more affect on P-centre than the offset manipulation c) and whether the duration of a vowel affected the P-centre, if other attributes (amplitude, spectral contents) were held constant. The third aim - modelling P-centres - was based on these results. The Frequency dependent Amplitude Increase Model of P-centre location (FAIM) was developed using a modelling protocol, the APU GammaTone Filterbank and the speech from different speakers. The P-centres of the stimuli corpus were highly predicted by attributes of

  19. Picosecond Bunch length and Energy-z correlation measurements at SLAC's A-Line and End Station A

    SciTech Connect

    Molloy, Stephen; Emma, P.; Frisch, J.C.; Iverson, R.H.; Ross, M.; McCormick, D.J.; Ross, Marc C.; Walston, S.; Blackmore, V.; /Oxford U.

    2007-06-27

    We report on measurements of picosecond bunch lengths and the energy-z correlation of the bunch with a high energy electron test beam to the A-line and End Station A (ESA) facilities at SLAC. The bunch length and the energy-z correlation of the bunch are measured at the end of the linac using a synchrotron light monitor diagnostic at a high dispersion point in the A-line and a transverse RF deflecting cavity at the end of the linac. Measurements of the bunch length in ESA were made using high frequency diodes (up to 100 GHz) and pyroelectric detectors at a ceramic gap in the beamline. Modeling of the beam's longitudinal phase space through the linac and A-line to ESA is done using the 2-dimensional tracking program LiTrack, and LiTrack simulation results are compared with data. High frequency diode and pyroelectric detectors are planned to be used as part of a bunch length feedback system for the LCLS FEL at SLAC. The LCLS also plans precise bunch length and energy-z correlation measurements using transverse RF deflecting cavities.

  20. SLAC's polarized electron source laser system and minimization of electron beam helicity correlations for the E-158 parity violation experiment

    NASA Astrophysics Data System (ADS)

    Humensky, T. B.; Alley, R.; Brachmann, A.; Browne, M. J.; Cates, G. D.; Clendenin, J.; deLamare, J.; Frisch, J.; Galetto, T.; Hughes, E. W.; Kumar, K. S.; Mastromarino, P.; Sodja, J.; Souder, P. A.; Turner, J.; Woods, M.

    2004-04-01

    SLAC E-158 is an experiment designed to make the first measurement of parity violation in M øller scattering. E-158 will measure the right-left cross-section asymmetry, ALRM øller , in the elastic scattering of a 45-GeV polarized electron beam from unpolarized electrons in a liquid hydrogen target. E-158 plans to measure the expected Standard Model asymmetry of ˜10 -7 to an accuracy of better than 10 -8. To make this measurement, the photoemission-based polarized electron source requires an intense circularly polarized laser beam and the ability to quickly switch between right- and left-helicity polarization states with minimal right-left helicity-correlated asymmetries in the resulting beam parameters (intensity, position, angle, spot size, and energy), beamALR's. This laser beam is produced by a unique SLAC-designed flashlamp-pumped Ti:Sapphire laser and is directed through a carefully designed set of polarization optics. We analyze the transport of nearly circularly polarized light through the optical system and identify several mechanisms that generate beamALR's. We show that the dominant effects depend linearly on particular polarization phase shifts in the optical system. We present the laser system design and a discussion of the suppression and control of beamALR's. We also present results on beam performance from engineering and physics runs for E-158.

  1. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  2. Attention's Accelerator.

    PubMed

    Reinhart, Robert M G; McClenahan, Laura J; Woodman, Geoffrey F

    2016-06-01

    How do people get attention to operate at peak efficiency in high-pressure situations? We tested the hypothesis that the general mechanism that allows this is the maintenance of multiple target representations in working and long-term memory. We recorded subjects' event-related potentials (ERPs) indexing the working memory and long-term memory representations used to control attention while performing visual search. We found that subjects used both types of memories to control attention when they performed the visual search task with a large reward at stake, or when they were cued to respond as fast as possible. However, under normal circumstances, one type of target memory was sufficient for slower task performance. The use of multiple types of memory representations appears to provide converging top-down control of attention, allowing people to step on the attentional accelerator in a variety of high-pressure situations. PMID:27056975

  3. Hot Spot Cosmic Accelerators

    NASA Astrophysics Data System (ADS)

    2002-11-01

    length of more than 3 million light-years, or no less than one-and-a-half times the distance from the Milky Way to the Andromeda galaxy, this structure is indeed gigantic. The region where the jets collide with the intergalactic medium are known as " hot spots ". Superposing the intensity contours of the radio emission from the southern "hot spot" on a near-infrared J-band (wavelength 1.25 µm) VLT ISAAC image ("b") shows three distinct emitting areas; they are even better visible on the I-band (0.9 µm) FORS1 image ("c"). This emission is obviously associated with the shock front visible on the radio image. This is one of the first times it has been possible to obtain an optical/near-IR image of synchrotron emission from such an intergalactic shock and, thanks to the sensitivity and image sharpness of the VLT, the most detailed view of its kind so far . The central area (with the strongest emission) is where the plasma jet from the galaxy centre hits the intergalactic medium. The light from the two other "knots", some 10 - 15,000 light-years away from the central "hot spot", is also interpreted as synchrotron emission. However, in view of the large distance, the astronomers are convinced that it must be caused by electrons accelerated in secondary processes at those sites . The new images thus confirm that electrons are being continuously accelerated in these "knots" - hence called "cosmic accelerators" - far from the galaxy and the main jets, and in nearly empty space. The exact physical circumstances of this effect are not well known and will be the subject of further investigations. The present VLT-images of the "hot spots" near 3C 445 may not have the same public appeal as some of those beautiful images that have been produced by the same instruments during the past years. But they are not less valuable - their unusual importance is of a different kind, as they now herald the advent of fundamentally new insights into the mysteries of this class of remote and active

  4. The network of WHO Collaborating Centres in Occupational Health and the role of maritime centres.

    PubMed

    Kortum, Evelyn; Fingerhut, Marilyn A

    2003-01-01

    The WHO Network of Collaborating Centres in Occupational Health comprises 70 Collaborating Centres. Four of these Centres are specialised in Maritime Occupational Health and they are situated in Poland, Germany, Denmark and the Ukraine. All Collaborating Centres follow the mandate of the Occupational Health Programme in WHO, which is the Global Strategy on Occupational Health for All. Collaborating Centres in Maritime Occupational Health cover a specific group of workers who are exposed to different work environments than workers on land. They are often not at all or only insufficiently covered by any health services. The Collaborating Centres in Maritime Occupational Health provide an excellent example of international collaboration. PMID:14974788

  5. Bangalore looks to new interdisciplinary science centre

    NASA Astrophysics Data System (ADS)

    Ramachandran, Ramaseshan

    2008-09-01

    A new centre to boost interdisciplinary research in India is being established in Bangalore - India's IT and software capital. The International Centre for Theoretical Sciences (ICTS) will be led by Spenta Wadia, a theoretical physicist from the Tata Institute of Fundamental Research (TIFR) in Mumbai, which is setting up the new centre. He expects construction of the ICTS, the first of its kind in India, to start by November 2009.

  6. AXIS-SVO Data Centre Creation

    NASA Astrophysics Data System (ADS)

    Ceballos, M. Teresa

    We present the process followed to create the AXIS-SVO Data Centre at the Instituto de Física de Cantabria under the standards of the Virtual Observatory using the publication tools elaborated by the ESA-VO team at the European Space Astronomy Centre (ESAC). The current content of this Data Centre is a sample of optical spectra which are part of the AXIS-XMS sample, based on observations of the XMM-Newton X-ray observatory.

  7. Fifty years of accelerator based physics at Chalk River

    SciTech Connect

    McKay, John W.

    1999-04-26

    The Chalk River Laboratories of Atomic Energy of Canada Ltd. was a major centre for Accelerator based physics for the last fifty years. As early as 1946, nuclear structure studies were started on Cockroft-Walton accelerators. A series of accelerators followed, including the world's first Tandem, and the MP Tandem, Superconducting Cyclotron (TASCC) facility that was opened in 1986. The nuclear physics program was shut down in 1996. This paper will describe some of the highlights of the accelerators and the research of the laboratory.

  8. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  9. The International Centre for Theoretical Physics

    NASA Astrophysics Data System (ADS)

    Hussain, Faheem

    2008-07-01

    This talk traces in brief the genesis of the Abdus Salam International Centre for Theoretical Physics, Trieste, as one of Prof. Abdus Salam's major achievements. It outlines why Salam felt the necessity for establishing such a centre to help physicists in the developing world. It situates the founding of the Centre within Salam's broader vision of the causes of underdevelopment and of science as an engine for scientific, technological, economic and social development. The talk reviews the successes and failures of the ICTP and gives a brief overall view of the current status of the Centre.

  10. Instability-free ion acceleration by two laser pulses

    NASA Astrophysics Data System (ADS)

    Zhou, M. L.; Zhao, S.; Wang, H. Y.; Lin, C.; Lu, H. Y.; Lu, Y. R.; Tajima, T.; He, X. T.; Chen, C. E.; Gu, Y. Q.; Yan, X. Q.

    2014-05-01

    We demonstrate the instability-free ion acceleration regime by introducing laser control with two parallel circularly polarized laser pulses at an intensity of I = 6.8 × 1021 W/cm2, normally incident on a hydrogen foil. The special structure of the equivalent wave front of those two pulses, which contains Gaussian peaks in both sides and a concavity in the centre (2D), can suppress the transverse instabilities and hole boring effects to constrain a high density ion clump in the centre of the foil, leading to an acceleration over a long distance and gain above 1GeV/u for the ion bunches.

  11. High Power Klystrons: Theory and Practice at the Stanford Linear Accelerator CenterPart I

    SciTech Connect

    Caryotakis, G.

    2004-12-15

    This is Part I of a two-part report on design and manufacturing methods used at SLAC to produce accelerator klystrons. Chapter 1 begins with the history and applications for klystrons, in both of which Stanford University was extensively involved. The remaining chapters review the theory of klystron operation, derive the principal formulae used in their design, and discuss the assumptions that they involve. These formulae are subsequently used in small-signal calculations of the frequency response of a particular klystron, whose performance is also simulated by two different computer codes. The results of calculations and simulations are compared to the actual performance of the klystron.

  12. Progress on plasma accelerators

    SciTech Connect

    Chen, P.

    1986-05-01

    Several plasma accelerator concepts are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA) and the Plasma Wake Field Accelerator (PWFA). Various accelerator physics issues regarding these schemes are discussed, and numerical examples on laboratory scale experiments are given. The efficiency of plasma accelerators is then revealed with suggestions on improvements. Sources that cause emittance growth are discussed briefly.

  13. Recent performance, lifetime, and failure modes of the 5045 klystron population at SLAC

    SciTech Connect

    Koontz, R.F.; Lee, T.G.; Pearson, C.; Vlieks, A.E.

    1992-08-01

    The 65 MW S-Band klystrons (5045) used to power SLC have been in service for over seven years. Currently, 244 of these tubes are in place on the accelerator, operating full power at 120 pulses per second. Enough tubes have now reached end of life, or experienced other failures to allow a good analysis of failure modes, and to project average lifetime for this type of tube. This paper describes the various modes of failure seen in klystrons rammed from SLC service, and provides data on expected lifetime from current production based on accumulated SLC operating experience.

  14. ICFA Instrumentation Bulletin, Volume 22, Spring 2001 Issue (SLAC-J-ICFA-022)

    SciTech Connect

    Va'Vra, J.

    2003-10-21

    The publication of the ICFA Instrumentation Bulletin is an activity of the Panel on Future Innovation and Development of ICFA (International Committee for Future Accelerators). The Bulletin reports on research and progress in the field of instrumentation with emphasis on application in the field of high-energy physics. It encourages issues of generic instrumentation. This volume contains the following articles: (1) ''Gaseous Micropattern Detectors: High-Energy Physics and Beyond''; (2) ''DIRC Dreams Redux: Research Directions for the Next Generation of Internally Reflected Imaging Counters''; and (3) ''Corrosion of Glass Windows in DIRC PMTs''.

  15. Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, Neil; /SLAC

    2009-10-30

    Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped electron

  16. The European NEO Coordination Centre

    NASA Astrophysics Data System (ADS)

    Perozzi, E.; Borgia, B.; Micheli, M.

    An operational approach to NEO (Near-Earth Object) hazard monitoring has been developed at European level within the framework of the Space Situational Awareness Program (SSA) of the European Space Agency (ESA). Through federating European assets and profiting of the expertise developed in European Universities and Research Centers, it has been possible to start the deployment of the so-called SSA NEO Segment. This initiative aims to provide a significant contribution to the worldwide effort to the discovery, follow-up and characterization of the near-Earth object population. A major achievement has been the inauguration in May 2013 of the ESA NEO Coordination Centre located at ESRIN (Frascati, Italy). The goal of the NEOCC Precursor Service operations is twofold: to make available updated information on the NEO population and the associated hazard and to contribute to optimize the NEO observational efforts. This is done by maintaining and improving a Web Portal publicly available at http://neo.ssa.esa.int and by performing follow-up observations through a network of collaborating telescopes and facilities. An overview of the SSA-NEO System and a summary of the first two years of NEOCC operations is presented.

  17. Status and results from the next linear collider test accelerator

    SciTech Connect

    Ruth, R.D.; Adolphsen, C.; Allison, S.

    1996-08-01

    The design for the Next Linear Collider (NLC) at SLAC is based on two 11.4 GHz linacs operating at an unloaded acceleration gradient of 50 MV/m increasing to 85 MV/m as the energy is increased from {1/2} TeV to 1 TeV in the center of mass. During the past several years there has been tremendous progress on the development of 11.4 GHz (X-band) RF systems. These developments include klystrons which operate at the required power and pulse length, pulse compression systems that achieve a factor of four power multiplication and structures that are specially designed to reduce long-range wakefields. Together with these developments, we have constructed a {1/2} GeV test accelerator, the NLC Test Accelerator (NLCTA). The NLCTA will serve as a test bed as the design of the NLC is refined. In addition to testing the RF system, the NLCTA is designed to address many questions related to the dynamics of the beam during acceleration, in particular the study of multibunch beam loading compensation and transverse beam break-up. In this paper we present the status of the NLCTA and the results of initial commissioning.

  18. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics

    PubMed Central

    Ramya, T. N. C.; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions. PMID:27258038

  19. Computer studies of a combined-function bend magnet for a proposed redesign of the SLAC SLC damping rings

    SciTech Connect

    Early, R.A.; Raubenheimer, T.O.

    1993-04-01

    A proposed redesign of the SLAC SLC Damping Ring requires a combined-function bending magnet. The magnet will operate with a main field of 1.8338 T, and quadrupole and sextupole gradients dB{sub y}/dx, d{sup 2}B{sub y}/dx{sup 2} of {minus}14.1 T/m and {minus}477 T/m{sup 2}, respectively. Because the orbit sagitta in the magnet is in excess of 2 cm, the pole will be curved with a 2 m radius of curvature. Furthermore, since the current must be variable over a range of {plus_minus}2 percent, we have considered using vanadium permendur poles to avoid a adverse saturation effects. Studies were done using POISSON in 2-D and TOSCA for 3-D end effects.

  20. First Measurements of the Longitudinal Bunch Profile at SLAC Using Coherent Smith-Purcell Radiation at 28GeV

    SciTech Connect

    Blackmore, V.; Doucas, G.; Ottewell, B.; Perry, C.; Kimmitt, M.F.; Arnold, R.; Molloy, S.; Woods, M.; /SLAC

    2011-11-02

    Coherent Smith-Purcell radiation has been demonstrated as a technique for measuring the longitudinal profile of charged particles bunches in the low to intermediate energy range. However, with the advent of the International Linear Collider, the need has arisen for a non-invasive method of measuring the bunch profile at extremely high energies. Smith-Purcell radiation has been used for the first time in the multi-GeV regime to measure the longitudinal profile of the 28GeV SLAC beam. The experiment has both successfully determined the bunch length, and has also demonstrated its sensitivity to bunch profile changes. The challenges associated with this technique, and its prospects as a diagnostic tool are reported here.

  1. The European standards of Haemophilia Centres

    PubMed Central

    Giangrande, Paul; Calizzani, Gabriele; Menichini, Ivana; Candura, Fabio; Mannucci, Pier Mannuccio; Makris, Michael

    2014-01-01

    Introduction The European haemophilia community of professionals and patients has agreed on the principles of haemophilia care to address comprehensive optimal delivery of care which is nowadays scattered throughout Europe. Many of the health facilities call themselves Haemophilia Centres despite their variation in size, expertise and services provided. Only a small number of countries have Haemophilia Centre accreditation systems in place. Methods In the framework of the European Haemophilia Network project, following an inclusive process of stakeholder involvement, the European Guidelines for the certification of haemophilia centres have been developed in order to set quality standards for European Haemophilia Centres and criteria for their certification. Results The Guidelines define the standards and criteria for the designation of two levels of care delivery: European Haemophilia Treatment Centres, providing local routine care, and European Haemophilia Comprehensive Care Centres, providing specialised and multi-disciplinary care and functioning as tertiary referral centres. Additionally, they define standards about general requirements, patient care, provision of an advisory service and establishment of network of clinical and specialised services. Conclusions The implementation of the European Guidelines for the certification of Haemophilia Centres will contribute to the reduction of health inequalities through the standardisation of quality of care in European Union Member States and could represent a model to be taken into consideration for other rare disease groups. PMID:24922293

  2. The Press Research Centre, 1956-1976.

    ERIC Educational Resources Information Center

    Press Research Centre, Krakow (Poland).

    In 1956, the Press Research Centre was established in Cracow, Poland by a group of journalists and publishers, for the purpose of instituting press research that would have practical applications. The aims of the Centre were to conduct studies on the history of the Polish press, the contemporary press, press readership, and editorial techniques.…

  3. Promotion in Call Centres: Opportunities and Determinants

    ERIC Educational Resources Information Center

    Gorjup, Maria Tatiana; Valverde, Mireia; Ryan, Gerard

    2008-01-01

    Purpose: The purpose of this paper is to examine the quality of jobs in call centres by focusing on the opportunities for promotion in this sector. More specifically, the research questions focus on discovering whether promotion is common practise in the call centre sector and on identifying the factors that affect this.…

  4. The European Centre for Leisure and Education

    ERIC Educational Resources Information Center

    Convergence, 1969

    1969-01-01

    Supported by UNESCO, the European Centre for Leisure and Education is an establishment of the Czechoslovak Academy of Sciences. The task of the Centre lies in the search for common trends of leisure and education in Europe, involving four types of activity: research, editorial, bibliographic, and documentary. It has sponsored conferences, and has…

  5. The Irish Centre for Talented Youth

    ERIC Educational Resources Information Center

    Gilheany, Sheila

    2005-01-01

    Conducting potency tests on penicillin, discussing rocket technology with a NASA astronaut, analysing animal bone fragments from medieval times, these are just some of the activities which occupy the time of students at The Irish Centre for Talented Youth. The Centre identifies young students with exceptional academic ability and then provides…

  6. Simulation of PEP-II Accelerator Backgrounds Using TURTLE

    SciTech Connect

    Barlow, R.J.; Fieguth, T.; Kozanecki, W.; Majewski, S.A.; Roudeau, P.; Stocchi, A.; /Orsay, LAL

    2006-02-15

    We present studies of accelerator-induced backgrounds in the BaBar detector at the SLAC B-Factory, carried out using LPTURTLE, a modified version of the DECAY TURTLE simulation package. Lost-particle backgrounds in PEP-II are dominated by a combination of beam-gas bremstrahlung, beam-gas Coulomb scattering, radiative-Bhabha events and beam-beam blow-up. The radiation damage and detector occupancy caused by the associated electromagnetic shower debris can limit the usable luminosity. In order to understand and mitigate such backgrounds, we have performed a full program of beam-gas and luminosity-background simulations, that include the effects of the detector solenoidal field, detailed modeling of limiting apertures in both collider rings, and optimization of the betatron collimation scheme in the presence of large transverse tails.

  7. A novel approach to increasing the reliability of accelerator magnets

    SciTech Connect

    Spencer, C.M.

    2000-02-07

    When a very large particle accelerator with about 8,000 electromagnets, such as the proposed Next Linear Collider (NLC), has an 85% overall availability goal, then all these magnets and their power supplies must be highly reliable and/or quickly repairable. An interdisciplinary reliability engineering approach, more commonly applied to aircraft and space vehicles, has been taken to design maximum reliability in the NLC main linac quadrupoles, while maintaining magnetic field performance and reducing cost. A specially assembled team of engineers with a variety of experiences with magnets carried out a Failure Mode and Effects Analysis (FMEA) on a standard SLAC quadrupole magnet system. This process helped them identify which components were less reliable. Then they redesigned the quadrupole to avoid all the potential problems. A prototype magnet will be made and tested to ensure that functionality has not been lost.

  8. The role of the sexual assault centre.

    PubMed

    Eogan, Maeve; McHugh, Anne; Holohan, Mary

    2013-02-01

    Sexual Assault Centres provide multidisciplinary care for men and women who have experienced sexual crime. These centres enable provision of medical, forensic, psychological support and follow-up care, even if patients chose not to report the incident to the police service. Sexual Support Centres need to provide a ring-fenced, forensically clean environment. They need to be appropriately staffed and available 24 hours a day, 7 days a week to allow prompt provision of medical and supportive care and collection of forensic evidence. Sexual Assault Centres work best within the context of a core agreed model of care, which includes defined multi-agency guidelines and care pathways, close links with forensic science and police services, and designated and sustainable funding arrangements. Additionally, Sexual Assault Centres also participate in patient, staff and community education and risk reduction. Furthermore, they contribute to the development, evaluation and implementation of national strategies on domestic, sexual and gender-based violence. PMID:22975433

  9. New Zealand Earthquake Forecast Testing Centre

    NASA Astrophysics Data System (ADS)

    Gerstenberger, Matthew C.; Rhoades, David A.

    2010-08-01

    The New Zealand Earthquake Forecast Testing Centre is being established as one of several similar regional testing centres under the umbrella of the Collaboratory for the Study of Earthquake Predictability (CSEP). The Centre aims to encourage the development of testable models of time-varying earthquake occurrence in the New Zealand region, and to conduct verifiable prospective tests of their performance over a period of five or more years. The test region, data-collection region and requirements for testing are described herein. Models must specify in advance the expected number of earthquakes with epicentral depths h ≤ 40 km in bins of time, magnitude and location within the test region. Short-term models will be tested using 24-h time bins at magnitude M ≥ 4. Intermediate-term models and long-term models will be tested at M ≥ 5 using 3-month, 6-month and 5-year bins, respectively. The tests applied will be the same as at other CSEP testing centres: the so-called N test of the total number of earthquakes expected over the test period; the L test of the likelihood of the earthquake catalogue under the model; and the R test of the ratio of the likelihoods under alternative models. Four long-term, three intermediate-term and two short-term models have been installed to date in the testing centre, with tests of these models commencing on the New Zealand earthquake catalogue from the beginning of 2008. Submission of models is open to researchers worldwide. New models can be submitted at any time. The New Zealand testing centre makes extensive use of software produced by the CSEP testing centre in California. It is envisaged that, in time, the scope of the testing centre will be expanded to include new testing methods and differently-specified models, nonetheless that the New Zealand testing centre will develop in parallel with other regional testing centres through the CSEP international collaborative process.

  10. Detecting Partial Energy Modulation in a Dielectric Laser Accelerator - Oral Presentation

    SciTech Connect

    Lukaczyk, Louis

    2015-08-24

    The Dielectric Laser Acceleration group at SLAC uses micro-fabricated dielectric grating structures and conventional infrared lasers to accelerator electrons. These structures have been estimated to produce an accelerating gradient up to 2 orders of magnitude greater than that produced by conventional RF accelerators. The success of the experiment depends on both the laser damage threshold of the structure and the timing overlap of femtosecond duration laser pulses with the electron bunch. In recent dielectric laser acceleration experiments, the laser pulse was shorter both temporally and spatially than the electron bunch. As a result, the laser is theorized to have interacted with only a small portion of the electron bunch. The detection of this phenomenon, referred to as partial population modulation, required a new approach to the data analysis of the electron energy spectra. A fitting function was designed to separate the accelerated electron population from the unaccelerated electron population. The approach was unsuccessful in detecting acceleration in the partial population modulation data. However, the fitting functions provide an excellent figure of merit for previous data known to contain signatures of acceleration.

  11. Big Surveys, Big Data Centres

    NASA Astrophysics Data System (ADS)

    Schade, D.

    2016-06-01

    Well-designed astronomical surveys are powerful and have consistently been keystones of scientific progress. The Byurakan Surveys using a Schmidt telescope with an objective prism produced a list of about 3000 UV-excess Markarian galaxies but these objects have stimulated an enormous amount of further study and appear in over 16,000 publications. The CFHT Legacy Surveys used a wide-field imager to cover thousands of square degrees and those surveys are mentioned in over 1100 publications since 2002. Both ground and space-based astronomy have been increasing their investments in survey work. Survey instrumentation strives toward fair samples and large sky coverage and therefore strives to produce massive datasets. Thus we are faced with the "big data" problem in astronomy. Survey datasets require specialized approaches to data management. Big data places additional challenging requirements for data management. If the term "big data" is defined as data collections that are too large to move then there are profound implications for the infrastructure that supports big data science. The current model of data centres is obsolete. In the era of big data the central problem is how to create architectures that effectively manage the relationship between data collections, networks, processing capabilities, and software, given the science requirements of the projects that need to be executed. A stand alone data silo cannot support big data science. I'll describe the current efforts of the Canadian community to deal with this situation and our successes and failures. I'll talk about how we are planning in the next decade to try to create a workable and adaptable solution to support big data science.

  12. The Canadian Astronomy Data Centre

    NASA Astrophysics Data System (ADS)

    Ball, Nicholas M.; Schade, D.; Astronomy Data Centre, Canadian

    2011-01-01

    The Canadian Astronomy Data Centre (CADC) is the world's largest astronomical data center, holding over 0.5 Petabytes of information, and serving nearly 3000 astronomers worldwide. Its current data collections include BLAST, CFHT, CGPS, FUSE, Gemini, HST, JCMT, MACHO, MOST, and numerous other archives and services. It provides extensive data archiving, curation, and processing expertise, via projects such as MegaPipe, and enables substantial day-to-day collaboration between resident astronomers and computer specialists. It is a stable, powerful, persistent, and properly supported environment for the storage and processing of large volumes of data, a condition that is now absolutely vital for their science potential to be exploited by the community. Through initiatives such as the Common Archive Observation Model (CAOM), the Canadian Virtual Observatory (CVO), and the Canadian Advanced Network for Astronomical Research (CANFAR), the CADC is at the global forefront of advancing astronomical research through improved data services. The CAOM aims to provide homogeneous data access, and hence viable interoperability between a potentially unlimited number of different data collections, at many wavelengths. It is active in the definition of numerous emerging standards within the International Virtual Observatory, and several datasets are already available. The CANFAR project is an initiative to make cloud computing for storage and data-intensive processing available to the community. It does this via a Virtual Machine environment that is equivalent to managing a local desktop. Several groups are already processing science data. CADC is also at the forefront of advanced astronomical data analysis, driven by the science requirements of astronomers both locally and further afield. The emergence of 'Astroinformatics' promises to provide not only utility items like object classifications, but to directly enable new science by accessing previously undiscovered or intractable

  13. Coupler Studies for PBG Fiber Accelerators

    SciTech Connect

    England, J.; Ng, C.; Noble, R.; Spencer, J.; Wu, Z.; Xu, D.; /SLAC

    2011-08-17

    Photonic band gap (PBG) fiber with hollow core defects are being designed and fabricated for use as laser driven accelerators because they can provide gradients of several GeV/m for picosecond pulse lengths. We expect to produce fiber down to {lambda} = 1.5-2.0 {micro}m wavelengths but still lack a viable means for efficient coupling of laser power into such structures due to the very different character of the TM-like modes from those used in the telecom field and the fact that the defect must function as both a longitudinal waveguide for the accelerating field and a transport channel for the particles. We discuss the status of our work in pursuing both end and side coupling. For both options, the symmetry of these crystals leads to significant differences with the telecom field. Side coupling provides more options and appears to be preferred. Our goals are to test gradients, mode content and coupling efficiencies on the NLCTA at SLAC. While there are many potential types of fiber based on very different fabrication methods and materials we will concentrate on 2D axisymmetric glass with hexagonal symmetry but will discuss several different geometries including 2D and 3D planar structures. Since all of these can be fabricated using modern techniques with a variety of dielectric materials they are expected to have desirable optical and radiation hardness properties. Thus, we expect a new generation of very high gradient accelerators that extends the Livingston-Panofsky chart of exponential growth in energy vs. time at greatly reduced costs. For illustration, Fig.1 shows a simulation of our first engineered fiber with an accelerating mode expected near 7.3 {micro}m that is now ready to test on the NLCTA. In this example, one sees the uniform longitudinal accelerating field in the central defect as first shown by Lin3 together with a hexagonal array of surrounding hot spots. Contrary to what one expects from the telecom field, Ng et al. have shown4 that the ideal end

  14. Visualization in a Climate Computing Centre

    NASA Astrophysics Data System (ADS)

    Meier-Fleischer, Karin; Röber, Niklas; Böttinger, Michael

    2014-05-01

    Today, the extensive numerical simulations of climate models require elaborate visualization for understanding and communicating the results. Typical data sets of climate models are 3-dimensional, multivariate and time dependent, and can hence be very large. Interactive visual data analysis improves and accelerates the comprehension of these vast amounts of data. At DKRZ, the German Climate Computing Centre, a central high end visualization server, various domain specific visualization applications, and a remote 3D rendering solution enable users to interactively visualize their extensive model results right at their desktops. The DKRZ's visualization server is a heterogeneous Linux cluster, currently consisting of 10 state of the art visualization nodes equipped with 96 -256 GB RAM and high end NVidia GPUs. Since the parallel file system of the DKRZ's supercomputer is directly mounted over a powerful network, the model data can directly be analyzed and visualized. VirtualGL and TurboVNC are used for utilizing the server's GPUs for 3D rendering, while the TurboVNC client on the user's local computer continuously displays the resulting video stream. By using this central visualization server instead of a local computer, three main benefits are achieved: Time consuming transfers of large data sets from the supercomputer to the local computer are not needed. The hardware of the user's local workstation doesn't need to be powerful, no expensive GPU is required. Users don't have to install or buy visualization software. On the visualization server, a wide range of visualization software is installed. Avizo Green, a powerful commercial software customized for interactive 3D visualization of climate model data, is available, as well as SimVis and ParaView, which focus more on an exploratory visualization of data. SimVis and ParaView provide techniques like Linking & Brushing to emphasize or de-emphasize portions of the data. Furthermore, some domain specific 2D graphics

  15. Review of CERN Data Centre Infrastructure

    NASA Astrophysics Data System (ADS)

    Andrade, P.; Bell, T.; van Eldik, J.; McCance, G.; Panzer-Steindel, B.; Coelho dos Santos, M.; Traylen and, S.; Schwickerath, U.

    2012-12-01

    The CERN Data Centre is reviewing strategies for optimizing the use of the existing infrastructure and expanding to a new data centre by studying how other large sites are being operated. Over the past six months, CERN has been investigating modern and widely-used tools and procedures used for virtualisation, clouds and fabric management in order to reduce operational effort, increase agility and support unattended remote data centres. This paper gives the details on the project's motivations, current status and areas for future investigation.

  16. Towards Human-Centred Design

    NASA Astrophysics Data System (ADS)

    Bannon, Liam J.

    The field of HCI has evolved and expanded dramatically since its origin in the early 1980’s. The HCI community embraces a large community of researchers and practitioners around the world, from a variety of disciplinary backgrounds in the human and social sciences, engineering and informatics, and more recently, the arts and design disciplines. This kaleidoscope of cultures and disciplines as seen at INTERACT Conferences provides a rich pool of resources for examining our field. Applications are increasingly exploring our full range of sensory modalities, and merging the digital and physical worlds. WiFi has opened up a huge design space for mobile applications. A focus on usability of products and services has been complemented by an emphasis on engagement, enjoyment and experience. With the advent of ubiquitous computing, and the emergence of “The Internet of Things”, new kinds of more open infrastructures make possible radically new kinds of applications. The sources of innovation have also broadened, to include human and social actors outside of the computing and design organizations. The question is to what extent is our mainstream thinking in the HCI field ready for the challenges of this Brave New World? Do the technological and social innovations that we see emerging require us to re-shape, or even, re-create, our field, or is it a case of a more gradual evolution and development of that which we already know? In this closing Keynote, I will provide a perspective on the evolution and development of the HCI field, looking backwards as well as forwards, in order to determine what are some of the changes of significance in the field. This “broad-brush” approach to what I term “ human-centred design” will be complemented by the examination of specific projects and applications, to help anchor some of the discussion. Areas such as user-centred design, participatory design, computer-supported cooperative work and learning, and interaction design, in

  17. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  18. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  19. Electron acceleration in a wavy shock front

    NASA Astrophysics Data System (ADS)

    Vandas, M.; Karlický, M.

    2011-07-01

    Context. It is known that electrons are accelerated at nearly perpendicular shocks by the drift mechanism. And it is also known that energy gain of electrons caused by this mechanism is not very high. Therefore it was suggested in the past that the energy gain might be increased if shocks had wavy fronts. For instance, there were attempts to explain coronal type II burst and their fine structure by electron acceleration in a wavy shock front. Aims: We studied electron acceleration numerically at nearly perpendicular wavy shocks for coronal conditions and compared it with analytical results on electron acceleration at nearly perpendicular plane shocks. Methods: An analytical model of a wavy shock front was used and trajectories of electrons in it and around it were calculated numerically in a guiding centre approximation. Results: We found that energy gains of electrons at a wavy shock front and a corresponding smoothed-into-plane shock on the average were comparable. That is why they do not depend significantly on the shock thickness, magnetic field profile inside the shock, and shock wavy form. They do depend on the angle between the smoothed shock front and ambient magnetic field. Conclusions: On average, a wavy shock front does not significantly increase an acceleration efficiency. Energy gain remarkably exceeds an average level for some combinations of initial parameters. Distribution functions of accelerated electrons have a patchy structure, which is prone to inducing plasma instabilities that will generate plasma waves. This may have relevance to the problem of type II burst origin.

  20. A proposed referral centre based on HL7/XML.

    PubMed

    Chen, T S; Liao, B S; Lee, C H; Gough, T G

    2002-01-01

    With the growth of the Inteernet, hospitals have also applied HL7 (Health Level Seven) to exchange data between them. The referral system is identified as an appropriate application system. The effect of referral is to transfer the patient to a suitable hospital in a timely fashion, and to arrange appropriate treatment for the patient. Taking advantage of the Internet to exchange referral data can, not only accelerate the process of patient referral, but also avoid the unnecessary repeat examinations to decrease the waste of medical resources. This article builds up a referral-related message according to the HL7 standard, and develops a referral centre using the Internet environment, making use of XML (eXtensible Markup Language) standard to transform the referral-related data to XML format and exchange referral data between platforms. This electronic referral mechanism is expected to offer other hospitals experience of improved referral practice. PMID:15460680

  1. Final Environmental Assessment for the construction and operation of an office building at the Stanford Linear Accelerator Center. Part 2

    SciTech Connect

    1995-08-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1107, analyzing the environmental effects relating to the construction and operation of an office building at the Stanford Linear Accelerator Center (SLAC). SLAC is a national facility operated by Stanford University, California, under contract with DOE. The center is dedicated to research in elementary particle physics and in those fields that make use of its synchrotron facilities. The objective for the construction and operation of an office building is to provide adequate office space for existing SLAC Waste Management (WM) personnel, so as to centralize WM personnel and to make WM operations more efficient and effective. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  2. Profiling 'centres of excellence' in CAM research.

    PubMed

    Hentschel, C

    2002-03-01

    Several 'centres of excellence' of research in complementary/alternative medicine (CAM) have emerged in recent years. This study represents an attempt to profile the most productive of these centres. Medline searches (1995-2001) were performed with a long list of individuals directing CAM research groups as key words. Eight of them (all male) had published in excess of 20 Medline-listed articles between 1995-2001, and this group was evaluated in further detail. Three originated from the US and two from the UK. Collectively this group had published 32 clinical trials, an equal number of surveys and 95 systematic reviews. The range of research subjects for most centres was narrow. It is concluded that several active CAM research centres are well established. Their output is variable and, in most cases, leave room for improvement. Probably because of funding difficulties, clinical trials remain rare. PMID:12442823

  3. Identity Theft: A Study in Contact Centres

    NASA Astrophysics Data System (ADS)

    Moir, Iain; Weir, George R. S.

    This paper explores the recent phenomenon of identity theft. In particular, it examines the contact centre environment as a mechanism for this to occur. Through a survey that was conducted amongst forty-five contact centre workers in the Glasgow area we determined that contact centres can and do provide a mechanism for identity theft. Specifically, we found a particularly high incidence of agents who had previously dealt with phone calls that they considered suspicious. Furthermore, there are agents within such environments who have previously been offered money in exchange for customers' details, or who know of fellow workers who received such offers. Lastly, we identify specific practices within contact centres that may contribute to the likelihood of identity theft.

  4. Perspectives on recycling centres and future developments.

    PubMed

    Engkvist, I-L; Eklund, J; Krook, J; Björkman, M; Sundin, E

    2016-11-01

    The overall aim of this paper is to draw combined, all-embracing conclusions based on a long-term multidisciplinary research programme on recycling centres in Sweden, focussing on working conditions, environment and system performance. A second aim is to give recommendations for their development of new and existing recycling centres and to discuss implications for the future design and organisation. Several opportunities for improvement of recycling centres were identified, such as design, layout, ease with which users could sort their waste, the work environment, conflicting needs and goals within the industry, and industrialisation. Combining all results from the research, which consisted of different disciplinary aspects, made it possible to analyse and elucidate their interrelations. Waste sorting quality was recognized as the most prominent improvement field in the recycling centre system. The research identified the importance of involving stakeholders with different perspectives when planning a recycling centre in order to get functionality and high performance. Practical proposals of how to plan and build recycling centres are given in a detailed checklist. PMID:26826952

  5. Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling (Final Report)

    SciTech Connect

    William J. Schroeder

    2011-11-13

    This report contains the comprehensive summary of the work performed on the SBIR Phase II, Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling at Kitware Inc. in collaboration with Stanford Linear Accelerator Center (SLAC). The goal of the work was to develop collaborative visualization tools for large-scale data as illustrated in the figure below. The solutions we proposed address the typical problems faced by geographicallyand organizationally-separated research and engineering teams, who produce large data (either through simulation or experimental measurement) and wish to work together to analyze and understand their data. Because the data is large, we expect that it cannot be easily transported to each team member's work site, and that the visualization server must reside near the data. Further, we also expect that each work site has heterogeneous resources: some with large computing clients, tiled (or large) displays and high bandwidth; others sites as simple as a team member on a laptop computer. Our solution is based on the open-source, widely used ParaView large-data visualization application. We extended this tool to support multiple collaborative clients who may locally visualize data, and then periodically rejoin and synchronize with the group to discuss their findings. Options for managing session control, adding annotation, and defining the visualization pipeline, among others, were incorporated. We also developed and deployed a Web visualization framework based on ParaView that enables the Web browser to act as a participating client in a collaborative session. The ParaView Web Visualization framework leverages various Web technologies including WebGL, JavaScript, Java and Flash to enable interactive 3D visualization over the web using ParaView as the visualization server. We steered the development of this technology by teaming with the SLAC National Accelerator Laboratory. SLAC has a computationally-intensive problem

  6. Angular and Linear Accelerations of a Rolling Cylinder Acted by an External Force

    ERIC Educational Resources Information Center

    Oliveira, V.

    2011-01-01

    The dynamics of a cylinder rolling on a horizontal plane acted on by an external force applied at an arbitrary angle is studied with emphasis on the directions of the acceleration of the centre-of-mass and the angular acceleration of the body. If rolling occurs without slipping, there is a relationship between the directions of these…

  7. The status and evolution of plasma Wakefield particle accelerators.

    PubMed

    Joshi, C; Mori, W B

    2006-03-15

    The status and evolution of the electron beam-driven Plasma Wakefield Acceleration scheme is described. In particular, the effects of the radial electric field of the wake on the drive beam such as multiple envelope oscillations, hosing instability and emission of betatron radiation are described. Using ultra-short electron bunches, high-density plasmas can be produced by field ionization by the electric field of the bunch itself. Wakes excited in such plasmas have accelerated electrons in the back of the drive beam to greater that 4 G eV in just 10 cm in experiments carried out at the Stanford Linear Accelerator Centre. PMID:16483949

  8. Dielectric Wakefield Accelerating Structure as a Source of Terahertz Coherent Cerenkov Radiation

    SciTech Connect

    Cook, A. M.; Rosenzweig, J. B.; Badakov, H.; Travish, G.; Tikhoplav, R.; Williams, O. B.; England, R. J.; Thompson, M. C.

    2006-11-27

    We discuss future experimental work proposed to study the performance of a cylindrical dielectric wakefield accelerating structure as a coherent Cerenkov radiation source at the Neptune laboratory at UCLA. The Cerenkov wakefield acceleration experiment carried out recently by UCLA/SLAC/USC, using the ultrashort and high charge beam (Q = 3 nC, {sigma}z = 20 micron) at the SLAC FFTB, demonstrated electromagnetic wakes at the few GV/m level. The motivation of our prospective experiment is to investigate the operation of a similar scenario using the comparatively long pulse, low charge beam (Q = 0.5 nC, {sigma}z = 200 micron) at UCLA Neptune. The field amplitude produced in this setup would be one to two orders of magnitude lower, at the few tens to few 100 MV/m level. Such a decelerating field would extract a significant amount of energy from a low-energy beam in a distance on the order of a few centimeters, allowing the use of short dielectric structures. We discuss details of the geometry and composition of the structures to be used in the experiment. We also examine the possibility of a future dedicated facility at UCLA Neptune based on a hybrid photoinjector currently in development. The intrinsic bunch compression capabilities and improved beam parameters ({sigma}z = 100 micron, Q = 1 nC) of the photoinjector would allow the creation of a high power radiation source in the terahertz regime.

  9. When Triple Helix Unravels: A Multi-Case Analysis of Failures in Industry-University Cooperative Research Centres

    ERIC Educational Resources Information Center

    Gray, Denis; Sundstrom, Eric; Tornatzky, Louis G.; McGowen, Lindsey

    2011-01-01

    Cooperative research centres (CRCs) increasingly foster Triple Helix (industry-university-government) collaboration and represent significant vehicles for cooperation across sectors, the promotion of knowledge and technology transfer and ultimately the acceleration of innovation. A growing social science literature on CRCs focuses on their…

  10. Data Plots of Run I - III Results from SLAC E-158: A precision Measurement of the Weak Mixing Angle in Moller Scattering

    DOE Data Explorer

    Three physics runs were made in 2002 and 2003 by E-158. As a result, the E-158 Collaboration announced that it had made "the first observation of Parity Violation in electron-electron (Moller) scattering). This precise Parity Violation measurement gives the best determination of the electron's weak charge at low energy (low momentum transfer between interacting particles). E158's measurement tests the predicted running (or evolution) of this weak charge with energy, and searches for new phenomena at TeV energy scales (one thousand times the proton-mass energy scale).[Copied from the experiment's public home page at http://www-project slac.stanford.edu/3158/Default.htm] See also the E158 page for collaborators at http://www.slac.stanford.edu/exp/e158/. Both websites provide data and detailed information.

  11. Wild at Heart: the particle astrophysics of the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Crocker, R. M.; Jones, D. I.; Aharonian, F.; Law, C. J.; Melia, F.; Oka, T.; Ott, J.

    2011-05-01

    We consider the high-energy astrophysics of the inner ˜200 pc of the Galaxy. Our modelling of this region shows that the supernovae exploding here every few thousand years inject enough power to (i) sustain the steady-state, in situ population of cosmic rays (CRs) required to generate the region’s non-thermal radio and TeV γ-ray emission; (ii) drive a powerful wind that advects non-thermal particles out of the inner Galactic Centre; (iii) supply the low-energy CRs whose Coulombic collisions sustain the temperature and ionization rate of the anomalously warm envelope ? detected throughout the Central Molecular Zone; (iv) accelerate the primary electrons which provide the extended, non-thermal radio emission seen over ˜150 pc scales above and below the plane (the Galactic Centre lobe); and (v) accelerate the primary protons and heavier ions which, advected to very large scales (up to ˜10 kpc), generate the recently identified Wilkinson Microwave Anisotropy Probe (WMAP) haze and corresponding Fermi haze/bubbles. Our modelling bounds the average magnetic field amplitude in the inner few degrees of the Galaxy to the range 60 < B/μ G < 40 0 (at 2σ confidence) and shows that even TeV CRs likely do not have time to penetrate into the cores of the region’s dense molecular clouds before the wind removes them from the region. This latter finding apparently disfavours scenarios in which CRs - in this starburst-like environment - act to substantially modify the conditions of star formation. We speculate that the wind we identify plays a crucial role in advecting low-energy positrons from the Galactic nucleus into the bulge, thereby explaining the extended morphology of the 511 keV line emission. We present extensive appendices reviewing the environmental conditions in the Galactic Centre, deriving the star formation and supernova rates there, and setting out the extensive prior evidence that exists, supporting the notion of a fast outflow from the region.

  12. The direction of acceleration

    NASA Astrophysics Data System (ADS)

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.

  13. TURBULENT SHEAR ACCELERATION

    SciTech Connect

    Ohira, Yutaka

    2013-04-10

    We consider particle acceleration by large-scale incompressible turbulence with a length scale larger than the particle mean free path. We derive an ensemble-averaged transport equation of energetic charged particles from an extended transport equation that contains the shear acceleration. The ensemble-averaged transport equation describes particle acceleration by incompressible turbulence (turbulent shear acceleration). We find that for Kolmogorov turbulence, the turbulent shear acceleration becomes important on small scales. Moreover, using Monte Carlo simulations, we confirm that the ensemble-averaged transport equation describes the turbulent shear acceleration.

  14. A precise measurement of the left-right asymmetry of Z Boson production at the SLAC linear collider

    SciTech Connect

    1994-09-01

    We present a precise measurement of the left-right cross section asymmetry of Z boson production (A{sub LR}) observed in 1993 data at the SLAC linear collider. The A{sub LR} experiment provides a direct measure of the effective weak mixing angle through the initial state couplings of the electron to the Z. During the 1993 run of the SLC, the SLD detector recorded 49,392 Z events produced by the collision of longitudinally polarized electrons on unpolarized positrons at a center-of-mass energy of 91.26 GeV. A Compton polarimeter measured the luminosity-weighted electron polarization to be (63.4{+-}1.3)%. ALR was measured to be 0.1617{+-}0.0071(stat.){+-}0.0033(syst.), which determines the effective weak mixing angle to be sin {sup 2}{theta}{sub W}{sup eff} = 0.2292{+-}0.0009(stat.){+-}0.0004(syst.). This measurement of A{sub LR} is incompatible at the level of two standard deviations with the value predicted by a fit of several other electroweak measurements to the Standard Model.

  15. Final report for the 1996 DOE grant supporting research at the SLAC/LBNL/LLNL B factory

    SciTech Connect

    Judd, D.; Wright, D.

    1997-08-08

    This final report discusses Department of Energy-supported research funded through Lawrence Livermore National Laboratory (LLNL) which was performed as part of a collaboration between LLNL and Prairie View A and M University to develop part of the BaBar detector at the SLAC B Factory. This work focuses on the Instrumented Flux Return (IFR) subsystem of BaBar and involves a full range of detector development activities: computer simulations of detector performance, creation of reconstruction algorithms, and detector hardware R and D. Lawrence Livermore National Laboratory has a leading role in the IFR subsystem and has established on-site computing and detector facilities to conduct this research. By establishing ties with the existing LLNL Research Collaboration Program and leveraging LLNL resources, the experienced Prairie View group was able to quickly achieve a more prominent role within the BaBar collaboration and make significant contributions to the detector design. In addition, this work provided the first entry point for Historically Black Colleges and Universities into the B Factory collaboration, and created an opportunity to train a new generation of minority students at the premier electron-positron high energy physics facility in the US.

  16. Design optimization and transverse coherence analysis for an x-ray free electron laser driven by SLAC LINAC

    SciTech Connect

    Xie, M.

    1995-12-31

    I present a design study for an X-ray Free Electron Laser driven by the SLAC linac, the Linac Coherent Light Source (LCLS). The study assumes the LCLS is based on Self-Amplified Spontaneous Emission (SASE). Following a brief review of the fundamentals of SASE, I will provide without derivation a collection of formulas relating SASE performance to the system parameters. These formulas allow quick evaluation of FEL designs and provide powerful tools for optimization in multi-dimensional parameter space. Optimization is carried out for the LCLS over all independent system parameters modeled, subjected to a number of practical constraints. In addition to the optimizations concerning gain and power, another important consideration for a single pass FEL starting from noise is the transverse coherence property of the amplified radiation, especially at short wavelength. A widely used emittance criteria for FELs requires that the emittance is smaller than the radiation wavelength divided by 4{pi}. For the LCLS the criteria is violated by a factor of 5, at a normalized emittance of 1.5 mm-mrad, wavelength of 1.5 {angstrom}, and beam energy of 15 GeV. Thus it is important to check quantitatively the emittance effect on the transverse coherence. I will examine the emittance effect on transverse coherence by analyzing different transverse modes and show that full transverse coherence can be obtained even at the LCLS parameter regime.

  17. Radiation Safety System of the B-Factory at the Stanford Linear Accelerator Center

    SciTech Connect

    Liu, James C

    1998-10-12

    The radiation safety system (RSS) of the B-Factory accelerator facility at the Stanford Linear Accelerator Center (SLAC) is described. The RSS, which is designed to protect people from prompt radiation exposure due to beam operation, consists of the access control system (ACS) and the radiation containment system (RCS). The ACS prevents people from being exposed to the very high radiation levels inside a beamline shielding housing. The ACS consists of barriers, a standard entry module at every entrance, and beam stoppers. The RCS prevents people from being exposed to the radiation outside a shielding housing, due to either normal or abnormal operation. The RCS consists of power limiting devices, shielding, dump/collimator, and an active radiation monitor system. The inter-related system elements for the ACS and RCS, as well as the associated interlock network, are described. The policies and practices in setting up the RSS are also compared with the regulatory requirements.

  18. Parallel Computation of Integrated Electromagnetic, Thermal and Structural Effects for Accelerator Cavities

    SciTech Connect

    Akcelik, V.; Candel, A.E.; Kabel, A.C.; Ko, K.; Lee, L.; Li, Z.; Ng, C.K.; Xiao, L.; /SLAC

    2011-11-02

    The successful operation of accelerator cavities has to satisfy both rf and mechanical requirements. It is highly desirable that electromagnetic, thermal and structural effects such as cavity wall heating and Lorentz force detuning in superconducting rf cavities can be addressed in an integrated analysis. Based on the SLAC parallel finite-element code infrastructure for electromagnetic modeling, a novel multi-physics analysis tool has been developed to include additional thermal and mechanical effects. The parallel computation enables virtual prototyping of accelerator cavities on computers, which would substantially reduce the cost and time of a design cycle. The multi-physics tool is applied to the LCLS rf gun for electromagnetic, thermal and structural analyses.

  19. Parallel Computation of Intergrated Electronmagnetic, Thermal and Structural Effects for Accelerator Cavities

    SciTech Connect

    Akcelik, V.; Candel, A.; Kabel, A.; Lee, L-Q.; Li, Z.; Ng, C-K.; Xiao, L.; Ko, K.

    2008-07-02

    The successful operation of accelerator cavities has to satisfy both rf and mechanical requirements. It is highly desirable that electromagnetic, thermal and structural effects such as cavity wall heating and Lorentz force detuning in superconducting rf cavities can be addressed in an integrated analysis. Based on the SLAC parallel finite-element code infrastructure for electromagnetic modeling, a novel multi-physics analysis tool has been developed to include additional thermal and mechanical effects. The parallel computation enables virtual prototyping of accelerator cavities on computers, which would substantially reduce the cost and time of a design cycle. The multi-physics tool is applied to the LCLS rf gun for electromagnetic, thermal and structural analyses.

  20. Start-to-End Simulations of the LCLS Accelerator and FEL Performance at Very Low Charge

    SciTech Connect

    Ding, Y; Brachmann, A.; Decker, F.-J.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Loos, H.; Miahnahri, A.; Nuhn, H.-D.; Ratner, D.; Turner, J.; Welch, J.; White, W.; Wu, J.; Pellegrini, C.; /UCLA

    2009-05-26

    The Linac Coherent Light Source (LCLS) is an x-ray Free-electron Laser (FEL) being commissioned at Stanford Linear Accelerator Center (SLAC). Recent beam measurements have shown that, using the LCLS injector-linac-compressors, the beam emittance is very small at 20 pC. In this paper we perform start-to-end simulations of the entire accelerator including the FEL undulator and study the FEL performance versus the bunch charge. At 20 pC charge, these calculations associated with the measured beam parameters suggest the possibility of generating a longitudinally coherent single x-ray spike with 2-femtosecond (fs) duration at a wavelength of 1.5 nm. At 100 pC charge level, our simulations show an x-ray pulse with 10 femtosecond duration and up to 10{sup 12} photons at a wavelength of 1.5 {angstrom}. These results open exciting possibilities for ultrafast science and single shot molecular imaging.

  1. Incident and Emergency Centre of the IAEA.

    PubMed

    Baciu, Florian; Buglova, Elena; Martincic, Rafael; Spiegelberg Planer, Rejane; Stern, Warren; Winkler, Guenther

    2010-06-01

    The Incident and Emergency Centre of the International Atomic Emergency Agency is the global focal point for preparedness, event reporting, and response to nuclear and radiological incidents and emergencies irrespective of their cause. The Centre continuously works to develop standards and guidance for strengthening Member States' preparedness; develops practical tools and training programs to assist Member States in promptly applying the standards and guidance; and organizes a variety of training events and exercises. The Centre evaluates national plans and assists in their development; facilitates effective communication between countries; develops response procedures; and supports national exercises. The Centre provides access to multiple information resources; assesses trends that may influence crisis and consequence management plans and response; and develops and continuously enhances methodology for identifying conditions needed for early warning and response. The Centre provides around-the-clock assistance to Member States in dealing with nuclear and radiological events, including security related events through timely and efficient services and the provision of a coordinated international response to such emergencies. PMID:20445379

  2. CMS centres worldwide: A new collaborative infrastructure

    SciTech Connect

    Taylor, Lucas; Gottschalk, Erik; /Fermilab

    2010-01-01

    The CMS Experiment at the LHC is establishing a global network of inter-connected 'CMS Centres' for controls, operations and monitoring. These support: (1) CMS data quality monitoring, detector calibrations, and analysis; and (2) computing operations for the processing, storage and distribution of CMS data. We describe the infrastructure, computing, software, and communications systems required to create an effective and affordable CMS Centre. We present our highly successful operations experiences with the major CMS Centres at CERN, Fermilab, and DESY during the LHC first beam data-taking and cosmic ray commissioning work. The status of the various centres already operating or under construction in Asia, Europe, Russia, South America, and the USA is also described. We emphasise the collaborative communications aspects. For example, virtual co-location of experts in CMS Centres Worldwide is achieved using high-quality permanently-running 'telepresence' video links. Generic Web-based tools have been developed and deployed for monitoring, control, display management and outreach.

  3. Data Centres In The Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Genova, F.

    2006-08-01

    Astronomy has been at the forefront for the development of on-line services, and astronomers routinely retrieve data from observatory archives, information from value-added services provided by data centres, and bibliography from the ADS and electronic journals. The Virtual Observatory aims at going one step further by providing astronomers with seamless and transparent access to data and services, and data centres with a framework to publish their data and services. Many teams size the opportunity and express their willingness to provide VO services in their domains of expertise, such as data compilations or specific tools, including theory data and services. The VO allows astronomers to discover and use resources of interest for their research, and specific tools can be interfaced with more general VO portals. This means that even small teams can have a significant contribution if they choose the proper niche. VO projects are organising themselves to help these new data centres to uptake the VO framework. Traditional data centres also have a role to play in explaining the constraints linked to service quality and sustainability. The VO "Data Centre Alliance" opens exciting new prospects for increasing the sharing of knowledge throughout the community.

  4. Improved plasma accelerator

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  5. Emotional intelligence and patient-centred care

    PubMed Central

    Birks, Yvonne F; Watt, Ian S

    2007-01-01

    The principles of patient-centred care are increasingly stressed as part of health care policy and practice. Explanations for why some practitioners seem more successful in achieving patient-centred care vary, but a possible role for individual differences in personality has been postulated. One of these, emotional intelligence (EI), is increasingly referred to in health care literature. This paper reviews the literature on EI in health care and poses a series of questions about the links between EI and patient-centred outcomes. Papers concerning empirical examinations of EI in a variety of settings were identified to determine the evidence base for its increasing popularity. The review suggests that a substantial amount of further research is required before the value of EI as a useful concept can be substantiated. PMID:17682030

  6. Beam-based measurements of long-range transverse wakefields in the Compact Linear Collider main-linac accelerating structure

    NASA Astrophysics Data System (ADS)

    Zha, Hao; Latina, Andrea; Grudiev, Alexej; De Michele, Giovanni; Solodko, Anastasiya; Wuensch, Walter; Schulte, Daniel; Adli, Erik; Lipkowitz, Nate; Yocky, Gerald S.

    2016-01-01

    The baseline design of CLIC (Compact Linear Collider) uses X-band accelerating structures for its main linacs. In order to maintain beam stability in multibunch operation, long-range transverse wakefields must be suppressed by 2 orders of magnitude between successive bunches, which are separated in time by 0.5 ns. Such strong wakefield suppression is achieved by equipping every accelerating structure cell with four damping waveguides terminated with individual rf loads. A beam-based experiment to directly measure the effectiveness of this long-range transverse wakefield and benchmark simulations was made in the FACET test facility at SLAC using a prototype CLIC accelerating structure. The experiment showed good agreement with the simulations and a strong suppression of the wakefields with an unprecedented minimum resolution of 0.1 V /(pC mm m ) .

  7. Acceleration gradient of a plasma wakefield accelerator

    SciTech Connect

    Uhm, Han S.

    2008-02-25

    The phase velocity of the wakefield waves is identical to the electron beam velocity. A theoretical analysis indicates that the acceleration gradient of the wakefield accelerator normalized by the wave breaking amplitude is K{sub 0}({xi})/K{sub 1}({xi}), where K{sub 0}({xi}) and K{sub 1}({xi}) are the modified Bessel functions of the second kind of order zero and one, respectively and {xi} is the beam parameter representing the beam intensity. It is also shown that the beam density must be considerably higher than the diffuse plasma density for the large radial velocity of plasma electrons that are required for a high acceleration gradient.

  8. Far field acceleration

    SciTech Connect

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

  9. Angular Acceleration Without Torque?

    NASA Astrophysics Data System (ADS)

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.2

  10. Sustained linear acceleration

    NASA Technical Reports Server (NTRS)

    Fraser, T. M.

    1973-01-01

    The subjective effects of sustained acceleration are discussed, including positive, negative, forward, backward, and lateral acceleration effects. Physiological effects, such as retinal and visual response, unconsciousness and cerebral function, pulmonary response, and renal output, are studied. Human tolerance and performance under sustained acceleration are ascertained.

  11. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  12. Acceleration: It's Elementary

    ERIC Educational Resources Information Center

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  13. Optimizing Data Centre Energy and Environmental Costs

    NASA Astrophysics Data System (ADS)

    Aikema, David Hendrik

    Data centres use an estimated 2% of US electrical power which accounts for much of their total cost of ownership. This consumption continues to grow, further straining power grids attempting to integrate more renewable energy. This dissertation focuses on assessing and reducing data centre environmental and financial costs. Emissions of projects undertaken to lower the data centre environmental footprints can be assessed and the emission reduction projects compared using an ISO-14064-2-compliant greenhouse gas reduction protocol outlined herein. I was closely involved with the development of the protocol. Full lifecycle analysis and verifying that projects exceed business-as-usual expectations are addressed, and a test project is described. Consuming power when it is low cost or when renewable energy is available can be used to reduce the financial and environmental costs of computing. Adaptation based on the power price showed 10--50% potential savings in typical cases, and local renewable energy use could be increased by 10--80%. Allowing a fraction of high-priority tasks to proceed unimpeded still allows significant savings. Power grid operators use mechanisms called ancillary services to address variation and system failures, paying organizations to alter power consumption on request. By bidding to offer these services, data centres may be able to lower their energy costs while reducing their environmental impact. If providing contingency reserves which require only infrequent action, savings of up to 12% were seen in simulations. Greater power cost savings are possible for those ceding more control to the power grid operator. Coordinating multiple data centres adds overhead, and altering at which data centre requests are processed based on changes in the financial or environmental costs of power is likely to increase this overhead. Tests of virtual machine migrations showed that in some cases there was no visible increase in power use while in others power use

  14. EDITORIAL: Laser and Plasma Accelerators Workshop, Kardamyli, Greece, 2009 Laser and Plasma Accelerators Workshop, Kardamyli, Greece, 2009

    NASA Astrophysics Data System (ADS)

    Bingham, Bob; Muggli, Patric

    2011-01-01

    -resolved radiobiology or chemistry. Such laser-generated beams will form the basis of the fifth generation light sources and will be compact versions of the much more expensive fourth generation XFEL, such as LCLS light sources. Laser-driven ion acceleration is also making rapid headway; one of the goals in these experiments is to produce protons and carbon ions of hundreds of MeV for oncology. These experiments are carried out using solid-target-laser interactions. There is still a number of issues to be resolved in these experiments including the origin of light ions. The paper by Willingale et al addresses this issue and demonstrates that deuteron ions originating from the front surface can gain comparable energies as those from the rear surface. Furthermore, from two-dimensional simulations they show that a proton-rich contamination layer over the surface is detrimental to deuteron ion acceleration from the rear surface but not detrimental to the front surface acceleration mechanism. Studies of different laser polarizations on ion acceleration at the rear surface were reported by Antici et al. It was shown that no real enhancement using a particular polarization was found. At higher radiation intensities, especially with the multi-petawatt lasers being planned, radiation reaction becomes important. This was reported by Chen et al who found that radiation reaction effects on ion acceleration in laser-foil interactions impeded the backward moving electrons, which enhanced the ion acceleration. An interesting new development is the use of ultra-relativistic proton beams to drive plasma wakefields. This is similar to the SLAC electron-beam-driven wakefields. However, unlike the SLAC electron beam, which is of the order of 30 fs long and matches the period of the plasma wave necessary to create the blowout or bubble regime, the ion beam is very much longer. To create shorter ion beams a magnetic compression scheme is investigated in the paper by Caldwell et al, and results for proton

  15. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  16. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  17. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  18. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  19. Cactus: The Centres of a Triangle

    ERIC Educational Resources Information Center

    Hyde, Hartley

    2009-01-01

    This is the first of two articles which describe how to use "JavaSketchPad" to explore the centres of a triangle. This introductory exercise is suggested in the GSP "Workshop Guide". Students can use "JavaSketchPad Interactive Geometry" (JSP) at home at no cost. They are likely to impress their parents with their enthusiasm for geometry and all…

  20. Student-Centred Learning: A Humanist Perspective

    ERIC Educational Resources Information Center

    Tangney, Sue

    2014-01-01

    The notion of student-centred learning is often not defined; within the pedagogic literature it is generally associated with constructivism or principles associated with a constructivist environment such as building on prior knowledge, purposeful active learning and sense-making. An informal enquiry into conceptions of university staff prior to…

  1. Learner-Centred Education and "Cultural Translation"

    ERIC Educational Resources Information Center

    Thompson, Paul

    2013-01-01

    This paper contests the proposal that learner-centred education (LCE) may simply be a western construct, irrelevant to the current educational needs of developing countries, by arguing that its specific forms will be more effective when introduced through small-scale institutional relationships than through large-scale contracts with national…

  2. UV LED lighting for automated crystal centring

    PubMed Central

    Chavas, Leonard M. G.; Yamada, Yusuke; Hiraki, Masahiko; Igarashi, Noriyuki; Matsugaki, Naohiro; Wakatsuki, Soichi

    2011-01-01

    A direct outcome of the exponential growth of macromolecular crystallography is the continuously increasing demand for synchrotron beam time, both from academic and industrial users. As more and more projects entail screening a profusion of sample crystals, fully automated procedures at every level of the experiments are being implemented at all synchrotron facilities. One of the major obstacles to achieving such automation lies in the sample recognition and centring in the X-ray beam. The capacity of UV light to specifically react with aromatic residues present in proteins or with DNA base pairs is at the basis of UV-assisted crystal centring. Although very efficient, a well known side effect of illuminating biological samples with strong UV sources is the damage induced on the irradiated samples. In the present study the effectiveness of a softer UV light for crystal centring by taking advantage of low-power light-emitting diode (LED) sources has been investigated. The use of UV LEDs represents a low-cost solution for crystal centring with high specificity. PMID:21169682

  3. Centre for International Cooperation and Services.

    ERIC Educational Resources Information Center

    Open Univ., Walton, Bletchley, Bucks (England).

    The Centre for International Cooperation and Services (CICS), part of the Open University of the United Kingdom, is described. Distance learning is defined and related to the Open University. Information is provided on the establishment, work, services, and resources of the CICS. A wallet folder at the back of the booklet contains details of the…

  4. Myanmar: The Community Learning Centre Experience.

    ERIC Educational Resources Information Center

    Middelborg, Jorn; Duvieusart, Baudouin, Ed.

    A community learning centre (CLC) is a local educational institution outside the formal education system, usually set up and managed by local people. CLCs were first introduced in Myanmar in 1994, and by 2001 there were 71 CLCs in 11 townships. The townships are characterized by remoteness, landlessness, unemployment, dependency on one cash crop,…

  5. Self Assessment and Student-Centred Learning

    ERIC Educational Resources Information Center

    McDonald, Betty

    2012-01-01

    This paper seeks to show how self assessment facilitates student-centred learning (SCL) and fills a gap in the literature. Two groups of students were selected from a single class in a tertiary educational institution. The control group of 25 was selected randomly by the tossing of an unbiased coin (heads = control group). They were trained in the…

  6. Person-Centred (Deictic) Expressions and Autism

    ERIC Educational Resources Information Center

    Hobson, R. Peter; Garcia-Perez, Rosa M.; Lee, Anthony

    2010-01-01

    We employed semi-structured tests to determine whether children with autism produce and comprehend deictic (person-centred) expressions such as "this"/"tilde" "here"/"there" and "come"/"go", and whether they understand atypical non-verbal gestural deixis in the form of directed head-nods to indicate location. In Study 1, most participants…

  7. Crystallographic Data Centre Services and Publications.

    ERIC Educational Resources Information Center

    Cambridge Univ. (England). Chemical Lab.

    The Cambridge Crystallographic Data Centre is concerned with the retrieval, evaluation, synthesis, and dissemination of structural data based on diffraction methods. The source of input is almost entirely primary journals. Bibliographic information and numeric data on crystal and molecular structures are on magnetic tapes. The bibliographic file…

  8. Youth Research Centre Annual Report, 2002.

    ERIC Educational Resources Information Center

    Melbourne Univ. (Australia). Youth Research Centre.

    This report details the activities of the Youth Research Centre (YRC) at the University of Melbourne in 2002 in research project work involving a balance between the completion of projects, the development of new areas, and the continuation of longer-term projects as well as the supervision and teaching of a range of postgraduate health and…

  9. Centring the Subject in Order to Educate

    ERIC Educational Resources Information Center

    Webster, R. Scott

    2007-01-01

    It is important for educators to recognise that the various calls to decentre the subject--or self--should not be interpreted as necessarily requiring the removal of the subject altogether. Through the individualism of the Enlightenment the self was centred. This highly individualistic notion of the sovereign self has now been decentred especially…

  10. Do We Need Teachers in Children's Centres?

    ERIC Educational Resources Information Center

    Grenier, Julian

    2006-01-01

    This account considers the need for qualified teachers and headteachers in Children's Centres in England. It describes the ongoing decline in the importance of nursery education, and the concurrent expansion of childcare. The author argues that the best response to increasingly formal approaches in the early years is to maintain the role of the…

  11. Visiting a science centre: what's on offer?

    NASA Astrophysics Data System (ADS)

    Russell, Ian

    1990-09-01

    Science centres are a valuable resource, used more frequently by family groups and primary school parties than by secondary schools. The importance of affective learning, involving attitude changes, is stressed. Provided the right approach is used, accompanying adults can help children get the most out of a visit.

  12. In the Field: The Canadian Ecology Centre.

    ERIC Educational Resources Information Center

    Magee, Clare

    2000-01-01

    The Canadian Ecology Centre (Ontario) offers year-round residential and day programs in outdoor and environmental education for secondary students, field placement and internship opportunities for college students, and ecotourism programs, while providing employment and tax revenues to the local community. Dubbed consensus environmentalism, the…

  13. Progress report on future accelerators

    SciTech Connect

    Panofsky, W.K.H.

    1984-02-01

    SLAC intends to pursue high energy physics work in the future along three lines: (1) continued exploration of electron and photon physics on stationary targets; (2) colliding beam physics using electron-positron storage rings; (3) single-pass collider physics with electrons using first the Stanford Linear Collider (SLC) and eventually a single-pass collider operating near the highest practical upper limit for such devices. These long-range plans are discussed.

  14. High Gradient Accelerator Cavities Using Atomic Layer Deposition

    SciTech Connect

    Ives, Robert Lawrence; Parsons, Gregory; Williams, Philip; Oldham, Christopher; Mundy, Zach; Dolgashev, Valery

    2014-12-09

    In the Phase I program, Calabazas Creek Research, Inc. (CCR), in collaboration with North Carolina State University (NCSU), fabricated copper accelerator cavities and used Atomic Layer Deposition (ALD) to apply thin metal coatings of tungsten and platinum. It was hypothesized that a tungsten coating would provide a robust surface more resistant to arcing and arc damage. The platinum coating was predicted to reduce processing time by inhibiting oxides that form on copper surfaces soon after machining. Two sets of cavity parts were fabricated. One was coated with 35 nm of tungsten, and the other with approximately 10 nm of platinum. Only the platinum cavity parts could be high power tested during the Phase I program due to schedule and funding constraints. The platinum coated cavity exhibit poor performance when compared with pure copper cavities. Not only did arcing occur at lower power levels, but the processing time was actually longer. There were several issues that contributed to the poor performance. First, machining of the base copper cavity parts failed to achieve the quality and cleanliness standards specified to SLAC National Accelerator Center. Secondly, the ALD facilities were not configured to provide the high levels of cleanliness required. Finally, the nanometer coating applied was likely far too thin to provide the performance required. The coating was ablated or peeled from the surface in regions of high fields. It was concluded that the current ALD process could not provide improved performance over cavities produced at national laboratories using dedicated facilities.

  15. Beam Head Erosion in Self-Ionized Plasma Wakefield Accelerators

    SciTech Connect

    Berry, M.K.; Blumenfeld, I.; Decker, F.J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.A.; Siemann, Robert H.; Walz, D.R.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2008-01-28

    In the recent plasma wakefield accelerator experiments at SLAC, the energy of the particles in the tail of the 42 GeV electron beam were doubled in less than one meter [1]. Simulations suggest that the acceleration length was limited by a new phenomenon--beam head erosion in self-ionized plasmas. In vacuum, a particle beam expands transversely in a distance given by {beta}*. In the blowout regime of a plasma wakefield [2], the majority of the beam is focused by the ion channel, while the beam head slowly spreads since it takes a finite time for the ion channel to form. It is observed that in self-ionized plasmas, the head spreading is exacerbated compared to that in pre-ionized plasmas, causing the ionization front to move backward (erode). A simple theoretical model is used to estimate the upper limit of the erosion rate for a bi-gaussian beam by assuming free expansion of the beam head before the ionization front. Comparison with simulations suggests that half this maximum value can serve as an estimate for the erosion rate. Critical parameters to the erosion rate are discussed.

  16. Beam head erosion in self-ionized plasma wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Zhou, Miaomiao; Clayton, Chris; Huang, Chengkun; Joshi, Chan; Lu, Wei; Marsh, Ken; Mori, Warren; Katsouleas, Tom; Muggli, Patric; Oz, Erdem; Berry, Melissa; Blumenfeld, Ian; Decker, Franz-Josef; Hogan, Mark; Ischebeck, Rasmus; Iverson, Richard; Kirby, Neil; Siemman, Robert; Walz, Dieter

    2007-11-01

    In the recent plasma wakefield accelerator experiments at SLAC, the energy of the particles in the tail of the 42 GeV electron beam were doubled in less than one meter [1]. Simulations suggest that the acceleration length was limited by a new phenomenon -- beam head erosion in self-ionized plasmas. In vacuum, a particle beam expands transversely in a distance given by beta*. In the blowout regime of a plasma wakefield [2], the majority of the beam is focused by the ion channel, while the beam head slowly spreads since it takes a finite time for the ion channel to form. Beam/plasma parameter scan in a large range using simulations shows that in self-ionized plasmas, the head spreading is exacerbated compared to that in pre-ionized plasmas, causing the ionization front to move backward (erode). A theoretical analysis on the erosion rate dependence on beam/plasma parameters and its implications on future afterburner relevant experiments will be provided. [1] I. Blumenfeld et al., Nature 445, 741(2007) [2] J. B. Rosenzweig et al., Phys. Rev. A 44, R6189 (1991)

  17. Plasma inverse transition acceleration

    SciTech Connect

    Xie, Ming

    2001-06-18

    It can be proved fundamentally from the reciprocity theorem with which the electromagnetism is endowed that corresponding to each spontaneous process of radiation by a charged particle there is an inverse process which defines a unique acceleration mechanism, from Cherenkov radiation to inverse Cherenkov acceleration (ICA) [1], from Smith-Purcell radiation to inverse Smith-Purcell acceleration (ISPA) [2], and from undulator radiation to inverse undulator acceleration (IUA) [3]. There is no exception. Yet, for nearly 30 years after each of the aforementioned inverse processes has been clarified for laser acceleration, inverse transition acceleration (ITA), despite speculation [4], has remained the least understood, and above all, no practical implementation of ITA has been found, until now. Unlike all its counterparts in which phase synchronism is established one way or the other such that a particle can continuously gain energy from an acceleration wave, the ITA to be discussed here, termed plasma inverse transition acceleration (PITA), operates under fundamentally different principle. As a result, the discovery of PITA has been delayed for decades, waiting for a conceptual breakthrough in accelerator physics: the principle of alternating gradient acceleration [5, 6, 7, 8, 9, 10]. In fact, PITA was invented [7, 8] as one of several realizations of the new principle.

  18. Multidisciplinary centres for safety and quality improvement: learning from climate change science

    PubMed Central

    Batalden, Paul; Davidoff, Frank

    2011-01-01

    Effective improvement and research rely on sustained multidisciplinary collaboration, but few examples are available of centres with the broad range of disciplines and practical experience that are needed to sustain long-term improvement in healthcare quality and safety. In a number of respects, the parlous state of the quality and safety of medical care resembles the problem of climate change. Both constitute a profoundly serious man-made threat to the public good which have until recently been both ignored and denied but are increasingly being recognised, taken seriously and acted on. Among the most interesting and important responses to the challenge of climate change has been the creation of Centres of Climate Change in which experts from multiple diverse disciplines are brought together to tackle the problem. Such centres, while science-based, express their vision in solid pragmatic terms and embrace policy, public engagement and education as essential components of that vision. Cross-discipline collaboration has unfortunately not achieved the same effectiveness or visibility in healthcare quality and safety as it has in the area of climate change. The authors argue that there is a need to create multidisciplinary centres in healthcare to accelerate the improvement of safety and quality, and provide the necessary theoretical and empirical foundations. Such centres would draw on disciplines such as epidemiology, statistics and relevant clinical disciplines but equally from psychology, engineering, ergonomics, sociology, economics, organisational development in addition to engaging with patients and citizens and leaders with practical experience of improvement in the field. In this paper, we address some of the pragmatic challenges of creating such centres and consider how the right groups and networks of researchers and practitioners might be assembled. PMID:21450778

  19. Wakefield Damping in a Pair of X-Band Accelerators for Linear Colliders

    SciTech Connect

    Jones, R.M.; Adolphsen, C.E.; Wang, J.W.; Li, Z.; /SLAC

    2006-12-18

    We consider means to damp the wake-field left behind ultra-relativistic charges. In particular, we focus on a pair of travelling wave accelerators operating at an X-band frequency of 11.424 GHz. In order to maximize the efficiency of acceleration, in the context of a linear collider, multiple bunches of charged particles are accelerated within a given pulse of the electromagnetic field. The wake-field left behind successive bunches, if left unchecked, can seriously disturb the progress of trailing bunches and can lead to an appreciable dilution in the emittance of the beam. We report on a method to minimize the influence of the wake-field on trailing bunches. This method entails detuning the characteristic mode frequencies which make-up the electromagnetic field, damping the wake-field, and interleaving the frequencies of adjacent accelerating structures. Theoretical predictions of the wake-field and modes, based on a circuit model, are compared with experimental measurements of the wake-field conducted within the ASSET facility at SLAC. Very good agreement is obtained between theory and experiment and this allows us to have some confidence in designing the damping of wake-fields in a future linear collider consisting of several thousand of these accelerating structures.

  20. The Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  1. ACCELERATION RESPONSIVE SWITCH

    DOEpatents

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  2. Space Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This training video, presented by the Lewis Research Center's Space Experiments Division, gives a background and detailed instructions for preparing the space acceleration measurement system (SAMS) for use. The SAMS measures, conditions, and records forces of low gravity accelerations, and is used to determine the effect of these forces on various experiments performed in microgravity. Inertial sensors are used to measure positive and negative acceleration over a specified frequency range. The video documents the SAMS' uses in different configurations during shuttle missions.

  3. Wake field accelerators

    SciTech Connect

    Wilson, P.B.

    1986-02-01

    In a wake field accelerator a high current driving bunch injected into a structure or plasma produces intense induced fields, which are in turn used to accelerate a trailing charge or bunch. The basic concepts of wake field acceleration are described. Wake potentials for closed cavities and periodic structures are derived, as are wake potentials on a collinear path with a charge distribution. Cylindrically symmetric structures excited by a beam in the form of a ring are considered. (LEW)

  4. Accelerating into the future

    NASA Astrophysics Data System (ADS)

    Murray, Cherry

    2009-05-01

    Accelerator science has traditionally been associated with high-energy physics and nuclear physics. But the use of accelerators in other areas of science, as well as in medicine and industry, is steadily growing. Accelerators are now, for example, used to treat cancer using proton therapy, which can deposit radiation onto a tumour while causing much less damage to surrounding healthy tissue than with other treatment techniques.

  5. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  6. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  7. Miniaturization Techniques for Accelerators

    SciTech Connect

    Spencer, James E.

    2003-05-27

    The possibility of laser driven accelerators [1] suggests the need for new structures based on micromachining and integrated circuit technology because of the comparable scales. Thus, we are exploring fully integrated structures including sources, optics (for both light and particle) and acceleration in a common format--an accelerator-on-chip (AOC). Tests suggest a number of preferred materials and techniques but no technical or fundamental roadblocks at scales of order 1 {micro}m or larger.

  8. Collaborating at a distance: operations centres, tools, and trends

    SciTech Connect

    Gottschalk, Erik E.; /Fermilab

    2009-05-01

    Successful operation of the LHC and its experiments is crucial to the future of the worldwide high-energy physics program. Remote operations and monitoring centres have been established for the CMS experiment in several locations around the world. The development of remote centres began with the LHC{at}FNAL ROC and has evolved into a unified approach with distributed centres that are collectively referred to as 'CMS Centres Worldwide'. An overview of the development of remote centres for CMS will be presented, along with a synopsis of collaborative tools that are used in these centres today and trends in the development of remote operations capabilities for high-energy physics.

  9. Cost Based Failure Modes and Effects Analysis (FMEA) for Systems of Accelerator Magnets.

    SciTech Connect

    Spencer, Cherrill M

    2003-06-02

    The proposed Next Linear Collider (NLC) has a proposed 85% overall availability goal, the availability specifications for all its 7200 magnets and their 6167 power supplies are 97.5% each. Thus all of the electromagnets and their power supplies must be highly reliable or quickly repairable. Improved reliability or repairability comes at a higher cost. We have developed a set of analysis procedures for magnet designers to use as they decide how much effort to exert, i.e. how much money to spend, to improve the reliability of a particular style of magnet. We show these procedures being applied to a standard SLAC electromagnet design in order to make it reliable enough to meet the NLC availability specs. First, empirical data from SLAC's accelerator failure database plus design experience are used to calculate MTBF for failure modes identified through a FMEA. Availability for one particular magnet can be calculated. Next, labor and material costs to repair magnet failures are used in a Monte Carlo simulation to calculate the total cost of all failures over a 30-year lifetime. Opportunity costs are included. Engineers choose from amongst various designs by comparing lifecycle costs.

  10. Particle acceleration in flares

    NASA Technical Reports Server (NTRS)

    Benz, Arnold O.; Kosugi, Takeo; Aschwanden, Markus J.; Benka, Steve G.; Chupp, Edward L.; Enome, Shinzo; Garcia, Howard; Holman, Gordon D.; Kurt, Victoria G.; Sakao, Taro

    1994-01-01

    Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, gamma-rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.

  11. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  12. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. PMID:24365468

  13. Acceleration of polarized protons in circular accelerators

    SciTech Connect

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  14. CMS Centres Worldwide - a New Collaborative Infrastructure

    NASA Astrophysics Data System (ADS)

    Taylor, Lucas

    2011-12-01

    The CMS Experiment at the LHC has established a network of more than fifty inter-connected "CMS Centres" at CERN and in institutes in the Americas, Asia, Australasia, and Europe. These facilities are used by people doing CMS detector and computing grid operations, remote shifts, data quality monitoring and analysis, as well as education and outreach. We present the computing, software, and collaborative tools and videoconferencing systems. These include permanently running "telepresence" video links (hardware-based H.323, EVO and Vidyo), Webcasts, and generic Web tools such as CMS-TV for broadcasting live monitoring and outreach information. Being Web-based and experiment-independent, these systems could easily be extended to other organizations. We describe the experiences of using CMS Centres Worldwide in the CMS data-taking operations as well as for major media events with several hundred TV channels, radio stations, and many more press journalists simultaneously around the world.

  15. Phase detector and phase feedback for a single bunch in a two-bunch damping ring for the SLAC Linear Collider

    SciTech Connect

    Schwarz, H.D.; Judkins, J.G.

    1987-03-01

    The synchronous phase of a bunch of positrons or electrons being damped in a SLAC Linear Collider (SLC) damping ring is dependent on beam intensity. Injection for alternate bunches into the SLC linac from the damping rings should occur at a constant phase. A phase detector was developed allowing the measurement of phase of a single-stored bunch in the presence of a second bunch in reference to the phase of the linac. The single-bunch phase is derived from beam position monitor signals using a switching scheme to separate the two bunches circulating in each damping ring. The hardware is described including feedback loops to stabilize the extraction phase.

  16. A Test Facility for the International Linear Collider at SLAC End Station A, for Prototypes of Beam Delivery and IR Components

    SciTech Connect

    Woods, M.; Erickson, R.; Frisch, J.; Hast, C.; Jobe, R.K.; Keller, L.; Markiewicz, T.; Maruyama, T.; McCormick, D.; Nelson, J.; Nelson, T.; Phinney, N.; Raubenheimer, T.; Ross, M.; Seryi, A.; Smith, S.; Szalata, Z.; Tenenbaum, P.; Woodley, M.; Angal-Kalinin, D.; Beard, C.; /Daresbury /CERN /DESY /KEK, Tsukuba /LLNL, Livermore /Lancaster U. /Manchester U. /Notre Dame U. /Queen Mary, U. of London /Darmstadt, Tech. Hochsch. /Birmingham U. /Bristol U. /UC, Berkeley /Cambridge U. /University Coll. London /Massachusetts U., Amherst /Oregon U.

    2005-05-23

    The SLAC Linac can deliver damped bunches with ILC parameters for bunch charge and bunch length to End Station A. A 10Hz beam at 28.5 GeV energy can be delivered there, parasitic with PEP-II operation. We plan to use this facility to test prototype components of the Beam Delivery System and Interaction Region. We discuss our plans for this ILC Test Facility and preparations for carrying out experiments related to collimator wakefields and energy spectrometers. We also plan an interaction region mockup to investigate effects from backgrounds and beam-induced electromagnetic interference.

  17. Comparison Study of Electromagnet and Permanent Magnet Systems for an Accelerator Using Cost-Based Failure Modes and Effects Analysis.

    SciTech Connect

    Spencer, C

    2004-02-19

    The next generation of particle accelerators will be one-of-a-kind facilities, and to meet their luminosity goals they must have guaranteed availability over their several decade lifetimes. The Next Linear Collider (NLC) is one viable option for a 1 TeV electron-positron linear collider, it has an 85% overall availability goal. We previously showed how a traditional Failure Modes and Effects Analysis (FMEA) of a SLAC electromagnet leads to reliability-enhancing design changes. Traditional FMEA identifies failure modes with high risk but does not consider the consequences in terms of cost, which could lead to unnecessarily expensive components. We have used a new methodology, ''Life Cost-Based FMEA'', which measures risk of failure in terms of cost, in order to evaluate and compare two different technologies that might be used for the 8653 NLC magnets: electromagnets or permanent magnets. The availabilities for the two different types of magnet systems have been estimated using empirical data from SLAC's accelerator failure database plus expert opinion on permanent magnet failure modes and industry standard failure data. Labor and material costs to repair magnet failures are predicted using a Monte Carlo simulation of all possible magnet failures over a 30-year lifetime. Our goal is to maximize up-time of the NLC through magnet design improvements and the optimal combination of electromagnets and permanent magnets, while reducing magnet system lifecycle costs.

  18. Scaling FFAG accelerator for muon acceleration

    SciTech Connect

    Lagrange, JB.; Planche, T.; Mori, Y.

    2011-10-06

    Recent developments in scaling fixed field alternating gradient (FFAG) accelerators have opened new ways for lattice design, with straight sections, and insertions like dispersion suppressors. Such principles and matching issues are detailed in this paper. An application of these new concepts is presented to overcome problems in the PRISM project.

  19. Angular velocities, angular accelerations, and coriolis accelerations

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  20. Exploring the mechanical basis for acceleration: pelvic limb locomotor function during accelerations in racing greyhounds (Canis familiaris).

    PubMed

    Williams, S B; Usherwood, J R; Jespers, K; Channon, A J; Wilson, A M

    2009-02-01

    Animals in their natural environments are confronted with a regular need to perform rapid accelerations (for example when escaping from predators or chasing prey). Such acceleration requires net positive mechanical work to be performed on the centre of mass by skeletal muscle. Here we determined how pelvic limb joints contribute to the mechanical work and power that are required for acceleration in galloping quadrupeds. In addition, we considered what, if any, biomechanical strategies exist to enable effective acceleration to be achieved. Simultaneous kinematic and kinetic data were collected for racing greyhounds undergoing a range of low to high accelerations. From these data, joint moments and joint powers were calculated for individual hindlimb joints. In addition, the mean effective mechanical advantage (EMA) of the limb and the ;gear ratio' of each joint throughout stance were calculated. Greatest increases in joint work and power with acceleration appeared at the hip and hock joints, particularly in the lead limb. Largest increases in absolute positive joint work occurred at the hip, consistent with the hypothesis that quadrupeds power locomotion by torque about the hip. In addition, hindlimb EMA decreased substantially with increased acceleration - a potential strategy to increase stance time and thus ground impulses for a given peak force. This mechanism may also increase the mechanical advantage for applying the horizontal forces necessary for acceleration. PMID:19181903

  1. A survey of the practice and management of radiotherapy linear accelerator quality control in the UK

    PubMed Central

    Palmer, A; Kearton, J; Hayman, O

    2012-01-01

    Objectives The objective of this study was to determine current radiotherapy linear accelerator quality control (QC) practice in the UK, as a comparative benchmark and indicator of development needs, and to raise awareness of QC as a key performance indicator. Methods All UK radiotherapy centres were invited to complete an online questionnaire regarding their local QC processes, and submit their QC schedules. The range of QC tests, frequency of measurements and acceptable tolerances in use across the UK were analysed, and consensus and range statistics determined. Results 72% of the UK's 62 radiotherapy centres completed the questionnaire and 40% provided their QC schedules. 60 separate QC tests were identified from the returned schedules. There was a large variation in the total time devoted to QC between centres: interquartile range from 13 to 26 h per linear accelerator per month. There has been a move from weekly to monthly testing of output calibration in the last decade, with reliance on daily constancy testing equipment. 33% of centres thought their schedules were in need of an update and only 30% used risk-assessment approaches to determine local QC schedule content. Less than 30% of centres regularly complete all planned QC tests each month, although 96% achieve over 80% of tests. Conclusions A comprehensive “snapshot” of linear accelerator QC testing practice in the UK has been collated, which demonstrates reasonable agreement between centres in their stated QC test frequencies. However, intelligent design of QC schedules and management is necessary to ensure efficiency and appropriateness. PMID:22674707

  2. Development of the Accelerator Mass Spectrometry technology at the Comenius University in Bratislava

    NASA Astrophysics Data System (ADS)

    Povinec, Pavel P.; Masarik, Jozef; Ješkovský, Miroslav; Kaizer, Jakub; Šivo, Alexander; Breier, Robert; Pánik, Ján; Staníček, Jaroslav; Richtáriková, Marta; Zahoran, Miroslav; Zeman, Jakub

    2015-10-01

    An Accelerator Mass Spectrometry (AMS) laboratory has been established at the Centre for Nuclear and Accelerator Technologies (CENTA) at the Comenius University in Bratislava comprising of a MC-SNICS ion source, 3 MV Pelletron tandem accelerator, and an analyzer of accelerated ions. The preparation of targets for 14C and 129I AMS measurements is described in detail. The development of AMS techniques for potassium, uranium and thorium analysis in radiopure materials required for ultra-low background underground experiments is briefly mentioned.

  3. Engineered and Administrative Safety Systems for the Control of Prompt Radiation Hazards at Accelerator Facilities

    SciTech Connect

    Liu, James C.; Vylet, Vashek; Walker, Lawrence S.; /SLAC

    2007-12-17

    The ANSI N43.1 Standard, currently in revision (ANSI 2007), sets forth the requirements for accelerator facilities to provide adequate protection for the workers, the public and the environment from the hazards of ionizing radiation produced during and from accelerator operations. The Standard also recommends good practices that, when followed, provide a level of radiation protection consistent with those established for the accelerator communities. The N43.1 Standard is suitable for all accelerator facilities (using electron, positron, proton, or ion particle beams) capable of producing radiation, subject to federal or state regulations. The requirements (see word 'shall') and recommended practices (see word 'should') are prescribed in a graded approach that are commensurate with the complexity and hazard levels of the accelerator facility. Chapters 4, 5 and 6 of the N43.1 Standard address specially the Radiation Safety System (RSS), both engineered and administrative systems, to mitigate and control the prompt radiation hazards from accelerator operations. The RSS includes the Access Control System (ACS) and Radiation Control System (RCS). The main requirements and recommendations of the N43.1 Standard regarding the management, technical and operational aspects of the RSS are described and condensed in this report. Clearly some aspects of the RSS policies and practices at different facilities may differ in order to meet the practical needs for field implementation. A previous report (Liu et al. 2001a), which reviews and summarizes the RSS at five North American high-energy accelerator facilities, as well as the RSS references for the 5 labs (Drozdoff 2001; Gallegos 1996; Ipe and Liu 1992; Liu 1999; Liu 2001b; Rokni 1996; TJNAF 1994; Yotam et al. 1991), can be consulted for the actual RSS implementation at various laboratories. A comprehensive report describing the RSS at the Stanford Linear Accelerator Center (SLAC 2006) can also serve as a reference.

  4. Accelerators (4/5)

    ScienceCinema

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  5. J-PARC Accelerator

    SciTech Connect

    Yamazaki, Yoshishige

    2008-02-21

    The Japan Proton Accelerator Research Complex (J-PARC) is under construction in Tokai site. The linac beam commissioning started last fall, while the beam commissioning of the 3-GeV Rapid-Cycling Synchrotron (RCS) will start this fall. The status of the J-PARC accelerator is reported with emphasis on the technical development accomplished for the J-PARC.

  6. Particle Acceleration in Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi

    2005-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma ray burst (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments.

  7. Diagnostics for induction accelerators

    SciTech Connect

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960`s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore`s Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail.

  8. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  9. Microscale acceleration history discriminators

    DOEpatents

    Polosky, Marc A.; Plummer, David W.

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  10. KEK digital accelerator

    NASA Astrophysics Data System (ADS)

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  11. Accelerators (5/5)

    ScienceCinema

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  12. Accelerating global forest mortality

    NASA Astrophysics Data System (ADS)

    McDowell, N. G.

    2014-12-01

    Forest mortality is apparently accelerating globally. The evidence supporting this contention is now substantial, as is the evidence suggesting the acceleration has just begun and will become progressively worse in upcoming decades. I will review the data and models used to make these contentions.

  13. Accelerators (3/5)

    ScienceCinema

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  14. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  15. The Albion Street Centre database, Sydney, Australia.

    PubMed

    Gold, J

    1998-01-01

    The Albion Street Centre was established in 1985 as an HIV testing and early management center. More than 22,000 people have been screened for HIV and other blood-borne infections at the Centre, and approximately 3,600 people with HIV/AIDS have been managed there. Approximately 1,600 patients with various stages of HIV disease are currently managed at the Centre by a staff of 60 health care professionals and about 1,000 volunteers. The Albion Street Centre's computer database began recording selected demographic, epidemiologic, clinical, and laboratory characteristics when the first patient presented in 1985. Since then, the complexity and utilization of the database has increased in parallel with improvement in the understanding of the natural history and pathogenesis of HIV infection. Over 100 peer-reviewed publications and presentations have been produced from the database and 45 clinical trials have used the database to identify potential subjects. All data are de-identified and are protected by multiple password codes. Approximately 700 variables are collected from each HIV-positive patient at the initial visit to the Centre and up to 200 variables are added at each subsequent routine clinic visit. The variables collected include the following: standard epidemiologic characteristics; transmission and behavioral parameters, clinical signs and symptoms; laboratory test results; treatments; nutritional history; body composition parameters; psychological assessment results; and management history, including neuropsychological testing. The overall number and characteristics of patients recorded in the database are reported monthly, and are used to plan services, for prevention and educational programs, and as an indicator of the effectiveness of campaigns to encourage HIV-positive people to attend clinics for early management. When these patients have been identified they are invited to participate in the study. Individual patient records are identified and

  16. Cascaded radiation pressure acceleration

    SciTech Connect

    Pei, Zhikun; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Zhang, Lingang; Yi, Longqing; Shi, Yin; Xu, Zhizhan

    2015-07-15

    A cascaded radiation-pressure acceleration scheme is proposed. When an energetic proton beam is injected into an electrostatic field moving at light speed in a foil accelerated by light pressure, protons can be re-accelerated to much higher energy. An initial 3-GeV proton beam can be re-accelerated to 7 GeV while its energy spread is narrowed significantly, indicating a 4-GeV energy gain for one acceleration stage, as shown in one-dimensional simulations and analytical results. The validity of the method is further confirmed by two-dimensional simulations. This scheme provides a way to scale proton energy at the GeV level linearly with laser energy and is promising to obtain proton bunches at tens of gigaelectron-volts.

  17. Gamma rays from the Galactic Centre region: A review

    NASA Astrophysics Data System (ADS)

    van Eldik, Christopher

    2015-12-01

    During the last decades, increasingly precise astronomical observations of the Galactic Centre (GC) region at radio, infrared, and X-ray wavelengths laid the foundations to a detailed understanding of the high energy astroparticle physics of this most remarkable location in the Galaxy. Recently, observations of this region in high energy (HE, 10 MeV-100 GeV) and very high energy (VHE, > 100 GeV) γ-rays added important insights to the emerging picture of the Galactic nucleus as a most violent and active region where acceleration of particles to very high energies - possibly up to a PeV - and their transport can be studied in great detail. Moreover, the inner Galaxy is believed to host large concentrations of dark matter (DM), and is therefore one of the prime targets for the indirect search for γ-rays from annihilating or decaying dark matter particles. In this article, the current understanding of the γ-ray emission emanating from the GC is summarised and the results of recent DM searches in HE and VHE γ-rays are reviewed.

  18. Determination of the centre of mass kinematics in alpine skiing using differential global navigation satellite systems.

    PubMed

    Gilgien, Matthias; Spörri, Jörg; Chardonnens, Julien; Kröll, Josef; Limpach, Philippe; Müller, Erich

    2015-01-01

    In the sport of alpine skiing, knowledge about the centre of mass (CoM) kinematics (i.e. position, velocity and acceleration) is essential to better understand both performance and injury. This study proposes a global navigation satellite system (GNSS)-based method to measure CoM kinematics without restriction of capture volume and with reasonable set-up and processing requirements. It combines the GNSS antenna position, terrain data and the accelerations acting on the skier in order to approximate the CoM location, velocity and acceleration. The validity of the method was assessed against a reference system (video-based 3D kinematics) over 12 turn cycles on a giant slalom skiing course. The mean (± s) position, velocity and acceleration differences between the CoM obtained from the GNSS and the reference system were 9 ± 12 cm, 0.08 ± 0.19 m · s(-1) and 0.22 ± 1.28 m · s(-2), respectively. The velocity and acceleration differences obtained were smaller than typical differences between the measures of several skiers on the same course observed in the literature, while the position differences were slightly larger than its discriminative meaningful change. The proposed method can therefore be interpreted to be technically valid and adequate for a variety of biomechanical research questions in the field of alpine skiing with certain limitations regarding position. PMID:25565042

  19. Centre-Based Child Care Quality in Urban Australia

    ERIC Educational Resources Information Center

    Ishimine, Karin; Wilson, Rachel

    2009-01-01

    This study investigates the quality of childcare centres in urban Australian communities designated according to different bands of Centre Location Demographics (CLD). Childcare centres were assessed using the Early Childhood Environment Rating Scale- Revised Edition (ECERS-R) and the Early Childhood Environment Rating Scale-Extension (ECERS-E).…

  20. Canadian Educational Development Centre Websites: More Ebb than Flow?

    ERIC Educational Resources Information Center

    Simmons, Nicola

    2010-01-01

    This paper examines information portrayed on Canadian educational development (ED) centre websites and, in particular, whether information that corresponds to questions compiled from a literature search of ED centre practices is readily available from centre websites. This study phase is part of a larger national study of Canadian educational…