Science.gov

Sample records for accelerator controls network

  1. Broadband accelerator control network

    SciTech Connect

    Skelly, J.; Clifford, T.; Frankel, R.

    1983-01-01

    A broadband data communications network has been implemented at BNL for control of the Alternating Gradient Synchrotron (AG) proton accelerator, using commercial CATV hardware, dual coaxial cables as the communications medium, and spanning 2.0 km. A 4 MHz bandwidth Digital Control channel using CSMA-CA protocol is provided for digital data transmission, with 8 access nodes available over the length of the RELWAY. Each node consists of an rf modem and a microprocessor-based store-and-forward message handler which interfaces the RELWAY to a branch line implemented in GPIB. A gateway to the RELWAY control channel for the (preexisting) AGS Computerized Accelerator Operating system has been constructed using an LSI-11/23 microprocessor as a device in a GPIB branch line. A multilayer communications protocol has been defined for the Digital Control Channel, based on the ISO Open Systems Interconnect layered model, and a RELWAY Device Language defined as the required universal language for device control on this channel.

  2. Neural networks and orbit control in accelerators

    SciTech Connect

    Bozoki, E.; Friedman, A.

    1994-07-01

    An overview of the architecture, workings and training of Neural Networks is given. We stress the aspects which are important for the use of Neural Networks for orbit control in accelerators and storage rings, especially its ability to cope with the nonlinear behavior of the orbit response to `kicks` and the slow drift in the orbit response during long-term operation. Results obtained for the two NSLS storage rings with several network architectures and various training methods for each architecture are given.

  3. Neural Networks for Modeling and Control of Particle Accelerators

    DOE PAGESBeta

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  4. An accelerator controls network designed for reliability and flexibility

    SciTech Connect

    McDowell, W. P.; Sidorowicz, K. V.

    1997-12-02

    The APS accelerator control system is a typical modern system based on the standard control system model, which consists of operator interfaces to a network and computer-controlled interfaces to hardware. The network provides a generalized communication path between the host computers, operator workstations, input/output crates, and other hardware that comprise the control system. The network is an integral part of all modern control systems and network performance will determine many characteristics of a control system. This paper describes the methods used to provide redundancy for various network system components as well as methods used to provide comprehensive monitoring of this network. The effect of archiving tens of thousands of data points on a regular basis and the effect on the controls network will be discussed. Metrics are provided on the performance of the system under various conditions.

  5. Real-time Optical Network for Accelerator Control

    SciTech Connect

    Lee, Keun

    2012-06-27

    The timing requirements of a modern accelerator complex call for several features. The first is a system for high precision relative timing among accelerator components. Stabilized fiber links have already been demonstrated to achieve sub-10 femtoseconds relative timing precision. The second is a system for timing distribution of absolute time with sufficient precision to identify a specific RF bucket. The White Rabbit technology is a promising candidate to deliver the absolute time that is linked to the GPS clock. In this study we demonstrated that these two technologies can be combined in a way that the absolute time information can be delivered to the stabilized fiber link system. This was accomplished by researching the design of the stabilized fiber and White Rabbit systems and devising adaptation modules that facilitate co-existence of both systems in the same FPGA environment. We built a prototype system using off-the-shelf products and implemented a proof-of-concept version of the FPGA firmware. The test verified that the White Rabbit features operate correctly under the stabilized fiber system environment. This work demonstrates that turn-key femtosecond timing systems with absolute time information can be built cost effectively and deployed in various accelerator environments. This will lead to many new applications in chemistry, biology and surface dynamics, to name a few.

  6. Network acceleration techniques

    NASA Technical Reports Server (NTRS)

    Crowley, Patricia (Inventor); Awrach, James Michael (Inventor); Maccabe, Arthur Barney (Inventor)

    2012-01-01

    Splintered offloading techniques with receive batch processing are described for network acceleration. Such techniques offload specific functionality to a NIC while maintaining the bulk of the protocol processing in the host operating system ("OS"). The resulting protocol implementation allows the application to bypass the protocol processing of the received data. Such can be accomplished this by moving data from the NIC directly to the application through direct memory access ("DMA") and batch processing the receive headers in the host OS when the host OS is interrupted to perform other work. Batch processing receive headers allows the data path to be separated from the control path. Unlike operating system bypass, however, the operating system still fully manages the network resource and has relevant feedback about traffic and flows. Embodiments of the present disclosure can therefore address the challenges of networks with extreme bandwidth delay products (BWDP).

  7. Centralized digital control of accelerators

    SciTech Connect

    Melen, R.E.

    1983-09-01

    In contrasting the title of this paper with a second paper to be presented at this conference entitled Distributed Digital Control of Accelerators, a potential reader might be led to believe that this paper will focus on systems whose computing intelligence is centered in one or more computers in a centralized location. Instead, this paper will describe the architectural evolution of SLAC's computer based accelerator control systems with respect to the distribution of their intelligence. However, the use of the word centralized in the title is appropriate because these systems are based on the use of centralized large and computationally powerful processors that are typically supported by networks of smaller distributed processors.

  8. REMOTE OPERATIONS IN A GLOBAL ACCELERATOR NETWORK.

    SciTech Connect

    PEGGS,S.; SATOGATA,T.; AGARWAL,D.; RICE,D.

    2003-05-12

    The INTRODUCTION to this paper summarizes the history of the Global Accelerator Network (GAN) concept and the recent workshops that discussed the relationship between GAN and Remote Operations. The REMOTE OPERATIONS SCENARIOS section brings out the organizational philosophy embodied in GAN-like and to non-GAN-like scenarios. The set of major TOPICS RAISED AT THE WORKSHOPS are only partially resolved. COLLABORATION TOOLS are described and discussed, followed by examples of REMOTE ACCELERATOR CONTROL PROJECTS around the world.

  9. REMOTE OPERATIONS IN A GLOBAL ACCELERATOR NETWORK

    SciTech Connect

    PEGGS,S.SATOGATA,TAGARWAL,DRICE,D

    2003-05-12

    The INTRODUCTION to this paper summarizes the history of the Global Accelerator Network (GAN) concept and the recent workshops that discussed the relationship between GAN and Remote Operations. The REMOTE OPERATIONS SCENARIOS section brings out the organizational philosophy embodied in GAN-like and to non-GAN-like scenarios. The set of major TOPICS RAISED AT THE WORKSHOPS are only partially resolved. COLLABORATION TOOLS are described and discussed, followed by examples of REMOTE ACCELERATOR CONTROL PROJECTS around the world.

  10. Remote operations in a global accelerator network

    SciTech Connect

    Peggs, Steve; Satogata, Todd; Agarwal, Deborah; Rice, David

    2003-05-08

    The INTRODUCTION to this paper summarizes the history of the Global Accelerator Network (GAN) concept and the recent workshops that discussed the relationship between GAN and Remote Operations. The REMOTE OPERATIONS SCENARIOS section brings out the organizational philosophy embodied in GAN-like and to non-GAN-like scenarios. The set of major TOPICS RAISED AT THE WORKSHOPS are only partially resolved. COLLABORATION TOOLS are described and discussed, followed by examples of REMOTE ACCELERATOR CONTROL PROJECTS around the world.

  11. KEKB accelerator control system

    NASA Astrophysics Data System (ADS)

    Akasaka, Nobumasa; Akiyama, Atsuyoshi; Araki, Sakae; Furukawa, Kazuro; Katoh, Tadahiko; Kawamoto, Takashi; Komada, Ichitaka; Kudo, Kikuo; Naito, Takashi; Nakamura, Tatsuro; Odagiri, Jun-ichi; Ohnishi, Yukiyoshi; Sato, Masayuki; Suetake, Masaaki; Takeda, Shigeru; Takeuchi, Yasunori; Yamamoto, Noboru; Yoshioka, Masakazu; Kikutani, Eji

    2003-02-01

    The KEKB accelerator control system including a control computer system, a timing distribution system, and a safety control system are described. KEKB accelerators were installed in the same tunnel where the TRISTAN accelerator was. There were some constraints due to the reused equipment. The control system is based on Experimental Physics and Industrial Control System (EPICS). In order to reduce the cost and labor for constructing the KEKB control system, as many CAMAC modules as possible are used again. The guiding principles of the KEKB control computer system are as follows: use EPICS as the controls environment, provide a two-language system for developing application programs, use VMEbus as frontend computers as a consequence of EPICS, use standard buses, such as CAMAC, GPIB, VXIbus, ARCNET, RS-232 as field buses and use ergonomic equipment for operators and scientists. On the software side, interpretive Python and SAD languages are used for coding application programs. The purpose of the radiation safety system is to protect personnel from radiation hazards. It consists of an access control system and a beam interlock system. The access control system protects people from strong radiation inside the accelerator tunnel due to an intense beam, by controlling access to the beamline area. On the other hand, the beam interlock system prevents people from radiation exposure by interlocking the beam operation. For the convenience of accelerator operation and access control, the region covered by the safety system is divided into three major access control areas: the KEKB area, the PF-AR area, and the beam-transport (BT) area. The KEKB control system required a new timing system to match a low longitudinal acceptance due to a low-alpha machine. This timing system is based on a frequency divider/multiply technique and a digital delay technique. The RF frequency of the KEKB rings and that of the injector Linac are locked with a common divisor frequency. The common

  12. Modern control techniques for accelerators

    SciTech Connect

    Goodwin, R.W.; Shea, M.F.

    1984-05-01

    Beginning in the mid to late sixties, most new accelerators were designed to include computer based control systems. Although each installation differed in detail, the technology of the sixties and early to mid seventies dictated an architecture that was essentially the same for the control systems of that era. A mini-computer was connected to the hardware and to a console. Two developments have changed the architecture of modern systems: (a) the microprocessor and (b) local area networks. This paper discusses these two developments and demonstrates their impact on control system design and implementation by way of describing a possible architecture for any size of accelerator. Both hardware and software aspects are included.

  13. Adaptive control for accelerators

    DOEpatents

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  14. Vibration control in accelerators

    SciTech Connect

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  15. Neural network-based sensor signal accelerator.

    SciTech Connect

    Vogt, M. C.

    2000-10-16

    A strategy has been developed to computationally accelerate the response time of a generic electronic sensor. The strategy can be deployed as an algorithm in a control system or as a physical interface (on an embedded microcontroller) between a slower responding external sensor and a higher-speed control system. Optional code implementations are available to adjust algorithm performance when computational capability is limited. In one option, the actual sensor signal can be sampled at the slower rate with adaptive linear neural networks predicting the sensor's future output and interpolating intermediate synthetic output values. In another option, a synchronized collection of predictors sequentially controls the corresponding synthetic output voltage. Error is adaptively corrected in both options. The core strategy has been demonstrated with automotive oxygen sensor data. A prototype interface device is under construction. The response speed increase afforded by this strategy could greatly offset the cost of developing a replacement sensor with a faster physical response time.

  16. Robust control of accelerators

    SciTech Connect

    Johnson, W.J.D. ); Abdallah, C.T. )

    1990-01-01

    The problem of controlling the variations in the rf power system can be effectively cast as an application of modern control theory. Two components of this theory are obtaining a model and a feedback structure. The model inaccuracies influence the choice of a particular controller structure. Because of the modeling uncertainty, one has to design either a variable, adaptive controller or a fixed, robust controller to achieve the desired objective. The adaptive control scheme usually results in very complex hardware; and, therefore, shall not be pursued in this research. In contrast, the robust control methods leads to simpler hardware. However, robust control requires a more accurate mathematical model of the physical process than is required by adaptive control. Our research at the Los Alamos National Laboratory (LANL) and the University of New Mexico (UNM) has led to the development and implementation of a new robust rf power feedback system. In this paper, we report on our research progress. In section one, the robust control problem for the rf power system and the philosophy adopted for the beginning phase of our research is presented. In section two, the results of our proof-of-principle experiments are presented. In section three, we describe the actual controller configuration that is used in LANL FEL physics experiments. The novelty of our approach is that the control hardware is implemented directly in rf without demodulating, compensating, and then remodulating.

  17. Robust control of accelerators

    NASA Astrophysics Data System (ADS)

    Joel, W.; Johnson, D.; Chaouki, Abdallah T.

    1991-07-01

    The problem of controlling the variations in the rf power system can be effectively cast as an application of modern control theory. Two components of this theory are obtaining a model and a feedback structure. The model inaccuracies influence the choice of a particular controller structure. Because of the modelling uncertainty, one has to design either a variable, adaptive controller or a fixed, robust controller to achieve the desired objective. The adaptive control scheme usually results in very complex hardware; and, therefore, shall not be pursued in this research. In contrast, the robust control method leads to simpler hardware. However, robust control requires a more accurate mathematical model of the physical process than is required by adaptive control. Our research at the Los Alamos National Laboratory (LANL) and the University of New Mexico (UNM) has led to the development and implementation of a new robust rf power feedback system. In this article, we report on our research progress. In section 1, the robust control problem for the rf power system and the philosophy adopted for the beginning phase of our research is presented. In section 2, the results of our proof-of-principle experiments are presented. In section 3, we describe the actual controller configuration that is used in LANL FEL physics experiments. The novelty of our approach is that the control hardware is implemented directly in rf. without demodulating, compensating, and then remodulating.

  18. Control of robot dynamics using acceleration control

    NASA Technical Reports Server (NTRS)

    Workman, G. L.; Prateru, S.; Li, W.; Hinman, Elaine

    1992-01-01

    Acceleration control of robotic devices can provide improvements to many space-based operations using flexible manipulators and to ground-based operations requiring better precision and efficiency than current industrial robots can provide. This paper reports on a preliminary study of acceleration measurement on robotic motion during parabolic flights on the NASA KC-135 and a parallel study of accelerations with and without gravity arising from computer simulated motions using TREETOPS software.

  19. Control systems for Coline accelerators

    NASA Astrophysics Data System (ADS)

    Baczewski, Artur; Latała, Agata; Ceglińska, Kaja; Andrasiak, Michał

    2008-01-01

    Medical linear accelerators are the largest group of devices for therapy of cancer diseases because of their compact design, relatively low operating costs, advanced features and broad range of treatment procedures. Their reliability and ease of operation are very important but the most crucial is to ensure personnel and patient safety. For this reason the development of control and safety systems is the current "leading edge" in medical linear accelerators technology. Provided internal monitoring, machine control and steering, interlock system as well as the automatic recording of the device and patient parameters are nowadays fully controlled by the computer. This paper describes in details projects connected to advanced development of Coline accelerators. As it is crucial to assure reliable steering and monitoring of all the machine settings and actual dose delivered to the patient, advanced control systems composed of steering, control and interlock systems, communication protocol as well as data management system have been developed.

  20. Accelerating Learning By Neural Networks

    NASA Technical Reports Server (NTRS)

    Toomarian, Nikzad; Barhen, Jacob

    1992-01-01

    Electronic neural networks made to learn faster by use of terminal teacher forcing. Method of supervised learning involves addition of teacher forcing functions to excitations fed as inputs to output neurons. Initially, teacher forcing functions are strong enough to force outputs to desired values; subsequently, these functions decay with time. When learning successfully completed, terminal teacher forcing vanishes, and dynamics or neural network become equivalent to those of conventional neural network. Simulated neural network with terminal teacher forcing learned to produce close approximation of circular trajectory in 400 iterations.

  1. Accelerating networks: Effects of preferential connections

    NASA Astrophysics Data System (ADS)

    Jeon, Y.-P.; McCoy, B. J.

    2007-12-01

    Networks are commonly observed structures in complex systems with interacting and interdependent parts that self-organize. For nonlinearly growing networks, when the total number of connections increases faster than the total number of nodes, the network is said to accelerate. We propose a systematic model for the dynamics of growing networks represented by distribution kinetics equations. We define the nodal-linkage distribution, construct a population dynamics equation based on the association-dissociation process, and perform the moment calculations to describe the dynamics of such networks. For nondirectional networks with finite numbers of nodes and connections, the moments are the total number of nodes, the total number of connections, and the degree (the average number of connections per node), represented by the average moment. Size independent rate coefficients yield an exponential network describing the network without preferential attachment, and size dependent rate coefficients produce a power law network with preferential attachment. The model quantitatively describes accelerating network growth data for a supercomputer (Earth Simulator), for regulatory gene networks, and for the Internet.

  2. A portable accelerator control toolkit

    SciTech Connect

    Watson, W.A. III

    1997-06-01

    In recent years, the expense of creating good control software has led to a number of collaborative efforts among laboratories to share this cost. The EPICS collaboration is a particularly successful example of this trend. More recently another collaborative effort has addressed the need for sophisticated high level software, including model driven accelerator controls. This work builds upon the CDEV (Common DEVice) software framework, which provides a generic abstraction of a control system, and maps that abstraction onto a number of site-specific control systems including EPICS, the SLAC control system, CERN/PS and others. In principle, it is now possible to create portable accelerator control applications which have no knowledge of the underlying and site-specific control system. Applications based on CDEV now provide a growing suite of tools for accelerator operations, including general purpose displays, an on-line accelerator model, beamline steering, machine status displays incorporating both hardware and model information (such as beam positions overlaid with beta functions) and more. A survey of CDEV compatible portable applications will be presented, as well as plans for future development.

  3. The APS control system network

    SciTech Connect

    Sidorowicz, K.V.; McDowell, W.P.

    1995-12-31

    The APS accelerator control system is a distributed system consisting of operator interfaces, a network, and computer-controlled interfaces to hardware. This implementation of a control system has come to be called the {open_quotes}Standard Model.{close_quotes} The operator interface is a UNDC-based workstation with an X-windows graphical user interface. The workstation may be located at any point on the facility network and maintain full functionality. The function of the network is to provide a generalized communication path between the host computers, operator workstations, input/output crates, and other hardware that comprise the control system. The crate or input/output controller (IOC) provides direct control and input/output interfaces for each accelerator subsystem. The network is an integral part of all modem control systems and network performance will determine many characteristics of a control system. This paper will describe the overall APS network and examine the APS control system network in detail. Metrics are provided on the performance of the system under various conditions.

  4. Testing pulse forming networks with DARHT accelerator cells

    SciTech Connect

    Rose, E. A.; Dalmas, D. A.; Downing, J. N. , Jr.; Temple, R. D.

    2001-01-01

    The Dual Axis Radiographic Hydrotest Facility [DARHT] at Los Alamos will use two induction linacs to produce high-energy electron beams. The electron beams will be used to generate x-rays from bremsstrahlung targets. The x-rays will be used to produce radiographs. The first accelerator is operational now, generating a 60-nanosecond electron beam. The second accelerator is under construction. It will generate a 2-microsecond electron beam. The 78 induction cells of the second axis accelerator will be driven by an equal number of pulse forming networks. Each pulse forming network [PFN] generates a nominal 200-kV, 2-microsecond pulse to drive an accelerator cell. Each pulse forming network consists of a set of four equal-capacitance sub-PFN's, stacked in a Marx configuration. The PFN Test Stand was configured to test newly constructed accelerator cells under conditions of full voltage and pulse duration. The PFN Test Stand also explored jitter, prefire and reliability issues for a pulse forming network operated into a purely resistive load. The PFN Test Stand provided experience operating a simple subsystem of the DARHT accelerator. This subsystem involved controls, diagnostics, data acquisition and archival, power supplies, trigger systems, core reset and a gas flow system for the spark gaps. Issues for the DARHT accelerator were investigated in this small-scale facility.

  5. TESTING PULSE FORMING NETWORKS WITH DARHT ACCELERATOR CELLS

    SciTech Connect

    E.A. ROSE; D.A. DALMAS; J.N. DOWNING; R.D. TEMPLE

    2001-06-01

    The Dual Axis Radiographic Hydrotest Facility [DARHT] at Los Alamos will use two induction linacs to produce high-energy electron beams. The electron beams will be used to generate x-rays from bremsstrahlung targets. The x-rays will be used to produce radiographs. The first accelerator is operational now, generating a 60- nanosecond electron beam. The second accelerator is under construction. It will generate a 2-microsecond electron beam. The 78 induction cells of the second axis accelerator will be driven by an equal number of pulse forming networks. Each pulse forming network [PFN] generates a nominal 200-kV, 2-microsecond pulse to drive an accelerator cell. Each pulse forming network consists of a set of four equal-capacitance sub-PFN's, stacked in a Marx configuration. The PFN Test Stand was configured to test newly constructed accelerator cells under conditions of full voltage and pulse duration. The PFN Test Stand also explored jitter, prefire and reliability issues for a pulse forming network operated into a purely resistive load. The PFN Test Stand provided experience operating a simple subsystem of the DARHT accelerator. This subsystem involved controls, diagnostics, data acquisition and archival, power supplies, trigger systems, core reset and a gas flow system for the spark gaps. Issues for the DARHT accelerator were investigated in this small-scale facility.

  6. Personal computers in accelerator control

    NASA Astrophysics Data System (ADS)

    Anderssen, P. S.

    1988-07-01

    The advent of the personal computer has created a popular movement which has also made a strong impact on science and engineering. Flexible software environments combined with good computational performance and large storage capacities are becoming available at steadily decreasing costs. Of equal importance, however, is the quality of the user interface offered on many of these products. Graphics and screen interaction is available in ways that were only possible on specialized systems before. Accelerator engineers were quick to pick up the new technology. The first applications were probably for controllers and data gatherers for beam measurement equipment. Others followed, and today it is conceivable to make personal computer a standard component of an accelerator control system. This paper reviews the experience gained at CERN so far and describes the approach taken in the design of the common control center for the SPS and the future LEP accelerators. The design goal has been to be able to integrate personal computers into the accelerator control system and to build the operator's workplace around it.

  7. Treelike networks accelerating capillary flow

    NASA Astrophysics Data System (ADS)

    Shou, Dahua; Ye, Lin; Fan, Jintu

    2014-05-01

    Transport in treelike networks has received wide attention in natural systems, oil recovery, microelectronic cooling systems, and textiles. Existing studies are focused on transport behaviors under a constant potential difference (including pressure, temperature, and voltage) in a steady state [B. Yu and B. Li, Phys. Rev. E 73, 066302 (2006), 10.1103/PhysRevE.73.066302; J. Chen, B. Yu, P. Xu, and Y. Li, Phys. Rev. E 75, 056301 (2007), 10.1103/PhysRevE.75.056301]. However, dynamic (time-dependent) transport in such systems has rarely been concerned. In this work, we theoretically investigate the dynamics of capillary flow in treelike networks and design the distribution of radius and length of local branches for the fastest capillary flow. It is demonstrated that capillary flow in the optimized tree networks is faster than in traditional parallel tube nets under fixed constraints. As well, the flow time of the liquid is found to increase approximately linearly with penetration distance, which differs from Washburn's classic description that flow time increases as the square of penetration distance in a uniform tube.

  8. Treelike networks accelerating capillary flow.

    PubMed

    Shou, Dahua; Ye, Lin; Fan, Jintu

    2014-05-01

    Transport in treelike networks has received wide attention in natural systems, oil recovery, microelectronic cooling systems, and textiles. Existing studies are focused on transport behaviors under a constant potential difference (including pressure, temperature, and voltage) in a steady state [B. Yu and B. Li, Phys. Rev. E 73, 066302 (2006); J. Chen, B. Yu, P. Xu, and Y. Li, Phys. Rev. E 75, 056301 (2007)]. However, dynamic (time-dependent) transport in such systems has rarely been concerned. In this work, we theoretically investigate the dynamics of capillary flow in treelike networks and design the distribution of radius and length of local branches for the fastest capillary flow. It is demonstrated that capillary flow in the optimized tree networks is faster than in traditional parallel tube nets under fixed constraints. As well, the flow time of the liquid is found to increase approximately linearly with penetration distance, which differs from Washburn's classic description that flow time increases as the square of penetration distance in a uniform tube. PMID:25353880

  9. Computational acceleration using neural networks

    NASA Astrophysics Data System (ADS)

    Cadaret, Paul

    2008-04-01

    The author's recent participation in the Small Business Innovative Research (SBIR) program has resulted in the development of a patent pending technology that enables the construction of very large and fast artificial neural networks. Through the use of UNICON's CogniMax pattern recognition technology we believe that systems can be constructed that exploit the power of "exhaustive learning" for the benefit of certain types of complex and slow computational problems. This paper presents a theoretical study that describes one potentially beneficial application of exhaustive learning. It describes how a very large and fast Radial Basis Function (RBF) artificial Neural Network (NN) can be used to implement a useful computational system. Viewed another way, it presents an unusual method of transforming a complex, always-precise, and slow computational problem into a fuzzy pattern recognition problem where other methods are available to effectively improve computational performance. The method described recognizes that the need for computational precision in a problem domain sometimes varies throughout the domain's Feature Space (FS) and high precision may only be needed in limited areas. These observations can then be exploited to the benefit of overall computational performance. Addressing computational reliability, we describe how existing always-precise computational methods can be used to reliably train the NN to perform the computational interpolation function. The author recognizes that the method described is not applicable to every situation, but over the last 8 months we have been surprised at how often this method can be applied to enable interesting and effective solutions.

  10. Control of Multilayer Networks

    PubMed Central

    Menichetti, Giulia; Dall’Asta, Luca; Bianconi, Ginestra

    2016-01-01

    The controllability of a network is a theoretical problem of relevance in a variety of contexts ranging from financial markets to the brain. Until now, network controllability has been characterized only on isolated networks, while the vast majority of complex systems are formed by multilayer networks. Here we build a theoretical framework for the linear controllability of multilayer networks by mapping the problem into a combinatorial matching problem. We found that correlating the external signals in the different layers can significantly reduce the multiplex network robustness to node removal, as it can be seen in conjunction with a hybrid phase transition occurring in interacting Poisson networks. Moreover we observe that multilayer networks can stabilize the fully controllable multiplex network configuration that can be stable also when the full controllability of the single network is not stable. PMID:26869210

  11. Accelerating commutation circuits in quantum computer networks

    NASA Astrophysics Data System (ADS)

    Jiang, Min; Huang, Xu; Chen, Xiaoping; Zhang, Zeng-ke

    2012-12-01

    In a high speed and packet-switched quantum computer network, a packet routing delay often leads to traffic jams, becoming a severe bottleneck for speeding up the transmission rate. Based on the delayed commutation circuit proposed in Phys. Rev. Lett. 97, 110502 (2006), we present an improved scheme for accelerating network transmission. For two more realistic scenarios, we utilize the characteristic of a quantum state to simultaneously implement a data switch and transmission that makes it possible to reduce the packet delay and route a qubit packet even before its address is determined. This circuit is further extended to the quantum network for the transmission of the unknown quantum information. The analysis demonstrates that quantum communication technology can considerably reduce the processing delay time and build faster and more efficient packet-switched networks.

  12. Object oriented programming interfaces for accelerator control

    SciTech Connect

    Hoff, L.T.

    1997-07-01

    Several years ago, the AGS controls group was given the task of developing software for the RHIC accelerator. Like the AGS, the RHIC control system needs to control and monitor equipment distributed around a relatively large geographic area. A local area network connects this equipment to a collection of UNIX workstations in a central control room. Similar software had been developed for the AGS about a decade earlier, but isn`t well suited for RHIC use for a number of reasons. Rather than adapt the AGS software for RHIC use, the controls group opted to start with a clean slate. To develop software that would address the shortcomings of the AGS software, while preserving the useful features that evolved through years of use. A current trend in control system design is to provide an object oriented programming interface for application developers. This talk will discuss important aspects and features of object oriented application programming interfaces (APIs) for accelerator control systems, and explore why such interfaces are becoming the norm.

  13. Trends in accelerator control systems

    SciTech Connect

    Crowley-Milling, M.C.

    1984-04-01

    Over the years, we have seen a revolution in control systems that has followed the ever decreasing cost of computer power and memory. It started with the data gathering, when people distrusted the computer to perform control actions correctly, through the stage of using a computer to perform control actions correctly, through the stage of using a computer system to provide a convenient remote look and adjust facility, to the present day, when more and more emphasis is being placed on using a computer system to simulate or model all or parts of the accelerator, feed in the required performance and calling for the computers to set the various parameters and then measure the actual performance, with iteration if necessary. The progress that has been made in the fields of architecture, communications, computers, interface, software design and operator interface is reviewed.

  14. Numerical investigation of closed-loop control for Hall accelerators

    SciTech Connect

    Barral, S.; Miedzik, J.

    2011-01-01

    Low frequency discharge current oscillations in Hall accelerators are conventionally damped with external inductor-capacitor (LC) or resistor-inductor-capacitor (RLC) networks. The role of such network in the stabilization of the plasma discharge is investigated with a numerical model and the potential advantages of proportional-integral-derivative (PID) closed-loop control over RLC networks are subsequently assessed using either discharge voltage or magnetic field modulation. Simulations confirm the reduction of current oscillations in the presence of a RLC network, but suggest that PID control could ensure nearly oscillation-free operation with little sensitivity toward the PID settings.

  15. Network structure controls noise

    NASA Astrophysics Data System (ADS)

    Das, Jayajit; Raychaudhuri, Subhadip

    2004-03-01

    Biochemical reactions often involve low copy number of reactant molecules. Bio-networks, however, control the intrinsic noise arising from the fluctuations of low copy number of reactant molecules quite efficiently to perform their job in a robust manner. Network structures may be very crucial in the effective modulation of fluctuation effects. We investigate the interplay between the network structure and the noise behavior in signal transduction networks using Stochastic simulations. Some of the recurrent modules in biological networks seem to be vital in noise control. We correlate the effect of those modules to the function of the global topology of the network. This may explain why certain class of modules are so ubiquitous in Bio-networks.

  16. Virtualized Network Control (VNC)

    SciTech Connect

    Lehman, Thomas; Guok, Chin; Ghani, Nasir

    2013-01-31

    The focus of this project was on the development of a "Network Service Plane" as an abstraction model for the control and provisioning of multi-layer networks. The primary motivation for this work were the requirements of next generation networked applications which will need to access advanced networking as a first class resource at the same level as compute and storage resources. A new class of "Intelligent Network Services" were defined in order to facilitate the integration of advanced network services into application specific workflows. This new class of network services are intended to enable real-time interaction between the application co-scheduling algorithms and the network for the purposes of workflow planning, real-time resource availability identification, scheduling, and provisioning actions.

  17. Controllability of Complex Networks

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Slotine, Jean-Jacques; Barabasi, Albert-Laszlo

    2011-03-01

    The ultimate proof of our understanding of natural or technological systems is reflected in our ability to control them. While control theory offers mathematical tools to steer engineered systems towards a desired state, we lack a general framework to control complex self-organized systems, like the regulatory network of a cell or the Internet. Here we develop analytical tools to study the controllability of an arbitrary complex directed network, identifying the set of driver nodes whose time-dependent control can guide the system's dynamics. We apply these tools to real and model networks, finding that sparse inhomogeneous networks, which emerge in many real complex systems, are the most difficult to control. In contrast, dense and homogeneous networks can be controlled via a few driver nodes. Counterintuitively, we find that in both model and real systems the driver nodes tend to avoid the hubs. We show that the robustness of control to link failure is determined by a core percolation problem, helping us understand why many complex systems are relatively insensitive to link deletion. The developed approach offers a framework to address the controllability of an arbitrary network, representing a key step towards the eventual control of complex systems.

  18. The Interplanetary Overlay Networking Protocol Accelerator

    NASA Technical Reports Server (NTRS)

    Pang, Jackson; Torgerson, Jordan L.; Clare, Loren P.

    2008-01-01

    A document describes the Interplanetary Overlay Networking Protocol Accelerator (IONAC) an electronic apparatus, now under development, for relaying data at high rates in spacecraft and interplanetary radio-communication systems utilizing a delay-tolerant networking protocol. The protocol includes provisions for transmission and reception of data in bundles (essentially, messages), transfer of custody of a bundle to a recipient relay station at each step of a relay, and return receipts. Because of limitations on energy resources available for such relays, data rates attainable in a conventional software implementation of the protocol are lower than those needed, at any given reasonable energy-consumption rate. Therefore, a main goal in developing the IONAC is to reduce the energy consumption by an order of magnitude and the data-throughput capability by two orders of magnitude. The IONAC prototype is a field-programmable gate array that serves as a reconfigurable hybrid (hardware/ firmware) system for implementation of the protocol. The prototype can decode 108,000 bundles per second and encode 100,000 bundles per second. It includes a bundle-cache static randomaccess memory that enables maintenance of a throughput of 2.7Gb/s, and an Ethernet convergence layer that supports a duplex throughput of 1Gb/s.

  19. ACTS TDMA network control

    NASA Astrophysics Data System (ADS)

    Inukai, T.; Campanella, S. J.

    This paper presents basic network control concepts for the Advanced Communications Technology Satellite (ACTS) System. Two experimental systems, called the low-burst-rate and high-burst-rate systems, along with ACTS ground system features, are described. The network control issues addressed include frame structures, acquisition and synchronization procedures, coordinated station burst-time plan and satellite-time plan changes, on-board clock control based on ground drift measurements, rain fade control by means of adaptive forward-error-correction (FEC) coding and transmit power augmentation, and reassignment of channel capacities on demand. The NASA ground system, which includes a primary station, diversity station, and master control station, is also described.

  20. Control problems in very large accelerators

    SciTech Connect

    Crowley-Milling, M.C.

    1985-04-01

    There is no fundamental difference of kind in the control requirements between a small and a large accelerator since they are built of the same types of components, which individually have the same types of control inputs and outputs. The main difference is one of scale; the large machine has many more components of each type, and the distances involved are much greater. It is the purpose of this paper to look at the special control problems of large accelerators, which the author shall arbitrarily define as those with a length or circumference in excess of 10 km, and point out where special developments, or the adoption of developments from outside the accelerator control field, can be of assistance in minimizing the cost of the control system.

  1. Implementation of the beamline controls at the Florence accelerator laboratory

    NASA Astrophysics Data System (ADS)

    Carraresi, L.; Mirto, F. A.

    2008-05-01

    The new Tandetron accelerator in Florence, with many different beamlines, has required a new organization of all the control signals of the used equipment (slow control). We present our solution, which allows us the control of all the employed instruments simultaneously from a number of different workplaces. All of our equipment has been designed to be Ethernet based and this is the key to accomplish two very important requirements: simultaneous remote control from many computers and electrical isolation to achieve a lower noise level. The control of the instruments requires only one Ethernet network and no particular interfaces or drivers on the computers.

  2. Control problems in very large accelerators

    SciTech Connect

    Crowley-Milling, M.C.

    1985-06-01

    There is no fundamental difference of kind in the control requirements between a small and a large accelerator since they are built of the same types of components, which individually have similar control inputs and outputs. The main difference is one of scale; the large machine has many more components of each type, and the distances involved are much greater. Both of these factors must be taken into account in determining the optimum way of carrying out the control functions. Small machines should use standard equipment and software for control as much as possible, as special developments for small quantities cannot normally be justified if all costs are taken into account. On the other hand, the very great number of devices needed for a large machine means that, if special developments can result in simplification, they may make possible an appreciable reduction in the control equipment costs. It is the purpose of this report to look at the special control problems of large accelerators, which the author shall arbitarily define as those with a length of circumference in excess of 10 km, and point out where special developments, or the adoption of developments from outside the accelerator control field, can be of assistance in minimizing the cost of the control system. Most of the first part of this report was presented as a paper to the 1985 Particle Accelerator Conference. It has now been extended to include a discussion on the special case of the controls for the SSC.

  3. Application accelerator system having bunch control

    DOEpatents

    Wang, D.; Krafft, G.A.

    1999-06-22

    An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig.

  4. Application accelerator system having bunch control

    DOEpatents

    Wang, Dunxiong; Krafft, Geoffrey Arthur

    1999-01-01

    An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.

  5. A New Control Room for SLAC Accelerators

    SciTech Connect

    Erickson, Roger; Guerra, E.; Stanek, M.; Hoover, Z.Van; Warren, J.; /SLAC

    2012-06-04

    We are planning to construct a new control room at SLAC to unify and improve the operation of the LCLS, SPEAR3, and FACET accelerator facilities, and to provide the space and flexibility needed to support the LCLS-II and proposed new test beam facilities. The existing control rooms for the linac and SPEAR3 have been upgraded in various ways over the last decade, but their basic features have remained unchanged. We propose to build a larger modern Accelerator Control Room (ACR) in the new Research Support Building (RSB) which is currently under construction at SLAC. Shifting the center of control for the accelerator facilities entails both technical and administrative challenges. In this paper, we describe the history, concept, and status of this project.

  6. An Accelerator Control Middle Layer Using MATLAB

    SciTech Connect

    Portmann, Gregory J.; Corbett, Jeff; Terebilo, Andrei

    2005-03-15

    Matlab is a matrix manipulation language originally developed to be a convenient language for using the LINPACK and EISPACK libraries. What makes Matlab so appealing for accelerator physics is the combination of a matrix oriented programming language, an active workspace for system variables, powerful graphics capability, built-in math libraries, and platform independence. A number of software toolboxes for accelerators have been written in Matlab--the Accelerator Toolbox (AT) for machine simulations, LOCO for accelerator calibration, Matlab Channel Access Toolbox (MCA) for EPICS connections, and the Middle Layer. This paper will describe the ''middle layer'' software toolbox that resides between the high-level control applications and the low-level accelerator control system. This software was a collaborative effort between ALS (LBNL) and SPEAR3 (SSRL) but easily ports to other machines. Five accelerators presently use this software. The high-level Middle Layer functionality includes energy ramp, configuration control (save/restore), global orbit correction, local photon beam steering, insertion device compensation, beam-based alignment, tune correction, response matrix measurement, and script-based programs for machine physics studies.

  7. The BNL Accelerator Test Facility control system

    SciTech Connect

    Malone, R.; Bottke, I.; Fernow, R.; Ben-Zvi, I.

    1993-01-01

    Described is the VAX/CAMAC-based control system for Brookhaven National Laboratory's Accelerator Test Facility, a laser/linac research complex. Details of hardware and software configurations are presented along with experiences of using Vsystem, a commercial control system package.

  8. Neural networks for aircraft control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  9. Fermilab accelerator control system: Analog monitoring facilities

    SciTech Connect

    Seino, K.; Anderson, L.; Smedinghoff, J.

    1987-10-01

    Thousands of analog signals are monitored in different areas of the Fermilab accelerator complex. For general purposes, analog signals are sent over coaxial or twinaxial cables with varying lengths, collected at fan-in boxes and digitized with 12 bit multiplexed ADCs. For higher resolution requirements, analog signals are digitized at sources and are serially sent to the control system. This paper surveys ADC subsystems that are used with the accelerator control systems and discusses practical problems and solutions, and it describes how analog data are presented on the console system.

  10. Collaboration tools for the global accelerator network: Workshop Report

    SciTech Connect

    Agarwal, Deborah; Olson, Gary; Olson, Judy

    2002-09-15

    The concept of a ''Global Accelerator Network'' (GAN) has been put forward as a means for inter-regional collaboration in the operation of internationally constructed and operated frontier accelerator facilities. A workshop was held to allow representatives of the accelerator community and of the collaboratory development community to meet and discuss collaboration tools for the GAN environment. This workshop, called the Collaboration Tools for the Global Accelerator Network (GAN) Workshop, was held on August 26, 2002 at Lawrence Berkeley National Laboratory. The goal was to provide input about collaboration tools in general and to provide a strawman for the GAN collaborative tools environment. The participants at the workshop represented accelerator physicists, high-energy physicists, operations, technology tool developers, and social scientists that study scientific collaboration.

  11. An Accelerator Control Middle Layer Using MATLAB

    SciTech Connect

    Portmann, Gregory J.; Corbett, Jeff; Terebilo, Andrei

    2005-05-15

    Matlab is an interpretive programming language originally developed for convenient use with the LINPACK and EISPACK libraries. Matlab is appealing for accelerator physics because it is matrix-oriented, provides an active workspace for system variables, powerful graphics capabilities, built-in math libraries, and platform independence. A number of accelerator software toolboxes have been written in Matlab -- the Accelerator Toolbox (AT) for model-based machine simulations, LOCO for on-line model calibration, and Matlab Channel Access (MCA) to connect with EPICS. The function of the MATLAB ''MiddleLayer'' is to provide a scripting language for machine simulations and on-line control, including non-EPICS based control systems. The MiddleLayer has simplified and streamlined development of high-level applications including configuration control, energy ramp, orbit correction, photon beam steering, ID compensation, beam-based alignment, tune correction and response matrix measurement. The database-driven Middle Layer software is largely machine-independent and easy to port. Six accelerators presently use the software package with more scheduled to come on line soon.

  12. Accelerating coordination in temporal networks by engineering the link order

    PubMed Central

    Masuda, Naoki

    2016-01-01

    Social dynamics on a network may be accelerated or decelerated depending on which pairs of individuals in the network communicate early and which pairs do later. The order with which the links in a given network are sequentially used, which we call the link order, may be a strong determinant of dynamical behaviour on networks, potentially adding a new dimension to effects of temporal networks relative to static networks. Here we study the effect of the link order on linear coordination (i.e., synchronisation) dynamics. We show that the coordination speed considerably depends on specific orders of links. In addition, applying each single link for a long time to ensure strong pairwise coordination before moving to a next pair of individuals does not often enhance coordination of the entire network. We also implement a simple greedy algorithm to optimise the link order in favour of fast coordination. PMID:26916093

  13. Accelerating coordination in temporal networks by engineering the link order

    NASA Astrophysics Data System (ADS)

    Masuda, Naoki

    2016-02-01

    Social dynamics on a network may be accelerated or decelerated depending on which pairs of individuals in the network communicate early and which pairs do later. The order with which the links in a given network are sequentially used, which we call the link order, may be a strong determinant of dynamical behaviour on networks, potentially adding a new dimension to effects of temporal networks relative to static networks. Here we study the effect of the link order on linear coordination (i.e., synchronisation) dynamics. We show that the coordination speed considerably depends on specific orders of links. In addition, applying each single link for a long time to ensure strong pairwise coordination before moving to a next pair of individuals does not often enhance coordination of the entire network. We also implement a simple greedy algorithm to optimise the link order in favour of fast coordination.

  14. Method Accelerates Training Of Some Neural Networks

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O.

    1992-01-01

    Three-layer networks trained faster provided two conditions are satisfied: numbers of neurons in layers are such that majority of work done in synaptic connections between input and hidden layers, and number of neurons in input layer at least as great as number of training pairs of input and output vectors. Based on modified version of back-propagation method.

  15. Control system for the NBS microtron accelerator

    NASA Astrophysics Data System (ADS)

    Martin, E. Ray; Trout, Robert E.; Wilson, Bonnie L.; Ayres, Robert L.; Yoder, Neil R.

    1986-06-01

    As various subsystems of the National Bureau of Standards/Los Alamos racetrack microtron accelerator are being brought on-line, experience has been gained with some of the innovations implemented in the control system. Foremost among these are the joystick-based operator controls, the hierarchical distribution of control system intelligence, and the independent secondary stations, permitting sectional stand-alone operation. The result of the distributed database philosophy and parallel data links has been very fast data updates, permitting joystick interaction with system elements. The software development was greatly simplified by using the hardware arbitration of several parallel processors in the Multibus system to split the software tasks into independent modules.

  16. Control efficacy of complex networks

    PubMed Central

    Gao, Xin-Dong; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-01-01

    Controlling complex networks has become a forefront research area in network science and engineering. Recent efforts have led to theoretical frameworks of controllability to fully control a network through steering a minimum set of driver nodes. However, in realistic situations not every node is accessible or can be externally driven, raising the fundamental issue of control efficacy: if driving signals are applied to an arbitrary subset of nodes, how many other nodes can be controlled? We develop a framework to determine the control efficacy for undirected networks of arbitrary topology. Mathematically, based on non-singular transformation, we prove a theorem to determine rigorously the control efficacy of the network and to identify the nodes that can be controlled for any given driver nodes. Physically, we develop the picture of diffusion that views the control process as a signal diffused from input signals to the set of controllable nodes. The combination of mathematical theory and physical reasoning allows us not only to determine the control efficacy for model complex networks and a large number of empirical networks, but also to uncover phenomena in network control, e.g., hub nodes in general possess lower control centrality than an average node in undirected networks. PMID:27324438

  17. Control efficacy of complex networks

    NASA Astrophysics Data System (ADS)

    Gao, Xin-Dong; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-06-01

    Controlling complex networks has become a forefront research area in network science and engineering. Recent efforts have led to theoretical frameworks of controllability to fully control a network through steering a minimum set of driver nodes. However, in realistic situations not every node is accessible or can be externally driven, raising the fundamental issue of control efficacy: if driving signals are applied to an arbitrary subset of nodes, how many other nodes can be controlled? We develop a framework to determine the control efficacy for undirected networks of arbitrary topology. Mathematically, based on non-singular transformation, we prove a theorem to determine rigorously the control efficacy of the network and to identify the nodes that can be controlled for any given driver nodes. Physically, we develop the picture of diffusion that views the control process as a signal diffused from input signals to the set of controllable nodes. The combination of mathematical theory and physical reasoning allows us not only to determine the control efficacy for model complex networks and a large number of empirical networks, but also to uncover phenomena in network control, e.g., hub nodes in general possess lower control centrality than an average node in undirected networks.

  18. Control efficacy of complex networks.

    PubMed

    Gao, Xin-Dong; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-01-01

    Controlling complex networks has become a forefront research area in network science and engineering. Recent efforts have led to theoretical frameworks of controllability to fully control a network through steering a minimum set of driver nodes. However, in realistic situations not every node is accessible or can be externally driven, raising the fundamental issue of control efficacy: if driving signals are applied to an arbitrary subset of nodes, how many other nodes can be controlled? We develop a framework to determine the control efficacy for undirected networks of arbitrary topology. Mathematically, based on non-singular transformation, we prove a theorem to determine rigorously the control efficacy of the network and to identify the nodes that can be controlled for any given driver nodes. Physically, we develop the picture of diffusion that views the control process as a signal diffused from input signals to the set of controllable nodes. The combination of mathematical theory and physical reasoning allows us not only to determine the control efficacy for model complex networks and a large number of empirical networks, but also to uncover phenomena in network control, e.g., hub nodes in general possess lower control centrality than an average node in undirected networks. PMID:27324438

  19. Evidence for Accelerated Decline of Functional Brain Network Efficiency in Schizophrenia.

    PubMed

    Sheffield, Julia M; Repovs, Grega; Harms, Michael P; Carter, Cameron S; Gold, James M; MacDonald, Angus W; Ragland, J Daniel; Silverstein, Steven M; Godwin, Douglass; Barch, Deanna M

    2016-05-01

    Previous work suggests that individuals with schizophrenia display accelerated aging of white matter integrity, however, it is still unknown whether functional brain networks also decline at an elevated rate in schizophrenia. Given the known degradation of functional connectivity and the normal decline in cognitive functioning throughout healthy aging, we aimed to test the hypothesis that efficiency of large-scale functional brain networks supporting overall cognition, as well as integrity of hub nodes within those networks, show evidence of accelerated aging in schizophrenia. Using pseudo-resting state data in 54 healthy controls and 46 schizophrenia patients, in which task-dependent signal from 3 tasks was regressed out to approximate resting-state data, we observed a significant diagnosis by age interaction in the prediction of both global and local efficiency of the cingulo-opercular network, and of the local efficiency of the fronto-parietal network, but no interaction when predicting both default mode network and whole brain efficiency. We also observed a significant diagnosis by age interaction for the node degree of the right anterior insula, left dorsolateral prefrontal cortex, and dorsal anterior cingulate cortex. All interactions were driven by stronger negative associations between age and network metrics in the schizophrenia group than the healthy controls. These data provide evidence that is consistent with accelerated aging of large-scale functional brain networks in schizophrenia that support higher-order cognitive ability. PMID:26472685

  20. ACCELERATOR TARGET POSITIONER AND CONTROL CIRCUIT THEREFOR

    DOEpatents

    Stone, K.F.; Force, R.J.; Olson, W.W.; Cagle, D.S.

    1959-12-15

    An apparatus is described for inserting and retracting a target material with respect to the internal beam of a charged particle accelerator and to circuitry for controlling the timing and motion of the target placement. Two drive coils are mounted on the shaft of a target holder arm and disposed within the accelerator magnetic field with one coil at right angles to the other. Control circuitry alternately connects each coil to a current source and to a varying shorting resistance whereby the coils interchangeably produce driving and braking forces which swing the target arm within a ninety degree arc. The target is thus moved into the beam and away from it at high speeds and is brought to rest after each movement without whiplash or vibration.

  1. Modeling of UH-60A Hub Accelerations with Neural Networks

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi

    2002-01-01

    Neural network relationships between the full-scale, flight test hub accelerations and the corresponding three N/rev pilot floor vibration components (vertical, lateral, and longitudinal) are studied. The present quantitative effort on the UH-60A Black Hawk hub accelerations considers the lateral and longitudinal vibrations. An earlier study had considered the vertical vibration. The NASA/Army UH-60A Airloads Program flight test database is used. A physics based "maneuver-effect-factor (MEF)", derived using the roll-angle and the pitch-rate, is used. Fundamentally, the lateral vibration data show high vibration levels (up to 0.3 g's) at low airspeeds (for example, during landing flares) and at high airspeeds (for example, during turns). The results show that the advance ratio and the gross weight together can predict the vertical and the longitudinal vibration. However, the advance ratio and the gross weight together cannot predict the lateral vibration. The hub accelerations and the advance ratio can be used to satisfactorily predict the vertical, lateral, and longitudinal vibration. The present study shows that neural network based representations of all three UH-60A pilot floor vibration components (vertical, lateral, and longitudinal) can be obtained using the hub accelerations along with the gross weight and the advance ratio. The hub accelerations are clearly a factor in determining the pilot vibration. The present conclusions potentially allow for the identification of neural network relationships between the experimental hub accelerations obtained from wind tunnel testing and the experimental pilot vibration data obtained from flight testing. A successful establishment of the above neural network based link between the wind tunnel hub accelerations and the flight test vibration data can increase the value of wind tunnel testing.

  2. [Weekly control measurement at the linear accelerator].

    PubMed

    Christ, G

    1983-05-01

    Weekly control measurements taken at the linear accelerator of the Medizinisches Strahleninstitut der Universität Tübingen are described which largely exceed those prescribed by the "Richtlinien Strahlenschutz in der Medizin" (instructions about radioprotection in medicine). Since the determination of the field homogeneity and the energy of electron and X-ray radiation is very time-consuming, a largely automatized procedure has been elaborated which is presented in this study. PMID:6857748

  3. Accelerator controls at CERN: Some converging trends

    NASA Astrophysics Data System (ADS)

    Kuiper, B.

    1990-08-01

    CERN's growing services to the high-energy physics community using frozen resources has led to the implementation of "Technical Boards", mandated to assist the management by making recommendations for rationalizations in various technological domains. The Board on Process Control and Electronics for Accelerators, TEBOCO, has emphasized four main lines which might yield economy in resources. First, a common architecture for accelerator controls has been agreed between the three accelerator divisions. Second, a common hardware/software kit has been defined, from which the large majority of future process interfacing may be composed. A support service for this kit is an essential part of the plan. Third, high-level protocols have been developed for standardizing access to process devices. They derive from agreed standard models of the devices and involve a standard control message. This should ease application development and mobility of equipment. Fourth, a common software engineering methodology and a commercial package of application development tools have been adopted. Some rationalization in the field of the man-machine interface and in matters of synchronization is also under way.

  4. Accelerating the reconstruction of genome-scale metabolic networks

    PubMed Central

    Notebaart, Richard A; van Enckevort, Frank HJ; Francke, Christof; Siezen, Roland J; Teusink, Bas

    2006-01-01

    Background The genomic information of a species allows for the genome-scale reconstruction of its metabolic capacity. Such a metabolic reconstruction gives support to metabolic engineering, but also to integrative bioinformatics and visualization. Sequence-based automatic reconstructions require extensive manual curation, which can be very time-consuming. Therefore, we present a method to accelerate the time-consuming process of network reconstruction for a query species. The method exploits the availability of well-curated metabolic networks and uses high-resolution predictions of gene equivalency between species, allowing the transfer of gene-reaction associations from curated networks. Results We have evaluated the method using Lactococcus lactis IL1403, for which a genome-scale metabolic network was published recently. We recovered most of the gene-reaction associations (i.e. 74 – 85%) which are incorporated in the published network. Moreover, we predicted over 200 additional genes to be associated to reactions, including genes with unknown function, genes for transporters and genes with specific metabolic reactions, which are good candidates for an extension to the previously published network. In a comparison of our developed method with the well-established approach Pathologic, we predicted 186 additional genes to be associated to reactions. We also predicted a relatively high number of complete conserved protein complexes, which are derived from curated metabolic networks, illustrating the potential predictive power of our method for protein complexes. Conclusion We show that our methodology can be applied to accelerate the reconstruction of genome-scale metabolic networks by taking optimal advantage of existing, manually curated networks. As orthology detection is the first step in the method, only the translated open reading frames (ORFs) of a newly sequenced genome are necessary to reconstruct a metabolic network. When more manually curated metabolic

  5. Controllability of structural brain networks

    NASA Astrophysics Data System (ADS)

    Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.

    2015-10-01

    Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.

  6. Controllability of structural brain networks

    PubMed Central

    Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.

    2015-01-01

    Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function. PMID:26423222

  7. Congestion control and routing over satellite networks

    NASA Astrophysics Data System (ADS)

    Cao, Jinhua

    Satellite networks and transmissions find their application in fields of computer communications, telephone communications, television broadcasting, transportation, space situational awareness systems and so on. This thesis mainly focuses on two networking issues affecting satellite networking: network congestion control and network routing optimization. Congestion, which leads to long queueing delays, packet losses or both, is a networking problem that has drawn the attention of many researchers. The goal of congestion control mechanisms is to ensure high bandwidth utilization while avoiding network congestion by regulating the rate at which traffic sources inject packets into a network. In this thesis, we propose a stable congestion controller using data-driven, safe switching control theory to improve the dynamic performance of satellite Transmission Control Protocol/Active Queue Management (TCP/AQM) networks. First, the stable region of the Proportional-Integral (PI) parameters for a nominal model is explored. Then, a PI controller, whose parameters are adaptively tuned by switching among members of a given candidate set, using observed plant data, is presented and compared with some classical AQM policy examples, such as Random Early Detection (RED) and fixed PI control. A new cost detectable switching law with an interval cost function switching algorithm, which improves the performance and also saves the computational cost, is developed and compared with a law commonly used in the switching control literature. Finite-gain stability of the system is proved. A fuzzy logic PI controller is incorporated as a special candidate to achieve good performance at all nominal points with the available set of candidate controllers. Simulations are presented to validate the theory. An effocient routing algorithm plays a key role in optimizing network resources. In this thesis, we briefly analyze Low Earth Orbit (LEO) satellite networks, review the Cross Entropy (CE

  8. Attack Vulnerability of Network Controllability.

    PubMed

    Lu, Zhe-Ming; Li, Xin-Feng

    2016-01-01

    Controllability of complex networks has attracted much attention, and understanding the robustness of network controllability against potential attacks and failures is of practical significance. In this paper, we systematically investigate the attack vulnerability of network controllability for the canonical model networks as well as the real-world networks subject to attacks on nodes and edges. The attack strategies are selected based on degree and betweenness centralities calculated for either the initial network or the current network during the removal, among which random failure is as a comparison. It is found that the node-based strategies are often more harmful to the network controllability than the edge-based ones, and so are the recalculated strategies than their counterparts. The Barabási-Albert scale-free model, which has a highly biased structure, proves to be the most vulnerable of the tested model networks. In contrast, the Erdős-Rényi random model, which lacks structural bias, exhibits much better robustness to both node-based and edge-based attacks. We also survey the control robustness of 25 real-world networks, and the numerical results show that most real networks are control robust to random node failures, which has not been observed in the model networks. And the recalculated betweenness-based strategy is the most efficient way to harm the controllability of real-world networks. Besides, we find that the edge degree is not a good quantity to measure the importance of an edge in terms of network controllability. PMID:27588941

  9. Explicit integration with GPU acceleration for large kinetic networks

    DOE PAGESBeta

    Brock, Benjamin; Belt, Andrew; Billings, Jay Jay; Guidry, Mike W.

    2015-09-15

    In this study, we demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. In addition, this orders-of-magnitude decrease in computation time for solving systems of realistic kinetic networks implies thatmore » important coupled, multiphysics problems in various scientific and technical fields that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.« less

  10. Explicit integration with GPU acceleration for large kinetic networks

    SciTech Connect

    Brock, Benjamin; Belt, Andrew; Billings, Jay Jay; Guidry, Mike W.

    2015-09-15

    In this study, we demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. In addition, this orders-of-magnitude decrease in computation time for solving systems of realistic kinetic networks implies that important coupled, multiphysics problems in various scientific and technical fields that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.

  11. Explicit integration with GPU acceleration for large kinetic networks

    NASA Astrophysics Data System (ADS)

    Brock, Benjamin; Belt, Andrew; Billings, Jay Jay; Guidry, Mike

    2015-12-01

    We demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. This orders-of-magnitude decrease in computation time for solving systems of realistic kinetic networks implies that important coupled, multiphysics problems in various scientific and technical fields that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.

  12. Accelerated Training for Large Feedforward Neural Networks

    NASA Technical Reports Server (NTRS)

    Stepniewski, Slawomir W.; Jorgensen, Charles C.

    1998-01-01

    In this paper we introduce a new training algorithm, the scaled variable metric (SVM) method. Our approach attempts to increase the convergence rate of the modified variable metric method. It is also combined with the RBackprop algorithm, which computes the product of the matrix of second derivatives (Hessian) with an arbitrary vector. The RBackprop method allows us to avoid computationally expensive, direct line searches. In addition, it can be utilized in the new, 'predictive' updating technique of the inverse Hessian approximation. We have used directional slope testing to adjust the step size and found that this strategy works exceptionally well in conjunction with the Rbackprop algorithm. Some supplementary, but nevertheless important enhancements to the basic training scheme such as improved setting of a scaling factor for the variable metric update and computationally more efficient procedure for updating the inverse Hessian approximation are presented as well. We summarize by comparing the SVM method with four first- and second- order optimization algorithms including a very effective implementation of the Levenberg-Marquardt method. Our tests indicate promising computational speed gains of the new training technique, particularly for large feedforward networks, i.e., for problems where the training process may be the most laborious.

  13. FPGA-accelerated adaptive optics wavefront control

    NASA Astrophysics Data System (ADS)

    Mauch, S.; Reger, J.; Reinlein, C.; Appelfelder, M.; Goy, M.; Beckert, E.; Tünnermann, A.

    2014-03-01

    The speed of real-time adaptive optical systems is primarily restricted by the data processing hardware and computational aspects. Furthermore, the application of mirror layouts with increasing numbers of actuators reduces the bandwidth (speed) of the system and, thus, the number of applicable control algorithms. This burden turns out a key-impediment for deformable mirrors with continuous mirror surface and highly coupled actuator influence functions. In this regard, specialized hardware is necessary for high performance real-time control applications. Our approach to overcome this challenge is an adaptive optics system based on a Shack-Hartmann wavefront sensor (SHWFS) with a CameraLink interface. The data processing is based on a high performance Intel Core i7 Quadcore hard real-time Linux system. Employing a Xilinx Kintex-7 FPGA, an own developed PCie card is outlined in order to accelerate the analysis of a Shack-Hartmann Wavefront Sensor. A recently developed real-time capable spot detection algorithm evaluates the wavefront. The main features of the presented system are the reduction of latency and the acceleration of computation For example, matrix multiplications which in general are of complexity O(n3 are accelerated by using the DSP48 slices of the field-programmable gate array (FPGA) as well as a novel hardware implementation of the SHWFS algorithm. Further benefits are the Streaming SIMD Extensions (SSE) which intensively use the parallelization capability of the processor for further reducing the latency and increasing the bandwidth of the closed-loop. Due to this approach, up to 64 actuators of a deformable mirror can be handled and controlled without noticeable restriction from computational burdens.

  14. Toward automatic control of particle accelerator beams

    SciTech Connect

    Schultz, D.E.; Silbar, R.R.

    1988-01-01

    We describe a program aiming toward automatic control of particle accelerator beams. A hybrid approach is used, combining knowledge- based system programming techniques and traditional numerical simulations. We use an expert system shell for the symbolic processing and have incorporated the FORTRAN beam optics code TRANSPORT for numerical simulation. The paper discusses the symbolic model we built, the reasoning components, how the knowledge base accesses information from an operating beamline, and the experience gained in merging the two worlds of numeric and symbolic processing. We also discuss plans for a future real-time system. 6 refs., 6 figs.

  15. Open Hardware for CERN's accelerator control systems

    NASA Astrophysics Data System (ADS)

    van der Bij, E.; Serrano, J.; Wlostowski, T.; Cattin, M.; Gousiou, E.; Alvarez Sanchez, P.; Boccardi, A.; Voumard, N.; Penacoba, G.

    2012-01-01

    The accelerator control systems at CERN will be upgraded and many electronics modules such as analog and digital I/O, level converters and repeaters, serial links and timing modules are being redesigned. The new developments are based on the FPGA Mezzanine Card, PCI Express and VME64x standards while the Wishbone specification is used as a system on a chip bus. To attract partners, the projects are developed in an `Open' fashion. Within this Open Hardware project new ways of working with industry are being evaluated and it has been proven that industry can be involved at all stages, from design to production and support.

  16. Weight-Control Information Network

    MedlinePlus

    ... Research Training & Career Development Grant programs for students, postdocs, and faculty Research at NIDDK Labs, faculty, and ... full list of resources . Alternate Language URL Weight-control Information Network (WIN) Page Content The Weight-control ...

  17. Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks

    PubMed Central

    Arampatzis, Georgios; Katsoulakis, Markos A.; Pantazis, Yannis

    2015-01-01

    Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction networks with a large number of parameters and species, which are typical in the modeling and simulation of complex biochemical phenomena. In this paper, a two-step strategy for parametric sensitivity analysis for such systems is proposed, exploiting advantages and synergies between two recently proposed sensitivity analysis methodologies for stochastic dynamics. The first method performs sensitivity analysis of the stochastic dynamics by means of the Fisher Information Matrix on the underlying distribution of the trajectories; the second method is a reduced-variance, finite-difference, gradient-type sensitivity approach relying on stochastic coupling techniques for variance reduction. Here we demonstrate that these two methods can be combined and deployed together by means of a new sensitivity bound which incorporates the variance of the quantity of interest as well as the Fisher Information Matrix estimated from the first method. The first step of the proposed strategy labels sensitivities using the bound and screens out the insensitive parameters in a controlled manner. In the second step of the proposed strategy, a finite-difference method is applied only for the sensitivity estimation of the (potentially) sensitive parameters that have not been screened out in the first step. Results on an epidermal growth factor network with fifty parameters and on a protein homeostasis with eighty parameters demonstrate that the proposed strategy is able to quickly discover and discard the insensitive parameters and in the remaining potentially sensitive parameters it accurately estimates the sensitivities. The new sensitivity strategy can be several times faster than current state-of-the-art approaches that test all parameters, especially in “sloppy” systems. In particular, the computational acceleration is quantified by the ratio between the total number of parameters over

  18. Realistic Control of Network Dynamics

    PubMed Central

    Cornelius, Sean P.; Kath, William L.; Motter, Adilson E.

    2014-01-01

    The control of complex networks is of paramount importance in areas as diverse as ecosystem management, emergency response, and cell reprogramming. A fundamental property of networks is that perturbations to one node can affect other nodes, potentially causing the entire system to change behavior or fail. Here, we show that it is possible to exploit the same principle to control network behavior. Our approach accounts for the nonlinear dynamics inherent to real systems, and allows bringing the system to a desired target state even when this state is not directly accessible due to constraints that limit the allowed interventions. Applications show that this framework permits reprogramming a network to a desired task as well as rescuing networks from the brink of failure—which we illustrate through the mitigation of cascading failures in a power-grid network and the identification of potential drug targets in a signaling network of human cancer. PMID:23803966

  19. Linear induction accelerator and pulse forming networks therefor

    DOEpatents

    Buttram, Malcolm T.; Ginn, Jerry W.

    1989-01-01

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.

  20. Controlled Microwave Heating Accelerates Rolling Circle Amplification

    PubMed Central

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same. PMID:26348227

  1. Reliable timing systems for computer controlled accelerators

    NASA Astrophysics Data System (ADS)

    Knott, Jürgen; Nettleton, Robert

    1986-06-01

    Over the past decade the use of computers has set new standards for control systems of accelerators with ever increasing complexity coupled with stringent reliability criteria. In fact, with very slow cycling machines or storage rings any erratic operation or timing pulse will cause the loss of precious particles and waste hours of time and effort of preparation. Thus, for the CERN linac and LEAR (Low Energy Antiproton Ring) timing system reliability becomes a crucial factor in the sense that all components must operate practically without fault for very long periods compared to the effective machine cycle. This has been achieved by careful selection of components and design well below thermal and electrical limits, using error detection and correction where possible, as well as developing "safe" decoding techniques for serial data trains. Further, consistent structuring had to be applied in order to obtain simple and flexible modular configurations with very few components on critical paths and to minimize the exchange of information to synchronize accelerators. In addition, this structuring allows the development of efficient strategies for on-line and off-line fault diagnostics. As a result, the timing system for Linac 2 has, so far, been operating without fault for three years, the one for LEAR more than one year since its final debugging.

  2. Control of collective network chaos

    SciTech Connect

    Wagemakers, Alexandre Sanjuán, Miguel A. F.

    2014-06-01

    Under certain conditions, the collective behavior of a large globally-coupled heterogeneous network of coupled oscillators, as quantified by the macroscopic mean field or order parameter, can exhibit low-dimensional chaotic behavior. Recent advances describe how a small set of “reduced” ordinary differential equations can be derived that captures this mean field behavior. Here, we show that chaos control algorithms designed using the reduced equations can be successfully applied to imperfect realizations of the full network. To systematically study the effectiveness of this technique, we measure the quality of control as we relax conditions that are required for the strict accuracy of the reduced equations, and hence, the controller. Although the effects are network-dependent, we show that the method is effective for surprisingly small networks, for modest departures from global coupling, and even with mild inaccuracy in the estimate of network heterogeneity.

  3. Acceleration-Augmented LQG Control of an Active Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Feeley, Joseph J.

    1993-01-01

    A linear-quadratic-gaussian (LQG) regulator controller design for an acceleration-augmented active magnetic bearing (AMB) is outlined. Acceleration augmentation is a key feature in providing improved dynamic performance of the controller. The optimal control formulation provides a convenient method of trading-off fast transient response and force attenuation as control objectives.

  4. The accelerated growth of the worldwide air transportation network

    NASA Astrophysics Data System (ADS)

    Azzam, Mark; Klingauf, Uwe; Zock, Alexander

    2013-01-01

    Mobility by means of air transportation has a critical impact on the global economy. Especially against the backdrop of further growth and an aggravation of the energy crisis, it is crucial to design a sustainable air transportation system. Current approaches focus on air traffic management. Nevertheless, also the historically evolved network offers great potential for an optimized redesign. But the understanding of its complex structure and development is limited, although modern network science supplies a great set of new methods and tools. So far studies analyzing air transportation as a complex network are based on divers and poor data, which are either merely regional or strongly bounded time-wise. As a result, the current state of research is rather inconsistent regarding topological coefficients and incomplete regarding network evolution. Therefore, we use the historical, worldwide OAG flight schedules data between 1979 and 2007 for our study. Through analyzing by far the most comprehensive data base so far, a better understanding of the network, its evolution and further implications is being provided. To our knowledge we present the first study to determine that the degree distribution of the worldwide air transportation network is non-stationary and is subject to densification and accelerated growth, respectively.

  5. Accelerator diagnosis and control by Neural Nets

    SciTech Connect

    Spencer, J.E.

    1989-01-01

    Neural Nets (NN) have been described as a solution looking for a problem. In the last conference, Artificial Intelligence (AI) was considered in the accelerator context. While good for local surveillance and control, its use for large complex systems (LCS) was much more restricted. By contrast, NN provide a good metaphor for LCS. It can be argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems, and therefore provide an ideal adaptive control system. Thus, where AI may be good for maintaining a 'golden orbit,' NN should be good for obtaining it via a quantitative approach to 'look and adjust' methods like operator tweaking which use pattern recognition to deal with hardware and software limitations, inaccuracies or errors as well as imprecise knowledge or understanding of effects like annealing and hysteresis. Further, insights from NN allow one to define feasibility conditions for LCS in terms of design constraints and tolerances. Hardware and software implications are discussed and several LCS of current interest are compared and contrasted. 15 refs., 5 figs.

  6. Controllability of asynchronous Boolean multiplex control networks

    NASA Astrophysics Data System (ADS)

    Luo, Chao; Wang, Xingyuan; Liu, Hong

    2014-09-01

    In this article, the controllability of asynchronous Boolean multiplex control networks (ABMCNs) is studied. First, the model of Boolean multiplex control networks under Harvey' asynchronous update is presented. By means of semi-tensor product approach, the logical dynamics is converted into linear representation, and a generalized formula of control-depending network transition matrices is achieved. Second, a necessary and sufficient condition is proposed to verify that only control-depending fixed points of ABMCNs can be controlled with probability one. Third, using two types of controls, the controllability of system is studied and formulae are given to show: (a) when an initial state is given, the reachable set at time s under a group of specified controls; (b) the reachable set at time s under arbitrary controls; (c) the specific probability values from a given initial state to destination states. Based on the above formulae, an algorithm to calculate overall reachable states from a specified initial state is presented. Moreover, we also discuss an approach to find the particular control sequence which steers the system between two states with maximum probability. Examples are shown to illustrate the feasibility of the proposed scheme.

  7. BIOCONAID System (Bionic Control of Acceleration Induced Dimming). Final Report.

    ERIC Educational Resources Information Center

    Rogers, Dana B.; And Others

    The system described represents a new technique for enhancing the fidelity of flight simulators during high acceleration maneuvers. This technique forces the simulator pilot into active participation and energy expenditure similar to the aircraft pilot undergoing actual accelerations. The Bionic Control of Acceleration Induced Dimming (BIOCONAID)…

  8. Status and Future Developments in Large Accelerator Control Systems

    SciTech Connect

    Karen S. White

    2006-10-31

    Over the years, accelerator control systems have evolved from small hardwired systems to complex computer controlled systems with many types of graphical user interfaces and electronic data processing. Today's control systems often include multiple software layers, hundreds of distributed processors, and hundreds of thousands of lines of code. While it is clear that the next generation of accelerators will require much bigger control systems, they will also need better systems. Advances in technology will be needed to ensure the network bandwidth and CPU power can provide reasonable update rates and support the requisite timing systems. Beyond the scaling problem, next generation systems face additional challenges due to growing cyber security threats and the likelihood that some degree of remote development and operation will be required. With a large number of components, the need for high reliability increases and commercial solutions can play a key role towards this goal. Future control systems will operate more complex machines and need to present a well integrated, interoperable set of tools with a high degree of automation. Consistency of data presentation and exception handling will contribute to efficient operations. From the development perspective, engineers will need to provide integrated data management in the beginning of the project and build adaptive software components around a central data repository. This will make the system maintainable and ensure consistency throughout the inevitable changes during the machine lifetime. Additionally, such a large project will require professional project management and disciplined use of well-defined engineering processes. Distributed project teams will make the use of standards, formal requirements and design and configuration control vital. Success in building the control system of the future may hinge on how well we integrate commercial components and learn from best practices used in other industries.

  9. An accelerated training method for back propagation networks

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O. (Inventor)

    1993-01-01

    The principal objective is to provide a training procedure for a feed forward, back propagation neural network which greatly accelerates the training process. A set of orthogonal singular vectors are determined from the input matrix such that the standard deviations of the projections of the input vectors along these singular vectors, as a set, are substantially maximized, thus providing an optimal means of presenting the input data. Novelty exists in the method of extracting from the set of input data, a set of features which can serve to represent the input data in a simplified manner, thus greatly reducing the time/expense to training the system.

  10. A Microcomputer-Controlled Measurement of Acceleration.

    ERIC Educational Resources Information Center

    Crandall, A. Jared; Stoner, Ronald

    1982-01-01

    Describes apparatus and method used to allow rapid and repeated measurement of acceleration of a ball rolling down an inclined plane. Acceleration measurements can be performed in an hour with the apparatus interfaced to a Commodore PET microcomputer. A copy of the BASIC program is available from the authors. (Author/JN)

  11. Controlling centrality in complex networks

    PubMed Central

    Nicosia, V.; Criado, R.; Romance, M.; Russo, G.; Latora, V.

    2012-01-01

    Spectral centrality measures allow to identify influential individuals in social groups, to rank Web pages by popularity, and even to determine the impact of scientific researches. The centrality score of a node within a network crucially depends on the entire pattern of connections, so that the usual approach is to compute node centralities once the network structure is assigned. We face here with the inverse problem, that is, we study how to modify the centrality scores of the nodes by acting on the structure of a given network. We show that there exist particular subsets of nodes, called controlling sets, which can assign any prescribed set of centrality values to all the nodes of a graph, by cooperatively tuning the weights of their out-going links. We found that many large networks from the real world have surprisingly small controlling sets, containing even less than 5 – 10% of the nodes. PMID:22355732

  12. PARTICLE ACCELERATOR AND METHOD OF CONTROLLING THE TEMPERATURE THEREOF

    DOEpatents

    Neal, R.B.; Gallagher, W.J.

    1960-10-11

    A method and means for controlling the temperature of a particle accelerator and more particularly to the maintenance of a constant and uniform temperature throughout a particle accelerator is offered. The novel feature of the invention resides in the provision of two individual heating applications to the accelerator structure. The first heating application provided is substantially a duplication of the accelerator heat created from energization, this first application being employed only when the accelerator is de-energized thereby maintaining the accelerator temperature constant with regard to time whether the accelerator is energized or not. The second heating application provided is designed to add to either the first application or energization heat in a manner to create the same uniform temperature throughout all portions of the accelerator.

  13. Torque-based optimal acceleration control for electric vehicle

    NASA Astrophysics Data System (ADS)

    Lu, Dongbin; Ouyang, Minggao

    2014-03-01

    The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control.

  14. A control network of Triton

    NASA Technical Reports Server (NTRS)

    Davies, Merton E.; Rogers, Patricia G.; Colvin, Tim R.

    1991-01-01

    A control network for Triton has been computed using a bundle-type analytical triangulation program. The network contains 105 points that were measured on 57 Voyager-2 pictures. The adjustment contained 1010 observation equations and 382 normal equations and resulted in a standard measurement error of 13.36 microns. The coordinates of the control points, the camera orientation angles at the times when the pictures were taken, and Triton's mean radius were determined. A separate statistical analysis confirmed Triton's radius to be 1352.6 + or - 2.4 km. Attempts to tie the control network around the satellite were unsuccessful because discontinuities exist in high-resolution coverage between 66 deg and 289 deg longitude, north of 38 deg latitude, and south of 78 deg latitude.

  15. A control network of Triton

    NASA Astrophysics Data System (ADS)

    Davies, Merton E.; Rogers, Patricia G.; Colvin, Tim R.

    1991-08-01

    A control network for Triton has been computed using a bundle-type analytical triangulation program. The network contains 105 points that were measured on 57 Voyager-2 pictures. The adjustment contained 1010 observation equations and 382 normal equations and resulted in a standard measurement error of 13.36 microns. The coordinates of the control points, the camera orientation angles at the times when the pictures were taken, and Triton's mean radius were determined. A separate statistical analysis confirmed Triton's radius to be 1352.6 + or - 2.4 km. Attempts to tie the control network around the satellite were unsuccessful because discontinuities exist in high-resolution coverage between 66 deg and 289 deg longitude, north of 38 deg latitude, and south of 78 deg latitude.

  16. The ADVANCE network: accelerating data value across a national community health center network

    PubMed Central

    DeVoe, Jennifer E; Gold, Rachel; Cottrell, Erika; Bauer, Vance; Brickman, Andrew; Puro, Jon; Nelson, Christine; Mayer, Kenneth H; Sears, Abigail; Burdick, Tim; Merrell, Jonathan; Matthews, Paul; Fields, Scott

    2014-01-01

    The ADVANCE (Accelerating Data Value Across a National Community Health Center Network) clinical data research network (CDRN) is led by the OCHIN Community Health Information Network in partnership with Health Choice Network and Fenway Health. The ADVANCE CDRN will ‘horizontally’ integrate outpatient electronic health record data for over one million federally qualified health center patients, and ‘vertically’ integrate hospital, health plan, and community data for these patients, often under-represented in research studies. Patient investigators, community investigators, and academic investigators with diverse expertise will work together to meet project goals related to data integration, patient engagement and recruitment, and the development of streamlined regulatory policies. By enhancing the data and research infrastructure of participating organizations, the ADVANCE CDRN will serve as a ‘community laboratory’ for including disadvantaged and vulnerable patients in patient-centered outcomes research that is aligned with the priorities of patients, clinics, and communities in our network. PMID:24821740

  17. Neural Networks for Flight Control

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1996-01-01

    Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.

  18. Gene networks controlling petal organogenesis.

    PubMed

    Huang, Tengbo; Irish, Vivian F

    2016-01-01

    One of the biggest unanswered questions in developmental biology is how growth is controlled. Petals are an excellent organ system for investigating growth control in plants: petals are dispensable, have a simple structure, and are largely refractory to environmental perturbations that can alter their size and shape. In recent studies, a number of genes controlling petal growth have been identified. The overall picture of how such genes function in petal organogenesis is beginning to be elucidated. This review will focus on studies using petals as a model system to explore the underlying gene networks that control organ initiation, growth, and final organ morphology. PMID:26428062

  19. Beam Control for Ion Induction Accelerators

    SciTech Connect

    Sangster, T.C.; Ahle, L.

    2000-02-17

    Coordinated bending and acceleration of an intense space-charge-dominated ion beam has been achieved for the first time. This required the development of a variable waveform, precision, bi-polar high voltage pulser and a precision, high repetition rate induction core modulator. Waveforms applied to the induction cores accelerate the beam as the bi-polar high voltage pulser delivers a voltage ramp to electrostatic dipoles which bend the beam through a 90 degree permanent magnet quadrupole lattice. Further work on emittance minimization is also reported.

  20. Virtualized Network Control. Final Report

    SciTech Connect

    Ghani, Nasir

    2013-02-01

    This document is the final report for the Virtualized Network Control (VNC) project, which was funded by the United States Department of Energy (DOE) Office of Science. This project was also informally referred to as Advanced Resource Computation for Hybrid Service and TOpology NEtworks (ARCHSTONE). This report provides a summary of the project's activities, tasks, deliverable, and accomplishments. It also provides a summary of the documents, software, and presentations generated as part of this projects activities. Namely, the Appendix contains an archive of the deliverables, documents, and presentations generated a part of this project.

  1. Failure Mode Effects Analysis for an Accelerator Control System

    SciTech Connect

    Hartman, Steven M

    2009-01-01

    Failure mode effects analysis (FMEA) has been used in industry for design, manufacturing and assembly process quality control. It describes a formal approach for categorizing how a process may fail and for prioritizing failures based on their severity, frequency and likelihood of detection. Experience conducting a partial FMEA of an accelerator subsystem and its related control system will be reviewed. The applicability of the FMEA process to an operational accelerator control system will be discussed.

  2. The AMSC network control system

    NASA Technical Reports Server (NTRS)

    Garner, William B.

    1990-01-01

    The American Mobile Satellite Corporation (AMSC) is going to construct, launch, and operate a satellite system in order to provide mobile satellite services to the United States. AMSC is going to build, own, and operate a Network Control System (NCS) for managing the communications usage of the satellites, and to control circuit switched access between mobile earth terminals and feeder-link earth stations. An overview of the major NCS functional and performance requirements, the control system physical architecture, and the logical architecture is provided.

  3. Controllability of the better chosen partial networks

    NASA Astrophysics Data System (ADS)

    Liu, Xueming; Pan, Linqiang

    2016-08-01

    How to control large complex networks is a great challenge. Recent studies have proved that the whole network can be sufficiently steered by injecting control signals into a minimum set of driver nodes, and the minimum numbers of driver nodes for many real networks are high, indicating that it is difficult to control them. For some large natural and technological networks, it is impossible and not feasible to control the full network. For example, in biological networks like large-scale gene regulatory networks it is impossible to control all the genes. This prompts us to explore the question how to choose partial networks that are easy for controlling and important in networked systems. In this work, we propose a method to achieve this goal. By computing the minimum driver nodes densities of the partial networks of Erdös-Rényi (ER) networks, scale-free (SF) networks and 23 real networks, we find that our method performs better than random method that chooses nodes randomly. Moreover, we find that the nodes chosen by our method tend to be the essential elements of the whole systems, via studying the nodes chosen by our method of a real human signaling network and a human protein interaction network and discovering that the chosen nodes from these networks tend to be cancer-associated genes. The implementation of our method shows some interesting connections between the structure and the controllability of networks, improving our understanding of the control principles of complex systems.

  4. NODAL — The second life of the accelerator control language

    NASA Astrophysics Data System (ADS)

    Cuisinier, G.; Perriollat, F.; Ribeiro, P.; Kagarmanov, A.; Kovaltsov, V.

    1994-12-01

    NODAL has been a popular interpreter language for accelerator controls since the beginning of the 1970s. NODAL has been rewritten in the C language to be easily portable to the different computer platforms which are in use in accelerator controls. The paper describes the major features of this new version of NODAL, the major software packages which are available through this implementation, the platforms on which it is currently running, and some relevant performances. The experience gained during the rejuvenation project of the CERN accelerator control systems is presented. The benefit of this is discussed, in particular in a view of the prevailing strong constraints in personnel and money resources.

  5. Techniques for increasing the reliability of accelerator control system electronics

    SciTech Connect

    Utterback, J.

    1993-09-01

    As the physical size of modern accelerators becomes larger and larger, the number of required control system circuit boards increases, and the probability of one of those circuit boards failing while in service also increases. In order to do physics, the experimenters need the accelerator to provide beam reliably with as little down time as possible. With the advent of colliding beams physics, reliability becomes even more important due to the fact that a control system failure can cause the loss of painstakingly produced antiprotons. These facts prove the importance of keeping reliability in mind when designing and maintaining accelerator control system electronics.

  6. Accelerator control system at KEKB and the linac

    NASA Astrophysics Data System (ADS)

    Akiyama, Atsuyoshi; Furukawa, Kazuro; Kadokura, Eiichi; Kurashina, Miho; Mikawa, Katsuhiko; Nakamura, Tatsuro; Odagiri, Jun-ichi; Satoh, Masanori; Suwada, Tsuyoshi

    2013-03-01

    KEKB has completed all of the technical milestones and has offered important insights into the flavor structure of elementary particles, especially CP violation. The accelerator control system at KEKB and the injector linac was initiated by a combination of scripting languages at the operation layer and EPICS (experimental physics and industrial control system) at the equipment layer. During the project, many features were implemented to achieve extreme performance from the machine. In particular, the online linkage to the accelerator simulation played an essential role. In order to further improve the reliability and flexibility, two major concepts were additionally introduced later in the project, namely, channel access everywhere and dual-tier controls. Based on the improved control system, a virtual accelerator concept was realized, allowing the single injector linac to serve as three separate injectors to KEKB's high-energy ring, low-energy ring, and Photon Factory, respectively. These control technologies are indispensable for future particle accelerators.

  7. Laser-ion acceleration through controlled surface contamination

    SciTech Connect

    Hou Bixue; Nees, John A.; He Zhaohan; Easter, James H.; Thomas, Alexander G. R.; Krushelnick, Karl M.; Petrov, George; Davis, Jack

    2011-04-15

    In laser-plasma ion accelerators, control of target contamination layers can lead to selection of accelerated ion species and enhancement of acceleration. To demonstrate this, deuterons up to 75 keV are accelerated from an intense laser interaction with a glass target simply by placing 1 ml of heavy water inside the experimental chamber prior to pumping to generate a deuterated contamination layer on the target. Using the same technique with a deuterated-polystyrene-coated target also enhances deuteron yield by a factor of 3 to 5, while increasing the maximum energy of the generated deuterons to 140 keV.

  8. BNL ACCELERATOR TEST FACILITY CONTROL SYSTEM UPGRADE.

    SciTech Connect

    MALONE,R.; BEN-ZVI,I.; WANG,X.; YAKIMENKO,V.

    2001-06-18

    Brookhaven National Laboratory's Accelerator Test Facility (ATF) has embarked on a complete upgrade of its decade old computer system. The planned improvements affect every major component: processors (Intel Pentium replaces VAXes), operating system (Linux/Real-Time Linux supplants OpenVMS), and data acquisition equipment (fast Ethernet equipment replaces CAMAC serial highway.) This paper summarizes the strategies and progress of the upgrade along with plans for future expansion.

  9. Application of Fuzzy-Logic Controller and Neural Networks Controller in Gas Turbine Speed Control and Overheating Control and Surge Control on Transient Performance

    NASA Astrophysics Data System (ADS)

    Torghabeh, A. A.; Tousi, A. M.

    2007-08-01

    This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.

  10. To Break or to Brake Neuronal Network Accelerated by Ammonium Ions?

    PubMed Central

    Dynnik, Vladimir V.; Kononov, Alexey V.; Sergeev, Alexander I.; Teplov, Iliya Y.; Tankanag, Arina V.; Zinchenko, Valery P.

    2015-01-01

    Purpose The aim of present study was to investigate the effects of ammonium ions on in vitro neuronal network activity and to search alternative methods of acute ammonia neurotoxicity prevention. Methods Rat hippocampal neuronal and astrocytes co-cultures in vitro, fluorescent microscopy and perforated patch clamp were used to monitor the changes in intracellular Ca2+- and membrane potential produced by ammonium ions and various modulators in the cells implicated in neural networks. Results Low concentrations of NH4Cl (0.1–4 mM) produce short temporal effects on network activity. Application of 5–8 mM NH4Cl: invariably transforms diverse network firing regimen to identical burst patterns, characterized by substantial neuronal membrane depolarization at plateau phase of potential and high-amplitude Ca2+-oscillations; raises frequency and average for period of oscillations Ca2+-level in all cells implicated in network; results in the appearance of group of «run out» cells with high intracellular Ca2+ and steadily diminished amplitudes of oscillations; increases astrocyte Ca2+-signalling, characterized by the appearance of groups of cells with increased intracellular Ca2+-level and/or chaotic Ca2+-oscillations. Accelerated network activity may be suppressed by the blockade of NMDA or AMPA/kainate-receptors or by overactivation of AMPA/kainite-receptors. Ammonia still activate neuronal firing in the presence of GABA(A) receptors antagonist bicuculline, indicating that «disinhibition phenomenon» is not implicated in the mechanisms of networks acceleration. Network activity may also be slowed down by glycine, agonists of metabotropic inhibitory receptors, betaine, L-carnitine, L-arginine, etc. Conclusions Obtained results demonstrate that ammonium ions accelerate neuronal networks firing, implicating ionotropic glutamate receptors, having preserved the activities of group of inhibitory ionotropic and metabotropic receptors. This may mean, that ammonia

  11. Controlling electron injection in laser plasma accelerators using multiple pulses

    SciTech Connect

    Matlis, N. H.; Geddes, C. G. R.; Plateau, G. R.; Esarey, E.; Schroeder, C.; Bruhwiler, D.; Cormier-Michel, E.; Chen, M.; Yu, L.; Leemans, W. P.

    2012-12-21

    Use of counter-propagating pulses to control electron injection in laser-plasma accelerators promises to be an important ingredient in the development of stable devices. We discuss the colliding pulse scheme and associated diagnostics.

  12. Weight-Control Information Network (WIN)

    MedlinePlus

    ... Feature: Reducing Childhood Obesity The Weight-control Information Network (WIN) Past Issues / Spring - Summer 2010 Table of ... here are tips from the Weight-control Information Network (WIN), an information service of the National Institute ...

  13. Opinion control in complex networks

    NASA Astrophysics Data System (ADS)

    Masuda, Naoki

    2015-03-01

    In many political elections, the electorate appears to be a composite of partisan and independent voters. Given that partisans are not likely to convert to a different party, an important goal for a political party could be to mobilize independent voters toward the party with the help of strong leadership, mass media, partisans, and the effects of peer-to-peer influence. Based on the exact solution of classical voter model dynamics in the presence of perfectly partisan voters (i.e., zealots), we propose a computational method that uses pinning control strategy to maximize the share of a party in a social network of independent voters. The party, corresponding to the controller or zealots, optimizes the nodes to be controlled given the information about the connectivity of independent voters and the set of nodes that the opposing party controls. We show that controlling hubs is generally a good strategy, but the optimized strategy is even better. The superiority of the optimized strategy is particularly eminent when the independent voters are connected as directed (rather than undirected) networks.

  14. Network effect of knowledge spillover: Scale-free networks stimulate R&D activities and accelerate economic growth

    NASA Astrophysics Data System (ADS)

    Konno, Tomohiko

    2016-09-01

    We study how knowledge spillover networks affect research and development (R&D) activities and economic growth. For this purpose, we extend a Schumpeterian growth model to the one on networks that depict the knowledge spillover relationships of R&D. We show that scale-free networks stimulate R&D activities and accelerate economic growth.

  15. Control and optimization of a staged laser-wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Golovin, G.; Banerjee, S.; Chen, S.; Powers, N.; Liu, C.; Yan, W.; Zhang, J.; Zhang, P.; Zhao, B.; Umstadter, D.

    2016-09-01

    We report results of an experimental study of laser-wakefield acceleration of electrons, using a staged device based on a double-jet gas target that enables independent injection and acceleration stages. This novel scheme is shown to produce stable, quasi-monoenergetic, and tunable electron beams. We show that optimal accelerator performance is achieved by systematic variation of five critical parameters. For the injection stage, we show that the amount of trapped charge is controlled by the gas density, composition, and laser power. For the acceleration stage, the gas density and the length of the jet are found to determine the final electron energy. This independent control over both the injection and acceleration processes enabled independent control over the charge and energy of the accelerated electron beam while preserving the quasi-monoenergetic character of the beam. We show that the charge and energy can be varied in the ranges of 2-45 pC, and 50-450 MeV, respectively. This robust and versatile electron accelerator will find application in the generation of high-brightness and controllable x-rays, and as the injector stage for more conventional devices.

  16. APPARATUS FOR CONTROL OF HIGH-ENERGY ACCELERATORS

    DOEpatents

    Heard, H.G.

    1961-10-24

    A particle beam positioning control for a synchrotron or the like is described. The control includes means for selectively impressing a sinusoidal perturbation upon the rising voltage utilized to sweep the frequency of the f-m oscillator which is conventionally coupled to the accelerating electrode of a synchrotron. The perturbation produces a variation in the normal rate of change of frequency of the accelerating voltage applied to the accelerating electrode, resulting in an expansion or contraction of the particle beam orbit diameter during the perturbation. The beam may thus be controlled such that a portion strikes a target positioned close to the expanded or contracted orbit diameter and returns to the original orbit for further acceleration to the final energy. (AEC)

  17. Controlling synchronous patterns in complex networks

    NASA Astrophysics Data System (ADS)

    Lin, Weijie; Fan, Huawei; Wang, Ying; Ying, Heping; Wang, Xingang

    2016-04-01

    Although the set of permutation symmetries of a complex network could be very large, few of them give rise to stable synchronous patterns. Here we present a general framework and develop techniques for controlling synchronization patterns in complex network of coupled chaotic oscillators. Specifically, according to the network permutation symmetry, we design a small-size and weighted network, namely the control network, and use it to control the large-size complex network by means of pinning coupling. We argue mathematically that for any of the network symmetries, there always exists a critical pinning strength beyond which the unstable synchronous pattern associated to this symmetry can be stabilized. The feasibility of the control method is verified by numerical simulations of both artificial and real-world networks and demonstrated experimentally in systems of coupled chaotic circuits. Our studies show the controllability of synchronous patterns in complex networks of coupled chaotic oscillators.

  18. Topological constraints on network control profiles

    PubMed Central

    Campbell, Colin; Ruths, Justin; Ruths, Derek; Shea, Katriona; Albert, Réka

    2015-01-01

    Network models are designed to capture properties of empirical networks and thereby provide insight into the processes that underlie the formation of complex systems. As new information concerning network structure becomes available, it becomes possible to design models that more fully capture the properties of empirical networks. A recent advance in our understanding of network structure is the control profile, which summarizes the structural controllability of a network in terms of source nodes, external dilations, and internal dilations. Here, we consider the topological properties–and their formation mechanisms—that constrain the control profile. We consider five representative empirical categories of internal-dilation dominated networks, and show that the number of source and sink nodes, the form of the in- and out-degree distributions, and local complexity (e.g., cycles) shape the control profile. We evaluate network models that are sufficient to produce realistic control profiles, and conclude that holistic network models should similarly consider these properties. PMID:26691951

  19. Network Adaptive Deadband: NCS Data Flow Control for Shared Networks

    PubMed Central

    Díaz-Cacho, Miguel; Delgado, Emma; Prieto, José A. G.; López, Joaquín

    2012-01-01

    This paper proposes a new middleware solution called Network Adaptive Deadband (NAD) for long time operation of Networked Control Systems (NCS) through the Internet or any shared network based on IP technology. The proposed middleware takes into account the network status and the NCS status, to improve the global system performance and to share more effectively the network by several NCS and sensor/actuator data flows. Relationship between network status and NCS status is solved with a TCP-friendly transport flow control protocol and the deadband concept, relating deadband value and transmission throughput. This creates a deadband-based flow control solution. Simulation and experiments in shared networks show that the implemented network adaptive deadband has better performance than an optimal constant deadband solution in the same circumstances. PMID:23208556

  20. Minimum structural controllability problems of complex networks

    NASA Astrophysics Data System (ADS)

    Yin, Hongli; Zhang, Siying

    2016-02-01

    Controllability of complex networks has been one of the attractive research areas for both network and control community, and has yielded many promising and significant results in minimum inputs and minimum driver vertices. However, few studies have been devoted to studying the minimum controlled vertex set through which control over the network with arbitrary structure can be achieved. In this paper, we prove that the minimum driver vertices driven by different inputs are not sufficient to ensure the full control of the network when the associated graph contains the inaccessible strongly connected component which has perfect matching and propose an algorithm to identify a minimum controlled vertex set for network with arbitrary structure using convenient graph and mathematical tools. And the simulation results show that the controllability of network is correlated to the number of inaccessible strongly connected components which have perfect matching and these results promote us to better understand the relationship between the network's structural characteristics and its control.

  1. Networked Dynamic Systems: Identification, Controllability, and Randomness

    NASA Astrophysics Data System (ADS)

    Nabi-Abdolyousefi, Marzieh

    The presented dissertation aims to develop a graph-centric framework for the analysis and synthesis of networked dynamic systems (NDS) consisting of multiple dynamic units that interact via an interconnection topology. We examined three categories of network problems, namely, identification, controllability, and randomness. In network identification, as a subclass of inverse problems, we made an explicit relation between the input-output behavior of an NDS and the underlying interacting network. In network controllability, we provided structural and algebraic insights into features of the network that enable external signal(s) to control the state of the nodes in the network for certain classes of interconnections, namely, path, circulant, and Cartesian networks. We also examined the relation between network controllability and the symmetry structure of the graph. Motivated by the analysis results for the controllability and observability of deterministic networks, a natural question is whether randomness in the network layer or in the layer of inputs and outputs generically leads to favorable system theoretic properties. In this direction, we examined system theoretic properties of random networks including controllability, observability, and performance of optimal feedback controllers and estimators. We explored some of the ramifications of such an analysis framework in opinion dynamics over social networks and sensor networks in estimating the real-time position of a Seaglider from experimental data.

  2. Adaptive optimization and control using neural networks

    SciTech Connect

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  3. Network Access Control List Situation Awareness

    ERIC Educational Resources Information Center

    Reifers, Andrew

    2010-01-01

    Network security is a large and complex problem being addressed by multiple communities. Nevertheless, current theories in networking security appear to overestimate network administrators' ability to understand network access control lists (NACLs), providing few context specific user analyses. Consequently, the current research generally seems to…

  4. Readout control for high luminosity accelerators

    NASA Astrophysics Data System (ADS)

    Belusevic, R.; Nixon, G.

    1991-09-01

    In this article we discuss some aspects of data acquisition at high luminosities and offer a set of design principles concerning readout control electronics and related software. As an example we include a brief description of a data transfer and processing system for future hadron colliders, featuring a transputer-based crate controller and a set of readout cards. This is a simplified and more efficient version of our design recently published in Nuclear Instruments and Methods. [A295 (1991) 391].

  5. Status of the Advanced Photon Source and its accelerator control system

    SciTech Connect

    McDowell, W.; Knott, M.; Kraimer, K.M.

    1993-11-01

    This paper presents the current status of the Advanced Photon Source (APS), its control system and the Experimental Physics and Industrial Control System (EPICS) tools being used to implement this control system. The status of the physical plant and each of the accelerators as well as detailed descriptions of the software tools used to build the accelerator control system are presented. The control system uses high-performance graphic workstations and the X-windows graphical user interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high-performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  6. Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control

    SciTech Connect

    Plateau, G. R.; Geddes, C. G. R.; Matlis, N. H.; Mittelberger, D. E.; Nakamura, K.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.; Cormier-Michel, E.

    2010-11-04

    Decoupling injection from acceleration is a key challenge to achieve compact, reliable, tunable laser-plasma accelerators (LPA). In colliding pulse injection the beat between multiple laser pulses can be used to control energy, energy spread, and emittance of the electron beam by injecting electrons in momentum and phase into the accelerating phase of the wake trailing the driver laser pulse. At LBNL, using automated control of spatiotemporal overlap of laser pulses, two-pulse experiments showed stable operation and reproducibility over hours of operation. Arrival time of the colliding beam was scanned, and the measured timing window and density of optimal operation agree with simulations. The accelerator length was mapped by scanning the collision point.

  7. Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control

    NASA Astrophysics Data System (ADS)

    Plateau, G. R.; Geddes, C. G. R.; Matlis, N. H.; Cormier-Michel, E.; Mittelberger, D. E.; Nakamura, K.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2010-11-01

    Decoupling injection from acceleration is a key challenge to achieve compact, reliable, tunable laser-plasma accelerators (LPA) [1, 2]. In colliding pulse injection the beat between multiple laser pulses can be used to control energy, energy spread, and emittance of the electron beam by injecting electrons in momentum and phase into the accelerating phase of the wake trailing the driver laser pulse [3, 4, 5, 6, 7]. At LBNL, using automated control of spatiotemporal overlap of laser pulses, two-pulse experiments showed stable operation and reproducibility over hours of operation. Arrival time of the colliding beam was scanned, and the measured timing window and density of optimal operation agree with simulations [8]. The accelerator length was mapped by scanning the collision point.

  8. Adaptive control technique for accelerators using digital signal processing

    SciTech Connect

    Eaton, L.; Jachim, S.; Natter, E.

    1987-01-01

    The use of present Digital Signal Processing (DSP) techniques can drastically reduce the residual rf amplitude and phase error in an accelerating rf cavity. Accelerator beam loading contributes greatly to this residual error, and the low-level rf field control loops cannot completely absorb the fast transient of the error. A feedforward technique using DSP is required to maintain the very stringent rf field amplitude and phase specifications. 7 refs.

  9. ISABELLE accelerator software, control system, and beam diagnostic philosophy

    SciTech Connect

    Cornacchia, M.; Humphrey, J.W.; Niederer, J.; Poole, J.H.

    1981-01-01

    The ISABELLE Project combines two large proton accelerators with two storage rings in the same facility using superconducting magnet technology. This combination leads to severe constraints on beam loss in magnets and involves complex treatment of magnetic field imperfections and correction elements. The consequent demands placed upon beam diagnostics, accelerator model programs, and the computer oriented control system are discussed in terms of an illustrative operation scenario.

  10. The control network of Iapetus

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Katayama, F. Y.

    1984-01-01

    A control network of the Saturnian satellite Iapetus has been established photogrammetrically from pictures taken by the two Voyager spacecraft. Coordinates of 62 control points have been computed and listed; pixel measurements of these points were made on 14 Voyager 1 and 66 Voyager 2 pictures. Some of these points are identified on the preliminary U.S. Geological Survey map of Iapetus and many are identified by name. The Voyager 1 and Voyager 2 pictures covered limited regions of the satellite's surface and contained no overlapping areas. The longitude system on Iapetus is defined by the crater Almeric; the 276 deg meridian passes through the center of this crater. The obliquity of Iapetus has been measured as 0.4 deg + or - 1.6 deg. The mean radius of Iapetus has been determined at 718 + or - 8 km.

  11. Neural Networks in Nonlinear Aircraft Control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis J.

    1990-01-01

    Recent research indicates that artificial neural networks offer interesting learning or adaptive capabilities. The current research focuses on the potential for application of neural networks in a nonlinear aircraft control law. The current work has been to determine which networks are suitable for such an application and how they will fit into a nonlinear control law.

  12. Pinning impulsive control algorithms for complex network

    SciTech Connect

    Sun, Wen; Lü, Jinhu; Chen, Shihua; Yu, Xinghuo

    2014-03-15

    In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms.

  13. Controlling complex networks with conformity behavior

    NASA Astrophysics Data System (ADS)

    Wang, Xu-Wen; Nie, Sen; Wang, Wen-Xu; Wang, Bing-Hong

    2015-09-01

    Controlling complex networks accompanied by common conformity behavior is a fundamental problem in social and physical science. Conformity behavior that individuals tend to follow the majority in their neighborhood is common in human society and animal communities. Despite recent progress in understanding controllability of complex networks, the existent controllability theories cannot be directly applied to networks associated with conformity. Here we propose a simple model to incorporate conformity-based decision making into the evolution of a network system, which allows us to employ the exact controllability theory to explore the controllability of such systems. We offer rigorous theoretical results of controllability for representative regular networks. We also explore real networks in different fields and some typical model networks, finding some interesting results that are different from the predictions of structural and exact controllability theory in the absence of conformity. We finally present an example of steering a real social network to some target states to further validate our controllability theory and tools. Our work offers a more realistic understanding of network controllability with conformity behavior and can have potential applications in networked evolutionary games, opinion dynamics and many other complex networked systems.

  14. An artificial neural network controller for intelligent transportation systems applications

    SciTech Connect

    Vitela, J.E.; Hanebutte, U.R.; Reifman, J.

    1996-04-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems applications. The AICC is based on a simple nonlinear model of the vehicle dynamics. A Neural Network Controller (NNC) code developed at Argonne National Laboratory to control discrete dynamical systems was used for this purpose. In order to test the NNC, an AICC-simulator containing graphical displays was developed for a system of two vehicles driving in a single lane. Two simulation cases are shown, one involving a lead vehicle with constant velocity and the other a lead vehicle with varying acceleration. More realistic vehicle dynamic models will be considered in future work.

  15. Controllability in Multi-Stage Laser Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Barada, D.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Li, X. F.; Yu, Q.

    2015-11-01

    The present paper shows a concept for a future laser ion accelerator, which should have an ion source, ion collimators, ion beam bunchers and ion post acceleration devices. Based on the laser ion accelerator components, the ion particle energy and the ion energy spectrum are controlled, and a future compact laser ion accelerator would be designed for ion cancer therapy or for ion material treatment. In this study each component is designed to control the ion beam quality. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser-target interaction. A combination of each component provides a high controllability of the ion beam quality to meet variable requirements in various purposes in the laser ion accelerator. The work was partly supported by MEXT, JSPS, ASHULA project/ ILE, Osaka University, CORE (Center for Optical Research and Education, Utsunomiya University, Japan), Fudan University and CDI (Creative Dept. for Innovation) in CCRD, Utsunomiya University.

  16. Structural controllability of unidirectional bipartite networks

    NASA Astrophysics Data System (ADS)

    Nacher, Jose C.; Akutsu, Tatsuya

    2013-04-01

    The interactions between fundamental life molecules, people and social organisations build complex architectures that often result in undesired behaviours. Despite all of the advances made in our understanding of network structures over the past decade, similar progress has not been achieved in the controllability of real-world networks. In particular, an analytical framework to address the controllability of bipartite networks is still absent. Here, we present a dominating set (DS)-based approach to bipartite network controllability that identifies the topologies that are relatively easy to control with the minimum number of driver nodes. Our theoretical calculations, assisted by computer simulations and an evaluation of real-world networks offer a promising framework to control unidirectional bipartite networks. Our analysis should open a new approach to reverting the undesired behaviours in unidirectional bipartite networks at will.

  17. Network Monitor and Control of Disruption-Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Torgerson, J. Leigh

    2014-01-01

    For nearly a decade, NASA and many researchers in the international community have been developing Internet-like protocols that allow for automated network operations in networks where the individual links between nodes are only sporadically connected. A family of Disruption-Tolerant Networking (DTN) protocols has been developed, and many are reaching CCSDS Blue Book status. A NASA version of DTN known as the Interplanetary Overlay Network (ION) has been flight-tested on the EPOXI spacecraft and ION is currently being tested on the International Space Station. Experience has shown that in order for a DTN service-provider to set up a large scale multi-node network, a number of network monitor and control technologies need to be fielded as well as the basic DTN protocols. The NASA DTN program is developing a standardized means of querying a DTN node to ascertain its operational status, known as the DTN Management Protocol (DTNMP), and the program has developed some prototypes of DTNMP software. While DTNMP is a necessary component, it is not sufficient to accomplish Network Monitor and Control of a DTN network. JPL is developing a suite of tools that provide for network visualization, performance monitoring and ION node control software. This suite of network monitor and control tools complements the GSFC and APL-developed DTN MP software, and the combined package can form the basis for flight operations using DTN.

  18. Controlling allosteric networks in proteins

    NASA Astrophysics Data System (ADS)

    Dokholyan, Nikolay

    2013-03-01

    We present a novel methodology based on graph theory and discrete molecular dynamics simulations for delineating allosteric pathways in proteins. We use this methodology to uncover the structural mechanisms responsible for coupling of distal sites on proteins and utilize it for allosteric modulation of proteins. We will present examples where inference of allosteric networks and its rewiring allows us to ``rescue'' cystic fibrosis transmembrane conductance regulator (CFTR), a protein associated with fatal genetic disease cystic fibrosis. We also use our methodology to control protein function allosterically. We design a novel protein domain that can be inserted into identified allosteric site of target protein. Using a drug that binds to our domain, we alter the function of the target protein. We successfully tested this methodology in vitro, in living cells and in zebrafish. We further demonstrate transferability of our allosteric modulation methodology to other systems and extend it to become ligh-activatable.

  19. Acceleration and torque feedback for robotic control - Experimental results

    NASA Technical Reports Server (NTRS)

    Mclnroy, John E.; Saridis, George N.

    1990-01-01

    Gross motion control of robotic manipulators typically requires significant on-line computations to compensate for nonlinear dynamics due to gravity, Coriolis, centripetal, and friction nonlinearities. One controller proposed by Luo and Saridis avoids these computations by feeding back joint acceleration and torque. This study implements the controller on a Puma 600 robotic manipulator. Joint acceleration measurement is obtained by measuring linear accelerations of each joint, and deriving a computationally efficient transformation from the linear measurements to the angular accelerations. Torque feedback is obtained by using the previous torque sent to the joints. The implementation has stability problems on the Puma 600 due to the extremely high gains inherent in the feedback structure. Since these high gains excite frequency modes in the Puma 600, the algorithm is modified to decrease the gain inherent in the feedback structure. The resulting compensator is stable and insensitive to high frequency unmodeled dynamics. Moreover, a second compensator is proposed which uses acceleration and torque feedback, but still allows nonlinear terms to be fed forward. Thus, by feeding the increment in the easily calculated gravity terms forward, improved responses are obtained. Both proposed compensators are implemented, and the real time results are compared to those obtained with the computed torque algorithm.

  20. Minimum-cost control of complex networks

    NASA Astrophysics Data System (ADS)

    Li, Guoqi; Hu, Wuhua; Xiao, Gaoxi; Deng, Lei; Tang, Pei; Pei, Jing; Shi, Luping

    2016-01-01

    Finding the solution for driving a complex network at the minimum energy cost with a given number of controllers, known as the minimum-cost control problem, is critically important but remains largely open. We propose a projected gradient method to tackle this problem, which works efficiently in both synthetic and real-life networks. The study is then extended to the case where each controller can only be connected to a single network node to have the lowest connection complexity. We obtain the interesting insight that such connections basically avoid high-degree nodes of the network, which is in resonance with recent observations on controllability of complex networks. Our results provide the first technical path to enabling minimum-cost control of complex networks, and contribute new insights to locating the key nodes from a minimum-cost control perspective.

  1. Protecting Accelerator Control Systems in the Face of Sophisticated Cyber Attacks

    SciTech Connect

    Hartman, Steven M

    2012-01-01

    Cyber security for industrial control systems has received significant attention in the past two years. The news coverage of the Stuxnet attack, believed to be targeted at the control system for a uranium enrichment plant, brought the issue to the attention of news media and policy makers. This has led to increased scrutiny of control systems for critical infrastructure such as power generation and distribution, and industrial systems such as chemical plants and petroleum refineries. The past two years have also seen targeted network attacks aimed at corporate and government entities including US Department of Energy National Laboratories. Both of these developments have potential repercussions for the control systems of particle accelerators. The need to balance risks from potential attacks with the operational needs of an accelerator present a unique challenge for the system architecture and access model.

  2. A count rate based contamination control standard for electron accelerators

    SciTech Connect

    May, R.T.; Schwahn, S.O.

    1996-12-31

    Accelerators of sufficient energy and particle fluence can produce radioactivity as an unwanted byproduct. The radioactivity is typically imbedded in structural materials but may also be removable from surfaces. Many of these radionuclides decay by positron emission or electron capture; they often have long half lives and produce photons of low energy and yield making detection by standard devices difficult. The contamination control limit used throughout the US nuclear industry and the Department of Energy is 1,000 disintegrations per minute. This limit is based on the detection threshold of pancake type Geiger-Mueller probes for radionuclides of relatively high radiotoxicity, such as cobalt-60. Several radionuclides of concern at a high energy electron accelerator are compared in terms of radiotoxicity with radionuclides commonly found in the nuclear industry. Based on this comparison, a count-rate based contamination control limit and associated measurement strategy is proposed which provides adequate detection of contamination at accelerators without an increase in risk.

  3. Realizing actual feedback control of complex network

    NASA Astrophysics Data System (ADS)

    Tu, Chengyi; Cheng, Yuhua

    2014-06-01

    In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.

  4. Congestion control of high-speed networks

    NASA Astrophysics Data System (ADS)

    1993-06-01

    We report on four areas of activity in the past six months. These areas include the following: (1) work on the control of integrated video and image traffic, both at the access to a network and within a high-speed network; (2) more general/game theoretic models for flow control in networks; (3) work on fault management for high-speed heterogeneous networks to improve survivability; and (4) work on all-optical (lightwave) networks of the future, designed to take advantage of the enormous bandwidth capability available at optical frequencies.

  5. State-of-the-Art developments in accelerator controls at the APS.

    SciTech Connect

    Lenkszus, F.

    1999-04-13

    The performance requirements of the Advanced Photon Source (APS) challenge the control system in a number of areas. This paper will review a few applications of advanced technology in the control and monitoring of the APS. The application of digital signal processors (DSPs) and techniques will be discussed, both from the perspective of a large distributed multiprocessor system and from that of embedded systems. In particular, two embedded applications will be highlighted, a beam position monitor processor and a DSP-based power supply controller. Fast data distribution is often a requirement. The application of a high-speed network based on reflective memory will also be discussed in the context of the APS global orbit feedback system. Timing systems provide opportunities to apply technologies such as high-speed logic and fiber optics. Examples of the use of these technologies will also be included. Finally, every modern accelerator control system of any size requires networking. Features of the APS accelerator controls network will be discussed.

  6. Towards MRI-guided linear accelerator control: gating on an MRI accelerator

    NASA Astrophysics Data System (ADS)

    Crijns, S. P. M.; Kok, J. G. M.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2011-08-01

    To boost the possibilities of image guidance in radiotherapy by providing images with superior soft-tissue contrast during treatment, we pursue diagnostic quality MRI functionality integrated with a linear accelerator. Large respiration-induced semi-periodic target excursions hamper treatment of cancer of the abdominal organs. Methods to compensate in real time for such motion are gating and tracking. These strategies are most effective in cases where anatomic motion can be visualized directly, which supports the use of an integrated MRI accelerator. We establish here an infrastructure needed to realize gated radiation delivery based on MR feedback and demonstrate its potential as a first step towards more advanced image guidance techniques. The position of a phantom subjected to one-dimensional periodic translation is tracked with the MR scanner. Real-time communication with the MR scanner and control of the radiation beam are established. Based on the time-resolved position of the phantom, gated radiation delivery to the phantom is realized. Dose distributions for dynamic delivery conditions with varying gating windows are recorded on gafchromic film. The similarity between dynamically and statically obtained dose profiles gradually increases as the gating window is decreased. With gating windows of 5 mm, we obtain sharp dose profiles. We validate our gating implementation by comparing measured dose profiles to theoretical profiles calculated using the knowledge of the imposed motion pattern. Excellent correspondence is observed. At the same time, we show that real-time on-line reconstruction of the accumulated dose can be performed using time-resolved target position information. This facilitates plan adaptation not only on a fraction-to-fraction scale but also during one fraction, which is especially valuable in highly accelerated treatment strategies. With the currently established framework and upcoming improvements to our prototype-integrated MRI accelerator

  7. Controlling Contagion Processes in Activity Driven Networks

    NASA Astrophysics Data System (ADS)

    Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro

    2014-03-01

    The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.

  8. An adaptive cryptographic accelerator for network storage security on dynamically reconfigurable platform

    NASA Astrophysics Data System (ADS)

    Tang, Li; Liu, Jing-Ning; Feng, Dan; Tong, Wei

    2008-12-01

    Existing security solutions in network storage environment perform poorly because cryptographic operations (encryption and decryption) implemented in software can dramatically reduce system performance. In this paper we propose a cryptographic hardware accelerator on dynamically reconfigurable platform for the security of high performance network storage system. We employ a dynamic reconfigurable platform based on a FPGA to implement a PowerPCbased embedded system, which executes cryptographic algorithms. To reduce the reconfiguration latency, we apply prefetch scheduling. Moreover, the processing elements could be dynamically configured to support different cryptographic algorithms according to the request received by the accelerator. In the experiment, we have implemented AES (Rijndael) and 3DES cryptographic algorithms in the reconfigurable accelerator. Our proposed reconfigurable cryptographic accelerator could dramatically increase the performance comparing with the traditional software-based network storage systems.

  9. Interdependent networks: the fragility of control

    PubMed Central

    Morris, Richard G.; Barthelemy, Marc

    2013-01-01

    Recent work in the area of interdependent networks has focused on interactions between two systems of the same type. However, an important and ubiquitous class of systems are those involving monitoring and control, an example of interdependence between processes that are very different. In this Article, we introduce a framework for modelling ‘distributed supervisory control' in the guise of an electrical network supervised by a distributed system of control devices. The system is characterised by degrees of freedom salient to real-world systems— namely, the number of control devices, their inherent reliability, and the topology of the control network. Surprisingly, the behavior of the system depends crucially on the reliability of control devices. When devices are completely reliable, cascade sizes are percolation controlled; the number of devices being the relevant parameter. For unreliable devices, the topology of the control network is important and can dramatically reduce the resilience of the system. PMID:24067404

  10. Interdependent networks: the fragility of control.

    PubMed

    Morris, Richard G; Barthelemy, Marc

    2013-01-01

    Recent work in the area of interdependent networks has focused on interactions between two systems of the same type. However, an important and ubiquitous class of systems are those involving monitoring and control, an example of interdependence between processes that are very different. In this Article, we introduce a framework for modelling 'distributed supervisory control' in the guise of an electrical network supervised by a distributed system of control devices. The system is characterised by degrees of freedom salient to real-world systems- namely, the number of control devices, their inherent reliability, and the topology of the control network. Surprisingly, the behavior of the system depends crucially on the reliability of control devices. When devices are completely reliable, cascade sizes are percolation controlled; the number of devices being the relevant parameter. For unreliable devices, the topology of the control network is important and can dramatically reduce the resilience of the system. PMID:24067404

  11. Quick setup of unit test for accelerator controls system

    SciTech Connect

    Fu, W.; D'Ottavio, T.; Gassner, D.; Nemesure, S.; Morris, J.

    2011-03-28

    Testing a single hardware unit of an accelerator control system often requires the setup of a program with graphical user interface. Developing a dedicated application for a specific hardware unit test could be time consuming and the application may become obsolete after the unit tests. This paper documents a methodology for quick design and setup of an interface focused on performing unit tests of accelerator equipment with minimum programming work. The method has three components. The first is a generic accelerator device object (ADO) manager which can be used to setup, store, and log testing controls parameters for any unit testing system. The second involves the design of a TAPE (Tool for Automated Procedure Execution) sequence file that specifies and implements all te testing and control logic. The sting third is the design of a PET (parameter editing tool) page that provides the unit tester with all the necessary control parameters required for testing. This approach has been used for testing the horizontal plane of the Stochastic Cooling Motion Control System at RHIC.

  12. G-NetMon: a GPU-accelerated network performance monitoring system

    SciTech Connect

    Wu, Wenji; DeMar, Phil; Holmgren, Don; Singh, Amitoj; /Fermilab

    2011-06-01

    At Fermilab, we have prototyped a GPU-accelerated network performance monitoring system, called G-NetMon, to support large-scale scientific collaborations. In this work, we explore new opportunities in network traffic monitoring and analysis with GPUs. Our system exploits the data parallelism that exists within network flow data to provide fast analysis of bulk data movement between Fermilab and collaboration sites. Experiments demonstrate that our G-NetMon can rapidly detect sub-optimal bulk data movements.

  13. Neural Network Based Representation of UH-60A Pilot and Hub Accelerations

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi

    2000-01-01

    Neural network relationships between the full-scale, experimental hub accelerations and the corresponding pilot floor vertical vibration are studied. The present physics-based, quantitative effort represents an initial systematic study on the UH-60A Black Hawk hub accelerations. The NASA/Army UH-60A Airloads Program flight test database was used. A 'maneuver-effect-factor (MEF)', derived using the roll-angle and the pitch-rate, was used. Three neural network based representation-cases were considered. The pilot floor vertical vibration was considered in the first case and the hub accelerations were separately considered in the second case. The third case considered both the hub accelerations and the pilot floor vertical vibration. Neither the advance ratio nor the gross weight alone could be used to predict the pilot floor vertical vibration. However, the advance ratio and the gross weight together could be used to predict the pilot floor vertical vibration over the entire flight envelope. The hub accelerations data were modeled and found to be of very acceptable quality. The hub accelerations alone could not be used to predict the pilot floor vertical vibration. Thus, the hub accelerations alone do not drive the pilot floor vertical vibration. However, the hub accelerations, along with either the advance ratio or the gross weight or both, could be used to satisfactorily predict the pilot floor vertical vibration. The hub accelerations are clearly a factor in determining the pilot floor vertical vibration.

  14. Stress controls the mechanics of collagen networks

    PubMed Central

    Licup, Albert James; Münster, Stefan; Sharma, Abhinav; Sheinman, Michael; Jawerth, Louise M.; Fabry, Ben; Weitz, David A.; MacKintosh, Fred C.

    2015-01-01

    Collagen is the main structural and load-bearing element of various connective tissues, where it forms the extracellular matrix that supports cells. It has long been known that collagenous tissues exhibit a highly nonlinear stress–strain relationship, although the origins of this nonlinearity remain unknown. Here, we show that the nonlinear stiffening of reconstituted type I collagen networks is controlled by the applied stress and that the network stiffness becomes surprisingly insensitive to network concentration. We demonstrate how a simple model for networks of elastic fibers can quantitatively account for the mechanics of reconstituted collagen networks. Our model points to the important role of normal stresses in determining the nonlinear shear elastic response, which can explain the approximate exponential relationship between stress and strain reported for collagenous tissues. This further suggests principles for the design of synthetic fiber networks with collagen-like properties, as well as a mechanism for the control of the mechanics of such networks. PMID:26195769

  15. Controlling statistical moments of stochastic dynamical networks

    NASA Astrophysics Data System (ADS)

    Bielievtsov, Dmytro; Ladenbauer, Josef; Obermayer, Klaus

    2016-07-01

    We consider a general class of stochastic networks and ask which network nodes need to be controlled, and how, to stabilize and switch between desired metastable (target) states in terms of the first and second statistical moments of the system. We first show that it is sufficient to directly interfere with a subset of nodes which can be identified using information about the graph of the network only. Then we develop a suitable method for feedback control which acts on that subset of nodes and preserves the covariance structure of the desired target state. Finally, we demonstrate our theoretical results using a stochastic Hopfield network and a global brain model. Our results are applicable to a variety of (model) networks and further our understanding of the relationship between network structure and collective dynamics for the benefit of effective control.

  16. Controlling statistical moments of stochastic dynamical networks.

    PubMed

    Bielievtsov, Dmytro; Ladenbauer, Josef; Obermayer, Klaus

    2016-07-01

    We consider a general class of stochastic networks and ask which network nodes need to be controlled, and how, to stabilize and switch between desired metastable (target) states in terms of the first and second statistical moments of the system. We first show that it is sufficient to directly interfere with a subset of nodes which can be identified using information about the graph of the network only. Then we develop a suitable method for feedback control which acts on that subset of nodes and preserves the covariance structure of the desired target state. Finally, we demonstrate our theoretical results using a stochastic Hopfield network and a global brain model. Our results are applicable to a variety of (model) networks and further our understanding of the relationship between network structure and collective dynamics for the benefit of effective control. PMID:27575147

  17. Distributed intelligent control and status networking

    NASA Technical Reports Server (NTRS)

    Fortin, Andre; Patel, Manoj

    1993-01-01

    Over the past two years, the Network Control Systems Branch (Code 532) has been investigating control and status networking technologies. These emerging technologies use distributed processing over a network to accomplish a particular custom task. These networks consist of small intelligent 'nodes' that perform simple tasks. Containing simple, inexpensive hardware and software, these nodes can be easily developed and maintained. Once networked, the nodes can perform a complex operation without a central host. This type of system provides an alternative to more complex control and status systems which require a central computer. This paper will provide some background and discuss some applications of this technology. It will also demonstrate the suitability of one particular technology for the Space Network (SN) and discuss the prototyping activities of Code 532 utilizing this technology.

  18. A Digital Self Excited Loop for Accelerating Cavity Field Control

    SciTech Connect

    Curt Hovater; Trent Allison; Jean Delayen; John Musson; Tomasz Plawski

    2007-06-22

    We have developed a digital process that emulates an analog oscillator and ultimately a self excited loop (SEL) for field control. The SEL, in its analog form, has been used for many years for accelerating cavity field control. In essence the SEL uses the cavity as a resonant circuit -- much like a resonant (tank) circuit is used to build an oscillator. An oscillating resonant circuit can be forced to oscillate at different, but close, frequencies to resonance by applying a phase shift in the feedback path. This allows the circuit to be phased-locked to a master reference, which is crucial for multiple cavity accelerators. For phase and amplitude control the SEL must be forced to the master reference frequency, and feedback provided for in both dimensions. The novelty of this design is in the way digital signal processing (DSP) is structured to emulate an analog system. While the digital signal processing elements are not new, to our knowledge this is the first time that the digital SEL concept has been designed and demonstrated. This paper reports on the progress of the design and implementation of the digital SEL for field control of superconducting accelerating cavities.

  19. The DARHTAcquisition, Archival, Analysis, And Instrument Control System (DAAAC), And Network Infrastructure

    SciTech Connect

    Archuleta, Rita Denise; Sanchez, Lawrence

    2008-01-01

    The Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) at Los Alamos National Laboratory is the world's most advanced weapons test facility. DARHT contains two linear accelerators for producing flash radiographs of hydrodynamic experiments. High-speed electronics and optical instrumentation are used for triggering the accelerators and collecting accelerator data. Efficient and effective diagnostics provide basic information needed to routinely tune the accelerators for peak radiographic performance, and to successfully monitor the accelerators performance. DARHT's server and network infrastructure is a key element in providing shot related data storage and retrieval for successfully executing radiographic experiments. This paper will outline the elaborate Data Acquisition, Archival, Analysis, and Instrument Control System (DAAAC), as well as the server and network infrastructure for both accelerators.

  20. Robust Multiobjective Controllability of Complex Neuronal Networks.

    PubMed

    Tang, Yang; Gao, Huijun; Du, Wei; Lu, Jianquan; Vasilakos, Athanasios V; Kurths, Jurgen

    2016-01-01

    This paper addresses robust multiobjective identification of driver nodes in the neuronal network of a cat's brain, in which uncertainties in determination of driver nodes and control gains are considered. A framework for robust multiobjective controllability is proposed by introducing interval uncertainties and optimization algorithms. By appropriate definitions of robust multiobjective controllability, a robust nondominated sorting adaptive differential evolution (NSJaDE) is presented by means of the nondominated sorting mechanism and the adaptive differential evolution (JaDE). The simulation experimental results illustrate the satisfactory performance of NSJaDE for robust multiobjective controllability, in comparison with six statistical methods and two multiobjective evolutionary algorithms (MOEAs): nondominated sorting genetic algorithms II (NSGA-II) and nondominated sorting composite differential evolution. It is revealed that the existence of uncertainties in choosing driver nodes and designing control gains heavily affects the controllability of neuronal networks. We also unveil that driver nodes play a more drastic role than control gains in robust controllability. The developed NSJaDE and obtained results will shed light on the understanding of robustness in controlling realistic complex networks such as transportation networks, power grid networks, biological networks, etc. PMID:26441452

  1. Advanced mobile networking, sensing, and controls.

    SciTech Connect

    Feddema, John Todd; Kilman, Dominique Marie; Byrne, Raymond Harry; Young, Joseph G.; Lewis, Christopher L.; Van Leeuwen, Brian P.; Robinett, Rush D. III; Harrington, John J.

    2005-03-01

    This report describes an integrated approach for designing communication, sensing, and control systems for mobile distributed systems. Graph theoretic methods are used to analyze the input/output reachability and structural controllability and observability of a decentralized system. Embedded in each network node, this analysis will automatically reconfigure an ad hoc communication network for the sensing and control task at hand. The graph analysis can also be used to create the optimal communication flow control based upon the spatial distribution of the network nodes. Edge coloring algorithms tell us that the minimum number of time slots in a planar network is equal to either the maximum number of adjacent nodes (or degree) of the undirected graph plus some small number. Therefore, the more spread out that the nodes are, the fewer number of time slots are needed for communication, and the smaller the latency between nodes. In a coupled system, this results in a more responsive sensor network and control system. Network protocols are developed to propagate this information, and distributed algorithms are developed to automatically adjust the number of time slots available for communication. These protocols and algorithms must be extremely efficient and only updated as network nodes move. In addition, queuing theory is used to analyze the delay characteristics of Carrier Sense Multiple Access (CSMA) networks. This report documents the analysis, simulation, and implementation of these algorithms performed under this Laboratory Directed Research and Development (LDRD) effort.

  2. Effect of correlations on controllability transition in network control

    NASA Astrophysics Data System (ADS)

    Nie, Sen; Wang, Xu-Wen; Wang, Bing-Hong; Jiang, Luo-Luo

    2016-04-01

    The network control problem has recently attracted an increasing amount of attention, owing to concerns including the avoidance of cascading failures of power-grids and the management of ecological networks. It has been proven that numerical control can be achieved if the number of control inputs exceeds a certain transition point. In the present study, we investigate the effect of degree correlation on the numerical controllability in networks whose topological structures are reconstructed from both real and modeling systems, and we find that the transition point of the number of control inputs depends strongly on the degree correlation in both undirected and directed networks with moderately sparse links. More interestingly, the effect of the degree correlation on the transition point cannot be observed in dense networks for numerical controllability, which contrasts with the corresponding result for structural controllability. In particular, for directed random networks and scale-free networks, the influence of the degree correlation is determined by the types of correlations. Our approach provides an understanding of control problems in complex sparse networks.

  3. Effect of correlations on controllability transition in network control

    PubMed Central

    Nie, Sen; Wang, Xu-Wen; Wang, Bing-Hong; Jiang, Luo-Luo

    2016-01-01

    The network control problem has recently attracted an increasing amount of attention, owing to concerns including the avoidance of cascading failures of power-grids and the management of ecological networks. It has been proven that numerical control can be achieved if the number of control inputs exceeds a certain transition point. In the present study, we investigate the effect of degree correlation on the numerical controllability in networks whose topological structures are reconstructed from both real and modeling systems, and we find that the transition point of the number of control inputs depends strongly on the degree correlation in both undirected and directed networks with moderately sparse links. More interestingly, the effect of the degree correlation on the transition point cannot be observed in dense networks for numerical controllability, which contrasts with the corresponding result for structural controllability. In particular, for directed random networks and scale-free networks, the influence of the degree correlation is determined by the types of correlations. Our approach provides an understanding of control problems in complex sparse networks. PMID:27063294

  4. Lessons learned on the Ground Test Accelerator control system

    SciTech Connect

    Kozubal, A.J.; Weiss, R.E.

    1994-09-01

    When we initiated the control system design for the Ground Test Accelerator (GTA), we envisioned a system that would be flexible enough to handle the changing requirements of an experimental project. This control system would use a developers` toolkit to reduce the cost and time to develop applications for GTA, and through the use of open standards, the system would accommodate unforeseen requirements as they arose. Furthermore, we would attempt to demonstrate on GTA a level of automation far beyond that achieved by existing accelerator control systems. How well did we achieve these goals? What were the stumbling blocks to deploying the control system, and what assumptions did we make about requirements that turned out to be incorrect? In this paper we look at the process of developing a control system that evolved into what is now the ``Experimental Physics and Industrial Control System`` (EPICS). Also, we assess the impact of this system on the GTA project, as well as the impact of GTA on EPICS. The lessons learned on GTA will be valuable for future projects.

  5. Secure quantum network coding for controlled repeater networks

    NASA Astrophysics Data System (ADS)

    Shang, Tao; Li, Jiao; Liu, Jian-wei

    2016-04-01

    To realize efficient quantum communication based on quantum repeater, we propose a secure quantum network coding scheme for controlled repeater networks, which adds a controller as a trusted party and is able to control the process of EPR-pair distribution. As the key operations of quantum repeater, local operations and quantum communication are designed to adopt quantum one-time pad to enhance the function of identity authentication instead of local operations and classical communication. Scheme analysis shows that the proposed scheme can defend against active attacks for quantum communication and realize long-distance quantum communication with minimal resource consumption.

  6. Secure quantum network coding for controlled repeater networks

    NASA Astrophysics Data System (ADS)

    Shang, Tao; Li, Jiao; Liu, Jian-wei

    2016-07-01

    To realize efficient quantum communication based on quantum repeater, we propose a secure quantum network coding scheme for controlled repeater networks, which adds a controller as a trusted party and is able to control the process of EPR-pair distribution. As the key operations of quantum repeater, local operations and quantum communication are designed to adopt quantum one-time pad to enhance the function of identity authentication instead of local operations and classical communication. Scheme analysis shows that the proposed scheme can defend against active attacks for quantum communication and realize long-distance quantum communication with minimal resource consumption.

  7. Predictive Control of Large Complex Networks

    NASA Astrophysics Data System (ADS)

    Haber, Aleksandar; Motter, Adilson E.

    Networks of coupled dynamical subsystems are increasingly used to represent complex natural and engineered systems. While recent technological developments give us improved means to actively control the dynamics of individual subsystems in various domains, network control remains a challenging problem due to difficulties imposed by intrinsic nonlinearities, control constraints, and the large-scale nature of the systems. In this talk, we will present a model predictive control approach that is effective while accounting for these realistic properties of complex networks. Our method can systematically identify control interventions that steer the trajectory to a desired state, even in the presence of strong nonlinearities and constraints. Numerical tests show that the method is applicable to a variety of networks, ranging from power grids to chemical reaction systems.

  8. Modern control centers and computer networking

    SciTech Connect

    Dy-Liacco, T.E.

    1994-10-01

    The automation of power system operation is generally achieved with the implementation of two control centers, one for the operation of the generation-transmission system and the other for the operation of the distribution system. These control centers are referred to, respectively, as the energy management system (EMS) and the distribution management system (DMS). The EMS may consist of several control centers in a hierarchy. The DMS may be made up of several independent distribution control centers. This article features the fundamental design aspects of modern EMS and DMS control centers (computer networks, distributed processing, and distributed databases), the linking of computer networks, and the communications that support such internetworking. The extension of such networking beyond the confines of system operation to other corporate networks is now made practical by the maturing concepts of client-server architectures and by the availability of modern communication technologies.

  9. Device Configuration Handler for Accelerator Control Applications at Jefferson Lab

    SciTech Connect

    Matt Bickley; P. Chevtsov; T. Larrieu

    2003-10-01

    The accelerator control system at Jefferson Lab uses hundreds of physical devices with such popular instrument bus interfaces as Industry Pack (IPAC), GPIB, RS-232, etc. To properly handle all these components, control computers (IOCs) must be provided with the correct information about the unique memory addresses of the used interface cards, interrupt numbers (if any), data communication channels and protocols. In these conditions, the registration of a new control device in the control system is not an easy task for software developers. Because the device configuration is distributed, it requires the detailed knowledge about not only the new device but also the configuration of all other devices on the existing system. A configuration handler implemented at Jefferson Lab centralizes the information about all control devices making their registration user-friendly and very easy to use. It consists of a device driver framework and the device registration software developed on the basis of ORACLE database and freely available scripting tools (perl, php).

  10. Controlling Contagion Processes in Time Varying Networks

    NASA Astrophysics Data System (ADS)

    Liu, Suyu; Perra, Nicola; Karsai, Marton; Vespignani, Alessandro

    2013-03-01

    The vast majority of strategies aimed at controlling contagion and spreading processes on networks consider the connectivity pattern of the system as quenched. In this paper, we consider the class of activity driven networks to analytically evaluate how different control strategies perform in time-varying networks. We consider the limit in which the evolution of the structure of the network and the spreading process are simultaneous yet independent. We analyze three control strategies based on node's activity patterns to decide the removal/immunization of nodes. We find that targeted strategies aimed at the removal of active nodes outperform by orders of magnitude the widely used random strategies. In time-varying networks however any finite time observation of the network dynamics provides only incomplete information on the nodes' activity and does not allow the precise ranking of the most active nodes as needed to implement targeted strategies. Here we develop a control strategy that focuses on targeting the egocentric time-aggregated network of a small control group of nodes.The presented strategy allows the control of spreading processes by removing a fraction of nodes much smaller than the random strategy while at the same time limiting the observation time on the system.

  11. Self-Control in Sparsely Coded Networks

    NASA Astrophysics Data System (ADS)

    Dominguez, D. R. C.; Bollé, D.

    1998-03-01

    A complete self-control mechanism is proposed in the dynamics of neural networks through the introduction of a time-dependent threshold, determined in function of both the noise and the pattern activity in the network. Especially for sparsely coded models this mechanism is shown to considerably improve the storage capacity, the basins of attraction, and the mutual information content.

  12. Control Networks and Neuromodulators of Early Development

    ERIC Educational Resources Information Center

    Posner, Michael I.; Rothbart, Mary K.; Sheese, Brad E.; Voelker, Pascale

    2012-01-01

    In adults, most cognitive and emotional self-regulation is carried out by a network of brain regions, including the anterior cingulate, insula, and areas of the basal ganglia, related to executive attention. We propose that during infancy, control systems depend primarily upon a brain network involved in orienting to sensory events that includes…

  13. Advanced telerobotic control using neural networks

    NASA Technical Reports Server (NTRS)

    Pap, Robert M.; Atkins, Mark; Cox, Chadwick; Glover, Charles; Kissel, Ralph; Saeks, Richard

    1993-01-01

    Accurate Automation is designing and developing adaptive decentralized joint controllers using neural networks. We are then implementing these in hardware for the Marshall Space Flight Center PFMA as well as to be usable for the Remote Manipulator System (RMS) robot arm. Our design is being realized in hardware after completion of the software simulation. This is implemented using a Functional-Link neural network.

  14. Accelerating Network Traffic Analytics Using Query-DrivenVisualization

    SciTech Connect

    Bethel, E. Wes; Campbell, Scott; Dart, Eli; Stockinger, Kurt; Wu,Kesheng

    2006-07-29

    Realizing operational analytics solutions where large and complex data must be analyzed in a time-critical fashion entails integrating many different types of technology. This paper focuses on an interdisciplinary combination of scientific data management and visualization/analysis technologies targeted at reducing the time required for data filtering, querying, hypothesis testing and knowledge discovery in the domain of network connection data analysis. We show that use of compressed bitmap indexing can quickly answer queries in an interactive visual data analysis application, and compare its performance with two alternatives for serial and parallel filtering/querying on 2.5 billion records worth of network connection data collected over a period of 42 weeks. Our approach to visual network connection data exploration centers on two primary factors: interactive ad-hoc and multiresolution query formulation and execution over n dimensions and visual display of then-dimensional histogram results. This combination is applied in a case study to detect a distributed network scan and to then identify the set of remote hosts participating in the attack. Our approach is sufficiently general to be applied to a diverse set of data understanding problems as well as used in conjunction with a diverse set of analysis and visualization tools.

  15. QuateXelero: an accelerated exact network motif detection algorithm.

    PubMed

    Khakabimamaghani, Sahand; Sharafuddin, Iman; Dichter, Norbert; Koch, Ina; Masoudi-Nejad, Ali

    2013-01-01

    Finding motifs in biological, social, technological, and other types of networks has become a widespread method to gain more knowledge about these networks' structure and function. However, this task is very computationally demanding, because it is highly associated with the graph isomorphism which is an NP problem (not known to belong to P or NP-complete subsets yet). Accordingly, this research is endeavoring to decrease the need to call NAUTY isomorphism detection method, which is the most time-consuming step in many existing algorithms. The work provides an extremely fast motif detection algorithm called QuateXelero, which has a Quaternary Tree data structure in the heart. The proposed algorithm is based on the well-known ESU (FANMOD) motif detection algorithm. The results of experiments on some standard model networks approve the overal superiority of the proposed algorithm, namely QuateXelero, compared with two of the fastest existing algorithms, G-Tries and Kavosh. QuateXelero is especially fastest in constructing the central data structure of the algorithm from scratch based on the input network. PMID:23874498

  16. Structurally robust control of complex networks

    NASA Astrophysics Data System (ADS)

    Nacher, Jose C.; Akutsu, Tatsuya

    2015-01-01

    Robust control theory has been successfully applied to numerous real-world problems using a small set of devices called controllers. However, the real systems represented by networks contain unreliable components and modern robust control engineering has not addressed the problem of structural changes on complex networks including scale-free topologies. Here, we introduce the concept of structurally robust control of complex networks and provide a concrete example using an algorithmic framework that is widely applied in engineering. The developed analytical tools, computer simulations, and real network analyses lead herein to the discovery that robust control can be achieved in scale-free networks with exactly the same order of controllers required in a standard nonrobust configuration by adjusting only the minimum degree. The presented methodology also addresses the probabilistic failure of links in real systems, such as neural synaptic unreliability in Caenorhabditis elegans, and suggests a new direction to pursue in studies of complex networks in which control theory has a role.

  17. Structurally robust control of complex networks.

    PubMed

    Nacher, Jose C; Akutsu, Tatsuya

    2015-01-01

    Robust control theory has been successfully applied to numerous real-world problems using a small set of devices called controllers. However, the real systems represented by networks contain unreliable components and modern robust control engineering has not addressed the problem of structural changes on complex networks including scale-free topologies. Here, we introduce the concept of structurally robust control of complex networks and provide a concrete example using an algorithmic framework that is widely applied in engineering. The developed analytical tools, computer simulations, and real network analyses lead herein to the discovery that robust control can be achieved in scale-free networks with exactly the same order of controllers required in a standard nonrobust configuration by adjusting only the minimum degree. The presented methodology also addresses the probabilistic failure of links in real systems, such as neural synaptic unreliability in Caenorhabditis elegans, and suggests a new direction to pursue in studies of complex networks in which control theory has a role. PMID:25679675

  18. Introducing a new paradigm for accelerators and large experimental apparatus control systems

    NASA Astrophysics Data System (ADS)

    Catani, L.; Zani, F.; Bisegni, C.; Di Pirro, G.; Foggetta, L.; Mazzitelli, G.; Stecchi, A.

    2012-11-01

    The integration of web technologies and web services has been, in the recent years, one of the major trends in upgrading and developing distributed control systems for accelerators and large experimental apparatuses. Usually, web technologies have been introduced to complement the control systems with smart add-ons and user friendly services or, for instance, to safely allow access to the control system to users from remote sites. Despite this still narrow spectrum of employment, some software technologies developed for high-performance web services, although originally intended and optimized for these particular applications, deserve some features suggesting a deeper integration in a control system and, eventually, their use to develop some of the control system’s core components. In this paper, we present the conceptual design of a new control system for a particle accelerator and associated machine data acquisition system, based on a synergic combination of a nonrelational key/value database and network distributed object caching. The use of these technologies, to implement respectively continuous data archiving and data distribution between components, brought about the definition of a new control system concept offering a number of interesting features such as a high level of abstraction of services and components and their integration in a framework that can be seen as a comprehensive service provider that both graphical user interface applications and front-end controllers join for accessing and, to some extent, expanding its functionalities.

  19. Wireless Sensor Networks: Monitoring and Control

    SciTech Connect

    Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio

    2013-05-31

    The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.

  20. Portable control device for networked mobile robots

    DOEpatents

    Feddema, John T.; Byrne, Raymond H.; Bryan, Jon R.; Harrington, John J.; Gladwell, T. Scott

    2002-01-01

    A handheld control device provides a way for controlling one or multiple mobile robotic vehicles by incorporating a handheld computer with a radio board. The device and software use a personal data organizer as the handheld computer with an additional microprocessor and communication device on a radio board for use in controlling one robot or multiple networked robots.

  1. Genomic and Network Patterns of Schizophrenia Genetic Variation in Human Evolutionary Accelerated Regions

    PubMed Central

    Xu, Ke; Schadt, Eric E.; Pollard, Katherine S.; Roussos, Panos; Dudley, Joel T.

    2015-01-01

    The population persistence of schizophrenia despite associated reductions in fitness and fecundity suggests that the genetic basis of schizophrenia has a complex evolutionary history. A recent meta-analysis of schizophrenia genome-wide association studies offers novel opportunities for assessment of the evolutionary trajectories of schizophrenia-associated loci. In this study, we hypothesize that components of the genetic architecture of schizophrenia are attributable to human lineage-specific evolution. Our results suggest that schizophrenia-associated loci enrich in genes near previously identified human accelerated regions (HARs). Specifically, we find that genes near HARs conserved in nonhuman primates (pHARs) are enriched for schizophrenia-associated loci, and that pHAR-associated schizophrenia genes are under stronger selective pressure than other schizophrenia genes and other pHAR-associated genes. We further evaluate pHAR-associated schizophrenia genes in regulatory network contexts to investigate associated molecular functions and mechanisms. We find that pHAR-associated schizophrenia genes significantly enrich in a GABA-related coexpression module that was previously found to be differentially regulated in schizophrenia affected individuals versus healthy controls. In another two independent networks constructed from gene expression profiles from prefrontal cortex samples, we find that pHAR-associated schizophrenia genes are located in more central positions and their average path lengths to the other nodes are significantly shorter than those of other schizophrenia genes. Together, our results suggest that HARs are associated with potentially important functional roles in the genetic architecture of schizophrenia. PMID:25681384

  2. Optimal Feedback Control of Thermal Networks

    NASA Technical Reports Server (NTRS)

    Papalexandris, Miltiadis

    2003-01-01

    An improved approach to the mathematical modeling of feedback control of thermal networks has been devised. Heretofore software for feedback control of thermal networks has been developed by time-consuming trial-and-error methods that depend on engineers expertise. In contrast, the present approach is a systematic means of developing algorithms for feedback control that is optimal in the sense that it combines performance with low cost of implementation. An additional advantage of the present approach is that a thermal engineer need not be expert in control theory. Thermal networks are lumped-parameter approximations used to represent complex thermal systems. Thermal networks are closely related to electrical networks commonly represented by lumped-parameter circuit diagrams. Like such electrical circuits, thermal networks are mathematically modeled by systems of differential-algebraic equations (DAEs) that is, ordinary differential equations subject to a set of algebraic constraints. In the present approach, emphasis is placed on applications in which thermal networks are subject to constant disturbances and, therefore, integral control action is necessary to obtain steady-state responses. The mathematical development of the present approach begins with the derivation of optimal integral-control laws via minimization of an appropriate cost functional that involves augmented state vectors. Subsequently, classical variational arguments provide optimality conditions in the form of the Hamiltonian equations for the standard linear-quadratic-regulator (LQR) problem. These equations are reduced to an algebraic Riccati equation (ARE) with respect to the augmented state vector. The solution of the ARE leads to the direct computation of the optimal proportional- and integral-feedback control gains. In cases of very complex networks, large numbers of state variables make it difficult to implement optimal controllers in the manner described in the preceding paragraph.

  3. Neural-Network Controller For Vibration Suppression

    NASA Technical Reports Server (NTRS)

    Boussalis, Dhemetrios; Wang, Shyh Jong

    1995-01-01

    Neural-network-based adaptive-control system proposed for vibration suppression of flexible space structures. Controller features three-layer neural network and utilizes output feedback. Measurements generated by various sensors on structure. Feed forward path also included to speed up response in case plant exhibits predominantly linear dynamic behavior. System applicable to single-input single-output systems. Work extended to multiple-input multiple-output systems as well.

  4. QuateXelero: An Accelerated Exact Network Motif Detection Algorithm

    PubMed Central

    Khakabimamaghani, Sahand; Sharafuddin, Iman; Dichter, Norbert; Koch, Ina; Masoudi-Nejad, Ali

    2013-01-01

    Finding motifs in biological, social, technological, and other types of networks has become a widespread method to gain more knowledge about these networks’ structure and function. However, this task is very computationally demanding, because it is highly associated with the graph isomorphism which is an NP problem (not known to belong to P or NP-complete subsets yet). Accordingly, this research is endeavoring to decrease the need to call NAUTY isomorphism detection method, which is the most time-consuming step in many existing algorithms. The work provides an extremely fast motif detection algorithm called QuateXelero, which has a Quaternary Tree data structure in the heart. The proposed algorithm is based on the well-known ESU (FANMOD) motif detection algorithm. The results of experiments on some standard model networks approve the overal superiority of the proposed algorithm, namely QuateXelero, compared with two of the fastest existing algorithms, G-Tries and Kavosh. QuateXelero is especially fastest in constructing the central data structure of the algorithm from scratch based on the input network. PMID:23874498

  5. Controlling extreme events on complex networks

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng

    2014-08-01

    Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network ``mobile'' can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed.

  6. The control networks of Mimas and Enceladus

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Katayama, F. Y.

    1983-01-01

    A bundle-type analytical triangulation program is employed to compute control networks for Mimas, whose network encircles the satellite with 110 points measured on 32 Voyager 1 pictures, and Enceladus, whose network does not completely encircle the satellite and contains 71 points measured on 22 Voyager 2 pictures. Many of the control points are identified on illustrations and by name, and their coordinates are presented in tabular form. The analytical triangulation program was used to solve for the mean radii and three principal axes of best-fit ellipsoids. The mean radius of Mimas is 197 + or - 3 km, while that of Enceladus is 251 + or - 5 km.

  7. Control of Neuronal Network in Caenorhabditis elegans

    PubMed Central

    Badhwar, Rahul; Bagler, Ganesh

    2015-01-01

    Caenorhabditis elegans, a soil dwelling nematode, is evolutionarily rudimentary and contains only ∼ 300 neurons which are connected to each other via chemical synapses and gap junctions. This structural connectivity can be perceived as nodes and edges of a graph. Controlling complex networked systems (such as nervous system) has been an area of excitement for mankind. Various methods have been developed to identify specific brain regions, which when controlled by external input can lead to achievement of control over the state of the system. But in case of neuronal connectivity network the properties of neurons identified as driver nodes is of much importance because nervous system can produce a variety of states (behaviour of the animal). Hence to gain insight on the type of control achieved in nervous system we implemented the notion of structural control from graph theory to C. elegans neuronal network. We identified ‘driver neurons’ which can provide full control over the network. We studied phenotypic properties of these neurons which are referred to as ‘phenoframe’ as well as the ‘genoframe’ which represents their genetic correlates. We find that the driver neurons are primarily motor neurons located in the ventral nerve cord and contribute to biological reproduction of the animal. Identification of driver neurons and its characterization adds a new dimension in controllability of C. elegans neuronal network. This study suggests the importance of driver neurons and their utility to control the behaviour of the organism. PMID:26413834

  8. The network of global corporate control.

    PubMed

    Vitali, Stefania; Glattfelder, James B; Battiston, Stefano

    2011-01-01

    The structure of the control network of transnational corporations affects global market competition and financial stability. So far, only small national samples were studied and there was no appropriate methodology to assess control globally. We present the first investigation of the architecture of the international ownership network, along with the computation of the control held by each global player. We find that transnational corporations form a giant bow-tie structure and that a large portion of control flows to a small tightly-knit core of financial institutions. This core can be seen as an economic "super-entity" that raises new important issues both for researchers and policy makers. PMID:22046252

  9. Magnetically Controlled Plasma Waveguide For Laser Wakefield Acceleration

    SciTech Connect

    Froula, D H; Divol, L; Davis, P; Palastro, J; Michel, P; Leurent, V; Glenzer, S H; Pollock, B; Tynan, G

    2008-05-14

    An external magnetic field applied to a laser plasma is shown produce a plasma channel at densities relevant to creating GeV monoenergetic electrons through laser wakefield acceleration. Furthermore, the magnetic field also provides a pressure to help shape the channel to match the guiding conditions of an incident laser beam. Measured density channels suitable for guiding relativistic short-pulse laser beams are presented with a minimum density of 5 x 10{sup 17} cm{sup -3} which corresponds to a linear dephasing length of several centimeters suitable for multi-GeV electron acceleration. The experimental setup at the Jupiter Laser Facility, Lawrence Livermore National Laboratory, where a 1-ns, 150 J 1054 nm laser will produce a magnetically controlled channel to guide a < 75 fs, 10 J short-pulse laser beam through 5-cm of 5 x 10{sup 17} cm{sup -3} plasma is presented. Calculations presented show that electrons can be accelerated to 3 GeV with this system. Three-dimensional resistive magneto-hydrodynamic simulations are used to design the laser and plasma parameters and quasi-static kinetic simulations indicate that the channel will guide a 200 TW laser beam over 5-cm.

  10. Distribution of computer functionality for accelerator control at the Brookhaven AGS

    SciTech Connect

    Stevens, A.; Clifford, T.; Frankel, R.

    1985-01-01

    A set of physical and functional system components and their interconnection protocols have been established for all controls work at the AGS. Portions of these designs were tested as part of enhanced operation of the AGS as a source of polarized protons and additional segments will be implemented during the continuing construction efforts which are adding heavy ion capability to our facility. Included in our efforts are the following computer and control system elements: a broad band local area network, which embodies MODEMS; transmission systems and branch interface units; a hierarchical layer, which performs certain data base and watchdog/alarm functions; a group of work station processors (Apollo's) which perform the function of traditional minicomputer host(s) and a layer, which provides both real time control and standardization functions for accelerator devices and instrumentation. Data base and other accelerator functionality is assigned to the most correct level within our network for both real time performance, long-term utility, and orderly growth.

  11. Distribution of computer functionality for accelerator control at the Brookhaven AGS

    SciTech Connect

    Stevens, A.; Clifford, T.; Frankel, R.

    1985-10-01

    A set of physical and functional system components and their interconnection protocols have been established for all controls work at the AGS. Portions of these designs were tested as part of enhanced operation of the AGS as a source of polarized protons and additional segments will be implemented during the continuing construction efforts which are adding heavy ion capability to our facility. Included in our efforts are the following computer and control system elements: a broad band local area network, which embodies MODEMS; transmission systems and branch interface units; a hierarchical layer, which performs certain data base and watchdog/alarm functions; a group of work station processors (Apollo's) which perform the function of traditional minicomputer host(s) and a layer, which provides both real time control and standardization functions for accelerator devices and instrumentation. Data base and other accelerator functionality is assigned to the most correct level within our network for both real time performance, long-term utility, and orderly growth.

  12. NOVANET: communications network for a control system

    SciTech Connect

    Hill, J.R.; Severyn, J.R.; VanArsdall, P.J.

    1983-05-23

    NOVANET is a control system oriented fiber optic local area network that was designed to meet the unique and often conflicting requirements of the Nova laser control system which will begin operation in 1984. The computers and data acquisition devices that form the distributed control system for a large laser fusion research facility need reliable, high speed communications. Both control/status messages and experimental data must be handled. A subset of NOVANET is currently operating on the two beam Novette laser system.

  13. Design of a Normal Acceleration and Angle of Attack Control System for a Missile Having Front and Rear Control Surfaces

    NASA Astrophysics Data System (ADS)

    Ochi, Yoshimasa

    Precise normal acceleration control is essential for missile guidance. Missiles with both front and rear control surfaces have a higher ability to control normal acceleration than missiles with front or rear control surfaces only. From the viewpoint of control, however, the control problem becomes a two-input-one-output problem, where generally control input cannot be determined uniquely. This paper proposes controlling angle of attack as well as normal acceleration, which makes the problem a two-input-two-output one and determines the controls uniquely. Normal acceleration command is given by a guidance system, but angle of attack command must be generated in accordance to the acceleration command without affecting the normal acceleration control. This paper also proposes such a command generator for angle of attack. Computer simulation is conducted using a nonlinear missile model to investigate the effectiveness of the control system along with control systems designed using three other methods.

  14. Controlling neural network responsiveness: tradeoffs and constraints

    PubMed Central

    Keren, Hanna; Marom, Shimon

    2014-01-01

    In recent years much effort is invested in means to control neural population responses at the whole brain level, within the context of developing advanced medical applications. The tradeoffs and constraints involved, however, remain elusive due to obvious complications entailed by studying whole brain dynamics. Here, we present effective control of response features (probability and latency) of cortical networks in vitro over many hours, and offer this approach as an experimental toy for studying controllability of neural networks in the wider context. Exercising this approach we show that enforcement of stable high activity rates by means of closed loop control may enhance alteration of underlying global input–output relations and activity dependent dispersion of neuronal pair-wise correlations across the network. PMID:24808860

  15. Control of fluxes in metabolic networks.

    PubMed

    Basler, Georg; Nikoloski, Zoran; Larhlimi, Abdelhalim; Barabási, Albert-László; Liu, Yang-Yu

    2016-07-01

    Understanding the control of large-scale metabolic networks is central to biology and medicine. However, existing approaches either require specifying a cellular objective or can only be used for small networks. We introduce new coupling types describing the relations between reaction activities, and develop an efficient computational framework, which does not require any cellular objective for systematic studies of large-scale metabolism. We identify the driver reactions facilitating control of 23 metabolic networks from all kingdoms of life. We find that unicellular organisms require a smaller degree of control than multicellular organisms. Driver reactions are under complex cellular regulation in Escherichia coli, indicating their preeminent role in facilitating cellular control. In human cancer cells, driver reactions play pivotal roles in malignancy and represent potential therapeutic targets. The developed framework helps us gain insights into regulatory principles of diseases and facilitates design of engineering strategies at the interface of gene regulation, signaling, and metabolism. PMID:27197218

  16. Computer control of large accelerators, design concepts and methods

    NASA Astrophysics Data System (ADS)

    Beck, F.; Gormley, M.

    1985-03-01

    Unlike most of the specialities treated in this volume, control system design is still an art, not a science. This presentation is an attempt to produce a primer for prospective practitioners of this art. A large modern accelerator requires a comprehensive control system for commissioning, machine studies, and day-to-day operation. Faced with the requirement to design a control system for such a machine, the control system architect has a bewildering array of technical devices and techniques at his disposal, and it is our aim in the following chapters to lead him through the characteristics of the problems he will have to face and the practical alternatives available for solving them. We emphasize good system architecture using commercially available hardware and software components, but in addition we discuss the actual control strategies which are to be implemented, since it is at the point of deciding what facilities shall be available that the complexity of the control system and its cost are implicitly decided.

  17. Computer control of large accelerators design concepts and methods

    SciTech Connect

    Beck, F.; Gormley, M.

    1984-05-01

    Unlike most of the specialities treated in this volume, control system design is still an art, not a science. These lectures are an attempt to produce a primer for prospective practitioners of this art. A large modern accelerator requires a comprehensive control system for commissioning, machine studies and day-to-day operation. Faced with the requirement to design a control system for such a machine, the control system architect has a bewildering array of technical devices and techniques at his disposal, and it is our aim in the following chapters to lead him through the characteristics of the problems he will have to face and the practical alternatives available for solving them. We emphasize good system architecture using commercially available hardware and software components, but in addition we discuss the actual control strategies which are to be implemented since it is at the point of deciding what facilities shall be available that the complexity of the control system and its cost are implicitly decided. 19 references.

  18. Epidemic Extinction and Control in Heterogeneous Networks

    NASA Astrophysics Data System (ADS)

    Hindes, Jason; Schwartz, Ira B.

    2016-07-01

    We consider epidemic extinction in finite networks with a broad variation in local connectivity. Generalizing the theory of large fluctuations to random networks with a given degree distribution, we are able to predict the most probable, or optimal, paths to extinction in various configurations, including truncated power laws. We find that paths for heterogeneous networks follow a limiting form in which infection first decreases in low-degree nodes, which triggers a rapid extinction in high-degree nodes, and finishes with a residual low-degree extinction. The usefulness of our approach is further demonstrated through optimal control strategies that leverage the dependence of finite-size fluctuations on network topology. Interestingly, we find that the optimal control is a mix of treating both high- and low-degree nodes based on theoretical predictions, in contrast to methods that ignore dynamical fluctuations.

  19. Lithium mass flow control for high power Lorentz Force Accelerators

    NASA Astrophysics Data System (ADS)

    Kodys, Andrea D.; Emsellem, Gregory; Cassady, Leonard D.; Polk, James E.; Choueiri, Edgar Y.

    2001-02-01

    A lithium feeding system has been developed to measure and control propellant flow for 30-200 kW Lithium Lorentz Force Accelerators (LiLFAs). The new, mechanically actuated, liquid lithium feed system has been designed and tested as a central component of a campaign to obtain basic data and establish scaling laws and performance relations for these thrusters. Calibration data are presented which demonstrate reliable and controllable feed of liquid lithium to the vaporizer hollow cathode of the thruster at flow rates between 10 and 120 mg/s. The ability to thermally track the liquid lithium through the system by the use of external temperature measurements is demonstrated. In addition, recent developments are presented in the establishment and successful testing of a lithium handling facility and safety procedures allowing for the in-house loading of the feed system and the neutralization, cleaning and disposal of up to 300 g of lithium. .

  20. Flexible brain network reconfiguration supporting inhibitory control.

    PubMed

    Spielberg, Jeffrey M; Miller, Gregory A; Heller, Wendy; Banich, Marie T

    2015-08-11

    The ability to inhibit distracting stimuli from interfering with goal-directed behavior is crucial for success in most spheres of life. Despite an abundance of studies examining regional brain activation, knowledge of the brain networks involved in inhibitory control remains quite limited. To address this critical gap, we applied graph theory tools to functional magnetic resonance imaging data collected while a large sample of adults (n = 101) performed a color-word Stroop task. Higher demand for inhibitory control was associated with restructuring of the global network into a configuration that was more optimized for specialized processing (functional segregation), more efficient at communicating the output of such processing across the network (functional integration), and more resilient to potential interruption (resilience). In addition, there were regional changes with right inferior frontal sulcus and right anterior insula occupying more central positions as network hubs, and dorsal anterior cingulate cortex becoming more tightly coupled with its regional subnetwork. Given the crucial role of inhibitory control in goal-directed behavior, present findings identifying functional network organization supporting inhibitory control have the potential to provide additional insights into how inhibitory control may break down in a wide variety of individuals with neurological or psychiatric difficulties. PMID:26216985

  1. Color control of printers by neural networks

    NASA Astrophysics Data System (ADS)

    Tominaga, Shoji

    1998-07-01

    A method is proposed for solving the mapping problem from the 3D color space to the 4D CMYK space of printer ink signals by means of a neural network. The CIE-L*a*b* color system is used as the device-independent color space. The color reproduction problem is considered as the problem of controlling an unknown static system with four inputs and three outputs. A controller determines the CMYK signals necessary to produce the desired L*a*b* values with a given printer. Our solution method for this control problem is based on a two-phase procedure which eliminates the need for UCR and GCR. The first phase determines a neural network as a model of the given printer, and the second phase determines the combined neural network system by combining the printer model and the controller in such a way that it represents an identity mapping in the L*a*b* color space. Then the network of the controller part realizes the mapping from the L*a*b* space to the CMYK space. Practical algorithms are presented in the form of multilayer feedforward networks. The feasibility of the proposed method is shown in experiments using a dye sublimation printer and an ink jet printer.

  2. Estimating the minimum control count of random network models

    PubMed Central

    Ruths, Derek; Ruths, Justin

    2016-01-01

    The study of controllability of complex networks has introduced the minimum number of controls required for full controllability as a new network measure of interest. This network measure, like many others, is non-trivial to compute. As a result, establishing the significance of minimum control counts (MCCs) in real networks using random network null models is expensive. Here we derive analytic estimates for the expected MCCs of networks drawn from three commonly-used random network models. Our estimates show good agreement with exact control counts. Furthermore, the analytic expressions we derive offer insights into the structures within each random network model that induce the need for controls. PMID:26817434

  3. The APS control system network upgrade.

    SciTech Connect

    Sidorowicz, K. v.; Leibfritz, D.; McDowell, W. P.

    1999-10-22

    When it was installed,the Advanced Photon Source (APS) control system network was at the state-of-the-art. Different aspects of the system have been reported at previous meetings [1,2]. As loads on the controls network have increased due to newer and faster workstations and front-end computers, we have found performance of the system declining and have implemented an upgraded network. There have been dramatic advances in networking hardware in the last several years. The upgraded APS controls network replaces the original FDDI backbone and shared Ethernet hubs with redundant gigabit uplinks and fully switched 10/100 Ethernet switches with backplane fabrics in excess of 20 Gbits/s (Gbps). The central collapsed backbone FDDI concentrator has been replaced with a Gigabit Ethernet switch with greater than 30 Gbps backplane fabric. Full redundancy of the system has been maintained. This paper will discuss this upgrade and include performance data and performance comparisons with the original network.

  4. A Framework for a General Purpose Intelligent Control System for Particle Accelerators. Phase II Final Report

    SciTech Connect

    Dr. Robert Westervelt; Dr. William Klein; Dr. Michael Kroupa; Eric Olsson; Rick Rothrock

    1999-06-28

    Vista Control Systems, Inc. has developed a portable system for intelligent accelerator control. The design is general in scope and is thus configurable to a wide range of accelerator facilities and control problems. The control system employs a multi-layer organization in which knowledge-based decision making is used to dynamically configure lower level optimization and control algorithms.

  5. Cortical Control of Affective Networks

    PubMed Central

    Kumar, Sunil; Black, Sherilynn J.; Hultman, Rainbo; Szabo, Steven T.; DeMaio, Kristine D.; Du, Jeanette; Katz, Brittany M.; Feng, Guoping; Covington, Herbert E.; Dzirasa, Kafui

    2013-01-01

    Transcranial magnetic stimulation and deep brain stimulation have emerged as therapeutic modalities for treatment refractory depression; however, little remains known regarding the circuitry that mediates the therapeutic effect of these approaches. Here we show that direct optogenetic stimulation of prefrontal cortex (PFC) descending projection neurons in mice engineered to express Chr2 in layer V pyramidal neurons (Thy1–Chr2 mice) models an antidepressant-like effect in mice subjected to a forced-swim test. Furthermore, we show that this PFC stimulation induces a long-lasting suppression of anxiety-like behavior (but not conditioned social avoidance) in socially stressed Thy1–Chr2 mice: an effect that is observed >10 d after the last stimulation. Finally, we use optogenetic stimulation and multicircuit recording techniques concurrently in Thy1–Chr2 mice to demonstrate that activation of cortical projection neurons entrains neural oscillatory activity and drives synchrony across limbic brain areas that regulate affect. Importantly, these neural oscillatory changes directly correlate with the temporally precise activation and suppression of limbic unit activity. Together, our findings show that the direct activation of cortical projection systems is sufficient to modulate activity across networks underlying affective regulation. They also suggest that optogenetic stimulation of cortical projection systems may serve as a viable therapeutic strategy for treating affective disorders. PMID:23325249

  6. Control algorithms of SONET integrated self-healing networks

    NASA Astrophysics Data System (ADS)

    Hasegawa, Satoshi; Okaoue, Yasuyo; Egawa, Takashi; Sakauchi, Hideki

    1994-01-01

    As the deployment of high-speed fiber transmission systems has been accelerated, they are widely recognized as a firm infrastructure of information society. Under this circumstance, the importance of network survivability has been increasing rapidly in these days. In SONET, the self-healing networks have been highlighted as one of the most advanced mechanisms to realize SONET survivable networks. Several schemes have been proposed and studied actively due to a rapid progress on the development of highly intelligent NE's. Among them in this paper, a DCS based distributed self-healing network is discussed from a viewpoint of its control algorithms. Specifically, our self-healing algorithm called TRANS is explained in detail, which possesses such desirable features as providing fast and flexible restoration with line and path level restoration applied to an individual STS-1 channel, capability to handle multiple and even node failures, and so on. Both software simulation and hardware experiment verify that TRANS works properly in a real distributed environment, the result of which is shown in the paper. In addition, the combined use of TRANS and the ring restoration control is proposed taking into account the use in a practical SONET.

  7. A model for earthquake acceleration monitoring with wireless sensor networks in a structure

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takahiro; Nakamura, Yugo; Jinno, Kousei; Matsubara, Taku; Uehara, Hideyuki

    2014-03-01

    Wireless sensor networks (WSNs) technologies have attracted much attention to collect damage information in a natural disaster. WSNs to monitor temperature or humidity usually collect data once in some seconds or some minutes. Since structural health monitoring (SHM), meanwhile, aims to make a diagnosis for the state of a structure based on detected acceleration, WSNs are a promising technology to collect acceleration data. One concern to employ WSNs in SHM is to detect phenomena at a high sampling rate under energy-aware condition. In this paper, we describe a model for seismic acceleration monitoring, configured with multi-layer networks: WSNs, a wireless distribution system (WDS) and a database server, where the WDS is mainly operating in a wireless local area network (WLAN). Examining the performance in the test bed for the monitoring system, the results showed the system was capable of collecting acceleration at a rate of 100 sampling per second (sps) even in the fashion of intermittent operation, and capable of storing data into a database. We also suggest that the method using intermittent operation with appropriate sampling rate is effective in providing a long time operation for the system by considering in the response motion of a structure.

  8. [The network of official medicines control laboratories].

    PubMed

    Buchheit, K-H; Wanko, R

    2014-10-01

    Licensing, control and surveillance by competent authorities is the basis for ensuring efficacy, safety and quality of medicines in Europe. The control of the quality of medicines by national control laboratories, known as Official Medicines Control Laboratories (OMCLs) is an essential step in this process; it encompasses controls before and after granting a marketing authorisation. For certain groups of biomedical medicines (vaccines for human and veterinary use, medicines derived from human plasma) even each batch is controlled before it can be placed on the market. As single OMCLs would not be able to cope with their task, given the large number and diversity of medicines, in 1994 the OMCL network was founded upon initiative of the European Directorate for the Quality of Medicines & HealthCare, in close collaboration with the Commission of the European Union. Currently 68 OMCLs from 39 countries are part of the network. Prerequisite for the smooth operation of the OMCL network is the harmonisation of the quality management system of the individual OMCLs, based on the ISO 17025 standard, internal guidelines and the European Pharmacopoeia. Compliance with these standards is checked through regular audits, thus creating the basis for mutual recognition of test results. The collaboration in the OMCL network for the surveillance of the medicines market, the official control authority batch release and the fight against counterfeiting and illegal medicines enables OMCLs to keep pace with the developments in the field of medicines and to control the broad spectrum of medicines. In the 20 years since its start, the OMCL network has become a European success story. PMID:25192832

  9. Integrated Enterprise Accelerator Database for the SLC Control System

    NASA Astrophysics Data System (ADS)

    Lahey, T.; Rock, J.; Sass, R.; Shoaee, H.; Underwood, K.

    2002-08-01

    Since its inception in the early 1980's, the SLC Control System has been driven by a highly structured memory-resident real-time database. While efficient, its rigid structure and file-based sources makes it difficult to maintain and extract relevant information. The goal of transforming the sources for this database into a relational form is to enable it to be part of a Control System Enterprise Database that is an integrated central repository for SLC accelerator device and Control System data with links to other associated databases. We have taken the concepts developed for the NLC Enterprise Database and used them to create and load a relational model of the online SLC Control System database. This database contains data and structure to allow querying and reporting on beamline devices, their associations and parameters. queries tend to retrieve large numbers of rows and attribute tables can become large, adversely affecting performance. In addition, this model does not allow optimal use of database features such as constraints and joins, nor the standard set of database query and

  10. A comparison of acceleration control and pulse control in simulated spacecraft docking maneuvers

    NASA Technical Reports Server (NTRS)

    Brody, Adam R.; Ellis, Stephen R.

    1991-01-01

    Results are reported from a study designed to compare acceleration control with pulse control in simulated spacecraft docking maneuvers. Nine commercial airline pilots served as test subjects and the simulated remote dockings of an orbital maneuvering vehicle (OMV) to a space station were initiated from 50, 100, and 150 meters along the station's minus velocity vector. The trials were grouped into blocks of 18 consisting of six repetitions of the three ranges. It was found that mission duration was lower with pulse mode, while fuel consumption was lower with acceleration mode. It is suggested that this result is most likely specific to the thruster values that are being used.

  11. Identification of Interventions to Control Network Crises

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Sahasrabudhe, Sagar; Motter, Adilson

    2012-02-01

    Large-scale crises in financial, social, infrastructure, genetic and ecological networks often result from the spread of disturbances that in isolation would only cause limited damage. Here we present a method to identify and schedule interventions that can mitigate cascading failures in general complex networks. When applied to competition networks, our method shows that the system can often be rescued from global failures through actions that satisfy restrictive constraints typical of real-world conditions. However, under such constraints, interventions that can rescue the system from a propagating cascade exist over specific periods of time that do not always include the early postperturbation period, suggesting that scheduling is critical in the control of network cascades.

  12. A Study of the Design of Acceleration Control System for Missiles

    NASA Astrophysics Data System (ADS)

    Kajita, Takanori; Eguchi, Hirofumi

    A 2-degrees of freedom PID controller is designed for a maneuvering acceleration control system. This design method is based on the combination of PID and IPD controller. Results show that (1) IP controller is superior to PI controller for the damper loop controller, (2) the selection of PI or IP controller as for the acceleration controller depends on the tradeoffs between the responsibility and the reduction of inverse response.

  13. Aitken-based acceleration methods for assessing convergence of multilayer neural networks.

    PubMed

    Pilla, R S; Kamarthi, S V; Lindsay, B G

    2001-01-01

    This paper first develops the ideas of Aitken delta(2) method to accelerate the rate of convergence of an error sequence (value of the objective function at each step) obtained by training a neural network with a sigmoidal activation function via the backpropagation algorithm. The Aitken method is exact when the error sequence is exactly geometric. However, theoretical and empirical evidence suggests that the best possible rate of convergence obtainable for such an error sequence is log-geometric. This paper develops a new invariant extended-Aitken acceleration method for accelerating log-geometric sequences. The resulting accelerated sequence enables one to predict the final value of the error function. These predictions can in turn be used to assess the distance between the current and final solution and thereby provides a stopping criterion for a desired accuracy. Each of the techniques described is applicable to a wide range of problems. The invariant extended-Aitken acceleration approach shows improved acceleration as well as outstanding prediction of the final error in the practical problems considered. PMID:18249928

  14. Controlling extreme events on complex networks

    PubMed Central

    Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng

    2014-01-01

    Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network “mobile” can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed. PMID:25131344

  15. Controlling extreme events on complex networks.

    PubMed

    Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng

    2014-01-01

    Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network "mobile" can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed. PMID:25131344

  16. The Network of Global Corporate Control

    PubMed Central

    Vitali, Stefania; Glattfelder, James B.; Battiston, Stefano

    2011-01-01

    The structure of the control network of transnational corporations affects global market competition and financial stability. So far, only small national samples were studied and there was no appropriate methodology to assess control globally. We present the first investigation of the architecture of the international ownership network, along with the computation of the control held by each global player. We find that transnational corporations form a giant bow-tie structure and that a large portion of control flows to a small tightly-knit core of financial institutions. This core can be seen as an economic “super-entity” that raises new important issues both for researchers and policy makers. PMID:22046252

  17. Wireless Networking for Control: Technologies and Models

    NASA Astrophysics Data System (ADS)

    Johansson, Mikael; Jäntti, Riku

    This chapter discusses technologies and models for low power wireless industrial communication. The aim of the text is to narrow the gap between the models used in the theoretical control literature with models that arise when tools from communication theory are used to model emerging standards for industrial wireless. The chapter provides a tutorial overview covering basic concepts and models for wireless propagation, medium access control, multi-hop networking, routing and transport protocols. Throughout, an effort is made to describe both key technologies and associated models of control-relevant characteristics such as latency and loss. Some existing and emerging specifications and standards, including Zigbee, WirelessHART and ISA100, are described in some detail, and links are made between the developed models and useful network abstractions for control design.

  18. Future directions in controlling the LAMPF-PSR Accelerator Complex at Los Alamos National Laboratory

    SciTech Connect

    Stuewe, R.; Schaller, S.; Bjorklund, E.; Burns, M.; Callaway, T.; Carr, G.; Cohen, S.; Kubicek, D.; Harrington, M.; Poore, R.; Schultz, D.

    1991-01-01

    Four interrelated projects are underway whose purpose is to migrate the LAMPF-PSR Accelerator Complex control systems to a system with a common set of hardware and software components. Project goals address problems in performance, maintenance and growth potential. Front-end hardware, operator interface hardware and software, computer systems, network systems and data system software are being simultaneously upgraded as part of these efforts. The efforts are being coordinated to provide for a smooth and timely migration to a client-sever model-based data acquisition and control system. An increased use of the distributed intelligence at both the front-end and operator interface is a key element of the projects. 2 refs., 2 figs.

  19. Distributed control network for optogenetic experiments

    NASA Astrophysics Data System (ADS)

    Kasprowicz, G.; Juszczyk, B.; Mankiewicz, L.

    2014-11-01

    Nowadays optogenetic experiments are constructed to examine social behavioural relations in groups of animals. A novel concept of implantable device with distributed control network and advanced positioning capabilities is proposed. It is based on wireless energy transfer technology, micro-power radio interface and advanced signal processing.

  20. Optimizing Dynamical Network Structure for Pinning Control

    PubMed Central

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-01-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights. PMID:27067020

  1. Optimizing Dynamical Network Structure for Pinning Control.

    PubMed

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-01-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights. PMID:27067020

  2. Optimizing Dynamical Network Structure for Pinning Control

    NASA Astrophysics Data System (ADS)

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-04-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.

  3. Deep networks for motor control functions

    PubMed Central

    Berniker, Max; Kording, Konrad P.

    2015-01-01

    The motor system generates time-varying commands to move our limbs and body. Conventional descriptions of motor control and learning rely on dynamical representations of our body's state (forward and inverse models), and control policies that must be integrated forward to generate feedforward time-varying commands; thus these are representations across space, but not time. Here we examine a new approach that directly represents both time-varying commands and the resulting state trajectories with a function; a representation across space and time. Since the output of this function includes time, it necessarily requires more parameters than a typical dynamical model. To avoid the problems of local minima these extra parameters introduce, we exploit recent advances in machine learning to build our function using a stacked autoencoder, or deep network. With initial and target states as inputs, this deep network can be trained to output an accurate temporal profile of the optimal command and state trajectory for a point-to-point reach of a non-linear limb model, even when influenced by varying force fields. In a manner that mirrors motor babble, the network can also teach itself to learn through trial and error. Lastly, we demonstrate how this network can learn to optimize a cost objective. This functional approach to motor control is a sharp departure from the standard dynamical approach, and may offer new insights into the neural implementation of motor control. PMID:25852530

  4. Inner structure of capital control networks

    NASA Astrophysics Data System (ADS)

    Battiston, Stefano

    2004-07-01

    We study the topological structure of the network of shareholding relationships in the Italian stock market (MIB) and in two US stock markets (NYSE and NASDAQ). The portfolio diversification and the wealth invested on the market by economical agents have been shown in our previous work to have all a power law behavior. However, a further investigation shows that the inner structure of the capital control network are not at all the same across markets. The shareholding network is a weighted graph, therefore we introduce two quantities analogous to in-degree and out-degree for weighted graphs which measure, respectively: the number of effective shareholders of a stock and the number of companies effectively controlled by a single holder. Combining the information carried by the distributions of these two quantities we are able to extract the backbone of each market and we find that while the MIB splits into several separated groups of interest, the US markets is characterized by very large holders sharing control on overlapping subsets of stocks. This method seems promising for the analysis of the topology of capital control networks in general and not only in the stock market.

  5. REAL TIME CONTROL OF URBAN DRAINAGE NETWORKS

    EPA Science Inventory

    Real-time control (RTC) is a custom-designed, computer-assisted management technology for a specific sewerage network to meet the operational objectives of its collection/conveyance system. RTC can operate in several modes, including a mode that is activated during a wet weather ...

  6. Deep networks for motor control functions.

    PubMed

    Berniker, Max; Kording, Konrad P

    2015-01-01

    The motor system generates time-varying commands to move our limbs and body. Conventional descriptions of motor control and learning rely on dynamical representations of our body's state (forward and inverse models), and control policies that must be integrated forward to generate feedforward time-varying commands; thus these are representations across space, but not time. Here we examine a new approach that directly represents both time-varying commands and the resulting state trajectories with a function; a representation across space and time. Since the output of this function includes time, it necessarily requires more parameters than a typical dynamical model. To avoid the problems of local minima these extra parameters introduce, we exploit recent advances in machine learning to build our function using a stacked autoencoder, or deep network. With initial and target states as inputs, this deep network can be trained to output an accurate temporal profile of the optimal command and state trajectory for a point-to-point reach of a non-linear limb model, even when influenced by varying force fields. In a manner that mirrors motor babble, the network can also teach itself to learn through trial and error. Lastly, we demonstrate how this network can learn to optimize a cost objective. This functional approach to motor control is a sharp departure from the standard dynamical approach, and may offer new insights into the neural implementation of motor control. PMID:25852530

  7. Controlled drug release from hydrogel nanoparticle networks.

    PubMed

    Huang, Gang; Gao, Jun; Hu, Zhibing; St John, John V; Ponder, Bill C; Moro, Dan

    2004-02-10

    Monodisperse nanoparticles of poly-N-isopropylacrylamide-co-allylamine (PNIPAM-co-allylamine) and PNIPAM-co-acrylic acid (PNIPAM-co-AA) were synthesized. The close-packed PNIPAM-co-allylamine and PNIPAM-co-AA nanoparticles were converted to three-dimensional gel networks by covalently crosslinking neighboring particles at room temperature and neutral pH using glutaric dialdehyde and adipic acid dihydrazide, respectively. Controlled release studies were conducted using dextran markers of various molecular weights as model macromolecular drugs. Release was quantified under various physical conditions, including a range of temperatures and dextran molecular weights. Dextran, entrapped in cavities in the nanoparticle network, was released with a rate regulated by their molecular weights and cavity size. No release from a conventional bulk PNIPAM gel, with high crosslinking density, was observed. The rate of release from the PNIPAM-co-allylamine network was temperature-dependent, being much faster at room temperature than that at human body temperature. In contrast, release of low molecular weight dextrans from the PNIPAM-co-AA network showed a temperature-independent release profile. These nanoparticle networks have several advantages over conventional bulk gels for controlling the release of high molecular weight biomolecules. PMID:14744482

  8. Flexible body control using neural networks

    NASA Technical Reports Server (NTRS)

    Mccullough, Claire L.

    1992-01-01

    Progress is reported on the control of Control Structures Interaction suitcase demonstrator (a flexible structure) using neural networks and fuzzy logic. It is concluded that while control by neural nets alone (i.e., allowing the net to design a controller with no human intervention) has yielded less than optimal results, the neural net trained to emulate the existing fuzzy logic controller does produce acceptible system responses for the initial conditions examined. Also, a neural net was found to be very successful in performing the emulation step necessary for the anticipatory fuzzy controller for the CSI suitcase demonstrator. The fuzzy neural hybrid, which exhibits good robustness and noise rejection properties, shows promise as a controller for practical flexible systems, and should be further evaluated.

  9. ICA-based artefact and accelerated fMRI acquisition for improved Resting State Network imaging

    PubMed Central

    Griffanti, Ludovica; Salimi-Khorshidi, Gholamreza; Beckmann, Christian F.; Auerbach, Edward J.; Douaud, Gwenaëlle; Sexton, Claire E.; Zsoldos, Enikő; Ebmeier, Klaus P; Filippini, Nicola; Mackay, Clare E.; Moeller, Steen; Xu, Junqian; Yacoub, Essa; Baselli, Giuseppe; Ugurbil, Kamil; Miller, Karla L.; Smith, Stephen M.

    2014-01-01

    The identification of resting state networks (RSNs) and the quantification of their functional connectivity in resting-state fMRI (rfMRI) are seriously hindered by the presence of artefacts, many of which overlap spatially or spectrally with RSNs. Moreover, recent developments in fMRI acquisition yield data with higher spatial and temporal resolutions, but may increase artefacts both spatially and/or temporally. Hence the correct identification and removal of non-neural fluctuations is crucial, especially in accelerated acquisitions. In this paper we investigate the effectiveness of three data-driven cleaning procedures, compare standard against higher (spatial and temporal) resolution accelerated fMRI acquisitions, and investigate the combined effect of different acquisitions and different cleanup approaches. We applied single-subject independent component analysis (ICA), followed by automatic component classification with FMRIB’s ICA-based X-noiseifier (FIX) to identify artefactual components. We then compared two first-level (within-subject) cleaning approaches for removing those artefacts and motion-related fluctuations from the data. The effectiveness of the cleaning procedures were assessed using timeseries (amplitude and spectra), network matrix and spatial map analyses. For timeseries and network analyses we also tested the effect of a second-level cleaning (informed by group-level analysis). Comparing these approaches, the preferable balance between noise removal and signal loss was achieved by regressing out of the data the full space of motion-related fluctuations and only the unique variance of the artefactual ICA components. Using similar analyses, we also investigated the effects of different cleaning approaches on data from different acquisition sequences. With the optimal cleaning procedures, functional connectivity results from accelerated data were statistically comparable or significantly better than the standard (unaccelerated) acquisition

  10. Studies on controllability of directed networks with extremal optimization

    NASA Astrophysics Data System (ADS)

    Ding, Jin; Lu, Yong-Zai; Chu, Jian

    2013-12-01

    Almost all natural, social and man-made-engineered systems can be represented by a complex network to describe their dynamic behaviors. To make a real-world complex network controllable with its desired topology, the study on network controllability has been one of the most critical and attractive subjects for both network and control communities. In this paper, based on a given directed-weighted network with both state and control nodes, a novel optimization tool with extremal dynamics to generate an optimal network topology with minimum control nodes and complete controllability under Kalman’s rank condition has been developed. The experimental results on a number of popular benchmark networks show the proposed tool is effective to identify the minimum control nodes which are sufficient to guide the whole network’s dynamics and provide the evolution of network topology during the optimization process. We also find the conclusion: “the sparse networks need more control nodes than the dense, and the homogeneous networks need fewer control nodes compared to the heterogeneous” (Liu et al., 2011 [18]), is also applicable to network complete controllability. These findings help us to understand the network dynamics and make a real-world network under the desired control. Moreover, compared with the relevant research results on structural controllability with minimum driver nodes, the proposed solution methodology may also be applied to other constrained network optimization problems beyond complete controllability with minimum control nodes.

  11. Seismic active control by neural networks.

    SciTech Connect

    Tang, Y.

    1998-01-01

    A study on the application of artificial neural networks (ANNs) to activate structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feed-forward neural network architecture and an adaptive back-propagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the back-propagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator's capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  12. Seismic active control by neutral networks

    SciTech Connect

    Tang, Yu

    1995-12-31

    A study on the application of artificial neural networks (ANNs) to active structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feedforward neural network architecture and an adaptive backpropagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the backpropagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator`s capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  13. Networked control of microgrid system of systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Magdi S.; Rahman, Mohamed Saif Ur; AL-Sunni, Fouad M.

    2016-08-01

    The microgrid has made its mark in distributed generation and has attracted widespread research. However, microgrid is a complex system which needs to be viewed from an intelligent system of systems perspective. In this paper, a network control system of systems is designed for the islanded microgrid system consisting of three distributed generation units as three subsystems supplying a load. The controller stabilises the microgrid system in the presence of communication infractions such as packet dropouts and delays. Simulation results are included to elucidate the effectiveness of the proposed control strategy.

  14. Evolution of controllability in interbank networks.

    PubMed

    Delpini, Danilo; Battiston, Stefano; Riccaboni, Massimo; Gabbi, Giampaolo; Pammolli, Fabio; Caldarelli, Guido

    2013-01-01

    The Statistical Physics of Complex Networks has recently provided new theoretical tools for policy makers. Here we extend the notion of network controllability to detect the financial institutions, i.e. the drivers, that are most crucial to the functioning of an interbank market. The system we investigate is a paradigmatic case study for complex networks since it undergoes dramatic structural changes over time and links among nodes can be observed at several time scales. We find a scale-free decay of the fraction of drivers with increasing time resolution, implying that policies have to be adjusted to the time scales in order to be effective. Moreover, drivers are often not the most highly connected "hub" institutions, nor the largest lenders, contrary to the results of other studies. Our findings contribute quantitative indicators which can support regulators in developing more effective supervision and intervention policies. PMID:23568033

  15. Evolution of Controllability in Interbank Networks

    PubMed Central

    Delpini, Danilo; Battiston, Stefano; Riccaboni, Massimo; Gabbi, Giampaolo; Pammolli, Fabio; Caldarelli, Guido

    2013-01-01

    The Statistical Physics of Complex Networks has recently provided new theoretical tools for policy makers. Here we extend the notion of network controllability to detect the financial institutions, i.e. the drivers, that are most crucial to the functioning of an interbank market. The system we investigate is a paradigmatic case study for complex networks since it undergoes dramatic structural changes over time and links among nodes can be observed at several time scales. We find a scale-free decay of the fraction of drivers with increasing time resolution, implying that policies have to be adjusted to the time scales in order to be effective. Moreover, drivers are often not the most highly connected “hub” institutions, nor the largest lenders, contrary to the results of other studies. Our findings contribute quantitative indicators which can support regulators in developing more effective supervision and intervention policies. PMID:23568033

  16. Evolution of Controllability in Interbank Networks

    NASA Astrophysics Data System (ADS)

    Delpini, Danilo; Battiston, Stefano; Riccaboni, Massimo; Gabbi, Giampaolo; Pammolli, Fabio; Caldarelli, Guido

    2013-04-01

    The Statistical Physics of Complex Networks has recently provided new theoretical tools for policy makers. Here we extend the notion of network controllability to detect the financial institutions, i.e. the drivers, that are most crucial to the functioning of an interbank market. The system we investigate is a paradigmatic case study for complex networks since it undergoes dramatic structural changes over time and links among nodes can be observed at several time scales. We find a scale-free decay of the fraction of drivers with increasing time resolution, implying that policies have to be adjusted to the time scales in order to be effective. Moreover, drivers are often not the most highly connected ``hub'' institutions, nor the largest lenders, contrary to the results of other studies. Our findings contribute quantitative indicators which can support regulators in developing more effective supervision and intervention policies.

  17. Neural Networks for Signal Processing and Control

    NASA Astrophysics Data System (ADS)

    Hesselroth, Ted Daniel

    Neural networks are developed for controlling a robot-arm and camera system and for processing images. The networks are based upon computational schemes that may be found in the brain. In the first network, a neural map algorithm is employed to control a five-joint pneumatic robot arm and gripper through feedback from two video cameras. The pneumatically driven robot arm employed shares essential mechanical characteristics with skeletal muscle systems. To control the position of the arm, 200 neurons formed a network representing the three-dimensional workspace embedded in a four-dimensional system of coordinates from the two cameras, and learned a set of pressures corresponding to the end effector positions, as well as a set of Jacobian matrices for interpolating between these positions. Because of the properties of the rubber-tube actuators of the arm, the position as a function of supplied pressure is nonlinear, nonseparable, and exhibits hysteresis. Nevertheless, through the neural network learning algorithm the position could be controlled to an accuracy of about one pixel (~3 mm) after two hundred learning steps. Applications of repeated corrections in each step via the Jacobian matrices leads to a very robust control algorithm since the Jacobians learned by the network have to satisfy the weak requirement that they yield a reduction of the distance between gripper and target. The second network is proposed as a model for the mammalian vision system in which backward connections from the primary visual cortex (V1) to the lateral geniculate nucleus play a key role. The application of hebbian learning to the forward and backward connections causes the formation of receptive fields which are sensitive to edges, bars, and spatial frequencies of preferred orientations. The receptive fields are learned in such a way as to maximize the rate of transfer of information from the LGN to V1. Orientational preferences are organized into a feature map in the primary visual

  18. Optimizing the controllability of arbitrary networks with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Li, Xin-Feng; Lu, Zhe-Ming

    2016-04-01

    Recently, as the controllability of complex networks attracts much attention, how to optimize networks' controllability has become a common and urgent problem. In this paper, we develop an efficient genetic algorithm oriented optimization tool to optimize the controllability of arbitrary networks consisting of both state nodes and control nodes under Popov-Belevitch-Hautus rank condition. The experimental results on a number of benchmark networks show the effectiveness of this method and the evolution of network topology is captured. Furthermore, we explore how network structure affects its controllability and find that the sparser a network is, the more control nodes are needed to control it and the larger the differences between node degrees, the more control nodes are needed to achieve the full control. Our framework provides an alternative to controllability optimization and can be applied to arbitrary networks without any limitations.

  19. Center of Mass Acceleration Feedback Control of Functional Neuromuscular Stimulation for Standing in the Presence of Internal Postural Perturbations

    PubMed Central

    Audu, Musa L.; Triolo, Ronald J.

    2013-01-01

    This study determined the feasibility and performance of center of mass (COM) acceleration feedback control of a neuroprosthesis utilizing functional neuromuscular stimulation (FNS) to restore standing balance to a single subject paralyzed by a motor and sensory complete, thoracic-level spinal cord injury (SCI). An artificial neural network (ANN) was created to map gain-modulated changes in total body COM acceleration estimated from body-mounted sensors to optimal changes in stimulation required to maintain standing. Feedback gains were systematically tuned to minimize the upper extremity (UE) loads applied by the subject to an instrumented support device during internally generated postural perturbations produced by volitional reaching and object manipulation. Total body COM acceleration was accurately estimated (> 90% variance explained) from two three-dimensional (3-D) accelerometers mounted on the pelvis and torso. Compared to constant muscle stimulation employed clinically, COM acceleration feedback control of stimulation improved standing performance by reducing the UE loading required to resist internal postural disturbances by 27%. This case study suggests that COM acceleration feedback could potentially be advantageous in a standing neuroprosthesis since it can be implemented with only a few feedback parameters and requires minimal instrumentation for comprehensive, 3-D control of dynamic standing function. PMID:23299260

  20. Parallel processing data network of master and slave transputers controlled by a serial control network

    DOEpatents

    Crosetto, D.B.

    1996-12-31

    The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor to a plurality of slave processors to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor`s status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer, a digital signal processor, a parallel transfer controller, and two three-port memory devices. A communication switch within each node connects it to a fast parallel hardware channel through which all high density data arrives or leaves the node. 6 figs.

  1. Parallel processing data network of master and slave transputers controlled by a serial control network

    DOEpatents

    Crosetto, Dario B.

    1996-01-01

    The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor (100) to a plurality of slave processors (200) to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor's status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer (104), a digital signal processor (114), a parallel transfer controller (106), and two three-port memory devices. A communication switch (108) within each node (100) connects it to a fast parallel hardware channel (70) through which all high density data arrives or leaves the node.

  2. Synchrony and Control of Neuronal Networks.

    NASA Astrophysics Data System (ADS)

    Schiff, Steven

    2001-03-01

    Cooperative behavior in the brain stems from the nature and strength of the interactions between neurons within a networked ensemble. Normal network activity takes place in a state of partial synchrony between neurons, and some pathological behaviors, such as epilepsy and tremor, appear to share a common feature of increased interaction strength. We have focused on the parallel paths of both detecting and characterizing the nonlinear synchronization present within neuronal networks, and employing feedback control methodology using electrical fields to modulate that neuronal activity. From a theoretical perspective, we see evidence for nonlinear generalized synchrony in networks of neurons that linear techniques are incapable of detecting (PRE 54: 6708, 1996), and we have described a decoherence transition between asymmetric nonlinear systems that is experimentally observable (PRL 84: 1689, 2000). In addition, we have seen evidence for unstable dimension variability in real neuronal systems that indicates certain physical limits of modelability when observing such systems (PRL 85, 2490, 2000). From an experimental perspective, we have achieved success in modulating epileptic seizures in neuronal networks using electrical fields. Extracellular neuronal activity is continuously recorded during field application through differential extracellular recording techniques, and the applied electric field strength is continuously updated using a computer controlled proportional feedback algorithm. This approach appears capable of sustained amelioration of seizure events when used with negative feedback. In negative feedback mode, such findings may offer a novel technology for seizure control. In positive feedback mode, adaptively applied electric fields may offer a more physiological means for neural modulation for prosthetic purposes than previously possible (J. Neuroscience, 2001).

  3. Dynamic congestion control mechanisms for MPLS networks

    NASA Astrophysics Data System (ADS)

    Holness, Felicia; Phillips, Chris I.

    2001-02-01

    Considerable interest has arisen in congestion control through traffic engineering from the knowledge that although sensible provisioning of the network infrastructure is needed, together with sufficient underlying capacity, these are not sufficient to deliver the Quality of Service required for new applications. This is due to dynamic variations in load. In operational Internet Protocol (IP) networks, it has been difficult to incorporate effective traffic engineering due to the limited capabilities of the IP technology. In principle, Multiprotocol Label Switching (MPLS), which is a connection-oriented label swapping technology, offers new possibilities in addressing the limitations by allowing the operator to use sophisticated traffic control mechanisms. This paper presents a novel scheme to dynamically manage traffic flows through the network by re-balancing streams during periods of congestion. It proposes management-based algorithms that will allow label switched routers within the network to utilize mechanisms within MPLS to indicate when flows are starting to experience frame/packet loss and then to react accordingly. Based upon knowledge of the customer's Service Level Agreement, together with instantaneous flow information, the label edge routers can then instigate changes to the LSP route and circumvent congestion that would hitherto violate the customer contacts.

  4. Accelerate!

    PubMed

    Kotter, John P

    2012-11-01

    The old ways of setting and implementing strategy are failing us, writes the author of Leading Change, in part because we can no longer keep up with the pace of change. Organizational leaders are torn between trying to stay ahead of increasingly fierce competition and needing to deliver this year's results. Although traditional hierarchies and managerial processes--the components of a company's "operating system"--can meet the daily demands of running an enterprise, they are rarely equipped to identify important hazards quickly, formulate creative strategic initiatives nimbly, and implement them speedily. The solution Kotter offers is a second system--an agile, networklike structure--that operates in concert with the first to create a dual operating system. In such a system the hierarchy can hand off the pursuit of big strategic initiatives to the strategy network, freeing itself to focus on incremental changes to improve efficiency. The network is populated by employees from all levels of the organization, giving it organizational knowledge, relationships, credibility, and influence. It can Liberate information from silos with ease. It has a dynamic structure free of bureaucratic layers, permitting a level of individualism, creativity, and innovation beyond the reach of any hierarchy. The network's core is a guiding coalition that represents each level and department in the hierarchy, with a broad range of skills. Its drivers are members of a "volunteer army" who are energized by and committed to the coalition's vividly formulated, high-stakes vision and strategy. Kotter has helped eight organizations, public and private, build dual operating systems over the past three years. He predicts that such systems will lead to long-term success in the 21st century--for shareholders, customers, employees, and companies themselves. PMID:23155997

  5. Parietal network underlying movement control: disturbances during subcortical electrostimulation.

    PubMed

    Almairac, Fabien; Herbet, Guillaume; Moritz-Gasser, Sylvie; Duffau, Hugues

    2014-07-01

    Our understanding of brain movement control has changed over the last two decades. Recent findings in the monkey and in humans have led to a parallel and interconnected network. Nevertheless, little is known about these networks. Here, we present two cases of patients with a parietal low-grade glioma. They underwent surgery under local anesthesia with cortical and subcortical mapping. For patient 1, subcortical electrostimulation immediately posterior to thalamocortical fibers induced movement disorders, with an inhibition of leg and arm movements medially and, more laterally, an acceleration of arm movement. For patient 2, electrostimulation of white matter immediately posterior to thalamocortical fibers induced an inhibition of both arm movement. It means that the detected fibers in the parietal lobe may be involved in the motor control modulation. They are distributed veil-like immediately posterior to thalamocortical pathways and could correspond to a fronto-parietal movement control subnetwork. These two cases highlight the major role of the subcortical connectivity in movement regulation, involving parietal lobe, thus the necessity to be identified and preserved during brain surgery. PMID:24526369

  6. Crosstalk between pathways enhances the controllability of signalling networks.

    PubMed

    Wang, Dingjie; Jin, Suoqin; Zou, Xiufen

    2016-02-01

    The control of complex networks is one of the most challenging problems in the fields of biology and engineering. In this study, the authors explored the controllability and control energy of several signalling networks, which consisted of many interconnected pathways, including networks with a bow-tie architecture. On the basis of the theory of structure controllability, they revealed that biological mechanisms, such as cross-pathway interactions, compartmentalisation and so on make the networks easier to fully control. Furthermore, using numerical simulations for two realistic examples, they demonstrated that the control energy of normal networks with crosstalk is lower than in networks without crosstalk. These results indicate that the biological networks are optimally designed to achieve their normal functions from the viewpoint of the control theory. The authors' work provides a comprehensive understanding of the impact of network structures and properties on controllability. PMID:26816393

  7. Cooperative wireless network control based health and activity monitoring system.

    PubMed

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication. PMID:27562484

  8. A Shot Parameter Specification Subsystem for automated control of PBFA (Particle Beam Fusion Accelerator) II accelerator shots

    SciTech Connect

    Spiller, J.L.

    1987-01-01

    The Shot Parameter Specification Subsystem (SPSS) is an integral part of the automatic control system developed for the Particle Beam Fusion Accelerator II (PBFA II) by the Control Monitor (C/M) Software Development Team. This system has been designed to fully utilize the accelerator by tailoring shot parameters to the needs of the experimenters. The SPSS is the key to this flexibility. Automatic systems will be required on many pulsed power machines for the fastest turnaround, the highest reliability, and most cost effective operation. These systems will require the flexibility and the ease of use that is part of the SPSS. The PBFA II control system has proved to be an effective modular system, flexible enough to meet the demands of both the fast track construction of PBFA II and the control needs of Hermes III at the Simulation Technology Laboratory. This system is expected to meet the demands of most future machine changes.

  9. Advantages and safety features using foundation fieldbus-H1 based instrumentation & control for cryo system in accelerators

    NASA Astrophysics Data System (ADS)

    Kaushik, S.; Haneef, K. K. M.; Jayaram, M. N.; Lalsare, D. K.

    2008-05-01

    Large accelerator programme instrumentation and control for monitoring of large no. of parameters for cryogenic/cooling system. The parameters are Cryo Temperature, Vacuum, He Level and He flow etc. The circumference of the accelerator may vary up to several kilometers. Large size accelerators require huge cabling and hardware. The use of foundation fieldbus based Transmitters for measurement and Control valves field positioners for cryo system shall reduce the cabling, hardware, maintenance and enhance data processing and interoperability. Safety is an important requirement for efficient, trouble free and safe operation of any process industry such as cryo used in accelerators. Instrumentation and Control systems can be developed using Foundation Field Bus. The safety features in foundation field bus system can be achieved by use of intrinsic safe devices, fail safe configuration, minimize the hazard by distribution of control function blocks, short circuit preventers. Apart from above features, the significant cable reduction in the fieldbus system reduces the hazard due to electrical cable fire, which is considered one of the major risk in industry. Further the reliability in fieldbus can be improved by hot stand-by redundant power supply, hot stand-by redundant CPU, hot stand-by redundant network capability and use of link active scheduler.

  10. Neural networks as a control methodology

    NASA Technical Reports Server (NTRS)

    Mccullough, Claire L.

    1990-01-01

    While conventional computers must be programmed in a logical fashion by a person who thoroughly understands the task to be performed, the motivation behind neural networks is to develop machines which can train themselves to perform tasks, using available information about desired system behavior and learning from experience. There are three goals of this fellowship program: (1) to evaluate various neural net methods and generate computer software to implement those deemed most promising on a personal computer equipped with Matlab; (2) to evaluate methods currently in the professional literature for system control using neural nets to choose those most applicable to control of flexible structures; and (3) to apply the control strategies chosen in (2) to a computer simulation of a test article, the Control Structures Interaction Suitcase Demonstrator, which is a portable system consisting of a small flexible beam driven by a torque motor and mounted on springs tuned to the first flexible mode of the beam. Results of each are discussed.

  11. Microturbine control based on fuzzy neural network

    NASA Astrophysics Data System (ADS)

    Yan, Shijie; Bian, Chunyuan; Wang, Zhiqiang

    2006-11-01

    As microturbine generator (MTG) is a clean, efficient, low cost and reliable energy supply system. From outside characteristics of MTG, it is multi-variable, time-varying and coupling system, so it is difficult to be identified on-line and conventional control law adopted before cannot achieve desirable result. A novel fuzzy-neural networks (FNN) control algorithm was proposed in combining with the conventional PID control. In the paper, IF-THEN rules for tuning were applied by a first-order Sugeno fuzzy model with seven fuzzy rules and the membership function was given as the continuous GAUSSIAN function. Some sample data were utilized to train FNN. Through adjusting shape of membership function and weight continually, objective of auto-tuning fuzzy-rules can be achieved. The FNN algorithm had been applied to "100kW Microturbine control and power converter system". The results of simulation and experiment are shown that the algorithm can work very well.

  12. Measurement of performance using acceleration control and pulse control in simulated spacecraft docking operations

    NASA Technical Reports Server (NTRS)

    Brody, Adam R.; Ellis, Stephen R.

    1992-01-01

    Nine commercial airline pilots served as test subjects in a study to compare acceleration control with pulse control in simulated spacecraft maneuvers. Simulated remote dockings of an orbital maneuvering vehicle (OMV) to a space station were initiated from 50, 100, and 150 meters along the station's -V-bar (minus velocity vector). All unsuccessful missions were reflown. Five way mixed analysis of variance (ANOVA) with one between factor, first mode, and four within factors (mode, bloch, range, and trial) were performed on the data. Recorded performance measures included mission duration and fuel consumption along each of the three coordinate axes. Mission duration was lower with pulse mode, while delta V (fuel consumption) was lower with acceleration mode. Subjects used more fuel to travel faster with pulse mode than with acceleration mode. Mission duration, delta V, X delta V, Y delta V., and Z delta V all increased with range. Subjects commanded the OMV to 'fly' at faster rates from further distances. These higher average velocities were paid for with increased fuel consumption. Asymmetrical transfer was found in that the mode transitions could not be predicted solely from the mission duration main effect. More testing is advised to understand the manual control aspects of spaceflight maneuvers better.

  13. Comprehensive Control of Networked Control Systems with Multistep Delay

    PubMed Central

    Jiang, Jie

    2014-01-01

    In networked control systems with multi-step delay, long time-delay causes vacant sampling and controller design difficulty. In order to solve the above problems, comprehensive control methods are proposed in this paper. Time-delay compensation control and linear-quadratic-Guassian (LQG) optimal control are adopted and the systems switch different controllers between two different states. LQG optimal controller is used with probability 1 − α in normal state, which is shown to render the systems mean square exponentially stable. Time-delay compensation controller is used with probability α in abnormal state to compensate vacant sampling and long time-delay. In addition, a buffer window is established at the actuator of the systems to store some history control inputs which are used to estimate the control state of present sampling period under the vacant sampling cases. The comprehensive control methods simplify control design which is easier to be implemented in engineering. The performance of the systems is also improved. Simulation results verify the validity of the proposed theory. PMID:25101322

  14. Feasibility of Using Neural Network Models to Accelerate the Testing of Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1998-01-01

    Verification testing is an important aspect of the design process for mechanical mechanisms, and full-scale, full-length life testing is typically used to qualify any new component for use in space. However, as the required life specification is increased, full-length life tests become more costly and lengthen the development time. At the NASA Lewis Research Center, we theorized that neural network systems may be able to model the operation of a mechanical device. If so, the resulting neural network models could simulate long-term mechanical testing with data from a short-term test. This combination of computer modeling and short-term mechanical testing could then be used to verify the reliability of mechanical systems, thereby eliminating the costs associated with long-term testing. Neural network models could also enable designers to predict the performance of mechanisms at the conceptual design stage by entering the critical parameters as input and running the model to predict performance. The purpose of this study was to assess the potential of using neural networks to predict the performance and life of mechanical systems. To do this, we generated a neural network system to model wear obtained from three accelerated testing devices: 1) A pin-on-disk tribometer; 2) A line-contact rub-shoe tribometer; 3) A four-ball tribometer.

  15. Neural networks for LED color control

    NASA Astrophysics Data System (ADS)

    Ashdown, Ian E.

    2004-01-01

    The design and implementation of an architectural dimming control for multicolor LED-based lighting fixtures is complicated by the need to maintain a consistent color balance under a wide variety of operating conditions. Factors to consider include nonlinear relationships between luminous flux intensity and drive current, junction temperature dependencies, LED manufacturing tolerances and binning parameters, device aging characteristics, variations in color sensor spectral responsitivities, and the approximations introduced by linear color space models. In this paper we formulate this problem as a nonlinear multidimensional function, where maintaining a consistent color balance is equivalent to determining the hyperplane representing constant chromaticity. To be useful for an architectural dimming control design, this determination must be made in real time as the lighting fixture intensity is adjusted. Further, the LED drive current must be continuously adjusted in response to color sensor inputs to maintain constant chromaticity for a given intensity setting. Neural networks are known to be universal approximators capable of representing any continuously differentiable bounded function. We therefore use a radial basis function neural network to represent the multidimensional function and provide the feedback signals needed to maintain constant chromaticity. The network can be trained on the factory floor using individual device measurements such as spectral radiant intensity and color sensor characteristics. This provides a flexible solution that is mostly independent of LED manufacturing tolerances and binning parameters.

  16. Towards structural controllability of local-world networks

    NASA Astrophysics Data System (ADS)

    Sun, Shiwen; Ma, Yilin; Wu, Yafang; Wang, Li; Xia, Chengyi

    2016-05-01

    Controlling complex networks is of vital importance in science and engineering. Meanwhile, local-world effect is an important ingredient which should be taken into consideration in the complete description of real-world complex systems. In this letter, structural controllability of a class of local-world networks is investigated. Through extensive numerical simulations, firstly, effects of local world size M and network size N on structural controllability are examined. For local-world networks with sparse topological configuration, compared to network size, local-world size can induce stronger influence on controllability, however, for dense networks, controllability is greatly affected by network size and local-world effect can be neglected. Secondly, relationships between controllability and topological properties are analyzed. Lastly, the robustness of local-world networks under targeted attacks regarding structural controllability is discussed. These results can help to deepen the understanding of structural complexity and connectivity patterns of complex systems.

  17. Efficient Access Control in Multimedia Social Networks

    NASA Astrophysics Data System (ADS)

    Sachan, Amit; Emmanuel, Sabu

    Multimedia social networks (MMSNs) have provided a convenient way to share multimedia contents such as images, videos, blogs, etc. Contents shared by a person can be easily accessed by anybody else over the Internet. However, due to various privacy, security, and legal concerns people often want to selectively share the contents only with their friends, family, colleagues, etc. Access control mechanisms play an important role in this situation. With access control mechanisms one can decide the persons who can access a shared content and who cannot. But continuously growing content uploads and accesses, fine grained access control requirements (e.g. different access control parameters for different parts in a picture), and specific access control requirements for multimedia contents can make the time complexity of access control to be very large. So, it is important to study an efficient access control mechanism suitable for MMSNs. In this chapter we present an efficient bit-vector transform based access control mechanism for MMSNs. The proposed approach is also compatible with other requirements of MMSNs, such as access rights modification, content deletion, etc. Mathematical analysis and experimental results show the effectiveness and efficiency of our proposed approach.

  18. The 1982 control network of Mars

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Katayama, F. Y.

    1983-01-01

    Attention is given to a planet-wide control network of Mars that was computed in September 1982 using a large single-block analytical triangulation with 47,524 measurements of 6853 control points on 1054 Mariner 9 and 757 Viking pictures. In all, 19,139 normal equations were solved, with a resulting standard error of measurement of 18.06 microns. The control points identified by name and letter designation are given, as are the aerographic coordinates of the control points. In addition, the coordinates of the Viking I lander site are given: latitude, 22.480 deg; longitude, 47.962 deg (radius, 3389.32 km). This study expands and updates the previously published network (1978). It is noted that the computation differs in many respects from standard aerial mapping photogrammetric practice. In comparison with aerial mapping photography, the television formats are small and the focal lengths are long; stereo coverage is rare, the scale of the pictures varies greatly, and the residual camera distortions are large.

  19. A comprehensive Network Security Risk Model for process control networks.

    PubMed

    Henry, Matthew H; Haimes, Yacov Y

    2009-02-01

    The risk of cyber attacks on process control networks (PCN) is receiving significant attention due to the potentially catastrophic extent to which PCN failures can damage the infrastructures and commodity flows that they support. Risk management addresses the coupled problems of (1) reducing the likelihood that cyber attacks would succeed in disrupting PCN operation and (2) reducing the severity of consequences in the event of PCN failure or manipulation. The Network Security Risk Model (NSRM) developed in this article provides a means of evaluating the efficacy of candidate risk management policies by modeling the baseline risk and assessing expectations of risk after the implementation of candidate measures. Where existing risk models fall short of providing adequate insight into the efficacy of candidate risk management policies due to shortcomings in their structure or formulation, the NSRM provides model structure and an associated modeling methodology that captures the relevant dynamics of cyber attacks on PCN for risk analysis. This article develops the NSRM in detail in the context of an illustrative example. PMID:19000078

  20. A Heading and Flight-Path Angle Control of Aircraft Based on Required Acceleration Vector

    NASA Astrophysics Data System (ADS)

    Yoshitani, Naoharu

    This paper describes a control of heading and flight-path angles of aircraft to time-varying command angles. The controller first calculates an acceleration command vector (acV), which is vertical to the velocity vector. acV consists of two components; the one is feedforward acceleration obtained from the rates of command angles, and the other is feedback acceleration obtained from angle deviations by using PID control law. A bank angle command around the velocity vector and commands of pitch and yaw rates are then obtained to generate the required acceleration. A roll rate command is calculated from bank angle deviation. Roll, pitch and yaw rate commands are put into the attitude controller, which can be composed of any suitable control laws such as PID control. The control requires neither aerodynamic coefficients nor online calculation of the inverse dynamics of the aircraft. A numerical simulation illustrates the effects of the control.

  1. Accelerated intoxication of GABAergic synapses by botulinum neurotoxin A disinhibits stem cell-derived neuron networks prior to network silencing

    PubMed Central

    Beske, Phillip H.; Scheeler, Stephen M.; Adler, Michael; McNutt, Patrick M.

    2015-01-01

    Botulinum neurotoxins (BoNTs) are extremely potent toxins that specifically cleave SNARE proteins in peripheral synapses, preventing neurotransmitter release. Neuronal responses to BoNT intoxication are traditionally studied by quantifying SNARE protein cleavage in vitro or monitoring physiological paralysis in vivo. Consequently, the dynamic effects of intoxication on synaptic behaviors are not well-understood. We have reported that mouse embryonic stem cell-derived neurons (ESNs) are highly sensitive to BoNT based on molecular readouts of intoxication. Here we study the time-dependent changes in synapse- and network-level behaviors following addition of BoNT/A to spontaneously active networks of glutamatergic and GABAergic ESNs. Whole-cell patch-clamp recordings indicated that BoNT/A rapidly blocked synaptic neurotransmission, confirming that ESNs replicate the functional pathophysiology responsible for clinical botulism. Quantitation of spontaneous neurotransmission in pharmacologically isolated synapses revealed accelerated silencing of GABAergic synapses compared to glutamatergic synapses, which was consistent with the selective accumulation of cleaved SNAP-25 at GAD1+ pre-synaptic terminals at early timepoints. Different latencies of intoxication resulted in complex network responses to BoNT/A addition, involving rapid disinhibition of stochastic firing followed by network silencing. Synaptic activity was found to be highly sensitive to SNAP-25 cleavage, reflecting the functional consequences of the localized cleavage of the small subpopulation of SNAP-25 that is engaged in neurotransmitter release in the nerve terminal. Collectively these findings illustrate that use of synaptic function assays in networked neurons cultures offers a novel and highly sensitive approach for mechanistic studies of toxin:neuron interactions and synaptic responses to BoNT. PMID:25954159

  2. Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations.

    PubMed

    Gokmen, Tayfun; Vlasov, Yurii

    2016-01-01

    In recent years, deep neural networks (DNN) have demonstrated significant business impact in large scale analysis and classification tasks such as speech recognition, visual object detection, pattern extraction, etc. Training of large DNNs, however, is universally considered as time consuming and computationally intensive task that demands datacenter-scale computational resources recruited for many days. Here we propose a concept of resistive processing unit (RPU) devices that can potentially accelerate DNN training by orders of magnitude while using much less power. The proposed RPU device can store and update the weight values locally thus minimizing data movement during training and allowing to fully exploit the locality and the parallelism of the training algorithm. We evaluate the effect of various RPU device features/non-idealities and system parameters on performance in order to derive the device and system level specifications for implementation of an accelerator chip for DNN training in a realistic CMOS-compatible technology. For large DNNs with about 1 billion weights this massively parallel RPU architecture can achieve acceleration factors of 30, 000 × compared to state-of-the-art microprocessors while providing power efficiency of 84, 000 GigaOps∕s∕W. Problems that currently require days of training on a datacenter-size cluster with thousands of machines can be addressed within hours on a single RPU accelerator. A system consisting of a cluster of RPU accelerators will be able to tackle Big Data problems with trillions of parameters that is impossible to address today like, for example, natural speech recognition and translation between all world languages, real-time analytics on large streams of business and scientific data, integration, and analysis of multimodal sensory data flows from a massive number of IoT (Internet of Things) sensors. PMID:27493624

  3. Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations

    PubMed Central

    Gokmen, Tayfun; Vlasov, Yurii

    2016-01-01

    In recent years, deep neural networks (DNN) have demonstrated significant business impact in large scale analysis and classification tasks such as speech recognition, visual object detection, pattern extraction, etc. Training of large DNNs, however, is universally considered as time consuming and computationally intensive task that demands datacenter-scale computational resources recruited for many days. Here we propose a concept of resistive processing unit (RPU) devices that can potentially accelerate DNN training by orders of magnitude while using much less power. The proposed RPU device can store and update the weight values locally thus minimizing data movement during training and allowing to fully exploit the locality and the parallelism of the training algorithm. We evaluate the effect of various RPU device features/non-idealities and system parameters on performance in order to derive the device and system level specifications for implementation of an accelerator chip for DNN training in a realistic CMOS-compatible technology. For large DNNs with about 1 billion weights this massively parallel RPU architecture can achieve acceleration factors of 30, 000 × compared to state-of-the-art microprocessors while providing power efficiency of 84, 000 GigaOps∕s∕W. Problems that currently require days of training on a datacenter-size cluster with thousands of machines can be addressed within hours on a single RPU accelerator. A system consisting of a cluster of RPU accelerators will be able to tackle Big Data problems with trillions of parameters that is impossible to address today like, for example, natural speech recognition and translation between all world languages, real-time analytics on large streams of business and scientific data, integration, and analysis of multimodal sensory data flows from a massive number of IoT (Internet of Things) sensors. PMID:27493624

  4. GPU technology as a platform for accelerating physiological systems modeling based on Laguerre-Volterra networks.

    PubMed

    Papadopoulos, Agathoklis; Kostoglou, Kyriaki; Mitsis, Georgios D; Theocharides, Theocharis

    2015-01-01

    The use of a GPGPU programming paradigm (running CUDA-enabled algorithms on GPU cards) in biomedical engineering and biology-related applications have shown promising results. GPU acceleration can be used to speedup computation-intensive models, such as the mathematical modeling of biological systems, which often requires the use of nonlinear modeling approaches with a large number of free parameters. In this context, we developed a CUDA-enabled version of a model which implements a nonlinear identification approach that combines basis expansions and polynomial-type networks, termed Laguerre-Volterra networks and can be used in diverse biological applications. The proposed software implementation uses the GPGPU programming paradigm to take advantage of the inherent parallel characteristics of the aforementioned modeling approach to execute the calculations on the GPU card of the host computer system. The initial results of the GPU-based model presented in this work, show performance improvements over the original MATLAB model. PMID:26736993

  5. Practical synchronization on complex dynamical networks via optimal pinning control.

    PubMed

    Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu

    2015-07-01

    We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications. PMID:26274112

  6. Neural network-based finite horizon stochastic optimal control design for nonlinear networked control systems.

    PubMed

    Xu, Hao; Jagannathan, Sarangapani

    2015-03-01

    The stochastic optimal control of nonlinear networked control systems (NNCSs) using neuro-dynamic programming (NDP) over a finite time horizon is a challenging problem due to terminal constraints, system uncertainties, and unknown network imperfections, such as network-induced delays and packet losses. Since the traditional iteration or time-based infinite horizon NDP schemes are unsuitable for NNCS with terminal constraints, a novel time-based NDP scheme is developed to solve finite horizon optimal control of NNCS by mitigating the above-mentioned challenges. First, an online neural network (NN) identifier is introduced to approximate the control coefficient matrix that is subsequently utilized in conjunction with the critic and actor NNs to determine a time-based stochastic optimal control input over finite horizon in a forward-in-time and online manner. Eventually, Lyapunov theory is used to show that all closed-loop signals and NN weights are uniformly ultimately bounded with ultimate bounds being a function of initial conditions and final time. Moreover, the approximated control input converges close to optimal value within finite time. The simulation results are included to show the effectiveness of the proposed scheme. PMID:25720004

  7. UGV: security analysis of subsystem control network

    NASA Astrophysics Data System (ADS)

    Abbott-McCune, Sam; Kobezak, Philip; Tront, Joseph; Marchany, Randy; Wicks, Al

    2013-05-01

    Unmanned Ground vehicles (UGVs) are becoming prolific in the heterogeneous superset of robotic platforms. The sensors which provide odometry, localization, perception, and vehicle diagnostics are fused to give the robotic platform a sense of the environment it is traversing. The automotive industry CAN bus has dominated the industry due to the fault tolerance and the message structure allowing high priority messages to reach the desired node in a real time environment. UGVs are being researched and produced at an accelerated rate to preform arduous, repetitive, and dangerous missions that are associated with a military action in a protracted conflict. The technology and applications of the research will inevitably be turned into dual-use platforms to aid civil agencies in the performance of their various operations. Our motivation is security of the holistic system; however as subsystems are outsourced in the design, the overall security of the system may be diminished. We will focus on the CAN bus topology and the vulnerabilities introduced in UGVs and recognizable security vulnerabilities that are inherent in the communications architecture. We will show how data can be extracted from an add-on CAN bus that can be customized to monitor subsystems. The information can be altered or spoofed to force the vehicle to exhibit unwanted actions or render the UGV unusable for the designed mission. The military relies heavily on technology to maintain information dominance, and the security of the information introduced onto the network by UGVs must be safeguarded from vulnerabilities that can be exploited.

  8. Deep Space Network Antenna Logic Controller

    NASA Technical Reports Server (NTRS)

    Ahlstrom, Harlow; Morgan, Scott; Hames, Peter; Strain, Martha; Owen, Christopher; Shimizu, Kenneth; Wilson, Karen; Shaller, David; Doktomomtaz, Said; Leung, Patrick

    2007-01-01

    The Antenna Logic Controller (ALC) software controls and monitors the motion control equipment of the 4,000-metric-ton structure of the Deep Space Network 70-meter antenna. This program coordinates the control of 42 hydraulic pumps, while monitoring several interlocks for personnel and equipment safety. Remote operation of the ALC runs via the Antenna Monitor & Control (AMC) computer, which orchestrates the tracking functions of the entire antenna. This software provides a graphical user interface for local control, monitoring, and identification of faults as well as, at a high level, providing for the digital control of the axis brakes so that the servo of the AMC may control the motion of the antenna. Specific functions of the ALC also include routines for startup in cold weather, controlled shutdown for both normal and fault situations, and pump switching on failure. The increased monitoring, the ability to trend key performance characteristics, the improved fault detection and recovery, the centralization of all control at a single panel, and the simplification of the user interface have all reduced the required workforce to run 70-meter antennas. The ALC also increases the antenna availability by reducing the time required to start up the antenna, to diagnose faults, and by providing additional insight into the performance of key parameters that aid in preventive maintenance to avoid key element failure. The ALC User Display (AUD) is a graphical user interface with hierarchical display structure, which provides high-level status information to the operation of the ALC, as well as detailed information for virtually all aspects of the ALC via drill-down displays. The operational status of an item, be it a function or assembly, is shown in the higher-level display. By pressing the item on the display screen, a new screen opens to show more detail of the function/assembly. Navigation tools and the map button allow immediate access to all screens.

  9. Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages

    DOEpatents

    Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph

    2014-05-13

    Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.

  10. Percolating plasmonic networks for light emission control.

    PubMed

    Gaio, Michele; Castro-Lopez, Marta; Renger, Jan; van Hulst, Niek; Sapienza, Riccardo

    2015-01-01

    Optical nanoantennas have revolutionised the way we manipulate single photons emitted by individual light sources in a nanostructured photonic environment. Complex plasmonic architectures allow for multiscale light control by shortening or stretching the light wavelength for a fixed operating frequency, meeting the size of the emitter and that of propagating modes. Here, we study self-assembled semi-continuous gold films and lithographic gold networks characterised by large local density of optical state (LDOS) fluctuations around the electrical percolation threshold, a regime where the surface is characterised by large metal clusters with fractal topology. We study the formation of plasmonic networks and their effect on light emission from embedded fluorescent probes in these systems. Through fluorescence dynamics experiments we discuss the role of global long-range interactions linked to the degree of percolation and to the network fractality, as well as the local near-field contributions coming from the local electro-magnetic fields and the topology. Our experiments indicate that local properties dominate the fluorescence modification. PMID:25711923

  11. Criteria for stochastic pinning control of networks of chaotic maps

    SciTech Connect

    Mwaffo, Violet; Porfiri, Maurizio; DeLellis, Pietro

    2014-03-15

    This paper investigates the controllability of discrete-time networks of coupled chaotic maps through stochastic pinning. In this control scheme, the network dynamics are steered towards a desired trajectory through a feedback control input that is applied stochastically to the network nodes. The network controllability is studied by analyzing the local mean square stability of the error dynamics with respect to the desired trajectory. Through the analysis of the spectral properties of salient matrices, a toolbox of conditions for controllability are obtained, in terms of the dynamics of the individual maps, algebraic properties of the network, and the probability distribution of the pinning control. We demonstrate the use of these conditions in the design of a stochastic pinning control strategy for networks of Chirikov standard maps. To elucidate the applicability of the approach, we consider different network topologies and compare five different stochastic pinning strategies through extensive numerical simulations.

  12. Energy shaping non-linear acceleration control for a pendulum-type mobility and experimental verification

    NASA Astrophysics Data System (ADS)

    Yokoyama, Kazuto; Takahashi, Masaki

    2015-02-01

    A dynamics-based non-linear controller with energy shaping to accelerate a pendulum-type mobility is proposed. The concept of this study is to control translational acceleration of the vehicle in a dynamically reasonable manner. The body angle is controlled to maintain a reference state where the vehicle is statically unstable but dynamically stable, which leads to a constant translational acceleration due to instability of the system. The accelerating motion is like a sprinter moving from crouch start and it fully exploits dynamics of the vehicle. To achieve it, the total energy of the system is shaped to have the minimum at a given reference state and the system is controlled to converge to it. The controller can achieve various properties through the energy shaping procedure. Especially, an energy function that will lead to safe operation of the vehicle is proposed. The effectiveness of the controller is verified in simulations and experiments.

  13. Specificity and robustness in transcription control networks.

    PubMed

    Sengupta, Anirvan M; Djordjevic, Marko; Shraiman, Boris I

    2002-02-19

    Recognition by transcription factors of the regulatory DNA elements upstream of genes is the fundamental step in controlling gene expression. How does the necessity to provide stability with respect to mutation constrain the organization of transcription control networks? We examine the mutation load of a transcription factor interacting with a set of n regulatory response elements as a function of the factor/DNA binding specificity and conclude on theoretical grounds that the optimal specificity decreases with n. The predicted correlation between variability of binding sites (for a given transcription factor) and their number is supported by the genomic data for Escherichia coli. The analysis of E. coli genomic data was carried out using an algorithm suggested by the biophysical model of transcription factor/DNA binding. Complete results of the search for candidate transcription factor binding sites are available at http://www.physics.rockefeller.edu/~boris/public/search_ecoli. PMID:11854503

  14. Network-based production quality control

    NASA Astrophysics Data System (ADS)

    Kwon, Yongjin; Tseng, Bill; Chiou, Richard

    2007-09-01

    This study investigates the feasibility of remote quality control using a host of advanced automation equipment with Internet accessibility. Recent emphasis on product quality and reduction of waste stems from the dynamic, globalized and customer-driven market, which brings opportunities and threats to companies, depending on the response speed and production strategies. The current trends in industry also include a wide spread of distributed manufacturing systems, where design, production, and management facilities are geographically dispersed. This situation mandates not only the accessibility to remotely located production equipment for monitoring and control, but efficient means of responding to changing environment to counter process variations and diverse customer demands. To compete under such an environment, companies are striving to achieve 100%, sensor-based, automated inspection for zero-defect manufacturing. In this study, the Internet-based quality control scheme is referred to as "E-Quality for Manufacturing" or "EQM" for short. By its definition, EQM refers to a holistic approach to design and to embed efficient quality control functions in the context of network integrated manufacturing systems. Such system let designers located far away from the production facility to monitor, control and adjust the quality inspection processes as production design evolves.

  15. Nonlinear Dynamics and Control in Microfluidic Networks

    NASA Astrophysics Data System (ADS)

    Case, Daniel; Angilella, Jean-Regis; Motter, Adilson

    2015-03-01

    Researchers currently use abundant external devices (e.g., pumps and computers) to achieve precise flow dynamics in microfluidic systems. Here, I show our use of network concepts and computational methods to design microfluidic systems that do not depend on external devices yet still exhibit a diverse range of flow dynamics. I present an example of a microfluidic channel described by a nonlinear pressure-flow relation and show that complex flow behavior can emerge in systems designed around this channel. By controlling the pressure at only a single terminal in such a system, I demonstrate the ability to switch the direction of fluid flow through intermediate channels not directly connected to the controlled terminal. I also show that adding (or removing) flow channels to a system can result in unexpected changes in the total mass flow rate, depending on the network structure of the system. We expect this work to both expand the applicability of microfluidics and promote scaling up of current experiments. This research was funded by the National Science Foundation.

  16. Control of focusing fields for positron acceleration in nonlinear plasma wakes using multiple laser modes

    SciTech Connect

    Yu, L.-L. Li, F.-Y.; Chen, M.; Weng, S.-M.; Schroeder, C. B.; Benedetti, C.; Esarey, E.; Sheng, Z.-M.

    2014-12-15

    Control of transverse wakefields in the nonlinear laser-driven bubble regime using a combination of Hermite-Gaussian laser modes is proposed. By controlling the relative intensity ratio of the two laser modes, the focusing force can be controlled, enabling matched beam propagation for emittance preservation. A ring bubble can be generated with a large longitudinal accelerating field and a transverse focusing field suitable for positron beam focusing and acceleration.

  17. Experimental results of a predictive neural network HVAC controller

    SciTech Connect

    Jeannette, E.; Assawamartbunlue, K.; Kreider, J.F.; Curtiss, P.S.

    1998-12-31

    Proportional, integral, and derivative (PID) control is widely used in many HVAC control processes and requires constant attention for optimal control. Artificial neural networks offer the potential for improved control of processes through predictive techniques. This paper introduces and shows experimental results of a predictive neural network (PNN) controller applied to an unstable hot water system in an air-handling unit. Actual laboratory testing of the PNN and PID controllers show favorable results for the PNN controller.

  18. Automatic analysis of the control of metabolic networks.

    PubMed

    Bayram, M

    1996-09-01

    In this paper we apply computer algebra techniques to analyze the control of metabolic networks. For this purpose, a computer program based on metabolic control theory was developed. When a stoichiometry matrix of the metabolic networks is given, the program calculates all the control coefficients (flux and metabolic control coefficients, summation and connectivity relationships) using elasticity coefficients. The program can be applied to any metabolic network which includes unlimited steps and intermediate metabolites. PMID:8889337

  19. Longitudinal Bunch Position Control for the Super-B Accelerator

    SciTech Connect

    Bertsche, Kirk; Rivetta, Claudio; Sullivam, Michael K.; Drago, Alessandro; /Frascati

    2009-05-15

    The use of normal conducting cavities and an ion-clearing gap will cause a significant RF accelerating voltage gap transient and longitudinal phase shift of the individual bunches along the bunch train in both rings of the SuperB accelerator. Small relative centroid position shifts between bunches of the colliding beams will have a large adverse impact on the luminosity due to the small {beta}*{sub y} at the interaction point (IP). We investigate the possibility of minimizing the relative longitudinal position shift between bunches by reducing the gap transient in each ring and matching the longitudinal bunch positions of the two rings at the IP using feedback/feedforward techniques in the LLRF. The analysis is conducted assuming maximum use of the klystron power installed in the system.

  20. Control of seeding phase for a cascaded laser wakefield accelerator with gradient injection

    SciTech Connect

    Wang, Wentao; Li, Wentao; Liu, Jiansheng; Wang, Cheng; Chen, Qiang; Zhang, Zhijun; Qi, Rong; Leng, Yuxin; Liang, Xiaoyan; Liu, Yanqi; Lu, Xiaoming; Wang, Cheng; Li, Ruxin; Xu, Zhizhan

    2013-12-09

    We demonstrated experimentally the seeding-phase control for a two-stage laser wakefield accelerator with gradient injection. By optimizing the seeding phase of electrons into the second stage, electron beams beyond 0.5 GeV with a 3% rms energy spread were produced over a short acceleration distance of ∼2 mm. Peak energy of the electron beam was further extended beyond 1 GeV by lengthening the second acceleration stage to 5 mm. Time-resolved magnetic field measurements via magneto-optical Faraday polarimetry allowed us to monitor the processes of electron seeding and acceleration in the second stage.

  1. Bihemispheric network dynamics coordinating vocal feedback control.

    PubMed

    Kort, Naomi S; Cuesta, Pablo; Houde, John F; Nagarajan, Srikantan S

    2016-04-01

    Modulation of vocal pitch is a key speech feature that conveys important linguistic and affective information. Auditory feedback is used to monitor and maintain pitch. We examined induced neural high gamma power (HGP) (65-150 Hz) using magnetoencephalography during pitch feedback control. Participants phonated into a microphone while hearing their auditory feedback through headphones. During each phonation, a single real-time 400 ms pitch shift was applied to the auditory feedback. Participants compensated by rapidly changing their pitch to oppose the pitch shifts. This behavioral change required coordination of the neural speech motor control network, including integration of auditory and somatosensory feedback to initiate change in motor plans. We found increases in HGP across both hemispheres within 200 ms of pitch shifts, covering left sensory and right premotor, parietal, temporal, and frontal regions, involved in sensory detection and processing of the pitch shift. Later responses to pitch shifts (200-300 ms) were right dominant, in parietal, frontal, and temporal regions. Timing of activity in these regions indicates their role in coordinating motor change and detecting and processing of the sensory consequences of this change. Subtracting out cortical responses during passive listening to recordings of the phonations isolated HGP increases specific to speech production, highlighting right parietal and premotor cortex, and left posterior temporal cortex involvement in the motor response. Correlation of HGP with behavioral compensation demonstrated right frontal region involvement in modulating participant's compensatory response. This study highlights the bihemispheric sensorimotor cortical network involvement in auditory feedback-based control of vocal pitch. PMID:26917046

  2. Structural permeability of complex networks to control signals

    NASA Astrophysics Data System (ADS)

    Lo Iudice, Francesco; Garofalo, Franco; Sorrentino, Francesco

    2015-09-01

    Many biological, social and technological systems can be described as complex networks. The goal of affecting their behaviour has motivated recent work focusing on the relationship between the network structure and its propensity to be controlled. While this work has provided insight into several relevant problems, a comprehensive approach to address partial and complete controllability of networks is still lacking. Here, we bridge this gap by developing a framework to maximize the diffusion of the control signals through a network, while taking into account physical and economic constraints that inevitably arise in applications. This approach allows us to introduce the network permeability, a unified metric of the propensity of a network to be controllable. The analysis of the permeability of several synthetic and real networks enables us to extract some structural features that deepen our quantitative understanding of the ease with which specific controllability requirements can be met.

  3. Structural permeability of complex networks to control signals

    PubMed Central

    Lo Iudice, Francesco; Garofalo, Franco; Sorrentino, Francesco

    2015-01-01

    Many biological, social and technological systems can be described as complex networks. The goal of affecting their behaviour has motivated recent work focusing on the relationship between the network structure and its propensity to be controlled. While this work has provided insight into several relevant problems, a comprehensive approach to address partial and complete controllability of networks is still lacking. Here, we bridge this gap by developing a framework to maximize the diffusion of the control signals through a network, while taking into account physical and economic constraints that inevitably arise in applications. This approach allows us to introduce the network permeability, a unified metric of the propensity of a network to be controllable. The analysis of the permeability of several synthetic and real networks enables us to extract some structural features that deepen our quantitative understanding of the ease with which specific controllability requirements can be met. PMID:26391186

  4. Edge orientation for optimizing controllability of complex networks.

    PubMed

    Xiao, Yan-Dong; Lao, Song-Yang; Hou, Lv-Lin; Bai, Liang

    2014-10-01

    Recently, as the controllability of complex networks attracts much attention, how to design and optimize the controllability of networks has become a common and urgent problem in the field of controlling complex networks. Previous work focused on the structural perturbation and neglected the role of edge direction to optimize the network controllability. In a recent work [Phys. Rev. Lett. 103, 228702 (2009)], the authors proposed a simple method to enhance the synchronizability of networks by assignment of link direction while keeping network topology unchanged. However, the controllability is fundamentally different from synchronization. In this work, we systematically propose the definition of assigning direction to optimize controllability, which is called the edge orientation for optimal controllability problem (EOOC). To solve the EOOC problem, we construct a switching network and transfer the EOOC problem to find the maximum independent set of the switching network. We prove that the principle of our optimization method meets the sense of unambiguity and optimum simultaneously. Furthermore, the relationship between the degree-degree correlations and EOOC are investigated by experiments. The results show that the disassortativity pattern could weaken the orientation for optimal controllability, while the assortativity pattern has no correlation with EOOC. All the experimental results of this work verify that the network structure determines the network controllability and the optimization effects. PMID:25375546

  5. Edge orientation for optimizing controllability of complex networks

    NASA Astrophysics Data System (ADS)

    Xiao, Yan-Dong; Lao, Song-Yang; Hou, Lv-Lin; Bai, Liang

    2014-10-01

    Recently, as the controllability of complex networks attracts much attention, how to design and optimize the controllability of networks has become a common and urgent problem in the field of controlling complex networks. Previous work focused on the structural perturbation and neglected the role of edge direction to optimize the network controllability. In a recent work [Phys. Rev. Lett. 103, 228702 (2009), 10.1103/PhysRevLett.103.228702], the authors proposed a simple method to enhance the synchronizability of networks by assignment of link direction while keeping network topology unchanged. However, the controllability is fundamentally different from synchronization. In this work, we systematically propose the definition of assigning direction to optimize controllability, which is called the edge orientation for optimal controllability problem (EOOC). To solve the EOOC problem, we construct a switching network and transfer the EOOC problem to find the maximum independent set of the switching network. We prove that the principle of our optimization method meets the sense of unambiguity and optimum simultaneously. Furthermore, the relationship between the degree-degree correlations and EOOC are investigated by experiments. The results show that the disassortativity pattern could weaken the orientation for optimal controllability, while the assortativity pattern has no correlation with EOOC. All the experimental results of this work verify that the network structure determines the network controllability and the optimization effects.

  6. Observability and Controllability of Nonlinear Networks: The Role of Symmetry

    NASA Astrophysics Data System (ADS)

    Schiff, Steven; Whalen, Andrew; Brennan, Sean; Sauer, Timothy

    2015-03-01

    Observability and controllability are essential concepts to the design of predictive observer models and feedback controllers of networked systems. For example, noncontrollable mathematical models of real systems may have subspaces that influence model behavior, but cannot be controlled by an input. Such subspaces are difficult to determine in complex nonlinear networks. Since most of the present theory was developed for linear networks without symmetries, here we present a numerical and group representational framework, to quantify the observability and controllability of nonlinear networks with explicit symmetries that shows the connection between symmetries and measures of observability and controllability. We numerically observe and theoretically predict that not all symmetries have the same effect on network observation and control. We find that the presence of symmetry in a network may decrease observability and controllability, although networks containing only rotational symmetries remain controllable and observable. These results alter our view of the nature of observability and controllability in complex networks, change our understanding of structural controllability, and affect the design of mathematical models to observe and control such networks. National Academies - Keck Futures Initiative, NSF grant DMS 1216568, and Collaborative Research in Computational Neuroscience NIH Grant 1R01EB014641.

  7. Energy-Saving Topology Control for Heterogeneous Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Xuehui

    Topology control with per-node transmission power adjustment in wireless ad hoc networks has been shown to be effective with respect to prolonging network lifetime and increasing network capacity. In this paper, we propose a fully distributed, asynchronous and localized energy-saving topology control algorithm for heterogeneous ad hoc networks with non-uniform transmission ranges. We prove the topology derived from the algorithm preserves the network connectivity and bi-directionality. It need not the position system support and dramatically reduces the communication overhead compared to other topology control algorithms. Simulation results show the effectiveness of our proposed algorithm.

  8. The control networks of Tethys and Dione

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Katayama, F. Y.

    1983-01-01

    Control networks of the Saturnian satellites Tethys and Dione have been established photogrammetrically from pictures taken by the two Voyager spacecraft during their flybys. Coordinates of 110 points on Tethys and 126 points on Dione are listed; selected points are identified on U.S. Geological Survey maps of the satellites, and many are identified by name. Measurements of these points were made on six pictures from Voyager 1 and 21 from Voyager 2 for Tethys, and on 27 pictures from Voyager 1 and one from Voyager 2 for Dione. The longitude systems on the satellites have been defined by craters on their surfaces. The mean radii have been determined as 524 + or - 5 km for Tethys and 559 + or - 5 km for Dione.

  9. Study on application of adaptive fuzzy control and neural network in the automatic leveling system

    NASA Astrophysics Data System (ADS)

    Xu, Xiping; Zhao, Zizhao; Lan, Weiyong; Sha, Lei; Qian, Cheng

    2015-04-01

    This paper discusses the adaptive fuzzy control and neural network BP algorithm in large flat automatic leveling control system application. The purpose is to develop a measurement system with a flat quick leveling, Make the installation on the leveling system of measurement with tablet, to be able to achieve a level in precision measurement work quickly, improve the efficiency of the precision measurement. This paper focuses on the automatic leveling system analysis based on fuzzy controller, Use of the method of combining fuzzy controller and BP neural network, using BP algorithm improve the experience rules .Construct an adaptive fuzzy control system. Meanwhile the learning rate of the BP algorithm has also been run-rate adjusted to accelerate convergence. The simulation results show that the proposed control method can effectively improve the leveling precision of automatic leveling system and shorten the time of leveling.

  10. Maintain the structural controllability under malicious attacks on directed networks

    NASA Astrophysics Data System (ADS)

    Wang, Bingbo; Gao, Lin; Gao, Yong; Deng, Yue

    2013-03-01

    The directedness of the links in a network plays a critical role in determining many dynamical processes among which the controllability has received much recent attention. The control robustness of a network against malicious attack and random failure also becomes a significant issue. In this paper, we propose a novel control robustness index motivated by recent studies on the global connectivity and controllability. In its general form, the problem of optimizing the control robustness index is computationally infeasible for large-scale networks. By analysing the influences of several directed topological factors on the dynamical control process, we transform the control robustness problem into the problem of transitivity maximization for control routes, and propose an efficient greedy algorithm to make control routes transitive. A series of experiments on real-world and synthetic networks show that the global connectivity and controllability can be improved simultaneously and we can mitigate the destruction of malicious attack through backing up the control routes.

  11. Convergence behaviour and Control in Non-Linear Biological Networks

    PubMed Central

    Karl, Stefan; Dandekar, Thomas

    2015-01-01

    Control of genetic regulatory networks is challenging to define and quantify. Previous control centrality metrics, which aim to capture the ability of individual nodes to control the system, have been found to suffer from plausibility and applicability problems. Here we present a new approach to control centrality based on network convergence behaviour, implemented as an extension of our genetic regulatory network simulation framework Jimena ( http://stefan-karl.de/jimena). We distinguish three types of network control, and show how these mathematical concepts correspond to experimentally verified node functions and signalling pathways in immunity and cell differentiation: Total control centrality quantifies the impact of node mutations and identifies potential pharmacological targets such as genes involved in oncogenesis (e.g. zinc finger protein GLI2 or bone morphogenetic proteins in chondrocytes). Dynamic control centrality describes relaying functions as observed in signalling cascades (e.g. src kinase or Jak/Stat pathways). Value control centrality measures the direct influence of the value of the node on the network (e.g. Indian hedgehog as an essential regulator of proliferation in chondrocytes). Surveying random scale-free networks and biological networks, we find that control of the network resides in few high degree driver nodes and networks can be controlled best if they are sparsely connected. PMID:26068060

  12. A geometrical approach to control and controllability of nonlinear dynamical networks

    PubMed Central

    Wang, Le-Zhi; Su, Ri-Qi; Huang, Zi-Gang; Wang, Xiao; Wang, Wen-Xu; Grebogi, Celso; Lai, Ying-Cheng

    2016-01-01

    In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another, assuming that the former is undesired and the latter is desired. To make our framework practically meaningful, we consider restricted parameter perturbation by imposing two constraints: it must be experimentally realizable and applied only temporarily. We introduce the concept of attractor network, which allows us to formulate a quantifiable controllability framework for nonlinear dynamical networks: a network is more controllable if the attractor network is more strongly connected. We test our control framework using examples from various models of experimental gene regulatory networks and demonstrate the beneficial role of noise in facilitating control. PMID:27076273

  13. A geometrical approach to control and controllability of nonlinear dynamical networks.

    PubMed

    Wang, Le-Zhi; Su, Ri-Qi; Huang, Zi-Gang; Wang, Xiao; Wang, Wen-Xu; Grebogi, Celso; Lai, Ying-Cheng

    2016-01-01

    In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another, assuming that the former is undesired and the latter is desired. To make our framework practically meaningful, we consider restricted parameter perturbation by imposing two constraints: it must be experimentally realizable and applied only temporarily. We introduce the concept of attractor network, which allows us to formulate a quantifiable controllability framework for nonlinear dynamical networks: a network is more controllable if the attractor network is more strongly connected. We test our control framework using examples from various models of experimental gene regulatory networks and demonstrate the beneficial role of noise in facilitating control. PMID:27076273

  14. An extended signal control strategy for urban network traffic flow

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Tian, Fuli; Shi, Zhongke

    2016-03-01

    Traffic flow patterns are in general repeated on a daily or weekly basis. To improve the traffic conditions by using the inherent repeatability of traffic flow, a novel signal control strategy for urban networks was developed via iterative learning control (ILC) approach. Rigorous analysis shows that the proposed learning control method can guarantee the asymptotic convergence. The impacts of the ILC-based signal control strategy on the macroscopic fundamental diagram (MFD) were analyzed by simulations on a test road network. The results show that the proposed ILC strategy can evenly distribute the accumulation in the network and improve the network mobility.

  15. On designing a control system for a new generation of accelerators

    SciTech Connect

    Schaller, S.C.; Schultz, D.E.

    1987-01-01

    A well-conceived plan of attack is essential to the task of designing a control system for a large accelerator. Several aspects of such a plan have been investigated during recent work at LAMPF on design strategies for an Advanced Hadron Facility control system. Aspects discussed in this paper include: identification of requirements, creation and enforcement of standards, interaction with users, consideration of commercial controls products, integration with existing control systems, planning for continual change, and establishment of design reviews. We emphasize the need for the controls group to acquire and integrate accelerator design information from the start of the design process. We suggest that a controls design for a new generation of accelerators be done with a new generation of software tools. 12 refs.

  16. G-NetMon: A GPU-accelerated Network Performance Monitoring System for Large Scale Scientific Collaborations

    SciTech Connect

    Wu, Wenji; DeMar, Phil; Holmgren, Don; Singh, Amitoj; Pordes, Ruth; /Fermilab

    2011-08-01

    At Fermilab, we have prototyped a GPU-accelerated network performance monitoring system, called G-NetMon, to support large-scale scientific collaborations. Our system exploits the data parallelism that exists within network flow data to provide fast analysis of bulk data movement between Fermilab and collaboration sites. Experiments demonstrate that our G-NetMon can rapidly detect sub-optimal bulk data movements.

  17. Initial investigation using statistical process control for quality control of accelerator beam steering

    PubMed Central

    2011-01-01

    Background This study seeks to increase clinical operational efficiency and accelerator beam consistency by retrospectively investigating the application of statistical process control (SPC) to linear accelerator beam steering parameters to determine the utility of such a methodology in detecting changes prior to equipment failure (interlocks actuated). Methods Steering coil currents (SCC) for the transverse and radial planes are set such that a reproducibly useful photon or electron beam is available. SCC are sampled and stored in the control console computer each day during the morning warm-up. The transverse and radial - positioning and angle SCC for photon beam energies were evaluated using average and range (Xbar-R) process control charts (PCC). The weekly average and range values (subgroup n = 5) for each steering coil were used to develop the PCC. SCC from September 2009 (annual calibration) until two weeks following a beam steering failure in June 2010 were evaluated. PCC limits were calculated using the first twenty subgroups. Appropriate action limits were developed using conventional SPC guidelines. Results PCC high-alarm action limit was set at 6 standard deviations from the mean. A value exceeding this limit would require beam scanning and evaluation by the physicist and engineer. Two low alarms were used to indicate negative trends. Alarms received following establishment of limits (week 20) are indicative of a non-random cause for deviation (Xbar chart) and/or an uncontrolled process (R chart). Transverse angle SCC for 6 MV and 15 MV indicated a high-alarm 90 and 108 days prior to equipment failure respectively. A downward trend in this parameter continued, with high-alarm, until failure. Transverse position and radial angle SCC for 6 and 15 MV indicated low-alarms starting as early as 124 and 116 days prior to failure, respectively. Conclusion Radiotherapy clinical efficiency and accelerator beam consistency may be improved by instituting SPC

  18. Magnetically Controlled Optical Plasma Waveguide for Electron Acceleration

    SciTech Connect

    Pollock, B. B.; Davis, P.; Divol, L.; Glenzer, S. H.; Palastro, J. P.; Price, D.; Froula, D. H.; Tynan, G. R.

    2009-01-22

    In order to produce multi-Gev electrons from Laser Wakefield Accelerators, we present a technique to guide high power laser beams through underdense plasma. Experimental results from the Jupiter Laser Facility at the Lawrence Livermore National Laboratory that show density channels with minimum plasma densities below 5x10{sup 17} cm{sup -3} are presented. These results are obtained using an external magnetic field (<5 T) to limit the radial heat flux from a pre-forming laser beam. The resulting increased plasma pressure gradient produces a parabolic density gradient which is tunable by changing the external magnetic field strength. These results are compared with 1-D hydrodynamic simulations, while quasi-static kinetic simulations show that for these channel conditions 90% of the energy in a 150 TW short pulse beam is guided over 5 cm and predict electron energy gains of 3 GeV.

  19. Magnetically Controlled Optical Plasma Waveguide for Electron Acceleration

    SciTech Connect

    Pollock, B B; Froula, D H; Tynan, G R; Divol, L; Davis, P; Palastro, J P; Price, D; Glenzer, S H

    2008-08-28

    In order to produce multi-Gev electrons from Laser Wakefield Accelerators, we present a technique to guide high power laser beams through underdense plasma. Experimental results from the Jupiter Laser Facility at the Lawrence Livermore National Laboratory that show density channels with minimum plasma densities below 5 x 10{sup 17} cm{sup -3} are presented. These results are obtained using an external magnetic field (<5 T) to limit the radial heat flux from a pre-forming laser beam. The resulting increased plasma pressure gradient produces a parabolic density gradient which is tunable by changing the external magnetic field strength. These results are compared with 1-D hydrodynamic simulations, while quasi-static kinetic simulations show that for these channel conditions 90% of the energy in a 150 TW short pulse beam is guided over 5 cm and predict electron energy gains of 3 GeV.

  20. Intensity control in experimental rooms of the GANIL accelerator

    NASA Astrophysics Data System (ADS)

    Courtois, C.; Jamet, C.; Le Coz, W.; Ledu, G.

    2014-12-01

    The safety re-examination of existing GANIL (the French national heavy-ion accelerator facility) installations requires the implementation of a safety system which makes possible the monitoring of beam intensities sent in the experimental rooms. The aim is to demonstrate that beam intensities stay below the authorized limits. The required characteristics should enable the measurement, by a non-interceptive method, of beam intensities from 5 nA to 5 μA with a maximum uncertainty of ±5%, independently of the frequency and the beam energy. After a comparative study, two high frequency diagnostics were selected: the capacitive Pick-Up (PU) and the Fast Current Transformer (FCT). Based on results of simulation, laboratory tests and machine studies, this paper discusses all the considerations required to deliver accurate results from PU and FCT measurement of ion beams.

  1. Adaptive bridge control strategy for opinion evolution on social networks

    NASA Astrophysics Data System (ADS)

    Qian, Cheng; Cao, Jinde; Lu, Jianquan; Kurths, Jürgen

    2011-06-01

    In this paper, we present an efficient opinion control strategy for complex networks, in particular, for social networks. The proposed adaptive bridge control (ABC) strategy calls for controlling a special kind of nodes named bridge and requires no knowledge of the node degrees or any other global or local knowledge, which are necessary for some other immunization strategies including targeted immunization and acquaintance immunization. We study the efficiency of the proposed ABC strategy on random networks, small-world networks, scale-free networks, and the random networks adjusted by the edge exchanging method. Our results show that the proposed ABC strategy is efficient for all of these four kinds of networks. Through an adjusting clustering coefficient by the edge exchanging method, it is found out that the efficiency of our ABC strategy is closely related with the clustering coefficient. The main contributions of this paper can be listed as follows: (1) A new high-order social network is proposed to describe opinion dynamic. (2) An algorithm, which does not require the knowledge of the nodes' degree and other global/local network structure information, is proposed to control the "bridges" more accurately and further control the opinion dynamics of the social networks. The efficiency of our ABC strategy is illustrated by numerical examples. (3) The numerical results indicate that our ABC strategy is more efficient for networks with higher clustering coefficient.

  2. Unified Lunar Control Network 2005 and Topographic Model

    NASA Technical Reports Server (NTRS)

    Archinal, B. A.; Rosiek, M. R.; Redding, B. L.

    2005-01-01

    There are currently two generally accepted lunar control networks. These are the Unified Lunar Control Network (ULCN) and the Clementine Lunar Control Network (CLCN), both derived by M. Davies and T. Colvin at RAND. We address here our efforts to merge and improve these networks into a new ULCN. The ULCN was described in the last major publication about a lunar control network. The statistics on this and the other networks discussed here. Images for this network are from the Apollo, Mariner 10, and Galileo missions, and Earth-based photographs. The importance of this network is that its accuracy is relatively well quantified and published information on the network is available. The CLCN includes measurements on 43,871 Clementine 750-nm images - the largest planetary control network ever computed. This purpose of this network was to determine the geometry for the Clementine Basemap Mosiac (CBM). The geometry of that mosaic was used to produce the Clementine UVVIS digital image model and the Near-Infrared Global Multispectral Map of the Moon from Clementine. Through the extensive use of these products, they and the underlying CLCN in effect define the generally accepted current coordinate system for reporting and describing the location of lunar coordinates. However, no publication describes the CLCN itself.

  3. Minimizing communication cost among distributed controllers in software defined networks

    NASA Astrophysics Data System (ADS)

    Arlimatti, Shivaleela; Elbreiki, Walid; Hassan, Suhaidi; Habbal, Adib; Elshaikh, Mohamed

    2016-08-01

    Software Defined Networking (SDN) is a new paradigm to increase the flexibility of today's network by promising for a programmable network. The fundamental idea behind this new architecture is to simplify network complexity by decoupling control plane and data plane of the network devices, and by making the control plane centralized. Recently controllers have distributed to solve the problem of single point of failure, and to increase scalability and flexibility during workload distribution. Even though, controllers are flexible and scalable to accommodate more number of network switches, yet the problem of intercommunication cost between distributed controllers is still challenging issue in the Software Defined Network environment. This paper, aims to fill the gap by proposing a new mechanism, which minimizes intercommunication cost with graph partitioning algorithm, an NP hard problem. The methodology proposed in this paper is, swapping of network elements between controller domains to minimize communication cost by calculating communication gain. The swapping of elements minimizes inter and intra communication cost among network domains. We validate our work with the OMNeT++ simulation environment tool. Simulation results show that the proposed mechanism minimizes the inter domain communication cost among controllers compared to traditional distributed controllers.

  4. Implementing controlled-unitary operations over the butterfly network

    SciTech Connect

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.; Murao, Mio

    2014-12-04

    We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.

  5. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2005-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface uses a specialized protocol for communicating across the network bus that uses a low-level instruction set and has low overhead for data communication.

  6. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2004-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface uses a specialized protocol for communicating across the network bus that uses a low-level instruction set and has low overhead for data communication.

  7. System modeling for the longitudinal beam dynamics control problem in heavy ion induction accelerators

    SciTech Connect

    Payne, A.N.

    1993-05-17

    We address the problem of developing system models that are suitable for studying the control of the longitudinal beam dynamics in induction accelerators for heavy ions. In particular, we present the preliminary results of our efforts to devise a general framework for building detailed, integrated models of accelerator systems consisting of pulsed power modular circuits, induction cells, beam dynamics, and control system elements. Such a framework will permit us to analyze and design the pulsed power modulators and the control systems required to effect precise control over the longitudinal beam dynamics.

  8. Neural networks for self-learning control systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Derrick H.; Widrow, Bernard

    1990-01-01

    It is shown how a neural network can learn of its own accord to control a nonlinear dynamic system. An emulator, a multilayered neural network, learns to identify the system's dynamic characteristics. The controller, another multilayered neural network, next learns to control the emulator. The self-trained controller is then used to control the actual dynamic system. The learning process continues as the emulator and controller improve and track the physical process. An example is given to illustrate these ideas. The 'truck backer-upper,' a neural network controller that steers a trailer truck while the truck is backing up to a loading dock, is demonstrated. The controller is able to guide the truck to the dock from almost any initial position. The technique explored should be applicable to a wide variety of nonlinear control problems.

  9. Low-level RF control system issues for an ADTT accelerator

    SciTech Connect

    Ziomek, C.D.; Regan, A.H.; Lynch, M.T.; Bowling, P.S.

    1994-09-01

    The RF control system for a charged-particle accelerator must maintain the correct amplitude and phase of RF field inside the accelerator cavity in the presence of perturbations, noises, and time varying system components. For an accelerator with heavy beam-loading, fluctuations in the beam current cause large perturbations to the RF field amplitude and phase that must be corrected by the RF control system. The ADTT applications require a high-current, heavily beam-loaded, continuous-wave (CW) accelerator. Additional concerns created by the CW operation include system start-up, beam interruption, and fault recovery. Also, the RF control system for an ADTT facility must include sophisticated automation to reduce the operator interaction and support. This paper describes an RF control system design that addresses these various issues by evaluation a combination of feedback and feed forward control techniques. Experience from the high-current Ground Test Accelerator (GTA) is drawn upon for this RF control system design. Comprehensive computer modeling with the Matrix{sub x} software has been used to predict the performance of this RF control system.

  10. Low-level RF control system issues for an ADTT accelerator

    SciTech Connect

    Ziomek, C. D.; Regan, A. H.; Lynch, M. T.; Bowling, P. S.

    1995-09-15

    The RF control system for a charged-particle accelerator must maintain the correct amplitude and phase of the RF field inside the accelerator cavity in the presence of perturbations, noises, and time varying system components. For an accelerator with heavy beam-loading, fluctuations in the beam current cause large perturbations to the RF field amplitude and phase that must be corrected by the RF control system. The ADTT applications require a high-current, heavily beam-loaded, continuous-wave (CW) accelerator. Additional concerns created by the CW operation include system start-up, beam interruption, and fault recovery. Also, the RF control system for an ADTT facility must include sophisticated automation to reduce the operator interaction and support. This paper describes an RF control system design that addresses these various issues by evaluation a combination of feedback and feedforward control techniques. Experience from the high-current Ground Test Accelerator (GTA) is drawn upon for this RF control system design. Comprehensive computer modeling with the Matrixx software has been used to predict the performance of this RF control system.

  11. Control of linear accelerator noise in the Los Alamos free-electron laser (FEL)

    SciTech Connect

    Lynch, M.T.

    1986-01-01

    The Los Alamos FEL requires tight control of the amplitudes and phases of the fields in two linear accelerator tanks to obtain stable lasing. The accelerator control loops must establish constant, stable, repeatable amplitudes and phases of the rf fields and must have excellent bandwidth to control high-frequency noise components. A model of the feedback loops has been developed that agrees well with measurements and allows easy substitution of components and circuits, thus reducing breadboarding requirements. The model permits both frequency and time-domain analysis. This paper describes the accelerator control scheme and our model and discusses the control of noise in feedback loops, showing how low-frequency-noise components (errors) can be corrected, but high-frequency-noise components (errors) are actually amplified by the feedback circuit. Measurements of noise in both open- and closed-loop modes are shown and comparison is made with results from the model calculations.

  12. Controlling Contagion Processes in Time-Varying Networks

    NASA Astrophysics Data System (ADS)

    Perra, Nicola; Liu, Suyu; Karsai, Marton; Vespignani, Alessandro

    2014-03-01

    The vast majority of strategies aimed at controlling contagion processes on networks considers the connectivity pattern of the system as either quenched or annealed. However, in the real world many networks are highly dynamical and evolve in time concurrently to the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for time-varying networks. We consider the removal/immunization of individual nodes according the their activity in the network and develop a block variable mean-field approach that allows the derivation of the equations describing the evolution of the contagion process concurrently to the network dynamic. We derive the critical immunization threshold and assess the effectiveness of the control strategies. Finally, we validate the theoretical picture by simulating numerically the information spreading process and control strategies in both synthetic networks and a large-scale, real-world mobile telephone call dataset.

  13. A Clementine Derived Control Network and Topographic Model - The Unified Lunar Control Network 2005

    NASA Astrophysics Data System (ADS)

    Archinal, B. A.; Rosiek, M. R.; Kirk, R. L.; Redding, B. L.

    2006-08-01

    U. S. Geological Survey, Astrogeology Team, Flagstaff, AZ, United States Introduction: We have completed a new general unified lunar control network and lunar topographic model based on Clementine images. It includes the determination, in the lunar mean Earth/polar axis system, of the 3-D positions of 272,931 points on the lunar surface and the correction of the camera angles for 43,866 Clementine images, using 546,126 tie point measurements. The solution RMS is 0.9 pixels in the image plane, with the largest residual of 6.4 pixels. We are now documenting our solution and plan to release the solution results soon, initially as a USGS Open File report. ULCN 2005 Features: The new network is a combination of the Unified Lunar Control Network (ULCN), derived from the Apollo, Mariner 10, and Galileo missions, and Earth-based photographs, [1] and the Clementine Lunar Control Network (CLCN) [2], both derived from (mostly 750-nm) Clementine images, by M. Davies and T. Colvin at RAND. The primary difference between our new network and the previous ones is that we solve for the radii of the control points. This avoids (~7 km) distortion of horizontal positions present in the CLCN. The expected precision of such information is on the order of several hundred m, and compatible with Clementine LIDAR [3]. Thus, a by-product of this network is a global lunar topographic model that is denser than that provided by LIDAR and of similar accuracy, and denser than any other lunar topography information except that provided in limited areas ([4-7]). This is the only lunar topographic model positioning where both heights and horizontal positions are estimated in a globally-consistent system. Other features of the ULCN 2005 are that the camera angles to their values as measured during the mission, supposedly with an accuracy of 0.03º [8], and we have identified a majority of the original ULCN points on Clementine images. Future Work: The Lunar Orbiter (LO) digital mosaics now being

  14. Network device interface for digitally interfacing data channels to a controller a via network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. In one embodiment, the bus controller transmits messages to the network device interface containing a plurality of bits having a value defined by a transition between first and second states in the bits. The network device interface determines timing of the data sequence of the message and uses the determined timing to communicate with the bus controller.

  15. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface is a state machine, such as an ASIC, that operates independent of a processor in communicating with the bus controller and data channels.

  16. GENERATION AND CONTROL OF HIGH PRECISION BEAMS AT LEPTON ACCELERATORS

    SciTech Connect

    Yu-Chiu Chao

    2007-06-25

    Parity violation experiments require precision manipulation of helicity-correlated beam coordinates on target at the nm/nrad-level. Achieving this unprecedented level of control requires a detailed understanding of the particle optics and careful tuning of the beam transport to keep anomalies from compromising the design adiabatic damping. Such efforts are often hindered by machine configuration and instrumentation limitations at the low energy end. A technique has been developed at CEBAF including high precision measurements, Mathematica-based analysis for obtaining corrective solutions, and control hardware/software developments for realizing such level of control at energies up to 5 GeV.

  17. ACCELERATORS Control system for the CSNS ion source test stand

    NASA Astrophysics Data System (ADS)

    Lu, Yan-Hua; Li, Gang; Ouyang, Hua-Fu

    2010-12-01

    A penning plasma surface H- ion source test stand for the CSNS has just been constructed at the IHEP. In order to achieve a safe and reliable system, nearly all devices of the ion source are designed to have the capability of both local and remote operation function. The control system consists of PLCs and EPICS real-time software tools separately serving device control and monitoring, PLC integration and OPI support. This paper summarizes the hardware and software implementation satisfying the requirements of the ion source control system.

  18. Temporal network structures controlling disease spreading.

    PubMed

    Holme, Petter

    2016-08-01

    We investigate disease spreading on eight empirical data sets of human contacts (mostly proximity networks recording who is close to whom, at what time). We compare three levels of representations of these data sets: temporal networks, static networks, and a fully connected topology. We notice that the difference between the static and fully connected networks-with respect to time to extinction and average outbreak size-is smaller than between the temporal and static topologies. This suggests that, for these data sets, temporal structures influence disease spreading more than static-network structures. To explain the details in the differences between the representations, we use 32 network measures. This study concurs that long-time temporal structures, like the turnover of nodes and links, are the most important for the spreading dynamics. PMID:27627315

  19. Tangential acceleration feedback control of friction induced vibration

    NASA Astrophysics Data System (ADS)

    Nath, Jyayasi; Chatterjee, S.

    2016-09-01

    Tangential control action is studied on a phenomenological mass-on-belt model exhibiting friction-induced self-excited vibration attributed to the low-velocity drooping characteristics of friction which is also known as Stribeck effect. The friction phenomenon is modelled by the exponential model. Linear stability analysis is carried out near the equilibrium point and local stability boundary is delineated in the plane of control parameters. The system is observed to undergo a Hopf bifurcation as the eigenvalues determined from the linear stability analysis are found to cross the imaginary axis transversally from RHS s-plane to LHS s-plane or vice-versa as one varies the control parameters, namely non-dimensional belt velocity and the control gain. A nonlinear stability analysis by the method of Averaging reveals the subcritical nature of the Hopf bifurcation. Thus, a global stability boundary is constructed so that any choice of control parameters from the globally stable region leads to a stable equilibrium. Numerical simulations in a MATLAB SIMULINK model and bifurcation diagrams obtained in AUTO validate these analytically obtained results. Pole crossover design is implemented to optimize the filter parameters with an independent choice of belt velocity and control gain. The efficacy of this optimization (based on numerical results) in the delicate low velocity region is also enclosed.

  20. Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams.

    PubMed

    Bolton, P R; Borghesi, M; Brenner, C; Carroll, D C; De Martinis, C; Fiorini, Francesca; Flacco, A; Floquet, V; Fuchs, J; Gallegos, P; Giove, D; Green, J S; Green, S; Jones, B; Kirby, D; McKenna, P; Neely, D; Nuesslin, F; Prasad, R; Reinhardt, S; Roth, M; Schramm, U; Scott, G G; Ter-Avetisyan, S; Tolley, M; Turchetti, G; Wilkens, J J

    2014-05-01

    Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on 'Instrumentation for Diagnostics and Control of Laser-accelerated Proton (Ion) Beams' in Abingdon, UK. It includes radiochromic film (RCF), image plates (IP), micro-channel plates (MCP), Thomson spectrometers, prompt inline scintillators, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed. PMID:24100298

  1. Connected Dominating Set Based Topology Control in Wireless Sensor Networks

    ERIC Educational Resources Information Center

    He, Jing

    2012-01-01

    Wireless Sensor Networks (WSNs) are now widely used for monitoring and controlling of systems where human intervention is not desirable or possible. Connected Dominating Sets (CDSs) based topology control in WSNs is one kind of hierarchical method to ensure sufficient coverage while reducing redundant connections in a relatively crowded network.…

  2. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted into digital signals and transmitted back to the controller. In one embodiment, the bus controller sends commands and data a defined bit rate, and the network device interface senses this bit rate and sends data back to the bus controller using the defined bit rate.

  3. Control chart pattern recognition using a back propagation neural network

    NASA Astrophysics Data System (ADS)

    Spoerre, Julie K.; Perry, Marcus B.

    2000-10-01

    In this paper, control chart pattern recognition using artificial neural networks is presented. An important motivation of this research is the growing interest in intelligent manufacturing systems, specifically in the area of Statistical Process Control (SPC). On-line automated process analysis is an important area of research since it allows the interfacing of process control with Computer Integrated Manufacturing (CIM) techniques. A back propagation artificial neural network is used to model X-bar quality control charts and identify process instability situations as specified by the Western Electric Statistical Quality Control handbook. Results indicate that the performance of the back propagation neural network is very accurate in identifying these control chart patterns. This work is significant in that the neural network output can serve as a link to process parameters in a closed-loop control system. In this way, adjustments to the process can be made on-line and quality problems averted.

  4. Cell fate reprogramming by control of intracellular network dynamics

    NASA Astrophysics Data System (ADS)

    Zanudo, Jorge G. T.; Albert, Reka

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Although the topic of controlling the dynamics of a system has a long history in control theory, most of this work is not directly applicable to intracellular networks. Here we present a network control method that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our control method takes advantage of certain function-dependent network components and their relation to steady states in order to identify control targets, which are guaranteed to drive any initial state to the target state with 100% effectiveness and need to be applied only transiently for the system to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. This work was supported by NSF Grant PHY 1205840.

  5. Non-linear stochastic optimal control of acceleration parametrically excited systems

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Jin, Xiaoling; Huang, Zhilong

    2016-02-01

    Acceleration parametrical excitations have not been taken into account due to the lack of physical significance in macroscopic structures. The explosive development of microtechnology and nanotechnology, however, motivates the investigation of the acceleration parametrically excited systems. The adsorption and desorption effects dramatically change the mass of nano-sized structures, which significantly reduces the precision of nanoscale sensors or can be reasonably utilised to detect molecular mass. This manuscript proposes a non-linear stochastic optimal control strategy for stochastic systems with acceleration parametric excitation based on stochastic averaging of energy envelope and stochastic dynamic programming principle. System acceleration is approximately expressed as a function of system displacement in a short time range under the conditions of light damping and weak excitations, and the acceleration parametrically excited system is shown to be equivalent to a constructed system with an additional displacement parametric excitation term. Then, the controlled system is converted into a partially averaged Itô equation with respect to the total system energy through stochastic averaging of energy envelope, and the optimal control strategy for the averaged system is derived from solving the associated dynamic programming equation. Numerical results for a controlled Duffing oscillator indicate the efficacy of the proposed control strategy.

  6. Temporal network structures controlling disease spreading

    NASA Astrophysics Data System (ADS)

    Holme, Petter

    2016-08-01

    We investigate disease spreading on eight empirical data sets of human contacts (mostly proximity networks recording who is close to whom, at what time). We compare three levels of representations of these data sets: temporal networks, static networks, and a fully connected topology. We notice that the difference between the static and fully connected networks—with respect to time to extinction and average outbreak size—is smaller than between the temporal and static topologies. This suggests that, for these data sets, temporal structures influence disease spreading more than static-network structures. To explain the details in the differences between the representations, we use 32 network measures. This study concurs that long-time temporal structures, like the turnover of nodes and links, are the most important for the spreading dynamics.

  7. Epigenetics and Why Biological Networks are More Controllable than Expected

    NASA Astrophysics Data System (ADS)

    Motter, Adilson

    2013-03-01

    A fundamental property of networks is that perturbations to one node can affect other nodes, potentially causing the entire system to change behavior or fail. In this talk, I will show that it is possible to exploit this same principle to control network behavior. This approach takes advantage of the nonlinear dynamics inherent to real networks, and allows bringing the system to a desired target state even when this state is not directly accessible or the linear counterpart is not controllable. Applications show that this framework permits both reprogramming a network to a desired task as well as rescuing networks from the brink of failure, which I will illustrate through various biological problems. I will also briefly review the progress our group has made over the past 5 years on related control of complex networks in non-biological domains.

  8. Optimizing a mobile robot control system using GPU acceleration

    NASA Astrophysics Data System (ADS)

    Tuck, Nat; McGuinness, Michael; Martin, Fred

    2012-01-01

    This paper describes our attempt to optimize a robot control program for the Intelligent Ground Vehicle Competition (IGVC) by running computationally intensive portions of the system on a commodity graphics processing unit (GPU). The IGVC Autonomous Challenge requires a control program that performs a number of different computationally intensive tasks ranging from computer vision to path planning. For the 2011 competition our Robot Operating System (ROS) based control system would not run comfortably on the multicore CPU on our custom robot platform. The process of profiling the ROS control program and selecting appropriate modules for porting to run on a GPU is described. A GPU-targeting compiler, Bacon, is used to speed up development and help optimize the ported modules. The impact of the ported modules on overall performance is discussed. We conclude that GPU optimization can free a significant amount of CPU resources with minimal effort for expensive user-written code, but that replacing heavily-optimized library functions is more difficult, and a much less efficient use of time.

  9. Neural network based diagonal decoupling control of powered wheelchair systems.

    PubMed

    Nguyen, Tuan Nghia; Su, Steven; Nguyen, Hung T

    2014-03-01

    This paper proposes an advanced diagonal decoupling control method for powered wheelchair systems. This control method is based on a combination of the systematic diagonalization technique and the neural network control design. As such, this control method reduces coupling effects on a multivariable system, leading to independent control design procedures. Using an obtained dynamic model, the problem of the plant's Jacobian calculation is eliminated in a neural network control design. The effectiveness of the proposed control method is verified in a real-time implementation on a powered wheelchair system. The obtained results confirm that robustness and desired performance of the overall system are guaranteed, even under parameter uncertainty effects. PMID:23981543

  10. A FLUX ROPE NETWORK AND PARTICLE ACCELERATION IN THREE-DIMENSIONAL RELATIVISTIC MAGNETIC RECONNECTION

    SciTech Connect

    Kagan, Daniel; Milosavljevic, Milos; Spitkovsky, Anatoly

    2013-09-01

    We investigate magnetic reconnection and particle acceleration in relativistic pair plasmas with three-dimensional particle-in-cell simulations of a kinetic-scale current sheet in a periodic geometry. We include a guide field that introduces an inclination between the reconnecting field lines and explore outside-of-the-current sheet magnetizations that are significantly below those considered by other authors carrying out similar calculations. Thus, our simulations probe the transitional regime in which the magnetic and plasma pressures are of the same order of magnitude. The tearing instability is the dominant mode in the current sheet for all guide field strengths, while the linear kink mode is less important even without the guide field, except in the lower magnetization case. Oblique modes seem to be suppressed entirely. In its nonlinear evolution, the reconnection layer develops a network of interconnected and interacting magnetic flux ropes. As smaller flux ropes merge into larger ones, the reconnection layer evolves toward a three-dimensional, disordered state in which the resulting flux rope segments contain magnetic substructure on plasma skin depth scales. Embedded in the flux ropes, we detect spatially and temporally intermittent sites of dissipation reflected in peaks in the parallel electric field. Magnetic dissipation and particle acceleration persist until the end of the simulations, with simulations with higher magnetization and lower guide field strength exhibiting greater and faster energy conversion and particle energization. At the end of our largest simulation, the particle energy spectrum attains a tail extending to high Lorentz factors that is best modeled with a combination of two additional thermal components. We confirm that the primary energization mechanism is acceleration by the electric field in the X-line region. The highest-energy positrons (electrons) are moderately beamed with median angles {approx}30 Degree-Sign -40 Degree

  11. Control of the upper body accelerations in young and elderly women during level walking

    PubMed Central

    Mazzà, Claudia; Iosa, Marco; Pecoraro, Fabrizio; Cappozzo, Aurelio

    2008-01-01

    Background The control of the head movements during walking allows for the stabilisation of the optic flow, for a more effective processing of the vestibular system signals, and for the consequent control of equilibrium. In young individuals, the oscillations of the upper body during level walking are characterised by an attenuation of the linear acceleration going from pelvis to head level. In elderly subjects the ability to implement this motor strategy is reduced. The aim of this paper is to go deeper into the mechanisms through which the head accelerations are controlled during level walking, in both young and elderly women specifically. Methods A stereophotogrammetric system was used to reconstruct the displacement of markers located at head, shoulder, and pelvis level while 16 young (age: 24 ± 4 years) and 20 older (age: 72 ± 4 years) female volunteers walked at comfortable and fast speed along a linear pathway. The harmonic coefficients of the displacements in the medio-lateral (ML), antero-posterior (AP), and vertical (V) directions were calculated via discrete Fourier transform, and relevant accelerations were computed by analytical double differentiation. The root mean square of the accelerations were used to define three coefficients for quantifying the attenuations of the accelerations from pelvis to head, from pelvis to shoulder, and from shoulder to head. Results The coefficients of attenuation were shown to be independent from the walking speed, and hence suitable for group and subject comparison. The acceleration in the AP direction was attenuated by the two groups both from pelvis to shoulder and from shoulder to head. The reduction of the shoulder to head acceleration, however, was less effective in older women, suggesting that the ability to exploit the cervical hinge to attenuate the AP acceleration is challenged in this population. Young women managed to exploit a pelvis to shoulder attenuation strategy also in the ML direction, whereas in

  12. Engineered and Administrative Safety Systems for the Control of Prompt Radiation Hazards at Accelerator Facilities

    SciTech Connect

    Liu, James C.; Vylet, Vashek; Walker, Lawrence S.; /SLAC

    2007-12-17

    The ANSI N43.1 Standard, currently in revision (ANSI 2007), sets forth the requirements for accelerator facilities to provide adequate protection for the workers, the public and the environment from the hazards of ionizing radiation produced during and from accelerator operations. The Standard also recommends good practices that, when followed, provide a level of radiation protection consistent with those established for the accelerator communities. The N43.1 Standard is suitable for all accelerator facilities (using electron, positron, proton, or ion particle beams) capable of producing radiation, subject to federal or state regulations. The requirements (see word 'shall') and recommended practices (see word 'should') are prescribed in a graded approach that are commensurate with the complexity and hazard levels of the accelerator facility. Chapters 4, 5 and 6 of the N43.1 Standard address specially the Radiation Safety System (RSS), both engineered and administrative systems, to mitigate and control the prompt radiation hazards from accelerator operations. The RSS includes the Access Control System (ACS) and Radiation Control System (RCS). The main requirements and recommendations of the N43.1 Standard regarding the management, technical and operational aspects of the RSS are described and condensed in this report. Clearly some aspects of the RSS policies and practices at different facilities may differ in order to meet the practical needs for field implementation. A previous report (Liu et al. 2001a), which reviews and summarizes the RSS at five North American high-energy accelerator facilities, as well as the RSS references for the 5 labs (Drozdoff 2001; Gallegos 1996; Ipe and Liu 1992; Liu 1999; Liu 2001b; Rokni 1996; TJNAF 1994; Yotam et al. 1991), can be consulted for the actual RSS implementation at various laboratories. A comprehensive report describing the RSS at the Stanford Linear Accelerator Center (SLAC 2006) can also serve as a reference.

  13. FPGA-accelerated adaptive optics wavefront control part II

    NASA Astrophysics Data System (ADS)

    Mauch, S.; Barth, A.; Reger, J.; Reinlein, C.; Appelfelder, M.; Beckert, E.

    2015-03-01

    We present progressive work that is based on our recently developed rapid control prototyping system (RCP), designed for the implementation of high-performance adaptive optical control algorithms using a continuous de-formable mirror (DM). The RCP system, presented in 2014, is resorting to a Xilinx Kintex-7 Field Programmable Gate Array (FPGA), placed on a self-developed PCIe card, and installed on a high-performance computer that runs a hard real-time Linux operating system. For this purpose, algorithms for the efficient evaluation of data from a Shack-Hartmann wavefront sensor (SHWFS) on an FPGA have been developed. The corresponding analog input and output cards are designed for exploiting the maximum possible performance while not being constrained to a specific DM and control algorithm due to the RCP approach. In this second part of our contribution, we focus on recent results that we achieved with this novel experimental setup. By presenting results which are far superior to the former ones, we further justify the deployment of the RCP system and its required time and resources. We conducted various experiments for revealing the effective performance, i.e. the maximum manageable complexity in the controller design that may be achieved in real-time without performance losses. A detailed analysis of the hidden latencies is carried out, showing that these latencies have been drastically reduced. In addition, a series of concepts relating the evaluation of the wavefront as well as designing and synthesizing a wavefront are thoroughly investigated with the goal to overcome some of the prevalent limitations. Furthermore, principal results regarding the closed-loop performance of the low-speed dynamics of the integrated heater in a DM concept are illustrated in detail; to be combined with the piezo-electric high-speed actuators in the next step

  14. Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints

    SciTech Connect

    Kmet', Tibor; Kmet'ova, Maria

    2009-09-09

    A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.

  15. A neural-network approach to robotic control

    NASA Technical Reports Server (NTRS)

    Graham, D. P. W.; Deleuterio, G. M. T.

    1993-01-01

    An artificial neural-network paradigm for the control of robotic systems is presented. The approach is based on the Cerebellar Model Articulation Controller created by James Albus and incorporates several extensions. First, recognizing the essential structure of multibody equations of motion, two parallel modules are used that directly reflect the dynamical characteristics of multibody systems. Second, the architecture of the proposed network is imbued with a self-organizational capability which improves efficiency and accuracy. Also, the networks can be arranged in hierarchical fashion with each subsequent network providing finer and finer resolution.

  16. A neural network controller for automated composite manufacturing

    NASA Technical Reports Server (NTRS)

    Lichtenwalner, Peter F.

    1994-01-01

    At McDonnell Douglas Aerospace (MDA), an artificial neural network based control system has been developed and implemented to control laser heating for the fiber placement composite manufacturing process. This neurocontroller learns an approximate inverse model of the process on-line to provide performance that improves with experience and exceeds that of conventional feedback control techniques. When untrained, the control system behaves as a proportional plus integral (PI) controller. However after learning from experience, the neural network feedforward control module provides control signals that greatly improve temperature tracking performance. Faster convergence to new temperature set points and reduced temperature deviation due to changing feed rate have been demonstrated on the machine. A Cerebellar Model Articulation Controller (CMAC) network is used for inverse modeling because of its rapid learning performance. This control system is implemented in an IBM compatible 386 PC with an A/D board interface to the machine.

  17. Cascade control and defense in complex networks.

    PubMed

    Motter, Adilson E

    2004-08-27

    Complex networks with a heterogeneous distribution of loads may undergo a global cascade of overload failures when highly loaded nodes or edges are removed due to attacks or failures. Since a small attack or failure has the potential to trigger a global cascade, a fundamental question regards the possible strategies of defense to prevent the cascade from propagating through the entire network. Here we introduce and investigate a costless strategy of defense based on a selective further removal of nodes and edges, right after the initial attack or failure. This intentional removal of network elements is shown to drastically reduce the size of the cascade. PMID:15447153

  18. VNEC - A Virtual Network Experiment Controller

    NASA Astrophysics Data System (ADS)

    Gagnon, François; Dej, Tomas; Esfandiari, Babak

    This paper presents VNEC, a tool to specify and execute network experiments in a virtual environment. The user first formulates the network topology and then provides the tasks that should be performed by the computers together with their execution. Next, VNEC initializes the environment by powering up and configuring the virtual machines to match the desired network topology. Finally, commands are dispatched to the right virtual machines in the specified order. VNEC provides an environment for several types of research experiments such as virus propagation patterns and reactions of different targets against a given attack.

  19. Control of coupled oscillator networks with application to microgrid technologies

    PubMed Central

    Skardal, Per Sebastian; Arenas, Alex

    2015-01-01

    The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies, we study the control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions—a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable synchronized state. The amount of control, that is, number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself. PMID:26601231

  20. Control of coupled oscillator networks with application to microgrid technologies.

    PubMed

    Skardal, Per Sebastian; Arenas, Alex

    2015-08-01

    The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies, we study the control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions-a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable synchronized state. The amount of control, that is, number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself. PMID:26601231

  1. Performance evaluation of power control algorithms in wireless cellular networks

    NASA Astrophysics Data System (ADS)

    Temaneh-Nyah, C.; Iita, V.

    2014-10-01

    Power control in a mobile communication network intents to control the transmission power levels in such a way that the required quality of service (QoS) for the users is guaranteed with lowest possible transmission powers. Most of the studies of power control algorithms in the literature are based on some kind of simplified assumptions which leads to compromise in the validity of the results when applied in a real environment. In this paper, a CDMA network was simulated. The real environment was accounted for by defining the analysis area and the network base stations and mobile stations are defined by their geographical coordinates, the mobility of the mobile stations is accounted for. The simulation also allowed for a number of network parameters including the network traffic, and the wireless channel models to be modified. Finally, we present the simulation results of a convergence speed based comparative analysis of three uplink power control algorithms.

  2. Adaptive synchronization and pinning control of colored networks

    NASA Astrophysics Data System (ADS)

    Wu, Zhaoyan; Xu, Xin-Jian; Chen, Guanrong; Fu, Xinchu

    2012-12-01

    A colored network model, corresponding to a colored graph in mathematics, is used for describing the complexity of some inter-connected physical systems. A colored network is consisted of colored nodes and edges. Colored nodes may have identical or nonidentical local dynamics. Colored edges between any pair of nodes denote not only the outer coupling topology but also the inner interactions. In this paper, first, synchronization of edge-colored networks is studied from adaptive control and pinning control approaches. Then, synchronization of general colored networks is considered. To achieve synchronization of a colored network to an arbitrarily given orbit, open-loop control, pinning control and adaptive coupling strength methods are proposed and tested, with some synchronization criteria derived. Finally, numerical examples are given to illustrate theoretical results.

  3. Connecting core percolation and controllability of complex networks.

    PubMed

    Jia, Tao; Pósfai, Márton

    2014-01-01

    Core percolation is a fundamental structural transition in complex networks related to a wide range of important problems. Recent advances have provided us an analytical framework of core percolation in uncorrelated random networks with arbitrary degree distributions. Here we apply the tools in analysis of network controllability. We confirm analytically that the emergence of the bifurcation in control coincides with the formation of the core and the structure of the core determines the control mode of the network. We also derive the analytical expression related to the controllability robustness by extending the deduction in core percolation. These findings help us better understand the interesting interplay between the structural and dynamical properties of complex networks. PMID:24946797

  4. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2007-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is converted into digital signals and transmitted to the controller. In some embodiments, network device interfaces associated with different data channels coordinate communications with the other interfaces based on either a transition in a command message sent by the bus controller or a synchronous clock signal.

  5. Autonomous Congestion Control in Delay-Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott; Jennings, Esther; Schoolcraft, Joshua

    2006-01-01

    Congestion control is an important feature that directly affects network performance. Network congestion may cause loss of data or long delays. Although this problem has been studied extensively in the Internet, the solutions for Internet congestion control do not apply readily to challenged network environments such as Delay Tolerant Networks (DTN) where end-to-end connectivity may not exist continuously and latency can be high. In DTN, end-to-end rate control is not feasible. This calls for congestion control mechanisms where the decisions can be made autonomously with local information only. We use an economic pricing model and propose a rule-based congestion control mechanism where each router can autonomously decide on whether to accept a bundle (data) based on local information such as available storage and the value and risk of accepting the bundle (derived from historical statistics). Preliminary experimental results show that this congestion control mechanism can protect routers from resource depletion without loss of data.

  6. Modern approaches to accelerator simulation and on-line control

    SciTech Connect

    Lee, M.; Clearwater, S.; Theil, E.; Paxson, V.

    1987-02-01

    COMFORT-PLUS consists of three parts: (1) COMFORT (Control Of Machine Function, ORbits, and Trajectories), which computes the machine lattice functions and transport matrices along a beamline; (2) PLUS (Prediction from Lattice Using Simulation) which finds or compensates for errors in the beam parameters or machine elements; and (3) a highly graphical interface to PLUS. The COMFORT-PLUS package has been developed on a SUN-3 workstation. The structure and use of COMFORT-PLUS are described, and an example of the use of the package is presented. (LEW)

  7. Artificial intelligence research in particle accelerator control systems for beam line tuning

    SciTech Connect

    Pieck, Martin

    2008-01-01

    Tuning particle accelerators is time consuming and expensive, with a number of inherently non-linear interactions between system components. Conventional control methods have not been successful in this domain and the result is constant and expensive monitoring of the systems by human operators. This is particularly true for the start-up and conditioning phase after a maintenance period or an unexpected fault. In turn, this often requires a step-by-step restart of the accelerator. Surprisingly few attempts have been made to apply intelligent accelerator control techniques to help with beam tuning, fault detection, and fault recovery problems. The reason for that might be that accelerator facilities are rare and difficult to understand systems that require detailed expert knowledge about the underlying physics as well as months if not years of experience to understand the relationship between individual components, particularly if they are geographically disjoint. This paper will give an overview about the research effort in the accelerator community that has been dedicated to the use of artificial intelligence methods for accelerator beam line tuning.

  8. Inhibition Controls Asynchronous States of Neuronal Networks

    PubMed Central

    Treviño, Mario

    2016-01-01

    Computations in cortical circuits require action potentials from excitatory and inhibitory neurons. In this mini-review, I first provide a quick overview of findings that indicate that GABAergic neurons play a fundamental role in coordinating spikes and generating synchronized network activity. Next, I argue that these observations helped popularize the notion that network oscillations require a high degree of spike correlations among interneurons which, in turn, produce synchronous inhibition of the local microcircuit. The aim of this text is to discuss some recent experimental and computational findings that support a complementary view: one in which interneurons participate actively in producing asynchronous states in cortical networks. This requires a proper mixture of shared excitation and inhibition leading to asynchronous activity between neighboring cells. Such contribution from interneurons would be extremely important because it would tend to reduce the spike correlation between neighboring pyramidal cells, a drop in redundancy that could enhance the information-processing capacity of neural networks. PMID:27274721

  9. Neural-Network Control Of Prosthetic And Robotic Hands

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M.

    1991-01-01

    Electronic neural networks proposed for use in controlling robotic and prosthetic hands and exoskeletal or glovelike electromechanical devices aiding intact but nonfunctional hands. Specific to patient, who activates grasping motion by voice command, by mechanical switch, or by myoelectric impulse. Patient retains higher-level control, while lower-level control provided by neural network analogous to that of miniature brain. During training, patient teaches miniature brain to perform specialized, anthropomorphic movements unique to himself or herself.

  10. NASA Integrated Network Monitor and Control Software Architecture

    NASA Technical Reports Server (NTRS)

    Shames, Peter; Anderson, Michael; Kowal, Steve; Levesque, Michael; Sindiy, Oleg; Donahue, Kenneth; Barnes, Patrick

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Space Communications and Navigation office (SCaN) has commissioned a series of trade studies to define a new architecture intended to integrate the three existing networks that it operates, the Deep Space Network (DSN), Space Network (SN), and Near Earth Network (NEN), into one integrated network that offers users a set of common, standardized, services and interfaces. The integrated monitor and control architecture utilizes common software and common operator interfaces that can be deployed at all three network elements. This software uses state-of-the-art concepts such as a pool of re-programmable equipment that acts like a configurable software radio, distributed hierarchical control, and centralized management of the whole SCaN integrated network. For this trade space study a model-based approach using SysML was adopted to describe and analyze several possible options for the integrated network monitor and control architecture. This model was used to refine the design and to drive the costing of the four different software options. This trade study modeled the three existing self standing network elements at point of departure, and then described how to integrate them using variations of new and existing monitor and control system components for the different proposed deployments under consideration. This paper will describe the trade space explored, the selected system architecture, the modeling and trade study methods, and some observations on useful approaches to implementing such model based trade space representation and analysis.

  11. Flux Control in Networks of Diffusion Paths

    SciTech Connect

    A. I. Zhmoginov and N. J. Fisch

    2009-07-08

    A class of optimization problems in networks of intersecting diffusion domains of a special form of thin paths has been considered. The system of equations describing stationary solutions is equivalent to an electrical circuit built of intersecting conductors. The solution of an optimization problem has been obtained and extended to the analogous electrical circuit. The interest in this network arises from, among other applications, an application to wave-particle diffusion through resonant interactions in plasma.

  12. Backstepping Control Augmented by Neural Networks For Robot Manipulators

    NASA Astrophysics Data System (ADS)

    Belkheiri, Mohammed; Boudjema, Farès

    2008-06-01

    A new control approach is proposed to address the tracking problem of robot manipulators. In this approach, one relies first on a partially known model to the system to be controlled using a backstepping control strategy. The obtained controller is then augmented by an online neural network that serves as an approximator for the neglected dynamics and modeling errors. The proposed approach is systematic, and exploits the known nonlinear dynamics to derive the stepwise virtual stabilizing control laws. At the final step, an augmented Lyapunov function is introduced to derive the adaptation laws of the network weights. The effectiveness of the proposed controller is demonstrated through computer simulation on PUMA 560 robot.

  13. Incipient fault detection and identification in process systems using accelerating neural network learning

    SciTech Connect

    Parlos, A.G.; Muthusami, J.; Atiya, A.F. . Dept. of Nuclear Engineering)

    1994-02-01

    The objective of this paper is to present the development and numerical testing of a robust fault detection and identification (FDI) system using artificial neural networks (ANNs), for incipient (slowly developing) faults occurring in process systems. The challenge in using ANNs in FDI systems arises because of one's desire to detect faults of varying severity, faults from noisy sensors, and multiple simultaneous faults. To address these issues, it becomes essential to have a learning algorithm that ensures quick convergence to a high level of accuracy. A recently developed accelerated learning algorithm, namely a form of an adaptive back propagation (ABP) algorithm, is used for this purpose. The ABP algorithm is used for the development of an FDI system for a process composed of a direct current motor, a centrifugal pump, and the associated piping system. Simulation studies indicate that the FDI system has significantly high sensitivity to incipient fault severity, while exhibiting insensitivity to sensor noise. For multiple simultaneous faults, the FDI system detects the fault with the predominant signature. The major limitation of the developed FDI system is encountered when it is subjected to simultaneous faults with similar signatures. During such faults, the inherent limitation of pattern-recognition-based FDI methods becomes apparent. Thus, alternate, more sophisticated FDI methods become necessary to address such problems. Even though the effectiveness of pattern-recognition-based FDI methods using ANNs has been demonstrated, further testing using real-world data is necessary.

  14. Investigating the feasibility of temperature-controlled accelerated drug release testing for an intravaginal ring.

    PubMed

    Externbrink, Anna; Clark, Meredith R; Friend, David R; Klein, Sandra

    2013-11-01

    The objective of the present study was to investigate if temperature can be utilized to accelerate drug release from Nuvaring®, a reservoir type intravaginal ring based on polyethylene vinyl acetate copolymer that releases a constant dose of contraceptive steroids over a duration of 3 weeks. The reciprocating holder apparatus (USP 7) was utilized to determine real-time and accelerated etonogestrel release from ring segments. It was demonstrated that drug release increased with increasing temperature which can be attributed to enhanced drug diffusion. An Arrhenius relationship of the zero-order release constants was established, indicating that temperature is a valid parameter to accelerate drug release from this dosage form and that the release mechanism is maintained under these accelerated test conditions. Accelerated release tests are particularly useful for routine quality control to assist during batch release of extended release formulations that typically release the active over several weeks, months or even years, since they can increase the product shelf life. The accelerated method should therefore be able to discriminate between formulations with different release characteristics that can result from normal manufacturing variance. In the case of Nuvaring®, it is well known that the process parameters during the extrusion process strongly influence the polymeric structure. These changes in the polymeric structure can affect the permeability which, in turn, is reflected in the release properties. Results from this study indicate that changes in the polymeric structure can lead to a different temperature dependence of the release rate, and as a consequence, the accelerated method can become less sensitive to detect changes in the release properties. When the accelerated method is utilized during batch release, it is therefore important to take this possible restriction into account and to evaluate the accelerated method with samples from non

  15. Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control

    USGS Publications Warehouse

    Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.

    1997-01-01

    One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.

  16. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses.

    PubMed

    Faure, J; Rechatin, C; Norlin, A; Lifschitz, A; Glinec, Y; Malka, V

    2006-12-01

    In laser-plasma-based accelerators, an intense laser pulse drives a large electric field (the wakefield) which accelerates particles to high energies in distances much shorter than in conventional accelerators. These high acceleration gradients, of a few hundreds of gigavolts per metre, hold the promise of compact high-energy particle accelerators. Recently, several experiments have shown that laser-plasma accelerators can produce high-quality electron beams, with quasi-monoenergetic energy distributions at the 100 MeV level. However, these beams do not have the stability and reproducibility that are required for applications. This is because the mechanism responsible for injecting electrons into the wakefield is based on highly nonlinear phenomena, and is therefore hard to control. Here we demonstrate that the injection and subsequent acceleration of electrons can be controlled by using a second laser pulse. The collision of the two laser pulses provides a pre-acceleration stage which provokes the injection of electrons into the wakefield. The experimental results show that the electron beams obtained in this manner are collimated (5 mrad divergence), monoenergetic (with energy spread <10 per cent), tuneable (between 15 and 250 MeV) and, most importantly, stable. In addition, the experimental observations are compatible with electron bunch durations shorter than 10 fs. We anticipate that this stable and compact electron source will have a strong impact on applications requiring short bunches, such as the femtolysis of water, or high stability, such as radiotherapy with high-energy electrons or radiography for materials science. PMID:17151663

  17. Muscle networks: Connectivity analysis of EMG activity during postural control.

    PubMed

    Boonstra, Tjeerd W; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F; Breakspear, Michael

    2015-01-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures. PMID:26634293

  18. Adaptive neural network motion control of manipulators with experimental evaluations.

    PubMed

    Puga-Guzmán, S; Moreno-Valenzuela, J; Santibáñez, V

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller. PMID:24574910

  19. Muscle networks: Connectivity analysis of EMG activity during postural control

    PubMed Central

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-01-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures. PMID:26634293

  20. Muscle networks: Connectivity analysis of EMG activity during postural control

    NASA Astrophysics Data System (ADS)

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-12-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.

  1. A high-performance network for a distributed-control system

    NASA Astrophysics Data System (ADS)

    Cuttone, G.; Aghion, F.; Giove, D.

    1989-04-01

    Local area networks play a central rule in modern distributed-control systems for accelerators. For a superconducting cyclotron under construction at the University of Milan, an optical Ethernet network has been implemented for the interconnection of multicomputer-based stations. Controller boards, with VLSI protocol chips, have been used. The higher levels of the ISO OSI model have been implemented to suit real-time control requirements. The experimental setup for measuring the data throughput between stations will be described. The effect of memory-to-memory data transfer with respect to the packet size has been studied for packets ranging from 200 bytes to 10 Kbytes. Results, showing the data throughput to range from 0.2 to 1.1 Mbit/s, will be discussed.

  2. Autonomous Congestion Control in Delay-Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.; Jennings, Esther H.

    2005-01-01

    Congestion control is an important feature that directly affects network performance. Network congestion may cause loss of data or long delays. Although this problem has been studied extensively in the Internet, the solutions for Internet congestion control do not apply readily to challenged network environments such as Delay Tolerant Networks (DTN) where end-to-end connectivity may not exist continuously and latency can be high. In DTN, end-to-end rate control is not feasible. This calls for congestion control mechanisms where the decisions can be made autonomously with local information only. We use an economic pricing model and propose a rule-based congestion control mechanism where each router can autonomously decide on whether to accept a bundle (data) based on local information such as available storage and the value and risk of accepting the bundle (derived from historical statistics).

  3. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  4. Implementations of learning control systems using neural networks

    NASA Technical Reports Server (NTRS)

    Sartori, Michael A.; Antsaklis, Panos J.

    1992-01-01

    The systematic storage in neural networks of prior information to be used in the design of various control subsystems is investigated. Assuming that the prior information is available in a certain form (namely, input/output data points and specifications between the data points), a particular neural network and a corresponding parameter design method are introduced. The proposed neural network addresses the issue of effectively using prior information in the areas of dynamical system (plant and controller) modeling, fault detection and identification, information extraction, and control law scheduling.

  5. The deep space network, volume 18. [Deep Space Instrumentation Facility, Ground Communication Facility, and Network Control System

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives, functions, and organization of the Deep Space Network are summarized. The Deep Space Instrumentation Facility, the Ground Communications Facility, and the Network Control System are described.

  6. Thermoelastic steam turbine rotor control based on neural network

    NASA Astrophysics Data System (ADS)

    Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.

    2015-12-01

    Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.

  7. Controllability and observability of Boolean networks arising from biology

    NASA Astrophysics Data System (ADS)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  8. Controllability and observability of Boolean networks arising from biology.

    PubMed

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems. PMID:25725640

  9. DC motor speed control using neural networks

    NASA Astrophysics Data System (ADS)

    Tai, Heng-Ming; Wang, Junli; Kaveh, Ashenayi

    1990-08-01

    This paper presents a scheme that uses a feedforward neural network for the learning and generalization of the dynamic characteristics for the starting of a dc motor. The goal is to build an intelligent motor starter which has a versatility equivalent to that possessed by a human operator. To attain a fast and safe starting from stall for a dc motor a maximum armature current should be maintained during the starting period. This can be achieved by properly adjusting the armature voltage. The network is trained to learn the inverse dynamics of the motor starting characteristics and outputs a proper armature voltage. Simulation was performed to demonstrate the feasibility and effectiveness of the model. This study also addresses the network performance as a function of the number of hidden units and the number of training samples. 1.

  10. Generalized control and data access at the LANSCE Accelerator Complex -- Gateway, migrators, and other servers

    SciTech Connect

    Schaller, S.C.; Oothoudt, M.A.

    1995-12-01

    All large accelerator control systems eventually outlast the technologies with which they were built. This has happened several times during the lifetime of the accelerators at Los Alamos in the LAMPF/PSR beam delivery complex. Most recently, the EPICS control system has been integrated with the existing LAMPF and PSR control systems. In this paper, the authors discuss the provisions that were made to provide uniform, and nearly transparent sharing of data among the three control systems. The data sharing mechanisms have now been in use during a very successful beam production period. They comment on the successes and failures of the project and indicate the control system properties that make such sharing possible.

  11. Energy scaling and reduction in controlling complex networks

    PubMed Central

    Chen, Yu-Zhong; Wang, Le-Zhi; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-01-01

    Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as determined by the structural controllability theory, there is a high probability that the energy will diverge. We develop a physical theory to explain the scaling behaviour through identification of the fundamental structural elements, the longest control chains (LCCs), that dominate the control energy. Based on the LCCs, we articulate a strategy to drastically reduce the control energy (e.g. in a large number of real-world networks). Owing to their structural nature, the LCCs may shed light on energy issues associated with control of nonlinear dynamical networks. PMID:27152220

  12. Energy scaling and reduction in controlling complex networks.

    PubMed

    Chen, Yu-Zhong; Wang, Le-Zhi; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-04-01

    Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as determined by the structural controllability theory, there is a high probability that the energy will diverge. We develop a physical theory to explain the scaling behaviour through identification of the fundamental structural elements, the longest control chains (LCCs), that dominate the control energy. Based on the LCCs, we articulate a strategy to drastically reduce the control energy (e.g. in a large number of real-world networks). Owing to their structural nature, the LCCs may shed light on energy issues associated with control of nonlinear dynamical networks. PMID:27152220

  13. The Life-Changing Magic of Nonlinearity in Network Control

    NASA Astrophysics Data System (ADS)

    Cornelius, Sean

    The proper functioning and reliability of many man-made and natural systems is fundamentally tied to our ability to control them. Indeed, applications as diverse as ecosystem management, emergency response and cell reprogramming all, at their heart, require us to drive a system to--or keep it in--a desired state. This process is complicated by the nonlinear dynamics inherent to most real systems, which has traditionally been viewed as the principle obstacle to their control. In this talk, I will discuss two ways in which nonlinearity turns this view on its head, in fact representing an asset to the control of complex systems. First, I will show how nonlinearity in the form of multistability allows one to systematically design control interventions that can deliberately induce ``reverse cascading failures'', in which a network spontaneously evolves to a desirable (rather than a failed) state. Second, I will show that nonlinearity in the form of time-varying dynamics unexpectedly makes temporal networks easier to control than their static counterparts, with the former enjoying dramatic and simultaneous reductions in all costs of control. This is true despite the fact that temporality tends to fragment a network's structure, disrupting the paths that allow the directly-controlled or ``driver'' nodes to communicate with the rest of the network. Taken together, these studies shed new light on the crucial role of nonlinearity in network control, and provide support to the idea we can control nonlinearity, rather than letting nonlinearity control us.

  14. Public authority control strategy for opinion evolution in social networks

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Xiong, Xi; Zhang, Minghong; Li, Wei

    2016-08-01

    This paper addresses the need to deal with and control public opinion and rumors. Existing strategies to control public opinion include degree, random, and adaptive bridge control strategies. In this paper, we use the HK model to present a public opinion control strategy based on public authority (PA). This means utilizing the influence of expert or high authority individuals whose opinions we control to obtain the optimum effect in the shortest time possible and thus reach a consensus of public opinion. Public authority (PA) is only influenced by individuals' attributes (age, economic status, and education level) and not their degree distribution; hence, in this paper, we assume that PA complies with two types of public authority distribution (normal and power-law). According to the proposed control strategy, our experiment is based on random, degree, and public authority control strategies in three different social networks (small-world, scale-free, and random) and we compare and analyze the strategies in terms of convergence time (T), final number of controlled agents (C), and comprehensive efficiency (E). We find that different network topologies and the distribution of the PA in the network can influence the final controlling effect. While the effect of PA strategy differs in different network topology structures, all structures achieve comprehensive efficiency with any kind of public authority distribution in any network. Our findings are consistent with several current sociological phenomena and show that in the process of public opinion/rumor control, considerable attention should be paid to high authority individuals.

  15. Public authority control strategy for opinion evolution in social networks.

    PubMed

    Chen, Xi; Xiong, Xi; Zhang, Minghong; Li, Wei

    2016-08-01

    This paper addresses the need to deal with and control public opinion and rumors. Existing strategies to control public opinion include degree, random, and adaptive bridge control strategies. In this paper, we use the HK model to present a public opinion control strategy based on public authority (PA). This means utilizing the influence of expert or high authority individuals whose opinions we control to obtain the optimum effect in the shortest time possible and thus reach a consensus of public opinion. Public authority (PA) is only influenced by individuals' attributes (age, economic status, and education level) and not their degree distribution; hence, in this paper, we assume that PA complies with two types of public authority distribution (normal and power-law). According to the proposed control strategy, our experiment is based on random, degree, and public authority control strategies in three different social networks (small-world, scale-free, and random) and we compare and analyze the strategies in terms of convergence time (T), final number of controlled agents (C), and comprehensive efficiency (E). We find that different network topologies and the distribution of the PA in the network can influence the final controlling effect. While the effect of PA strategy differs in different network topology structures, all structures achieve comprehensive efficiency with any kind of public authority distribution in any network. Our findings are consistent with several current sociological phenomena and show that in the process of public opinion/rumor control, considerable attention should be paid to high authority individuals. PMID:27586601

  16. Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.

    PubMed

    Zhang, Yanjun; Tao, Gang; Chen, Mou

    2016-09-01

    This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method. PMID:26285223

  17. Adaptive artificial neural network for autonomous robot control

    NASA Technical Reports Server (NTRS)

    Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.

    1992-01-01

    The topics are presented in viewgraph form and include: neural network controller for robot arm positioning with visual feedback; initial training of the arm; automatic recovery from cumulative fault scenarios; and error reduction by iterative fine movements.

  18. Recognition with self-control in neural networks

    NASA Astrophysics Data System (ADS)

    Lewenstein, Maciej; Nowak, Andrzej

    1989-10-01

    We present a theory of fully connected neural networks that incorporates mechanisms of dynamical self-control of recognition process. Using a functional integral technique, we formulate mean-field dynamics for such systems.

  19. Lightweight simulation of air traffic control using simple temporal networks

    NASA Technical Reports Server (NTRS)

    Knight, Russell

    2005-01-01

    We provide a formulation of the air traffic control problem and a solver for this problem that makes use of temporal constraint networks and simple geometric reasoning. We provide results showing that this approach is practical for realistic simulated problems.

  20. Delayed feedback control of synchronization in weakly coupled oscillator networks

    NASA Astrophysics Data System (ADS)

    Novičenko, Viktor

    2015-08-01

    We study control of synchronization in weakly coupled oscillator networks by using a phase-reduction approach. Starting from a general class of limit-cycle oscillators we derive a phase model, which shows that delayed feedback control changes effective coupling strengths and effective frequencies. We derive the analytical condition for critical control gain, where the phase dynamics of the oscillator becomes extremely sensitive to any perturbations. As a result the network can attain phase synchronization even if the natural interoscillatory couplings are small. In addition, we demonstrate that delayed feedback control can disrupt the coherent phase dynamic in synchronized networks. The validity of our results is illustrated on networks of diffusively coupled Stuart-Landau and FitzHugh-Nagumo models.

  1. Autonomous Congestion Control in Delay-Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott; Jennings, Esther; Schoolcraft, Joshua

    2006-01-01

    This presentation highlights communication congestion control in delay-tolerant networks (DTNs). Large-scale future space exploration will offer complex communication challenges that may be best addressed by establishing a network infrastructure. However, current internet techniques for congestion control are not well suited for operation of a network over interplanetary distances. An alternative, delay-tolerant technique for congestion control in a delay-tolerant network is presented. A simple DTN was constructed and an experimental congestion control mechanism was applied. The mechanism appeared to be effective and each router was able to make its bundle acceptance decisions autonomously. Future research will examine more complex topologies and alternative bundle acceptance rules that might enhance performance.

  2. Optimization of robustness of network controllability against malicious attacks

    NASA Astrophysics Data System (ADS)

    Xiao, Yan-Dong; Lao, Song-Yang; Hou, Lv-Lin; Bai, Liang

    2014-11-01

    As the controllability of complex networks has attracted much attention recently, how to design and optimize the robustness of network controllability has become a common and urgent problem in the engineering field. In this work, we propose a method that modifies any given network with strict structural perturbation to effectively enhance its robustness against malicious attacks, called dynamic optimization of controllability. Unlike other structural perturbations, the strict perturbation only swaps the links and keeps the in- and out-degree unchanged. A series of extensive experiments show that the robustness of controllability and connectivity can be improved dramatically. Furthermore, the effectiveness of our method is explained from the views of underlying structure. The analysis results indicate that the optimization algorithm makes networks more homogenous and assortative.

  3. Enhancing complex network controllability by minimum link direction reversal

    NASA Astrophysics Data System (ADS)

    Hou, Lvlin; Lao, Songyang; Small, Michael; Xiao, Yandong

    2015-07-01

    Controllability of complex networks has recently become one of the most popular research fields, but the importance of link direction for controllability has not been systematically considered. We propose a method to enhance controllability of a directed network by changing the direction of a small fraction of links while keeping the total number of links unchanged. The main idea of the method is to find candidate links based on the matching path. Extensive numerical simulation on many modeled networks demonstrates that this method is effective. Furthermore, we find that the nodes linked to candidate links have a distinct character, which provide us with a strategy to improve the controllability based on the local structure. Since the whole topology of many real networks is not visible and we only get some local structure information, this strategy is potentially more practical compared to those that demand complete topology information.

  4. On neural networks in identification and control of dynamic systems

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Hyland, David C.

    1993-01-01

    This paper presents a discussion of the applicability of neural networks in the identification and control of dynamic systems. Emphasis is placed on the understanding of how the neural networks handle linear systems and how the new approach is related to conventional system identification and control methods. Extensions of the approach to nonlinear systems are then made. The paper explains the fundamental concepts of neural networks in their simplest terms. Among the topics discussed are feed forward and recurrent networks in relation to the standard state-space and observer models, linear and nonlinear auto-regressive models, linear, predictors, one-step ahead control, and model reference adaptive control for linear and nonlinear systems. Numerical examples are presented to illustrate the application of these important concepts.

  5. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2009-01-01

    A communications system and method are provided for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is converted into digital signals and transmitted to the controller. Network device interfaces associated with different data channels can coordinate communications with the other interfaces based on either a transition in a command message sent by the bus controller or a synchronous clock signal.

  6. Multi-loop networked process control: a synchronized approach.

    PubMed

    Das, M; Ghosh, R; Goswami, B; Chandra, A K; Balasubramanian, R; Luksch, P; Gupta, A

    2009-01-01

    Modern day process control uses digital controllers which are based on the principle of distributed rather than centralized control. Distributing controllers, sensors and actuators across a plant entails considerable wiring which can be reduced substantially by integrating the components of a control loop over a network. The other advantages include greater flexibility and higher reliability with lower hardware redundancy. The controllers and sensors are on a network and can take over the function of a failed component automatically, without the need of manual reconfiguration, thus eliminating the need of having a redundant component for each and every component. Though elaborate techniques have been developed for Single Input Single Output (SISO) systems, the major challenge lies in extending these ideas to control a practical process plant where de-centralized control is actually achieved through control of individual SISO control loops derived through de-coupling of the original system. Multiple loops increase network load and hence the sampling times associated with the control loops and makes synchronization difficult. This paper presents a methodology by which network based process control can be applied to practical process plants, with a simple direct synchronization mechanism. PMID:19028386

  7. Data acquisition, control, and analysis for the Argonne Advanced Accelerator Test Facility (AATF)

    SciTech Connect

    Schoessow, P.

    1989-01-01

    The AATF has been used to study wakefield acceleration and focusing in plasmas and rf structures. A PC-based system is described which incorporates the functions of beamline control and acquisition, storage, and preliminary analysis of video images from luminescent screen beam diagnostics. General features of the offline analysis of wakefield data are also discussed. 4 refs., 3 figs.

  8. 49 CFR 571.124 - Standard No. 124; Accelerator control systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE SAFETY STANDARDS Federal Motor Vehicle Safety Standards § 571.124 Standard No. 124; Accelerator control systems. S1. Scope. This standard establishes requirements for the return of a vehicle's throttle to the idle position...

  9. 49 CFR 571.124 - Standard No. 124; Accelerator control systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE SAFETY STANDARDS Federal Motor Vehicle Safety Standards § 571.124 Standard No. 124; Accelerator control systems. S1. Scope. This standard establishes requirements for the return of a vehicle's throttle to the idle position...

  10. 49 CFR 571.124 - Standard No. 124; Accelerator control systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Standard No. 124; Accelerator control systems. 571.124 Section 571.124 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE SAFETY STANDARDS Federal Motor Vehicle Safety Standards...

  11. 49 CFR 571.124 - Standard No. 124; Accelerator control systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE SAFETY STANDARDS Federal Motor Vehicle Safety Standards § 571.124 Standard No. 124; Accelerator control systems. S1. Scope. This standard establishes requirements for the return of a vehicle's throttle to the idle position...

  12. Control range: a controllability-based index for node significance in directed networks

    NASA Astrophysics Data System (ADS)

    Wang, Bingbo; Gao, Lin; Gao, Yong

    2012-04-01

    While a large number of methods for module detection have been developed for undirected networks, it is difficult to adapt them to handle directed networks due to the lack of consensus criteria for measuring the node significance in a directed network. In this paper, we propose a novel structural index, the control range, motivated by recent studies on the structural controllability of large-scale directed networks. The control range of a node quantifies the size of the subnetwork that the node can effectively control. A related index, called the control range similarity, is also introduced to measure the structural similarity between two nodes. When applying the index of control range to several real-world and synthetic directed networks, it is observed that the control range of the nodes is mainly influenced by the network's degree distribution and that nodes with a low degree may have a high control range. We use the index of control range similarity to detect and analyze functional modules in glossary networks and the enzyme-centric network of homo sapiens. Our results, as compared with other approaches to module detection such as modularity optimization algorithm, dynamic algorithm and clique percolation method, indicate that the proposed indices are effective and practical in depicting structural and modular characteristics of sparse directed networks.

  13. Adaptive Quality of Transmission Control in Elastic Optical Network

    NASA Astrophysics Data System (ADS)

    Cai, Xinran

    Optical fiber communication is becoming increasingly important due to the burgeoning demand in the internet capacity. However, traditional wavelength division multiplexing (WDM) technique fails to address such demand because of its inefficient spectral utilization. As a result, elastic optical networking (EON) has been under extensive investigation recently. Such network allows sub-wavelength and super-wavelength channel accommodation, and mitigates the stranded bandwidth problem in the WDM network. In addition, elastic optical network is also able to dynamically allocate the spectral resources of the network based on channel conditions and impairments, and adaptively control the quality of transmission of a channel. This application requires two aspects to be investigated: an efficient optical performance monitoring scheme and networking control and management algorithms to reconfigure the network in a dynamic fashion. This thesis focuses on the two aspects discussed above about adaptive QoT control. We demonstrated a supervisory channel method for optical signal to noise ratio (OSNR) and chromatic dispersion (CD) monitoring. In addition, our proof-of-principle testbed experiments show successful impairment aware reconfiguration of the network with modulation format switching (MFS) only and MFS combined with lightpath rerouting (LR) for hundred-GHz QPSK superchannels undergoing time-varying OSNR impairment.

  14. A novel beam focus control at the entrance to the ANU 14UD accelerator

    NASA Astrophysics Data System (ADS)

    De Cesare, M.; Weisser, D. C.; Fifield, L. K.; Tunningley, T. B.; Lobanov, N. R.

    2013-12-01

    Tandem electrostatic accelerators often require the flexibility to operate at variety of terminal voltages to cater for various user needs. However beam transmission will only be optimal for a limited range of terminal voltages. This paper describes a focussing system that greatly expands the range of terminal voltages for optimal transmission. This is achieved by controlling the gradient of the entrance of the low-energy tube providing an additional controllable focusing element. Up to 150 kV is applied to the fifth electrode of the first unit of the accelerator tube giving control of the tube entrance lens strength. Beam tests to confirm the efficacy of the lens have been performed. These tests demonstrate that the entrance lens control eliminates the need to short out sections of the tube for low terminal voltage operation.

  15. Wireless sensor network for streetlight monitoring and control

    NASA Astrophysics Data System (ADS)

    Huang, Xin-Ming; Ma, Jing; Leblanc, Lawrence E.

    2004-08-01

    Wireless sensor network has attracted considerable research attention as the world becomes more information oriented. This technology provides an opportunity of innovations in traditional industries. Management and control of streetlight system is a labor-intensive high-cost task for public facility operations. This paper applies wireless sensor network technology in streetlight monitoring and control. Wireless sensor networks are employed to replace traditional physical patrol maintenance and manual switching on every lamp in the street or along the highway at the aim of reducing the maintenance and management expense. Active control is used to preserve energy cost while ensuring public safety. A proof-of-concept network architecture operated at 900 MHz industrial, scientific, and medical (ISM) band is designed for a two-way wireless telemetry system in streetlight remote control and monitoring. The radio architecture, multi-hop protocol and system interface are discussed in detail. MOTES sensor nodes are used in simulation and experimental tests. Simulation results show that the sensor network approach provides an efficient solution to monitor and control lighting infrastructures through wireless links. The unique application in this paper addresses an immediate need in streetlight control and monitoring, the architecture developed in this research could also serve as a platform for many other applications and researches in wireless sensor network.

  16. Quality of service policy control in virtual private networks

    NASA Astrophysics Data System (ADS)

    Yu, Yiqing; Wang, Hongbin; Zhou, Zhi; Zhou, Dongru

    2004-04-01

    This paper studies the QoS of VPN in an environment where the public network prices connection-oriented services based on source, destination and grade of service, and advertises these prices to its VPN customers (users). As different QoS technologies can produce different QoS, there are according different traffic classification rules and priority rules. The internet service provider (ISP) may need to build complex mechanisms separately for each node. In order to reduce the burden of network configuration, we need to design policy control technologies. We considers mainly directory server, policy server, policy manager and policy enforcers. Policy decision point (PDP) decide its control according to policy rules. In network, policy enforce point (PEP) decide its network controlled unit. For InterServ and DiffServ, we will adopt different policy control methods as following: (1) In InterServ, traffic uses resource reservation protocol (RSVP) to guarantee the network resource. (2) In DiffServ, policy server controls the DiffServ code points and per hop behavior (PHB), its PDP distributes information to each network node. Policy server will function as following: information searching; decision mechanism; decision delivering; auto-configuration. In order to prove the effectiveness of QoS policy control, we make the corrective simulation.

  17. STIMULUS: End-System Network Interface Controller for 100 Gb/s Wide Area Networks

    SciTech Connect

    Zarkesh-Ha, Payman

    2014-09-12

    The main goal of this research grant is to develop a system-level solution leveraging novel technologies that enable network communications at 100 Gb/s or beyond. University of New Mexico in collaboration with Acadia Optronics LLC has been working on this project to develop the 100 Gb/s Network Interface Controller (NIC) under this Department of Energy (DOE) grant.

  18. Prediction and control of chaotic processes using nonlinear adaptive networks

    SciTech Connect

    Jones, R.D.; Barnes, C.W.; Flake, G.W.; Lee, K.; Lewis, P.S.; O'Rouke, M.K.; Qian, S.

    1990-01-01

    We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We then present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series, tidal prediction in Venice lagoon, finite differencing, sonar transient detection, control of nonlinear processes, control of a negative ion source, balancing a double inverted pendulum and design advice for free electron lasers and laser fusion targets.

  19. Development of a remote control console for the HHIRF 25-MV tandem accelerator

    SciTech Connect

    Hasanul Basher, A.M.

    1991-09-01

    The CAMAC-based control system for the 25-MV Tandem Accelerator at HHIRF uses two Perkin-Elmer, 32-bit minicomputers: a message-switching computer and a supervisory computer. Two operator consoles are located on one of the six serial highways. Operator control is provided by means of a console CRT, trackball, assignable shaft encoders and meters. The message-switching computer transmits and receives control information on the serial highways. At present, the CRT pages with updated parameters can be displayed and parameters can be controlled only from the two existing consoles, one in the Tandem control room and the other in the ORIC control room. It has become necessary to expand the control capability to several other locations in the building. With the expansion of control and monitoring capability of accelerator parameters to other locations, the operators will be able to control and observe the result of the control action at the same time. Since the new control console will be PC-based, the existing page format will be changed. The PC will be communicating with the Perkin-Elmer through RS-232 and a communication software package. Hardware configuration has been established, a communication software program that reads the pages from the shared memory has been developed. In this paper, we present the implementation strategy, works completed, existing and new page format, future action plans, explanation of pages and use of related global variables, a sample session, and flowcharts.

  20. A remote control console for the HHIRF 25-MV Tandem Accelerator

    SciTech Connect

    Hasanul Basher, A.M.

    1993-09-01

    The CAMAC-based control system for the 25-MV Tandem Accelerator at HHIRF uses two Perkin-Elmer, 32-bit minicomputers: a message-switching computer and a supervisory computer. Two operator consoles are located on one of the six serial highways. Operator control is provided by means of a console CRT, trackball, assignable shaft encoders, and meters. The message-switching computer transmits and receives control information on the serial highways. At present, the CRT pages with updated parameters can be displayed and parameters can be controlled only from the two existing consoles, one in the Tandem control room and the other in the ORIC control room. It has become necessary to expand the control capability to several other locations in the building. With the expansion of control and monitoring capability of accelerator parameters to other locations, the operators will be able to control and observe the result of the control action at the same time. This capability will be useful in the new Radioactive Ion Beam project of the division. Since the new control console will be PC-based, the existing page format will be changed. The PC will be communicating with the Perkin-Elmer through RS-232 with the aid of a communication protocol. Hardware configuration has been established, a software program that reads the pages from the shared memory, and a communication protocol have been developed. The following sections present the implementation strategy, work completed, future action plans, and the functional details of the communication protocol.

  1. Stabilization of Gyrotron Frequency by PID Feedback Control on the Acceleration Voltage

    NASA Astrophysics Data System (ADS)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Tatematsu, Y.; Yamaguchi, Y.; Matsuki, Y.; Fujiwara, T.

    2015-12-01

    The results of frequency stabilization by proportional-integral-derivative (PID) feedback control of acceleration voltage in the 460-GHz Gyrotron FU CW GVI (the official name in Osaka University is Gyrotron FU CW GOI) are presented. The experiment was organized on the basis of the frequency modulation by modulation of acceleration voltage of beam electrons. The frequency stabilization during 10 h experiment was better than 10-6, which is compared with the results of the frequency deviation in free-running gyrotron operation.

  2. Network Cosmology

    PubMed Central

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S.; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology. PMID:23162688

  3. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  4. Extrinsic and Intrinsic Brain Network Connectivity Maintains Cognition across the Lifespan Despite Accelerated Decay of Regional Brain Activation

    PubMed Central

    Henson, Richard N.A.; Tyler, Lorraine K.; Razi, Adeel; Geerligs, Linda; Ham, Timothy E.; Rowe, James B.

    2016-01-01

    The maintenance of wellbeing across the lifespan depends on the preservation of cognitive function. We propose that successful cognitive aging is determined by interactions both within and between large-scale functional brain networks. Such connectivity can be estimated from task-free functional magnetic resonance imaging (fMRI), also known as resting-state fMRI (rs-fMRI). However, common correlational methods are confounded by age-related changes in the neurovascular signaling. To estimate network interactions at the neuronal rather than vascular level, we used generative models that specified both the neural interactions and a flexible neurovascular forward model. The networks' parameters were optimized to explain the spectral dynamics of rs-fMRI data in 602 healthy human adults from population-based cohorts who were approximately uniformly distributed between 18 and 88 years (www.cam-can.com). We assessed directed connectivity within and between three key large-scale networks: the salience network, dorsal attention network, and default mode network. We found that age influences connectivity both within and between these networks, over and above the effects on neurovascular coupling. Canonical correlation analysis revealed that the relationship between network connectivity and cognitive function was age-dependent: cognitive performance relied on neural dynamics more strongly in older adults. These effects were driven partly by reduced stability of neural activity within all networks, as expressed by an accelerated decay of neural information. Our findings suggest that the balance of excitatory connectivity between networks, and the stability of intrinsic neural representations within networks, changes with age. The cognitive function of older adults becomes increasingly dependent on these factors. SIGNIFICANCE STATEMENT Maintaining cognitive function is critical to successful aging. To study the neural basis of cognitive function across the lifespan, we studied a

  5. Space Network Control Conference on Resource Allocation Concepts and Approaches

    NASA Technical Reports Server (NTRS)

    Moe, Karen L. (Editor)

    1991-01-01

    The results are presented of the Space Network Control (SNC) Conference. In the late 1990s, when the Advanced Tracking and Data Relay Satellite System is operational, Space Network communication services will be supported and controlled by the SNC. The goals of the conference were to survey existing resource allocation concepts and approaches, to identify solutions applicable to the Space Network, and to identify avenues of study in support of the SNC development. The conference was divided into three sessions: (1) Concepts for Space Network Allocation; (2) SNC and User Payload Operations Control Center (POCC) Human-Computer Interface Concepts; and (3) Resource Allocation Tools, Technology, and Algorithms. Key recommendations addressed approaches to achieving higher levels of automation in the scheduling process.

  6. A global spacecraft control network for spacecraft autonomy research

    NASA Technical Reports Server (NTRS)

    Kitts, Christopher A.

    1996-01-01

    The development and implementation of the Automated Space System Experimental Testbed (ASSET) space operations and control network, is reported on. This network will serve as a command and control architecture for spacecraft operations and will offer a real testbed for the application and validation of advanced autonomous spacecraft operations strategies. The proposed network will initially consist of globally distributed amateur radio ground stations at locations throughout North America and Europe. These stations will be linked via Internet to various control centers. The Stanford (CA) control center will be capable of human and computer based decision making for the coordination of user experiments, resource scheduling and fault management. The project's system architecture is described together with its proposed use as a command and control system, its value as a testbed for spacecraft autonomy research, and its current implementation.

  7. On controlling networks of limit-cycle oscillators

    NASA Astrophysics Data System (ADS)

    Skardal, Per Sebastian; Arenas, Alex

    2016-09-01

    The control of network-coupled nonlinear dynamical systems is an active area of research in the nonlinear science community. Coupled oscillator networks represent a particularly important family of nonlinear systems, with applications ranging from the power grid to cardiac excitation. Here, we study the control of network-coupled limit cycle oscillators, extending the previous work that focused on phase oscillators. Based on stabilizing a target fixed point, our method aims to attain complete frequency synchronization, i.e., consensus, by applying control to as few oscillators as possible. We develop two types of controls. The first type directs oscillators towards larger amplitudes, while the second does not. We present numerical examples of both control types and comment on the potential failures of the method.

  8. Neural Network Control of a Magnetically Suspended Rotor System

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Brown, Gerald; Johnson, Dexter

    1997-01-01

    Abstract Magnetic bearings offer significant advantages because of their noncontact operation, which can reduce maintenance. Higher speeds, no friction, no lubrication, weight reduction, precise position control, and active damping make them far superior to conventional contact bearings. However, there are technical barriers that limit the application of this technology in industry. One of them is the need for a nonlinear controller that can overcome the system nonlinearity and uncertainty inherent in magnetic bearings. This paper discusses the use of a neural network as a nonlinear controller that circumvents system nonlinearity. A neural network controller was well trained and successfully demonstrated on a small magnetic bearing rig. This work demonstrated the feasibility of using a neural network to control nonlinear magnetic bearings and systems with unknown dynamics.

  9. Distributed control architecture of high-speed networks

    NASA Astrophysics Data System (ADS)

    Cidon, Israel; Gopal, Inder; Kaplan, Marc A.; Kutten, Shay

    1995-05-01

    A control architecture for a high-speed packet-switched network is described. The architecture was designed and implemented as part of the PARIS (subsequently plaNET and BBNS) networking project at IBM. This high bandwidth network for integrated communication (data, voice, video) is currently operational as a laboratory prototype. It will also be deployed within the AURORA Testbed that is part of the NSF/DARPA gigabit networking program. The high bandwidth dictates the need for specialized hardware to support faster packet handling for both point-to-point and multicast connections. A faster and more efficient network control is also required in order to support the increased number of connections and their changing requirements with time. The new network control architecture presented exploits specialized hardware, thereby enabling tasks to be performed faster and with less computation overhead. In particular, since control information can be distributed quickly using hardware packet handling mechanisms, decisions can be made based upon more complete and accurate information. In some respects, this has the effect of having the benefits of centralized control (e.g., easier bandwidth resource allocation to connections), while retaining the fault tolerance and scalability of a distributed architecture.

  10. Constrained off-line synthesis approach of model predictive control for networked control systems with network-induced delays.

    PubMed

    Tang, Xiaoming; Qu, Hongchun; Wang, Ping; Zhao, Meng

    2015-03-01

    This paper investigates the off-line synthesis approach of model predictive control (MPC) for a class of networked control systems (NCSs) with network-induced delays. A new augmented model which can be readily applied to time-varying control law, is proposed to describe the NCS where bounded deterministic network-induced delays may occur in both sensor to controller (S-A) and controller to actuator (C-A) links. Based on this augmented model, a sufficient condition of the closed-loop stability is derived by applying the Lyapunov method. The off-line synthesis approach of model predictive control is addressed using the stability results of the system, which explicitly considers the satisfaction of input and state constraints. Numerical example is given to illustrate the effectiveness of the proposed method. PMID:25538025

  11. A Hybrid Authentication and Authorization Process for Control System Networks

    SciTech Connect

    Manz, David O.; Edgar, Thomas W.; Fink, Glenn A.

    2010-08-25

    Convergence of control system and IT networks require that security, privacy, and trust be addressed. Trust management continues to plague traditional IT managers and is even more complex when extended into control system networks, with potentially millions of entities, a mission that requires 100% availability. Yet these very networks necessitate a trusted secure environment where controllers and managers can be assured that the systems are secure and functioning properly. We propose a hybrid authentication management protocol that addresses the unique issues inherent within control system networks, while leveraging the considerable research and momentum in existing IT authentication schemes. Our hybrid authentication protocol for control systems provides end device to end device authentication within a remote station and between remote stations and control centers. Additionally, the hybrid protocol is failsafe and will not interrupt communication or control of vital systems in a network partition or device failure. Finally, the hybrid protocol is resilient to transitory link loss and can operate in an island mode until connectivity is reestablished.

  12. Control of laser-wakefield acceleration by the plasma-density profile.

    PubMed

    Pukhov, A; Kostyukov, I

    2008-02-01

    We show that both the maximum energy gain and the accelerated beam quality can be efficiently controlled by the plasma-density profile. Choosing a proper density gradient one can uplift the dephasing limitation and keep the phase synchronism between the bunch of relativistic particles and the plasma wave over extended distances. Putting electrons into the n th wake period behind the driving laser pulse, the maximum energy gain is increased by the factor, which is proportional to n, over that in the case of uniform plasma. Layered plasma is suggested to keep the resonant condition for laser-wakefield excitation. The acceleration is limited then by laser depletion rather than by dephasing. Further, we show that the natural energy spread of the particle bunch acquired at the acceleration stage can be effectively removed by a matched deceleration stage, where a larger plasma density is used. PMID:18352081

  13. The evolution of tooling, techniques, and quality control for accelerator dipole magnet cables

    SciTech Connect

    Scanlan, R.M.

    1992-08-01

    The present generation of particle accelerators are utilizing the flattened, compacted, single layer cable design introduced nearly 20 years ago at Rutherford Laboratory. However, the requirements for current density, filament size, dimensional control long lengths, and low current degradation are much more stringent for the present accelerators compared with the earlier Tevatron and HERA accelerators. Also, in order to achieve higher field strengths with efficient use of superconductor, the new designs require wider cables with more strands. These requirements have stimulated an active research effort which has led to significant improvements in critical current density and conductor manufacturing. In addition they have stimulated the development of new cabling techniques, improved tooling, and better measurement techniques. The need to produce over 20 million meters of cable has led to the development of high speed cabling machines and on-line quality assurance measurements. These new developments will be discussed, and areas still requiring improvement will be identified.

  14. Emergence of complexity in controlling simple regular networks

    NASA Astrophysics Data System (ADS)

    Gao, Xin-Dong; Shen, Zhesi; Wang, Wen-Xu

    2016-06-01

    Quantifying the capacity of a given node or a bunch of nodes in maintaining a system's controllability is a crucial problem in complex networks and control theory. We give a systematic analysis of the ability of a single node or a pairs of nodes to control an undirected unweighted chain and ring. By combining algebraic theory and graph spectrum analysis, we derive analytic expressions for the control range of some given control inputs and find that complex phenomena emerge even from these simplest graph structures. Specifically, the control range is sensitive to the location of driver nodes and shows complex periodic behaviors. Our findings have implications for evaluating the control range and practically controlling complex networks.

  15. A GPU-accelerated cortical neural network model for visually guided robot navigation.

    PubMed

    Beyeler, Michael; Oros, Nicolas; Dutt, Nikil; Krichmar, Jeffrey L

    2015-12-01

    Humans and other terrestrial animals use vision to traverse novel cluttered environments with apparent ease. On one hand, although much is known about the behavioral dynamics of steering in humans, it remains unclear how relevant perceptual variables might be represented in the brain. On the other hand, although a wealth of data exists about the neural circuitry that is concerned with the perception of self-motion variables such as the current direction of travel, little research has been devoted to investigating how this neural circuitry may relate to active steering control. Here we present a cortical neural network model for visually guided navigation that has been embodied on a physical robot exploring a real-world environment. The model includes a rate based motion energy model for area V1, and a spiking neural network model for cortical area MT. The model generates a cortical representation of optic flow, determines the position of objects based on motion discontinuities, and combines these signals with the representation of a goal location to produce motor commands that successfully steer the robot around obstacles toward the goal. The model produces robot trajectories that closely match human behavioral data. This study demonstrates how neural signals in a model of cortical area MT might provide sufficient motion information to steer a physical robot on human-like paths around obstacles in a real-world environment, and exemplifies the importance of embodiment, as behavior is deeply coupled not only with the underlying model of brain function, but also with the anatomical constraints of the physical body it controls. PMID:26494281

  16. Multi-cavity complex controller with vector simulator for TESLA technology linear accelerator

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.; Szewinski, Jaroslaw

    2008-01-01

    A digital control, as the main part of the Low Level RF system, for superconducting cavities of a linear accelerator is presented. The FPGA based controller, supported by MATLAB system, was developed to investigate a novel firmware implementation. The complex control algorithm based on the non-linear system identification is the proposal verified by the preliminary experimental results. The general idea is implemented as the Multi-Cavity Complex Controller (MCC) and is still under development. The FPGA based controller executes procedure according to the prearranged control tables: Feed-Forward, Set-Point and Corrector unit, to fulfill the required cavity performance: driving in the resonance during filling and field stabilization for the flattop range. Adaptive control algorithm is applied for the feed-forward and feedback modes. The vector Simulator table has been introduced for an efficient verification of the FPGA controller structure. Experimental results of the internal simulation, are presented for a cavity representative condition.

  17. FIPA agent based network distributed control system

    SciTech Connect

    D. Abbott; V. Gyurjyan; G. Heyes; E. Jastrzembski; C. Timmer; E. Wolin

    2003-03-01

    A control system with the capabilities to combine heterogeneous control systems or processes into a uniform homogeneous environment is discussed. This dynamically extensible system is an example of the software system at the agent level of abstraction. This level of abstraction considers agents as atomic entities that communicate to implement the functionality of the control system. Agents' engineering aspects are addressed by adopting the domain independent software standard, formulated by FIPA. Jade core Java classes are used as a FIPA specification implementation. A special, lightweight, XML RDFS based, control oriented, ontology markup language is developed to standardize the description of the arbitrary control system data processor. Control processes, described in this language, are integrated into the global system at runtime, without actual programming. Fault tolerance and recovery issues are also addressed.

  18. Comparison of congestion controls for data services on ATM networks

    NASA Astrophysics Data System (ADS)

    Choi, Yonshik; Campbell, Graham

    1999-11-01

    The Internet consists of a network of networks. Internet users and service provides want to provide and receive multiple services. The legacy networks till now have provided narrow bandwidth that has restricted the range of services. Asynchronous Transfer Mode (ATM) can simultaneously deliver multiple services over one network and today ATM has become a component of the Internet. An ATM switch can deliver current Internet data using UBR or ABR services. Unspecified Bit Rate (UBR) using AAL5 is the most common offering these days for data transport. Because UBR does not guarantee any QoS categories and it is a `best effort' service, cell-discarding protocols must coexist. Congestion control is always a host topic for data networks. In data networks many flow mechanisms to resolve network congestion have been proposed. Cell loss is one of the most important and critical categories for traffic management of data networking. We compare the well-known Early Packet Discard for UBR with Quantum Flow Control for ABR services with TCP over ATM. Simulation results are provided that allow a comparison of both techniques.

  19. The Datacon Master -- Renovation of a Datacon field bus communications system for accelerator control

    SciTech Connect

    Kerner, T.M.

    1995-05-01

    The Datacon system is a serial coaxial transformer isolated communication field bus system used to control and monitor accelerator remote devices. The Datacon field bus has been a BNL accelerator standard since its initial use in 1965. A single Datacon field bus supports up to 256 devices on a multidrop RG62A/U coaxial cable with up to 33 devices or 2,000 feet between repeaters or buffered branches. The forcing factor to renovate was the inability to repair the aging PDP-8E and PDP10 computers. The maintenance on this aging system was costly and the large number of accelerator devices dependent on the Datacon system could not be converted in a reasonable period of time to a new modern field bus. A commercial VMEbus host CPU mated with a custom designed VMEbus SBC event driven serial communications engine featuring a superscaler RISC 32-bit Intel i960 CPU met the design challenge. The commercial VMEbus host runs the VxWorks real-time operating system and connects to UNIX workstations over a Ethernet LAN. The V110 Datacon Master is the custom designed front end computer that integrates an accelerator event time line system with accelerator devices for up to 8 ppm users adding new capabilities.

  20. Economical launching and accelerating control strategy for a single-shaft parallel hybrid electric bus

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Song, Jian; Li, Liang; Li, Shengbo; Cao, Dongpu

    2016-08-01

    This paper presents an economical launching and accelerating mode, including four ordered phases: pure electrical driving, clutch engagement and engine start-up, engine active charging, and engine driving, which can be fit for the alternating conditions and improve the fuel economy of hybrid electric bus (HEB) during typical city-bus driving scenarios. By utilizing the fast response feature of electric motor (EM), an adaptive controller for EM is designed to realize the power demand during the pure electrical driving mode, the engine starting mode and the engine active charging mode. Concurrently, the smoothness issue induced by the sequential mode transitions is solved with a coordinated control logic for engine, EM and clutch. Simulation and experimental results show that the proposed launching and accelerating mode and its control methods are effective in improving the fuel economy and ensure the drivability during the fast transition between the operation modes of HEB.

  1. Temporal modulation of collective cell behavior controls vascular network topology

    PubMed Central

    Kur, Esther; Kim, Jiha; Tata, Aleksandra; Comin, Cesar H; Harrington, Kyle I; Costa, Luciano da F; Bentley, Katie; Gu, Chenghua

    2016-01-01

    Vascular network density determines the amount of oxygen and nutrients delivered to host tissues, but how the vast diversity of densities is generated is unknown. Reiterations of endothelial-tip-cell selection, sprout extension and anastomosis are the basis for vascular network generation, a process governed by the VEGF/Notch feedback loop. Here, we find that temporal regulation of this feedback loop, a previously unexplored dimension, is the key mechanism to determine vascular density. Iterating between computational modeling and in vivo live imaging, we demonstrate that the rate of tip-cell selection determines the length of linear sprout extension at the expense of branching, dictating network density. We provide the first example of a host tissue-derived signal (Semaphorin3E-Plexin-D1) that accelerates tip cell selection rate, yielding a dense network. We propose that temporal regulation of this critical, iterative aspect of network formation could be a general mechanism, and additional temporal regulators may exist to sculpt vascular topology. DOI: http://dx.doi.org/10.7554/eLife.13212.001 PMID:26910011

  2. Role extraction in complex networks and its application in control of networks

    NASA Astrophysics Data System (ADS)

    Zhou, Mingyang; He, Xingsheng; Fu, Zhongqian; Zhuo, Zhao

    2016-01-01

    Given a large network, dynamics of the network are determined by both nodes' features and network connections. Some features could be extracted from node labels and other kinds of priori knowledge. But how to perform the feature classification without priori knowledge is a challenge. This paper addresses the key problem: how do we conduct role extraction in networks with only edge connections known? On the basis of behavior differences in dynamics, nodes are classified into three role groups: Leaders(L), Communicators(C) and Members(M). Unlike traditional community detections, we detect overlapping communities by link clustering first and then classify nodes according to the community entropy, which describes the disorder of how many different communities a node connects to. We propose a time saving and unsupervised learning approach for automatically discovering nodes' roles based solely on network topology. The effectiveness of this method is demonstrated on six real-world networks through pinning control. By controlling communicator nodes, the controllability is enhanced and the cost for control is reduced obviously in networks with strong community structure.

  3. Speech networks at rest and in action: interactions between functional brain networks controlling speech production

    PubMed Central

    Fuertinger, Stefan

    2015-01-01

    Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce. We combined seed-based interregional correlation analysis with graph theoretical analysis of functional MRI data during the resting state and sentence production in healthy subjects to investigate the interface and topology of functional networks originating from the key brain regions controlling speech, i.e., the laryngeal/orofacial motor cortex, inferior frontal and superior temporal gyri, supplementary motor area, cingulate cortex, putamen, and thalamus. During both resting and speaking, the interactions between these networks were bilaterally distributed and centered on the sensorimotor brain regions. However, speech production preferentially recruited the inferior parietal lobule (IPL) and cerebellum into the large-scale network, suggesting the importance of these regions in facilitation of the transition from the resting state to speaking. Furthermore, the cerebellum (lobule VI) was the most prominent region showing functional influences on speech-network integration and segregation. Although networks were bilaterally distributed, interregional connectivity during speaking was stronger in the left vs. right hemisphere, which may have underlined a more homogeneous overlap between the examined networks in the left hemisphere. Among these, the laryngeal motor cortex (LMC) established a core network that fully overlapped with all other speech-related networks, determining the extent of network interactions. Our data demonstrate complex interactions of large-scale brain networks controlling speech production and point to the critical role of the LMC, IPL, and cerebellum in the formation of speech production network. PMID:25673742

  4. Speech networks at rest and in action: interactions between functional brain networks controlling speech production.

    PubMed

    Simonyan, Kristina; Fuertinger, Stefan

    2015-04-01

    Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce. We combined seed-based interregional correlation analysis with graph theoretical analysis of functional MRI data during the resting state and sentence production in healthy subjects to investigate the interface and topology of functional networks originating from the key brain regions controlling speech, i.e., the laryngeal/orofacial motor cortex, inferior frontal and superior temporal gyri, supplementary motor area, cingulate cortex, putamen, and thalamus. During both resting and speaking, the interactions between these networks were bilaterally distributed and centered on the sensorimotor brain regions. However, speech production preferentially recruited the inferior parietal lobule (IPL) and cerebellum into the large-scale network, suggesting the importance of these regions in facilitation of the transition from the resting state to speaking. Furthermore, the cerebellum (lobule VI) was the most prominent region showing functional influences on speech-network integration and segregation. Although networks were bilaterally distributed, interregional connectivity during speaking was stronger in the left vs. right hemisphere, which may have underlined a more homogeneous overlap between the examined networks in the left hemisphere. Among these, the laryngeal motor cortex (LMC) established a core network that fully overlapped with all other speech-related networks, determining the extent of network interactions. Our data demonstrate complex interactions of large-scale brain networks controlling speech production and point to the critical role of the LMC, IPL, and cerebellum in the formation of speech production network. PMID:25673742

  5. Performance analysis of reactive congestion control for ATM networks

    NASA Astrophysics Data System (ADS)

    Kawahara, Kenji; Oie, Yuji; Murata, Masayuki; Miyahara, Hideo

    1995-05-01

    In ATM networks, preventive congestion control is widely recognized for efficiently avoiding congestion, and it is implemented by a conjunction of connection admission control and usage parameter control. However, congestion may still occur because of unpredictable statistical fluctuation of traffic sources even when preventive control is performed in the network. In this paper, we study another kind of congestion control, i.e., reactive congestion control, in which each source changes its cell emitting rate adaptively to the traffic load at the switching node (or at the multiplexer). Our intention is that, by incorporating such a congestion control method in ATM networks, more efficient congestion control is established. We develop an analytical model, and carry out an approximate analysis of reactive congestion control algorithm. Numerical results show that the reactive congestion control algorithms are very effective in avoiding congestion and in achieving the statistical gain. Furthermore, the binary congestion control algorithm with pushout mechanism is shown to provide the best performance among the reactive congestion control algorithms treated here.

  6. Information spread in networks: Games, optimal control, and stabilization

    NASA Astrophysics Data System (ADS)

    Khanafer, Ali

    This thesis focuses on designing efficient mechanisms for controlling information spread in networks. We consider two models for information spread. The first one is the well-known distributed averaging dynamics. The second model is a nonlinear one that describes virus spread in computer and biological networks. We seek to design optimal, robust, and stabilizing controllers under practical constraints. For distributed averaging networks, we study the interaction between a network designer and an adversary. We consider two types of attacks on the network. In Attack-I, the adversary strategically disconnects a set of links to prevent the nodes from reaching consensus. Meanwhile, the network designer assists the nodes in reaching consensus by changing the weights of a limited number of links in the network. We formulate two problems to describe this competition where the order in which the players act is reversed in the two problems. Although the canonical equations provided by the Pontryagin's Maximum Principle (MP) seem to be intractable, we provide an alternative characterization for the optimal strategies that makes connection to potential theory. Further, we provide a sufficient condition for the existence of a saddle-point equilibrium (SPE) for the underlying zero-sum game. In Attack-II, the designer and the adversary are both capable of altering the measurements of all nodes in the network by injecting global signals. We impose two constraints on both players: a power constraint and an energy constraint. We assume that the available energy to each player is not sufficient to operate at maximum power throughout the horizon of the game. We show the existence of an SPE and derive the optimal strategies in closed form for this attack scenario. As an alternative to the "network designer vs. adversary" framework, we investigate the possibility of stabilizing unknown network diffusion processes using a distributed mechanism, where the uncertainty is due to an attack

  7. Autonomous control of production networks using a pheromone approach

    NASA Astrophysics Data System (ADS)

    Armbruster, D.; de Beer, C.; Freitag, M.; Jagalski, T.; Ringhofer, C.

    2006-04-01

    The flow of parts through a production network is usually pre-planned by a central control system. Such central control fails in presence of highly fluctuating demand and/or unforeseen disturbances. To manage such dynamic networks according to low work-in-progress and short throughput times, an autonomous control approach is proposed. Autonomous control means a decentralized routing of the autonomous parts themselves. The parts’ decisions base on backward propagated information about the throughput times of finished parts for different routes. So, routes with shorter throughput times attract parts to use this route again. This process can be compared to ants leaving pheromones on their way to communicate with following ants. The paper focuses on a mathematical description of such autonomously controlled production networks. A fluid model with limited service rates in a general network topology is derived and compared to a discrete-event simulation model. Whereas the discrete-event simulation of production networks is straightforward, the formulation of the addressed scenario in terms of a fluid model is challenging. Here it is shown, how several problems in a fluid model formulation (e.g. discontinuities) can be handled mathematically. Finally, some simulation results for the pheromone-based control with both the discrete-event simulation model and the fluid model are presented for a time-dependent influx.

  8. National Ignition Facility (NIF) Control Network Design and Analysis

    SciTech Connect

    Bryant, R M; Carey, R W; Claybourn, R V; Pavel, G; Schaefer, W J

    2001-10-19

    The control network for the National Ignition Facility (NIF) is designed to meet the needs for common object request broker architecture (CORBA) inter-process communication, multicast video transport, device triggering, and general TCP/IP communication within the NIF facility. The network will interconnect approximately 650 systems, including the embedded controllers, front-end processors (FEPs), supervisory systems, and centralized servers involved in operation of the NIF. All systems are networked with Ethernet to serve the majority of communication needs, and asynchronous transfer mode (ATM) is used to transport multicast video and synchronization triggers. CORBA software infra-structure provides location-independent communication services over TCP/IP between the application processes in the 15 supervisory and 300 FEP systems. Video images sampled from 500 video cameras at a 10-Hz frame rate will be multicast using direct ATM Application Programming Interface (API) communication from video FEPs to any selected operator console. The Ethernet and ATM control networks are used to broadcast two types of device triggers for last-second functions in a large number of FEPs, thus eliminating the need for a separate infrastructure for these functions. Analysis, design, modeling, and testing of the NIF network has been performed to provide confidence that the network design will meet NIF control requirements.

  9. Control analysis for autonomously oscillating biochemical networks.

    PubMed

    Reijenga, Karin A; Westerhoff, Hans V; Kholodenko, Boris N; Snoep, Jacky L

    2002-01-01

    It has hitherto not been possible to analyze the control of oscillatory dynamic cellular processes in other than qualitative ways. The control coefficients, used in metabolic control analyses of steady states, cannot be applied directly to dynamic systems. We here illustrate a way out of this limitation that uses Fourier transforms to convert the time domain into the stationary frequency domain, and then analyses the control of limit cycle oscillations. In addition to the already known summation theorems for frequency and amplitude, we reveal summation theorems that apply to the control of average value, waveform, and phase differences of the oscillations. The approach is made fully operational in an analysis of yeast glycolytic oscillations. It follows an experimental approach, sampling from the model output and using discrete Fourier transforms of this data set. It quantifies the control of various aspects of the oscillations by the external glucose concentration and by various internal molecular processes. We show that the control of various oscillatory properties is distributed over the system enzymes in ways that differ among those properties. The models that are described in this paper can be accessed on http://jjj.biochem.sun.ac.za. PMID:11751299

  10. Neural network guided search control in partial order planning

    SciTech Connect

    Zimmerman, T.

    1996-12-31

    The development of efficient search control methods is an active research topic in the field of planning. Investigation of a planning program integrated with a neural network (NN) that assists in search control is underway, and has produced promising preliminary results.

  11. Integrated evolutionary computation neural network quality controller for automated systems

    SciTech Connect

    Patro, S.; Kolarik, W.J.

    1999-06-01

    With increasing competition in the global market, more and more stringent quality standards and specifications are being demands at lower costs. Manufacturing applications of computing power are becoming more common. The application of neural networks to identification and control of dynamic processes has been discussed. The limitations of using neural networks for control purposes has been pointed out and a different technique, evolutionary computation, has been discussed. The results of identifying and controlling an unstable, dynamic process using evolutionary computation methods has been presented. A framework for an integrated system, using both neural networks and evolutionary computation, has been proposed to identify the process and then control the product quality, in a dynamic, multivariable system, in real-time.

  12. Control of State Transitions in Complex and Biophysical Networks

    NASA Astrophysics Data System (ADS)

    Motter, Adilson; Wells, Daniel; Kath, William

    Noise is a fundamental part of intracellular processes. While the response of biological systems to noise has been studied extensively, there has been limited understanding of how to exploit it to induce a desired cell state. Here I will present a scalable, quantitative method based on the Freidlin-Wentzell action to predict and control noise-induced switching between different states in genetic networks that, conveniently, can also control transitions between stable states in the absence of noise. I will discuss applications of this methodology to predict control interventions that can induce lineage changes and to identify new candidate strategies for cancer therapy. This framework offers a systems approach to identifying the key factors for rationally manipulating network dynamics, and should also find use in controlling other classes of complex networks exhibiting multi-stability. Reference: D. K. Wells, W. L. Kath, and A. E. Motter, Phys. Rev. X 5, 031036 (2015). Work funded by CBC, NCI, NIGMS, and NSF.

  13. Transmission of Real World Force Sensation by Micro/Macro Bilateral Control Based on Acceleration Control with Standardization Matrix

    NASA Astrophysics Data System (ADS)

    Shimono, Tomoyuki; Katsura, Seiichiro; Susa, Shigeru; Takei, Takayoshi; Ohnishi, Kouhei

    This paper proposes novel micro/macro bilateral control based on acceleration control with standardization matrix. In bilateral control, force control and position control should be realized simultaneously. However, they are not able to be realized in one real axis at the same time. Thus, force control and position control are realized in virtual mode space in this paper. Then, the proposed standardization matrix is able to harmonize the standard of macro master system with the standard of micro slave system in the virtual mode space. With the proposed method, the transmission of force sensation from the real micro environment is realized. The experimental results are shown to verify the viability of the proposed method.

  14. Neural network application to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural network as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research identified to enhance the practical applicability of neural networks to flight control design.

  15. Neural network application to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design.

  16. Asynchronous data change notification between database server and accelerator controls system

    SciTech Connect

    Fu, W.; Morris, J.; Nemesure, S.

    2011-10-10

    Database data change notification (DCN) is a commonly used feature. Not all database management systems (DBMS) provide an explicit DCN mechanism. Even for those DBMS's which support DCN (such as Oracle and MS SQL server), some server side and/or client side programming may be required to make the DCN system work. This makes the setup of DCN between database server and interested clients tedious and time consuming. In accelerator control systems, there are many well established software client/server architectures (such as CDEV, EPICS, and ADO) that can be used to implement data reflection servers that transfer data asynchronously to any client using the standard SET/GET API. This paper describes a method for using such a data reflection server to set up asynchronous DCN (ADCN) between a DBMS and clients. This method works well for all DBMS systems which provide database trigger functionality. Asynchronous data change notification (ADCN) between database server and clients can be realized by combining the use of a database trigger mechanism, which is supported by major DBMS systems, with server processes that use client/server software architectures that are familiar in the accelerator controls community (such as EPICS, CDEV or ADO). This approach makes the ADCN system easy to set up and integrate into an accelerator controls system. Several ADCN systems have been set up and used in the RHIC-AGS controls system.

  17. A network access control framework for 6LoWPAN networks.

    PubMed

    Oliveira, Luís M L; Rodrigues, Joel J P C; de Sousa, Amaro F; Lloret, Jaime

    2013-01-01

    Low power over wireless personal area networks (LoWPAN), in particular wireless sensor networks, represent an emerging technology with high potential to be employed in critical situations like security surveillance, battlefields, smart-grids, and in e-health applications. The support of security services in LoWPAN is considered a challenge. First, this type of networks is usually deployed in unattended environments, making them vulnerable to security attacks. Second, the constraints inherent to LoWPAN, such as scarce resources and limited battery capacity, impose a careful planning on how and where the security services should be deployed. Besides protecting the network from some well-known threats, it is important that security mechanisms be able to withstand attacks that have not been identified before. One way of reaching this goal is to control, at the network access level, which nodes can be attached to the network and to enforce their security compliance. This paper presents a network access security framework that can be used to control the nodes that have access to the network, based on administrative approval, and to enforce security compliance to the authorized nodes. PMID:23334610

  18. A Network Access Control Framework for 6LoWPAN Networks

    PubMed Central

    Oliveira, Luís M. L.; Rodrigues, Joel J. P. C.; de Sousa, Amaro F.; Lloret, Jaime

    2013-01-01

    Low power over wireless personal area networks (LoWPAN), in particular wireless sensor networks, represent an emerging technology with high potential to be employed in critical situations like security surveillance, battlefields, smart-grids, and in e-health applications. The support of security services in LoWPAN is considered a challenge. First, this type of networks is usually deployed in unattended environments, making them vulnerable to security attacks. Second, the constraints inherent to LoWPAN, such as scarce resources and limited battery capacity, impose a careful planning on how and where the security services should be deployed. Besides protecting the network from some well-known threats, it is important that security mechanisms be able to withstand attacks that have not been identified before. One way of reaching this goal is to control, at the network access level, which nodes can be attached to the network and to enforce their security compliance. This paper presents a network access security framework that can be used to control the nodes that have access to the network, based on administrative approval, and to enforce security compliance to the authorized nodes. PMID:23334610

  19. Energy management and multi-layer control of networked microgrids

    NASA Astrophysics Data System (ADS)

    Zamora, Ramon

    Networked microgrids is a group of neighboring microgrids that has ability to interchange power when required in order to increase reliability and resiliency. Networked microgrid can operate in different possible configurations including: islanded microgrid, a grid-connected microgrid without a tie-line converter, a grid-connected microgrid with a tie-line converter, and networked microgrids. These possible configurations and specific characteristics of renewable energy offer challenges in designing control and management algorithms for voltage, frequency and power in all possible operating scenarios. In this work, control algorithm is designed based on large-signal model that enables microgrid to operate in wide range of operating points. A combination between PI controller and feed-forward measured system responses will compensate for the changes in operating points. The control architecture developed in this work has multi-layers and the outer layer is slower than the inner layer in time response. The main responsibility of the designed controls are to regulate voltage magnitude and frequency, as well as output power of the DG(s). These local controls also integrate with a microgrid level energy management system or microgrid central controller (MGCC) for power and energy balance for. the entire microgrid in islanded, grid-connected, or networked microgid mode. The MGCC is responsible to coordinate the lower level controls to have reliable and resilient operation. In case of communication network failure, the decentralized energy management will operate locally and will activate droop control. Simulation results indicate the superiority of designed control algorithms compared to existing ones.

  20. Characterization and control of small-world networks

    NASA Astrophysics Data System (ADS)

    Pandit, S. A.; Amritkar, R. E.

    1999-08-01

    Recently, Watts and Strogatz [Nature (London) 393, 440 (1998)] offered an interesting model of small-world networks. Here we concretize the concept of a ``faraway'' connection in a network by defining a far edge. Our definition is algorithmic and independent of any external parameters such as topology of the underlying space of the network. We show that it is possible to control the spread of an epidemic by using the knowledge of far edges. We also suggest a model for better product advertisement using the far edges. Our findings indicate that the number of far edges can be a good intrinsic parameter to characterize small-world phenomena.

  1. An application of neural networks to process and materials control

    SciTech Connect

    Howell, J.A.; Whiteson, R.

    1991-01-01

    Process control consists of two basic elements: a model of the process and knowledge of the desired control algorithm. In some cases the level of the control algorithm is merely supervisory, as in an alarm-reporting or anomaly-detection system. If the model of the process is known, then a set of equations may often be solved explicitly to provide the control algorithm. Otherwise, the model has to be discovered through empirical studies. Neural networks have properties that make them useful in this application. They can learn (make internal models from experience or observations). The problem of anomaly detection in materials control systems fits well into this general control framework. To successfully model a process with a neutral network, a good set of observables must be chosen. These observables must in some sense adequately span the space of representable events, so that a signature metric can be built for normal operation. In this way, a non-normal event, one that does not fit within the signature, can be detected. In this paper, we discuss the issues involved in applying a neural network model to anomaly detection in materials control systems. These issues include data selection and representation, network architecture, prediction of events, the use of simulated data, and software tools. 10 refs., 4 figs., 1 tab.

  2. Prediction of force and acceleration control spectra for Space Shuttle orbiter sidewall-mounted payloads

    NASA Technical Reports Server (NTRS)

    Hipol, Philip J.

    1990-01-01

    The development of force and acceleration control spectra for vibration testing of Space Shuttle (STS) orbiter sidewall-mounted payloads requiresreliable estimates of the sidewall apparent weight and free (i.e. unloaded) vibration during lift-off. The feasibility of analytically predicting these quantities has been investigated through the development and analysis of a finite element model of the STS cargo bay. Analytical predictions of the sidewall apparent weight were compared with apparent weight measurements made on OV-101, and analytical predictions of the sidewall free vibration response during lift-off were compared with flight measurements obtained from STS-3 and STS-4. These analysis suggest that the cargo bay finite element model has potential application for the estimation of force and acceleration control spectra for STS sidewall-mounted payloads.

  3. High Availability On-line Relational Databases for Accelerator Control and Operation

    SciTech Connect

    Dohan,D.; Dalesio, L.; Carcassi, G.

    2009-05-04

    The role that relational database (RDB) technology plays in accelerator control and operation continues to grow in such areas as electronic logbooks, machine parameter definitions, and facility infrastructure management. RDBs are increasingly relied upon to provide the official 'master' copy of these data. Whereas the services provided by the RDB have traditionally not been 'mission critical', the availability of modern RDB management systems is now equivalent to that of standard computer file-systems. RDBs can be relied on to supply pseudo real-time response to operator and machine physicist requests. This paper describes recent developments in the IRMIS RDB project. Generic lattice support has been added, serving as the driver for model-based machine control. Abstract physics name service and process variable introspection has been added. Specific emphasis has been placed both on providing fast response time to accelerator operators and modeling code requests, as well as high (24/7) availability of the RDB service.

  4. Adaptive model predictive process control using neural networks

    DOEpatents

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  5. Adaptive model predictive process control using neural networks

    DOEpatents

    Buescher, Kevin L.; Baum, Christopher C.; Jones, Roger D.

    1997-01-01

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data.

  6. Wireless Sensor/Actuator Network Design for Mobile Control Applications

    PubMed Central

    Xia, Feng; Tian, Yu-Chu; Li, Yanjun; Sun, Youxian

    2007-01-01

    Wireless sensor/actuator networks (WSANs) are emerging as a new generation of sensor networks. Serving as the backbone of control applications, WSANs will enable an unprecedented degree of distributed and mobile control. However, the unreliability of wireless communications and the real-time requirements of control applications raise great challenges for WSAN design. With emphasis on the reliability issue, this paper presents an application-level design methodology for WSANs in mobile control applications. The solution is generic in that it is independent of the underlying platforms, environment, control system models, and controller design. To capture the link quality characteristics in terms of packet loss rate, experiments are conducted on a real WSAN system. From the experimental observations, a simple yet efficient method is proposed to deal with unpredictable packet loss on actuator nodes. Trace-based simulations give promising results, which demonstrate the effectiveness of the proposed approach.

  7. Dissipative rendering and neural network control system design

    NASA Technical Reports Server (NTRS)

    Gonzalez, Oscar R.

    1995-01-01

    Model-based control system designs are limited by the accuracy of the models of the plant, plant uncertainty, and exogenous signals. Although better models can be obtained with system identification, the models and control designs still have limitations. One approach to reduce the dependency on particular models is to design a set of compensators that will guarantee robust stability to a set of plants. Optimization over the compensator parameters can then be used to get the desired performance. Conservativeness of this approach can be reduced by integrating fundamental properties of the plant models. This is the approach of dissipative control design. Dissipative control designs are based on several variations of the Passivity Theorem, which have been proven for nonlinear/linear and continuous-time/discrete-time systems. These theorems depend not on a specific model of a plant, but on its general dissipative properties. Dissipative control design has found wide applicability in flexible space structures and robotic systems that can be configured to be dissipative. Currently, there is ongoing research to improve the performance of dissipative control designs. For aircraft systems that are not dissipative active control may be used to make them dissipative and then a dissipative control design technique can be used. It is also possible that rendering a system dissipative and dissipative control design may be combined into one step. Furthermore, the transformation of a non-dissipative system to dissipative can be done robustly. One sequential design procedure for finite dimensional linear time-invariant systems has been developed. For nonlinear plants that cannot be controlled adequately with a single linear controller, model-based techniques have additional problems. Nonlinear system identification is still a research topic. Lacking analytical models for model-based design, artificial neural network algorithms have recently received considerable attention. Using

  8. Reengineering for optimized control of DC networks

    NASA Astrophysics Data System (ADS)

    Vintea, Adela; Schiopu, Paul

    2015-02-01

    The management of the Independent Power Grids is the global body/structure with flexible technological support for Command-Control-Communications and Informatized Management having the responsibility for providing the conditions and information (the informational flux of decision) for the decision-maker aiming at predictable and harmonic administration of the situations (crises) and for generating the harmonic situations (results).

  9. A Method of Social Collaboration and Knowledge Sharing Acceleration for e-Learning System: The Distance Learning Network Scenario

    NASA Astrophysics Data System (ADS)

    Różewski, Przemysław

    Nowadays, e-learning systems take the form of the Distance Learning Network (DLN) due to widespread use and accessibility of the Internet and networked e-learning services. The focal point of the DLN performance is efficiency of knowledge processing in asynchronous learning mode and facilitating cooperation between students. In addition, the DLN articulates attention to social aspects of the learning process as well. In this paper, a method for the DLN development is proposed. The main research objectives for the proposed method are the processes of acceleration of social collaboration and knowledge sharing in the DLN. The method introduces knowledge-disposed agents (who represent students in educational scenarios) that form a network of individuals aimed to increase their competence. For every agent the competence expansion process is formulated. Based on that outcome the process of dynamic network formation performed on the social and knowledge levels. The method utilizes formal apparatuses of competence set and network game theories combined with an agent system-based approach.

  10. Drug loaded composite oxidized pectin and gelatin networks for accelerated wound healing.

    PubMed

    Tummalapalli, Mythili; Berthet, Morgane; Verrier, Bernard; Deopura, B L; Alam, M S; Gupta, Bhuvanesh

    2016-05-30

    Biocomposite interactive wound dressings have been designed and fabricated using oxidized pectin (OP), gelatin and nonwoven cotton fabric. Due to their inherent virtues of antimicrobial activity and cytocompatibility, these composite structures are capable of redirecting the healing cascade and influencing cell attachment and proliferation. A novel in situ reduction process has been followed to synthesize oxidized pectin-gelatin-nanosilver (OP-Gel-NS) flower like nanohydrocolloids. This encapsulation technology controls the diffusion and permeation of nanosilver into the surrounding biological tissues. Ciprofloxacin hydrochloride has also been incorporated into the OP-Gel matrix to produce OP-Gel-Cipro dressings. While OP-Gel-NS dressings exhibited 100% antimicrobial activity at extremely low loadings of 3.75μg/cm(2), OP-Gel-Cipro dressings were highly antimicrobial at 1% drug loading. While NIH3T3 mouse fibroblasts proliferated remarkably well when cultured with OP-Gel and OP-Gel-Cipro dressings, OP-Gel-NS hindered cell growth and Bactigras(®) induced complete lysis. Full thickness excisional wounds were created on C57BL/6J mice and the wound healing potential of the OP-Gel-NS dressings led to accelerated healing within 12days, while OP-Gel-Cipro dressings healed wounds at a rate similar to that of Bactigras(®). Histological examination revealed that OP-Gel-NS and OP-Gel-Cipro treatment led to organized collagen deposition, neovascularization and nuclei migration, unlike Bactigras(®). Therefore, the OP-Gel-NS and OP-Gel-Cipro biocomposite dressings exhibiting good hydrophilicity, sustained antimicrobial nature, promote cell growth and proliferation, and lead to rapid healing, can be considered viable candidates for effective management. PMID:27063849

  11. Adaptive control of nonlinear systems using multistage dynamic neural networks

    NASA Astrophysics Data System (ADS)

    Gupta, Madan M.; Rao, Dandina H.

    1992-11-01

    In this paper we present a new architecture of neuron, called the dynamic neural unit (DNU). The topology of the proposed neuronal model embodies delay elements, feedforward and feedback signals weighted by the synaptic weights and a time-varying nonlinear activation function, and is thus different from the conventionally and assumed architecture of neurons. The learning algorithm for the proposed neuronal structure and the corresponding implementation scheme are presented. A multi-stage dynamic neural network is developed using the DNU as the basic processing element. The performance evaluation of the dynamic neural network is presented for nonlinear dynamic systems under various situations. The capabilities of the proposed neural network model not only account for the learning and control actions emulating some of the biological control functions, but also provide a promising parallel-distributed intelligent control scheme for large-scale complex dynamic systems.

  12. Performance limitations for networked control systems with plant uncertainty

    NASA Astrophysics Data System (ADS)

    Chi, Ming; Guan, Zhi-Hong; Cheng, Xin-Ming; Yuan, Fu-Shun

    2016-04-01

    There has recently been significant interest in performance study for networked control systems with communication constraints. But the existing work mainly assumes that the plant has an exact model. The goal of this paper is to investigate the optimal tracking performance for networked control system in the presence of plant uncertainty. The plant under consideration is assumed to be non-minimum phase and unstable, while the two-parameter controller is employed and the integral square criterion is adopted to measure the tracking error. And we formulate the uncertainty by utilising stochastic embedding. The explicit expression of the tracking performance has been obtained. The results show that the network communication noise and the model uncertainty, as well as the unstable poles and non-minimum phase zeros, can worsen the tracking performance.

  13. Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency.

    PubMed

    Gonzalez-Izquierdo, Bruno; King, Martin; Gray, Ross J; Wilson, Robbie; Dance, Rachel J; Powell, Haydn; Maclellan, David A; McCreadie, John; Butler, Nicholas M H; Hawkes, Steve; Green, James S; Murphy, Chris D; Stockhausen, Luca C; Carroll, David C; Booth, Nicola; Scott, Graeme G; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-01-01

    Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources. PMID:27624920

  14. Control of complex networks requires both structure and dynamics.

    PubMed

    Gates, Alexander J; Rocha, Luis M

    2016-01-01

    The study of network structure has uncovered signatures of the organization of complex systems. However, there is also a need to understand how to control them; for example, identifying strategies to revert a diseased cell to a healthy state, or a mature cell to a pluripotent state. Two recent methodologies suggest that the controllability of complex systems can be predicted solely from the graph of interactions between variables, without considering their dynamics: structural controllability and minimum dominating sets. We demonstrate that such structure-only methods fail to characterize controllability when dynamics are introduced. We study Boolean network ensembles of network motifs as well as three models of biochemical regulation: the segment polarity network in Drosophila melanogaster, the cell cycle of budding yeast Saccharomyces cerevisiae, and the floral organ arrangement in Arabidopsis thaliana. We demonstrate that structure-only methods both undershoot and overshoot the number and which sets of critical variables best control the dynamics of these models, highlighting the importance of the actual system dynamics in determining control. Our analysis further shows that the logic of automata transition functions, namely how canalizing they are, plays an important role in the extent to which structure predicts dynamics. PMID:27087469

  15. Control of complex networks requires both structure and dynamics

    PubMed Central

    Gates, Alexander J.; Rocha, Luis M.

    2016-01-01

    The study of network structure has uncovered signatures of the organization of complex systems. However, there is also a need to understand how to control them; for example, identifying strategies to revert a diseased cell to a healthy state, or a mature cell to a pluripotent state. Two recent methodologies suggest that the controllability of complex systems can be predicted solely from the graph of interactions between variables, without considering their dynamics: structural controllability and minimum dominating sets. We demonstrate that such structure-only methods fail to characterize controllability when dynamics are introduced. We study Boolean network ensembles of network motifs as well as three models of biochemical regulation: the segment polarity network in Drosophila melanogaster, the cell cycle of budding yeast Saccharomyces cerevisiae, and the floral organ arrangement in Arabidopsis thaliana. We demonstrate that structure-only methods both undershoot and overshoot the number and which sets of critical variables best control the dynamics of these models, highlighting the importance of the actual system dynamics in determining control. Our analysis further shows that the logic of automata transition functions, namely how canalizing they are, plays an important role in the extent to which structure predicts dynamics. PMID:27087469

  16. Optimization and beam control in large-emittance accelerators: Neutrino factories;

    SciTech Connect

    Carol Johnstone

    2004-08-23

    Schemes for intense sources of high-energy muons require collection, rf capture, and transport of particle beams with unprecedented emittances, both longitudinally and transversely. These large emittances must be reduced or ''cooled'' both in size and in energy spread before the muons can be efficiently accelerated. Therefore, formation of muon beams sufficiently intense to drive a Neutrino Factory or Muon Collider requires multi-stage preparation. Further, because of the large beam phase space which must be successfully controlled, accelerated, and transported, the major stages that comprise such a facility: proton driver, production, capture, phase rotation, cooling, acceleration, and storage are complex and strongly interlinked. Each of the stages must be consecutively matched and simultaneously optimized with upstream and downstream systems, meeting challenges not only technically in the optics and component design, but also in the modeling of both new and extended components. One design for transverse cooling, for example, employs meter-diameter solenoids to maintain strong focusing--300-500 mr beam divergences--across ultra-large momentum ranges, {ge} {+-}20% {delta}p/p, defying conventional approximations to the dynamics and field representation. To now, the interplay of the different systems and staging strategies has not been formally addressed. This work discusses two basic, but different approaches to a Neutrino Factory and how the staging strategy depends on beam parameters and method of acceleration.

  17. Controlled Electron Injection into Plasma Accelerators and SpaceCharge Estimates

    SciTech Connect

    Fubiani, Gwenael J.

    2005-09-01

    Plasma based accelerators are capable of producing electron sources which are ultra-compact (a few microns) and high energies (up to hundreds of MeVs) in much shorter distances than conventional accelerators. This is due to the large longitudinal electric field that can be excited without the limitation of breakdown as in RF structures.The characteristic scale length of the accelerating field is the plasma wavelength and for typical densities ranging from 1018 - 1019 cm-3, the accelerating fields and scale length can hence be on the order of 10-100GV/m and 10-40 mu m, respectively. The production of quasimonoenergetic beams was recently obtained in a regime relying on self-trapping of background plasma electrons, using a single laser pulse for wakefield generation. In this dissertation, we study the controlled injection via the beating of two lasers (the pump laser pulse creating the plasma wave and a second beam being propagated in opposite direction) which induce a localized injection of background plasma electrons. The aim of this dissertation is to describe in detail the physics of optical injection using two lasers, the characteristics of the electron beams produced (the micrometer scale plasma wavelength can result in femtosecond and even attosecond bunches) as well as a concise estimate of the effects of space charge on the dynamics of an ultra-dense electron bunch with a large energy spread.

  18. Accelerated Hepatitis B Vaccine Schedule among Drug Users – A Randomized Controlled Trial

    PubMed Central

    Hwang, Lu-Yu; Grimes, Carolyn Z.; Tran, Thanh Quoc; Clark, April; Xia, Rui; Lai, Dejian; Troisi, Catherine; Williams, Mark

    2010-01-01

    Background Hepatitis B vaccine provides a model for improving uptake and completion of multi-dose vaccinations in the drug-using community. Methods DASH project conducted randomized controlled trial among not-in-treatment current drug users in two urban neighborhoods. Neighborhoods were cluster-randomized to receive a standard (HIV information) or enhanced (HBV vaccine acceptance/adherence) behavioral intervention; participants within clusters were randomized to a standard (0, 1, 6 mo) or accelerated (0, 1, 2 mo) vaccination schedule. Outcomes were completion of three-dose vaccine and HBV seroprotection. Results Of those screening negative for HIV/HBV, 77% accepted HB vaccination and 75% of those received all 3 doses. Injecting drug users (IDUs) on the accelerated schedule were significantly more likely to receive 3 doses (76%) than those on the standard schedule (66%, p=.04), although for drug users as a whole the adherence was 77% and 73%. No difference in adherence was observed between behavioral intervention groups. Predictors of adherence were older age, African American race, stable housing, and alcohol use. Cumulative HBV seroprotection (≥10 mIU/mL) was gained by 12 months by 65% of those completing. Seroprotection at 6 months was greater for the accelerated schedule group. Conclusions The accelerated vaccine schedule improves hepatitis B vaccination adherence among IDU. PMID:20936979

  19. Application of network control systems for adaptive optics

    NASA Astrophysics Data System (ADS)

    Eager, Robert J.

    2008-04-01

    The communication architecture for most pointing, tracking, and high order adaptive optics control systems has been based on a centralized point-to-point and bus based approach. With the increased use of larger arrays and multiple sensors, actuators and processing nodes, these evolving systems require decentralized control, modularity, flexibility redundancy, integrated diagnostics, dynamic resource allocation, and ease of maintenance to support a wide range of experiments. Network control systems provide all of these critical functionalities. This paper begins with a quick overview of adaptive optics as a control system and communication architecture. It then provides an introduction to network control systems, identifying the key design areas that impact system performance. The paper then discusses the performance test results of a fielded network control system used to implement an adaptive optics system comprised of: a 10KHz, 32x32 spatial selfreferencing interferometer wave front sensor, a 705 channel "Tweeter" deformable mirror, a 177 channel "Woofer" deformable mirror, ten processing nodes, and six data acquisition nodes. The reconstructor algorithm utilized a modulo-2pi wave front phase measurement and a least-squares phase un-wrapper with branch point correction. The servo control algorithm is a hybrid of exponential and infinite impulse response controllers, with tweeter-to-woofer saturation offloading. This system achieved a first-pixel-out to last-mirror-voltage latency of 86 microseconds, with the network accounting for 4 microseconds of the measured latency. Finally, the extensibility of this architecture will be illustrated, by detailing the integration of a tracking sub-system into the existing network.

  20. Visual analysis and dynamical control of phosphoproteomic networks

    NASA Astrophysics Data System (ADS)

    Meyer-Bäse, Anke; Görke, Robert; Lobbes, Marc; Emmett, Mark R.; Nilsson, Carol L.

    2013-05-01

    This paper presents novel graph algorithms and modern control solutions applied to the graph networks resulting from specific experiments to discover disease-related pathways and drug targets in glioma cancer stem cells (GSCs). The theoretical framework applies to many other high-throughput data from experiments relevant to a variety of diseases. In addition to developing novel graph and control networks to predict therapeutic targets, these algorithms will provide biochemists with techniques to identify more metabolic regions and biological pathways for complex diseases, and design and test novel therapeutic solutions.

  1. Ant colony method to control variance reduction techniques in the Monte Carlo simulation of clinical electron linear accelerators

    NASA Astrophysics Data System (ADS)

    García-Pareja, S.; Vilches, M.; Lallena, A. M.

    2007-09-01

    The ant colony method is used to control the application of variance reduction techniques to the simulation of clinical electron linear accelerators of use in cancer therapy. In particular, splitting and Russian roulette, two standard variance reduction methods, are considered. The approach can be applied to any accelerator in a straightforward way and permits, in addition, to investigate the "hot" regions of the accelerator, an information which is basic to develop a source model for this therapy tool.

  2. ACTS TDMA network control. [Advanced Communication Technology Satellite

    NASA Technical Reports Server (NTRS)

    Inukai, T.; Campanella, S. J.

    1984-01-01

    This paper presents basic network control concepts for the Advanced Communications Technology Satellite (ACTS) System. Two experimental systems, called the low-burst-rate and high-burst-rate systems, along with ACTS ground system features, are described. The network control issues addressed include frame structures, acquisition and synchronization procedures, coordinated station burst-time plan and satellite-time plan changes, on-board clock control based on ground drift measurements, rain fade control by means of adaptive forward-error-correction (FEC) coding and transmit power augmentation, and reassignment of channel capacities on demand. The NASA ground system, which includes a primary station, diversity station, and master control station, is also described.

  3. Applications of neural networks to process control and modeling

    SciTech Connect

    Barnes, C.W.; Brown, S.K.; Flake, G.W.; Jones, R.D.; O'Rourke, M.K.; Lee, Y.C.

    1991-01-01

    Modeling and control of physical processes are universal parts of modern life, from control of chemical plants to riding a bicycle. Often, an effective model of the process is not known so that traditional control theory is of little use. If a process can be represented by a set of a data which captures it behavior over a range of parameter settings, a neural net can inductively model the process and form the basis of an optimization procedure. We present a neural network architecture which is particularly effective in process modeling and control. We discuss its effectiveness in several application areas as well as some of the non-ideal characteristics present in real control problems which effect the form and style of the network architecture and learning algorithm. 8 refs., 6 figs.

  4. An architecture for designing fuzzy logic controllers using neural networks

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1991-01-01

    Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.

  5. Experimental determination of group flux control coefficients in metabolic networks

    SciTech Connect

    Simpson, T.W.; Shimizu, Hiroshi; Stephanopoulos, G.

    1998-04-20

    Grouping of reactions around key metabolite branch points can facilitate the study of metabolic control of complex metabolic networks. This top-down Metabolic Control Analysis is exemplified through the introduction of group control coefficients whose magnitudes provide a measure of the relative impact of each reaction group on the overall network flux, as well as on the overall network stability, following enzymatic amplification. In this article, the authors demonstrate the application of previously developed theory to the determination of group flux control coefficients. Experimental data for the changes in metabolic fluxes obtained in response to the introduction of six different environmental perturbations are used to determine the group flux control coefficients for three reaction groups formed around the phosphoenolpyruvate/pyruvate branch point. The consistency of the obtained group flux control coefficient estimates is systematically analyzed to ensure that all necessary conditions are satisfied. The magnitudes of the determined control coefficients suggest that the control of lysine production flux in Corynebacterium glutamicum cells at a growth base state resides within the lysine biosynthetic pathway that begins with the PEP/PYR carboxylation anaplorotic pathway.

  6. Application of neural networks to seismic active control

    SciTech Connect

    Tang, Yu

    1995-07-01

    An exploratory study on seismic active control using an artificial neural network (ANN) is presented in which a singledegree-of-freedom (SDF) structural system is controlled by a trained neural network. A feed-forward neural network and the backpropagation training method are used in the study. In backpropagation training, the learning rate is determined by ensuring the decrease of the error function at each training cycle. The training patterns for the neural net are generated randomly. Then, the trained ANN is used to compute the control force according to the control algorithm. The control strategy proposed herein is to apply the control force at every time step to destroy the build-up of the system response. The ground motions considered in the simulations are the N21E and N69W components of the Lake Hughes No. 12 record that occurred in the San Fernando Valley in California on February 9, 1971. Significant reduction of the structural response by one order of magnitude is observed. Also, it is shown that the proposed control strategy has the ability to reduce the peak that occurs during the first few cycles of the time history. These promising results assert the potential of applying ANNs to active structural control under seismic loads.

  7. Modular networks with delayed coupling: Synchronization and frequency control

    NASA Astrophysics Data System (ADS)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    2014-07-01

    We study the collective dynamics of modular networks consisting of map-based neurons which generate irregular spike sequences. Three types of intramodule topology are considered: a random Erdös-Rényi network, a small-world Watts-Strogatz network, and a scale-free Barabási-Albert network. The interaction between the neurons of different modules is organized by relatively sparse connections with time delay. For all the types of the network topology considered, we found that with increasing delay two regimes of module synchronization alternate with each other: inphase and antiphase. At the same time, the average rate of collective oscillations decreases within each of the time-delay intervals corresponding to a particular synchronization regime. A dual role of the time delay is thus established: controlling a synchronization mode and degree and controlling an average network frequency. Furthermore, we investigate the influence on the modular synchronization by other parameters: the strength of intermodule coupling and the individual firing rate.

  8. Using social network analysis to inform disease control interventions.

    PubMed

    Marquetoux, Nelly; Stevenson, Mark A; Wilson, Peter; Ridler, Anne; Heuer, Cord

    2016-04-01

    Contact patterns between individuals are an important determinant for the spread of infectious diseases in populations. Social network analysis (SNA) describes contact patterns and thus indicates how infectious pathogens may be transmitted. Here we explore network characteristics that may inform the development of disease control programes. This study applies SNA methods to describe a livestock movement network of 180 farms in New Zealand from 2006 to 2010. We found that the number of contacts was overall consistent from year to year, while the choice of trading partners tended to vary. This livestock movement network illustrated how a small number of farms central to the network could play a potentially dominant role for the spread of infection in this population. However, fragmentation of the network could easily be achieved by "removing" a small proportion of farms serving as bridges between otherwise isolated clusters, thus decreasing the probability of large epidemics. This is the first example of a comprehensive analysis of pastoral livestock movements in New Zealand. We conclude that, for our system, recording and exploiting livestock movements can contribute towards risk-based control strategies to prevent and monitor the introduction and the spread of infectious diseases in animal populations. PMID:26883965

  9. Cavity control system advanced modeling and simulations for TESLA linear accelerator and free electron laser

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Romaniuk, Ryszard S.; Pozniak, Krzysztof T.; Simrock, Stefan

    2004-07-01

    The cavity control system for the TESLA -- TeV-Energy Superconducting Linear Accelerator project is initially introduced. The elementary analysis of the cavity resonator on RF (radio frequency) level and low level frequency with signal and power considerations is presented. For the field vector detection the digital signal processing is proposed. The electromechanical model concerning Lorentz force detuning is applied for analyzing the basic features of the system performance. For multiple cavities driven by one klystron the field vector sum control is considered. Simulink model implementation is developed to explore the feedback and feed-forward system operation and some experimental results for signals and power considerations are presented.

  10. Feedback control of torsion balance in measurement of gravitational constant G with angular acceleration method

    SciTech Connect

    Quan, Li-Di; Xue, Chao; Shao, Cheng-Gang; Yang, Shan-Qing; Tu, Liang-Cheng; Luo, Jun; Wang, Yong-Ji

    2014-01-15

    The performance of the feedback control system is of central importance in the measurement of the Newton's gravitational constant G with angular acceleration method. In this paper, a PID (Proportion-Integration-Differentiation) feedback loop is discussed in detail. Experimental results show that, with the feedback control activated, the twist angle of the torsion balance is limited to 7.3×10{sup −7} rad /√( Hz ) at the signal frequency of 2 mHz, which contributes a 0.4 ppm uncertainty to the G value.

  11. Enhanced Communication Network Solution for Positive Train Control Implementation

    NASA Technical Reports Server (NTRS)

    Fatehi, M. T.; Simon, J.; Chang, W.; Chow, E. T.; Burleigh, S. C.

    2011-01-01

    The commuter and freight railroad industry is required to implement Positive Train Control (PTC) by 2015 (2012 for Metrolink), a challenging network communications problem. This paper will discuss present technologies developed by the National Aeronautics and Space Administration (NASA) to overcome comparable communication challenges encountered in deep space mission operations. PTC will be based on a new cellular wireless packet Internet Protocol (IP) network. However, ensuring reliability in such a network is difficult due to the "dead zones" and transient disruptions we commonly experience when we lose calls in commercial cellular networks. These disruptions make it difficult to meet PTC s stringent reliability (99.999%) and safety requirements, deployment deadlines, and budget. This paper proposes innovative solutions based on space-proven technologies that would help meet these challenges: (1) Delay Tolerant Networking (DTN) technology, designed for use in resource-constrained, embedded systems and currently in use on the International Space Station, enables reliable communication over networks in which timely data acknowledgments might not be possible due to transient link outages. (2) Policy-Based Management (PBM) provides dynamic management capabilities, allowing vital data to be exchanged selectively (with priority) by utilizing alternative communication resources. The resulting network may help railroads implement PTC faster, cheaper, and more reliably.

  12. Thermoresponsive double network micropillared hydrogels for controlled cell release.

    PubMed

    Fei, Ruochong; Hou, Huijie; Munoz-Pinto, Dany; Han, Arum; Hahn, Mariah S; Grunlan, Melissa A

    2014-09-01

    Thermoresponsive poly(N-isopropylacrylamide) hydrogels (PNIPAAm) have been widely used for controlled cell detachment. In this study, cell release is enhanced via deswelling with a two-pronged approach combining a double network (DN) design and micropatterning. PNIPAAm hydrogels are prepared as DNs comprised of a tightly crosslinked 1st network and a loosely crosslinked 2nd network. Moreover, the PNIPAAm DN hydrogels are prepared as both planar 1.5 mm-thick slabs as well as micropillar arrays (≈200 μm pillar diameter). Compared to the corresponding conventional single network (SN) hydrogels, DN hydrogels exhibit enhanced thermosensitivity and cell release efficiency, particularly for the micropillar arrays. PMID:24956117

  13. Steam turbine stress control using NARX neural network

    NASA Astrophysics Data System (ADS)

    Dominiczak, Krzysztof; Rzadkowski, Romuald; Radulski, Wojciech

    2015-11-01

    Considered here is concept of steam turbine stress control, which is based on Nonlinear AutoRegressive neural networks with eXogenous inputs. Using NARX neural networks,whichwere trained based on experimentally validated FE model allows to control stresses in protected thickwalled steam turbine element with FE model quality. Additionally NARX neural network, which were trained base on FE model, includes: nonlinearity of steam expansion in turbine steam path during transients, nonlinearity of heat exchange inside the turbine during transients and nonlinearity of material properties during transients. In this article NARX neural networks stress controls is shown as an example of HP rotor of 18K390 turbine. HP part thermodynamic model as well as heat exchange model in vicinity of HP rotor,whichwere used in FE model of the HP rotor and the HP rotor FE model itself were validated based on experimental data for real turbine transient events. In such a way it is ensured that NARX neural network behave as real HP rotor during steam turbine transient events.

  14. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator

    PubMed Central

    Schnell, Michael; Sävert, Alexander; Uschmann, Ingo; Reuter, Maria; Nicolai, Maria; Kämpfer, Tino; Landgraf, Björn; Jäckel, Oliver; Jansen, Oliver; Pukhov, Alexander; Kaluza, Malte Christoph; Spielmann, Christian

    2013-01-01

    Laser-plasma particle accelerators could provide more compact sources of high-energy radiation than conventional accelerators. Moreover, because they deliver radiation in femtosecond pulses, they could improve the time resolution of X-ray absorption techniques. Here we show that we can measure and control the polarization of ultra-short, broad-band keV photon pulses emitted from a laser-plasma-based betatron source. The electron trajectories and hence the polarization of the emitted X-rays are experimentally controlled by the pulse-front tilt of the driving laser pulses. Particle-in-cell simulations show that an asymmetric plasma wave can be driven by a tilted pulse front and a non-symmetric intensity distribution of the focal spot. Both lead to a notable off-axis electron injection followed by collective electron–betatron oscillations. We expect that our method for an all-optical steering is not only useful for plasma-based X-ray sources but also has significance for future laser-based particle accelerators. PMID:24026068

  15. Network of hypothalamic neurons that control appetite

    PubMed Central

    Sohn, Jong-Woo

    2015-01-01

    The central nervous system (CNS) controls food intake and energy expenditure via tight coordinations between multiple neuronal populations. Specifically, two distinct neuronal populations exist in the arcuate nucleus of hypothalamus (ARH): the anorexigenic (appetite-suppressing) pro-opiomelanocortin (POMC) neurons and the orexigenic (appetite-increasing) neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons. The coordinated regulation of neuronal circuit involving these neurons is essential in properly maintaining energy balance, and any disturbance therein may result in hyperphagia/obesity or hypophagia/starvation. Thus, adequate knowledge of the POMC and NPY/AgRP neuron physiology is mandatory to understand the pathophysiology of obesity and related metabolic diseases. This review will discuss the history and recent updates on the POMC and NPY/AgRP neuronal circuits, as well as the general anorexigenic and orexigenic circuits in the CNS. [BMB Reports 2015; 48(4): 229-233] PMID:25560696

  16. Epidemic Control in a Hierarchical Social Network

    NASA Astrophysics Data System (ADS)

    Grabowski, Andrzej; Kosiński, Robert A.

    The phenomenon of epidemic spreading in a population with a hierarchical structure of interpersonal interactions is described and investigated numerically. The SIR model with incubation time is used. In our model the localization of individuals in different social groups, the effectiveness of different interpersonal interactions and the mobility of a contemporary community are taken into account. The influence of different control methods on the spreading process is investigated as a function of different initial conditions. The cost-effectiveness of mass preventive random vaccinations, target vaccinations and sick leaves are compared. A critical range of vaccinations, sufficient for suppressing of an epidemic is calculated. The results of numerical calculations are similar to the solutions of the master equation for the spreading process.

  17. Quantum diamond chip under network optical control

    NASA Astrophysics Data System (ADS)

    Tsukanov, Alexander V.; Kateev, Igor Yu.; Orlikovsky, Nikolay A.; Orlikovsky, Alexander A.

    2014-12-01

    We propose a structure and elements of the diamond chip fabrication technology, which could be used for an experimental study of spectral and dynamic properties of a quantum register prototype formed by a chain of microresonators (disks and rings) containing NV-centers. Making use of the parameters of NV-systems today exist, we simulate the dissipative population dynamics of two NV-centers located in different parts of the two-qubit register. As follows from our numerical results, high probability of controlled indirect qubit interaction via photon transfer from one center to another can be already achieved at the current diamond photonics technology level. The calculated operating parameters of the resonators and measuring structure (grating) are in good agreement with those that have been used in devices created by leading world science groups. The fabrication technique of lithographic mask is discussed and its roughness is estimated.

  18. Information spread in networks: Games, optimal control, and stabilization

    NASA Astrophysics Data System (ADS)

    Khanafer, Ali

    This thesis focuses on designing efficient mechanisms for controlling information spread in networks. We consider two models for information spread. The first one is the well-known distributed averaging dynamics. The second model is a nonlinear one that describes virus spread in computer and biological networks. We seek to design optimal, robust, and stabilizing controllers under practical constraints. For distributed averaging networks, we study the interaction between a network designer and an adversary. We consider two types of attacks on the network. In Attack-I, the adversary strategically disconnects a set of links to prevent the nodes from reaching consensus. Meanwhile, the network designer assists the nodes in reaching consensus by changing the weights of a limited number of links in the network. We formulate two problems to describe this competition where the order in which the players act is reversed in the two problems. Although the canonical equations provided by the Pontryagin's Maximum Principle (MP) seem to be intractable, we provide an alternative characterization for the optimal strategies that makes connection to potential theory. Further, we provide a sufficient condition for the existence of a saddle-point equilibrium (SPE) for the underlying zero-sum game. In Attack-II, the designer and the adversary are both capable of altering the measurements of all nodes in the network by injecting global signals. We impose two constraints on both players: a power constraint and an energy constraint. We assume that the available energy to each player is not sufficient to operate at maximum power throughout the horizon of the game. We show the existence of an SPE and derive the optimal strategies in closed form for this attack scenario. As an alternative to the "network designer vs. adversary" framework, we investigate the possibility of stabilizing unknown network diffusion processes using a distributed mechanism, where the uncertainty is due to an attack

  19. Control of epidemics on complex networks: Effectiveness of delayed isolation

    NASA Astrophysics Data System (ADS)

    Pereira, Tiago; Young, Lai-Sang

    2015-08-01

    We study isolation as a means to control epidemic outbreaks in complex networks, focusing on the consequences of delays in isolating infected nodes. Our analysis uncovers a tipping point: if infected nodes are isolated before a critical day dc, the disease is effectively controlled, whereas for longer delays the number of infected nodes climbs steeply. We show that dc can be estimated explicitly in terms of network properties and disease parameters, connecting lowered values of dc explicitly to heterogeneity in degree distribution. Our results reveal also that initial delays in the implementation of isolation protocols can have catastrophic consequences in heterogeneous networks. As our study is carried out in a general framework, it has the potential to offer insight and suggest proactive strategies for containing outbreaks of a range of serious infectious diseases.

  20. Stimulation-Based Control of Dynamic Brain Networks.

    PubMed

    Muldoon, Sarah Feldt; Pasqualetti, Fabio; Gu, Shi; Cieslak, Matthew; Grafton, Scott T; Vettel, Jean M; Bassett, Danielle S

    2016-09-01

    The ability to modulate brain states using targeted stimulation is increasingly being employed to treat neurological disorders and to enhance human performance. Despite the growing interest in brain stimulation as a form of neuromodulation, much remains unknown about the network-level impact of these focal perturbations. To study the system wide impact of regional stimulation, we employ a data-driven computational model of nonlinear brain dynamics to systematically explore the effects of targeted stimulation. Validating predictions from network control theory, we uncover the relationship between regional controllability and the focal versus global impact of stimulation, and we relate these findings to differences in the underlying network architecture. Finally, by mapping brain regions to cognitive systems, we observe that the default mode system imparts large global change despite being highly constrained by structural connectivity. This work forms an important step towards the development of personalized stimulation protocols for medical treatment or performance enhancement. PMID:27611328

  1. Remote control of ATLAS-MPX Network and Data Visualization

    NASA Astrophysics Data System (ADS)

    Turecek, D.; Holy, T.; Pospisil, S.; Vykydal, Z.

    2011-05-01

    The ATLAS-MPX Network is a network of 15 Medipix2-based detector devices, installed in various positions in the ATLAS detector at CERN, Geneva. The aim of the network is to perform a real-time measurement of the spectral characteristics and the composition of radiation inside the ATLAS detector during its operation. The remote control system of ATLAS-MPX controls and configures all the devices from one place, via a web interface, accessible from different operating systems. The Data Visualization application, also with a web interface, has been developed in order to present measured data to the scientific community. It allows to browse through recorded frames from all devices and to search for specific frames by date and time. Charts containing the number of different types of tracks in each frame as a function of time may be rendered from the database.

  2. Control of epidemics on complex networks: Effectiveness of delayed isolation.

    PubMed

    Pereira, Tiago; Young, Lai-Sang

    2015-08-01

    We study isolation as a means to control epidemic outbreaks in complex networks, focusing on the consequences of delays in isolating infected nodes. Our analysis uncovers a tipping point: if infected nodes are isolated before a critical day dc, the disease is effectively controlled, whereas for longer delays the number of infected nodes climbs steeply. We show that dc can be estimated explicitly in terms of network properties and disease parameters, connecting lowered values of dc explicitly to heterogeneity in degree distribution. Our results reveal also that initial delays in the implementation of isolation protocols can have catastrophic consequences in heterogeneous networks. As our study is carried out in a general framework, it has the potential to offer insight and suggest proactive strategies for containing outbreaks of a range of serious infectious diseases. PMID:26382469

  3. Intelligent Data Rate Control in Cognitive Mobile Heterogeneous Networks

    NASA Astrophysics Data System (ADS)

    Mar, Jeich; Nien, Hsiao-Chen; Cheng, Jen-Chia

    An adaptive rate controller (ARC) based on an adaptive neural fuzzy inference system (ANFIS) is designed to autonomously adjust the data rate of a mobile heterogeneous network to adapt to the changing traffic load and the user speed for multimedia call services. The effect of user speed on the handoff rate is considered. Through simulations, it has been demonstrated that the ANFIS-ARC is able to maintain new call blocking probability and handoff failure probability of the mobile heterogeneous network below a prescribed low level over different user speeds and new call origination rates while optimizing the average throughput. It has also been shown that the mobile cognitive wireless network with the proposed CS-ANFIS-ARC protocol can support more traffic load than neural fuzzy call-admission and rate controller (NFCRC) protocol.

  4. Sinusoidal modulation control method in a chaotic neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Qihanyue; Xie, Xiaoping; Zhu, Ping; Chen, Hongping; He, Guoguang

    2014-08-01

    Chaotic neural networks (CNNs) have chaotic dynamic associative memory properties: The memory states appear non-periodically, and cannot be converged to a stored pattern. Thus, it is necessary to control chaos in a CNN in order to recognize associative memory. In this paper, a novel control method, the sinusoidal modulation control method, has been proposed to control chaos in a CNN. In this method, a sinusoidal wave simplified from brain waves is used as a control signal to modulate a parameter of the CNN. The simulation results demonstrate the effectiveness of this control method. The controlled CNN can be applied to information processing. Moreover, the method provides a way to associate brain waves by controlling CNNs.

  5. On-board congestion control for satellite packet switching networks

    NASA Technical Reports Server (NTRS)

    Chu, Pong P.

    1991-01-01

    It is desirable to incorporate packet switching capability on-board for future communication satellites. Because of the statistical nature of packet communication, incoming traffic fluctuates and may cause congestion. Thus, it is necessary to incorporate a congestion control mechanism as part of the on-board processing to smooth and regulate the bursty traffic. Although there are extensive studies on congestion control for both baseband and broadband terrestrial networks, these schemes are not feasible for space based switching networks because of the unique characteristics of satellite link. Here, we propose a new congestion control method for on-board satellite packet switching. This scheme takes into consideration the long propagation delay in satellite link and takes advantage of the the satellite's broadcasting capability. It divides the control between the ground terminals and satellite, but distributes the primary responsibility to ground terminals and only requires minimal hardware resource on-board satellite.

  6. Air Force Satellite Control Network and SDI development

    NASA Astrophysics Data System (ADS)

    Bleier, T.

    The Air Force Satellite Control Network (AFSCN) represents a military, worldwide network of control centers and remote tracking sites (RTS). A relatively large and growing constellation of DOD satellites is supported. The near term and long term plans for the AFSCN are discussed, taking into account also the impact of the Space Defense Initiative (SDI) on the AFSCN. It is pointed out that the SDI adds a new dimension to the support provided by the AFSCN to the DOD satellites, because some SDI scenarios being considered include many more satellite platforms, each containing multiple kinetic energy weapons. Space-ground link sites are discussed along with AFSCN control sites, and communication between RTS and control centers. Attention is given to changing roles and responsibilities, the Satellite Test Center (STC) as an excellent site for the R and D phase of SDI development, and an operational concept for a highly proliferated weapons platforms architecture, and goals of developing more survivable satellite systems.

  7. Experience in using workstations as hosts in an accelerator control environment

    SciTech Connect

    Abola, A.; Casella, R.; Clifford, T.; Hoff, L.; Katz, R.; Kennell, S.; Mandell, S.; McBreen, E.; Weygand, D.P.

    1987-03-01

    A new control system has been used for light ion acceleration at the Alternating Gradient Synchrotron (AGS). The control system uses Apollo workstations in the dual role of console hardware computer and controls system host. It has been found that having a powerful dedicated CPU with a demand paging virtual memory OS featuring strong interprocess communication, mapped memory shared files, shared code, and multi-window capabilities, allows us to provide an efficient operation environment in which users may view and manage several control processes simultaneously. The same features which make workstations good console computers also provide an outstanding platform for code development. The software for the system, consisting of about 30K lines of ''C'' code, was developed on schedule, ready for light ion commissioning. System development is continuing with work being done on applications programs.

  8. Converging Redundant Sensor Network Information for Improved Building Control

    SciTech Connect

    Dale Tiller; D. Phil; Gregor Henze; Xin Guo

    2007-09-30

    This project investigated the development and application of sensor networks to enhance building energy management and security. Commercial, industrial and residential buildings often incorporate systems used to determine occupancy, but current sensor technology and control algorithms limit the effectiveness of these systems. For example, most of these systems rely on single monitoring points to detect occupancy, when more than one monitoring point could improve system performance. Phase I of the project focused on instrumentation and data collection. During the initial project phase, a new occupancy detection system was developed, commissioned and installed in a sample of private offices and open-plan office workstations. Data acquisition systems were developed and deployed to collect data on space occupancy profiles. Phase II of the project demonstrated that a network of several sensors provides a more accurate measure of occupancy than is possible using systems based on single monitoring points. This phase also established that analysis algorithms could be applied to the sensor network data stream to improve the accuracy of system performance in energy management and security applications. In Phase III of the project, the sensor network from Phase I was complemented by a control strategy developed based on the results from the first two project phases: this controller was implemented in a small sample of work areas, and applied to lighting control. Two additional technologies were developed in the course of completing the project. A prototype web-based display that portrays the current status of each detector in a sensor network monitoring building occupancy was designed and implemented. A new capability that enables occupancy sensors in a sensor network to dynamically set the 'time delay' interval based on ongoing occupant behavior in the space was also designed and implemented.

  9. Control of focusing forces and emittances in plasma-based accelerators using near-hollow plasma channels

    SciTech Connect

    Schroeder, Carl; Esarey, Eric; Benedetti, Carlo; Leemans, Wim

    2013-08-06

    A near-hollow plasma channel, where the plasma density in the channel is much less than the plasma density in the walls, is proposed to provide independent control over the focusing and accelerating forces in a plasma accelerator. In this geometry the low density in the channel contributes to the focusing forces, while the accelerating fields are determined by the high density in the channel walls. The channel also provides guiding for intense laser pulses used for wakefield excitation. Both electron and positron beams can be accelerated in a nearly symmetric fashion. Near-hollow plasma channels can effectively mitigate emittance growth due to Coulomb scattering for high energy physics applications.

  10. Control of focusing forces and emittances in plasma-based accelerators using near-hollow plasma channels

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Benedetti, C.; Leemans, W. P.

    2013-08-15

    A near-hollow plasma channel, where the plasma density in the channel is much less than the plasma density in the walls, is proposed to provide independent control over the focusing and accelerating forces in a plasma accelerator. In this geometry the low density in the channel contributes to the focusing forces, while the accelerating fields are determined by the high density in the channel walls. The channel also provides guiding for intense laser pulses used for wakefield excitation. Both electron and positron beams can be accelerated in a nearly symmetric fashion. Near-hollow plasma channels can effectively mitigate emittance growth due to Coulomb scattering for high-energy physics applications.

  11. Motif for controllable toggle switch in gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Zhao, Chen; Bin, Ao; Ye, Weiming; Fan, Ying; Di, Zengru

    2015-02-01

    Toggle switch as a common phenomenon in gene regulatory networks has been recognized important for biological functions. Despite much effort dedicated to understanding the toggle switch and designing synthetic biology circuit to achieve the biological function, we still lack a comprehensive understanding of the intrinsic dynamics behind such phenomenon and the minimum structure that is imperative for producing toggle switch. In this paper, we discover a minimum structure, a motif that enables a controllable toggle switch. In particular, the motif consists of a transformative double negative feedback loop (DNFL) that is regulated by an additional driver node. By enumerating all possible regulatory configurations from the driver node, we identify two types of motifs associated with the toggle switch that is captured by the existence of bistable states. The toggle switch is controllable in the sense that the gap between the bistable states is adjustable as determined by the regulatory strength from the driver nodes. We test the effect of the motifs in self-oscillating gene regulatory network (SON) with respect to the interplay between the motifs and the other genes, and find that the switching dynamics of the whole network can be successfully controlled insofar as the network contains a single motif. Our findings are important to uncover the underlying nonlinear dynamics of controllable toggle switch and can have implications in devising biology circuit in the field of synthetic biology.

  12. Adaptive control of mobile robots using a neural network.

    PubMed

    de Sousa Júnior, C; Hermerly, E M

    2001-06-01

    A Neural Network - based control approach for mobile robot is proposed. The weight adaptation is made on-line, without previous learning. Several possible situations in robot navigation are considered, including uncertainties in the model and presence of disturbance. Weight adaptation laws are presented as well as simulation results. PMID:11574958

  13. Statistical porcess control in Deep Space Network operation

    NASA Technical Reports Server (NTRS)

    Hodder, J. A.

    2002-01-01

    This report describes how the Deep Space Mission System (DSMS) Operations Program Office at the Jet Propulsion Laboratory's (EL) uses Statistical Process Control (SPC) to monitor performance and evaluate initiatives for improving processes on the National Aeronautics and Space Administration's (NASA) Deep Space Network (DSN).

  14. Backbone of complex networks of corporations: the flow of control.

    PubMed

    Glattfelder, J B; Battiston, S

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here. PMID:19905177

  15. Backbone of complex networks of corporations: The flow of control

    NASA Astrophysics Data System (ADS)

    Glattfelder, J. B.; Battiston, S.

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.

  16. Performance analysis of Integrated Communication and Control System networks

    NASA Technical Reports Server (NTRS)

    Halevi, Y.; Ray, A.

    1990-01-01

    This paper presents statistical analysis of delays in Integrated Communication and Control System (ICCS) networks that are based on asynchronous time-division multiplexing. The models are obtained in closed form for analyzing control systems with randomly varying delays. The results of this research are applicable to ICCS design for complex dynamical processes like advanced aircraft and spacecraft, autonomous manufacturing plants, and chemical and processing plants.

  17. Control of multiterminal HVDC systems embedded in AC networks. Volume 1. Methodologies for control system design

    NASA Astrophysics Data System (ADS)

    Hauth, R. L.; Nozari, F.; Winkelman, J. R.; Athans, M.; Chan, S. M.

    1982-05-01

    Control concepts applicable to future multiterminal high voltage dc (MTDC) networks embedded in bulk power ac systems are discussed. The control's objectives are to enhance the steady state and/or dynamic performance of the integrated MTDC/ac power system. A multi-terminal HVdc system is one with more than two converter terminals. The three basic control levels of an MTDC system are: primary control, supplementary power modulation (damping) controls, and dispatch control. Techniques for use in all three levels of control are described. The application of modern control robustness theories to the MTDC power modulation control design methodology is discussed.

  18. Design and Flight Tests of an Adaptive Control System Employing Normal-Acceleration Command

    NASA Technical Reports Server (NTRS)

    McNeill, Water E.; McLean, John D.; Hegarty, Daniel M.; Heinle, Donovan R.

    1961-01-01

    An adaptive control system employing normal-acceleration command has been designed with the aid of an analog computer and has been flight tested. The design of the system was based on the concept of using a mathematical model in combination with a high gain and a limiter. The study was undertaken to investigate the application of a system of this type to the task of maintaining nearly constant dynamic longitudinal response of a piloted airplane over the flight envelope without relying on air data measurements for gain adjustment. The range of flight conditions investigated was between Mach numbers of 0.36 and 1.15 and altitudes of 10,000 and 40,000 feet. The final adaptive system configuration was derived from analog computer tests, in which the physical airplane control system and much of the control circuitry were included in the loop. The method employed to generate the feedback signals resulted in a model whose characteristics varied somewhat with changes in flight condition. Flight results showed that the system limited the variation in longitudinal natural frequency of the adaptive airplane to about half that of the basic airplane and that, for the subsonic cases, the damping ratio was maintained between 0.56 and 0.69. The system also automatically compensated for the transonic trim change. Objectionable features of the system were an exaggerated sensitivity of pitch attitude to gust disturbances, abnormally large pitch attitude response for a given pilot input at low speeds, and an initial delay in normal-acceleration response to pilot control at all flight conditions. The adaptive system chatter of +/-0.05 to +/-0.10 of elevon at about 9 cycles per second (resulting in a maximum airplane normal-acceleration response of from +/-0.025 g to +/- 0.035 g) was considered by the pilots to be mildly objectionable but tolerable.

  19. Structure and Controls of the Global Virtual Water Trade Network

    NASA Astrophysics Data System (ADS)

    Suweis, S. S.

    2011-12-01

    Recurrent or ephemeral water shortages are a crucial global challenge, in particular because of their impacts on food production. The global character of this challenge is reflected in the trade among nations of virtual water, i.e. the amount of water used to produce a given commodity. We build, analyze and model the network describing the transfer of virtual water between world nations for staple food products. We find that all the key features of the network are well described by a model, the fitness model, that reproduces both the topological and weighted properties of the global virtual water trade network, by assuming as sole controls each country's gross domestic product and yearly rainfall on agricultural areas. We capture and quantitatively describe the high degree of globalization of water trade and show that a small group of nations play a key role in the connectivity of the network and in the global redistribution of virtual water. Finally, we illustrate examples of prediction of the structure of the network under future political, economic and climatic scenarios, suggesting that the crucial importance of the countries that trade large volumes of water will be strengthened. Our results show the importance of incorporating a network framework in the study of virtual water trades and provide a model to study the structure and resilience of the GVWTN under future scenarios for social, economic and climate change.

  20. Distributed communications and control network for robotic mining

    NASA Technical Reports Server (NTRS)

    Schiffbauer, William H.

    1989-01-01

    The application of robotics to coal mining machines is one approach pursued to increase productivity while providing enhanced safety for the coal miner. Toward that end, a network composed of microcontrollers, computers, expert systems, real time operating systems, and a variety of program languages are being integrated that will act as the backbone for intelligent machine operation. Actual mining machines, including a few customized ones, have been given telerobotic semiautonomous capabilities by applying the described network. Control devices, intelligent sensors and computers onboard these machines are showing promise of achieving improved mining productivity and safety benefits. Current research using these machines involves navigation, multiple machine interaction, machine diagnostics, mineral detection, and graphical machine representation. Guidance sensors and systems employed include: sonar, laser rangers, gyroscopes, magnetometers, clinometers, and accelerometers. Information on the network of hardware/software and its implementation on mining machines are presented. Anticipated coal production operations using the network are discussed. A parallelism is also drawn between the direction of present day underground coal mining research to how the lunar soil (regolith) may be mined. A conceptual lunar mining operation that employs a distributed communication and control network is detailed.