Science.gov

Sample records for accelerator controls network

  1. Neural Networks for Modeling and Control of Particle Accelerators

    DOE PAGES

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; ...

    2016-04-01

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  2. Neural Networks for Modeling and Control of Particle Accelerators

    SciTech Connect

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  3. Real-time Optical Network for Accelerator Control

    SciTech Connect

    Lee, Keun

    2012-06-27

    The timing requirements of a modern accelerator complex call for several features. The first is a system for high precision relative timing among accelerator components. Stabilized fiber links have already been demonstrated to achieve sub-10 femtoseconds relative timing precision. The second is a system for timing distribution of absolute time with sufficient precision to identify a specific RF bucket. The White Rabbit technology is a promising candidate to deliver the absolute time that is linked to the GPS clock. In this study we demonstrated that these two technologies can be combined in a way that the absolute time information can be delivered to the stabilized fiber link system. This was accomplished by researching the design of the stabilized fiber and White Rabbit systems and devising adaptation modules that facilitate co-existence of both systems in the same FPGA environment. We built a prototype system using off-the-shelf products and implemented a proof-of-concept version of the FPGA firmware. The test verified that the White Rabbit features operate correctly under the stabilized fiber system environment. This work demonstrates that turn-key femtosecond timing systems with absolute time information can be built cost effectively and deployed in various accelerator environments. This will lead to many new applications in chemistry, biology and surface dynamics, to name a few.

  4. Network acceleration techniques

    NASA Technical Reports Server (NTRS)

    Crowley, Patricia (Inventor); Awrach, James Michael (Inventor); Maccabe, Arthur Barney (Inventor)

    2012-01-01

    Splintered offloading techniques with receive batch processing are described for network acceleration. Such techniques offload specific functionality to a NIC while maintaining the bulk of the protocol processing in the host operating system ("OS"). The resulting protocol implementation allows the application to bypass the protocol processing of the received data. Such can be accomplished this by moving data from the NIC directly to the application through direct memory access ("DMA") and batch processing the receive headers in the host OS when the host OS is interrupted to perform other work. Batch processing receive headers allows the data path to be separated from the control path. Unlike operating system bypass, however, the operating system still fully manages the network resource and has relevant feedback about traffic and flows. Embodiments of the present disclosure can therefore address the challenges of networks with extreme bandwidth delay products (BWDP).

  5. Impact of the Cancer Prevention and Control Research Network: Accelerating the Translation of Research Into Practice.

    PubMed

    Ribisl, Kurt M; Fernandez, Maria E; Friedman, Daniela B; Hannon, Peggy A; Leeman, Jennifer; Moore, Alexis; Olson, Lindsay; Ory, Marcia; Risendal, Betsy; Sheble, Laura; Taylor, Vicky M; Williams, Rebecca S; Weiner, Bryan J

    2017-03-01

    The Cancer Prevention and Control Research Network (CPCRN) is a thematic network dedicated to accelerating the adoption of evidence-based cancer prevention and control practices in communities by advancing dissemination and implementation science. Funded by the Centers for Disease Control and Prevention and National Cancer Institute, CPCRN has operated at two levels: Each participating network center conducts research projects with primarily local partners as well as multicenter collaborative research projects with state and national partners. Through multicenter collaboration, thematic networks leverage the expertise, resources, and partnerships of participating centers to conduct research projects collectively that might not be feasible individually. Although multicenter collaboration is often advocated, it is challenging to promote and assess. Using bibliometric network analysis and other graphical methods, this paper describes CPCRN's multicenter publication progression from 2004 to 2014. Searching PubMed, Scopus, and Web of Science in 2014 identified 249 peer-reviewed CPCRN publications involving two or more centers out of 6,534 total. The research and public health impact of these multicenter collaborative projects initiated by CPCRN during that 10-year period were then examined. CPCRN established numerous workgroups around topics such as: 2-1-1, training and technical assistance, colorectal cancer control, federally qualified health centers, cancer survivorship, and human papillomavirus. This paper discusses the challenges that arise in promoting multicenter collaboration and the strategies that CPCRN uses to address those challenges. The lessons learned should broadly interest those seeking to promote multisite collaboration to address public health problems, such as cancer prevention and control.

  6. First Steps Toward Incorporating Image Based Diagnostics Into Particle Accelerator Control Systems Using Convolutional Neural Networks

    SciTech Connect

    Edelen, A. L.; Biedron, S. G.; Milton, S. V.; Edelen, J. P.

    2016-12-16

    At present, a variety of image-based diagnostics are used in particle accelerator systems. Often times, these are viewed by a human operator who then makes appropriate adjustments to the machine. Given recent advances in using convolutional neural networks (CNNs) for image processing, it should be possible to use image diagnostics directly in control routines (NN-based or otherwise). This is especially appealing for non-intercepting diagnostics that could run continuously during beam operation. Here, we show results of a first step toward implementing such a controller: our trained CNN can predict multiple simulated downstream beam parameters at the Fermilab Accelerator Science and Technology (FAST) facility's low energy beamline using simulated virtual cathode laser images, gun phases, and solenoid strengths.

  7. Centralized digital control of accelerators

    SciTech Connect

    Melen, R.E.

    1983-09-01

    In contrasting the title of this paper with a second paper to be presented at this conference entitled Distributed Digital Control of Accelerators, a potential reader might be led to believe that this paper will focus on systems whose computing intelligence is centered in one or more computers in a centralized location. Instead, this paper will describe the architectural evolution of SLAC's computer based accelerator control systems with respect to the distribution of their intelligence. However, the use of the word centralized in the title is appropriate because these systems are based on the use of centralized large and computationally powerful processors that are typically supported by networks of smaller distributed processors.

  8. Laser Ion Acceleration Control

    NASA Astrophysics Data System (ADS)

    Kawata, Shigeo; Nagashima, T.; Izumiyama, T.; Sato, D.; Takano, M.; Barada, D.; Ma, Y. Y.; Gu, Y. J.; Kong, Q.; Wang, P. X.; Wang, W. M.

    2013-10-01

    An intense femtosecond pulsed laser is employed to accelerate ions. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching, the ion particle energy control, etc. In the study particle computer simulations were performed to solve the issues, and each component was designed to control the ion beam quality. When an intense laser illuminates a target, electrons in the target are accelerated and leave from the target; temporarily a strong electric field is formed between the high-energy electrons and the target ions, and the target ions are accelerated. The energy efficiency from the laser to ions was improved by using a solid target with a fine sub-wavelength structure or by a near critical density gas plasma. The ion beam collimation was realized by holes behind the solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching were successfully realized by a multi-stage laser-target interaction. The present study proposed a novel concept for a future compact laser ion accelerator, based on each component study required to control the ion beam quality and parameters. Partly supported by JSPS, MEXT, CORE, Japan/US Cooperation program, ASHULA and ILE/Osaka University.

  9. Remote operations in a global accelerator network

    SciTech Connect

    Peggs, Steve; Satogata, Todd; Agarwal, Deborah; Rice, David

    2003-05-08

    The INTRODUCTION to this paper summarizes the history of the Global Accelerator Network (GAN) concept and the recent workshops that discussed the relationship between GAN and Remote Operations. The REMOTE OPERATIONS SCENARIOS section brings out the organizational philosophy embodied in GAN-like and to non-GAN-like scenarios. The set of major TOPICS RAISED AT THE WORKSHOPS are only partially resolved. COLLABORATION TOOLS are described and discussed, followed by examples of REMOTE ACCELERATOR CONTROL PROJECTS around the world.

  10. REMOTE OPERATIONS IN A GLOBAL ACCELERATOR NETWORK

    SciTech Connect

    PEGGS,S.SATOGATA,TAGARWAL,DRICE,D

    2003-05-12

    The INTRODUCTION to this paper summarizes the history of the Global Accelerator Network (GAN) concept and the recent workshops that discussed the relationship between GAN and Remote Operations. The REMOTE OPERATIONS SCENARIOS section brings out the organizational philosophy embodied in GAN-like and to non-GAN-like scenarios. The set of major TOPICS RAISED AT THE WORKSHOPS are only partially resolved. COLLABORATION TOOLS are described and discussed, followed by examples of REMOTE ACCELERATOR CONTROL PROJECTS around the world.

  11. Adaptive control for accelerators

    DOEpatents

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  12. Vibration control in accelerators

    SciTech Connect

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  13. Neural network-based sensor signal accelerator.

    SciTech Connect

    Vogt, M. C.

    2000-10-16

    A strategy has been developed to computationally accelerate the response time of a generic electronic sensor. The strategy can be deployed as an algorithm in a control system or as a physical interface (on an embedded microcontroller) between a slower responding external sensor and a higher-speed control system. Optional code implementations are available to adjust algorithm performance when computational capability is limited. In one option, the actual sensor signal can be sampled at the slower rate with adaptive linear neural networks predicting the sensor's future output and interpolating intermediate synthetic output values. In another option, a synchronized collection of predictors sequentially controls the corresponding synthetic output voltage. Error is adaptively corrected in both options. The core strategy has been demonstrated with automotive oxygen sensor data. A prototype interface device is under construction. The response speed increase afforded by this strategy could greatly offset the cost of developing a replacement sensor with a faster physical response time.

  14. Control of robot dynamics using acceleration control

    NASA Technical Reports Server (NTRS)

    Workman, G. L.; Prateru, S.; Li, W.; Hinman, Elaine

    1992-01-01

    Acceleration control of robotic devices can provide improvements to many space-based operations using flexible manipulators and to ground-based operations requiring better precision and efficiency than current industrial robots can provide. This paper reports on a preliminary study of acceleration measurement on robotic motion during parabolic flights on the NASA KC-135 and a parallel study of accelerations with and without gravity arising from computer simulated motions using TREETOPS software.

  15. Accelerating Learning By Neural Networks

    NASA Technical Reports Server (NTRS)

    Toomarian, Nikzad; Barhen, Jacob

    1992-01-01

    Electronic neural networks made to learn faster by use of terminal teacher forcing. Method of supervised learning involves addition of teacher forcing functions to excitations fed as inputs to output neurons. Initially, teacher forcing functions are strong enough to force outputs to desired values; subsequently, these functions decay with time. When learning successfully completed, terminal teacher forcing vanishes, and dynamics or neural network become equivalent to those of conventional neural network. Simulated neural network with terminal teacher forcing learned to produce close approximation of circular trajectory in 400 iterations.

  16. A portable accelerator control toolkit

    SciTech Connect

    Watson, W.A. III

    1997-06-01

    In recent years, the expense of creating good control software has led to a number of collaborative efforts among laboratories to share this cost. The EPICS collaboration is a particularly successful example of this trend. More recently another collaborative effort has addressed the need for sophisticated high level software, including model driven accelerator controls. This work builds upon the CDEV (Common DEVice) software framework, which provides a generic abstraction of a control system, and maps that abstraction onto a number of site-specific control systems including EPICS, the SLAC control system, CERN/PS and others. In principle, it is now possible to create portable accelerator control applications which have no knowledge of the underlying and site-specific control system. Applications based on CDEV now provide a growing suite of tools for accelerator operations, including general purpose displays, an on-line accelerator model, beamline steering, machine status displays incorporating both hardware and model information (such as beam positions overlaid with beta functions) and more. A survey of CDEV compatible portable applications will be presented, as well as plans for future development.

  17. Personal computers in accelerator control

    NASA Astrophysics Data System (ADS)

    Anderssen, P. S.

    1988-07-01

    The advent of the personal computer has created a popular movement which has also made a strong impact on science and engineering. Flexible software environments combined with good computational performance and large storage capacities are becoming available at steadily decreasing costs. Of equal importance, however, is the quality of the user interface offered on many of these products. Graphics and screen interaction is available in ways that were only possible on specialized systems before. Accelerator engineers were quick to pick up the new technology. The first applications were probably for controllers and data gatherers for beam measurement equipment. Others followed, and today it is conceivable to make personal computer a standard component of an accelerator control system. This paper reviews the experience gained at CERN so far and describes the approach taken in the design of the common control center for the SPS and the future LEP accelerators. The design goal has been to be able to integrate personal computers into the accelerator control system and to build the operator's workplace around it.

  18. Stalling chaos control accelerates convergence

    NASA Astrophysics Data System (ADS)

    Bick, Christian; Kolodziejski, Christoph; Timme, Marc

    2013-06-01

    Since chaos control has found its way into many applications, the development of fast, easy-to-implement and universally applicable chaos control methods is of crucial importance. Predictive feedback control has been widely applied but suffers from a speed limit imposed by highly unstable periodic orbits. We show that this limit can be overcome by stalling the control, thereby taking advantage of the stable directions of the uncontrolled chaotic map. This analytical finding is confirmed by numerical simulations, giving a chaos-control method that is capable of successfully stabilizing periodic orbits of high period.

  19. Application accelerator system having bunch control

    DOEpatents

    Wang, D.; Krafft, G.A.

    1999-06-22

    An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig.

  20. Application accelerator system having bunch control

    DOEpatents

    Wang, Dunxiong; Krafft, Geoffrey Arthur

    1999-01-01

    An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.

  1. The computer-based control system of the NAC accelerator

    NASA Astrophysics Data System (ADS)

    Burdzik, G. F.; Bouckaert, R. F. A.; Cloete, I.; Dutoit, J. S.; Kohler, I. H.; Truter, J. N. J.; Visser, K.; Wikner, V. C. S. J.

    The National Accelerator Center (NAC) of the CSIR is building a two-stage accelerator which will provide charged-particle beams for use in medical and research applications. The control system for this accelerator is based on three mini-computers and a CAMAC interfacing network. Closed-loop control is being relegated to the various subsystems of the accelerators, and the computers and CAMAC network will be used in the first instance for data transfer, monitoring and servicing of the control consoles. The processing power of the computers will be utilized for automating start-up and beam-change procedures, for providing flexible and convenient information at the control consoles, for fault diagnosis and for beam-optimizing procedures. Tasks of a localized or dedicated nature are being off-loaded onto microcomputers, which are being used either in front-end devices or as slaves to the mini-computers. On the control consoles only a few instruments for setting and monitoring variables are being provided, but these instruments are universally-linkable to any appropriate machine variable.

  2. Control problems in very large accelerators

    SciTech Connect

    Crowley-Milling, M.C.

    1985-06-01

    There is no fundamental difference of kind in the control requirements between a small and a large accelerator since they are built of the same types of components, which individually have similar control inputs and outputs. The main difference is one of scale; the large machine has many more components of each type, and the distances involved are much greater. Both of these factors must be taken into account in determining the optimum way of carrying out the control functions. Small machines should use standard equipment and software for control as much as possible, as special developments for small quantities cannot normally be justified if all costs are taken into account. On the other hand, the very great number of devices needed for a large machine means that, if special developments can result in simplification, they may make possible an appreciable reduction in the control equipment costs. It is the purpose of this report to look at the special control problems of large accelerators, which the author shall arbitarily define as those with a length of circumference in excess of 10 km, and point out where special developments, or the adoption of developments from outside the accelerator control field, can be of assistance in minimizing the cost of the control system. Most of the first part of this report was presented as a paper to the 1985 Particle Accelerator Conference. It has now been extended to include a discussion on the special case of the controls for the SSC.

  3. An Accelerator Control Middle Layer Using MATLAB

    SciTech Connect

    Portmann, Gregory J.; Corbett, Jeff; Terebilo, Andrei

    2005-03-15

    Matlab is a matrix manipulation language originally developed to be a convenient language for using the LINPACK and EISPACK libraries. What makes Matlab so appealing for accelerator physics is the combination of a matrix oriented programming language, an active workspace for system variables, powerful graphics capability, built-in math libraries, and platform independence. A number of software toolboxes for accelerators have been written in Matlab--the Accelerator Toolbox (AT) for machine simulations, LOCO for accelerator calibration, Matlab Channel Access Toolbox (MCA) for EPICS connections, and the Middle Layer. This paper will describe the ''middle layer'' software toolbox that resides between the high-level control applications and the low-level accelerator control system. This software was a collaborative effort between ALS (LBNL) and SPEAR3 (SSRL) but easily ports to other machines. Five accelerators presently use this software. The high-level Middle Layer functionality includes energy ramp, configuration control (save/restore), global orbit correction, local photon beam steering, insertion device compensation, beam-based alignment, tune correction, response matrix measurement, and script-based programs for machine physics studies.

  4. A New Control Room for SLAC Accelerators

    SciTech Connect

    Erickson, Roger; Guerra, E.; Stanek, M.; Hoover, Z.Van; Warren, J.; /SLAC

    2012-06-04

    We are planning to construct a new control room at SLAC to unify and improve the operation of the LCLS, SPEAR3, and FACET accelerator facilities, and to provide the space and flexibility needed to support the LCLS-II and proposed new test beam facilities. The existing control rooms for the linac and SPEAR3 have been upgraded in various ways over the last decade, but their basic features have remained unchanged. We propose to build a larger modern Accelerator Control Room (ACR) in the new Research Support Building (RSB) which is currently under construction at SLAC. Shifting the center of control for the accelerator facilities entails both technical and administrative challenges. In this paper, we describe the history, concept, and status of this project.

  5. Virtualized Network Control (VNC)

    SciTech Connect

    Lehman, Thomas; Guok, Chin; Ghani, Nasir

    2013-01-31

    The focus of this project was on the development of a "Network Service Plane" as an abstraction model for the control and provisioning of multi-layer networks. The primary motivation for this work were the requirements of next generation networked applications which will need to access advanced networking as a first class resource at the same level as compute and storage resources. A new class of "Intelligent Network Services" were defined in order to facilitate the integration of advanced network services into application specific workflows. This new class of network services are intended to enable real-time interaction between the application co-scheduling algorithms and the network for the purposes of workflow planning, real-time resource availability identification, scheduling, and provisioning actions.

  6. Fermilab accelerator control system: Analog monitoring facilities

    SciTech Connect

    Seino, K.; Anderson, L.; Smedinghoff, J.

    1987-10-01

    Thousands of analog signals are monitored in different areas of the Fermilab accelerator complex. For general purposes, analog signals are sent over coaxial or twinaxial cables with varying lengths, collected at fan-in boxes and digitized with 12 bit multiplexed ADCs. For higher resolution requirements, analog signals are digitized at sources and are serially sent to the control system. This paper surveys ADC subsystems that are used with the accelerator control systems and discusses practical problems and solutions, and it describes how analog data are presented on the console system.

  7. Collaboration tools for the global accelerator network: Workshop Report

    SciTech Connect

    Agarwal, Deborah; Olson, Gary; Olson, Judy

    2002-09-15

    The concept of a ''Global Accelerator Network'' (GAN) has been put forward as a means for inter-regional collaboration in the operation of internationally constructed and operated frontier accelerator facilities. A workshop was held to allow representatives of the accelerator community and of the collaboratory development community to meet and discuss collaboration tools for the GAN environment. This workshop, called the Collaboration Tools for the Global Accelerator Network (GAN) Workshop, was held on August 26, 2002 at Lawrence Berkeley National Laboratory. The goal was to provide input about collaboration tools in general and to provide a strawman for the GAN collaborative tools environment. The participants at the workshop represented accelerator physicists, high-energy physicists, operations, technology tool developers, and social scientists that study scientific collaboration.

  8. Bimodality in Network Control

    NASA Astrophysics Data System (ADS)

    Jia, Tao; Liu, Yang-Yu; Posfai, Marton; Slotine, Jean-Jacques; Barabasi, Albert-Laszlo

    2013-03-01

    Controlling complex systems is a fundamental challenge of network science. Recent tools enable us to identify the minimum driver nodes, from which we can control a system. They also indicate a multiplicity of minimum driver node sets (MDS's): multiple combinations of the same number of nodes can achieve control over the system. This multiplicity allows us to classify individual nodes as critical if they are involved in all control configurations, intermittent if they occasionally act as driver nodes and redundant if they do not play any role in control. We develop computational and analytical framework analyzing nodes in each category in both model and real networks. We find that networks with identical degree distribution can be in two distinct control modes, ``centralized'' or ``distributed'', with drastic change on the role of each node in maintaining the controllability and orders of magnitude difference in the number of MDS's. In analyzing both model and real networks, we find that the two modes can be inferred directly from the network's degree distribution. Finally we show that the two control modes can be switched by small structural perturbations, leading to potential applications of control theory in real systems.

  9. An Accelerator Control Middle Layer Using MATLAB

    SciTech Connect

    Portmann, Gregory J.; Corbett, Jeff; Terebilo, Andrei

    2005-05-15

    Matlab is an interpretive programming language originally developed for convenient use with the LINPACK and EISPACK libraries. Matlab is appealing for accelerator physics because it is matrix-oriented, provides an active workspace for system variables, powerful graphics capabilities, built-in math libraries, and platform independence. A number of accelerator software toolboxes have been written in Matlab -- the Accelerator Toolbox (AT) for model-based machine simulations, LOCO for on-line model calibration, and Matlab Channel Access (MCA) to connect with EPICS. The function of the MATLAB ''MiddleLayer'' is to provide a scripting language for machine simulations and on-line control, including non-EPICS based control systems. The MiddleLayer has simplified and streamlined development of high-level applications including configuration control, energy ramp, orbit correction, photon beam steering, ID compensation, beam-based alignment, tune correction and response matrix measurement. The database-driven Middle Layer software is largely machine-independent and easy to port. Six accelerators presently use the software package with more scheduled to come on line soon.

  10. Emittance control in Laser Wakefield Accelerator

    NASA Astrophysics Data System (ADS)

    Cheshkov, S.; Tajima, T.; Chiu, C.; Breitling, F.

    2001-05-01

    In this paper we summarize our recent effort and results in theoretical study of the emittance issues of multistaged Laser Wakefield Accelerator (LWFA) in TeV energy range. In such an energy regime the luminosity and therefore the emittance requirements become very stringent and tantamount to the success or failure of such an accelerator. The system of such a machine is very sensitive to jitters due to misalignment between the beam and the wakefield. In particular, the effect of jitters in the presence of a strong focusing wakefield and initial longitudinal phase space spread of the beam leads to severe transverse emittance degradation of the beam. To improve the emittance we introduce several methods: a mitigated wakefield focusing by working with a plasma channel, an approximately synchronous acceleration in a superunit setup, the "horn" model based on exactly synchronous acceleration achieved through plasma density variation and lastly an algorithm based on minimization of the final beam emittance to actively control the stage displacement of such an accelerator.

  11. Accelerated Biofluid Filling in Complex Microfluidic Networks by Vacuum-Pressure Accelerated Movement (V-PAM).

    PubMed

    Yu, Zeta Tak For; Cheung, Mei Ki; Liu, Shirley Xiaosu; Fu, Jianping

    2016-09-01

    Rapid fluid transport and exchange are critical operations involved in many microfluidic applications. However, conventional mechanisms used for driving fluid transport in microfluidics, such as micropumping and high pressure, can be inaccurate and difficult for implementation for integrated microfluidics containing control components and closed compartments. Here, a technology has been developed termed Vacuum-Pressure Accelerated Movement (V-PAM) capable of significantly enhancing biofluid transport in complex microfluidic environments containing dead-end channels and closed chambers. Operation of the V-PAM entails a pressurized fluid loading into microfluidic channels where gas confined inside can rapidly be dissipated through permeation through a thin, gas-permeable membrane sandwiched between microfluidic channels and a network of vacuum channels. Effects of different structural and operational parameters of the V-PAM for promoting fluid filling in microfluidic environments have been studied systematically. This work further demonstrates the applicability of V-PAM for rapid filling of temperature-sensitive hydrogels and unprocessed whole blood into complex irregular microfluidic networks such as microfluidic leaf venation patterns and blood circulatory systems. Together, the V-PAM technology provides a promising generic microfluidic tool for advanced fluid control and transport in integrated microfluidics for different microfluidic diagnosis, organs-on-chips, and biomimetic studies.

  12. ACCELERATOR TARGET POSITIONER AND CONTROL CIRCUIT THEREFOR

    DOEpatents

    Stone, K.F.; Force, R.J.; Olson, W.W.; Cagle, D.S.

    1959-12-15

    An apparatus is described for inserting and retracting a target material with respect to the internal beam of a charged particle accelerator and to circuitry for controlling the timing and motion of the target placement. Two drive coils are mounted on the shaft of a target holder arm and disposed within the accelerator magnetic field with one coil at right angles to the other. Control circuitry alternately connects each coil to a current source and to a varying shorting resistance whereby the coils interchangeably produce driving and braking forces which swing the target arm within a ninety degree arc. The target is thus moved into the beam and away from it at high speeds and is brought to rest after each movement without whiplash or vibration.

  13. Method Accelerates Training Of Some Neural Networks

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O.

    1992-01-01

    Three-layer networks trained faster provided two conditions are satisfied: numbers of neurons in layers are such that majority of work done in synaptic connections between input and hidden layers, and number of neurons in input layer at least as great as number of training pairs of input and output vectors. Based on modified version of back-propagation method.

  14. Accelerating coordination in temporal networks by engineering the link order

    PubMed Central

    Masuda, Naoki

    2016-01-01

    Social dynamics on a network may be accelerated or decelerated depending on which pairs of individuals in the network communicate early and which pairs do later. The order with which the links in a given network are sequentially used, which we call the link order, may be a strong determinant of dynamical behaviour on networks, potentially adding a new dimension to effects of temporal networks relative to static networks. Here we study the effect of the link order on linear coordination (i.e., synchronisation) dynamics. We show that the coordination speed considerably depends on specific orders of links. In addition, applying each single link for a long time to ensure strong pairwise coordination before moving to a next pair of individuals does not often enhance coordination of the entire network. We also implement a simple greedy algorithm to optimise the link order in favour of fast coordination. PMID:26916093

  15. Modeling of UH-60A Hub Accelerations with Neural Networks

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi

    2002-01-01

    Neural network relationships between the full-scale, flight test hub accelerations and the corresponding three N/rev pilot floor vibration components (vertical, lateral, and longitudinal) are studied. The present quantitative effort on the UH-60A Black Hawk hub accelerations considers the lateral and longitudinal vibrations. An earlier study had considered the vertical vibration. The NASA/Army UH-60A Airloads Program flight test database is used. A physics based "maneuver-effect-factor (MEF)", derived using the roll-angle and the pitch-rate, is used. Fundamentally, the lateral vibration data show high vibration levels (up to 0.3 g's) at low airspeeds (for example, during landing flares) and at high airspeeds (for example, during turns). The results show that the advance ratio and the gross weight together can predict the vertical and the longitudinal vibration. However, the advance ratio and the gross weight together cannot predict the lateral vibration. The hub accelerations and the advance ratio can be used to satisfactorily predict the vertical, lateral, and longitudinal vibration. The present study shows that neural network based representations of all three UH-60A pilot floor vibration components (vertical, lateral, and longitudinal) can be obtained using the hub accelerations along with the gross weight and the advance ratio. The hub accelerations are clearly a factor in determining the pilot vibration. The present conclusions potentially allow for the identification of neural network relationships between the experimental hub accelerations obtained from wind tunnel testing and the experimental pilot vibration data obtained from flight testing. A successful establishment of the above neural network based link between the wind tunnel hub accelerations and the flight test vibration data can increase the value of wind tunnel testing.

  16. Control system modeling for superconducting accelerator

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Pozniak, Krzysztof; Romaniuk, Ryszard; Simrock, Stefan

    2006-10-01

    A digital control of superconducting cavities for a linear accelerator is presented. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. FPGA based controller supported by MATLAB system was developed to investigate the novel firmware implementation. Algebraic model in complex domain is proposed for the system analyzing. Calibration procedure of a signal path is considered for a multi-channel control. Identification of the system parameters is carried out by the least squares method application. Control tables: Feed-Forward and Set-Point are determined for the required cavity performance, according to the recognized process. Feedback loop is tuned by fitting a complex gain of a corrector unit. Adaptive control algorithm is applied for feed-forward and feedback modes. Experimental results are presented for a cavity representative operation.

  17. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    PubMed

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  18. Exact controllability of complex networks

    PubMed Central

    Yuan, Zhengzhong; Zhao, Chen; Di, Zengru; Wang, Wen-Xu; Lai, Ying-Cheng

    2013-01-01

    Controlling complex networks is of paramount importance in science and engineering. Despite the recent development of structural controllability theory, we continue to lack a framework to control undirected complex networks, especially given link weights. Here we introduce an exact controllability paradigm based on the maximum multiplicity to identify the minimum set of driver nodes required to achieve full control of networks with arbitrary structures and link-weight distributions. The framework reproduces the structural controllability of directed networks characterized by structural matrices. We explore the controllability of a large number of real and model networks, finding that dense networks with identical weights are difficult to be controlled. An efficient and accurate tool is offered to assess the controllability of large sparse and dense networks. The exact controllability framework enables a comprehensive understanding of the impact of network properties on controllability, a fundamental problem towards our ultimate control of complex systems. PMID:24025746

  19. FPGA-accelerated adaptive optics wavefront control

    NASA Astrophysics Data System (ADS)

    Mauch, S.; Reger, J.; Reinlein, C.; Appelfelder, M.; Goy, M.; Beckert, E.; Tünnermann, A.

    2014-03-01

    The speed of real-time adaptive optical systems is primarily restricted by the data processing hardware and computational aspects. Furthermore, the application of mirror layouts with increasing numbers of actuators reduces the bandwidth (speed) of the system and, thus, the number of applicable control algorithms. This burden turns out a key-impediment for deformable mirrors with continuous mirror surface and highly coupled actuator influence functions. In this regard, specialized hardware is necessary for high performance real-time control applications. Our approach to overcome this challenge is an adaptive optics system based on a Shack-Hartmann wavefront sensor (SHWFS) with a CameraLink interface. The data processing is based on a high performance Intel Core i7 Quadcore hard real-time Linux system. Employing a Xilinx Kintex-7 FPGA, an own developed PCie card is outlined in order to accelerate the analysis of a Shack-Hartmann Wavefront Sensor. A recently developed real-time capable spot detection algorithm evaluates the wavefront. The main features of the presented system are the reduction of latency and the acceleration of computation For example, matrix multiplications which in general are of complexity O(n3 are accelerated by using the DSP48 slices of the field-programmable gate array (FPGA) as well as a novel hardware implementation of the SHWFS algorithm. Further benefits are the Streaming SIMD Extensions (SSE) which intensively use the parallelization capability of the processor for further reducing the latency and increasing the bandwidth of the closed-loop. Due to this approach, up to 64 actuators of a deformable mirror can be handled and controlled without noticeable restriction from computational burdens.

  20. Open Hardware for CERN's accelerator control systems

    NASA Astrophysics Data System (ADS)

    van der Bij, E.; Serrano, J.; Wlostowski, T.; Cattin, M.; Gousiou, E.; Alvarez Sanchez, P.; Boccardi, A.; Voumard, N.; Penacoba, G.

    2012-01-01

    The accelerator control systems at CERN will be upgraded and many electronics modules such as analog and digital I/O, level converters and repeaters, serial links and timing modules are being redesigned. The new developments are based on the FPGA Mezzanine Card, PCI Express and VME64x standards while the Wishbone specification is used as a system on a chip bus. To attract partners, the projects are developed in an `Open' fashion. Within this Open Hardware project new ways of working with industry are being evaluated and it has been proven that industry can be involved at all stages, from design to production and support.

  1. Neural networks for aircraft control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  2. Accelerated Training for Large Feedforward Neural Networks

    NASA Technical Reports Server (NTRS)

    Stepniewski, Slawomir W.; Jorgensen, Charles C.

    1998-01-01

    In this paper we introduce a new training algorithm, the scaled variable metric (SVM) method. Our approach attempts to increase the convergence rate of the modified variable metric method. It is also combined with the RBackprop algorithm, which computes the product of the matrix of second derivatives (Hessian) with an arbitrary vector. The RBackprop method allows us to avoid computationally expensive, direct line searches. In addition, it can be utilized in the new, 'predictive' updating technique of the inverse Hessian approximation. We have used directional slope testing to adjust the step size and found that this strategy works exceptionally well in conjunction with the Rbackprop algorithm. Some supplementary, but nevertheless important enhancements to the basic training scheme such as improved setting of a scaling factor for the variable metric update and computationally more efficient procedure for updating the inverse Hessian approximation are presented as well. We summarize by comparing the SVM method with four first- and second- order optimization algorithms including a very effective implementation of the Levenberg-Marquardt method. Our tests indicate promising computational speed gains of the new training technique, particularly for large feedforward networks, i.e., for problems where the training process may be the most laborious.

  3. Explicit integration with GPU acceleration for large kinetic networks

    DOE PAGES

    Brock, Benjamin; Belt, Andrew; Billings, Jay Jay; ...

    2015-09-15

    In this study, we demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. In addition, this orders-of-magnitude decrease in computation time for solving systems of realistic kinetic networks implies thatmore » important coupled, multiphysics problems in various scientific and technical fields that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.« less

  4. Explicit integration with GPU acceleration for large kinetic networks

    SciTech Connect

    Brock, Benjamin; Belt, Andrew; Billings, Jay Jay; Guidry, Mike W.

    2015-09-15

    In this study, we demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. In addition, this orders-of-magnitude decrease in computation time for solving systems of realistic kinetic networks implies that important coupled, multiphysics problems in various scientific and technical fields that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.

  5. Explicit integration with GPU acceleration for large kinetic networks

    SciTech Connect

    Brock, Benjamin; Belt, Andrew; Billings, Jay Jay; Guidry, Mike

    2015-12-01

    We demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. This orders-of-magnitude decrease in computation time for solving systems of realistic kinetic networks implies that important coupled, multiphysics problems in various scientific and technical fields that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.

  6. Controlling General Polynomial Networks

    NASA Astrophysics Data System (ADS)

    Cuneo, N.; Eckmann, J.-P.

    2014-06-01

    We consider networks of massive particles connected by non-linear springs. Some particles interact with heat baths at different temperatures, which are modeled as stochastic driving forces. The structure of the network is arbitrary, but the motion of each particle is 1D. For polynomial interactions, we give sufficient conditions for Hörmander's "bracket condition" to hold, which implies the uniqueness of the steady state (if it exists), as well as the controllability of the associated system in control theory. These conditions are constructive; they are formulated in terms of inequivalence of the forces (modulo translations) and/or conditions on the topology of the connections. We illustrate our results with examples, including "conducting chains" of variable cross-section. This then extends the results for a simple chain obtained in Eckmann et al. in (Commun Math Phys 201:657-697, 1999).

  7. Kinematics and Dynamics of Motion Control Based on Acceleration Control

    NASA Astrophysics Data System (ADS)

    Ohishi, Kiyoshi; Ohba, Yuzuru; Katsura, Seiichiro

    The first IEEE International Workshop on Advanced Motion Control was held in 1990 pointed out the importance of physical interpretation of motion control. The software servoing technology is now common in machine tools, robotics, and mechatronics. It has been intensively developed for the numerical control (NC) machines. Recently, motion control in unknown environment will be more and more important. Conventional motion control is not always suitable due to the lack of adaptive capability to the environment. A more sophisticated ability in motion control is necessary for compliant contact with environment. Acceleration control is the key technology of motion control in unknown environment. The acceleration control can make a motion system to be a zero control stiffness system without losing the robustness. Furthermore, a realization of multi-degree-of-freedom motion is necessary for future human assistance. A human assistant motion will require various control stiffness corresponding to the task. The review paper focuses on the modal coordinate system to integrate the various control stiffness in the virtual axes. A bilateral teleoperation is a good candidate to consider the future human assistant motion and integration of decentralized systems. Thus the paper reviews and discusses the bilateral teleoperation from the control stiffness and the modal control design points of view.

  8. Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks.

    PubMed

    Arampatzis, Georgios; Katsoulakis, Markos A; Pantazis, Yannis

    2015-01-01

    Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction networks with a large number of parameters and species, which are typical in the modeling and simulation of complex biochemical phenomena. In this paper, a two-step strategy for parametric sensitivity analysis for such systems is proposed, exploiting advantages and synergies between two recently proposed sensitivity analysis methodologies for stochastic dynamics. The first method performs sensitivity analysis of the stochastic dynamics by means of the Fisher Information Matrix on the underlying distribution of the trajectories; the second method is a reduced-variance, finite-difference, gradient-type sensitivity approach relying on stochastic coupling techniques for variance reduction. Here we demonstrate that these two methods can be combined and deployed together by means of a new sensitivity bound which incorporates the variance of the quantity of interest as well as the Fisher Information Matrix estimated from the first method. The first step of the proposed strategy labels sensitivities using the bound and screens out the insensitive parameters in a controlled manner. In the second step of the proposed strategy, a finite-difference method is applied only for the sensitivity estimation of the (potentially) sensitive parameters that have not been screened out in the first step. Results on an epidermal growth factor network with fifty parameters and on a protein homeostasis with eighty parameters demonstrate that the proposed strategy is able to quickly discover and discard the insensitive parameters and in the remaining potentially sensitive parameters it accurately estimates the sensitivities. The new sensitivity strategy can be several times faster than current state-of-the-art approaches that test all parameters, especially in "sloppy" systems. In particular, the computational acceleration is quantified by the ratio between the total number of parameters over the

  9. Linear induction accelerator and pulse forming networks therefor

    DOEpatents

    Buttram, Malcolm T.; Ginn, Jerry W.

    1989-01-01

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.

  10. A distributed control system status report of the munich accelerator control

    NASA Astrophysics Data System (ADS)

    Rohrer, L.; Schnitter, H.

    1999-04-01

    A system of computers connected by a local area network (ARCNET®) controls the Munich accelerator facility. This includes ion sources, the tandem accelerator, the beam transport system, the gas handling plant, parts of experimental setup and also an ion source test bench. ARCNET is a deterministic multi-master network with arbitrary topology, using coax cables and optical fibers. Crates with single board computers and I/O-boards (analog, parallel or serial digital), dependent on the devices being controlled, are distributed all over the building. Personal computers serve as user interfaces. The LAN communication protocol is a client/server protocol. Communication language and programming language for the single board computers is Forth. The user mode drivers in the personal computers are also written in Forth. The tools for the operators are MS-Windows applications, programmed in Forth, C++ or Visual Basic. Links to MS-Office applications are available, too.

  11. Accelerator diagnosis and control by Neural Nets

    SciTech Connect

    Spencer, J.E.

    1989-01-01

    Neural Nets (NN) have been described as a solution looking for a problem. In the last conference, Artificial Intelligence (AI) was considered in the accelerator context. While good for local surveillance and control, its use for large complex systems (LCS) was much more restricted. By contrast, NN provide a good metaphor for LCS. It can be argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems, and therefore provide an ideal adaptive control system. Thus, where AI may be good for maintaining a 'golden orbit,' NN should be good for obtaining it via a quantitative approach to 'look and adjust' methods like operator tweaking which use pattern recognition to deal with hardware and software limitations, inaccuracies or errors as well as imprecise knowledge or understanding of effects like annealing and hysteresis. Further, insights from NN allow one to define feasibility conditions for LCS in terms of design constraints and tolerances. Hardware and software implications are discussed and several LCS of current interest are compared and contrasted. 15 refs., 5 figs.

  12. Acceleration-augmented LQG control of an active magnetic bearing

    NASA Astrophysics Data System (ADS)

    Feeley, Joseph J.

    A linear-quadratic-gaussian (LQG) regulator controller design for an acceleration-augmented active magnetic bearing (AMB) is outlined. Acceleration augmentation is a key feature in providing improved dynamic performance of the controller. The optimal control formulation provides a convenient method of trading-off fast transient response and force attenuation as control objectives.

  13. Acceleration-Augmented LQG Control of an Active Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Feeley, Joseph J.

    1993-01-01

    A linear-quadratic-gaussian (LQG) regulator controller design for an acceleration-augmented active magnetic bearing (AMB) is outlined. Acceleration augmentation is a key feature in providing improved dynamic performance of the controller. The optimal control formulation provides a convenient method of trading-off fast transient response and force attenuation as control objectives.

  14. BIOCONAID System (Bionic Control of Acceleration Induced Dimming). Final Report.

    ERIC Educational Resources Information Center

    Rogers, Dana B.; And Others

    The system described represents a new technique for enhancing the fidelity of flight simulators during high acceleration maneuvers. This technique forces the simulator pilot into active participation and energy expenditure similar to the aircraft pilot undergoing actual accelerations. The Bionic Control of Acceleration Induced Dimming (BIOCONAID)…

  15. Control efficacy of complex networks

    PubMed Central

    Gao, Xin-Dong; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-01-01

    Controlling complex networks has become a forefront research area in network science and engineering. Recent efforts have led to theoretical frameworks of controllability to fully control a network through steering a minimum set of driver nodes. However, in realistic situations not every node is accessible or can be externally driven, raising the fundamental issue of control efficacy: if driving signals are applied to an arbitrary subset of nodes, how many other nodes can be controlled? We develop a framework to determine the control efficacy for undirected networks of arbitrary topology. Mathematically, based on non-singular transformation, we prove a theorem to determine rigorously the control efficacy of the network and to identify the nodes that can be controlled for any given driver nodes. Physically, we develop the picture of diffusion that views the control process as a signal diffused from input signals to the set of controllable nodes. The combination of mathematical theory and physical reasoning allows us not only to determine the control efficacy for model complex networks and a large number of empirical networks, but also to uncover phenomena in network control, e.g., hub nodes in general possess lower control centrality than an average node in undirected networks. PMID:27324438

  16. Control efficacy of complex networks

    NASA Astrophysics Data System (ADS)

    Gao, Xin-Dong; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-06-01

    Controlling complex networks has become a forefront research area in network science and engineering. Recent efforts have led to theoretical frameworks of controllability to fully control a network through steering a minimum set of driver nodes. However, in realistic situations not every node is accessible or can be externally driven, raising the fundamental issue of control efficacy: if driving signals are applied to an arbitrary subset of nodes, how many other nodes can be controlled? We develop a framework to determine the control efficacy for undirected networks of arbitrary topology. Mathematically, based on non-singular transformation, we prove a theorem to determine rigorously the control efficacy of the network and to identify the nodes that can be controlled for any given driver nodes. Physically, we develop the picture of diffusion that views the control process as a signal diffused from input signals to the set of controllable nodes. The combination of mathematical theory and physical reasoning allows us not only to determine the control efficacy for model complex networks and a large number of empirical networks, but also to uncover phenomena in network control, e.g., hub nodes in general possess lower control centrality than an average node in undirected networks.

  17. The accelerated growth of the worldwide air transportation network

    NASA Astrophysics Data System (ADS)

    Azzam, Mark; Klingauf, Uwe; Zock, Alexander

    2013-01-01

    Mobility by means of air transportation has a critical impact on the global economy. Especially against the backdrop of further growth and an aggravation of the energy crisis, it is crucial to design a sustainable air transportation system. Current approaches focus on air traffic management. Nevertheless, also the historically evolved network offers great potential for an optimized redesign. But the understanding of its complex structure and development is limited, although modern network science supplies a great set of new methods and tools. So far studies analyzing air transportation as a complex network are based on divers and poor data, which are either merely regional or strongly bounded time-wise. As a result, the current state of research is rather inconsistent regarding topological coefficients and incomplete regarding network evolution. Therefore, we use the historical, worldwide OAG flight schedules data between 1979 and 2007 for our study. Through analyzing by far the most comprehensive data base so far, a better understanding of the network, its evolution and further implications is being provided. To our knowledge we present the first study to determine that the degree distribution of the worldwide air transportation network is non-stationary and is subject to densification and accelerated growth, respectively.

  18. A Microcomputer-Controlled Measurement of Acceleration.

    ERIC Educational Resources Information Center

    Crandall, A. Jared; Stoner, Ronald

    1982-01-01

    Describes apparatus and method used to allow rapid and repeated measurement of acceleration of a ball rolling down an inclined plane. Acceleration measurements can be performed in an hour with the apparatus interfaced to a Commodore PET microcomputer. A copy of the BASIC program is available from the authors. (Author/JN)

  19. Embedded Streaming Deep Neural Networks Accelerator With Applications.

    PubMed

    Dundar, Aysegul; Jin, Jonghoon; Martini, Berin; Culurciello, Eugenio

    2016-04-08

    Deep convolutional neural networks (DCNNs) have become a very powerful tool in visual perception. DCNNs have applications in autonomous robots, security systems, mobile phones, and automobiles, where high throughput of the feedforward evaluation phase and power efficiency are important. Because of this increased usage, many field-programmable gate array (FPGA)-based accelerators have been proposed. In this paper, we present an optimized streaming method for DCNNs' hardware accelerator on an embedded platform. The streaming method acts as a compiler, transforming a high-level representation of DCNNs into operation codes to execute applications in a hardware accelerator. The proposed method utilizes maximum computational resources available based on a novel-scheduled routing topology that combines data reuse and data concatenation. It is tested with a hardware accelerator implemented on the Xilinx Kintex-7 XC7K325T FPGA. The system fully explores weight-level and node-level parallelizations of DCNNs and achieves a peak performance of 247 G-ops while consuming less than 4 W of power. We test our system with applications on object classification and object detection in real-world scenarios. Our results indicate high-performance efficiency, outperforming all other presented platforms while running these applications.

  20. Congestion control and routing over satellite networks

    NASA Astrophysics Data System (ADS)

    Cao, Jinhua

    Satellite networks and transmissions find their application in fields of computer communications, telephone communications, television broadcasting, transportation, space situational awareness systems and so on. This thesis mainly focuses on two networking issues affecting satellite networking: network congestion control and network routing optimization. Congestion, which leads to long queueing delays, packet losses or both, is a networking problem that has drawn the attention of many researchers. The goal of congestion control mechanisms is to ensure high bandwidth utilization while avoiding network congestion by regulating the rate at which traffic sources inject packets into a network. In this thesis, we propose a stable congestion controller using data-driven, safe switching control theory to improve the dynamic performance of satellite Transmission Control Protocol/Active Queue Management (TCP/AQM) networks. First, the stable region of the Proportional-Integral (PI) parameters for a nominal model is explored. Then, a PI controller, whose parameters are adaptively tuned by switching among members of a given candidate set, using observed plant data, is presented and compared with some classical AQM policy examples, such as Random Early Detection (RED) and fixed PI control. A new cost detectable switching law with an interval cost function switching algorithm, which improves the performance and also saves the computational cost, is developed and compared with a law commonly used in the switching control literature. Finite-gain stability of the system is proved. A fuzzy logic PI controller is incorporated as a special candidate to achieve good performance at all nominal points with the available set of candidate controllers. Simulations are presented to validate the theory. An effocient routing algorithm plays a key role in optimizing network resources. In this thesis, we briefly analyze Low Earth Orbit (LEO) satellite networks, review the Cross Entropy (CE

  1. PARTICLE ACCELERATOR AND METHOD OF CONTROLLING THE TEMPERATURE THEREOF

    DOEpatents

    Neal, R.B.; Gallagher, W.J.

    1960-10-11

    A method and means for controlling the temperature of a particle accelerator and more particularly to the maintenance of a constant and uniform temperature throughout a particle accelerator is offered. The novel feature of the invention resides in the provision of two individual heating applications to the accelerator structure. The first heating application provided is substantially a duplication of the accelerator heat created from energization, this first application being employed only when the accelerator is de-energized thereby maintaining the accelerator temperature constant with regard to time whether the accelerator is energized or not. The second heating application provided is designed to add to either the first application or energization heat in a manner to create the same uniform temperature throughout all portions of the accelerator.

  2. Controllability of structural brain networks

    NASA Astrophysics Data System (ADS)

    Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.

    2015-10-01

    Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.

  3. Neural Networks For Robot Control

    DTIC Science & Technology

    2001-04-17

    following: (a) Application of artificial neural networks (multi-layer perceptrons, MLPs) for 2D planar robot arm by using the dynamic backpropagation...methods for the adjustment of parameters; and optimization of the architecture; (b) Application of artificial neural networks in controlling closed...studies in controlling dynamic robot arms by using neural networks in real-time process; (2) Research of optimal architectures used in closed-loop systems in order to compare with adaptive and robust control.

  4. Attack Vulnerability of Network Controllability

    PubMed Central

    2016-01-01

    Controllability of complex networks has attracted much attention, and understanding the robustness of network controllability against potential attacks and failures is of practical significance. In this paper, we systematically investigate the attack vulnerability of network controllability for the canonical model networks as well as the real-world networks subject to attacks on nodes and edges. The attack strategies are selected based on degree and betweenness centralities calculated for either the initial network or the current network during the removal, among which random failure is as a comparison. It is found that the node-based strategies are often more harmful to the network controllability than the edge-based ones, and so are the recalculated strategies than their counterparts. The Barabási-Albert scale-free model, which has a highly biased structure, proves to be the most vulnerable of the tested model networks. In contrast, the Erdős-Rényi random model, which lacks structural bias, exhibits much better robustness to both node-based and edge-based attacks. We also survey the control robustness of 25 real-world networks, and the numerical results show that most real networks are control robust to random node failures, which has not been observed in the model networks. And the recalculated betweenness-based strategy is the most efficient way to harm the controllability of real-world networks. Besides, we find that the edge degree is not a good quantity to measure the importance of an edge in terms of network controllability. PMID:27588941

  5. Torque-based optimal acceleration control for electric vehicle

    NASA Astrophysics Data System (ADS)

    Lu, Dongbin; Ouyang, Minggao

    2014-03-01

    The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control.

  6. Beam Control for Ion Induction Accelerators

    SciTech Connect

    Sangster, T.C.; Ahle, L.

    2000-02-17

    Coordinated bending and acceleration of an intense space-charge-dominated ion beam has been achieved for the first time. This required the development of a variable waveform, precision, bi-polar high voltage pulser and a precision, high repetition rate induction core modulator. Waveforms applied to the induction cores accelerate the beam as the bi-polar high voltage pulser delivers a voltage ramp to electrostatic dipoles which bend the beam through a 90 degree permanent magnet quadrupole lattice. Further work on emittance minimization is also reported.

  7. Realistic control of network dynamics.

    PubMed

    Cornelius, Sean P; Kath, William L; Motter, Adilson E

    2013-01-01

    The control of complex networks is of paramount importance in areas as diverse as ecosystem management, emergency response and cell reprogramming. A fundamental property of networks is that perturbations to one node can affect other nodes, potentially causing the entire system to change behaviour or fail. Here we show that it is possible to exploit the same principle to control network behaviour. Our approach accounts for the nonlinear dynamics inherent to real systems, and allows bringing the system to a desired target state even when this state is not directly accessible due to constraints that limit the allowed interventions. Applications show that this framework permits reprogramming a network to a desired task, as well as rescuing networks from the brink of failure-which we illustrate through the mitigation of cascading failures in a power-grid network and the identification of potential drug targets in a signalling network of human cancer.

  8. Realistic Control of Network Dynamics

    PubMed Central

    Cornelius, Sean P.; Kath, William L.; Motter, Adilson E.

    2014-01-01

    The control of complex networks is of paramount importance in areas as diverse as ecosystem management, emergency response, and cell reprogramming. A fundamental property of networks is that perturbations to one node can affect other nodes, potentially causing the entire system to change behavior or fail. Here, we show that it is possible to exploit the same principle to control network behavior. Our approach accounts for the nonlinear dynamics inherent to real systems, and allows bringing the system to a desired target state even when this state is not directly accessible due to constraints that limit the allowed interventions. Applications show that this framework permits reprogramming a network to a desired task as well as rescuing networks from the brink of failure—which we illustrate through the mitigation of cascading failures in a power-grid network and the identification of potential drug targets in a signaling network of human cancer. PMID:23803966

  9. Physical controllability of complex networks

    NASA Astrophysics Data System (ADS)

    Wang, Le-Zhi; Chen, Yu-Zhong; Wang, Wen-Xu; Lai, Ying-Cheng

    2017-01-01

    A challenging problem in network science is to control complex networks. In existing frameworks of structural or exact controllability, the ability to steer a complex network toward any desired state is measured by the minimum number of required driver nodes. However, if we implement actual control by imposing input signals on the minimum set of driver nodes, an unexpected phenomenon arises: due to computational or experimental error there is a great probability that convergence to the final state cannot be achieved. In fact, the associated control cost can become unbearably large, effectively preventing actual control from being realized physically. The difficulty is particularly severe when the network is deemed controllable with a small number of drivers. Here we develop a physical controllability framework based on the probability of achieving actual control. Using a recently identified fundamental chain structure underlying the control energy, we offer strategies to turn physically uncontrollable networks into physically controllable ones by imposing slightly augmented set of input signals on properly chosen nodes. Our findings indicate that, although full control can be theoretically guaranteed by the prevailing structural controllability theory, it is necessary to balance the number of driver nodes and control cost to achieve physical control.

  10. Physical controllability of complex networks

    PubMed Central

    Wang, Le-Zhi; Chen, Yu-Zhong; Wang, Wen-Xu; Lai, Ying-Cheng

    2017-01-01

    A challenging problem in network science is to control complex networks. In existing frameworks of structural or exact controllability, the ability to steer a complex network toward any desired state is measured by the minimum number of required driver nodes. However, if we implement actual control by imposing input signals on the minimum set of driver nodes, an unexpected phenomenon arises: due to computational or experimental error there is a great probability that convergence to the final state cannot be achieved. In fact, the associated control cost can become unbearably large, effectively preventing actual control from being realized physically. The difficulty is particularly severe when the network is deemed controllable with a small number of drivers. Here we develop a physical controllability framework based on the probability of achieving actual control. Using a recently identified fundamental chain structure underlying the control energy, we offer strategies to turn physically uncontrollable networks into physically controllable ones by imposing slightly augmented set of input signals on properly chosen nodes. Our findings indicate that, although full control can be theoretically guaranteed by the prevailing structural controllability theory, it is necessary to balance the number of driver nodes and control cost to achieve physical control. PMID:28074900

  11. A new LabVIEW-based control system for the Naval Research Laboratory Trace Element Accelerator Mass Spectrometer

    SciTech Connect

    DeTurck, T. M.; Treacy, D. J. Jr.; Knies, D. L.; Grabowski, K. S.; Knoll, C.; Kennedy, C. A.; Hubler, G. K.

    1999-06-10

    A new LabVIEW-based control system for the existing tandem accelerator and new AMS components has been implemented at the Trace Element Accelerator Mass Spectrometry (TEAMS) facility at the Naval Research Laboratory. Through the use of Device Interfaces (DIs) distributed along a fiber optic network, virtually every component of the accelerator system can be controlled from any networked computer terminal as well as remotely via modem or the internet. This paper discusses the LabVIEW-based control software, including remote operation, automatic calculation of ion optical component parameters, beam optimization, and data logging and retrieval.

  12. The ADVANCE network: accelerating data value across a national community health center network

    PubMed Central

    DeVoe, Jennifer E; Gold, Rachel; Cottrell, Erika; Bauer, Vance; Brickman, Andrew; Puro, Jon; Nelson, Christine; Mayer, Kenneth H; Sears, Abigail; Burdick, Tim; Merrell, Jonathan; Matthews, Paul; Fields, Scott

    2014-01-01

    The ADVANCE (Accelerating Data Value Across a National Community Health Center Network) clinical data research network (CDRN) is led by the OCHIN Community Health Information Network in partnership with Health Choice Network and Fenway Health. The ADVANCE CDRN will ‘horizontally’ integrate outpatient electronic health record data for over one million federally qualified health center patients, and ‘vertically’ integrate hospital, health plan, and community data for these patients, often under-represented in research studies. Patient investigators, community investigators, and academic investigators with diverse expertise will work together to meet project goals related to data integration, patient engagement and recruitment, and the development of streamlined regulatory policies. By enhancing the data and research infrastructure of participating organizations, the ADVANCE CDRN will serve as a ‘community laboratory’ for including disadvantaged and vulnerable patients in patient-centered outcomes research that is aligned with the priorities of patients, clinics, and communities in our network. PMID:24821740

  13. Failure Mode Effects Analysis for an Accelerator Control System

    SciTech Connect

    Hartman, Steven M

    2009-01-01

    Failure mode effects analysis (FMEA) has been used in industry for design, manufacturing and assembly process quality control. It describes a formal approach for categorizing how a process may fail and for prioritizing failures based on their severity, frequency and likelihood of detection. Experience conducting a partial FMEA of an accelerator subsystem and its related control system will be reviewed. The applicability of the FMEA process to an operational accelerator control system will be discussed.

  14. Techniques for increasing the reliability of accelerator control system electronics

    SciTech Connect

    Utterback, J.

    1993-09-01

    As the physical size of modern accelerators becomes larger and larger, the number of required control system circuit boards increases, and the probability of one of those circuit boards failing while in service also increases. In order to do physics, the experimenters need the accelerator to provide beam reliably with as little down time as possible. With the advent of colliding beams physics, reliability becomes even more important due to the fact that a control system failure can cause the loss of painstakingly produced antiprotons. These facts prove the importance of keeping reliability in mind when designing and maintaining accelerator control system electronics.

  15. Control of collective network chaos.

    PubMed

    Wagemakers, Alexandre; Barreto, Ernest; Sanjuán, Miguel A F; So, Paul

    2014-06-01

    Under certain conditions, the collective behavior of a large globally-coupled heterogeneous network of coupled oscillators, as quantified by the macroscopic mean field or order parameter, can exhibit low-dimensional chaotic behavior. Recent advances describe how a small set of "reduced" ordinary differential equations can be derived that captures this mean field behavior. Here, we show that chaos control algorithms designed using the reduced equations can be successfully applied to imperfect realizations of the full network. To systematically study the effectiveness of this technique, we measure the quality of control as we relax conditions that are required for the strict accuracy of the reduced equations, and hence, the controller. Although the effects are network-dependent, we show that the method is effective for surprisingly small networks, for modest departures from global coupling, and even with mild inaccuracy in the estimate of network heterogeneity.

  16. Control of collective network chaos

    NASA Astrophysics Data System (ADS)

    Wagemakers, Alexandre; Barreto, Ernest; Sanjuán, Miguel A. F.; So, Paul

    2014-06-01

    Under certain conditions, the collective behavior of a large globally-coupled heterogeneous network of coupled oscillators, as quantified by the macroscopic mean field or order parameter, can exhibit low-dimensional chaotic behavior. Recent advances describe how a small set of "reduced" ordinary differential equations can be derived that captures this mean field behavior. Here, we show that chaos control algorithms designed using the reduced equations can be successfully applied to imperfect realizations of the full network. To systematically study the effectiveness of this technique, we measure the quality of control as we relax conditions that are required for the strict accuracy of the reduced equations, and hence, the controller. Although the effects are network-dependent, we show that the method is effective for surprisingly small networks, for modest departures from global coupling, and even with mild inaccuracy in the estimate of network heterogeneity.

  17. Secure network for beamline control

    NASA Astrophysics Data System (ADS)

    Ohata, T.; Fukui, T.; Ishii, M.; Furukawa, Y.; Nakatani, T.; Matsushita, T.; Takeuchi, M.; Tanaka, R.; Ishikawa, T.

    2001-07-01

    In SPring-8, beamline control system is constructed with a highly available distributed network system. The socket based communication protocol is used for the beamline control mainly. Beamline users can control the equipment by sending simple control commands to a server process, which is running on a beamline-managing computer (Ohata et al., SPring-8 beamline control system, ICALEPCS'99, Trieste, Italy, 1999). At the beginning the network was based on the shared topology at all beamlines. Consequently, it has a risk for misapplication of the user's program to access different machines on the network system cross over beamlines. It is serious problem for the SPring-8 beamline control system, because all beamlines controlled with unified software interfaces. We introduced the switching technology and the firewalls to support network access control. Also the virtual networking (VLAN: IEEE 802.1Q) and the gigabit Ethernet technology (IEEE 802.3ab) are introduced. Thus the network security and the reliability are guaranteed at the higher level in SPring-8 beamline.

  18. The Undiagnosed Diseases Network: Accelerating Discovery about Health and Disease.

    PubMed

    Ramoni, Rachel B; Mulvihill, John J; Adams, David R; Allard, Patrick; Ashley, Euan A; Bernstein, Jonathan A; Gahl, William A; Hamid, Rizwan; Loscalzo, Joseph; McCray, Alexa T; Shashi, Vandana; Tifft, Cynthia J; Wise, Anastasia L

    2017-02-02

    Diagnosis at the edges of our knowledge calls upon clinicians to be data driven, cross-disciplinary, and collaborative in unprecedented ways. Exact disease recognition, an element of the concept of precision in medicine, requires new infrastructure that spans geography, institutional boundaries, and the divide between clinical care and research. The National Institutes of Health (NIH) Common Fund supports the Undiagnosed Diseases Network (UDN) as an exemplar of this model of precise diagnosis. Its goals are to forge a strategy to accelerate the diagnosis of rare or previously unrecognized diseases, to improve recommendations for clinical management, and to advance research, especially into disease mechanisms. The network will achieve these objectives by evaluating patients with undiagnosed diseases, fostering a breadth of expert collaborations, determining best practices for translating the strategy into medical centers nationwide, and sharing findings, data, specimens, and approaches with the scientific and medical communities. Building the UDN has already brought insights to human and medical geneticists. The initial focus has been on data sharing, establishing common protocols for institutional review boards and data sharing, creating protocols for referring and evaluating patients, and providing DNA sequencing, metabolomic analysis, and functional studies in model organisms. By extending this precision diagnostic model nationally, we strive to meld clinical and research objectives, improve patient outcomes, and contribute to medical science.

  19. Control and optimization of a staged laser-wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Golovin, G.; Banerjee, S.; Chen, S.; Powers, N.; Liu, C.; Yan, W.; Zhang, J.; Zhang, P.; Zhao, B.; Umstadter, D.

    2016-09-01

    We report results of an experimental study of laser-wakefield acceleration of electrons, using a staged device based on a double-jet gas target that enables independent injection and acceleration stages. This novel scheme is shown to produce stable, quasi-monoenergetic, and tunable electron beams. We show that optimal accelerator performance is achieved by systematic variation of five critical parameters. For the injection stage, we show that the amount of trapped charge is controlled by the gas density, composition, and laser power. For the acceleration stage, the gas density and the length of the jet are found to determine the final electron energy. This independent control over both the injection and acceleration processes enabled independent control over the charge and energy of the accelerated electron beam while preserving the quasi-monoenergetic character of the beam. We show that the charge and energy can be varied in the ranges of 2-45 pC, and 50-450 MeV, respectively. This robust and versatile electron accelerator will find application in the generation of high-brightness and controllable x-rays, and as the injector stage for more conventional devices.

  20. APPARATUS FOR CONTROL OF HIGH-ENERGY ACCELERATORS

    DOEpatents

    Heard, H.G.

    1961-10-24

    A particle beam positioning control for a synchrotron or the like is described. The control includes means for selectively impressing a sinusoidal perturbation upon the rising voltage utilized to sweep the frequency of the f-m oscillator which is conventionally coupled to the accelerating electrode of a synchrotron. The perturbation produces a variation in the normal rate of change of frequency of the accelerating voltage applied to the accelerating electrode, resulting in an expansion or contraction of the particle beam orbit diameter during the perturbation. The beam may thus be controlled such that a portion strikes a target positioned close to the expanded or contracted orbit diameter and returns to the original orbit for further acceleration to the final energy. (AEC)

  1. Controllability of asynchronous Boolean multiplex control networks

    NASA Astrophysics Data System (ADS)

    Luo, Chao; Wang, Xingyuan; Liu, Hong

    2014-09-01

    In this article, the controllability of asynchronous Boolean multiplex control networks (ABMCNs) is studied. First, the model of Boolean multiplex control networks under Harvey' asynchronous update is presented. By means of semi-tensor product approach, the logical dynamics is converted into linear representation, and a generalized formula of control-depending network transition matrices is achieved. Second, a necessary and sufficient condition is proposed to verify that only control-depending fixed points of ABMCNs can be controlled with probability one. Third, using two types of controls, the controllability of system is studied and formulae are given to show: (a) when an initial state is given, the reachable set at time s under a group of specified controls; (b) the reachable set at time s under arbitrary controls; (c) the specific probability values from a given initial state to destination states. Based on the above formulae, an algorithm to calculate overall reachable states from a specified initial state is presented. Moreover, we also discuss an approach to find the particular control sequence which steers the system between two states with maximum probability. Examples are shown to illustrate the feasibility of the proposed scheme.

  2. To Break or to Brake Neuronal Network Accelerated by Ammonium Ions?

    PubMed Central

    Dynnik, Vladimir V.; Kononov, Alexey V.; Sergeev, Alexander I.; Teplov, Iliya Y.; Tankanag, Arina V.; Zinchenko, Valery P.

    2015-01-01

    Purpose The aim of present study was to investigate the effects of ammonium ions on in vitro neuronal network activity and to search alternative methods of acute ammonia neurotoxicity prevention. Methods Rat hippocampal neuronal and astrocytes co-cultures in vitro, fluorescent microscopy and perforated patch clamp were used to monitor the changes in intracellular Ca2+- and membrane potential produced by ammonium ions and various modulators in the cells implicated in neural networks. Results Low concentrations of NH4Cl (0.1–4 mM) produce short temporal effects on network activity. Application of 5–8 mM NH4Cl: invariably transforms diverse network firing regimen to identical burst patterns, characterized by substantial neuronal membrane depolarization at plateau phase of potential and high-amplitude Ca2+-oscillations; raises frequency and average for period of oscillations Ca2+-level in all cells implicated in network; results in the appearance of group of «run out» cells with high intracellular Ca2+ and steadily diminished amplitudes of oscillations; increases astrocyte Ca2+-signalling, characterized by the appearance of groups of cells with increased intracellular Ca2+-level and/or chaotic Ca2+-oscillations. Accelerated network activity may be suppressed by the blockade of NMDA or AMPA/kainate-receptors or by overactivation of AMPA/kainite-receptors. Ammonia still activate neuronal firing in the presence of GABA(A) receptors antagonist bicuculline, indicating that «disinhibition phenomenon» is not implicated in the mechanisms of networks acceleration. Network activity may also be slowed down by glycine, agonists of metabotropic inhibitory receptors, betaine, L-carnitine, L-arginine, etc. Conclusions Obtained results demonstrate that ammonium ions accelerate neuronal networks firing, implicating ionotropic glutamate receptors, having preserved the activities of group of inhibitory ionotropic and metabotropic receptors. This may mean, that ammonia

  3. Accelerator based X-ray facilities applied to freight control

    NASA Astrophysics Data System (ADS)

    Gaillard, G.

    1996-06-01

    The first accelerator based X-ray facility dedicated to freight control, in this case air-freight pallets, became operational at Roissy-Charles-de-Gaulle airport in 1991. Since then, five other facilities have been built, three in Europe and the other two in China, for the control of trucks and sea-containers. In order to be able to see through these very large and dense objects, X-ray energies of several MeV are necessary. Two types of electron accelerators are used for the production of the X-ray beams: linear accelerators and electrostatic accelerators (Van de Graff or Pelletrons), depending on the beam quality requirements which depend on the technology used for the detection of X-rays. A brief description of the functioning of the X-ray inspection facilities is presented in this article as well as an estimation of their global cost and of their profitability.

  4. IPNS Chopper Control and Accelerator Interface Systems

    SciTech Connect

    Ostrowski, G.E.; Donley, L.I.; Rauchas, A.V.; Volk, G.J.; Jung, E.A.; Haumann, J.R.; Pelizzari, C.A.

    1985-01-01

    Several of the instruments at the Intense Pulsed Neutron Source (IPNS) at Argonne use rotating Fermi choppers. The techniques used to control the speed and phase of these rotating devices are discussed.

  5. Controlling centrality in complex networks

    PubMed Central

    Nicosia, V.; Criado, R.; Romance, M.; Russo, G.; Latora, V.

    2012-01-01

    Spectral centrality measures allow to identify influential individuals in social groups, to rank Web pages by popularity, and even to determine the impact of scientific researches. The centrality score of a node within a network crucially depends on the entire pattern of connections, so that the usual approach is to compute node centralities once the network structure is assigned. We face here with the inverse problem, that is, we study how to modify the centrality scores of the nodes by acting on the structure of a given network. We show that there exist particular subsets of nodes, called controlling sets, which can assign any prescribed set of centrality values to all the nodes of a graph, by cooperatively tuning the weights of their out-going links. We found that many large networks from the real world have surprisingly small controlling sets, containing even less than 5 – 10% of the nodes. PMID:22355732

  6. ISABELLE accelerator software, control system, and beam diagnostic philosophy

    SciTech Connect

    Cornacchia, M.; Humphrey, J.W.; Niederer, J.; Poole, J.H.

    1981-01-01

    The ISABELLE Project combines two large proton accelerators with two storage rings in the same facility using superconducting magnet technology. This combination leads to severe constraints on beam loss in magnets and involves complex treatment of magnetic field imperfections and correction elements. The consequent demands placed upon beam diagnostics, accelerator model programs, and the computer oriented control system are discussed in terms of an illustrative operation scenario.

  7. Pellet acceleration using an ablation-controlled electrothermal launcher

    SciTech Connect

    Kincaid, R.W.; Bourham, M.A.; Gilligan, J.G.

    1995-12-31

    The NCSU ablation-controlled electrothermal launcher SIRENS has been used to accelerate plastic (Lexan polycarbonate) pellets to investigate the possibility of using electrothermal launchers as frozen pellet injectors for tokamak fueling. Successful installation of such a device would include a protective shell (sabot) to shield the hydrogenic pellet from ablation and allow it to maintain its integrity throughout the acceleration. The SIRENS device has been modified to include specially designed barrel sections equipped with diagnostic ports.

  8. Automated accelerator controls for a 3 MV tandem Pelletron

    NASA Astrophysics Data System (ADS)

    Rathmell, R. D.; Kitchen, R. L.; Luck, T. R.; Sundquist, M. L.

    1991-05-01

    A new accelerator control system has been developed which uses a real-time, multitasking operating system running on a Motorola 68030 based microcomputer. The system includes multiple graphic and text displays and allows the operator to communicate via these displays to the accelerator, which is interfaced to CAMAC. Most accelerator parameters can be controlled using a mouse in conjunction with a single graphic display, eliminating the need to change CRT pages in order to control parameters from the source to the target. A touch screen is also available to permit a number of parameters to be at the operator's finger tips at all times. Operating parameters for a new beam and energy can be automatically set by scaling from a previously stored run. The program and database are structured to facilitate interlocking and closed loop control of parameters. The hardware configuration, structure and features of the software will be reviewed.

  9. Development of a fast voltage control method for electrostatic accelerators

    NASA Astrophysics Data System (ADS)

    Lobanov, Nikolai R.; Linardakis, Peter; Tsifakis, Dimitrios

    2014-12-01

    The concept of a novel fast voltage control loop for tandem electrostatic accelerators is described. This control loop utilises high-frequency components of the ion beam current intercepted by the image slits to generate a correction voltage that is applied to the first few gaps of the low- and high-energy acceleration tubes adjoining the high voltage terminal. New techniques for the direct measurement of the transfer function of an ultra-high impedance structure, such as an electrostatic accelerator, have been developed. For the first time, the transfer function for the fast feedback loop has been measured directly. Slow voltage variations are stabilised with common corona control loop and the relationship between transfer functions for the slow and new fast control loops required for optimum operation is discussed. The main source of terminal voltage instabilities, which are due to variation of the charging current caused by mechanical oscillations of charging chains, has been analysed.

  10. Control Capacity in Complex Networks

    NASA Astrophysics Data System (ADS)

    Jia, Tao; Liu, Yang-Yu; Slotine, Jean-Jacques; Barabasi, Albert-Laszlo

    2012-02-01

    By combining tools from control theory and network science, an efficient methodology was proposed to identify the minimum sets of driver nodes, whose time-dependent control can guide the whole network to any desired final state. Yet, this minimum driver set (MDS) is usually not unique, but one can often achieve multiple potential control configurations with the same number of driver nodes. Given that some nodes may appear in some MDSs but not in other, a crucial question remain unanswered: what is the role of individual node in controlling a complex system? We first classify a node as critical, redundant, or ordinary if it appears in all, no, or some MDSs. Then we introduce the concept of control capacity as a measure of the frequency that a node is in the MDSs, which quantifies the importance of a given node in maintaining Controllability. To avoid impractical enumeration of all MDSs, we propose an algorithm that uniformly samples the MDS. We use it to explore the control capacity of nodes in complex networks and study how it is related to other characteristics of the network topology.

  11. Communicating Networked Control Systems

    DTIC Science & Technology

    2007-03-31

    Bahamas, pages 1010-1015. 64. Carmen Del Vecchio and I.C. Paschalidis, “Supply Contracts with Service Level Requirements”, Proceedings of the IFAC...control using Monte Carlo sensing,” Proc. IEEE International Conference on Robotics and Automation, pp. 3058-3063, 2005. 10. S.B. Andersson, A.A. Handzel, V...Analysis, Madrid Spain. 20. S. Andersson and D. Hristu-Varsakelis, “Language-based feedback control using Monte -Carlo sensing”, to be subm. To IEEE Int’l

  12. A control network of Triton

    NASA Technical Reports Server (NTRS)

    Davies, Merton E.; Rogers, Patricia G.; Colvin, Tim R.

    1991-01-01

    A control network for Triton has been computed using a bundle-type analytical triangulation program. The network contains 105 points that were measured on 57 Voyager-2 pictures. The adjustment contained 1010 observation equations and 382 normal equations and resulted in a standard measurement error of 13.36 microns. The coordinates of the control points, the camera orientation angles at the times when the pictures were taken, and Triton's mean radius were determined. A separate statistical analysis confirmed Triton's radius to be 1352.6 + or - 2.4 km. Attempts to tie the control network around the satellite were unsuccessful because discontinuities exist in high-resolution coverage between 66 deg and 289 deg longitude, north of 38 deg latitude, and south of 78 deg latitude.

  13. Automatic Control System of Ion Electrostatic Accelerator and Anti-Interference Measures

    NASA Astrophysics Data System (ADS)

    Sun, Zhenwu; Huo, Yuping; Liu, Gencheng; Li, Yuxiao; Li, Tao

    2007-02-01

    An automatic control system for the electrostatic accelerator has been developed by adopting the PLC (Programmable Logic Controller) control technique, infrared and optical-fibre transmission technique and network communication with the purpose to improve the intelligence level of the accelerator and to enhance the ability of monitoring, collecting and recording parameters. In view of the control system' structure, some anti-interference measures have been adopted after analyzing the interference sources. The measures in hardware include controlling the position of the corona needle, using surge arresters, shielding, ground connection and stabilizing the voltage. The measures in terms of software involve inter-blocking protection, soft-spacing, time delay, and diagnostic and protective programs. The electromagnetic compatible ability of the control system has thus been effectively improved.

  14. Status of the Advanced Photon Source and its accelerator control system

    SciTech Connect

    McDowell, W.; Knott, M.; Kraimer, K.M.

    1993-11-01

    This paper presents the current status of the Advanced Photon Source (APS), its control system and the Experimental Physics and Industrial Control System (EPICS) tools being used to implement this control system. The status of the physical plant and each of the accelerators as well as detailed descriptions of the software tools used to build the accelerator control system are presented. The control system uses high-performance graphic workstations and the X-windows graphical user interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high-performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  15. Controllability in Multi-Stage Laser Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Barada, D.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Li, X. F.; Yu, Q.

    2015-11-01

    The present paper shows a concept for a future laser ion accelerator, which should have an ion source, ion collimators, ion beam bunchers and ion post acceleration devices. Based on the laser ion accelerator components, the ion particle energy and the ion energy spectrum are controlled, and a future compact laser ion accelerator would be designed for ion cancer therapy or for ion material treatment. In this study each component is designed to control the ion beam quality. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser-target interaction. A combination of each component provides a high controllability of the ion beam quality to meet variable requirements in various purposes in the laser ion accelerator. The work was partly supported by MEXT, JSPS, ASHULA project/ ILE, Osaka University, CORE (Center for Optical Research and Education, Utsunomiya University, Japan), Fudan University and CDI (Creative Dept. for Innovation) in CCRD, Utsunomiya University.

  16. A unified lunar control network

    NASA Technical Reports Server (NTRS)

    Davies, Merton E.; Colvin, Tim R.; Meyer, Donald L.

    1987-01-01

    Mapping network control on the Moon is composed of a number of independent regional networks. These networks frequently have different origins but never have common ties, even in overlapping areas. The objective of the unified network program is to tie the regional networks into a single consistent planetwide control network. The plan is to start with the best defined regions, create common ties with neighboring data sets, and then expand into poorly defined regions. The most accurately defined points on the Moon are locations of the laser ranging retroreflectors and the VLBI measurements of the locations of the Apollo 15, 16, 17 ALSEP stations. Recent values for the coordinates of the retroreflectors have been received. The accuracy of these locations is about 30 m and their locations are used to define the center-of-mass and, hence, the origin of the unified lunar coordinate system. The coordinates of the retroreflectors are given in both principal axis and mean Earth/Polar axis systems. Mean Earth/Polar axis coordinates have been recommended by the IAU for the Moon. The difference in the coordinates is important, more than 600 m in latitude and longitude.

  17. Neural Networks for Flight Control

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1996-01-01

    Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.

  18. [Accelerating cancer control innovations in Peru].

    PubMed

    Santos-Ortiz, Carlos; Manrique, Javier; Amorín, Edgar; Sarria, Gustavo; Salazar, Miriam; Limache, Abel; Villena, Marco; Dunstan, Jorge; Abugattas, Julio; Vidaurre, Tatiana

    2016-01-01

    Against a backdrop of global equity in cancer prevention and control, the National Institute of Neoplastic Diseases (INEN), a national reference center, has designed and developed innovative strategies and programs with the intent to meet institutional goals through health promotion interventions and cancer prevention, diagnosis, and treatments that benefit the national population. The INEN Schools and Centers of Excellence have played an important role in the process of determining the results of these actions. The Center of Excellence in Cervical Cancer Training is an interventional pioneer that has applied a methodological design intended to improve health professional skills and has disseminated this model to other Schools of Excellence. Through this intervention, the skills of 12,194 health professionals trained by the INEN have been strengthened with respect to nationwide promotion and primary and secondary prevention during the period of 2012-2015.

  19. A High Reliability Accelerator Control System

    NASA Astrophysics Data System (ADS)

    Callahan, John; Collins, John; Hunt, William; Qualls, Andrew

    1997-05-01

    This paper describes the control system developed at IUCF for the Cooler Injector Synchrotron (CIS). The Hardware system is VME based and employs fiber optic data transmission for high noise rejection. The hardware includes several modules designed and manufactured at IUCF to meet specifications not attainable with commercial hardware. These modules feature active redundancy with automatic switch over for high reliability; built in test and self diagnosis with centralized failure and system health monitoring for rapid maintenance; and very low drift and self calibration for maximum repeatability. We describe several modules including high precision ramping and non-ramping DAC/ADCs and a deep memory timing sequencer. We give a brief overview of the software system, which is based on Vsystem from Vista, Inc.

  20. Magnetic control of particle injection in plasma based accelerators.

    PubMed

    Vieira, J; Martins, S F; Pathak, V B; Fonseca, R A; Mori, W B; Silva, L O

    2011-06-03

    The use of an external transverse magnetic field to trigger and to control electron self-injection in laser- and particle-beam driven wakefield accelerators is examined analytically and through full-scale particle-in-cell simulations. A magnetic field can relax the injection threshold and can be used to control main output beam features such as charge, energy, and transverse dynamics in the ion channel associated with the plasma blowout. It is shown that this mechanism could be studied using state-of-the-art magnetic fields in next generation plasma accelerator experiments.

  1. Closed-loop control of ionization oscillations in Hall accelerators

    SciTech Connect

    Barral, S.; Kaczmarczyk, J.; Kurzyna, J.; Dudeck, M.

    2011-08-15

    Feedback control of ionization oscillations in Hall accelerators is investigated with a proportional-integral-derivative controller acting on the discharge voltage. The stability of the current is found to systematically improve with proportional control, whereas integral and derivative control have in most cases a detrimental or insignificant impact. At low discharge voltages, proportional control eliminates at the same time ionization breathing oscillations as well as a coexisting low frequency mode. A progressive deterioration of the stability is observed at higher voltage, presumably attributable to the limited output voltage range of the controller. The time-averaged characteristics of the discharge such as average current, thrust and efficiency, remain unchanged within measurement uncertainties.

  2. Gene networks controlling petal organogenesis.

    PubMed

    Huang, Tengbo; Irish, Vivian F

    2016-01-01

    One of the biggest unanswered questions in developmental biology is how growth is controlled. Petals are an excellent organ system for investigating growth control in plants: petals are dispensable, have a simple structure, and are largely refractory to environmental perturbations that can alter their size and shape. In recent studies, a number of genes controlling petal growth have been identified. The overall picture of how such genes function in petal organogenesis is beginning to be elucidated. This review will focus on studies using petals as a model system to explore the underlying gene networks that control organ initiation, growth, and final organ morphology.

  3. A count rate based contamination control standard for electron accelerators

    SciTech Connect

    May, R.T.; Schwahn, S.O.

    1996-12-31

    Accelerators of sufficient energy and particle fluence can produce radioactivity as an unwanted byproduct. The radioactivity is typically imbedded in structural materials but may also be removable from surfaces. Many of these radionuclides decay by positron emission or electron capture; they often have long half lives and produce photons of low energy and yield making detection by standard devices difficult. The contamination control limit used throughout the US nuclear industry and the Department of Energy is 1,000 disintegrations per minute. This limit is based on the detection threshold of pancake type Geiger-Mueller probes for radionuclides of relatively high radiotoxicity, such as cobalt-60. Several radionuclides of concern at a high energy electron accelerator are compared in terms of radiotoxicity with radionuclides commonly found in the nuclear industry. Based on this comparison, a count-rate based contamination control limit and associated measurement strategy is proposed which provides adequate detection of contamination at accelerators without an increase in risk.

  4. Application of Fuzzy-Logic Controller and Neural Networks Controller in Gas Turbine Speed Control and Overheating Control and Surge Control on Transient Performance

    NASA Astrophysics Data System (ADS)

    Torghabeh, A. A.; Tousi, A. M.

    2007-08-01

    This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.

  5. Virtualized Network Control. Final Report

    SciTech Connect

    Ghani, Nasir

    2013-02-01

    This document is the final report for the Virtualized Network Control (VNC) project, which was funded by the United States Department of Energy (DOE) Office of Science. This project was also informally referred to as Advanced Resource Computation for Hybrid Service and TOpology NEtworks (ARCHSTONE). This report provides a summary of the project's activities, tasks, deliverable, and accomplishments. It also provides a summary of the documents, software, and presentations generated as part of this projects activities. Namely, the Appendix contains an archive of the deliverables, documents, and presentations generated a part of this project.

  6. Projection learning algorithm for threshold - controlled neural networks

    SciTech Connect

    Reznik, A.M.

    1995-03-01

    The projection learning algorithm proposed in [1, 2] and further developed in [3] substantially improves the efficiency of memorizing information and accelerates the learning process in neural networks. This algorithm is compatible with the completely connected neural network architecture (the Hopfield network [4]), but its application to other networks involves a number of difficulties. The main difficulties include constraints on interconnection structure and the need to eliminate the state uncertainty of latent neurons if such are present in the network. Despite the encouraging preliminary results of [3], further extension of the applications of the projection algorithm therefore remains problematic. In this paper, which is a continuation of the work begun in [3], we consider threshold-controlled neural networks. Networks of this type are quite common. They represent the receptor neuron layers in some neurocomputer designs. A similar structure is observed in the lower divisions of biological sensory systems [5]. In multilayer projection neural networks with lateral interconnections, the neuron layers or parts of these layers may also have the structure of a threshold-controlled completely connected network. Here the thresholds are the potentials delivered through the projection connections from other parts of the network. The extension of the projection algorithm to the class of threshold-controlled networks may accordingly prove to be useful both for extending its technical applications and for better understanding of the operation of the nervous system in living organisms.

  7. Protecting Accelerator Control Systems in the Face of Sophisticated Cyber Attacks

    SciTech Connect

    Hartman, Steven M

    2012-01-01

    Cyber security for industrial control systems has received significant attention in the past two years. The news coverage of the Stuxnet attack, believed to be targeted at the control system for a uranium enrichment plant, brought the issue to the attention of news media and policy makers. This has led to increased scrutiny of control systems for critical infrastructure such as power generation and distribution, and industrial systems such as chemical plants and petroleum refineries. The past two years have also seen targeted network attacks aimed at corporate and government entities including US Department of Energy National Laboratories. Both of these developments have potential repercussions for the control systems of particle accelerators. The need to balance risks from potential attacks with the operational needs of an accelerator present a unique challenge for the system architecture and access model.

  8. The AMSC network control system

    NASA Technical Reports Server (NTRS)

    Garner, William B.

    1990-01-01

    The American Mobile Satellite Corporation (AMSC) is going to construct, launch, and operate a satellite system in order to provide mobile satellite services to the United States. AMSC is going to build, own, and operate a Network Control System (NCS) for managing the communications usage of the satellites, and to control circuit switched access between mobile earth terminals and feeder-link earth stations. An overview of the major NCS functional and performance requirements, the control system physical architecture, and the logical architecture is provided.

  9. Controllability of the better chosen partial networks

    NASA Astrophysics Data System (ADS)

    Liu, Xueming; Pan, Linqiang

    2016-08-01

    How to control large complex networks is a great challenge. Recent studies have proved that the whole network can be sufficiently steered by injecting control signals into a minimum set of driver nodes, and the minimum numbers of driver nodes for many real networks are high, indicating that it is difficult to control them. For some large natural and technological networks, it is impossible and not feasible to control the full network. For example, in biological networks like large-scale gene regulatory networks it is impossible to control all the genes. This prompts us to explore the question how to choose partial networks that are easy for controlling and important in networked systems. In this work, we propose a method to achieve this goal. By computing the minimum driver nodes densities of the partial networks of Erdös-Rényi (ER) networks, scale-free (SF) networks and 23 real networks, we find that our method performs better than random method that chooses nodes randomly. Moreover, we find that the nodes chosen by our method tend to be the essential elements of the whole systems, via studying the nodes chosen by our method of a real human signaling network and a human protein interaction network and discovering that the chosen nodes from these networks tend to be cancer-associated genes. The implementation of our method shows some interesting connections between the structure and the controllability of networks, improving our understanding of the control principles of complex systems.

  10. Acceleration of quantum optimal control theory algorithms with mixing strategies.

    PubMed

    Castro, Alberto; Gross, E K U

    2009-05-01

    We propose the use of mixing strategies to accelerate the convergence of the common iterative algorithms utilized in quantum optimal control theory (QOCT). We show how the nonlinear equations of QOCT can be viewed as a "fixed-point" nonlinear problem. The iterative algorithms for this class of problems may benefit from mixing strategies, as it happens, e.g., in the quest for the ground-state density in Kohn-Sham density-functional theory. We demonstrate, with some numerical examples, how the same mixing schemes utilized in this latter nonlinear problem may significantly accelerate the QOCT iterative procedures.

  11. Coverage Control in Sensor Networks

    NASA Astrophysics Data System (ADS)

    Wang, Bang

    Sensors are devices that convert physical stimulus into recordable signals. Sensors have facilitated people to understand, monitor, and control machines and environments for many decades. A sensor node consists of not only sensor unit but also microcontroller unit, communication unit, storage unit, and power supply for producing, collecting, storing, processing, and delivering sensory data. The size and cost of a single sensor node has been reducing with the continuous advances of micro-electro-mechanical systems (MEMS) techniques. The miniaturization of sensor nodes has promoted the emergence of sensor networks, which normally consists of a large number of sensor nodes collaborating to accomplish advanced tasks. Applications of sensor networks are in a wide range, including battlefield surveillance, environmental monitoring, biological detection, smart space, industrial diagnostics, etc. Despite promising applications, there are also great challenges in designing, implementing, and operating sensor networks. Many research issues have been studied, and many solution approaches have been proposed for sensor networks. In this chapter, we provide some backgrounds and introduction about sensors, sensor nodes, and sensor networks.

  12. Robustness of network controllability in cascading failure

    NASA Astrophysics Data System (ADS)

    Chen, Shi-Ming; Xu, Yun-Fei; Nie, Sen

    2017-04-01

    It is demonstrated that controlling complex networks in practice needs more inputs than that predicted by the structural controllability framework. Besides, considering the networks usually faces to the external or internal failure, we define parameters to evaluate the control cost and the variation of controllability after cascades, exploring the effect of number of control inputs on the controllability for random networks and scale-free networks in the process of cascading failure. For different topological networks, the results show that the robustness of controllability will be stronger through allocating different control inputs and edge capacity.

  13. Predicting and Controlling Complex Networks

    DTIC Science & Technology

    2015-06-22

    networks and control . . . . . . . . . . . . . . . . . . . 7 3.4 Pattern formation, synchronization and outbreak of biodiversity in cyclically...Ni, Y.-C. Lai, and C. Grebogi, “Pattern formation, synchronization and outbreak of biodiversity in cyclically competing games,” Physical Review E 83...of Physics B 76, 179-183 (2010). 3.4 Pattern formation, synchronization and outbreak of biodiversity in cyclically competing games Biodiversity is

  14. Quick setup of unit test for accelerator controls system

    SciTech Connect

    Fu, W.; D'Ottavio, T.; Gassner, D.; Nemesure, S.; Morris, J.

    2011-03-28

    Testing a single hardware unit of an accelerator control system often requires the setup of a program with graphical user interface. Developing a dedicated application for a specific hardware unit test could be time consuming and the application may become obsolete after the unit tests. This paper documents a methodology for quick design and setup of an interface focused on performing unit tests of accelerator equipment with minimum programming work. The method has three components. The first is a generic accelerator device object (ADO) manager which can be used to setup, store, and log testing controls parameters for any unit testing system. The second involves the design of a TAPE (Tool for Automated Procedure Execution) sequence file that specifies and implements all te testing and control logic. The sting third is the design of a PET (parameter editing tool) page that provides the unit tester with all the necessary control parameters required for testing. This approach has been used for testing the horizontal plane of the Stochastic Cooling Motion Control System at RHIC.

  15. Accelerated search for biomolecular network models to interpret high-throughput experimental data

    PubMed Central

    Datta, Suman; Sokhansanj, Bahrad A

    2007-01-01

    Background The functions of human cells are carried out by biomolecular networks, which include proteins, genes, and regulatory sites within DNA that encode and control protein expression. Models of biomolecular network structure and dynamics can be inferred from high-throughput measurements of gene and protein expression. We build on our previously developed fuzzy logic method for bridging quantitative and qualitative biological data to address the challenges of noisy, low resolution high-throughput measurements, i.e., from gene expression microarrays. We employ an evolutionary search algorithm to accelerate the search for hypothetical fuzzy biomolecular network models consistent with a biological data set. We also develop a method to estimate the probability of a potential network model fitting a set of data by chance. The resulting metric provides an estimate of both model quality and dataset quality, identifying data that are too noisy to identify meaningful correlations between the measured variables. Results Optimal parameters for the evolutionary search were identified based on artificial data, and the algorithm showed scalable and consistent performance for as many as 150 variables. The method was tested on previously published human cell cycle gene expression microarray data sets. The evolutionary search method was found to converge to the results of exhaustive search. The randomized evolutionary search was able to converge on a set of similar best-fitting network models on different training data sets after 30 generations running 30 models per generation. Consistent results were found regardless of which of the published data sets were used to train or verify the quantitative predictions of the best-fitting models for cell cycle gene dynamics. Conclusion Our results demonstrate the capability of scalable evolutionary search for fuzzy network models to address the problem of inferring models based on complex, noisy biomolecular data sets. This approach

  16. Center of Mass Acceleration Feedback Control for Standing by Functional Neuromuscular Stimulation – a Simulation Study

    PubMed Central

    Audu, Musa L.; Kirsch, Robert F.; Triolo, Ronald J.

    2013-01-01

    The potential efficacy of total body center of mass (COM) acceleration for feedback control of standing balance by functional neuromuscular stimulation (FNS) following spinal cord injury (SCI) was investigated. COM acceleration may be a viable alternative to conventional joint kinematics due to its rapid responsiveness, focal representation of COM dynamics, and ease of measurement. A computational procedure was developed using an anatomically-realistic, three-dimensional, bipedal biomechanical model to determine optimal patterns of muscle excitations to produce targeted effects upon COM acceleration from erect stance. The procedure was verified with electromyographic data collected from standing able-bodied subjects undergoing systematic perturbations. Using 16 muscle groups targeted by existing implantable neuroprostheses, data were generated to train an artificial neural network (ANN)-based controller in simulation. During forward simulations, proportional feedback of COM acceleration drove the ANN to produce muscle excitation patterns countering the effects of applied perturbations. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the clinical case of maximum constant excitation, the controller reduced UE loading by 43% in resisting external perturbations and by 51% during simulated one-arm reaching. Future work includes performance assessment against expected measurement errors and developing user-specific control systems. PMID:22773529

  17. Opinion control in complex networks

    NASA Astrophysics Data System (ADS)

    Masuda, Naoki

    2015-03-01

    In many political elections, the electorate appears to be a composite of partisan and independent voters. Given that partisans are not likely to convert to a different party, an important goal for a political party could be to mobilize independent voters toward the party with the help of strong leadership, mass media, partisans, and the effects of peer-to-peer influence. Based on the exact solution of classical voter model dynamics in the presence of perfectly partisan voters (i.e., zealots), we propose a computational method that uses pinning control strategy to maximize the share of a party in a social network of independent voters. The party, corresponding to the controller or zealots, optimizes the nodes to be controlled given the information about the connectivity of independent voters and the set of nodes that the opposing party controls. We show that controlling hubs is generally a good strategy, but the optimized strategy is even better. The superiority of the optimized strategy is particularly eminent when the independent voters are connected as directed (rather than undirected) networks.

  18. Network models. Comment on "Control profiles of complex networks".

    PubMed

    Campbell, Colin; Shea, Katriona; Albert, Réka

    2014-10-31

    Ruths and Ruths (Reports, 21 March 2014, p. 1373) find that existing synthetic random network models fail to generate control profiles that match those found in real network models. Here, we show that a straightforward extension to the Barabási-Albert model allows the control profile to be "tuned" across the control profile space, permitting more meaningful control profile analyses of real networks.

  19. A Digital Self Excited Loop for Accelerating Cavity Field Control

    SciTech Connect

    Curt Hovater; Trent Allison; Jean Delayen; John Musson; Tomasz Plawski

    2007-06-22

    We have developed a digital process that emulates an analog oscillator and ultimately a self excited loop (SEL) for field control. The SEL, in its analog form, has been used for many years for accelerating cavity field control. In essence the SEL uses the cavity as a resonant circuit -- much like a resonant (tank) circuit is used to build an oscillator. An oscillating resonant circuit can be forced to oscillate at different, but close, frequencies to resonance by applying a phase shift in the feedback path. This allows the circuit to be phased-locked to a master reference, which is crucial for multiple cavity accelerators. For phase and amplitude control the SEL must be forced to the master reference frequency, and feedback provided for in both dimensions. The novelty of this design is in the way digital signal processing (DSP) is structured to emulate an analog system. While the digital signal processing elements are not new, to our knowledge this is the first time that the digital SEL concept has been designed and demonstrated. This paper reports on the progress of the design and implementation of the digital SEL for field control of superconducting accelerating cavities.

  20. Neural Network Based Representation of UH-60A Pilot and Hub Accelerations

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi

    2000-01-01

    Neural network relationships between the full-scale, experimental hub accelerations and the corresponding pilot floor vertical vibration are studied. The present physics-based, quantitative effort represents an initial systematic study on the UH-60A Black Hawk hub accelerations. The NASA/Army UH-60A Airloads Program flight test database was used. A 'maneuver-effect-factor (MEF)', derived using the roll-angle and the pitch-rate, was used. Three neural network based representation-cases were considered. The pilot floor vertical vibration was considered in the first case and the hub accelerations were separately considered in the second case. The third case considered both the hub accelerations and the pilot floor vertical vibration. Neither the advance ratio nor the gross weight alone could be used to predict the pilot floor vertical vibration. However, the advance ratio and the gross weight together could be used to predict the pilot floor vertical vibration over the entire flight envelope. The hub accelerations data were modeled and found to be of very acceptable quality. The hub accelerations alone could not be used to predict the pilot floor vertical vibration. Thus, the hub accelerations alone do not drive the pilot floor vertical vibration. However, the hub accelerations, along with either the advance ratio or the gross weight or both, could be used to satisfactorily predict the pilot floor vertical vibration. The hub accelerations are clearly a factor in determining the pilot floor vertical vibration.

  1. Topological constraints on network control profiles

    PubMed Central

    Campbell, Colin; Ruths, Justin; Ruths, Derek; Shea, Katriona; Albert, Réka

    2015-01-01

    Network models are designed to capture properties of empirical networks and thereby provide insight into the processes that underlie the formation of complex systems. As new information concerning network structure becomes available, it becomes possible to design models that more fully capture the properties of empirical networks. A recent advance in our understanding of network structure is the control profile, which summarizes the structural controllability of a network in terms of source nodes, external dilations, and internal dilations. Here, we consider the topological properties–and their formation mechanisms—that constrain the control profile. We consider five representative empirical categories of internal-dilation dominated networks, and show that the number of source and sink nodes, the form of the in- and out-degree distributions, and local complexity (e.g., cycles) shape the control profile. We evaluate network models that are sufficient to produce realistic control profiles, and conclude that holistic network models should similarly consider these properties. PMID:26691951

  2. Neural Network Controlled Visual Saccades

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey D.; Grogan, Timothy A.

    1989-03-01

    The paper to be presented will discuss research on a computer vision system controlled by a neural network capable of learning through classical (Pavlovian) conditioning. Through the use of unconditional stimuli (reward and punishment) the system will develop scan patterns of eye saccades necessary to differentiate and recognize members of an input set. By foveating only those portions of the input image that the system has found to be necessary for recognition the drawback of computational explosion as the size of the input image grows is avoided. The model incorporates many features found in animal vision systems, and is governed by understandable and modifiable behavior patterns similar to those reported by Pavlov in his classic study. These behavioral patterns are a result of a neuronal model, used in the network, explicitly designed to reproduce this behavior.

  3. Network Adaptive Deadband: NCS Data Flow Control for Shared Networks

    PubMed Central

    Díaz-Cacho, Miguel; Delgado, Emma; Prieto, José A. G.; López, Joaquín

    2012-01-01

    This paper proposes a new middleware solution called Network Adaptive Deadband (NAD) for long time operation of Networked Control Systems (NCS) through the Internet or any shared network based on IP technology. The proposed middleware takes into account the network status and the NCS status, to improve the global system performance and to share more effectively the network by several NCS and sensor/actuator data flows. Relationship between network status and NCS status is solved with a TCP-friendly transport flow control protocol and the deadband concept, relating deadband value and transmission throughput. This creates a deadband-based flow control solution. Simulation and experiments in shared networks show that the implemented network adaptive deadband has better performance than an optimal constant deadband solution in the same circumstances. PMID:23208556

  4. FastGCN: a GPU accelerated tool for fast gene co-expression networks.

    PubMed

    Liang, Meimei; Zhang, Futao; Jin, Gulei; Zhu, Jun

    2015-01-01

    Gene co-expression networks comprise one type of valuable biological networks. Many methods and tools have been published to construct gene co-expression networks; however, most of these tools and methods are inconvenient and time consuming for large datasets. We have developed a user-friendly, accelerated and optimized tool for constructing gene co-expression networks that can fully harness the parallel nature of GPU (Graphic Processing Unit) architectures. Genetic entropies were exploited to filter out genes with no or small expression changes in the raw data preprocessing step. Pearson correlation coefficients were then calculated. After that, we normalized these coefficients and employed the False Discovery Rate to control the multiple tests. At last, modules identification was conducted to construct the co-expression networks. All of these calculations were implemented on a GPU. We also compressed the coefficient matrix to save space. We compared the performance of the GPU implementation with those of multi-core CPU implementations with 16 CPU threads, single-thread C/C++ implementation and single-thread R implementation. Our results show that GPU implementation largely outperforms single-thread C/C++ implementation and single-thread R implementation, and GPU implementation outperforms multi-core CPU implementation when the number of genes increases. With the test dataset containing 16,000 genes and 590 individuals, we can achieve greater than 63 times the speed using a GPU implementation compared with a single-thread R implementation when 50 percent of genes were filtered out and about 80 times the speed when no genes were filtered out.

  5. Structural Controllability of Temporal Networks with a Single Switching Controller

    PubMed Central

    Yao, Peng; Hou, Bao-Yu; Pan, Yu-Jian; Li, Xiang

    2017-01-01

    Temporal network, whose topology evolves with time, is an important class of complex networks. Temporal trees of a temporal network describe the necessary edges sustaining the network as well as their active time points. By a switching controller which properly selects its location with time, temporal trees are used to improve the controllability of the network. Therefore, more nodes are controlled within the limited time. Several switching strategies to efficiently select the location of the controller are designed, which are verified with synthetic and empirical temporal networks to achieve better control performance. PMID:28107538

  6. Structural Controllability of Temporal Networks with a Single Switching Controller.

    PubMed

    Yao, Peng; Hou, Bao-Yu; Pan, Yu-Jian; Li, Xiang

    2017-01-01

    Temporal network, whose topology evolves with time, is an important class of complex networks. Temporal trees of a temporal network describe the necessary edges sustaining the network as well as their active time points. By a switching controller which properly selects its location with time, temporal trees are used to improve the controllability of the network. Therefore, more nodes are controlled within the limited time. Several switching strategies to efficiently select the location of the controller are designed, which are verified with synthetic and empirical temporal networks to achieve better control performance.

  7. An Integrated Enterprise Accelerator Database for the SLC Control System

    SciTech Connect

    Lahey, Terri E

    2002-08-07

    Since its inception in the early 1980's, the SLC Control System has been driven by a highly structured memory-resident real-time database. While efficient, its rigid structure and file-based sources makes it difficult to maintain and extract relevant information. The goal of transforming the sources for this database into a relational form is to enable it to be part of a Control System Enterprise Database that is an integrated central repository for SLC accelerator device and Control System data with links to other associated databases. We have taken the concepts developed for the NLC Enterprise Database and used them to create and load a relational model of the online SLC Control System database. This database contains data and structure to allow querying and reporting on beamline devices, their associations and parameters. In the future this will be extended to allow generation of EPICS and SLC database files, setup of applications and links to other databases such as accelerator maintenance, archive data, financial and personnel records, cabling information, documentation etc. The database is implemented using Oracle 8i. In the short term it will be updated daily in batch from the online SLC database. In the longer term, it will serve as the primary source for Control System static data, an R&D platform for the NLC, and contribute to SLC Control System operations.

  8. Lessons learned on the Ground Test Accelerator control system

    SciTech Connect

    Kozubal, A.J.; Weiss, R.E.

    1994-09-01

    When we initiated the control system design for the Ground Test Accelerator (GTA), we envisioned a system that would be flexible enough to handle the changing requirements of an experimental project. This control system would use a developers` toolkit to reduce the cost and time to develop applications for GTA, and through the use of open standards, the system would accommodate unforeseen requirements as they arose. Furthermore, we would attempt to demonstrate on GTA a level of automation far beyond that achieved by existing accelerator control systems. How well did we achieve these goals? What were the stumbling blocks to deploying the control system, and what assumptions did we make about requirements that turned out to be incorrect? In this paper we look at the process of developing a control system that evolved into what is now the ``Experimental Physics and Industrial Control System`` (EPICS). Also, we assess the impact of this system on the GTA project, as well as the impact of GTA on EPICS. The lessons learned on GTA will be valuable for future projects.

  9. Network Access Control List Situation Awareness

    ERIC Educational Resources Information Center

    Reifers, Andrew

    2010-01-01

    Network security is a large and complex problem being addressed by multiple communities. Nevertheless, current theories in networking security appear to overestimate network administrators' ability to understand network access control lists (NACLs), providing few context specific user analyses. Consequently, the current research generally seems to…

  10. Flow Control Using Neural Networks

    DTIC Science & Technology

    2007-11-02

    FEB 93 - 31 DEC 96 4. TITLE AND SUBTITLE 5 . FUNDING NUMBERS FLOW CONTROL USING NEURAL NETWORKS F49620-93-1-0135 61102F 6. AUTHOR(S) 2307/BS THORWALD...OFFICE OF SCIENTIFIC RESEARCH (AFOSRO AGENCY REPORT NUMBER 110 DUNCAN AVENUE, ROOM B115 BOLLING AFB DC 20332- 8050 11. SUPPLEMENTARY NOTES 12a...signals. Figure 5 shows a time series for an actuator that performs a ramp motion in the streamwise direction over about 1 % of the TS period and remains

  11. H ∞ predictive control of networked control systems

    NASA Astrophysics Data System (ADS)

    Xia, Yuanqing; Li, Li; Liu, Guo-Ping; Shi, Peng

    2011-06-01

    This article is concerned with the problem of H ∞ predictive control of networked control system with random network delay. A new control scheme termed networked predictive control is proposed. This scheme mainly consists of the control prediction generator and network delay compensator. While designing the predictor, the control input to the actuator may be different due to networked induced time-delay and data dropout, and two cases are considered depending on the way that the observer obtains the plant control input u t . The necessary and sufficient conditions are given for the closed-loop networked predictive control system to be stochastically stable for different u t and random network delays in controller to actuator channel (CAC) and sensor to controller channel (SCC). A simulation study shows the effectiveness of the proposed scheme.

  12. Adaptive optimization and control using neural networks

    SciTech Connect

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  13. The new control system of the Saclay Linear Accelerator

    SciTech Connect

    Gournay, J.F.; Garreau, F.; Giraud, A.; Gourcy, G.; Rouault, J.

    1985-10-01

    A new control system for the Saclay Linear Accelerator is now being designed. The computer control architecture is based on 3 dedicated VME crates with MC68000 micro-processors : one crate with a disk-based operating system will run the high level application programs and the data base management facilities, another one will manage the man-machine communications and the third one will interface the system to the linac equipments. Communications between the VME microcomputers will be done through 16 bit parallel links. The software is modular and organized in specific layers, the data base is fully distributed. About 90% of the code is written in Fortran.

  14. Dynamic behavior of time-delayed acceleration feedback controller for active vibration control of flexible structures

    NASA Astrophysics Data System (ADS)

    An, Fang; Chen, Wei-dong; Shao, Min-qiang

    2014-09-01

    This paper addresses the design problem of the controller with time-delayed acceleration feedback. On the basis of the reduction method and output state-derivative feedback, a time-delayed acceleration feedback controller is proposed. Stability boundaries of the closed-loop system are determined by using Hurwitz stability criteria. Due to the introduction of time delay into the controller with acceleration feedback, the proposed controller has the feature of not only changing the mass property but also altering the damping property of the controlled system in the sense of equivalent structural modification. With this feature, the closed-loop system has a greater logarithmic decrement than the uncontrolled one, and in turn, the control behavior can be improved. In this connection, the time delay in the acceleration feedback control is a positive factor when satisfying some given conditions and it could be actively utilized. On the ground of the analysis, the developed controller is implemented on a cantilever beam for different controller gain-delay combinations, and the control performance is evaluated with the comparison to that of pure acceleration feedback controller. Simulation and experimental results verify the ability of the controller to attenuate the vibration resulting from the dominant mode.

  15. Controlled electron injection using nanoparticles in laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Cho, Myung Hoon; Pathak, Vishwa Bandhu; Kim, Hyung Taek; Nakajima, Kazuhisa; Nam, Chang Hee; CenterRelativistic Laser Science Team

    2016-10-01

    Laser wakefield acceleration is one of compact electron acceleration schemes due to its high accelerating gradient. Despite of the great progress of several GeV electron beams with high power lasers, the electron injection to the wakefield is still a critical issue for a very low density plasma 1017 electrons/cc. In this talk a novel method to control the injection using nanoparticles is proposed. We investigate the electron injection by analyzing the interaction of electrons with the two potentials - one created by a nanoparticle and the other by the wakefield. The nanoparticle creates a localized electric potential and this nanoparticle potential just slips the present wake potential. To confirm the Hamiltonian description of the interaction, a test particle calculation is performed by controlling the bubble and the nanoparticle potentials. A multi-dimensional particle-in-cell simulations are also presented as a proof-of-principle. Comparing theoretical estimates and PIC simulation, we suggest nanoparticle parameters of size and electron density depending on the background plasma density. Our scheme can be applicable for low plasma density to break though the limitation of self-injection toward extremely high energy electron energy.

  16. An artificial neural network controller for intelligent transportation systems applications

    SciTech Connect

    Vitela, J.E.; Hanebutte, U.R.; Reifman, J.

    1996-04-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems applications. The AICC is based on a simple nonlinear model of the vehicle dynamics. A Neural Network Controller (NNC) code developed at Argonne National Laboratory to control discrete dynamical systems was used for this purpose. In order to test the NNC, an AICC-simulator containing graphical displays was developed for a system of two vehicles driving in a single lane. Two simulation cases are shown, one involving a lead vehicle with constant velocity and the other a lead vehicle with varying acceleration. More realistic vehicle dynamic models will be considered in future work.

  17. High performance/low cost accelerator control system

    NASA Astrophysics Data System (ADS)

    Magyary, S.; Glatz, J.; Lancaster, H.; Selph, F.; Fahmie, M.; Ritchie, A.; Timossi, C.; Hinkson, C.; Benjegerdes, R.

    1980-10-01

    Implementation of a high performance computer control system tailored to the requirements of the Super HILAC accelerator is described. This system uses a distributed structure with fiber optic data links; multiple CPUs operate in parallel at each node. A large number of the latest 16 bit microcomputer boards are used to get a significant processor bandwidth. Dynamically assigned and labeled knobs together with touch screens allow a flexible and efficient operator interface. An X-Y vector graphics system allows display and labeling of real time signals as well as general plotting functions. Both the accelerator parameters and the graphics system can be driven from BASIC interactive programs in addition to the precanned user routines.

  18. The control network of Iapetus

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Katayama, F. Y.

    1984-01-01

    A control network of the Saturnian satellite Iapetus has been established photogrammetrically from pictures taken by the two Voyager spacecraft. Coordinates of 62 control points have been computed and listed; pixel measurements of these points were made on 14 Voyager 1 and 66 Voyager 2 pictures. Some of these points are identified on the preliminary U.S. Geological Survey map of Iapetus and many are identified by name. The Voyager 1 and Voyager 2 pictures covered limited regions of the satellite's surface and contained no overlapping areas. The longitude system on Iapetus is defined by the crater Almeric; the 276 deg meridian passes through the center of this crater. The obliquity of Iapetus has been measured as 0.4 deg + or - 1.6 deg. The mean radius of Iapetus has been determined at 718 + or - 8 km.

  19. Phobos and Deimos control networks

    NASA Technical Reports Server (NTRS)

    Duxbury, Thomas C.; Callahan, John D.

    1989-01-01

    Viking Orbiter images of Phobos and Deimos have been measured to establish global control networks for 98 surface features of the former and 53 of the latter; photogrammetric triangulation has yielded body-fixed coordinates of these control-points, as well as mean triaxial radii of 13.3 x 11.1 x 9.3 km for Phobos and 7.5 x 6.2 x 5.4 for Deimos. Expressions are also obtained for the inertial orientations of these bodies' spin axes and prime meridians. While these expressions should be accurate to a few tenths of a deg for the 1971-1980 period, their accuracy will degrade with time as the orbit accuracy degrades.

  20. Ghrelin accelerates synapse formation and activity development in cultured cortical networks

    PubMed Central

    2014-01-01

    Background While ghrelin was initially related to appetite stimulation and growth hormone secretion, it also has a neuroprotective effect in neurodegenerative diseases and regulates cognitive function. The cellular basis of those processes is related to synaptic efficacy and plasticity. Previous studies have shown that ghrelin not only stimulates synapse formation in cultured cortical neurons and hippocampal slices, but also alters some of the electrophysiological properties of neurons in the hypothalamus, amygdala and other subcortical areas. However, direct evidence for ghrelin’s ability to modulate the activity in cortical neurons is not available yet. In this study, we investigated the effect of acylated ghrelin on the development of the activity level and activity patterns in cortical neurons, in relation to its effect on synaptogenesis. Additionally, we quantitatively evaluated the expression of the receptor for acylated ghrelin – growth hormone secretagogue receptor-1a (GHSR-1a) during development. Results We performed electrophysiology and immunohistochemistry on dissociated cortical cultures from neonates, treated chronically with acylated ghrelin. On average 76 ± 4.6% of the cortical neurons expressed GHSR-1a. Synapse density was found to be much higher in ghrelin treated cultures than in controls across all age groups (1, 2 or 3 weeks). In all cultures (control and ghrelin treated), network activity gradually increased until it reached a maximum after approximately 3 weeks, followed by a slight decrease towards a plateau. During early developmental stages (1–2 weeks), the activity was much higher in ghrelin treated cultures and consequently, they reached the plateau value almost a week earlier than controls. Conclusions Acylated ghrelin leads to earlier network formation and activation in cultured cortical neuronal networks, the latter being a possibly consequence of accelerated synaptogenesis. PMID:24742241

  1. Pinning impulsive control algorithms for complex network

    SciTech Connect

    Sun, Wen; Lü, Jinhu; Chen, Shihua; Yu, Xinghuo

    2014-03-15

    In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms.

  2. Controlling complex networks with conformity behavior

    NASA Astrophysics Data System (ADS)

    Wang, Xu-Wen; Nie, Sen; Wang, Wen-Xu; Wang, Bing-Hong

    2015-09-01

    Controlling complex networks accompanied by common conformity behavior is a fundamental problem in social and physical science. Conformity behavior that individuals tend to follow the majority in their neighborhood is common in human society and animal communities. Despite recent progress in understanding controllability of complex networks, the existent controllability theories cannot be directly applied to networks associated with conformity. Here we propose a simple model to incorporate conformity-based decision making into the evolution of a network system, which allows us to employ the exact controllability theory to explore the controllability of such systems. We offer rigorous theoretical results of controllability for representative regular networks. We also explore real networks in different fields and some typical model networks, finding some interesting results that are different from the predictions of structural and exact controllability theory in the absence of conformity. We finally present an example of steering a real social network to some target states to further validate our controllability theory and tools. Our work offers a more realistic understanding of network controllability with conformity behavior and can have potential applications in networked evolutionary games, opinion dynamics and many other complex networked systems.

  3. Accelerated monotonic convergence of optimal control over quantum dynamics.

    PubMed

    Ho, Tak-San; Rabitz, Herschel

    2010-08-01

    The control of quantum dynamics is often concerned with finding time-dependent optimal control fields that can take a system from an initial state to a final state to attain the desired value of an observable. This paper presents a general method for formulating monotonically convergent algorithms to iteratively improve control fields. The formulation is based on a two-point boundary-value quantum control paradigm (TBQCP) expressed as a nonlinear integral equation of the first kind arising from dynamical invariant tracking control. TBQCP is shown to be related to various existing techniques, including local control theory, the Krotov method, and optimal control theory. Several accelerated monotonic convergence schemes for iteratively computing control fields are derived based on TBQCP. Numerical simulations are compared with the Krotov method showing that the new TBQCP schemes are efficient and remain monotonically convergent over a wide range of the iteration step parameters and the control pulse lengths, which is attributable to the trap-free character of the transition probability quantum dynamics control landscape.

  4. Magnetically Controlled Plasma Waveguide For Laser Wakefield Acceleration

    SciTech Connect

    Froula, D H; Divol, L; Davis, P; Palastro, J; Michel, P; Leurent, V; Glenzer, S H; Pollock, B; Tynan, G

    2008-05-14

    An external magnetic field applied to a laser plasma is shown produce a plasma channel at densities relevant to creating GeV monoenergetic electrons through laser wakefield acceleration. Furthermore, the magnetic field also provides a pressure to help shape the channel to match the guiding conditions of an incident laser beam. Measured density channels suitable for guiding relativistic short-pulse laser beams are presented with a minimum density of 5 x 10{sup 17} cm{sup -3} which corresponds to a linear dephasing length of several centimeters suitable for multi-GeV electron acceleration. The experimental setup at the Jupiter Laser Facility, Lawrence Livermore National Laboratory, where a 1-ns, 150 J 1054 nm laser will produce a magnetically controlled channel to guide a < 75 fs, 10 J short-pulse laser beam through 5-cm of 5 x 10{sup 17} cm{sup -3} plasma is presented. Calculations presented show that electrons can be accelerated to 3 GeV with this system. Three-dimensional resistive magneto-hydrodynamic simulations are used to design the laser and plasma parameters and quasi-static kinetic simulations indicate that the channel will guide a 200 TW laser beam over 5-cm.

  5. Introducing a new paradigm for accelerators and large experimental apparatus control systems

    NASA Astrophysics Data System (ADS)

    Catani, L.; Zani, F.; Bisegni, C.; Di Pirro, G.; Foggetta, L.; Mazzitelli, G.; Stecchi, A.

    2012-11-01

    The integration of web technologies and web services has been, in the recent years, one of the major trends in upgrading and developing distributed control systems for accelerators and large experimental apparatuses. Usually, web technologies have been introduced to complement the control systems with smart add-ons and user friendly services or, for instance, to safely allow access to the control system to users from remote sites. Despite this still narrow spectrum of employment, some software technologies developed for high-performance web services, although originally intended and optimized for these particular applications, deserve some features suggesting a deeper integration in a control system and, eventually, their use to develop some of the control system’s core components. In this paper, we present the conceptual design of a new control system for a particle accelerator and associated machine data acquisition system, based on a synergic combination of a nonrelational key/value database and network distributed object caching. The use of these technologies, to implement respectively continuous data archiving and data distribution between components, brought about the definition of a new control system concept offering a number of interesting features such as a high level of abstraction of services and components and their integration in a framework that can be seen as a comprehensive service provider that both graphical user interface applications and front-end controllers join for accessing and, to some extent, expanding its functionalities.

  6. Accelerating Network Traffic Analytics Using Query-DrivenVisualization

    SciTech Connect

    Bethel, E. Wes; Campbell, Scott; Dart, Eli; Stockinger, Kurt; Wu,Kesheng

    2006-07-29

    Realizing operational analytics solutions where large and complex data must be analyzed in a time-critical fashion entails integrating many different types of technology. This paper focuses on an interdisciplinary combination of scientific data management and visualization/analysis technologies targeted at reducing the time required for data filtering, querying, hypothesis testing and knowledge discovery in the domain of network connection data analysis. We show that use of compressed bitmap indexing can quickly answer queries in an interactive visual data analysis application, and compare its performance with two alternatives for serial and parallel filtering/querying on 2.5 billion records worth of network connection data collected over a period of 42 weeks. Our approach to visual network connection data exploration centers on two primary factors: interactive ad-hoc and multiresolution query formulation and execution over n dimensions and visual display of then-dimensional histogram results. This combination is applied in a case study to detect a distributed network scan and to then identify the set of remote hosts participating in the attack. Our approach is sufficiently general to be applied to a diverse set of data understanding problems as well as used in conjunction with a diverse set of analysis and visualization tools.

  7. Network Monitor and Control of Disruption-Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Torgerson, J. Leigh

    2014-01-01

    For nearly a decade, NASA and many researchers in the international community have been developing Internet-like protocols that allow for automated network operations in networks where the individual links between nodes are only sporadically connected. A family of Disruption-Tolerant Networking (DTN) protocols has been developed, and many are reaching CCSDS Blue Book status. A NASA version of DTN known as the Interplanetary Overlay Network (ION) has been flight-tested on the EPOXI spacecraft and ION is currently being tested on the International Space Station. Experience has shown that in order for a DTN service-provider to set up a large scale multi-node network, a number of network monitor and control technologies need to be fielded as well as the basic DTN protocols. The NASA DTN program is developing a standardized means of querying a DTN node to ascertain its operational status, known as the DTN Management Protocol (DTNMP), and the program has developed some prototypes of DTNMP software. While DTNMP is a necessary component, it is not sufficient to accomplish Network Monitor and Control of a DTN network. JPL is developing a suite of tools that provide for network visualization, performance monitoring and ION node control software. This suite of network monitor and control tools complements the GSFC and APL-developed DTN MP software, and the combined package can form the basis for flight operations using DTN.

  8. Controlling allosteric networks in proteins

    NASA Astrophysics Data System (ADS)

    Dokholyan, Nikolay

    2013-03-01

    We present a novel methodology based on graph theory and discrete molecular dynamics simulations for delineating allosteric pathways in proteins. We use this methodology to uncover the structural mechanisms responsible for coupling of distal sites on proteins and utilize it for allosteric modulation of proteins. We will present examples where inference of allosteric networks and its rewiring allows us to ``rescue'' cystic fibrosis transmembrane conductance regulator (CFTR), a protein associated with fatal genetic disease cystic fibrosis. We also use our methodology to control protein function allosterically. We design a novel protein domain that can be inserted into identified allosteric site of target protein. Using a drug that binds to our domain, we alter the function of the target protein. We successfully tested this methodology in vitro, in living cells and in zebrafish. We further demonstrate transferability of our allosteric modulation methodology to other systems and extend it to become ligh-activatable.

  9. Genomic and network patterns of schizophrenia genetic variation in human evolutionary accelerated regions.

    PubMed

    Xu, Ke; Schadt, Eric E; Pollard, Katherine S; Roussos, Panos; Dudley, Joel T

    2015-05-01

    The population persistence of schizophrenia despite associated reductions in fitness and fecundity suggests that the genetic basis of schizophrenia has a complex evolutionary history. A recent meta-analysis of schizophrenia genome-wide association studies offers novel opportunities for assessment of the evolutionary trajectories of schizophrenia-associated loci. In this study, we hypothesize that components of the genetic architecture of schizophrenia are attributable to human lineage-specific evolution. Our results suggest that schizophrenia-associated loci enrich in genes near previously identified human accelerated regions (HARs). Specifically, we find that genes near HARs conserved in nonhuman primates (pHARs) are enriched for schizophrenia-associated loci, and that pHAR-associated schizophrenia genes are under stronger selective pressure than other schizophrenia genes and other pHAR-associated genes. We further evaluate pHAR-associated schizophrenia genes in regulatory network contexts to investigate associated molecular functions and mechanisms. We find that pHAR-associated schizophrenia genes significantly enrich in a GABA-related coexpression module that was previously found to be differentially regulated in schizophrenia affected individuals versus healthy controls. In another two independent networks constructed from gene expression profiles from prefrontal cortex samples, we find that pHAR-associated schizophrenia genes are located in more central positions and their average path lengths to the other nodes are significantly shorter than those of other schizophrenia genes. Together, our results suggest that HARs are associated with potentially important functional roles in the genetic architecture of schizophrenia.

  10. QuateXelero: An Accelerated Exact Network Motif Detection Algorithm

    PubMed Central

    Khakabimamaghani, Sahand; Sharafuddin, Iman; Dichter, Norbert; Koch, Ina; Masoudi-Nejad, Ali

    2013-01-01

    Finding motifs in biological, social, technological, and other types of networks has become a widespread method to gain more knowledge about these networks’ structure and function. However, this task is very computationally demanding, because it is highly associated with the graph isomorphism which is an NP problem (not known to belong to P or NP-complete subsets yet). Accordingly, this research is endeavoring to decrease the need to call NAUTY isomorphism detection method, which is the most time-consuming step in many existing algorithms. The work provides an extremely fast motif detection algorithm called QuateXelero, which has a Quaternary Tree data structure in the heart. The proposed algorithm is based on the well-known ESU (FANMOD) motif detection algorithm. The results of experiments on some standard model networks approve the overal superiority of the proposed algorithm, namely QuateXelero, compared with two of the fastest existing algorithms, G-Tries and Kavosh. QuateXelero is especially fastest in constructing the central data structure of the algorithm from scratch based on the input network. PMID:23874498

  11. Control of Large-Scale Boolean Networks via Network Aggregation.

    PubMed

    Zhao, Yin; Ghosh, Bijoy K; Cheng, Daizhan

    2016-07-01

    A major challenge to solve problems in control of Boolean networks is that the computational cost increases exponentially when the number of nodes in the network increases. We consider the problem of controllability and stabilizability of Boolean control networks, address the increasing cost problem by partitioning the network graph into several subnetworks, and analyze the subnetworks separately. Easily verifiable necessary conditions for controllability and stabilizability are proposed for a general aggregation structure. For acyclic aggregation, we develop a sufficient condition for stabilizability. It dramatically reduces the computational complexity if the number of nodes in each block of the acyclic aggregation is small enough compared with the number of nodes in the entire Boolean network.

  12. Robust Reachability of Boolean Control Networks.

    PubMed

    Li, Fangfei; Tang, Yang

    2016-04-20

    Boolean networks serve a powerful tool in analysis of genetic regulatory networks since it emphasizes the fundamental principles and establishes a nature framework for capturing the dynamics of regulation of cellular states. In this paper, the robust reachability of Boolean control networks is investigated by means of semi-tensor product. Necessary and sufficient conditions for the robust reachability of Boolean control networks are provided, in which control inputs relying on disturbances or not are considered, respectively. Besides, the corresponding control algorithms are developed for these two cases. A reduced model of the lac operon in the Escherichia coli is presented to show the effectiveness of the presented results.

  13. Realizing actual feedback control of complex network

    NASA Astrophysics Data System (ADS)

    Tu, Chengyi; Cheng, Yuhua

    2014-06-01

    In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.

  14. Computer control of large accelerators design concepts and methods

    SciTech Connect

    Beck, F.; Gormley, M.

    1984-05-01

    Unlike most of the specialities treated in this volume, control system design is still an art, not a science. These lectures are an attempt to produce a primer for prospective practitioners of this art. A large modern accelerator requires a comprehensive control system for commissioning, machine studies and day-to-day operation. Faced with the requirement to design a control system for such a machine, the control system architect has a bewildering array of technical devices and techniques at his disposal, and it is our aim in the following chapters to lead him through the characteristics of the problems he will have to face and the practical alternatives available for solving them. We emphasize good system architecture using commercially available hardware and software components, but in addition we discuss the actual control strategies which are to be implemented since it is at the point of deciding what facilities shall be available that the complexity of the control system and its cost are implicitly decided. 19 references.

  15. Threshold control of chaotic neural network.

    PubMed

    He, Guoguang; Shrimali, Manish Dev; Aihara, Kazuyuki

    2008-01-01

    The chaotic neural network constructed with chaotic neurons exhibits rich dynamic behaviour with a nonperiodic associative memory. In the chaotic neural network, however, it is difficult to distinguish the stored patterns in the output patterns because of the chaotic state of the network. In order to apply the nonperiodic associative memory into information search, pattern recognition etc. it is necessary to control chaos in the chaotic neural network. We have studied the chaotic neural network with threshold activated coupling, which provides a controlled network with associative memory dynamics. The network converges to one of its stored patterns or/and reverse patterns which has the smallest Hamming distance from the initial state of the network. The range of the threshold applied to control the neurons in the network depends on the noise level in the initial pattern and decreases with the increase of noise. The chaos control in the chaotic neural network by threshold activated coupling at varying time interval provides controlled output patterns with different temporal periods which depend upon the control parameters.

  16. The DPC-2000 advanced control system for the Dynamitron accelerator

    NASA Astrophysics Data System (ADS)

    Kestler, Bernard A.; Lisanti, Thomas F.

    1993-07-01

    The DPC-2000 is an advanced control system utilizing the latest technology in computer control circuitry and components. Its overall design is modular and technologically advanced to keep up with customer and engineering demands. The full control system is presented as four units. They are the Remote I/O (Input / Output), Local Analog and Digital I/O, Operator Interface and the Main Computer. The central processing unit, the heart of the system, executes a high level language program that communicates to the different sub-assemblies through advanced serial and parallel communication lines. All operational parameters of the accelerator are monitored, controlled and corrected at close to 20 times per second. The operator is provided with a selection of many informative screen displays. The control program handles all graphic screen displays and the updating of these screens directly; it does not have to communicate to a display terminal. This adds to the quick response and excellent operator feedback received while operating the machine. The CPU also has the ability to store and record all process variable setpoints for each product that will be treated. This allows the operator to set up the process parameters by selecting the product identification code from a menu presented on the display screen. All process parameters are printed to report at regular intervals during a process run for later analysis and record keeping.

  17. Controlling contagion processes in activity driven networks.

    PubMed

    Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro

    2014-03-21

    The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.

  18. Neural network architecture for crossbar switch control

    NASA Technical Reports Server (NTRS)

    Troudet, Terry P.; Walters, Stephen M.

    1991-01-01

    A Hopfield neural network architecture for the real-time control of a crossbar switch for switching packets at maximum throughput is proposed. The network performance and processing time are derived from a numerical simulation of the transitions of the neural network. A method is proposed to optimize electronic component parameters and synaptic connections, and it is fully illustrated by the computer simulation of a VLSI implementation of 4 x 4 neural net controller. The extension to larger size crossbars is demonstrated through the simulation of an 8 x 8 crossbar switch controller, where the performance of the neural computation is discussed in relation to electronic noise and inhomogeneities of network components.

  19. Interdependent networks: the fragility of control

    PubMed Central

    Morris, Richard G.; Barthelemy, Marc

    2013-01-01

    Recent work in the area of interdependent networks has focused on interactions between two systems of the same type. However, an important and ubiquitous class of systems are those involving monitoring and control, an example of interdependence between processes that are very different. In this Article, we introduce a framework for modelling ‘distributed supervisory control' in the guise of an electrical network supervised by a distributed system of control devices. The system is characterised by degrees of freedom salient to real-world systems— namely, the number of control devices, their inherent reliability, and the topology of the control network. Surprisingly, the behavior of the system depends crucially on the reliability of control devices. When devices are completely reliable, cascade sizes are percolation controlled; the number of devices being the relevant parameter. For unreliable devices, the topology of the control network is important and can dramatically reduce the resilience of the system. PMID:24067404

  20. Evolving Neural Networks for Nonlinear Control.

    DTIC Science & Technology

    1996-09-30

    An approach to creating Amorphous Recurrent Neural Networks (ARNN) using Genetic Algorithms (GA) called 2pGA has been developed and shown to be...effective in evolving neural networks for the control and stabilization of both linear and nonlinear plants, the optimal control for a nonlinear regulator

  1. Adaptive Neural Network Controller for ATM Traffic

    DTIC Science & Technology

    1996-12-01

    IEEE Communications Magazine (October 1995). 2. Baum, Eric B...Adaptive Control in ATM Networks," IEEE Communications Magazine (October 1995). 9. Evanowsky, John B. "Information for the Warrior," IEEE Communications Magazine (October...Network Applications in ATM," IEEE Communications Magazine (October 1995). 78 16. Imrich, et al. "A counter based congestion control for ATM

  2. Stress controls the mechanics of collagen networks

    PubMed Central

    Licup, Albert James; Münster, Stefan; Sharma, Abhinav; Sheinman, Michael; Jawerth, Louise M.; Fabry, Ben; Weitz, David A.; MacKintosh, Fred C.

    2015-01-01

    Collagen is the main structural and load-bearing element of various connective tissues, where it forms the extracellular matrix that supports cells. It has long been known that collagenous tissues exhibit a highly nonlinear stress–strain relationship, although the origins of this nonlinearity remain unknown. Here, we show that the nonlinear stiffening of reconstituted type I collagen networks is controlled by the applied stress and that the network stiffness becomes surprisingly insensitive to network concentration. We demonstrate how a simple model for networks of elastic fibers can quantitatively account for the mechanics of reconstituted collagen networks. Our model points to the important role of normal stresses in determining the nonlinear shear elastic response, which can explain the approximate exponential relationship between stress and strain reported for collagenous tissues. This further suggests principles for the design of synthetic fiber networks with collagen-like properties, as well as a mechanism for the control of the mechanics of such networks. PMID:26195769

  3. Stress controls the mechanics of collagen networks.

    PubMed

    Licup, Albert James; Münster, Stefan; Sharma, Abhinav; Sheinman, Michael; Jawerth, Louise M; Fabry, Ben; Weitz, David A; MacKintosh, Fred C

    2015-08-04

    Collagen is the main structural and load-bearing element of various connective tissues, where it forms the extracellular matrix that supports cells. It has long been known that collagenous tissues exhibit a highly nonlinear stress-strain relationship, although the origins of this nonlinearity remain unknown. Here, we show that the nonlinear stiffening of reconstituted type I collagen networks is controlled by the applied stress and that the network stiffness becomes surprisingly insensitive to network concentration. We demonstrate how a simple model for networks of elastic fibers can quantitatively account for the mechanics of reconstituted collagen networks. Our model points to the important role of normal stresses in determining the nonlinear shear elastic response, which can explain the approximate exponential relationship between stress and strain reported for collagenous tissues. This further suggests principles for the design of synthetic fiber networks with collagen-like properties, as well as a mechanism for the control of the mechanics of such networks.

  4. Computational models reduce complexity and accelerate insight into cardiac signaling networks.

    PubMed

    Yang, Jason H; Saucerman, Jeffrey J

    2011-01-07

    Cardiac signaling networks exhibit considerable complexity in size and connectivity. The intrinsic complexity of these networks complicates the interpretation of experimental findings. This motivates new methods for investigating the mechanisms regulating cardiac signaling networks and the consequences these networks have on cardiac physiology and disease. Next-generation experimental techniques are also generating a wealth of genomic and proteomic data that can be difficult to analyze or interpret. Computational models are poised to play a key role in addressing these challenges. Computational models have a long history in contributing to the understanding of cardiac physiology and are useful for identifying biological mechanisms, inferring multiscale consequences to cell signaling activities and reducing the complexity of large data sets. Models also integrate well with experimental studies to explain experimental observations and generate new hypotheses. Here, we review the contributions computational modeling approaches have made to the analysis of cardiac signaling networks and forecast opportunities for computational models to accelerate cardiac signaling research.

  5. Distributed intelligent control and status networking

    NASA Technical Reports Server (NTRS)

    Fortin, Andre; Patel, Manoj

    1993-01-01

    Over the past two years, the Network Control Systems Branch (Code 532) has been investigating control and status networking technologies. These emerging technologies use distributed processing over a network to accomplish a particular custom task. These networks consist of small intelligent 'nodes' that perform simple tasks. Containing simple, inexpensive hardware and software, these nodes can be easily developed and maintained. Once networked, the nodes can perform a complex operation without a central host. This type of system provides an alternative to more complex control and status systems which require a central computer. This paper will provide some background and discuss some applications of this technology. It will also demonstrate the suitability of one particular technology for the Space Network (SN) and discuss the prototyping activities of Code 532 utilizing this technology.

  6. Accelerate!

    PubMed

    Kotter, John P

    2012-11-01

    The old ways of setting and implementing strategy are failing us, writes the author of Leading Change, in part because we can no longer keep up with the pace of change. Organizational leaders are torn between trying to stay ahead of increasingly fierce competition and needing to deliver this year's results. Although traditional hierarchies and managerial processes--the components of a company's "operating system"--can meet the daily demands of running an enterprise, they are rarely equipped to identify important hazards quickly, formulate creative strategic initiatives nimbly, and implement them speedily. The solution Kotter offers is a second system--an agile, networklike structure--that operates in concert with the first to create a dual operating system. In such a system the hierarchy can hand off the pursuit of big strategic initiatives to the strategy network, freeing itself to focus on incremental changes to improve efficiency. The network is populated by employees from all levels of the organization, giving it organizational knowledge, relationships, credibility, and influence. It can Liberate information from silos with ease. It has a dynamic structure free of bureaucratic layers, permitting a level of individualism, creativity, and innovation beyond the reach of any hierarchy. The network's core is a guiding coalition that represents each level and department in the hierarchy, with a broad range of skills. Its drivers are members of a "volunteer army" who are energized by and committed to the coalition's vividly formulated, high-stakes vision and strategy. Kotter has helped eight organizations, public and private, build dual operating systems over the past three years. He predicts that such systems will lead to long-term success in the 21st century--for shareholders, customers, employees, and companies themselves.

  7. Effect of correlations on controllability transition in network control

    NASA Astrophysics Data System (ADS)

    Nie, Sen; Wang, Xu-Wen; Wang, Bing-Hong; Jiang, Luo-Luo

    2016-04-01

    The network control problem has recently attracted an increasing amount of attention, owing to concerns including the avoidance of cascading failures of power-grids and the management of ecological networks. It has been proven that numerical control can be achieved if the number of control inputs exceeds a certain transition point. In the present study, we investigate the effect of degree correlation on the numerical controllability in networks whose topological structures are reconstructed from both real and modeling systems, and we find that the transition point of the number of control inputs depends strongly on the degree correlation in both undirected and directed networks with moderately sparse links. More interestingly, the effect of the degree correlation on the transition point cannot be observed in dense networks for numerical controllability, which contrasts with the corresponding result for structural controllability. In particular, for directed random networks and scale-free networks, the influence of the degree correlation is determined by the types of correlations. Our approach provides an understanding of control problems in complex sparse networks.

  8. The control network of Mercury: April 1991

    NASA Technical Reports Server (NTRS)

    Davies, Merton E.; Rogers, Patricia G.

    1991-01-01

    Features identified on Mariner 10 high resolution images of Mercury, acquired during three flybys between 1974 and 1975, form the basis of Mercury's planetwide control network. Although images from all three flybys are used in the net, the large amount of contiguous coverage from the second flyby, a southern bright-side pass, make these images the strongest contributors to the control net. Mercury is in synchronous rotation with a period of 58.6462 days and its spin axis is approximately normal to the equatorial plane. The 20 degree meridian is defined by the crater Hun Kal, located just south of the equator. The control network computations involve the photogrammetric determination of control point coordinates and an analytical triangulation solution. The current control network computations for Mercury are performed in the J2000 coordinate system according to the International Astronomical Union (IAU) convention. In recent years, updates to the control network have included improved trajectory solutions and modification of the standard radii (2439) at several points based on Earth-based radar altimetry data. The current status of the control network calculations is presented. Improvements were made to existing control points and new control points were added to the net to strengthen the overall network and improve the standard error of measurement.

  9. Controllability of Microbial Contamination in Hydrologic Networks

    NASA Astrophysics Data System (ADS)

    Riasi, M. S.; Yeghiazarian, L.

    2015-12-01

    Microbial contamination in surface water networks is highly dynamic and stochastic, and is characterized by high level of spatial and temporal variability. Controlling water contamination is therefore challenging.Ideally, to control contamination in a flow network, one needs to design a management approach whereby the level of contamination can be controlled everywhere at all times, by controlling it at certain locations in the network. This can be viewed as a control problem in which we aim to efficiently drive the system to a desired state by manipulating few input variables. Such problems reduce to i) finding the best control locations in the network that would impact the whole system; and ii) choosing the time-variant inputs at the control locations to achieve the desired state of the system. In this study, we aim to answer questions like "How controllable is microbial contamination in a watershed flow network?" and "Given the network topology, geometry and environmental drivers, what are the best control locations?".

  10. Robust Multiobjective Controllability of Complex Neuronal Networks.

    PubMed

    Tang, Yang; Gao, Huijun; Du, Wei; Lu, Jianquan; Vasilakos, Athanasios V; Kurths, Jurgen

    2016-01-01

    This paper addresses robust multiobjective identification of driver nodes in the neuronal network of a cat's brain, in which uncertainties in determination of driver nodes and control gains are considered. A framework for robust multiobjective controllability is proposed by introducing interval uncertainties and optimization algorithms. By appropriate definitions of robust multiobjective controllability, a robust nondominated sorting adaptive differential evolution (NSJaDE) is presented by means of the nondominated sorting mechanism and the adaptive differential evolution (JaDE). The simulation experimental results illustrate the satisfactory performance of NSJaDE for robust multiobjective controllability, in comparison with six statistical methods and two multiobjective evolutionary algorithms (MOEAs): nondominated sorting genetic algorithms II (NSGA-II) and nondominated sorting composite differential evolution. It is revealed that the existence of uncertainties in choosing driver nodes and designing control gains heavily affects the controllability of neuronal networks. We also unveil that driver nodes play a more drastic role than control gains in robust controllability. The developed NSJaDE and obtained results will shed light on the understanding of robustness in controlling realistic complex networks such as transportation networks, power grid networks, biological networks, etc.

  11. Molecular network control through boolean canalization.

    PubMed

    Murrugarra, David; Dimitrova, Elena S

    2015-12-01

    Boolean networks are an important class of computational models for molecular interaction networks. Boolean canalization, a type of hierarchical clustering of the inputs of a Boolean function, has been extensively studied in the context of network modeling where each layer of canalization adds a degree of stability in the dynamics of the network. Recently, dynamic network control approaches have been used for the design of new therapeutic interventions and for other applications such as stem cell reprogramming. This work studies the role of canalization in the control of Boolean molecular networks. It provides a method for identifying the potential edges to control in the wiring diagram of a network for avoiding undesirable state transitions. The method is based on identifying appropriate input-output combinations on undesirable transitions that can be modified using the edges in the wiring diagram of the network. Moreover, a method for estimating the number of changed transitions in the state space of the system as a result of an edge deletion in the wiring diagram is presented. The control methods of this paper were applied to a mutated cell-cycle model and to a p53-mdm2 model to identify potential control targets.

  12. Advanced mobile networking, sensing, and controls.

    SciTech Connect

    Feddema, John Todd; Kilman, Dominique Marie; Byrne, Raymond Harry; Young, Joseph G.; Lewis, Christopher L.; Van Leeuwen, Brian P.; Robinett, Rush D. III; Harrington, John J.

    2005-03-01

    This report describes an integrated approach for designing communication, sensing, and control systems for mobile distributed systems. Graph theoretic methods are used to analyze the input/output reachability and structural controllability and observability of a decentralized system. Embedded in each network node, this analysis will automatically reconfigure an ad hoc communication network for the sensing and control task at hand. The graph analysis can also be used to create the optimal communication flow control based upon the spatial distribution of the network nodes. Edge coloring algorithms tell us that the minimum number of time slots in a planar network is equal to either the maximum number of adjacent nodes (or degree) of the undirected graph plus some small number. Therefore, the more spread out that the nodes are, the fewer number of time slots are needed for communication, and the smaller the latency between nodes. In a coupled system, this results in a more responsive sensor network and control system. Network protocols are developed to propagate this information, and distributed algorithms are developed to automatically adjust the number of time slots available for communication. These protocols and algorithms must be extremely efficient and only updated as network nodes move. In addition, queuing theory is used to analyze the delay characteristics of Carrier Sense Multiple Access (CSMA) networks. This report documents the analysis, simulation, and implementation of these algorithms performed under this Laboratory Directed Research and Development (LDRD) effort.

  13. Applications of Neural Networks to Adaptive Control

    DTIC Science & Technology

    1989-12-01

    DTIC ;- E py 00 NAVAL POSTGRADUATE SCHOOL Monterey, California I.$ RDTIC IELECTE fl THESIS BEG7V°U APPLICATIONS OF NEURAL NETWORKS TO ADAPTIVE CONTROL...Second keader E . Robert Wood, Chairman, Department of Aeronautics and Astronautics Gordoii E . Schacher, Dean of Faculty and Graduate Education ii ABSTRACT...23: Network Dynamic Stability for q(t) . ............................. 55 ix Figure 24: Network Dynamic Stability for e (t

  14. Secure quantum network coding for controlled repeater networks

    NASA Astrophysics Data System (ADS)

    Shang, Tao; Li, Jiao; Liu, Jian-wei

    2016-07-01

    To realize efficient quantum communication based on quantum repeater, we propose a secure quantum network coding scheme for controlled repeater networks, which adds a controller as a trusted party and is able to control the process of EPR-pair distribution. As the key operations of quantum repeater, local operations and quantum communication are designed to adopt quantum one-time pad to enhance the function of identity authentication instead of local operations and classical communication. Scheme analysis shows that the proposed scheme can defend against active attacks for quantum communication and realize long-distance quantum communication with minimal resource consumption.

  15. Predictive Control of Large Complex Networks

    NASA Astrophysics Data System (ADS)

    Haber, Aleksandar; Motter, Adilson E.

    Networks of coupled dynamical subsystems are increasingly used to represent complex natural and engineered systems. While recent technological developments give us improved means to actively control the dynamics of individual subsystems in various domains, network control remains a challenging problem due to difficulties imposed by intrinsic nonlinearities, control constraints, and the large-scale nature of the systems. In this talk, we will present a model predictive control approach that is effective while accounting for these realistic properties of complex networks. Our method can systematically identify control interventions that steer the trajectory to a desired state, even in the presence of strong nonlinearities and constraints. Numerical tests show that the method is applicable to a variety of networks, ranging from power grids to chemical reaction systems.

  16. Structural control of reaction-diffusion networks

    NASA Astrophysics Data System (ADS)

    Xuan, Qi; Du, Fang; Dong, Hui; Yu, Li; Chen, Guanrong

    2011-09-01

    Recent studies revealed that reaction-diffusion (RD) dynamics can be significantly influenced by the structure of the underlying network. In this paper, a framework is established to study a closely related problem, i.e., to control the proportion of active particles in an RD process by adjusting the structure of the underlying diffusion network. Both distributed and centralized rewiring and reweighting control schemes are proposed for unweighted and weighted networks, respectively. Simulations show that the proportion of active particles can indeed be controlled to a certain extent even when the distributed control mechanism is totally random, while quite high precision can be achieved by centralized control schemes. More interestingly, it is found that the reactants in heterogeneous networks have wider controllable ranges than those in homogeneous networks with similar numbers of nodes and links, if only the weights of links are changed with a fixed bound. Therefore, it is believed that heterogeneous networks fit the changeable environment better, which provides another explanation for some common observations on many heterogeneous real-world networks.

  17. Control Networks and Neuromodulators of Early Development

    ERIC Educational Resources Information Center

    Posner, Michael I.; Rothbart, Mary K.; Sheese, Brad E.; Voelker, Pascale

    2012-01-01

    In adults, most cognitive and emotional self-regulation is carried out by a network of brain regions, including the anterior cingulate, insula, and areas of the basal ganglia, related to executive attention. We propose that during infancy, control systems depend primarily upon a brain network involved in orienting to sensory events that includes…

  18. Neural networks applications to control and computations

    NASA Technical Reports Server (NTRS)

    Luxemburg, Leon A.

    1994-01-01

    Several interrelated problems in the area of neural network computations are described. First an interpolation problem is considered, then a control problem is reduced to a problem of interpolation by a neural network via Lyapunov function approach, and finally a new, faster method of learning as compared with the gradient descent method, was introduced.

  19. Structurally robust control of complex networks

    NASA Astrophysics Data System (ADS)

    Nacher, Jose C.; Akutsu, Tatsuya

    2015-01-01

    Robust control theory has been successfully applied to numerous real-world problems using a small set of devices called controllers. However, the real systems represented by networks contain unreliable components and modern robust control engineering has not addressed the problem of structural changes on complex networks including scale-free topologies. Here, we introduce the concept of structurally robust control of complex networks and provide a concrete example using an algorithmic framework that is widely applied in engineering. The developed analytical tools, computer simulations, and real network analyses lead herein to the discovery that robust control can be achieved in scale-free networks with exactly the same order of controllers required in a standard nonrobust configuration by adjusting only the minimum degree. The presented methodology also addresses the probabilistic failure of links in real systems, such as neural synaptic unreliability in Caenorhabditis elegans, and suggests a new direction to pursue in studies of complex networks in which control theory has a role.

  20. Wireless Sensor Networks: Monitoring and Control

    SciTech Connect

    Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio

    2013-05-31

    The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.

  1. Portable control device for networked mobile robots

    DOEpatents

    Feddema, John T.; Byrne, Raymond H.; Bryan, Jon R.; Harrington, John J.; Gladwell, T. Scott

    2002-01-01

    A handheld control device provides a way for controlling one or multiple mobile robotic vehicles by incorporating a handheld computer with a radio board. The device and software use a personal data organizer as the handheld computer with an additional microprocessor and communication device on a radio board for use in controlling one robot or multiple networked robots.

  2. Fast predictive control of networked energy systems

    NASA Astrophysics Data System (ADS)

    Chuang, Frank Fu-Han

    In this thesis we study the optimal control of networked energy systems. Networked energy systems consist of a collection of energy storage nodes and a network of links and inputs which allow energy to be exchanged, injected, or removed from the nodes. The nodes may exchange energy between each other autonomously or via controlled flows between the nodes. Examples of networked systems include building heating, ventilation, and air conditioning (HVAC) systems and networked battery systems. In the building system example, the nodes of the system are rooms which store thermal energy in the air and other elements which have thermal capacity. The rooms transfer energy autonomously through thermal conduction, convection, and radiation. Thermal energy can be injected into or removed from the rooms via conditioned air or slabs. In the case of a networked battery system, the batteries store electrical energy in their chemical cells. The batteries may be electrically linked so that a controller can move electrical charge from one battery to another. Networked energy systems are typically large-scale (contain many states and inputs), affected by uncertain forecasts and disturbances, and require fast computation on cheap embedded platforms. In this thesis, the optimal control technique we study is model predictive control for networked energy systems. Model predictive or receding horizon control is a time-domain optimization-based control technique which uses predictive models of a system to forecast its behavior and minimize a performance cost subject to system constraints. In this thesis we address two primary issues concerning model predictive control for networked energy systems: robustness to uncertainty in forecasts and reducing the complexity of the large-scale optimization problem for use in embedded platforms. The first half of the thesis deals primarily with the efficient computation of robust controllers for dealing with random and adversarial uncertainties in the

  3. Fingerprinting Software Defined Networks and Controllers

    DTIC Science & Technology

    2015-03-01

    FINGERPRINTING SOFTWARE DEFINED NETWORKS AND CONTROLLERS THESIS Zachary J. Zeitlin, 2nd Lt, USAF AFIT-ENG-MS-15-M-067 DEPARTMENT OF THE AIR FORCE AIR...copyright protection in the United States. AFIT-ENG-MS-15-M-067 FINGERPRINTING SOFTWARE DEFINED NETWORKS AND CONTROLLERS THESIS Presented to the Faculty...B.S.C.S. 2nd Lt, USAF March 2015 DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT-ENG-MS-15-M-067 FINGERPRINTING SOFTWARE

  4. Topology control with IPD network creation games

    NASA Astrophysics Data System (ADS)

    Scholz, Jan C.; Greiner, Martin O. W.

    2007-06-01

    Network creation games couple a two-players game with the evolution of network structure. A vertex player may increase its own payoff with a change of strategy or with a modification of its edge-defined neighbourhood. By referring to the iterated prisoners dilemma (IPD) game we show that this evolutionary dynamics converges to network-Nash equilibria, where no vertex is able to improve its payoff. The resulting network structure exhibits a strong dependence on the parameter of the payoff matrix. Degree distributions and cluster coefficients are also strongly affected by the specific interactions chosen for the neighbourhood exploration. This allows network creation games to be seen as a promising artificial-social-systems approach for a distributive topology control of complex networked systems.

  5. Controlling extreme events on complex networks

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng

    2014-08-01

    Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network ``mobile'' can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed.

  6. The control networks of Mimas and Enceladus

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Katayama, F. Y.

    1983-01-01

    A bundle-type analytical triangulation program is employed to compute control networks for Mimas, whose network encircles the satellite with 110 points measured on 32 Voyager 1 pictures, and Enceladus, whose network does not completely encircle the satellite and contains 71 points measured on 22 Voyager 2 pictures. Many of the control points are identified on illustrations and by name, and their coordinates are presented in tabular form. The analytical triangulation program was used to solve for the mean radii and three principal axes of best-fit ellipsoids. The mean radius of Mimas is 197 + or - 3 km, while that of Enceladus is 251 + or - 5 km.

  7. The network of global corporate control.

    PubMed

    Vitali, Stefania; Glattfelder, James B; Battiston, Stefano

    2011-01-01

    The structure of the control network of transnational corporations affects global market competition and financial stability. So far, only small national samples were studied and there was no appropriate methodology to assess control globally. We present the first investigation of the architecture of the international ownership network, along with the computation of the control held by each global player. We find that transnational corporations form a giant bow-tie structure and that a large portion of control flows to a small tightly-knit core of financial institutions. This core can be seen as an economic "super-entity" that raises new important issues both for researchers and policy makers.

  8. The computer monitor and control system for the munich MP tandem accelerator

    NASA Astrophysics Data System (ADS)

    Mörchen, H.; Off, J.; Rohrer, L.; Schnitter, H.

    1981-05-01

    Presently a computer monitor and control system for the Munich MP tandem accelerator is being developed. It is based on a PDP-11/34 with disc units, DEC-tapes, and an interactive graphic terminal. The accelerator is connected to the system via CAMAC hardware. A monitor program takes all data and stores the accelerator status in the memory and in a direct access file. A logbook file is created and the logbook is printed. During test-runs subsystems of the accelerator have been controlled. A beam transport program controlling a quadrupole doublet and optimizing the beam current measured at a Faraday cup was operated successfully.

  9. Inferring Network Connectivity by Delayed Feedback Control

    PubMed Central

    Yu, Dongchuan; Parlitz, Ulrich

    2011-01-01

    We suggest a control based approach to topology estimation of networks with elements. This method first drives the network to steady states by a delayed feedback control; then performs structural perturbations for shifting the steady states times; and finally infers the connection topology from the steady states' shifts by matrix inverse algorithm () or -norm convex optimization strategy applicable to estimate the topology of sparse networks from perturbations. We discuss as well some aspects important for applications, such as the topology reconstruction quality and error sources, advantages and disadvantages of the suggested method, and the influence of (control) perturbations, inhomegenity, sparsity, coupling functions, and measurement noise. Some examples of networks with Chua's oscillators are presented to illustrate the reliability of the suggested technique. PMID:21969856

  10. Supervisory Control of Networked Control Systems

    DTIC Science & Technology

    2006-01-15

    consisting of 3 Koala robots [Lem06b]. The robots are controlled by MICA2 wireless processor modules. The robots communicate over the MICA2’s...preliminary documentation of a wireless autonomous robotic testbed. The system consists of 3 Koala (K-team Inc.) robots that are controlled by the MICA2...by this project. MICA-KoalaBot Hardware: The Koala robot is an autonomous wheeled vehicle that has 16 infrared (IR) proximity sensors around its

  11. Neuromuscular Control of Rapid Linear Accelerations in Fish

    DTIC Science & Technology

    2016-06-22

    measured wake flow patterns, we found that the momentum flux was higher during acceleration, corresponding 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...these forces. Indeed, when we measured wake flow patterns, we found that the momentum flux was higher during acceleration, corresponding to high forces...requires that the propulsors be stiff to resist these forces. Indeed, when we measured wake flow patterns, we found that the momentum flux was higher

  12. DeepX: Deep Learning Accelerator for Restricted Boltzmann Machine Artificial Neural Networks.

    PubMed

    Kim, Lok-Won

    2017-03-08

    Although there have been many decades of research and commercial presence on high performance general purpose processors, there are still many applications that require fully customized hardware architectures for further computational acceleration. Recently, deep learning has been successfully used to learn in a wide variety of applications, but their heavy computation demand has considerably limited their practical applications. This paper proposes a fully pipelined acceleration architecture to alleviate high computational demand of an artificial neural network (ANN) which is restricted Boltzmann machine (RBM) ANNs. The implemented RBM ANN accelerator (integrating 1024 x 1024 network size, using 128 input cases per batch, and running at a 303-MHz clock frequency) integrated in a state-of-the art field-programmable gate array (FPGA) (Xilinx Virtex 7 XC7V-2000T) provides a computational performance of 301-billion connection-updates-per-second and about 193 times higher performance than a software solution running on general purpose processors. Most importantly, the architecture enables over 4 times (12 times in batch learning) higher performance compared with a previous work when both are implemented in an FPGA device (XC2VP70).

  13. Model Predictive Control of Sewer Networks

    NASA Astrophysics Data System (ADS)

    Pedersen, Einar B.; Herbertsson, Hannes R.; Niemann, Henrik; Poulsen, Niels K.; Falk, Anne K. V.

    2017-01-01

    The developments in solutions for management of urban drainage are of vital importance, as the amount of sewer water from urban areas continues to increase due to the increase of the world’s population and the change in the climate conditions. How a sewer network is structured, monitored and controlled have thus become essential factors for effcient performance of waste water treatment plants. This paper examines methods for simplified modelling and controlling a sewer network. A practical approach to the problem is used by analysing simplified design model, which is based on the Barcelona benchmark model. Due to the inherent constraints the applied approach is based on Model Predictive Control.

  14. Control of fluxes in metabolic networks

    PubMed Central

    Basler, Georg; Nikoloski, Zoran; Larhlimi, Abdelhalim; Barabási, Albert-László; Liu, Yang-Yu

    2016-01-01

    Understanding the control of large-scale metabolic networks is central to biology and medicine. However, existing approaches either require specifying a cellular objective or can only be used for small networks. We introduce new coupling types describing the relations between reaction activities, and develop an efficient computational framework, which does not require any cellular objective for systematic studies of large-scale metabolism. We identify the driver reactions facilitating control of 23 metabolic networks from all kingdoms of life. We find that unicellular organisms require a smaller degree of control than multicellular organisms. Driver reactions are under complex cellular regulation in Escherichia coli, indicating their preeminent role in facilitating cellular control. In human cancer cells, driver reactions play pivotal roles in malignancy and represent potential therapeutic targets. The developed framework helps us gain insights into regulatory principles of diseases and facilitates design of engineering strategies at the interface of gene regulation, signaling, and metabolism. PMID:27197218

  15. Control of fluxes in metabolic networks.

    PubMed

    Basler, Georg; Nikoloski, Zoran; Larhlimi, Abdelhalim; Barabási, Albert-László; Liu, Yang-Yu

    2016-07-01

    Understanding the control of large-scale metabolic networks is central to biology and medicine. However, existing approaches either require specifying a cellular objective or can only be used for small networks. We introduce new coupling types describing the relations between reaction activities, and develop an efficient computational framework, which does not require any cellular objective for systematic studies of large-scale metabolism. We identify the driver reactions facilitating control of 23 metabolic networks from all kingdoms of life. We find that unicellular organisms require a smaller degree of control than multicellular organisms. Driver reactions are under complex cellular regulation in Escherichia coli, indicating their preeminent role in facilitating cellular control. In human cancer cells, driver reactions play pivotal roles in malignancy and represent potential therapeutic targets. The developed framework helps us gain insights into regulatory principles of diseases and facilitates design of engineering strategies at the interface of gene regulation, signaling, and metabolism.

  16. Controlling neural network responsiveness: tradeoffs and constraints

    PubMed Central

    Keren, Hanna; Marom, Shimon

    2014-01-01

    In recent years much effort is invested in means to control neural population responses at the whole brain level, within the context of developing advanced medical applications. The tradeoffs and constraints involved, however, remain elusive due to obvious complications entailed by studying whole brain dynamics. Here, we present effective control of response features (probability and latency) of cortical networks in vitro over many hours, and offer this approach as an experimental toy for studying controllability of neural networks in the wider context. Exercising this approach we show that enforcement of stable high activity rates by means of closed loop control may enhance alteration of underlying global input–output relations and activity dependent dispersion of neuronal pair-wise correlations across the network. PMID:24808860

  17. Scheduled Controller Design of Congestion Control Considering Network Resource Constraints

    NASA Astrophysics Data System (ADS)

    Naito, Hiroyuki; Azuma, Takehito; Fujita, Masayuki

    In this paper, we consider a dynamical model of computer networks and derive a synthesis method for congestion control. First, we show a model of TCP/AQM (Transmission Control Protocol/Active Queue Management) as a dynamical model of computer networks. The dynamical model of TCP/AQM networks consists of models of TCP window size, queue length and AQM mechanisms. Second, we propose to describe the dynamical model of TCP/AQM networks as linear systems with self-scheduling parameters, which also depend on information delay. Here we focus on the constraints on the maximum queue length and TCP window-size, which are the network resources in TCP/AQM networks. We derive TCP/AQM networks as the LPV system (linear parameter varying system) with information delay and self-scheduling parameter. We design a memoryless state feedback controller of the LPV system based on a gain-scheduling method. Finally, the effectiveness of the proposed method is evaluated by using MATLAB and the well-known ns-2 (Network Simulator Ver.2) simulator.

  18. Measurement of performance using acceleration control and pulse control in simulated spacecraft docking operations

    NASA Technical Reports Server (NTRS)

    Brody, Adam R.; Ellis, Stephen R.

    1992-01-01

    Nine commercial airline pilots served as test subjects in a study to compare acceleration control with pulse control in simulated spacecraft maneuvers. Simulated remote dockings of an orbital maneuvering vehicle (OMV) to a space station were initiated from 50, 100, and 150 meters along the station's -V-bar (minus velocity vector). All unsuccessful missions were reflown. Five way mixed analysis of variance (ANOVA) with one between factor, first mode, and four within factors (mode, bloch, range, and trial) were performed on the data. Recorded performance measures included mission duration and fuel consumption along each of the three coordinate axes. Mission duration was lower with pulse mode, while delta V (fuel consumption) was lower with acceleration mode. Subjects used more fuel to travel faster with pulse mode than with acceleration mode. Mission duration, delta V, X delta V, Y delta V., and Z delta V all increased with range. Subjects commanded the OMV to 'fly' at faster rates from further distances. These higher average velocities were paid for with increased fuel consumption. Asymmetrical transfer was found in that the mode transitions could not be predicted solely from the mission duration main effect. More testing is advised to understand the manual control aspects of spaceflight maneuvers better.

  19. A Heading and Flight-Path Angle Control of Aircraft Based on Required Acceleration Vector

    NASA Astrophysics Data System (ADS)

    Yoshitani, Naoharu

    This paper describes a control of heading and flight-path angles of aircraft to time-varying command angles. The controller first calculates an acceleration command vector (acV), which is vertical to the velocity vector. acV consists of two components; the one is feedforward acceleration obtained from the rates of command angles, and the other is feedback acceleration obtained from angle deviations by using PID control law. A bank angle command around the velocity vector and commands of pitch and yaw rates are then obtained to generate the required acceleration. A roll rate command is calculated from bank angle deviation. Roll, pitch and yaw rate commands are put into the attitude controller, which can be composed of any suitable control laws such as PID control. The control requires neither aerodynamic coefficients nor online calculation of the inverse dynamics of the aircraft. A numerical simulation illustrates the effects of the control.

  20. Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages

    DOEpatents

    Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph

    2014-05-13

    Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.

  1. The unified lunar control network: 1994 version

    NASA Technical Reports Server (NTRS)

    Davies, Merton E.; Colvin, Tim R.; Meyer, Donald L.; Nelson, Sandra

    1994-01-01

    The objective of the unified lunar control network is to combine a series of control networks into one compatible network with its origin at the center of mass of the Moon and its coordinates referred to the mean Earth/polar axis system. The initial unified system contained 130 nearside points from Apollo data and 1026 from telescopic data. It also contained ten Mariner 10 points. The total number of points was 1166. The current network includes modifications to the past network and extends the coverage. Coordinates of points north of the Apollo region have been recomputed based on Galileo images from the second Earth-Moon flyby. Coordinates of points in the Apollo region were held fixed; however, coordinates of points north of the Apollo region in the telescopic region and many Mariner 10 points were recomputed. All of the Mariner 10 points were remeasured and integrated into the network. Additional points in the Apollo region including the farside have been added. The unified network now contains 1478 points. Apollo, Mariner 10, and Galileo pictures all contained some farside points. The coordinates of the 1478 points are available only in the microfiche supplement to this paper.

  2. The Unified Lunar Control Network 2005

    USGS Publications Warehouse

    Archinal, Brent A.; Rosiek, Mark R.; Kirk, Randolph L.; Redding, Bonnie L.

    2006-01-01

    This report documents a new general unified lunar control network and lunar topographic model based on a combination of Clementine images and a previous network derived from Earth-based & Apollo photographs, and Mariner 10, & Galileo images. This photogrammetric network solution is the largest planetary control network ever completed. It includes the determination of the 3-D positions of 272,931 points on the lunar surface and the correction of the camera angles for 43,866 Clementine images, using 546,126 tie point measurements. The solution RMS is 20 ?m (= 0.9 pixels) in the image plane, with the largest residual of 6.4 pixels. The explanation given here, along with the accompanying files, comprises the release of the network information and of global lunar digital elevation models (DEMs) derived from the network. A paper that will describe the solution and network in further detail will be submitted to a refereed journal, and will include additional background information, solution details, discussion of accuracy and precision, and explanatory figures.

  3. Social Network Privacy via Evolving Access Control

    NASA Astrophysics Data System (ADS)

    di Crescenzo, Giovanni; Lipton, Richard J.

    We study the problem of limiting privacy loss due to data shared in a social network, where the basic underlying assumptions are that users are interested in sharing data and cannot be assumed to constantly follow appropriate privacy policies. Note that if these two assumptions do not hold, social network privacy is theoretically very easy to achieve; for instance, via some form of access control and confidentiality transformation on the data.

  4. Linear control theory for gene network modeling.

    PubMed

    Shin, Yong-Jun; Bleris, Leonidas

    2010-09-16

    Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.

  5. Feasibility of Using Neural Network Models to Accelerate the Testing of Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1998-01-01

    Verification testing is an important aspect of the design process for mechanical mechanisms, and full-scale, full-length life testing is typically used to qualify any new component for use in space. However, as the required life specification is increased, full-length life tests become more costly and lengthen the development time. At the NASA Lewis Research Center, we theorized that neural network systems may be able to model the operation of a mechanical device. If so, the resulting neural network models could simulate long-term mechanical testing with data from a short-term test. This combination of computer modeling and short-term mechanical testing could then be used to verify the reliability of mechanical systems, thereby eliminating the costs associated with long-term testing. Neural network models could also enable designers to predict the performance of mechanisms at the conceptual design stage by entering the critical parameters as input and running the model to predict performance. The purpose of this study was to assess the potential of using neural networks to predict the performance and life of mechanical systems. To do this, we generated a neural network system to model wear obtained from three accelerated testing devices: 1) A pin-on-disk tribometer; 2) A line-contact rub-shoe tribometer; 3) A four-ball tribometer.

  6. Weight-Control Information Network

    MedlinePlus

    ... from our online catalog . ​ Tips for Healthy Eating & Physical Activity For Adults For Pregnancy For Parents For Older ... topics.​​​​​ ​Discover up-to-date information on nutrition, physical activity, and weight control WIN Health Topics A-Z ...

  7. Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations

    PubMed Central

    Gokmen, Tayfun; Vlasov, Yurii

    2016-01-01

    In recent years, deep neural networks (DNN) have demonstrated significant business impact in large scale analysis and classification tasks such as speech recognition, visual object detection, pattern extraction, etc. Training of large DNNs, however, is universally considered as time consuming and computationally intensive task that demands datacenter-scale computational resources recruited for many days. Here we propose a concept of resistive processing unit (RPU) devices that can potentially accelerate DNN training by orders of magnitude while using much less power. The proposed RPU device can store and update the weight values locally thus minimizing data movement during training and allowing to fully exploit the locality and the parallelism of the training algorithm. We evaluate the effect of various RPU device features/non-idealities and system parameters on performance in order to derive the device and system level specifications for implementation of an accelerator chip for DNN training in a realistic CMOS-compatible technology. For large DNNs with about 1 billion weights this massively parallel RPU architecture can achieve acceleration factors of 30, 000 × compared to state-of-the-art microprocessors while providing power efficiency of 84, 000 GigaOps∕s∕W. Problems that currently require days of training on a datacenter-size cluster with thousands of machines can be addressed within hours on a single RPU accelerator. A system consisting of a cluster of RPU accelerators will be able to tackle Big Data problems with trillions of parameters that is impossible to address today like, for example, natural speech recognition and translation between all world languages, real-time analytics on large streams of business and scientific data, integration, and analysis of multimodal sensory data flows from a massive number of IoT (Internet of Things) sensors. PMID:27493624

  8. Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations.

    PubMed

    Gokmen, Tayfun; Vlasov, Yurii

    2016-01-01

    In recent years, deep neural networks (DNN) have demonstrated significant business impact in large scale analysis and classification tasks such as speech recognition, visual object detection, pattern extraction, etc. Training of large DNNs, however, is universally considered as time consuming and computationally intensive task that demands datacenter-scale computational resources recruited for many days. Here we propose a concept of resistive processing unit (RPU) devices that can potentially accelerate DNN training by orders of magnitude while using much less power. The proposed RPU device can store and update the weight values locally thus minimizing data movement during training and allowing to fully exploit the locality and the parallelism of the training algorithm. We evaluate the effect of various RPU device features/non-idealities and system parameters on performance in order to derive the device and system level specifications for implementation of an accelerator chip for DNN training in a realistic CMOS-compatible technology. For large DNNs with about 1 billion weights this massively parallel RPU architecture can achieve acceleration factors of 30, 000 × compared to state-of-the-art microprocessors while providing power efficiency of 84, 000 GigaOps∕s∕W. Problems that currently require days of training on a datacenter-size cluster with thousands of machines can be addressed within hours on a single RPU accelerator. A system consisting of a cluster of RPU accelerators will be able to tackle Big Data problems with trillions of parameters that is impossible to address today like, for example, natural speech recognition and translation between all world languages, real-time analytics on large streams of business and scientific data, integration, and analysis of multimodal sensory data flows from a massive number of IoT (Internet of Things) sensors.

  9. A Flight-Path Control of Aircraft Based on Required Acceleration Vector

    NASA Astrophysics Data System (ADS)

    Yoshitani, Naoharu

    This paper presents an automatic flight-path control of aircraft. In the control, a desired flight trajectory is first determined as a sequence of straight lines, arcs and spirals in the three-dimensional space. Commands and command rates of heading and flight-path (climb) angles are then obtained from the desired trajectory. A required acceleration vector of the aircraft is calculated based on the command rates and angle deviations. Desired roll, pitch and yaw rates are then obtained by acceleration controller and are fed to attitude control. The feedback control of acceleration employs conventional PID control technology, without using inverse dynamics of the aircraft, and the attitude control can employ any existing control technologies suitable for the aircraft to be controlled. These make the proposed control relatively simple and easy to implement. Numerical simulations illustrate the effectiveness of the control.

  10. Cybersecurity of Critical Control Networks

    DTIC Science & Technology

    2015-07-14

    information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and...maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other...yielded a large number of publications and conference presentations in the area of Supervisory Control And Data Acquisition (SCADA). Details of each

  11. MS/MS similarity networking accelerated target profiling of triterpene saponins in Eleutherococcus senticosus leaves.

    PubMed

    Ge, Yue-Wei; Zhu, Shu; Yoshimatsu, Kayo; Komatsu, Katsuko

    2017-07-15

    The targeted mass information of compounds accelerated their discovery in a large volume of untargeted MS data. An MS/MS similarity networking is advanced in clustering the structural analogues, which benefits the collection of mass information of similar compounds. The triterpene saponins extracted from Eleutherococcus senticosus leaves (ESL), a kind of functional tea, have shown promise in the relief of Alzheimer's disease. In this work, a target-precursor list (TPL) generated using MS/MS similarity networking was employed to rapidly trace 106 triterpene saponins from the aqueous extracts of ESL, of which 49 were tentatively identified as potentially new triterpene saponins. Moreover, a compound database of triterpene saponins was established and successfully applied to uncover their distribution features in ESL samples collected from different areas.

  12. GPU technology as a platform for accelerating physiological systems modeling based on Laguerre-Volterra networks.

    PubMed

    Papadopoulos, Agathoklis; Kostoglou, Kyriaki; Mitsis, Georgios D; Theocharides, Theocharis

    2015-01-01

    The use of a GPGPU programming paradigm (running CUDA-enabled algorithms on GPU cards) in biomedical engineering and biology-related applications have shown promising results. GPU acceleration can be used to speedup computation-intensive models, such as the mathematical modeling of biological systems, which often requires the use of nonlinear modeling approaches with a large number of free parameters. In this context, we developed a CUDA-enabled version of a model which implements a nonlinear identification approach that combines basis expansions and polynomial-type networks, termed Laguerre-Volterra networks and can be used in diverse biological applications. The proposed software implementation uses the GPGPU programming paradigm to take advantage of the inherent parallel characteristics of the aforementioned modeling approach to execute the calculations on the GPU card of the host computer system. The initial results of the GPU-based model presented in this work, show performance improvements over the original MATLAB model.

  13. Feedback Controller Design for the Synchronization of Boolean Control Networks.

    PubMed

    Liu, Yang; Sun, Liangjie; Lu, Jianquan; Liang, Jinling

    2016-09-01

    This brief investigates the partial and complete synchronization of two Boolean control networks (BCNs). Necessary and sufficient conditions for partial and complete synchronization are established by the algebraic representations of logical dynamics. An algorithm is obtained to construct the feedback controller that guarantees the synchronization of master and slave BCNs. Two biological examples are provided to illustrate the effectiveness of the obtained results.

  14. Control of focusing fields for positron acceleration in nonlinear plasma wakes using multiple laser modes

    SciTech Connect

    Yu, L.-L. Li, F.-Y.; Chen, M.; Weng, S.-M.; Schroeder, C. B.; Benedetti, C.; Esarey, E.; Sheng, Z.-M.

    2014-12-15

    Control of transverse wakefields in the nonlinear laser-driven bubble regime using a combination of Hermite-Gaussian laser modes is proposed. By controlling the relative intensity ratio of the two laser modes, the focusing force can be controlled, enabling matched beam propagation for emittance preservation. A ring bubble can be generated with a large longitudinal accelerating field and a transverse focusing field suitable for positron beam focusing and acceleration.

  15. Accelerated intoxication of GABAergic synapses by botulinum neurotoxin A disinhibits stem cell-derived neuron networks prior to network silencing

    PubMed Central

    Beske, Phillip H.; Scheeler, Stephen M.; Adler, Michael; McNutt, Patrick M.

    2015-01-01

    Botulinum neurotoxins (BoNTs) are extremely potent toxins that specifically cleave SNARE proteins in peripheral synapses, preventing neurotransmitter release. Neuronal responses to BoNT intoxication are traditionally studied by quantifying SNARE protein cleavage in vitro or monitoring physiological paralysis in vivo. Consequently, the dynamic effects of intoxication on synaptic behaviors are not well-understood. We have reported that mouse embryonic stem cell-derived neurons (ESNs) are highly sensitive to BoNT based on molecular readouts of intoxication. Here we study the time-dependent changes in synapse- and network-level behaviors following addition of BoNT/A to spontaneously active networks of glutamatergic and GABAergic ESNs. Whole-cell patch-clamp recordings indicated that BoNT/A rapidly blocked synaptic neurotransmission, confirming that ESNs replicate the functional pathophysiology responsible for clinical botulism. Quantitation of spontaneous neurotransmission in pharmacologically isolated synapses revealed accelerated silencing of GABAergic synapses compared to glutamatergic synapses, which was consistent with the selective accumulation of cleaved SNAP-25 at GAD1+ pre-synaptic terminals at early timepoints. Different latencies of intoxication resulted in complex network responses to BoNT/A addition, involving rapid disinhibition of stochastic firing followed by network silencing. Synaptic activity was found to be highly sensitive to SNAP-25 cleavage, reflecting the functional consequences of the localized cleavage of the small subpopulation of SNAP-25 that is engaged in neurotransmitter release in the nerve terminal. Collectively these findings illustrate that use of synaptic function assays in networked neurons cultures offers a novel and highly sensitive approach for mechanistic studies of toxin:neuron interactions and synaptic responses to BoNT. PMID:25954159

  16. Controlling extreme events on complex networks

    PubMed Central

    Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng

    2014-01-01

    Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network “mobile” can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed. PMID:25131344

  17. Evolution on neutral networks accelerates the ticking rate of the molecular clock

    PubMed Central

    Manrubia, Susanna; Cuesta, José A.

    2015-01-01

    Large sets of genotypes give rise to the same phenotype, because phenotypic expression is highly redundant. Accordingly, a population can accept mutations without altering its phenotype, as long as the genotype mutates into another one on the same set. By linking every pair of genotypes that are mutually accessible through mutation, genotypes organize themselves into neutral networks (NNs). These networks are known to be heterogeneous and assortative, and these properties affect the evolutionary dynamics of the population. By studying the dynamics of populations on NNs with arbitrary topology, we analyse the effect of assortativity, of NN (phenotype) fitness and of network size. We find that the probability that the population leaves the network is smaller the longer the time spent on it. This progressive ‘phenotypic entrapment’ entails a systematic increase in the overdispersion of the process with time and an acceleration in the fixation rate of neutral mutations. We also quantify the variation of these effects with the size of the phenotype and with its fitness relative to that of neighbouring alternatives. PMID:25392402

  18. Optimizing Dynamical Network Structure for Pinning Control

    NASA Astrophysics Data System (ADS)

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-04-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.

  19. A unified lunar control network: April 1991

    NASA Technical Reports Server (NTRS)

    Davies, Merton E.

    1991-01-01

    This program was designed to combine and transform various control networks of the Moon into a common center-of-mass coordinate system. The first phase, dealing with the near side, was completed and published. This report contains coordinates of 1166 points on the near side of the Moon.

  20. Controllable Buoys and Networked Buoy Systems

    NASA Technical Reports Server (NTRS)

    Davoodi, Faranak (Inventor); Davoudi, Farhooman (Inventor)

    2017-01-01

    Buoyant sensor networks are described, comprising floating buoys with sensors and energy harvesting capabilities. The buoys can control their buoyancy and motion, and can organize communication in a distributed fashion. Some buoys may have tethered underwater vehicles with a smart spooling system that allows the vehicles to dive deep underwater while remaining in communication and connection with the buoys.

  1. Distributed control network for optogenetic experiments

    NASA Astrophysics Data System (ADS)

    Kasprowicz, G.; Juszczyk, B.; Mankiewicz, L.

    2014-11-01

    Nowadays optogenetic experiments are constructed to examine social behavioural relations in groups of animals. A novel concept of implantable device with distributed control network and advanced positioning capabilities is proposed. It is based on wireless energy transfer technology, micro-power radio interface and advanced signal processing.

  2. REAL TIME CONTROL OF URBAN DRAINAGE NETWORKS

    EPA Science Inventory

    Real-time control (RTC) is a custom-designed, computer-assisted management technology for a specific sewerage network to meet the operational objectives of its collection/conveyance system. RTC can operate in several modes, including a mode that is activated during a wet weather ...

  3. Disturbance Decoupling of Singular Boolean Control Networks.

    PubMed

    Liu, Yang; Li, Bowen; Lou, Jungang

    2016-01-01

    This paper investigates the controller designing for disturbance decoupling problem (DDP) of singular Boolean control networks (SBCNs). Using semi-tensor product (STP) of matrices and the Implicit Function Theorem, a SBCN is converted into the standard BCN. Based on the redundant variable separation technique, both state feedback and output feedback controllers are designed to solve the DDP of the SBCN. Sufficient conditions are also given to analyze the invariance of controllers concerning the DDP of the SBCN with function perturbation. Two illustrative examples are presented to support the effectiveness of these obtained results.

  4. A note on the adaptive optimal control of ion accelerator facilities

    SciTech Connect

    Huang, T. )

    1990-06-01

    The application of optimal control theory to the computer control system of an ion accelerator facility is presented. The process is shown to consist of mathematical modeling of the underlying process, parameter identification, as well as some design methods of the optimal computer control and the techniques of realizing adaptive control.

  5. Flexible body control using neural networks

    NASA Technical Reports Server (NTRS)

    Mccullough, Claire L.

    1992-01-01

    Progress is reported on the control of Control Structures Interaction suitcase demonstrator (a flexible structure) using neural networks and fuzzy logic. It is concluded that while control by neural nets alone (i.e., allowing the net to design a controller with no human intervention) has yielded less than optimal results, the neural net trained to emulate the existing fuzzy logic controller does produce acceptible system responses for the initial conditions examined. Also, a neural net was found to be very successful in performing the emulation step necessary for the anticipatory fuzzy controller for the CSI suitcase demonstrator. The fuzzy neural hybrid, which exhibits good robustness and noise rejection properties, shows promise as a controller for practical flexible systems, and should be further evaluated.

  6. Quality control in bio-monitoring networks, Spanish Aerobiology Network.

    PubMed

    Oteros, Jose; Galán, Carmen; Alcázar, Purificación; Domínguez-Vilches, Eugenio

    2013-01-15

    Several of the airborne biological particles, such as pollen grains and fungal spores, are known to generate human health problems including allergies and infections. A number of aerobiologists have focused their research on these airborne particles. The Spanish Aerobiology Network (REA) was set up in 1992, and since then dozens of research groups have worked on a range of related topics, including the standardization of study methods and the quality control of data generated by this network. In 2010, the REA started work on an inter-laboratory survey for proficiency testing purposes. The main goal of the study reported in the present paper was to determine the performance of technicians in the REA network using an analytical method that could be implemented by other bio-monitoring networks worldwide. The results recorded by each technician were compared with the scores obtained for a bounded mean of all results. The performance of each technician was expressed in terms of the relative error made in counting each of several pollen types. The method developed and implemented here proved appropriate for proficiency testing in interlaboratory studies involving bio-monitoring networks, and enabled the source of data quality problems to be pinpointed. The test revealed a variation coefficient of 10%. The relative error was significant for 3.5% of observations. In overall terms, the REA staff performed well, in accordance with the REA Management and Quality Manual. These findings serve to guarantee the quality of the data obtained, which can reliably be used for research purposes and published in the media in order to help prevent pollen-related health problems.

  7. 49 CFR 571.124 - Standard No. 124; Accelerator control systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... disconnection in the accelerator control system. S2. Purpose. The purpose of this standard is to reduce deaths.... S3. Application. This standard applies to passenger cars, multi-purpose passenger vehicles,...

  8. Seismic active control by neutral networks

    SciTech Connect

    Tang, Yu

    1995-12-31

    A study on the application of artificial neural networks (ANNs) to active structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feedforward neural network architecture and an adaptive backpropagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the backpropagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator`s capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  9. Networked control of microgrid system of systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Magdi S.; Rahman, Mohamed Saif Ur; AL-Sunni, Fouad M.

    2016-08-01

    The microgrid has made its mark in distributed generation and has attracted widespread research. However, microgrid is a complex system which needs to be viewed from an intelligent system of systems perspective. In this paper, a network control system of systems is designed for the islanded microgrid system consisting of three distributed generation units as three subsystems supplying a load. The controller stabilises the microgrid system in the presence of communication infractions such as packet dropouts and delays. Simulation results are included to elucidate the effectiveness of the proposed control strategy.

  10. Evolution of Controllability in Interbank Networks

    PubMed Central

    Delpini, Danilo; Battiston, Stefano; Riccaboni, Massimo; Gabbi, Giampaolo; Pammolli, Fabio; Caldarelli, Guido

    2013-01-01

    The Statistical Physics of Complex Networks has recently provided new theoretical tools for policy makers. Here we extend the notion of network controllability to detect the financial institutions, i.e. the drivers, that are most crucial to the functioning of an interbank market. The system we investigate is a paradigmatic case study for complex networks since it undergoes dramatic structural changes over time and links among nodes can be observed at several time scales. We find a scale-free decay of the fraction of drivers with increasing time resolution, implying that policies have to be adjusted to the time scales in order to be effective. Moreover, drivers are often not the most highly connected “hub” institutions, nor the largest lenders, contrary to the results of other studies. Our findings contribute quantitative indicators which can support regulators in developing more effective supervision and intervention policies. PMID:23568033

  11. Acceleration of spiking neural network based pattern recognition on NVIDIA graphics processors.

    PubMed

    Han, Bing; Taha, Tarek M

    2010-04-01

    There is currently a strong push in the research community to develop biological scale implementations of neuron based vision models. Systems at this scale are computationally demanding and generally utilize more accurate neuron models, such as the Izhikevich and the Hodgkin-Huxley models, in favor of the more popular integrate and fire model. We examine the feasibility of using graphics processing units (GPUs) to accelerate a spiking neural network based character recognition network to enable such large scale systems. Two versions of the network utilizing the Izhikevich and Hodgkin-Huxley models are implemented. Three NVIDIA general-purpose (GP) GPU platforms are examined, including the GeForce 9800 GX2, the Tesla C1060, and the Tesla S1070. Our results show that the GPGPUs can provide significant speedup over conventional processors. In particular, the fastest GPGPU utilized, the Tesla S1070, provided a speedup of 5.6 and 84.4 over highly optimized implementations on the fastest central processing unit (CPU) tested, a quadcore 2.67 GHz Xeon processor, for the Izhikevich and the Hodgkin-Huxley models, respectively. The CPU implementation utilized all four cores and the vector data parallelism offered by the processor. The results indicate that GPUs are well suited for this application domain.

  12. Neural Networks for Signal Processing and Control

    NASA Astrophysics Data System (ADS)

    Hesselroth, Ted Daniel

    Neural networks are developed for controlling a robot-arm and camera system and for processing images. The networks are based upon computational schemes that may be found in the brain. In the first network, a neural map algorithm is employed to control a five-joint pneumatic robot arm and gripper through feedback from two video cameras. The pneumatically driven robot arm employed shares essential mechanical characteristics with skeletal muscle systems. To control the position of the arm, 200 neurons formed a network representing the three-dimensional workspace embedded in a four-dimensional system of coordinates from the two cameras, and learned a set of pressures corresponding to the end effector positions, as well as a set of Jacobian matrices for interpolating between these positions. Because of the properties of the rubber-tube actuators of the arm, the position as a function of supplied pressure is nonlinear, nonseparable, and exhibits hysteresis. Nevertheless, through the neural network learning algorithm the position could be controlled to an accuracy of about one pixel (~3 mm) after two hundred learning steps. Applications of repeated corrections in each step via the Jacobian matrices leads to a very robust control algorithm since the Jacobians learned by the network have to satisfy the weak requirement that they yield a reduction of the distance between gripper and target. The second network is proposed as a model for the mammalian vision system in which backward connections from the primary visual cortex (V1) to the lateral geniculate nucleus play a key role. The application of hebbian learning to the forward and backward connections causes the formation of receptive fields which are sensitive to edges, bars, and spatial frequencies of preferred orientations. The receptive fields are learned in such a way as to maximize the rate of transfer of information from the LGN to V1. Orientational preferences are organized into a feature map in the primary visual

  13. Parallel processing data network of master and slave transputers controlled by a serial control network

    DOEpatents

    Crosetto, D.B.

    1996-12-31

    The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor to a plurality of slave processors to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor`s status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer, a digital signal processor, a parallel transfer controller, and two three-port memory devices. A communication switch within each node connects it to a fast parallel hardware channel through which all high density data arrives or leaves the node. 6 figs.

  14. Parallel processing data network of master and slave transputers controlled by a serial control network

    DOEpatents

    Crosetto, Dario B.

    1996-01-01

    The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor (100) to a plurality of slave processors (200) to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor's status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer (104), a digital signal processor (114), a parallel transfer controller (106), and two three-port memory devices. A communication switch (108) within each node (100) connects it to a fast parallel hardware channel (70) through which all high density data arrives or leaves the node.

  15. Adaptive neural networks for mobile robotic control

    NASA Astrophysics Data System (ADS)

    Burnett, Jeff R.; Dagli, Cihan H.

    2001-03-01

    Movement of a differential drive robot has non-linear dependence on the current position and orientation. A controller must be able to deal with the non-linearity of the plant. The controller must either linearize the plant and deal with special cases, or be non-linear itself. Once the controller is designed, implementation on a real robotic platform presents challenges due to the varying parameters of the plant. Robots of the same model may have different motor frictions. The surface the robot maneuvers on may change e.g. carpet to tile. Batteries will drain, providing less power over time. A feed-forward neural network controller could overcome these challenges. The network could learn the non- linearities of the plant and monitor the error for parameter changes and adapt to them. In this manner, a single controller can be designed for an ideal robot, and then used to populate a multi-robot colony without manually fine tuning the controller for each robot. This paper shall demonstrate such a controller, outlining design in simulation and implementation on Khepera robotic platforms.

  16. Parietal network underlying movement control: disturbances during subcortical electrostimulation.

    PubMed

    Almairac, Fabien; Herbet, Guillaume; Moritz-Gasser, Sylvie; Duffau, Hugues

    2014-07-01

    Our understanding of brain movement control has changed over the last two decades. Recent findings in the monkey and in humans have led to a parallel and interconnected network. Nevertheless, little is known about these networks. Here, we present two cases of patients with a parietal low-grade glioma. They underwent surgery under local anesthesia with cortical and subcortical mapping. For patient 1, subcortical electrostimulation immediately posterior to thalamocortical fibers induced movement disorders, with an inhibition of leg and arm movements medially and, more laterally, an acceleration of arm movement. For patient 2, electrostimulation of white matter immediately posterior to thalamocortical fibers induced an inhibition of both arm movement. It means that the detected fibers in the parietal lobe may be involved in the motor control modulation. They are distributed veil-like immediately posterior to thalamocortical pathways and could correspond to a fronto-parietal movement control subnetwork. These two cases highlight the major role of the subcortical connectivity in movement regulation, involving parietal lobe, thus the necessity to be identified and preserved during brain surgery.

  17. Cooperative wireless network control based health and activity monitoring system.

    PubMed

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication.

  18. Magnetically Controlled Optical Plasma Waveguide for Electron Acceleration

    SciTech Connect

    Pollock, B. B.; Davis, P.; Divol, L.; Glenzer, S. H.; Palastro, J. P.; Price, D.; Froula, D. H.; Tynan, G. R.

    2009-01-22

    In order to produce multi-Gev electrons from Laser Wakefield Accelerators, we present a technique to guide high power laser beams through underdense plasma. Experimental results from the Jupiter Laser Facility at the Lawrence Livermore National Laboratory that show density channels with minimum plasma densities below 5x10{sup 17} cm{sup -3} are presented. These results are obtained using an external magnetic field (<5 T) to limit the radial heat flux from a pre-forming laser beam. The resulting increased plasma pressure gradient produces a parabolic density gradient which is tunable by changing the external magnetic field strength. These results are compared with 1-D hydrodynamic simulations, while quasi-static kinetic simulations show that for these channel conditions 90% of the energy in a 150 TW short pulse beam is guided over 5 cm and predict electron energy gains of 3 GeV.

  19. Dynamic congestion control mechanisms for MPLS networks

    NASA Astrophysics Data System (ADS)

    Holness, Felicia; Phillips, Chris I.

    2001-02-01

    Considerable interest has arisen in congestion control through traffic engineering from the knowledge that although sensible provisioning of the network infrastructure is needed, together with sufficient underlying capacity, these are not sufficient to deliver the Quality of Service required for new applications. This is due to dynamic variations in load. In operational Internet Protocol (IP) networks, it has been difficult to incorporate effective traffic engineering due to the limited capabilities of the IP technology. In principle, Multiprotocol Label Switching (MPLS), which is a connection-oriented label swapping technology, offers new possibilities in addressing the limitations by allowing the operator to use sophisticated traffic control mechanisms. This paper presents a novel scheme to dynamically manage traffic flows through the network by re-balancing streams during periods of congestion. It proposes management-based algorithms that will allow label switched routers within the network to utilize mechanisms within MPLS to indicate when flows are starting to experience frame/packet loss and then to react accordingly. Based upon knowledge of the customer's Service Level Agreement, together with instantaneous flow information, the label edge routers can then instigate changes to the LSP route and circumvent congestion that would hitherto violate the customer contacts.

  20. Phase control of the microwave radiation in free electron laser two-beam accelerator

    SciTech Connect

    Goren, Y.; Sessler, A.M.

    1987-07-01

    A phase control system for the FEL portion of Two-Beam Accelerator is proposed. The control keeps the phase error within acceptable bounds. The control mechanism is analyzed, both analytically in a ''resonant particle'' approximation and numerically in a multi-particle simulation code. Sensitivity of phase errors to the FEL parameters has been noticed.

  1. External control of the GAL network in S. cerevisiae: a view from control theory.

    PubMed

    Yang, Ruoting; Lenaghan, Scott C; Wikswo, John P; Zhang, Mingjun

    2011-04-29

    While there is a vast literature on the control systems that cells utilize to regulate their own state, there is little published work on the formal application of control theory to the external regulation of cellular functions. This paper chooses the GAL network in S. cerevisiae as a well understood benchmark example to demonstrate how control theory can be employed to regulate intracellular mRNA levels via extracellular galactose. Based on a mathematical model reduced from the GAL network, we have demonstrated that a galactose dose necessary to drive and maintain the desired GAL genes' mRNA levels can be calculated in an analytic form. And thus, a proportional feedback control can be designed to precisely regulate the level of mRNA. The benefits of the proposed feedback control are extensively investigated in terms of stability and parameter sensitivity. This paper demonstrates that feedback control can both significantly accelerate the process to precisely regulate mRNA levels and enhance the robustness of the overall cellular control system.

  2. Stabilization of model-based networked control systems

    NASA Astrophysics Data System (ADS)

    Miranda, Francisco; Abreu, Carlos; Mendes, Paulo M.

    2016-06-01

    A class of networked control systems called Model-Based Networked Control Systems (MB-NCSs) is considered. Stabilization of MB-NCSs is studied using feedback controls and simulation of stabilization for different feedbacks is made with the purpose to reduce the network trafic. The feedback control input is applied in a compensated model of the plant that approximates the plant dynamics and stabilizes the plant even under slow network conditions. Conditions for global exponential stabilizability and for the choosing of a feedback control input for a given constant time between the information moments of the network are derived. An optimal control problem to obtain an optimal feedback control is also presented.

  3. Multifractal nature of network induced time delay in networked control systems

    NASA Astrophysics Data System (ADS)

    Tian, Yu-Chu; Yu, Zu-Guo; Fidge, Colin

    2007-01-01

    When modelling and simulating networked control systems (NCSs) over TCP/IP network protocols, we obtained network traffic data sets with irregular behaviour. Analysing the data sets revealed multifractal network traffic. Typical data sets are given in this Letter together with our preliminary analysis. The network architecture and traffic specifications that generated the multifractal traffic are also described in detail.

  4. Control of linear accelerator noise in the Los Alamos free-electron laser (FEL)

    SciTech Connect

    Lynch, M.T.

    1986-01-01

    The Los Alamos FEL requires tight control of the amplitudes and phases of the fields in two linear accelerator tanks to obtain stable lasing. The accelerator control loops must establish constant, stable, repeatable amplitudes and phases of the rf fields and must have excellent bandwidth to control high-frequency noise components. A model of the feedback loops has been developed that agrees well with measurements and allows easy substitution of components and circuits, thus reducing breadboarding requirements. The model permits both frequency and time-domain analysis. This paper describes the accelerator control scheme and our model and discusses the control of noise in feedback loops, showing how low-frequency-noise components (errors) can be corrected, but high-frequency-noise components (errors) are actually amplified by the feedback circuit. Measurements of noise in both open- and closed-loop modes are shown and comparison is made with results from the model calculations.

  5. Payload Invariant Control via Neural Networks: Development and Experimental Evaluation

    DTIC Science & Technology

    1989-12-01

    control is proposed and experimentally evaluated. An Adaptive Model-Based Neural Network Controller (AMBNNC) uses multilayer perceptron artificial neural ... networks to estimate the payload during high speed manipulator motion. The payload estimate adapts the feedforward compensator to unmodeled system

  6. GENERATION AND CONTROL OF HIGH PRECISION BEAMS AT LEPTON ACCELERATORS

    SciTech Connect

    Yu-Chiu Chao

    2007-06-25

    Parity violation experiments require precision manipulation of helicity-correlated beam coordinates on target at the nm/nrad-level. Achieving this unprecedented level of control requires a detailed understanding of the particle optics and careful tuning of the beam transport to keep anomalies from compromising the design adiabatic damping. Such efforts are often hindered by machine configuration and instrumentation limitations at the low energy end. A technique has been developed at CEBAF including high precision measurements, Mathematica-based analysis for obtaining corrective solutions, and control hardware/software developments for realizing such level of control at energies up to 5 GeV.

  7. Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams.

    PubMed

    Bolton, P R; Borghesi, M; Brenner, C; Carroll, D C; De Martinis, C; Fiorini, Francesca; Flacco, A; Floquet, V; Fuchs, J; Gallegos, P; Giove, D; Green, J S; Green, S; Jones, B; Kirby, D; McKenna, P; Neely, D; Nuesslin, F; Prasad, R; Reinhardt, S; Roth, M; Schramm, U; Scott, G G; Ter-Avetisyan, S; Tolley, M; Turchetti, G; Wilkens, J J

    2014-05-01

    Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on 'Instrumentation for Diagnostics and Control of Laser-accelerated Proton (Ion) Beams' in Abingdon, UK. It includes radiochromic film (RCF), image plates (IP), micro-channel plates (MCP), Thomson spectrometers, prompt inline scintillators, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed.

  8. Neural networks as a control methodology

    NASA Technical Reports Server (NTRS)

    Mccullough, Claire L.

    1990-01-01

    While conventional computers must be programmed in a logical fashion by a person who thoroughly understands the task to be performed, the motivation behind neural networks is to develop machines which can train themselves to perform tasks, using available information about desired system behavior and learning from experience. There are three goals of this fellowship program: (1) to evaluate various neural net methods and generate computer software to implement those deemed most promising on a personal computer equipped with Matlab; (2) to evaluate methods currently in the professional literature for system control using neural nets to choose those most applicable to control of flexible structures; and (3) to apply the control strategies chosen in (2) to a computer simulation of a test article, the Control Structures Interaction Suitcase Demonstrator, which is a portable system consisting of a small flexible beam driven by a torque motor and mounted on springs tuned to the first flexible mode of the beam. Results of each are discussed.

  9. Tangential acceleration feedback control of friction induced vibration

    NASA Astrophysics Data System (ADS)

    Nath, Jyayasi; Chatterjee, S.

    2016-09-01

    Tangential control action is studied on a phenomenological mass-on-belt model exhibiting friction-induced self-excited vibration attributed to the low-velocity drooping characteristics of friction which is also known as Stribeck effect. The friction phenomenon is modelled by the exponential model. Linear stability analysis is carried out near the equilibrium point and local stability boundary is delineated in the plane of control parameters. The system is observed to undergo a Hopf bifurcation as the eigenvalues determined from the linear stability analysis are found to cross the imaginary axis transversally from RHS s-plane to LHS s-plane or vice-versa as one varies the control parameters, namely non-dimensional belt velocity and the control gain. A nonlinear stability analysis by the method of Averaging reveals the subcritical nature of the Hopf bifurcation. Thus, a global stability boundary is constructed so that any choice of control parameters from the globally stable region leads to a stable equilibrium. Numerical simulations in a MATLAB SIMULINK model and bifurcation diagrams obtained in AUTO validate these analytically obtained results. Pole crossover design is implemented to optimize the filter parameters with an independent choice of belt velocity and control gain. The efficacy of this optimization (based on numerical results) in the delicate low velocity region is also enclosed.

  10. Accelerating the Mining of Influential Nodes in Complex Networks through Community Detection

    SciTech Connect

    Halappanavar, Mahantesh; Sathanur, Arun V.; Nandi, Apurba

    2016-05-31

    Computing the set of influential nodes with a given size to ensure maximal spread of influence on a complex network is a challenging problem impacting multiple applications. A rigorous approach to influence maximization involves utilization of optimization routines that comes with a high computational cost. In this work, we propose to exploit the existence of communities in complex networks to accelerate the mining of influential seeds. We provide intuitive reasoning to explain why our approach should be able to provide speedups without significantly degrading the extent of the spread of influence when compared to the case of influence maximization without using the community information. Additionally, we have parallelized the complete workflow by leveraging an existing parallel implementation of the Louvain community detection algorithm. We then conduct a series of experiments on a dataset with three representative graphs to first verify our implementation and then demonstrate the speedups. Our method achieves speedups ranging from 3x - 28x for graphs with small number of communities while nearly matching or even exceeding the activation performance on the entire graph. Complexity analysis reveals that dramatic speedups are possible for larger graphs that contain a correspondingly larger number of communities. In addition to the speedups obtained from the utilization of the community structure, scalability results show up to 6.3x speedup on 20 cores relative to the baseline run on 2 cores. Finally, current limitations of the approach are outlined along with the planned next steps.

  11. Controller area network for monitor and control in ALMA

    NASA Astrophysics Data System (ADS)

    Brooks, Michael J.

    2000-06-01

    The Controller Area Network (CAN), initially developed for the automotive industry, is becoming increasingly popular in industrial process control applications. The need for distributed low data rate monitor and control networking in industry is similar to the needs of the various instrumentation and support equipment in a modern radio telescope. In particular, immunity to noise and low radio frequency emission characteristics are common to both domains. The Atacama Large Millimeter Array project has adopted CAN technology for use in local monitor and control applications at each of its 64 antennas. A standard interface slave node providing flexible I/O options is under development and a simple application-level protocol making use of CAN to access these nodes in a master/slave fashion has been implemented. This paper will present the work which has been completed to date including experiences in the use of CAN in an astronomical environment. In addition, analysis and simulation of CAN networks is compared with the performance of our implementation in the lab.

  12. Comprehensive Control of Networked Control Systems with Multistep Delay

    PubMed Central

    Jiang, Jie

    2014-01-01

    In networked control systems with multi-step delay, long time-delay causes vacant sampling and controller design difficulty. In order to solve the above problems, comprehensive control methods are proposed in this paper. Time-delay compensation control and linear-quadratic-Guassian (LQG) optimal control are adopted and the systems switch different controllers between two different states. LQG optimal controller is used with probability 1 − α in normal state, which is shown to render the systems mean square exponentially stable. Time-delay compensation controller is used with probability α in abnormal state to compensate vacant sampling and long time-delay. In addition, a buffer window is established at the actuator of the systems to store some history control inputs which are used to estimate the control state of present sampling period under the vacant sampling cases. The comprehensive control methods simplify control design which is easier to be implemented in engineering. The performance of the systems is also improved. Simulation results verify the validity of the proposed theory. PMID:25101322

  13. Minimum energy control and optimal-satisfactory control of Boolean control network

    NASA Astrophysics Data System (ADS)

    Li, Fangfei; Lu, Xiwen

    2013-12-01

    In the literatures, to transfer the Boolean control network from the initial state to the desired state, the expenditure of energy has been rarely considered. Motivated by this, this Letter investigates the minimum energy control and optimal-satisfactory control of Boolean control network. Based on the semi-tensor product of matrices and Floyd's algorithm, minimum energy, constrained minimum energy and optimal-satisfactory control design for Boolean control network are given respectively. A numerical example is presented to illustrate the efficiency of the obtained results.

  14. The 1982 control network of Mars

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Katayama, F. Y.

    1983-01-01

    Attention is given to a planet-wide control network of Mars that was computed in September 1982 using a large single-block analytical triangulation with 47,524 measurements of 6853 control points on 1054 Mariner 9 and 757 Viking pictures. In all, 19,139 normal equations were solved, with a resulting standard error of measurement of 18.06 microns. The control points identified by name and letter designation are given, as are the aerographic coordinates of the control points. In addition, the coordinates of the Viking I lander site are given: latitude, 22.480 deg; longitude, 47.962 deg (radius, 3389.32 km). This study expands and updates the previously published network (1978). It is noted that the computation differs in many respects from standard aerial mapping photogrammetric practice. In comparison with aerial mapping photography, the television formats are small and the focal lengths are long; stereo coverage is rare, the scale of the pictures varies greatly, and the residual camera distortions are large.

  15. Efficient Access Control in Multimedia Social Networks

    NASA Astrophysics Data System (ADS)

    Sachan, Amit; Emmanuel, Sabu

    Multimedia social networks (MMSNs) have provided a convenient way to share multimedia contents such as images, videos, blogs, etc. Contents shared by a person can be easily accessed by anybody else over the Internet. However, due to various privacy, security, and legal concerns people often want to selectively share the contents only with their friends, family, colleagues, etc. Access control mechanisms play an important role in this situation. With access control mechanisms one can decide the persons who can access a shared content and who cannot. But continuously growing content uploads and accesses, fine grained access control requirements (e.g. different access control parameters for different parts in a picture), and specific access control requirements for multimedia contents can make the time complexity of access control to be very large. So, it is important to study an efficient access control mechanism suitable for MMSNs. In this chapter we present an efficient bit-vector transform based access control mechanism for MMSNs. The proposed approach is also compatible with other requirements of MMSNs, such as access rights modification, content deletion, etc. Mathematical analysis and experimental results show the effectiveness and efficiency of our proposed approach.

  16. Stabilization of an axially moving accelerated/decelerated system via an adaptive boundary control.

    PubMed

    Liu, Yu; Zhao, Zhijia; He, Wei

    2016-09-01

    In this study, an adaptive boundary control is developed for vibration suppression of an axially moving accelerated/decelerated belt system. The dynamic model of the belt system is represented by partial-ordinary differential equations with consideration of the high acceleration/deceleration and unknown distributed disturbance. By utilizing adaptive technique and Lyapunov-based back stepping method, an adaptive boundary control is proposed for vibration suppression of the belt system, a disturbance observer is introduced to attenuate the effects of unknown boundary disturbance, the adaptive law is developed to handle parametric uncertainties and the S-curve acceleration/deceleration method is adopted to plan the belt׳s speed. With the proposed control scheme, the well-posedness and stability of the closed-loop system are mathematically demonstrated. Simulations are displayed to illustrate the effectiveness of the proposed control.

  17. A comprehensive Network Security Risk Model for process control networks.

    PubMed

    Henry, Matthew H; Haimes, Yacov Y

    2009-02-01

    The risk of cyber attacks on process control networks (PCN) is receiving significant attention due to the potentially catastrophic extent to which PCN failures can damage the infrastructures and commodity flows that they support. Risk management addresses the coupled problems of (1) reducing the likelihood that cyber attacks would succeed in disrupting PCN operation and (2) reducing the severity of consequences in the event of PCN failure or manipulation. The Network Security Risk Model (NSRM) developed in this article provides a means of evaluating the efficacy of candidate risk management policies by modeling the baseline risk and assessing expectations of risk after the implementation of candidate measures. Where existing risk models fall short of providing adequate insight into the efficacy of candidate risk management policies due to shortcomings in their structure or formulation, the NSRM provides model structure and an associated modeling methodology that captures the relevant dynamics of cyber attacks on PCN for risk analysis. This article develops the NSRM in detail in the context of an illustrative example.

  18. The control network of Mars: October 1986

    NASA Technical Reports Server (NTRS)

    Davies, Merton E.

    1987-01-01

    The control network of Mars is composed of Mariner 9 frames which essentially give full coverage of the planet at low resolution. Superimposed on and tied to this network are strips of Viking mapping frames (resolution 100 to 250 m per pixel) which encircle the equator and 60 deg north latitude and multiple longitude ties between these latitude strips. There are multiple ties between these strips and the Viking 1 lander site. In the future another strip will be established at 60 deg south latitude. Because the Viking 1 lander site has been accurately located, the coordinates of points in its vicinity can be determined with an error of less than 100 m relative to an inertial coordinate system.

  19. Phase and amplitude control system for Stanford Linear Accelerator

    SciTech Connect

    Yoo, S.J.

    1983-09-26

    The computer controlled phase and amplitude detection system measures the instantaneous phase and amplitude of a 1 micro-second 2856 MHz rf pulse at a 180 Hz rate. This will be used for phase feedback control, and also for phase and amplitude jitter measurement. The program, which was originally written by John Fox and Keith Jobe, has been modified to improve the function of the system. The software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system.

  20. UGV: security analysis of subsystem control network

    NASA Astrophysics Data System (ADS)

    Abbott-McCune, Sam; Kobezak, Philip; Tront, Joseph; Marchany, Randy; Wicks, Al

    2013-05-01

    Unmanned Ground vehicles (UGVs) are becoming prolific in the heterogeneous superset of robotic platforms. The sensors which provide odometry, localization, perception, and vehicle diagnostics are fused to give the robotic platform a sense of the environment it is traversing. The automotive industry CAN bus has dominated the industry due to the fault tolerance and the message structure allowing high priority messages to reach the desired node in a real time environment. UGVs are being researched and produced at an accelerated rate to preform arduous, repetitive, and dangerous missions that are associated with a military action in a protracted conflict. The technology and applications of the research will inevitably be turned into dual-use platforms to aid civil agencies in the performance of their various operations. Our motivation is security of the holistic system; however as subsystems are outsourced in the design, the overall security of the system may be diminished. We will focus on the CAN bus topology and the vulnerabilities introduced in UGVs and recognizable security vulnerabilities that are inherent in the communications architecture. We will show how data can be extracted from an add-on CAN bus that can be customized to monitor subsystems. The information can be altered or spoofed to force the vehicle to exhibit unwanted actions or render the UGV unusable for the designed mission. The military relies heavily on technology to maintain information dominance, and the security of the information introduced onto the network by UGVs must be safeguarded from vulnerabilities that can be exploited.

  1. Optimizing a mobile robot control system using GPU acceleration

    NASA Astrophysics Data System (ADS)

    Tuck, Nat; McGuinness, Michael; Martin, Fred

    2012-01-01

    This paper describes our attempt to optimize a robot control program for the Intelligent Ground Vehicle Competition (IGVC) by running computationally intensive portions of the system on a commodity graphics processing unit (GPU). The IGVC Autonomous Challenge requires a control program that performs a number of different computationally intensive tasks ranging from computer vision to path planning. For the 2011 competition our Robot Operating System (ROS) based control system would not run comfortably on the multicore CPU on our custom robot platform. The process of profiling the ROS control program and selecting appropriate modules for porting to run on a GPU is described. A GPU-targeting compiler, Bacon, is used to speed up development and help optimize the ported modules. The impact of the ported modules on overall performance is discussed. We conclude that GPU optimization can free a significant amount of CPU resources with minimal effort for expensive user-written code, but that replacing heavily-optimized library functions is more difficult, and a much less efficient use of time.

  2. Engineered and Administrative Safety Systems for the Control of Prompt Radiation Hazards at Accelerator Facilities

    SciTech Connect

    Liu, James C.; Vylet, Vashek; Walker, Lawrence S.; /SLAC

    2007-12-17

    The ANSI N43.1 Standard, currently in revision (ANSI 2007), sets forth the requirements for accelerator facilities to provide adequate protection for the workers, the public and the environment from the hazards of ionizing radiation produced during and from accelerator operations. The Standard also recommends good practices that, when followed, provide a level of radiation protection consistent with those established for the accelerator communities. The N43.1 Standard is suitable for all accelerator facilities (using electron, positron, proton, or ion particle beams) capable of producing radiation, subject to federal or state regulations. The requirements (see word 'shall') and recommended practices (see word 'should') are prescribed in a graded approach that are commensurate with the complexity and hazard levels of the accelerator facility. Chapters 4, 5 and 6 of the N43.1 Standard address specially the Radiation Safety System (RSS), both engineered and administrative systems, to mitigate and control the prompt radiation hazards from accelerator operations. The RSS includes the Access Control System (ACS) and Radiation Control System (RCS). The main requirements and recommendations of the N43.1 Standard regarding the management, technical and operational aspects of the RSS are described and condensed in this report. Clearly some aspects of the RSS policies and practices at different facilities may differ in order to meet the practical needs for field implementation. A previous report (Liu et al. 2001a), which reviews and summarizes the RSS at five North American high-energy accelerator facilities, as well as the RSS references for the 5 labs (Drozdoff 2001; Gallegos 1996; Ipe and Liu 1992; Liu 1999; Liu 2001b; Rokni 1996; TJNAF 1994; Yotam et al. 1991), can be consulted for the actual RSS implementation at various laboratories. A comprehensive report describing the RSS at the Stanford Linear Accelerator Center (SLAC 2006) can also serve as a reference.

  3. Diagnostics and controls for spatiotemporal couplings for laser-plasma accelerator drivers

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Vincenti, H.; Mittelberger, D. E.; Mao, H.-S.; Gonsalves, A. J.; Toth, C.; Leemans, W. P.

    2017-03-01

    Diagnostic and control of spatiotemporal couplings for laser-plasma acceleration drive lasers are discussed. Near-field angular dispersion and spatial chirp were measured by GRENOUILLE. The calculation of the pulse front tilt evolution is presented, and it is shown that the pulse front angle near focus can be controlled within 5 mrad, and finely tuned through temporal chirp.

  4. The control network of Mars: April 1991

    NASA Technical Reports Server (NTRS)

    Davies, Merton E.; Rogers, Patricia G.

    1991-01-01

    The modern geodetic control network of Mars was first established based on Mariner 9 images with 1-2 km/pixel resolutions and covered almost the entire Martian surface. The introduction of higher resolution (10-200 meter/pixel) Viking Orbiter images greatly improved the accuracy and density of points in the control network. Analysis of the Viking Lander radio tracking data led to more accurate measurements of Mars' rotation period, spin axis direction, and the lander coordinates relative to the inertial reference frame. The prime meridian on Mars was defined by the Geodesy/Cartography Group of the Mariner 9 Television Team as the crater Airy-0, located about 5 degrees south of the equator. The Viking 1 Lander site was identified on a high resolution Viking frame. The control point measurements form the basis of a least squares solution determined by analytical triangulation after the pixel measurements are corrected for geometric distortions and converted to millimeter coordinates in the camera focal plane. Photogrammetric strips encircling Mars at the equator and at 60 degree north south were used to strengthen the overall net and improve the accuracy of the coordinates of points. In addition, photogrammetric strips along 0, 90, 180, and 270 degrees longitude to the Viking 1 Lander site have all significantly strengthened the control network. Most recently, photogrammetric strips were added to the net along 30 degrees north latitude between 0 and 180 degrees, and along 30 degrees between 180 and 360 degrees. The Viking 1 Lander site and Airy-0 are linked through photogrammetric strips occurring along the 0 degree meridian from Airy-0 to 65 degrees north, from that point through the Viking 1 Lander site to the equator, and along the equator to 180 degrees longitude. The Viking 1 lander site is thus a well calibrated area with coordinates of points accurate to approximately 200 meters relative to the J2000 inertial coordinate system. This will be a useful

  5. FPGA-accelerated adaptive optics wavefront control part II

    NASA Astrophysics Data System (ADS)

    Mauch, S.; Barth, A.; Reger, J.; Reinlein, C.; Appelfelder, M.; Beckert, E.

    2015-03-01

    We present progressive work that is based on our recently developed rapid control prototyping system (RCP), designed for the implementation of high-performance adaptive optical control algorithms using a continuous de-formable mirror (DM). The RCP system, presented in 2014, is resorting to a Xilinx Kintex-7 Field Programmable Gate Array (FPGA), placed on a self-developed PCIe card, and installed on a high-performance computer that runs a hard real-time Linux operating system. For this purpose, algorithms for the efficient evaluation of data from a Shack-Hartmann wavefront sensor (SHWFS) on an FPGA have been developed. The corresponding analog input and output cards are designed for exploiting the maximum possible performance while not being constrained to a specific DM and control algorithm due to the RCP approach. In this second part of our contribution, we focus on recent results that we achieved with this novel experimental setup. By presenting results which are far superior to the former ones, we further justify the deployment of the RCP system and its required time and resources. We conducted various experiments for revealing the effective performance, i.e. the maximum manageable complexity in the controller design that may be achieved in real-time without performance losses. A detailed analysis of the hidden latencies is carried out, showing that these latencies have been drastically reduced. In addition, a series of concepts relating the evaluation of the wavefront as well as designing and synthesizing a wavefront are thoroughly investigated with the goal to overcome some of the prevalent limitations. Furthermore, principal results regarding the closed-loop performance of the low-speed dynamics of the integrated heater in a DM concept are illustrated in detail; to be combined with the piezo-electric high-speed actuators in the next step

  6. Practical synchronization on complex dynamical networks via optimal pinning control

    NASA Astrophysics Data System (ADS)

    Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu

    2015-07-01

    We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications.

  7. Practical synchronization on complex dynamical networks via optimal pinning control.

    PubMed

    Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu

    2015-07-01

    We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications.

  8. Consensus and Stability Analysis of Networked Multiagent Predictive Control Systems.

    PubMed

    Liu, Guo-Ping

    2016-03-17

    This paper is concerned with the consensus and stability problem of multiagent control systems via networks with communication delays and data loss. A networked multiagent predictive control scheme is proposed to achieve output consensus and also compensate for the communication delays and data loss actively. The necessary and sufficient conditions of achieving both consensus and stability of the closed-loop networked multiagent control systems are derived. An important result that is obtained is that the consensus and stability of closed-loop networked multiagent predictive control systems are not related to the communication delays and data loss. An example illustrates the performance of the networked multiagent predictive control scheme.

  9. Artificial intelligence research in particle accelerator control systems for beam line tuning

    SciTech Connect

    Pieck, Martin

    2008-01-01

    Tuning particle accelerators is time consuming and expensive, with a number of inherently non-linear interactions between system components. Conventional control methods have not been successful in this domain and the result is constant and expensive monitoring of the systems by human operators. This is particularly true for the start-up and conditioning phase after a maintenance period or an unexpected fault. In turn, this often requires a step-by-step restart of the accelerator. Surprisingly few attempts have been made to apply intelligent accelerator control techniques to help with beam tuning, fault detection, and fault recovery problems. The reason for that might be that accelerator facilities are rare and difficult to understand systems that require detailed expert knowledge about the underlying physics as well as months if not years of experience to understand the relationship between individual components, particularly if they are geographically disjoint. This paper will give an overview about the research effort in the accelerator community that has been dedicated to the use of artificial intelligence methods for accelerator beam line tuning.

  10. Deep Space Network Antenna Logic Controller

    NASA Technical Reports Server (NTRS)

    Ahlstrom, Harlow; Morgan, Scott; Hames, Peter; Strain, Martha; Owen, Christopher; Shimizu, Kenneth; Wilson, Karen; Shaller, David; Doktomomtaz, Said; Leung, Patrick

    2007-01-01

    The Antenna Logic Controller (ALC) software controls and monitors the motion control equipment of the 4,000-metric-ton structure of the Deep Space Network 70-meter antenna. This program coordinates the control of 42 hydraulic pumps, while monitoring several interlocks for personnel and equipment safety. Remote operation of the ALC runs via the Antenna Monitor & Control (AMC) computer, which orchestrates the tracking functions of the entire antenna. This software provides a graphical user interface for local control, monitoring, and identification of faults as well as, at a high level, providing for the digital control of the axis brakes so that the servo of the AMC may control the motion of the antenna. Specific functions of the ALC also include routines for startup in cold weather, controlled shutdown for both normal and fault situations, and pump switching on failure. The increased monitoring, the ability to trend key performance characteristics, the improved fault detection and recovery, the centralization of all control at a single panel, and the simplification of the user interface have all reduced the required workforce to run 70-meter antennas. The ALC also increases the antenna availability by reducing the time required to start up the antenna, to diagnose faults, and by providing additional insight into the performance of key parameters that aid in preventive maintenance to avoid key element failure. The ALC User Display (AUD) is a graphical user interface with hierarchical display structure, which provides high-level status information to the operation of the ALC, as well as detailed information for virtually all aspects of the ALC via drill-down displays. The operational status of an item, be it a function or assembly, is shown in the higher-level display. By pressing the item on the display screen, a new screen opens to show more detail of the function/assembly. Navigation tools and the map button allow immediate access to all screens.

  11. An attribute control chart for a Weibull distribution under accelerated hybrid censoring

    PubMed Central

    Aslam, Muhammad; Arif, Osama H.; Jun, Chi-Hyuck

    2017-01-01

    In this article, an attribute control chart has been proposed using the accelerated hybrid censoring logic for the monitoring of defective items whose life follows a Weibull distribution. The product can be tested by introducing the acceleration factor based on different pressurized conditions such as stress, load, strain, temperature, etc. The control limits are derived based on the binomial distribution, but the fraction defective is expressed only through the shape parameter, the acceleration factor and the test duration constant. Tables of the average run lengths have been generated for different process parameters to assess the performance of the proposed control chart. Simulation studies have been performed for the practical use, where the proposed chart is compared with the Shewhart np chart for demonstration of the detection power of a process shift. PMID:28257479

  12. Investigating the feasibility of temperature-controlled accelerated drug release testing for an intravaginal ring.

    PubMed

    Externbrink, Anna; Clark, Meredith R; Friend, David R; Klein, Sandra

    2013-11-01

    The objective of the present study was to investigate if temperature can be utilized to accelerate drug release from Nuvaring®, a reservoir type intravaginal ring based on polyethylene vinyl acetate copolymer that releases a constant dose of contraceptive steroids over a duration of 3 weeks. The reciprocating holder apparatus (USP 7) was utilized to determine real-time and accelerated etonogestrel release from ring segments. It was demonstrated that drug release increased with increasing temperature which can be attributed to enhanced drug diffusion. An Arrhenius relationship of the zero-order release constants was established, indicating that temperature is a valid parameter to accelerate drug release from this dosage form and that the release mechanism is maintained under these accelerated test conditions. Accelerated release tests are particularly useful for routine quality control to assist during batch release of extended release formulations that typically release the active over several weeks, months or even years, since they can increase the product shelf life. The accelerated method should therefore be able to discriminate between formulations with different release characteristics that can result from normal manufacturing variance. In the case of Nuvaring®, it is well known that the process parameters during the extrusion process strongly influence the polymeric structure. These changes in the polymeric structure can affect the permeability which, in turn, is reflected in the release properties. Results from this study indicate that changes in the polymeric structure can lead to a different temperature dependence of the release rate, and as a consequence, the accelerated method can become less sensitive to detect changes in the release properties. When the accelerated method is utilized during batch release, it is therefore important to take this possible restriction into account and to evaluate the accelerated method with samples from non

  13. Predictive Control of Networked Multiagent Systems via Cloud Computing.

    PubMed

    Liu, Guo-Ping

    2017-01-18

    This paper studies the design and analysis of networked multiagent predictive control systems via cloud computing. A cloud predictive control scheme for networked multiagent systems (NMASs) is proposed to achieve consensus and stability simultaneously and to compensate for network delays actively. The design of the cloud predictive controller for NMASs is detailed. The analysis of the cloud predictive control scheme gives the necessary and sufficient conditions of stability and consensus of closed-loop networked multiagent control systems. The proposed scheme is verified to characterize the dynamical behavior and control performance of NMASs through simulations. The outcome provides a foundation for the development of cooperative and coordinative control of NMASs and its applications.

  14. A FLUX ROPE NETWORK AND PARTICLE ACCELERATION IN THREE-DIMENSIONAL RELATIVISTIC MAGNETIC RECONNECTION

    SciTech Connect

    Kagan, Daniel; Milosavljevic, Milos; Spitkovsky, Anatoly

    2013-09-01

    We investigate magnetic reconnection and particle acceleration in relativistic pair plasmas with three-dimensional particle-in-cell simulations of a kinetic-scale current sheet in a periodic geometry. We include a guide field that introduces an inclination between the reconnecting field lines and explore outside-of-the-current sheet magnetizations that are significantly below those considered by other authors carrying out similar calculations. Thus, our simulations probe the transitional regime in which the magnetic and plasma pressures are of the same order of magnitude. The tearing instability is the dominant mode in the current sheet for all guide field strengths, while the linear kink mode is less important even without the guide field, except in the lower magnetization case. Oblique modes seem to be suppressed entirely. In its nonlinear evolution, the reconnection layer develops a network of interconnected and interacting magnetic flux ropes. As smaller flux ropes merge into larger ones, the reconnection layer evolves toward a three-dimensional, disordered state in which the resulting flux rope segments contain magnetic substructure on plasma skin depth scales. Embedded in the flux ropes, we detect spatially and temporally intermittent sites of dissipation reflected in peaks in the parallel electric field. Magnetic dissipation and particle acceleration persist until the end of the simulations, with simulations with higher magnetization and lower guide field strength exhibiting greater and faster energy conversion and particle energization. At the end of our largest simulation, the particle energy spectrum attains a tail extending to high Lorentz factors that is best modeled with a combination of two additional thermal components. We confirm that the primary energization mechanism is acceleration by the electric field in the X-line region. The highest-energy positrons (electrons) are moderately beamed with median angles {approx}30 Degree-Sign -40 Degree

  15. Criteria for stochastic pinning control of networks of chaotic maps

    SciTech Connect

    Mwaffo, Violet; Porfiri, Maurizio; DeLellis, Pietro

    2014-03-15

    This paper investigates the controllability of discrete-time networks of coupled chaotic maps through stochastic pinning. In this control scheme, the network dynamics are steered towards a desired trajectory through a feedback control input that is applied stochastically to the network nodes. The network controllability is studied by analyzing the local mean square stability of the error dynamics with respect to the desired trajectory. Through the analysis of the spectral properties of salient matrices, a toolbox of conditions for controllability are obtained, in terms of the dynamics of the individual maps, algebraic properties of the network, and the probability distribution of the pinning control. We demonstrate the use of these conditions in the design of a stochastic pinning control strategy for networks of Chirikov standard maps. To elucidate the applicability of the approach, we consider different network topologies and compare five different stochastic pinning strategies through extensive numerical simulations.

  16. Network-based production quality control

    NASA Astrophysics Data System (ADS)

    Kwon, Yongjin; Tseng, Bill; Chiou, Richard

    2007-09-01

    This study investigates the feasibility of remote quality control using a host of advanced automation equipment with Internet accessibility. Recent emphasis on product quality and reduction of waste stems from the dynamic, globalized and customer-driven market, which brings opportunities and threats to companies, depending on the response speed and production strategies. The current trends in industry also include a wide spread of distributed manufacturing systems, where design, production, and management facilities are geographically dispersed. This situation mandates not only the accessibility to remotely located production equipment for monitoring and control, but efficient means of responding to changing environment to counter process variations and diverse customer demands. To compete under such an environment, companies are striving to achieve 100%, sensor-based, automated inspection for zero-defect manufacturing. In this study, the Internet-based quality control scheme is referred to as "E-Quality for Manufacturing" or "EQM" for short. By its definition, EQM refers to a holistic approach to design and to embed efficient quality control functions in the context of network integrated manufacturing systems. Such system let designers located far away from the production facility to monitor, control and adjust the quality inspection processes as production design evolves.

  17. An XML-based communication protocol for accelerator distributed controls

    NASA Astrophysics Data System (ADS)

    Catani, L.

    2008-03-01

    This paper presents the development of XMLvRPC, an RPC-like communication protocol based, for this particular application, on the TCP/IP and XML (eXtensible Markup Language) tools built-in in LabVIEW. XML is used to format commands and data passed between client and server while socket interface for communication uses either TCP or UDP transmission protocols. This implementation extends the features of these general purpose libraries and incorporates solutions that might provide, with limited modifications, full compatibility with well established and more general communication protocol, i.e. XML-RPC, while preserving portability to different platforms supported by LabVIEW. The XMLvRPC suite of software has been equipped with specific tools for its deployment in distributed control systems as, for instance, a quasi-automatic configuration and registration of the distributed components and a simple plug-and-play approach to the installation of new services. Key feature is the management of large binary arrays that allow coding of large binary data set, e.g. raw images, more efficiently with respect to the standard XML coding.

  18. Neural-network accelerated fusion simulation with self-consistent core-pedestal coupling

    NASA Astrophysics Data System (ADS)

    Meneghini, O.; Candy, J.; Snyder, P. B.; Staebler, G.; Belli, E.

    2016-10-01

    Practical fusion Whole Device Modeling (WDM) simulations require the ability to perform predictions that are fast, but yet account for the sensitivity of the fusion performance to the boundary constraint that is imposed by the pedestal structure of H-mode plasmas due to the stiff core transport models. This poster presents the development of a set of neural-network (NN) models for the pedestal structure (as predicted by the EPED model), and the neoclassical and turbulent transport fluxes (as predicted by the NEO and TGLF codes, respectively), and their self-consistent coupling within the TGYRO transport code. The results are benchmarked with the ones obtained via the coupling scheme described in [Meneghini PoP 2016]. By substituting the most demanding codes with their NN-accelerated versions, the solution can be found at a fraction of the computation cost of the original coupling scheme, thereby combining the accuracy of a high-fidelity model with the fast turnaround time of a reduced model. Work supported by U.S. DOE DE-FC02-04ER54698 and DE-FG02-95ER54309.

  19. Incipient fault detection and identification in process systems using accelerating neural network learning

    SciTech Connect

    Parlos, A.G.; Muthusami, J.; Atiya, A.F. . Dept. of Nuclear Engineering)

    1994-02-01

    The objective of this paper is to present the development and numerical testing of a robust fault detection and identification (FDI) system using artificial neural networks (ANNs), for incipient (slowly developing) faults occurring in process systems. The challenge in using ANNs in FDI systems arises because of one's desire to detect faults of varying severity, faults from noisy sensors, and multiple simultaneous faults. To address these issues, it becomes essential to have a learning algorithm that ensures quick convergence to a high level of accuracy. A recently developed accelerated learning algorithm, namely a form of an adaptive back propagation (ABP) algorithm, is used for this purpose. The ABP algorithm is used for the development of an FDI system for a process composed of a direct current motor, a centrifugal pump, and the associated piping system. Simulation studies indicate that the FDI system has significantly high sensitivity to incipient fault severity, while exhibiting insensitivity to sensor noise. For multiple simultaneous faults, the FDI system detects the fault with the predominant signature. The major limitation of the developed FDI system is encountered when it is subjected to simultaneous faults with similar signatures. During such faults, the inherent limitation of pattern-recognition-based FDI methods becomes apparent. Thus, alternate, more sophisticated FDI methods become necessary to address such problems. Even though the effectiveness of pattern-recognition-based FDI methods using ANNs has been demonstrated, further testing using real-world data is necessary.

  20. Experimental results of a predictive neural network HVAC controller

    SciTech Connect

    Jeannette, E.; Assawamartbunlue, K.; Kreider, J.F.; Curtiss, P.S.

    1998-12-31

    Proportional, integral, and derivative (PID) control is widely used in many HVAC control processes and requires constant attention for optimal control. Artificial neural networks offer the potential for improved control of processes through predictive techniques. This paper introduces and shows experimental results of a predictive neural network (PNN) controller applied to an unstable hot water system in an air-handling unit. Actual laboratory testing of the PNN and PID controllers show favorable results for the PNN controller.

  1. Study on application of adaptive fuzzy control and neural network in the automatic leveling system

    NASA Astrophysics Data System (ADS)

    Xu, Xiping; Zhao, Zizhao; Lan, Weiyong; Sha, Lei; Qian, Cheng

    2015-04-01

    This paper discusses the adaptive fuzzy control and neural network BP algorithm in large flat automatic leveling control system application. The purpose is to develop a measurement system with a flat quick leveling, Make the installation on the leveling system of measurement with tablet, to be able to achieve a level in precision measurement work quickly, improve the efficiency of the precision measurement. This paper focuses on the automatic leveling system analysis based on fuzzy controller, Use of the method of combining fuzzy controller and BP neural network, using BP algorithm improve the experience rules .Construct an adaptive fuzzy control system. Meanwhile the learning rate of the BP algorithm has also been run-rate adjusted to accelerate convergence. The simulation results show that the proposed control method can effectively improve the leveling precision of automatic leveling system and shorten the time of leveling.

  2. Structural permeability of complex networks to control signals

    PubMed Central

    Lo Iudice, Francesco; Garofalo, Franco; Sorrentino, Francesco

    2015-01-01

    Many biological, social and technological systems can be described as complex networks. The goal of affecting their behaviour has motivated recent work focusing on the relationship between the network structure and its propensity to be controlled. While this work has provided insight into several relevant problems, a comprehensive approach to address partial and complete controllability of networks is still lacking. Here, we bridge this gap by developing a framework to maximize the diffusion of the control signals through a network, while taking into account physical and economic constraints that inevitably arise in applications. This approach allows us to introduce the network permeability, a unified metric of the propensity of a network to be controllable. The analysis of the permeability of several synthetic and real networks enables us to extract some structural features that deepen our quantitative understanding of the ease with which specific controllability requirements can be met. PMID:26391186

  3. Control of tree water networks: A geometric programming approach

    NASA Astrophysics Data System (ADS)

    Sela Perelman, L.; Amin, S.

    2015-10-01

    This paper presents a modeling and operation approach for tree water supply systems. The network control problem is approximated as a geometric programming (GP) problem. The original nonlinear nonconvex network control problem is transformed into a convex optimization problem. The optimization model can be efficiently solved to optimality using state-of-the-art solvers. Two control schemes are presented: (1) operation of network actuators (pumps and valves) and (2) controlled demand shedding allocation between network consumers with limited resources. The dual of the network control problem is formulated and is used to perform sensitivity analysis with respect to hydraulic constraints. The approach is demonstrated on a small branched-topology network and later extended to a medium-size irrigation network. The results demonstrate an intrinsic trade-off between energy costs and demand shedding policy, providing an efficient decision support tool for active management of water systems.

  4. 49 CFR 571.124 - Standard No. 124; Accelerator control systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE SAFETY STANDARDS Federal Motor Vehicle Safety Standards § 571.124 Standard No. 124; Accelerator control systems. S1. Scope..., fuel distributor or fuel injection pump. Throttle means the component of the fuel metering device...

  5. 49 CFR 571.124 - Standard No. 124; Accelerator control systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE SAFETY STANDARDS Federal Motor Vehicle Safety Standards § 571.124 Standard No. 124; Accelerator control systems. S1. Scope..., fuel distributor or fuel injection pump. Throttle means the component of the fuel metering device...

  6. 49 CFR 571.124 - Standard No. 124; Accelerator control systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE SAFETY STANDARDS Federal Motor Vehicle Safety Standards § 571.124 Standard No. 124; Accelerator control systems. S1. Scope..., fuel distributor or fuel injection pump. Throttle means the component of the fuel metering device...

  7. 49 CFR 571.124 - Standard No. 124; Accelerator control systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE SAFETY STANDARDS Federal Motor Vehicle Safety Standards § 571.124 Standard No. 124; Accelerator control systems. S1. Scope..., fuel distributor or fuel injection pump. Throttle means the component of the fuel metering device...

  8. Observability and Controllability of Nonlinear Networks: The Role of Symmetry

    NASA Astrophysics Data System (ADS)

    Whalen, Andrew J.; Brennan, Sean N.; Sauer, Timothy D.; Schiff, Steven J.

    2015-01-01

    Observability and controllability are essential concepts to the design of predictive observer models and feedback controllers of networked systems. For example, noncontrollable mathematical models of real systems have subspaces that influence model behavior, but cannot be controlled by an input. Such subspaces can be difficult to determine in complex nonlinear networks. Since almost all of the present theory was developed for linear networks without symmetries, here we present a numerical and group representational framework, to quantify the observability and controllability of nonlinear networks with explicit symmetries that shows the connection between symmetries and nonlinear measures of observability and controllability. We numerically observe and theoretically predict that not all symmetries have the same effect on network observation and control. Our analysis shows that the presence of symmetry in a network may decrease observability and controllability, although networks containing only rotational symmetries remain controllable and observable. These results alter our view of the nature of observability and controllability in complex networks, change our understanding of structural controllability, and affect the design of mathematical models to observe and control such networks.

  9. Enterprise network control and management: traffic flow models

    NASA Astrophysics Data System (ADS)

    Maruyama, William; George, Mark S.; Hernandez, Eileen; LoPresto, Keith; Uang, Yea

    1999-11-01

    The exponential growth and dramatic increase in demand for network bandwidth is expanding the market for broadband satellite networks. It is critical to rapidly deliver ubiquitous satellite communication networks that are differentiated by lower cost and increased Quality of Service (QoS). There is a need to develop new network architectures, control and management systems to meet the future commercial and military traffic requirements, services and applications. The next generation communication networks must support legacy and emerging network traffic while providing user negotiated levels of QoS. Network resources control algorithms must be designed to provide the guaranteed performance levels for voice, video and data having different service requirements. To evaluate network architectures and performance, it is essential to understand the network traffic characteristics.

  10. The control networks of Tethys and Dione

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Katayama, F. Y.

    1983-01-01

    Control networks of the Saturnian satellites Tethys and Dione have been established photogrammetrically from pictures taken by the two Voyager spacecraft during their flybys. Coordinates of 110 points on Tethys and 126 points on Dione are listed; selected points are identified on U.S. Geological Survey maps of the satellites, and many are identified by name. Measurements of these points were made on six pictures from Voyager 1 and 21 from Voyager 2 for Tethys, and on 27 pictures from Voyager 1 and one from Voyager 2 for Dione. The longitude systems on the satellites have been defined by craters on their surfaces. The mean radii have been determined as 524 + or - 5 km for Tethys and 559 + or - 5 km for Dione.

  11. Feedback control of torsion balance in measurement of gravitational constant G with angular acceleration method.

    PubMed

    Quan, Li-Di; Xue, Chao; Shao, Cheng-Gang; Yang, Shan-Qing; Tu, Liang-Cheng; Wang, Yong-Ji; Luo, Jun

    2014-01-01

    The performance of the feedback control system is of central importance in the measurement of the Newton's gravitational constant G with angular acceleration method. In this paper, a PID (Proportion-Integration-Differentiation) feedback loop is discussed in detail. Experimental results show that, with the feedback control activated, the twist angle of the torsion balance is limited to [Formula: see text] at the signal frequency of 2 mHz, which contributes a [Formula: see text] uncertainty to the G value.

  12. Control of quasi-monoenergetic electron beams from laser-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Tsai, H.-E.; Swanson, K. K.; Barber, S. K.; Mao, H.-S.; Lehe, R.; Steinke, S.; van Tilborg, J.; Geddes, C. G. R.; Leemans, W. P.

    2017-03-01

    In this paper, we demonstrate a highly tunable, controlled-injection laser-plasma accelerator (LPA) through systematically varying parameters of a density shock injector. Beam energy, energy spread, charge and pointing can be controlled in the range of 50-300 MeV, with <10% energy spread, 1.5 mrad divergence and <1 mrad pointing fluctuation. The beams are repeatable, and suitable for high quality MeV Thomson photon sources or for injectors to staged systems.

  13. Nano-Resonators for RF-Enabled Networked-Control

    DTIC Science & Technology

    2006-01-01

    Networked Control System As a further embodiment of the NCS environment we consider the application to a velocity estimation problem often... Networked Control System Co-simulation for Co-design,” Proc. American Control Conf. Denver, CO, USA, June, 2003. [12] R.H. Brown and S.C. Schneider

  14. Optimizing controllability of edge dynamics in complex networks by perturbing network structure

    NASA Astrophysics Data System (ADS)

    Pang, Shaopeng; Hao, Fei

    2017-03-01

    Using the minimum input signals to drive the dynamics in complex networks toward some desired state is a fundamental issue in the field of network controllability. For a complex network with the dynamical process defined on its edges, the controllability of this network is optimal if it can be fully controlled by applying one input signal to an arbitrary non-isolated vertex of it. In this paper, the adding-edge strategy and turning-edge strategy are proposed to optimize the controllability by minimum structural perturbations. Simulations and analyses indicate that the minimum number of adding-edges required for the optimal controllability is equal to the minimum number of turning-edges, and networks with positively correlated in- and out-degrees are easier to achieve optimal controllability. Furthermore, both the strategies have the capacity to reveal the relationship between certain structural properties of a complex network and its controllability of edge dynamics.

  15. Adaptive Control of Visually Guided Grasping in Neural Networks

    DTIC Science & Technology

    1990-03-12

    U01ITU S.WM NONnumsen Adaptive Control of Visually Guided Grasping in Neural Networks AFOSR-89-&CO030 88-NL-209 L AUTHOrSF 2313/A8 00 61102F (V) Dr...FINAL REPORT ADAPTIVE CONTROL OF VISUALLY GUIDED GRASPING IN NEURAL NETWORKS Neurogen Laboratories Inc. Project Summary Research performed for AFOSR...arm’s length in position and 6 degrees in orientation. Keywords: Neural Networks , Adaptive Motor Control, Sensory-Motor sensation Introduction The human

  16. Control of laser-wakefield acceleration by the plasma-density profile.

    PubMed

    Pukhov, A; Kostyukov, I

    2008-02-01

    We show that both the maximum energy gain and the accelerated beam quality can be efficiently controlled by the plasma-density profile. Choosing a proper density gradient one can uplift the dephasing limitation and keep the phase synchronism between the bunch of relativistic particles and the plasma wave over extended distances. Putting electrons into the n th wake period behind the driving laser pulse, the maximum energy gain is increased by the factor, which is proportional to n, over that in the case of uniform plasma. Layered plasma is suggested to keep the resonant condition for laser-wakefield excitation. The acceleration is limited then by laser depletion rather than by dephasing. Further, we show that the natural energy spread of the particle bunch acquired at the acceleration stage can be effectively removed by a matched deceleration stage, where a larger plasma density is used.

  17. The evolution of tooling, techniques, and quality control for accelerator dipole magnet cables

    SciTech Connect

    Scanlan, R.M.

    1992-08-01

    The present generation of particle accelerators are utilizing the flattened, compacted, single layer cable design introduced nearly 20 years ago at Rutherford Laboratory. However, the requirements for current density, filament size, dimensional control long lengths, and low current degradation are much more stringent for the present accelerators compared with the earlier Tevatron and HERA accelerators. Also, in order to achieve higher field strengths with efficient use of superconductor, the new designs require wider cables with more strands. These requirements have stimulated an active research effort which has led to significant improvements in critical current density and conductor manufacturing. In addition they have stimulated the development of new cabling techniques, improved tooling, and better measurement techniques. The need to produce over 20 million meters of cable has led to the development of high speed cabling machines and on-line quality assurance measurements. These new developments will be discussed, and areas still requiring improvement will be identified.

  18. Epidermal Graft Accelerates the Healing of Acute Wound: A Self-controlled Case Report

    PubMed Central

    Bystrzonowski, Nicola; Hachach-Haram, Nadine; Richards, Toby; Mosahebi, Afshin

    2016-01-01

    Summary: Wound care represents a significant socioeconomic burden, with over half of chronic wounds taking up to a year to heal. Measures to accelerate wound healing are beneficial to patients and also reduce the cost and burden of wound management. Epidermal grafting (EG) is an emerging option for autologous skin grafting in the outpatient setting to improve wound healing. Although several case series have previously reported good clinical outcome with EG, the healing rate in comparison to conservative wound management is not known. In this report, we compare the weekly healing rate of 2 separate wounds in the same patient, one treated with EG and the other with dressings. The treated wound showed accelerated healing, with the healing rate being the highest at the first 2 weeks after EG. The average healing time of the treated wound was 40% faster compared with the control wound. EG accelerates healing of acute wounds, potentially reducing the healthcare cost and surgical burden. PMID:27975024

  19. A remote control console for the HHIRF 25-MV Tandem Accelerator

    SciTech Connect

    Hasanul Basher, A.M.

    1993-09-01

    The CAMAC-based control system for the 25-MV Tandem Accelerator at HHIRF uses two Perkin-Elmer, 32-bit minicomputers: a message-switching computer and a supervisory computer. Two operator consoles are located on one of the six serial highways. Operator control is provided by means of a console CRT, trackball, assignable shaft encoders, and meters. The message-switching computer transmits and receives control information on the serial highways. At present, the CRT pages with updated parameters can be displayed and parameters can be controlled only from the two existing consoles, one in the Tandem control room and the other in the ORIC control room. It has become necessary to expand the control capability to several other locations in the building. With the expansion of control and monitoring capability of accelerator parameters to other locations, the operators will be able to control and observe the result of the control action at the same time. This capability will be useful in the new Radioactive Ion Beam project of the division. Since the new control console will be PC-based, the existing page format will be changed. The PC will be communicating with the Perkin-Elmer through RS-232 with the aid of a communication protocol. Hardware configuration has been established, a software program that reads the pages from the shared memory, and a communication protocol have been developed. The following sections present the implementation strategy, work completed, future action plans, and the functional details of the communication protocol.

  20. A geometrical approach to control and controllability of nonlinear dynamical networks

    PubMed Central

    Wang, Le-Zhi; Su, Ri-Qi; Huang, Zi-Gang; Wang, Xiao; Wang, Wen-Xu; Grebogi, Celso; Lai, Ying-Cheng

    2016-01-01

    In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another, assuming that the former is undesired and the latter is desired. To make our framework practically meaningful, we consider restricted parameter perturbation by imposing two constraints: it must be experimentally realizable and applied only temporarily. We introduce the concept of attractor network, which allows us to formulate a quantifiable controllability framework for nonlinear dynamical networks: a network is more controllable if the attractor network is more strongly connected. We test our control framework using examples from various models of experimental gene regulatory networks and demonstrate the beneficial role of noise in facilitating control. PMID:27076273

  1. On-line system identification for control system applications in particle accelerators

    NASA Astrophysics Data System (ADS)

    Chowdhary, Mahesh

    1997-08-01

    Particle accelerators require a number of feedback systems in order to stabilize a variety of parameters. The Continuous Electron Beam Accelerator at Thomas Jefferson National Accelerator Facility presents a unique set of control and identification problems. This accelerator produces a continuous electron beam with energies between 0.5 and 4.0 GeV to be delivered to the experimental halls. In order to meet stringent beam quality requirements specified by the experimental halls, the position and the energy of the electron beam needs to stabilized at various locations in the accelerator. A number of noise measurement tests were conducted at various locations in the accelerator to obtain accurate information about the amplitude and the frequency of disturbances on the beam orbit and energy. Results of these measurements indicate that the line power harmonics were the primary source of disturbance on the beam orbit and energy. A prototype fast feedback system was implemented in the injector and the East Arc regions of the accelerator to stabilize the beam position and energy at these locations. The scheme of implementation of these systems and measurements of their performance are presented here. These feedback systems have to operate under conditions of varying noise characteristics and changing dynamics of the systems. For the feedback systems to always perform optimally, the knowledge of time varying noise characteristics and changing system dynamics needs to be incorporated into the feedback strategy. The approach presented in this work is to perform on-line system identification using a formulation of Fast Transversal Filter (FTF) in order to extract the time varying information from input/output data of the feedback system. A simulation test stand was developed using an analog computer to represent a continuous time system whose noise characteristics and dynamics could be changed in a controlled manner. An on-line system identification algorithm was implemented

  2. An extended signal control strategy for urban network traffic flow

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Tian, Fuli; Shi, Zhongke

    2016-03-01

    Traffic flow patterns are in general repeated on a daily or weekly basis. To improve the traffic conditions by using the inherent repeatability of traffic flow, a novel signal control strategy for urban networks was developed via iterative learning control (ILC) approach. Rigorous analysis shows that the proposed learning control method can guarantee the asymptotic convergence. The impacts of the ILC-based signal control strategy on the macroscopic fundamental diagram (MFD) were analyzed by simulations on a test road network. The results show that the proposed ILC strategy can evenly distribute the accumulation in the network and improve the network mobility.

  3. Local control network and internetwork ISO-OSI reference model

    SciTech Connect

    Damsker, D.

    1983-05-01

    The paper describes a new local control network architecture. The new control network is totally distributed and redundantly hardware and software structured, based on a bus configuration and on CSMA/CD media access control. The architecture of the control structure and of the data communications structure for both Local Network and Internetwork is discussed in comparison with ISO-OSI and Local Area Network IEEE Standard 802 (Draft) Reference Models. A previous paper dealt with the physical implementation of this concept. The present paper is more software structure oriented.

  4. Experimental Study on the Control of the Supersonic Axisymmetric Intake under the Acceleration/Deceleration Conditions

    NASA Astrophysics Data System (ADS)

    Kojima, Takayuki; Sato, Tetsuya; Tanatsugu, Nobuhiro; Enomoto, Yoshinari

    A control system of variable geometry mixed compression axisymmetric intake is experimentally studied at ONERA S3 supersonic wind tunnel. The acceleration/deceleration of the space plane is simulated by changing the free stream velocity. The intake is successfully controlled with 90% of the maximum total pressure recovery and mass capture ratio. In this experiment, two subjects about control of axisymmetric intake are also cleared. First, the effect of the trapping of the terminal shock by bleed holes causes the disturbances in the terminal shock control system. Second, a special compression form change operation is necessary when the intake compression form change from all external compression to mixed compression.

  5. Modulations among the alerting, orienting and executive control networks.

    PubMed

    Callejas, Alicia; Lupiàñez, Juan; Funes, María Jesús; Tudela, Pío

    2005-11-01

    This paper reports a series of experiments that were carried out in order to study the attentional system. Three networks make up this system, and each of them specializes in particular processes. The executive control network specializes in control processes, such as conflict resolution or detection of errors; the orienting network directs the processing system to the source of input and enhances its processing; the alerting network prepares the system for a fast response by maintaining an adequate level of activation in the cognitive system. Recently, Fan and collaborators [J Cogn Neurosci 14(3):340-347, 2002] designed a task to measure the efficiency of each network. We modified Fan's task to test the influences among the networks. We found that the executive control network is inhibited by the alerting network, whereas the orienting network raises the efficiency of the executive control network (Experiment 1). We also found that the alerting network influences the orienting network by speeding up its time course function (Experiment 2). Results were replicated in a third experiment, proving the effects to be stable over time, participants and experimental context, and to be potentially important as a tool for neuropsychological assessment.

  6. Gate-controlled rectifying behavior in C70@SWNT networks.

    PubMed

    Guo, Ao; Fu, Yunyi; Liu, Jia; Guan, Lunhui; Shi, Zujin; Gu, Zhennan; Huang, Ru; Zhang, Xing

    2006-05-25

    We report the gate-controlled rectification behavior in C(70)@SWNT networks at room temperature in air. The electrical transport characteristics can be fitted well with the conventional Schottky diode model. The origin of the rectifying behavior in fullerene peapod networks device is qualitatively discussed. This paper demonstrates a strategy for diode fabrication based on peapod networks.

  7. Cell Fate Reprogramming by Control of Intracellular Network Dynamics

    PubMed Central

    Zañudo, Jorge G. T.; Albert, Réka

    2015-01-01

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell’s fate, such as disease therapeutics and stem cell reprogramming. Here we develop a novel network control framework that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our approach drives any initial state to the target state with 100% effectiveness and needs to be applied only transiently for the network to reach and stay in the desired state. We illustrate our method’s potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of helper T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. PMID:25849586

  8. Economical launching and accelerating control strategy for a single-shaft parallel hybrid electric bus

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Song, Jian; Li, Liang; Li, Shengbo; Cao, Dongpu

    2016-08-01

    This paper presents an economical launching and accelerating mode, including four ordered phases: pure electrical driving, clutch engagement and engine start-up, engine active charging, and engine driving, which can be fit for the alternating conditions and improve the fuel economy of hybrid electric bus (HEB) during typical city-bus driving scenarios. By utilizing the fast response feature of electric motor (EM), an adaptive controller for EM is designed to realize the power demand during the pure electrical driving mode, the engine starting mode and the engine active charging mode. Concurrently, the smoothness issue induced by the sequential mode transitions is solved with a coordinated control logic for engine, EM and clutch. Simulation and experimental results show that the proposed launching and accelerating mode and its control methods are effective in improving the fuel economy and ensure the drivability during the fast transition between the operation modes of HEB.

  9. Unified Lunar Control Network 2005 and Topographic Model

    NASA Technical Reports Server (NTRS)

    Archinal, B. A.; Rosiek, M. R.; Redding, B. L.

    2005-01-01

    There are currently two generally accepted lunar control networks. These are the Unified Lunar Control Network (ULCN) and the Clementine Lunar Control Network (CLCN), both derived by M. Davies and T. Colvin at RAND. We address here our efforts to merge and improve these networks into a new ULCN. The ULCN was described in the last major publication about a lunar control network. The statistics on this and the other networks discussed here. Images for this network are from the Apollo, Mariner 10, and Galileo missions, and Earth-based photographs. The importance of this network is that its accuracy is relatively well quantified and published information on the network is available. The CLCN includes measurements on 43,871 Clementine 750-nm images - the largest planetary control network ever computed. This purpose of this network was to determine the geometry for the Clementine Basemap Mosiac (CBM). The geometry of that mosaic was used to produce the Clementine UVVIS digital image model and the Near-Infrared Global Multispectral Map of the Moon from Clementine. Through the extensive use of these products, they and the underlying CLCN in effect define the generally accepted current coordinate system for reporting and describing the location of lunar coordinates. However, no publication describes the CLCN itself.

  10. Implementing controlled-unitary operations over the butterfly network

    SciTech Connect

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.; Murao, Mio

    2014-12-04

    We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.

  11. The Los Alamos accelerator control system database: A generic instrumentation interface

    NASA Astrophysics Data System (ADS)

    Dalesio, L. R.

    1990-08-01

    Controlling experimental-physics applications requires a control system that can be quickly integrated and easily modified. One aspect of the control system is the interface to the instrumentation. An instrumentation set has been chosen to implement the basic functions needed to monitor and control these applications. A data-driven interface to this instrumentation set provides the required quick integration of the control system. This type of interface is limited by its built-in capabilities. Therefore, these capabilities must provide an adequate range of functions to be of any use. The data-driven interface must support the instrumentation range required, the events on which to read or control the instrumentation and a method for manipulating the data to calculate terms or close control loops. The database for the Los Alamos Accelerator Control System addresses these requirements.

  12. Minimizing communication cost among distributed controllers in software defined networks

    NASA Astrophysics Data System (ADS)

    Arlimatti, Shivaleela; Elbreiki, Walid; Hassan, Suhaidi; Habbal, Adib; Elshaikh, Mohamed

    2016-08-01

    Software Defined Networking (SDN) is a new paradigm to increase the flexibility of today's network by promising for a programmable network. The fundamental idea behind this new architecture is to simplify network complexity by decoupling control plane and data plane of the network devices, and by making the control plane centralized. Recently controllers have distributed to solve the problem of single point of failure, and to increase scalability and flexibility during workload distribution. Even though, controllers are flexible and scalable to accommodate more number of network switches, yet the problem of intercommunication cost between distributed controllers is still challenging issue in the Software Defined Network environment. This paper, aims to fill the gap by proposing a new mechanism, which minimizes intercommunication cost with graph partitioning algorithm, an NP hard problem. The methodology proposed in this paper is, swapping of network elements between controller domains to minimize communication cost by calculating communication gain. The swapping of elements minimizes inter and intra communication cost among network domains. We validate our work with the OMNeT++ simulation environment tool. Simulation results show that the proposed mechanism minimizes the inter domain communication cost among controllers compared to traditional distributed controllers.

  13. An improved method for network congestion control

    NASA Astrophysics Data System (ADS)

    Qiao, Xiaolin

    2013-03-01

    The rapid progress of the wireless network technology has great convenience on the people's life and work. However, because of its openness, the mobility of the terminal and the changing topology, the wireless network is more susceptible to security attacks. Authentication and key agreement is the base of the network security. The authentication and key agreement mechanism can prevent the unauthorized user from accessing the network, resist malicious network to deceive the lawful user, encrypt the session data by using the exchange key and provide the identification of the data origination. Based on characteristics of the wireless network, this paper proposed a key agreement protocol for wireless network. The authentication of protocol is based on Elliptic Curve Cryptosystems and Diffie-Hellman.

  14. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2005-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface uses a specialized protocol for communicating across the network bus that uses a low-level instruction set and has low overhead for data communication.

  15. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2004-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface uses a specialized protocol for communicating across the network bus that uses a low-level instruction set and has low overhead for data communication.

  16. Extrinsic and Intrinsic Brain Network Connectivity Maintains Cognition across the Lifespan Despite Accelerated Decay of Regional Brain Activation

    PubMed Central

    Henson, Richard N.A.; Tyler, Lorraine K.; Razi, Adeel; Geerligs, Linda; Ham, Timothy E.; Rowe, James B.

    2016-01-01

    The maintenance of wellbeing across the lifespan depends on the preservation of cognitive function. We propose that successful cognitive aging is determined by interactions both within and between large-scale functional brain networks. Such connectivity can be estimated from task-free functional magnetic resonance imaging (fMRI), also known as resting-state fMRI (rs-fMRI). However, common correlational methods are confounded by age-related changes in the neurovascular signaling. To estimate network interactions at the neuronal rather than vascular level, we used generative models that specified both the neural interactions and a flexible neurovascular forward model. The networks' parameters were optimized to explain the spectral dynamics of rs-fMRI data in 602 healthy human adults from population-based cohorts who were approximately uniformly distributed between 18 and 88 years (www.cam-can.com). We assessed directed connectivity within and between three key large-scale networks: the salience network, dorsal attention network, and default mode network. We found that age influences connectivity both within and between these networks, over and above the effects on neurovascular coupling. Canonical correlation analysis revealed that the relationship between network connectivity and cognitive function was age-dependent: cognitive performance relied on neural dynamics more strongly in older adults. These effects were driven partly by reduced stability of neural activity within all networks, as expressed by an accelerated decay of neural information. Our findings suggest that the balance of excitatory connectivity between networks, and the stability of intrinsic neural representations within networks, changes with age. The cognitive function of older adults becomes increasingly dependent on these factors. SIGNIFICANCE STATEMENT Maintaining cognitive function is critical to successful aging. To study the neural basis of cognitive function across the lifespan, we studied a

  17. Scalable Approaches to Control Network Dynamics: Prospects for City Networks

    NASA Astrophysics Data System (ADS)

    Motter, Adilson E.; Gray, Kimberly A.

    2014-07-01

    A city is a complex, emergent system and as such can be conveniently represented as a network of interacting components. A fundamental aspect of networks is that the systemic properties can depend as much on the interactions as they depend on the properties of the individual components themselves. Another fundamental aspect is that changes to one component can affect other components, in a process that may cause the entire or a substantial part of the system to change behavior. Over the past 2 decades, much research has been done on the modeling of large and complex networks involved in communication and transportation, disease propagation, and supply chains, as well as emergent phenomena, robustness and optimization in such systems...

  18. Asynchronous data change notification between database server and accelerator controls system

    SciTech Connect

    Fu, W.; Morris, J.; Nemesure, S.

    2011-10-10

    Database data change notification (DCN) is a commonly used feature. Not all database management systems (DBMS) provide an explicit DCN mechanism. Even for those DBMS's which support DCN (such as Oracle and MS SQL server), some server side and/or client side programming may be required to make the DCN system work. This makes the setup of DCN between database server and interested clients tedious and time consuming. In accelerator control systems, there are many well established software client/server architectures (such as CDEV, EPICS, and ADO) that can be used to implement data reflection servers that transfer data asynchronously to any client using the standard SET/GET API. This paper describes a method for using such a data reflection server to set up asynchronous DCN (ADCN) between a DBMS and clients. This method works well for all DBMS systems which provide database trigger functionality. Asynchronous data change notification (ADCN) between database server and clients can be realized by combining the use of a database trigger mechanism, which is supported by major DBMS systems, with server processes that use client/server software architectures that are familiar in the accelerator controls community (such as EPICS, CDEV or ADO). This approach makes the ADCN system easy to set up and integrate into an accelerator controls system. Several ADCN systems have been set up and used in the RHIC-AGS controls system.

  19. A Clementine Derived Control Network and Topographic Model - The Unified Lunar Control Network 2005

    NASA Astrophysics Data System (ADS)

    Archinal, B. A.; Rosiek, M. R.; Kirk, R. L.; Redding, B. L.

    2006-08-01

    U. S. Geological Survey, Astrogeology Team, Flagstaff, AZ, United States Introduction: We have completed a new general unified lunar control network and lunar topographic model based on Clementine images. It includes the determination, in the lunar mean Earth/polar axis system, of the 3-D positions of 272,931 points on the lunar surface and the correction of the camera angles for 43,866 Clementine images, using 546,126 tie point measurements. The solution RMS is 0.9 pixels in the image plane, with the largest residual of 6.4 pixels. We are now documenting our solution and plan to release the solution results soon, initially as a USGS Open File report. ULCN 2005 Features: The new network is a combination of the Unified Lunar Control Network (ULCN), derived from the Apollo, Mariner 10, and Galileo missions, and Earth-based photographs, [1] and the Clementine Lunar Control Network (CLCN) [2], both derived from (mostly 750-nm) Clementine images, by M. Davies and T. Colvin at RAND. The primary difference between our new network and the previous ones is that we solve for the radii of the control points. This avoids (~7 km) distortion of horizontal positions present in the CLCN. The expected precision of such information is on the order of several hundred m, and compatible with Clementine LIDAR [3]. Thus, a by-product of this network is a global lunar topographic model that is denser than that provided by LIDAR and of similar accuracy, and denser than any other lunar topography information except that provided in limited areas ([4-7]). This is the only lunar topographic model positioning where both heights and horizontal positions are estimated in a globally-consistent system. Other features of the ULCN 2005 are that the camera angles to their values as measured during the mission, supposedly with an accuracy of 0.03º [8], and we have identified a majority of the original ULCN points on Clementine images. Future Work: The Lunar Orbiter (LO) digital mosaics now being

  20. Accelerated convergence of neural network system identification algorithms via principal component analysis

    NASA Astrophysics Data System (ADS)

    Hyland, David C.; Davis, Lawrence D.; Denoyer, Keith K.

    1998-12-01

    While significant theoretical and experimental progress has been made in the development of neural network-based systems for the autonomous identification and control of space platforms, there remain important unresolved issues associated with the reliable prediction of convergence speed and the avoidance of inordinately slow convergence. To speed convergence of neural identifiers, we introduce the preprocessing of identifier inputs using Principal Component Analysis (PCA) algorithms. Which automatically transform the neural identifier's external inputs so as to make the correlation matrix identity, resulting in enormous improvements in the convergence speed of the neural identifier. From a study of several such algorithms, we developed a new PCA approach which exhibits excellent convergence properties, insensitivity to noise and reliable accuracy.

  1. Control of Boolean networks: hardness results and algorithms for tree structured networks.

    PubMed

    Akutsu, Tatsuya; Hayashida, Morihiro; Ching, Wai-Ki; Ng, Michael K

    2007-02-21

    Finding control strategies of cells is a challenging and important problem in the post-genomic era. This paper considers theoretical aspects of the control problem using the Boolean network (BN), which is a simplified model of genetic networks. It is shown that finding a control strategy leading to the desired global state is computationally intractable (NP-hard) in general. Furthermore, this hardness result is extended for BNs with considerably restricted network structures. These results justify existing exponential time algorithms for finding control strategies for probabilistic Boolean networks (PBNs). On the other hand, this paper shows that the control problem can be solved in polynomial time if the network has a tree structure. Then, this algorithm is extended for the case where the network has a few loops and the number of time steps is small. Though this paper focuses on theoretical aspects, biological implications of the theoretical results are also discussed.

  2. Network device interface for digitally interfacing data channels to a controller a via network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. In one embodiment, the bus controller transmits messages to the network device interface containing a plurality of bits having a value defined by a transition between first and second states in the bits. The network device interface determines timing of the data sequence of the message and uses the determined timing to communicate with the bus controller.

  3. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface is a state machine, such as an ASIC, that operates independent of a processor in communicating with the bus controller and data channels.

  4. Basis function repetitive and feedback control with application to a particle accelerator

    NASA Astrophysics Data System (ADS)

    Akogyeram, Raphael Akuete

    2002-09-01

    The thesis addresses three problem areas within repetitive control. Firstly, it addresses issues concerning the ability of repetitive control and feedback control systems to eliminate periodic disturbances occurring above the Nyquist frequency of the hardware. Methods are developed for decomposing and unfolding notch filter or comb filter feedback control so that disturbances above Nyquist frequency can be canceled. Phenomena affecting final error levels are discussed, including error in unfolding, coarseness of zero-order hold cancellation, and waterbed effects in the feedback control system frequency response for different sample rates. Secondly, matched basis function repetitive control laws are developed for batch mode and real time implementation to converge to zero tracking error in the presence of periodic disturbances. For both control methods, conditions are given that guarantee asymptotic and monotonic convergence. Stability tests are formulated to examine stability when the period of a disturbance is not an integer number of sample times, and when there are multiple unrelated periods whose common period is too long to use. Thirdly, an understanding is developed of the optimum division of labor between the objectives accomplished by feedback and the objectives accomplished by repetitive control action. Some experimental results of the particle accelerator testbed at Thomas Jefferson National Accelerator Facility, Newport News, Virginia, are reported.

  5. New electronic control systems for ILU accelerators, initiating the development of unique irradiation systems based on them

    NASA Astrophysics Data System (ADS)

    Bezuglov, V. V.; Bryazgin, A. A.; Vlasov, A. Y.; Kokin, E. N.; Shtarklev, E. A.

    2016-12-01

    This study is devoted to the development and industrial implementation of automated electronbeam irradiation systems based on ILU type accelerators, as well as the development of electronics and software for the creation of new technological solutions on the industrial application of accelerated electron beams. This study gives a description of the power-supply and control systems for an independent electronbeam scanning unit included in a universal one- or four-window extraction unit. The new control and protection systems for ILU accelerator pulsed power supply are also described; these systems resulted in the development of a unique 3-modulator power supply for the multiresonator ILU-14 accelerator.

  6. System Identification for Nonlinear Control Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.; Linse, Dennis J.

    1990-01-01

    An approach to incorporating artificial neural networks in nonlinear, adaptive control systems is described. The controller contains three principal elements: a nonlinear inverse dynamic control law whose coefficients depend on a comprehensive model of the plant, a neural network that models system dynamics, and a state estimator whose outputs drive the control law and train the neural network. Attention is focused on the system identification task, which combines an extended Kalman filter with generalized spline function approximation. Continual learning is possible during normal operation, without taking the system off line for specialized training. Nonlinear inverse dynamic control requires smooth derivatives as well as function estimates, imposing stringent goals on the approximating technique.

  7. An Artificial Neural Network Control System for Spacecraft Attitude Stabilization

    DTIC Science & Technology

    1990-06-01

    training is based on the concept of enforced performance. A neural network will learn to meet a specific performance goal if the performance standard...is the only solution to a problem. Performance index training is devised to teach the neural network the time-optimal control law for the system. Real...time adaptation of a neural network in closed loop control of the Crew/Equipment Retriever was demonstrated in computer simulations.

  8. Implementation of Network Redundancy in Environment of Road Tunnel Control

    NASA Astrophysics Data System (ADS)

    Cerovská, Anna; Spalek, Juraj

    Availability of individual segments of a road tunnel control system is directly dependent on network infrastructure. A safe tunnel requires a 100 % availability of control. One of the alternatives how to approach the fulfillment of this requirement is the implementation of hardware and link redundancy to the network topology of the road tunnel by means of mechanisms that enable to improve the failure tolerance in Ethernet networks.

  9. Deterministic chaos control in neural networks on various topologies

    NASA Astrophysics Data System (ADS)

    Neto, A. J. F.; Lima, F. W. S.

    2017-01-01

    Using numerical simulations, we study the control of deterministic chaos in neural networks on various topologies like Voronoi-Delaunay, Barabási-Albert, Small-World networks and Erdös-Rényi random graphs by "pinning" the state of a "special" neuron. We show that the chaotic activity of the networks or graphs, when control is on, can become constant or periodic.

  10. High Availability On-line Relational Databases for Accelerator Control and Operation

    SciTech Connect

    Dohan,D.; Dalesio, L.; Carcassi, G.

    2009-05-04

    The role that relational database (RDB) technology plays in accelerator control and operation continues to grow in such areas as electronic logbooks, machine parameter definitions, and facility infrastructure management. RDBs are increasingly relied upon to provide the official 'master' copy of these data. Whereas the services provided by the RDB have traditionally not been 'mission critical', the availability of modern RDB management systems is now equivalent to that of standard computer file-systems. RDBs can be relied on to supply pseudo real-time response to operator and machine physicist requests. This paper describes recent developments in the IRMIS RDB project. Generic lattice support has been added, serving as the driver for model-based machine control. Abstract physics name service and process variable introspection has been added. Specific emphasis has been placed both on providing fast response time to accelerator operators and modeling code requests, as well as high (24/7) availability of the RDB service.

  11. Nonlinear interfaces for acceleration-commanded control of spacecraft and manipulators

    NASA Technical Reports Server (NTRS)

    Dwyer, T. A. W., III; Lee, G. K. F.; Chen, N.

    1986-01-01

    Nominal command generation in real time for the control of manipulators or of maneuvering spacecraft is hampered by the nonlinearity of the equations of motion. Likewise the real time tracking of a computed nominal trajectory in the presence of disturbances requires the computation of time-varying Jacobians of the motion. An alternative approach is the formulation of acceleration-commanded control laws in appropriately chosen generalized advantageous to design dedicated circuit interfaces to perform the required transformation. It is also possible to guarantee that actuator and sensor saturation limits are not exceeded, by means of feedback-biased circuits that implement automatic overload limitation of acceleration commands. Recent developments following this 'hardware computation' point of view will be discussed.

  12. [Role of university hospitals in regional infection control network].

    PubMed

    Kayaba, Hiroyuki; Saito, Norihiro; Yamamoto, Ayako; Tsutaya, Shoji; Akimoto, Hiroyuki; Kimura, Masahiko; Inoue, Fumio; Kondo, Jun; Akahira, Emi; Tachibana, Naoki; Okamura, Yuji; Takahashi, Shiori; Kojima, Keiya; Tamazawa, Naoki; Hayakari, Makoto

    2013-08-01

    Activities and the understanding of infection control in healthcare facilities have improved in the past decade since a certification system for medical personnel, such as infection control nurse and infection control doctor, were introduced in Japan. These specialists are distributed among tertiary general hospitals, while many small and mid-scale hospitals have no infection control specialists. In 2012, the Japanese Ministry of Health, Labour and Welfare launched a new strategy for further improvement of infection control by supporting a regional network of infection control activities. Through the infection control network, small or mid-scaled hospitals can utilize infection control specialists in tertiary general hospitals, enter educational programs on infection control and consult in cases of nosocomial infection outbreaks. As part of the regional infection control network, we established an information network system, named ReNICS, to share the bacteriological test results of the hospitals in Akita prefecture. ReNICS offers epidemiological data on bacteria identified in the region. We can identify the spread of multi-drug resistant bacteria and can roughly estimate the quality of infection control activities in each facility. As a similar information network is being prepared in Hirosaki University Hospital Infection Control Center in Aomori, a prefecture neighboring Akita, we discussed the roles of university hospitals for a regional infection control network.

  13. Design of control network based on OMRON PLC

    NASA Astrophysics Data System (ADS)

    Wang, Xiaocheng; Song, Xiangli; Liu, Yuan; Tang, Yuling

    2003-09-01

    This paper briefly introduces the design of control network based on OMRON PLC; and describes in detail step and setting of design based on three kinds of network: Ethernet, controller link and CompoBus/D. The design has been applied to lab construction. The practice shows that it is valuable for teaching and scientific research.

  14. Connected Dominating Set Based Topology Control in Wireless Sensor Networks

    ERIC Educational Resources Information Center

    He, Jing

    2012-01-01

    Wireless Sensor Networks (WSNs) are now widely used for monitoring and controlling of systems where human intervention is not desirable or possible. Connected Dominating Sets (CDSs) based topology control in WSNs is one kind of hierarchical method to ensure sufficient coverage while reducing redundant connections in a relatively crowded network.…

  15. Controlled Electron Injection into Plasma Accelerators and SpaceCharge Estimates

    SciTech Connect

    Fubiani, Gwenael G.J.

    2005-09-01

    Plasma based accelerators are capable of producing electron sources which are ultra-compact (a few microns) and high energies (up to hundreds of MeVs) in much shorter distances than conventional accelerators. This is due to the large longitudinal electric field that can be excited without the limitation of breakdown as in RF structures.The characteristic scale length of the accelerating field is the plasma wavelength and for typical densities ranging from 1018 - 1019 cm-3, the accelerating fields and scale length can hence be on the order of 10-100GV/m and 10-40 μm, respectively. The production of quasimonoenergetic beams was recently obtained in a regime relying on self-trapping of background plasma electrons, using a single laser pulse for wakefield generation. In this dissertation, we study the controlled injection via the beating of two lasers (the pump laser pulse creating the plasma wave and a second beam being propagated in opposite direction) which induce a localized injection of background plasma electrons. The aim of this dissertation is to describe in detail the physics of optical injection using two lasers, the characteristics of the electron beams produced (the micrometer scale plasma wavelength can result in femtosecond and even attosecond bunches) as well as a concise estimate of the effects of space charge on the dynamics of an ultra-dense electron bunch with a large energy spread.

  16. Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency

    PubMed Central

    Gonzalez-Izquierdo, Bruno; King, Martin; Gray, Ross J.; Wilson, Robbie; Dance, Rachel J.; Powell, Haydn; Maclellan, David A.; McCreadie, John; Butler, Nicholas M. H.; Hawkes, Steve; Green, James S.; Murphy, Chris D.; Stockhausen, Luca C.; Carroll, David C.; Booth, Nicola; Scott, Graeme G.; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-01-01

    Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources. PMID:27624920

  17. Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency

    NASA Astrophysics Data System (ADS)

    Gonzalez-Izquierdo, Bruno; King, Martin; Gray, Ross J.; Wilson, Robbie; Dance, Rachel J.; Powell, Haydn; MacLellan, David A.; McCreadie, John; Butler, Nicholas M. H.; Hawkes, Steve; Green, James S.; Murphy, Chris D.; Stockhausen, Luca C.; Carroll, David C.; Booth, Nicola; Scott, Graeme G.; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-09-01

    Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources.

  18. Prototype of network distributed control system for MLF/J-PARC

    NASA Astrophysics Data System (ADS)

    Nakatani, Takeshi; Nakajima, Kenji; Torii, Shuki; Bharoto; Higemoto, Wataru; Sato, Setsuo; Otomo, Toshiya; Arai, Masatoshi

    2006-11-01

    We have developed a prototype data acquisition and device control system for experiment instruments at the Material and Life science Facility (MLF)/Japan-Proton Accelerator Research Complex (J-PARC). The system employs distributed computing via Ethernet, client/server architecture, modular structure and a state machine. Communication between client and server software utilizes socket protocols over TCP/IP. We have deployed this prototype software in the network distributed control system by improving the data acquisition software used at KENS, introducing the system for the SWAN at KENS/KEK. It was kept in working order throughout 2 weeks of machine operation.

  19. Active control of an innovative seat suspension system with acceleration measurement based friction estimation

    NASA Astrophysics Data System (ADS)

    Ning, Donghong; Sun, Shuaishuai; Li, Hongyi; Du, Haiping; Li, Weihua

    2016-12-01

    In this paper, an innovative active seat suspension system for vehicles is presented. This seat suspension prototype is built with two low cost actuators each of which has one rotary motor and one gear reducer. A H∞ controller with friction compensation is designed for the seat suspension control system where the friction is estimated and compensated based on the measurement of seat acceleration. This principal aim of this research was to control the low frequency vibration transferred or amplified by the vehicle (chassis) suspension, and to maintain the passivity of the seat suspension at high frequency (isolation vibration) while taking into consideration the trade-off between the active seat suspension cost and its high frequency performance. Sinusoidal excitations of 1-4.5 Hz were applied to test the active seat suspension both when controlled and when uncontrolled and this is compared with a well-tuned passive heavy duty vehicle seat suspension. The results indicate the effectiveness of the proposed control algorithm within the tested frequencies. Further tests were conducted using the excitations generated from a quarter-car model under bump and random road profiles. The bump road tests indicate the controlled active seat suspension has good transient response performance. The Power Spectral Density (PSD) method and ISO 2631-1 standards were applied to analyse the seat suspension's acceleration under random road conditions. Although some low magnitude and high frequency noise will inevitably be introduced by the active system, the weighted-frequency Root Mean Square (RMS) acceleration shows that this may not have a large effect on ride comfort. In fact, the ride comfort is improved from being an 'a little uncomfortable' to a 'not uncomfortable' level when compared with the well-tuned passive seat suspension. This low cost active seat suspension design and the proposed controller with the easily measured feedback signals are very practical for real

  20. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted into digital signals and transmitted back to the controller. In one embodiment, the bus controller sends commands and data a defined bit rate, and the network device interface senses this bit rate and sends data back to the bus controller using the defined bit rate.

  1. Epigenetics and Why Biological Networks are More Controllable than Expected

    NASA Astrophysics Data System (ADS)

    Motter, Adilson

    2013-03-01

    A fundamental property of networks is that perturbations to one node can affect other nodes, potentially causing the entire system to change behavior or fail. In this talk, I will show that it is possible to exploit this same principle to control network behavior. This approach takes advantage of the nonlinear dynamics inherent to real networks, and allows bringing the system to a desired target state even when this state is not directly accessible or the linear counterpart is not controllable. Applications show that this framework permits both reprogramming a network to a desired task as well as rescuing networks from the brink of failure, which I will illustrate through various biological problems. I will also briefly review the progress our group has made over the past 5 years on related control of complex networks in non-biological domains.

  2. Cell fate reprogramming by control of intracellular network dynamics

    NASA Astrophysics Data System (ADS)

    Zanudo, Jorge G. T.; Albert, Reka

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Although the topic of controlling the dynamics of a system has a long history in control theory, most of this work is not directly applicable to intracellular networks. Here we present a network control method that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our control method takes advantage of certain function-dependent network components and their relation to steady states in order to identify control targets, which are guaranteed to drive any initial state to the target state with 100% effectiveness and need to be applied only transiently for the system to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. This work was supported by NSF Grant PHY 1205840.

  3. Nonlinear system identification and control based on modular neural networks.

    PubMed

    Puscasu, Gheorghe; Codres, Bogdan

    2011-08-01

    A new approach for nonlinear system identification and control based on modular neural networks (MNN) is proposed in this paper. The computational complexity of neural identification can be greatly reduced if the whole system is decomposed into several subsystems. This is obtained using a partitioning algorithm. Each local nonlinear model is associated with a nonlinear controller. These are also implemented by neural networks. The switching between the neural controllers is done by a dynamical switcher, also implemented by neural networks, that tracks the different operating points. The proposed multiple modelling and control strategy has been successfully tested on simulated laboratory scale liquid-level system.

  4. Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints

    NASA Astrophysics Data System (ADS)

    Kmet', Tibor; Kmet'ová, Mária

    2009-09-01

    A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.

  5. A neural-network approach to robotic control

    NASA Technical Reports Server (NTRS)

    Graham, D. P. W.; Deleuterio, G. M. T.

    1993-01-01

    An artificial neural-network paradigm for the control of robotic systems is presented. The approach is based on the Cerebellar Model Articulation Controller created by James Albus and incorporates several extensions. First, recognizing the essential structure of multibody equations of motion, two parallel modules are used that directly reflect the dynamical characteristics of multibody systems. Second, the architecture of the proposed network is imbued with a self-organizational capability which improves efficiency and accuracy. Also, the networks can be arranged in hierarchical fashion with each subsequent network providing finer and finer resolution.

  6. Tuning the electron energy by controlling the density perturbation position in laser plasma accelerators

    SciTech Connect

    Brijesh, P.; Thaury, C.; Phuoc, K. T.; Corde, S.; Lambert, G.; Malka, V.; Mangles, S. P. D.; Bloom, M.; Kneip, S.

    2012-06-15

    A density perturbation in an underdense plasma was used to improve the quality of electron bunches produced in the laser-plasma wakefield acceleration scheme. Quasi-monoenergetic electrons were generated by controlled injection in the longitudinal density gradients of the density perturbation. By tuning the position of the density perturbation along the laser propagation axis, a fine control of the electron energy from a mean value of 60 MeV to 120 MeV has been demonstrated with a relative energy-spread of 15 {+-} 3.6%, divergence of 4 {+-} 0.8 mrad, and charge of 6 {+-} 1.8 pC.

  7. Run-time environment and application tools for the ground test accelerator control system

    NASA Astrophysics Data System (ADS)

    Kozubal, A. J.; Kerstiens, D. M.; Hill, J. O.; Dalesio, L. R.

    1990-08-01

    The control system for the ground test accelerator (GTA) at Los Alamos provides capabilities and tools that considerably reduce the amount of programming required to perform many applications. These qualities have proved to be valuable on early GTA experiments, where rapid prototy[ing has paid off. For instance, the initial controls for a 1 MW rf power supply provided supervisory control with no application-dependent programming. These same qualities will enable us to automate the start-up, operation and shutdown of the GTA. The run-time environment makes effective use of the distributed, nonhierarchical control-system architecture by providing a standard interface to the distributed data base. This paper gives an overview of the run-time software environment and the tools that simplify building the run-time data base, the operator interface screens, and application-specific control operations — sequential and continuous.

  8. Control of coupled oscillator networks with application to microgrid technologies

    PubMed Central

    Skardal, Per Sebastian; Arenas, Alex

    2015-01-01

    The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies, we study the control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions—a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable synchronized state. The amount of control, that is, number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself. PMID:26601231

  9. Control of coupled oscillator networks with application to microgrid technologies.

    PubMed

    Skardal, Per Sebastian; Arenas, Alex

    2015-08-01

    The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies, we study the control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions-a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable synchronized state. The amount of control, that is, number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself.

  10. Connecting Core Percolation and Controllability of Complex Networks

    PubMed Central

    Jia, Tao; Pósfai, Márton

    2014-01-01

    Core percolation is a fundamental structural transition in complex networks related to a wide range of important problems. Recent advances have provided us an analytical framework of core percolation in uncorrelated random networks with arbitrary degree distributions. Here we apply the tools in analysis of network controllability. We confirm analytically that the emergence of the bifurcation in control coincides with the formation of the core and the structure of the core determines the control mode of the network. We also derive the analytical expression related to the controllability robustness by extending the deduction in core percolation. These findings help us better understand the interesting interplay between the structural and dynamical properties of complex networks. PMID:24946797

  11. Active vibration control with optimized modified acceleration feedback equipped with adaptive line enhancer

    NASA Astrophysics Data System (ADS)

    Mahmoodi, S. Nima; Craft, Michael J.; Ahmadian, Mehdi

    2010-04-01

    Modified acceleration feedback (MAF) control, an active vibration control method that uses collocated piezoelectric actuator actuators and sensors is improved using an optimal controller. The controller consists of two main parts: 1) Frequency adaptation that uses Adaptive Line Enhancer (ALE), and 2) an optimal controller. Frequency adaptation tracks the frequency of vibrations using ALE. The obtained frequency is then fed to MPPF compensators and the optimal controller. This provides a unique feature for MAF, by extending its domain of capabilities from controlling tonal vibrations to broad band disturbances. The optimal controller consists of a set of optimal gains for wide range of frequencies that is provided, related to the characteristics of the system. Based on the tracked frequency, the optimal control system decides to use which set of gains for the MAF controller. The gains are optimal for the frequencies close to the tracked frequency. The numerical results show that the frequency tracking method that is derived has worked quite well. In addition, the frequency tracking is fast enough to be used in real-time controller. The results also indicate that the MAF can provide significant vibration reduction using the optimal controller.

  12. A neural network controller for automated composite manufacturing

    NASA Technical Reports Server (NTRS)

    Lichtenwalner, Peter F.

    1994-01-01

    At McDonnell Douglas Aerospace (MDA), an artificial neural network based control system has been developed and implemented to control laser heating for the fiber placement composite manufacturing process. This neurocontroller learns an approximate inverse model of the process on-line to provide performance that improves with experience and exceeds that of conventional feedback control techniques. When untrained, the control system behaves as a proportional plus integral (PI) controller. However after learning from experience, the neural network feedforward control module provides control signals that greatly improve temperature tracking performance. Faster convergence to new temperature set points and reduced temperature deviation due to changing feed rate have been demonstrated on the machine. A Cerebellar Model Articulation Controller (CMAC) network is used for inverse modeling because of its rapid learning performance. This control system is implemented in an IBM compatible 386 PC with an A/D board interface to the machine.

  13. Autonomous Congestion Control in Delay-Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott; Jennings, Esther; Schoolcraft, Joshua

    2006-01-01

    Congestion control is an important feature that directly affects network performance. Network congestion may cause loss of data or long delays. Although this problem has been studied extensively in the Internet, the solutions for Internet congestion control do not apply readily to challenged network environments such as Delay Tolerant Networks (DTN) where end-to-end connectivity may not exist continuously and latency can be high. In DTN, end-to-end rate control is not feasible. This calls for congestion control mechanisms where the decisions can be made autonomously with local information only. We use an economic pricing model and propose a rule-based congestion control mechanism where each router can autonomously decide on whether to accept a bundle (data) based on local information such as available storage and the value and risk of accepting the bundle (derived from historical statistics). Preliminary experimental results show that this congestion control mechanism can protect routers from resource depletion without loss of data.

  14. Analysis and application of neuronal network controllability and observability

    NASA Astrophysics Data System (ADS)

    Su, Fei; Wang, Jiang; Li, Huiyan; Deng, Bin; Yu, Haitao; Liu, Chen

    2017-02-01

    Controllability and observability analyses are important prerequisite for designing suitable neural control strategy, which can help lower the efforts required to control and observe the system dynamics. First, 3-neuron motifs including the excitatory motif, the inhibitory motif, and the mixed motif are constructed to investigate the effects of single neuron and synaptic dynamics on network controllability (observability). Simulation results demonstrate that for networks with the same topological structure, the controllability (observability) of the node always changes if the properties of neurons and synaptic coupling strengths vary. Besides, the inhibitory networks are more controllable (observable) than the excitatory networks when the coupling strengths are the same. Then, the numerically determined controllability results of 3-neuron excitatory motifs are generalized to the desynchronization control of the modular motif network. The control energy and neuronal synchrony measure indexes are used to quantify the controllability of each node in the modular network. The best driver node obtained in this way is the same as the deduced one from motif analysis.

  15. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2007-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is converted into digital signals and transmitted to the controller. In some embodiments, network device interfaces associated with different data channels coordinate communications with the other interfaces based on either a transition in a command message sent by the bus controller or a synchronous clock signal.

  16. A Method of Social Collaboration and Knowledge Sharing Acceleration for e-Learning System: The Distance Learning Network Scenario

    NASA Astrophysics Data System (ADS)

    Różewski, Przemysław

    Nowadays, e-learning systems take the form of the Distance Learning Network (DLN) due to widespread use and accessibility of the Internet and networked e-learning services. The focal point of the DLN performance is efficiency of knowledge processing in asynchronous learning mode and facilitating cooperation between students. In addition, the DLN articulates attention to social aspects of the learning process as well. In this paper, a method for the DLN development is proposed. The main research objectives for the proposed method are the processes of acceleration of social collaboration and knowledge sharing in the DLN. The method introduces knowledge-disposed agents (who represent students in educational scenarios) that form a network of individuals aimed to increase their competence. For every agent the competence expansion process is formulated. Based on that outcome the process of dynamic network formation performed on the social and knowledge levels. The method utilizes formal apparatuses of competence set and network game theories combined with an agent system-based approach.

  17. Inhibition Controls Asynchronous States of Neuronal Networks

    PubMed Central

    Treviño, Mario

    2016-01-01

    Computations in cortical circuits require action potentials from excitatory and inhibitory neurons. In this mini-review, I first provide a quick overview of findings that indicate that GABAergic neurons play a fundamental role in coordinating spikes and generating synchronized network activity. Next, I argue that these observations helped popularize the notion that network oscillations require a high degree of spike correlations among interneurons which, in turn, produce synchronous inhibition of the local microcircuit. The aim of this text is to discuss some recent experimental and computational findings that support a complementary view: one in which interneurons participate actively in producing asynchronous states in cortical networks. This requires a proper mixture of shared excitation and inhibition leading to asynchronous activity between neighboring cells. Such contribution from interneurons would be extremely important because it would tend to reduce the spike correlation between neighboring pyramidal cells, a drop in redundancy that could enhance the information-processing capacity of neural networks. PMID:27274721

  18. NASA Integrated Network Monitor and Control Software Architecture

    NASA Technical Reports Server (NTRS)

    Shames, Peter; Anderson, Michael; Kowal, Steve; Levesque, Michael; Sindiy, Oleg; Donahue, Kenneth; Barnes, Patrick

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Space Communications and Navigation office (SCaN) has commissioned a series of trade studies to define a new architecture intended to integrate the three existing networks that it operates, the Deep Space Network (DSN), Space Network (SN), and Near Earth Network (NEN), into one integrated network that offers users a set of common, standardized, services and interfaces. The integrated monitor and control architecture utilizes common software and common operator interfaces that can be deployed at all three network elements. This software uses state-of-the-art concepts such as a pool of re-programmable equipment that acts like a configurable software radio, distributed hierarchical control, and centralized management of the whole SCaN integrated network. For this trade space study a model-based approach using SysML was adopted to describe and analyze several possible options for the integrated network monitor and control architecture. This model was used to refine the design and to drive the costing of the four different software options. This trade study modeled the three existing self standing network elements at point of departure, and then described how to integrate them using variations of new and existing monitor and control system components for the different proposed deployments under consideration. This paper will describe the trade space explored, the selected system architecture, the modeling and trade study methods, and some observations on useful approaches to implementing such model based trade space representation and analysis.

  19. Expanding the NATO Movement Control Network

    DTIC Science & Technology

    2016-05-17

    stationed in Es- tonia, Latvia, Lithuania, and Poland, an opportunity to expand the Strong Europe movement network by as- signing its Soldiers to embed...Lithuania. Therefore, Poland drives the diplo- matic clearance process with its 30- day requirement because everything must cross its borders. The...millimeter rail gauge for its railroad network. Estonia, Latvia, and Lithuania all have the Russian rail gauge of 1,520 millimeters. In order to use

  20. Flux Control in Networks of Diffusion Paths

    SciTech Connect

    A. I. Zhmoginov and N. J. Fisch

    2009-07-08

    A class of optimization problems in networks of intersecting diffusion domains of a special form of thin paths has been considered. The system of equations describing stationary solutions is equivalent to an electrical circuit built of intersecting conductors. The solution of an optimization problem has been obtained and extended to the analogous electrical circuit. The interest in this network arises from, among other applications, an application to wave-particle diffusion through resonant interactions in plasma.

  1. Neural-Network Control Of Prosthetic And Robotic Hands

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M.

    1991-01-01

    Electronic neural networks proposed for use in controlling robotic and prosthetic hands and exoskeletal or glovelike electromechanical devices aiding intact but nonfunctional hands. Specific to patient, who activates grasping motion by voice command, by mechanical switch, or by myoelectric impulse. Patient retains higher-level control, while lower-level control provided by neural network analogous to that of miniature brain. During training, patient teaches miniature brain to perform specialized, anthropomorphic movements unique to himself or herself.

  2. Control of focusing forces and emittances in plasma-based accelerators using near-hollow plasma channels

    SciTech Connect

    Schroeder, Carl; Esarey, Eric; Benedetti, Carlo; Leemans, Wim

    2013-08-06

    A near-hollow plasma channel, where the plasma density in the channel is much less than the plasma density in the walls, is proposed to provide independent control over the focusing and accelerating forces in a plasma accelerator. In this geometry the low density in the channel contributes to the focusing forces, while the accelerating fields are determined by the high density in the channel walls. The channel also provides guiding for intense laser pulses used for wakefield excitation. Both electron and positron beams can be accelerated in a nearly symmetric fashion. Near-hollow plasma channels can effectively mitigate emittance growth due to Coulomb scattering for high energy physics applications.

  3. Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control

    USGS Publications Warehouse

    Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.

    1997-01-01

    One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.

  4. Adaptive Neural Network Motion Control of Manipulators with Experimental Evaluations

    PubMed Central

    Puga-Guzmán, S.; Moreno-Valenzuela, J.; Santibáñez, V.

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller. PMID:24574910

  5. Adaptive neural network motion control of manipulators with experimental evaluations.

    PubMed

    Puga-Guzmán, S; Moreno-Valenzuela, J; Santibáñez, V

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller.

  6. Muscle networks: Connectivity analysis of EMG activity during postural control

    NASA Astrophysics Data System (ADS)

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-12-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.

  7. Optimal finite horizon control in gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Liu, Qiuli

    2013-06-01

    As a paradigm for modeling gene regulatory networks, probabilistic Boolean networks (PBNs) form a subclass of Markov genetic regulatory networks. To date, many different stochastic optimal control approaches have been developed to find therapeutic intervention strategies for PBNs. A PBN is essentially a collection of constituent Boolean networks via a probability structure. Most of the existing works assume that the probability structure for Boolean networks selection is known. Such an assumption cannot be satisfied in practice since the presence of noise prevents the probability structure from being accurately determined. In this paper, we treat a case in which we lack the governing probability structure for Boolean network selection. Specifically, in the framework of PBNs, the theory of finite horizon Markov decision process is employed to find optimal constituent Boolean networks with respect to the defined objective functions. In order to illustrate the validity of our proposed approach, an example is also displayed.

  8. Implementations of learning control systems using neural networks

    NASA Technical Reports Server (NTRS)

    Sartori, Michael A.; Antsaklis, Panos J.

    1992-01-01

    The systematic storage in neural networks of prior information to be used in the design of various control subsystems is investigated. Assuming that the prior information is available in a certain form (namely, input/output data points and specifications between the data points), a particular neural network and a corresponding parameter design method are introduced. The proposed neural network addresses the issue of effectively using prior information in the areas of dynamical system (plant and controller) modeling, fault detection and identification, information extraction, and control law scheduling.

  9. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  10. Design and Flight Tests of an Adaptive Control System Employing Normal-Acceleration Command

    NASA Technical Reports Server (NTRS)

    McNeill, Water E.; McLean, John D.; Hegarty, Daniel M.; Heinle, Donovan R.

    1961-01-01

    An adaptive control system employing normal-acceleration command has been designed with the aid of an analog computer and has been flight tested. The design of the system was based on the concept of using a mathematical model in combination with a high gain and a limiter. The study was undertaken to investigate the application of a system of this type to the task of maintaining nearly constant dynamic longitudinal response of a piloted airplane over the flight envelope without relying on air data measurements for gain adjustment. The range of flight conditions investigated was between Mach numbers of 0.36 and 1.15 and altitudes of 10,000 and 40,000 feet. The final adaptive system configuration was derived from analog computer tests, in which the physical airplane control system and much of the control circuitry were included in the loop. The method employed to generate the feedback signals resulted in a model whose characteristics varied somewhat with changes in flight condition. Flight results showed that the system limited the variation in longitudinal natural frequency of the adaptive airplane to about half that of the basic airplane and that, for the subsonic cases, the damping ratio was maintained between 0.56 and 0.69. The system also automatically compensated for the transonic trim change. Objectionable features of the system were an exaggerated sensitivity of pitch attitude to gust disturbances, abnormally large pitch attitude response for a given pilot input at low speeds, and an initial delay in normal-acceleration response to pilot control at all flight conditions. The adaptive system chatter of +/-0.05 to +/-0.10 of elevon at about 9 cycles per second (resulting in a maximum airplane normal-acceleration response of from +/-0.025 g to +/- 0.035 g) was considered by the pilots to be mildly objectionable but tolerable.

  11. Active vibration control using optimized modified acceleration feedback with Adaptive Line Enhancer for frequency tracking

    NASA Astrophysics Data System (ADS)

    Nima Mahmoodi, S.; Craft, Michael J.; Southward, Steve C.; Ahmadian, Mehdi

    2011-03-01

    Modified acceleration feedback (MAF) control, an active vibration control method that uses collocated piezoelectric actuators and accelerometer is developed and its gains optimized using an optimal controller. The control system consists of two main parts: (1) frequency adaptation that uses Adaptive Line Enhancer (ALE) and (2) an optimized controller. Frequency adaptation method tracks the frequency of vibrations using ALE. The obtained frequency is then fed to MAF compensators. This provides a unique feature for MAF, by extending its domain of capabilities from controlling a certain mode of vibrations to any excited mode. The optimized MAF controller can provide optimal sets of gains for a wide range of frequencies, based on the characteristics of the system. The experimental results show that the frequency tracking method works quite well and fast enough to be used in a real-time controller. ALE parameters are numerically and experimentally investigated and tuned for optimized frequency tracking. The results also indicate that the MAF can provide significant vibration reduction using the optimized controller. The control power varies for vibration suppression at different resonance frequencies; however, it is always optimized.

  12. Active vibration control of structure by Active Mass Damper and Multi-Modal Negative Acceleration Feedback control algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Don-Ho; Shin, Ji-Hwan; Lee, HyunWook; Kim, Seoug-Ki; Kwak, Moon K.

    2017-03-01

    In this study, an Active Mass Damper (AMD) consisting of an AC servo motor, a movable mass connected to the AC servo motor by a ball-screw mechanism, and an accelerometer as a sensor for vibration measurement were considered. Considering the capability of the AC servo motor which can follow the desired displacement accurately, the Negative Acceleration Feedback (NAF) control algorithm which uses the acceleration signal directly and produces the desired displacement for the active mass was proposed. The effectiveness of the NAF control was proved theoretically using a single-degree-of-freedom (SDOF) system. It was found that the stability condition for the NAF control is static and it can effectively increase the damping of the target natural mode without causing instability in the low frequency region. Based on the theoretical results of the SDOF system, the Multi-Modal NAF (MMNAF) control is proposed to suppress the many natural modes of multi-degree-of-freedom (MDOF) systems using a single AMD. It was proved both theoretically and experimentally that the MMNAF control can suppress vibrations of the MDOF system.

  13. The deep space network, volume 18. [Deep Space Instrumentation Facility, Ground Communication Facility, and Network Control System

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives, functions, and organization of the Deep Space Network are summarized. The Deep Space Instrumentation Facility, the Ground Communications Facility, and the Network Control System are described.

  14. Correlations in the degeneracy of structurally controllable topologies for networks.

    PubMed

    Campbell, Colin; Aucott, Steven; Ruths, Justin; Ruths, Derek; Shea, Katriona; Albert, Réka

    2017-04-12

    Many dynamic systems display complex emergent phenomena. By directly controlling a subset of system components (nodes) via external intervention it is possible to indirectly control every other component in the system. When the system is linear or can be approximated sufficiently well by a linear model, methods exist to identify the number and connectivity of a minimum set of external inputs (constituting a so-called minimal control topology, or MCT). In general, many MCTs exist for a given network; here we characterize a broad ensemble of empirical networks in terms of the fraction of nodes and edges that are always, sometimes, or never a part of an MCT. We study the relationships between the measures, and apply the methodology to the T-LGL leukemia signaling network as a case study. We show that the properties introduced in this report can be used to predict key components of biological networks, with potentially broad applications to network medicine.

  15. Thermoelastic steam turbine rotor control based on neural network

    NASA Astrophysics Data System (ADS)

    Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.

    2015-12-01

    Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.

  16. Controllability and observability of Boolean networks arising from biology

    NASA Astrophysics Data System (ADS)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  17. Controllability and observability of Boolean networks arising from biology.

    PubMed

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  18. Dynamic boundary layer based neural network quasi-sliding mode control for soft touching down on asteroid

    NASA Astrophysics Data System (ADS)

    Liu, Xiaosong; Shan, Zebiao; Li, Yuanchun

    2017-04-01

    Pinpoint landing is a critical step in some asteroid exploring missions. This paper is concerned with the descent trajectory control for soft touching down on a small irregularly-shaped asteroid. A dynamic boundary layer based neural network quasi-sliding mode control law is proposed to track a desired descending path. The asteroid's gravitational acceleration acting on the spacecraft is described by the polyhedron method. Considering the presence of input constraint and unmodeled acceleration, the dynamic equation of relative motion is presented first. The desired descending path is planned using cubic polynomial method, and a collision detection algorithm is designed. To perform trajectory tracking, a neural network sliding mode control law is given first, where the sliding mode control is used to ensure the convergence of system states. Two radial basis function neural networks (RBFNNs) are respectively used as an approximator for the unmodeled term and a compensator for the difference between the actual control input with magnitude constraint and nominal control. To improve the chattering induced by the traditional sliding mode control and guarantee the reachability of the system, a specific saturation function with dynamic boundary layer is proposed to replace the sign function in the preceding control law. Through the Lyapunov approach, the reachability condition of the control system is given. The improved control law can guarantee the system state move within a gradually shrinking quasi-sliding mode band. Numerical simulation results demonstrate the effectiveness of the proposed control strategy.

  19. Intrinsic dynamics induce global symmetry in network controllability

    NASA Astrophysics Data System (ADS)

    Zhao, Chen; Wang, Wen-Xu; Liu, Yang-Yu; Slotine, Jean-Jacques

    2015-02-01

    Controlling complex networked systems to desired states is a key research goal in contemporary science. Despite recent advances in studying the impact of network topology on controllability, a comprehensive understanding of the synergistic effect of network topology and individual dynamics on controllability is still lacking. Here we offer a theoretical study with particular interest in the diversity of dynamic units characterized by different types of individual dynamics. Interestingly, we find a global symmetry accounting for the invariance of controllability with respect to exchanging the densities of any two different types of dynamic units, irrespective of the network topology. The highest controllability arises at the global symmetry point, at which different types of dynamic units are of the same density. The lowest controllability occurs when all self-loops are either completely absent or present with identical weights. These findings further improve our understanding of network controllability and have implications for devising the optimal control of complex networked systems in a wide range of fields.

  20. Input graph: the hidden geometry in controlling complex networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xizhe; Lv, Tianyang; Pu, Yuanyuan

    2016-11-01

    The ability to control a complex network towards a desired behavior relies on our understanding of the complex nature of these social and technological networks. The existence of numerous control schemes in a network promotes us to wonder: what is the underlying relationship of all possible input nodes? Here we introduce input graph, a simple geometry that reveals the complex relationship between all control schemes and input nodes. We prove that the node adjacent to an input node in the input graph will appear in another control scheme, and the connected nodes in input graph have the same type in control, which they are either all possible input nodes or not. Furthermore, we find that the giant components emerge in the input graphs of many real networks, which provides a clear topological explanation of bifurcation phenomenon emerging in dense networks and promotes us to design an efficient method to alter the node type in control. The findings provide an insight into control principles of complex networks and offer a general mechanism to design a suitable control scheme for different purposes.

  1. Input graph: the hidden geometry in controlling complex networks

    PubMed Central

    Zhang, Xizhe; Lv, Tianyang; Pu, Yuanyuan

    2016-01-01

    The ability to control a complex network towards a desired behavior relies on our understanding of the complex nature of these social and technological networks. The existence of numerous control schemes in a network promotes us to wonder: what is the underlying relationship of all possible input nodes? Here we introduce input graph, a simple geometry that reveals the complex relationship between all control schemes and input nodes. We prove that the node adjacent to an input node in the input graph will appear in another control scheme, and the connected nodes in input graph have the same type in control, which they are either all possible input nodes or not. Furthermore, we find that the giant components emerge in the input graphs of many real networks, which provides a clear topological explanation of bifurcation phenomenon emerging in dense networks and promotes us to design an efficient method to alter the node type in control. The findings provide an insight into control principles of complex networks and offer a general mechanism to design a suitable control scheme for different purposes. PMID:27901102

  2. Energy scaling and reduction in controlling complex networks

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Zhong; Wang, Le-Zhi; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-04-01

    Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as determined by the structural controllability theory, there is a high probability that the energy will diverge. We develop a physical theory to explain the scaling behaviour through identification of the fundamental structural elements, the longest control chains (LCCs), that dominate the control energy. Based on the LCCs, we articulate a strategy to drastically reduce the control energy (e.g. in a large number of real-world networks). Owing to their structural nature, the LCCs may shed light on energy issues associated with control of nonlinear dynamical networks.

  3. Energy scaling and reduction in controlling complex networks

    PubMed Central

    Chen, Yu-Zhong; Wang, Le-Zhi; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-01-01

    Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as determined by the structural controllability theory, there is a high probability that the energy will diverge. We develop a physical theory to explain the scaling behaviour through identification of the fundamental structural elements, the longest control chains (LCCs), that dominate the control energy. Based on the LCCs, we articulate a strategy to drastically reduce the control energy (e.g. in a large number of real-world networks). Owing to their structural nature, the LCCs may shed light on energy issues associated with control of nonlinear dynamical networks. PMID:27152220

  4. Public authority control strategy for opinion evolution in social networks

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Xiong, Xi; Zhang, Minghong; Li, Wei

    2016-08-01

    This paper addresses the need to deal with and control public opinion and rumors. Existing strategies to control public opinion include degree, random, and adaptive bridge control strategies. In this paper, we use the HK model to present a public opinion control strategy based on public authority (PA). This means utilizing the influence of expert or high authority individuals whose opinions we control to obtain the optimum effect in the shortest time possible and thus reach a consensus of public opinion. Public authority (PA) is only influenced by individuals' attributes (age, economic status, and education level) and not their degree distribution; hence, in this paper, we assume that PA complies with two types of public authority distribution (normal and power-law). According to the proposed control strategy, our experiment is based on random, degree, and public authority control strategies in three different social networks (small-world, scale-free, and random) and we compare and analyze the strategies in terms of convergence time (T), final number of controlled agents (C), and comprehensive efficiency (E). We find that different network topologies and the distribution of the PA in the network can influence the final controlling effect. While the effect of PA strategy differs in different network topology structures, all structures achieve comprehensive efficiency with any kind of public authority distribution in any network. Our findings are consistent with several current sociological phenomena and show that in the process of public opinion/rumor control, considerable attention should be paid to high authority individuals.

  5. The Life-Changing Magic of Nonlinearity in Network Control

    NASA Astrophysics Data System (ADS)

    Cornelius, Sean

    The proper functioning and reliability of many man-made and natural systems is fundamentally tied to our ability to control them. Indeed, applications as diverse as ecosystem management, emergency response and cell reprogramming all, at their heart, require us to drive a system to--or keep it in--a desired state. This process is complicated by the nonlinear dynamics inherent to most real systems, which has traditionally been viewed as the principle obstacle to their control. In this talk, I will discuss two ways in which nonlinearity turns this view on its head, in fact representing an asset to the control of complex systems. First, I will show how nonlinearity in the form of multistability allows one to systematically design control interventions that can deliberately induce ``reverse cascading failures'', in which a network spontaneously evolves to a desirable (rather than a failed) state. Second, I will show that nonlinearity in the form of time-varying dynamics unexpectedly makes temporal networks easier to control than their static counterparts, with the former enjoying dramatic and simultaneous reductions in all costs of control. This is true despite the fact that temporality tends to fragment a network's structure, disrupting the paths that allow the directly-controlled or ``driver'' nodes to communicate with the rest of the network. Taken together, these studies shed new light on the crucial role of nonlinearity in network control, and provide support to the idea we can control nonlinearity, rather than letting nonlinearity control us.

  6. Networked Robust Predictive Control Systems Design with Packet Loss

    NASA Astrophysics Data System (ADS)

    Nguyen, Quang T.; Veselý, Vojtech; Kozáková, Alena; Pakshin, Pavel

    2014-01-01

    The paper addresses problem of designing a robust output feedback model predictive control for uncertain linear systems over networks with packet-loss. The packet-loss process is arbitrary and bounded by the control horizon of model predictive control. Networked predictive control systems with packet loss are modeled as switched linear systems. This enables us to apply the theory of switched systems to establish the stability condition. The stabilizing controller design is based on sufficient robust stability conditions formulated as a solution of bilinear matrix inequality. Finally, a benchmark numerical example-double integrator is given to illustrate the effectiveness of the proposed method.

  7. Network Cosmology

    PubMed Central

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S.; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology. PMID:23162688

  8. Network cosmology.

    PubMed

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.

  9. Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.

    PubMed

    Zhang, Yanjun; Tao, Gang; Chen, Mou

    2016-09-01

    This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.

  10. Neural Networks for Dynamic Flight Control

    DTIC Science & Technology

    1993-12-01

    uses the Adaline (22) model for development of the neural networks. Neural Graphics and other AFIT applications use a slightly different model. The...primary difference in the Nguyen application is that the Adaline uses the nonlinear function .f(a) = tanh(a) where standard backprop uses the sigmoid

  11. Filament-length-controlled elasticity in 3D fiber networks.

    PubMed

    Broedersz, C P; Sheinman, M; Mackintosh, F C

    2012-02-17

    We present a model for disordered 3D fiber networks to study their linear and nonlinear elasticity. In contrast to previous 2D models, these 3D networks with binary crosslinks are underconstrained with respect to fiber stretching elasticity, suggesting that bending may dominate their response. We find that such networks exhibit a bending-dominated elastic regime controlled by fiber length, as well as a crossover to a stretch-dominated regime for long fibers. Finally, by extending the model to the nonlinear regime, we show that these networks become intrinsically nonlinear with a vanishing linear response regime in the limit of flexible or long filaments.

  12. Lightweight simulation of air traffic control using simple temporal networks

    NASA Technical Reports Server (NTRS)

    Knight, Russell

    2005-01-01

    We provide a formulation of the air traffic control problem and a solver for this problem that makes use of temporal constraint networks and simple geometric reasoning. We provide results showing that this approach is practical for realistic simulated problems.

  13. Adaptive artificial neural network for autonomous robot control

    NASA Technical Reports Server (NTRS)

    Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.

    1992-01-01

    The topics are presented in viewgraph form and include: neural network controller for robot arm positioning with visual feedback; initial training of the arm; automatic recovery from cumulative fault scenarios; and error reduction by iterative fine movements.

  14. Autonomous Congestion Control in Delay-Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott; Jennings, Esther; Schoolcraft, Joshua

    2006-01-01

    This presentation highlights communication congestion control in delay-tolerant networks (DTNs). Large-scale future space exploration will offer complex communication challenges that may be best addressed by establishing a network infrastructure. However, current internet techniques for congestion control are not well suited for operation of a network over interplanetary distances. An alternative, delay-tolerant technique for congestion control in a delay-tolerant network is presented. A simple DTN was constructed and an experimental congestion control mechanism was applied. The mechanism appeared to be effective and each router was able to make its bundle acceptance decisions autonomously. Future research will examine more complex topologies and alternative bundle acceptance rules that might enhance performance.

  15. On neural networks in identification and control of dynamic systems

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Hyland, David C.

    1993-01-01

    This paper presents a discussion of the applicability of neural networks in the identification and control of dynamic systems. Emphasis is placed on the understanding of how the neural networks handle linear systems and how the new approach is related to conventional system identification and control methods. Extensions of the approach to nonlinear systems are then made. The paper explains the fundamental concepts of neural networks in their simplest terms. Among the topics discussed are feed forward and recurrent networks in relation to the standard state-space and observer models, linear and nonlinear auto-regressive models, linear, predictors, one-step ahead control, and model reference adaptive control for linear and nonlinear systems. Numerical examples are presented to illustrate the application of these important concepts.

  16. Data acquisition, storage and control architecture for the SuperNova Acceleration Probe

    SciTech Connect

    Prosser, Alan; Cardoso, Guilherme; Chramowicz, John; Marriner, John; Rivera, Ryan; Turqueti, Marcos; /Fermilab

    2007-05-01

    The SuperNova Acceleration Probe (SNAP) instrument is being designed to collect image and spectroscopic data for the study of dark energy in the universe. In this paper, we describe a distributed architecture for the data acquisition system which interfaces to visible light and infrared imaging detectors. The architecture includes the use of NAND flash memory for the storage of exposures in a file system. Also described is an FPGA-based lossless data compression algorithm with a configurable pre-scaler based on a novel square root data compression method to improve compression performance. The required interactions of the distributed elements with an instrument control unit will be described as well.

  17. ACCELERATED TESTING OF NEUTRON-ABSORBING ALLOYS FOR NUCLEAR CRITICALITY CONTROL

    SciTech Connect

    Ronald E. Mizia

    2011-10-01

    The US Department of Energy requires nuclear criticality control materials be used for storage of highly enriched spent nuclear fuel used in government programs and the storage of commercial spent nuclear fuel at the proposed High-Level Nuclear Waste Geological Repository located at Yucca Mountain, Nevada. Two different metallic alloys (Ni-Cr-Mo-Gd and borated stainless steel) have been chosen for this service. An accelerated corrosion test program to validate these materials for this application is described and a performance comparison is made.

  18. Telomere length in subjects with schizophrenia, their unaffected siblings and healthy controls: Evidence of accelerated aging.

    PubMed

    Czepielewski, Leticia Sanguinetti; Massuda, Raffael; Panizzutti, Bruna; da Rosa, Eduarda Dias; de Lucena, David; Macêdo, Danielle; Grun, Lucas Kich; Barbé-Tuana, Florencia María; Gama, Clarissa Severino

    2016-07-01

    Schizophrenia (SZ) is associated with broad burden. The clinical manifestations of SZ are related to pathophysiological alterations similar to what is seen in normal aging. Our aim was to evaluate the differences in telomere length (TL), a biomarker of cellular aging, in subjects with SZ (n=36), unaffected siblings (SB, n=36) and healthy controls (HC, n=47). SZ had shorter TL compared to HC, but no difference was found in SB comparing to SZ. These findings indicate that a pathological accelerated aging profile could be present in the course of SZ and further studies are needed to confirm TL as potential endophenotype, especially in at risk populations.

  19. Optimization and control of two-component radially self-accelerating beams

    SciTech Connect

    Vetter, Christian; Eichelkraut, Toni; Ornigotti, Marco; Szameit, Alexander

    2015-11-23

    We report on the properties of radially self-accelerating intensity distributions consisting of two components in the angular frequency domain. We show how this subset of solutions, in literature also known as helicon beams, possesses peculiar characteristics that enable a better control over its properties. In this work, we present a step-by-step optimization procedure to achieve the best possible intensity contrast, a distinct rotation rate and long propagation lengths. All points are discussed on a theoretical basis and are experimentally verified.

  20. Control of target-normal-sheath-accelerated protons from a guiding cone

    SciTech Connect

    Zou, D. B.; Zhuo, H. B.; Yang, X. H.; Yu, T. P.; Shao, F. Q.; Pukhov, A.

    2015-06-15

    It is demonstrated through particle-in-cell simulations that target-normal-sheath-accelerated protons can be well controlled by using a guiding cone. Compared to a conventional planar target, both the collimation and number density of proton beams are substantially improved, giving a high-quality proton beam which maintained for a longer distance without degradation. The effect is attributed to the radial electric field resulting from the charge due to the hot target electrons propagating along the cone surface. This electric field can effectively suppress the spatial spread of the protons after the expansion of the hot electrons.

  1. NOVEL TECHNIQUE OF POWER CONTROL IN MAGNETRON TRANSMITTERS FOR INTENSE ACCELERATORS

    SciTech Connect

    Kazakevich, G.; Johnson, R.; Neubauer, M.; Lebedev, V.; Schappert, W.; Yakovlev, V.

    2016-10-21

    A novel concept of a high-power magnetron transmitter allowing dynamic phase and power control at the frequency of locking signal is proposed. The transmitter compensating parasitic phase and amplitude modulations inherent in Superconducting RF (SRF) cavities within closed feedback loops is intended for powering of the intensity-frontier superconducting accelerators. The con- cept uses magnetrons driven by a sufficient resonant (in- jection-locking) signal and fed by the voltage which can be below the threshold of self-excitation. This provides an extended range of power control in a single magnetron at highest efficiency minimizing the cost of RF power unit and the operation cost. Proof-of-principle of the proposed concept demonstrated in pulsed and CW regimes with 2.45 GHz, 1kW magnetrons is discussed here. A conceptual scheme of the high-power transmitter allowing the dynamic wide-band phase and y power controls is presented and discussed.

  2. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2009-01-01

    A communications system and method are provided for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is converted into digital signals and transmitted to the controller. Network device interfaces associated with different data channels can coordinate communications with the other interfaces based on either a transition in a command message sent by the bus controller or a synchronous clock signal.

  3. Inverse Optimal Pinning Control for Complex Networks of Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Sanchez, Edgar N.; Rodriguez, David I.

    In this paper, a control strategy based on the inverse optimal control approach is applied for pinning weighted complex networks with chaotic systems at their nodes; additionally, a cost functional is minimized. This control strategy does not require to have the same coupling strength for all node connections.

  4. Control range: a controllability-based index for node significance in directed networks

    NASA Astrophysics Data System (ADS)

    Wang, Bingbo; Gao, Lin; Gao, Yong

    2012-04-01

    While a large number of methods for module detection have been developed for undirected networks, it is difficult to adapt them to handle directed networks due to the lack of consensus criteria for measuring the node significance in a directed network. In this paper, we propose a novel structural index, the control range, motivated by recent studies on the structural controllability of large-scale directed networks. The control range of a node quantifies the size of the subnetwork that the node can effectively control. A related index, called the control range similarity, is also introduced to measure the structural similarity between two nodes. When applying the index of control range to several real-world and synthetic directed networks, it is observed that the control range of the nodes is mainly influenced by the network's degree distribution and that nodes with a low degree may have a high control range. We use the index of control range similarity to detect and analyze functional modules in glossary networks and the enzyme-centric network of homo sapiens. Our results, as compared with other approaches to module detection such as modularity optimization algorithm, dynamic algorithm and clique percolation method, indicate that the proposed indices are effective and practical in depicting structural and modular characteristics of sparse directed networks.

  5. Experimental results from a network-assisted PID controller

    SciTech Connect

    Curtiss, P.S.

    1996-11-01

    The results presented here are a continuation of studies on a neural-network-based controller. Part 1 is a summary of the previous studies, and Part 2 presents new results and offers some novel techniques used for training the network and making the entire package easier to use. The two major additions are (1) efficient use of training data for dramatically reducing memory requirements and (2) incorporation of a PID algorithm for performing control during training periods.

  6. Controlling biological networks by time-delayed signals.

    PubMed

    Orosz, Gábor; Moehlis, Jeff; Murray, Richard M

    2010-01-28

    This paper describes the use of time-delayed feedback to regulate the behaviour of biological networks. The general ideas on specific transcriptional regulatory and neural networks are demonstrated. It is shown that robust yet tunable controllers can be constructed that provide the biological systems with model-engineered inputs. The results indicate that time delay modulation may serve as an efficient biocompatible control tool.

  7. Controllability and Synchronization Analysis of Identical-Hierarchy Mixed-Valued Logical Control Networks.

    PubMed

    Zhong, Jie; Lu, Jianquan; Huang, Tingwen; Ho, Daniel W C

    2016-06-14

    This paper investigates the controllability and synchronization problems for identical-hierarchy mixed-valued logical control networks. The logical network considered is hierarchical, and Boolean network is a special case of logical network. Here, identical-hierarchy means that there are identical number of nodes in each layer of logical network and corresponding nodes have the same dimension for any two layers of logical networks. Meanwhile, in each layer of logical networks, the dimensions of nodes are distinct, and it is called a mixed-valued logical network. First, the controllability problem is investigated and two notions of controllability are presented, i.e., group-controllability and simultaneously-controllability. By resorting to Perron-Frobenius theorem, some necessary and sufficient criteria are obtained to guarantee group-controllability and simultaneously-controllability, respectively. Second, based on the algebraic representation of the studied model, synchronization problems are analytically discussed for two types of controls, i.e., free control sequences and state-output feedback control. Finally, two numerical examples are presented to show the validness of our main results.

  8. Adaptive Quality of Transmission Control in Elastic Optical Network

    NASA Astrophysics Data System (ADS)

    Cai, Xinran

    Optical fiber communication is becoming increasingly important due to the burgeoning demand in the internet capacity. However, traditional wavelength division multiplexing (WDM) technique fails to address such demand because of its inefficient spectral utilization. As a result, elastic optical networking (EON) has been under extensive investigation recently. Such network allows sub-wavelength and super-wavelength channel accommodation, and mitigates the stranded bandwidth problem in the WDM network. In addition, elastic optical network is also able to dynamically allocate the spectral resources of the network based on channel conditions and impairments, and adaptively control the quality of transmission of a channel. This application requires two aspects to be investigated: an efficient optical performance monitoring scheme and networking control and management algorithms to reconfigure the network in a dynamic fashion. This thesis focuses on the two aspects discussed above about adaptive QoT control. We demonstrated a supervisory channel method for optical signal to noise ratio (OSNR) and chromatic dispersion (CD) monitoring. In addition, our proof-of-principle testbed experiments show successful impairment aware reconfiguration of the network with modulation format switching (MFS) only and MFS combined with lightpath rerouting (LR) for hundred-GHz QPSK superchannels undergoing time-varying OSNR impairment.

  9. Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control

    PubMed Central

    Seeley, William W.; Menon, Vinod; Schatzberg, Alan F.; Keller, Jennifer; Glover, Gary H.; Kenna, Heather; Reiss, Allan L.; Greicius, Michael D.

    2008-01-01

    Variations in neural circuitry, inherited or acquired, may underlie important individual differences in thought, feeling, and action patterns. Here, we used task-free connectivity analyses to isolate and characterize two distinct networks typically coactivated during functional MRI tasks. We identified a “salience network,” anchored by dorsal anterior cingulate (dACC) and orbital frontoinsular cortices with robust connectivity to subcortical and limbic structures, and an “executive-control network” that links dorsolateral frontal and parietal neocortices. These intrinsic connectivity networks showed dissociable correlations with functions measured outside the scanner. Prescan anxiety ratings correlated with intrinsic functional connectivity of the dACC node of the salience network, but with no region in the executive-control network, whereas executive task performance correlated with lateral parietal nodes of the executive-control network, but with no region in the salience network. Our findings suggest that task-free analysis of intrinsic connectivity networks may help elucidate the neural architectures that support fundamental aspects of human behavior. PMID:17329432

  10. Useful technique for analysis and control of the acceleration beam phase in the azimuthally varying field cyclotron

    NASA Astrophysics Data System (ADS)

    Kurashima, Satoshi; Yuyama, Takahiro; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Fukuda, Mitsuhiro

    2010-03-01

    We have developed a new technique for analysis and control of the acceleration beam phase in the cyclotron. In this technique, the beam current pattern at a fixed radius r is measured by slightly scanning the acceleration frequency in the cyclotron. The acceleration beam phase is obtained by analyzing symmetry of the current pattern. Simple procedure to control the acceleration beam phase by changing coil currents of a few trim coils was established. The beam phase width is also obtained by analyzing gradient of the decreasing part of the current pattern. We verified reliability of this technique with 260 MeV N20e7+ beams which were accelerated on different tuning condition of the cyclotron. When the acceleration beam phase was around 0°, top of the energy gain of cosine wave, and the beam phase width was about 6° in full width at half maximum, a clear turn pattern of the beam was observed with a differential beam probe in the extraction region. Beam phase widths of ion beams at acceleration harmonics of h =1 and h =2 were estimated without beam cutting by phase-defining slits. We also calculated the beam phase widths roughly from the beam current ratio between the injected beam and the accelerated beam in the cyclotron without operating the beam buncher. Both beam phase widths were almost the same for h =1, while phase compressions by a factor of about 3 were confirmed for h =2.

  11. Useful technique for analysis and control of the acceleration beam phase in the azimuthally varying field cyclotron

    SciTech Connect

    Kurashima, Satoshi; Yuyama, Takahiro; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Fukuda, Mitsuhiro

    2010-03-15

    We have developed a new technique for analysis and control of the acceleration beam phase in the cyclotron. In this technique, the beam current pattern at a fixed radius r is measured by slightly scanning the acceleration frequency in the cyclotron. The acceleration beam phase is obtained by analyzing symmetry of the current pattern. Simple procedure to control the acceleration beam phase by changing coil currents of a few trim coils was established. The beam phase width is also obtained by analyzing gradient of the decreasing part of the current pattern. We verified reliability of this technique with 260 MeV {sup 20}Ne{sup 7+} beams which were accelerated on different tuning condition of the cyclotron. When the acceleration beam phase was around 0 deg., top of the energy gain of cosine wave, and the beam phase width was about 6 deg. in full width at half maximum, a clear turn pattern of the beam was observed with a differential beam probe in the extraction region. Beam phase widths of ion beams at acceleration harmonics of h=1 and h=2 were estimated without beam cutting by phase-defining slits. We also calculated the beam phase widths roughly from the beam current ratio between the injected beam and the accelerated beam in the cyclotron without operating the beam buncher. Both beam phase widths were almost the same for h=1, while phase compressions by a factor of about 3 were confirmed for h=2.

  12. Centralized and distributed control architectures under Foundation Fieldbus network.

    PubMed

    Persechini, Maria Auxiliadora Muanis; Jota, Fábio Gonçalves

    2013-01-01

    This paper aims at discussing possible automation and control system architectures based on fieldbus networks in which the controllers can be implemented either in a centralized or in a distributed form. An experimental setup is used to demonstrate some of the addressed issues. The control and automation architecture is composed of a supervisory system, a programmable logic controller and various other devices connected to a Foundation Fieldbus H1 network. The procedures used in the network configuration, in the process modelling and in the design and implementation of controllers are described. The specificities of each one of the considered logical organizations are also discussed. Finally, experimental results are analysed using an algorithm for the assessment of control loops to compare the performances between the centralized and the distributed implementations.

  13. Fracture energy of polymer gels with controlled network structures

    NASA Astrophysics Data System (ADS)

    Akagi, Yuki; Sakurai, Hayato; Gong, Jian Ping; Chung, Ung-il; Sakai, Takamasa

    2013-10-01

    We have investigated the fracture behaviors of tetra-arm polyethylene glycol (Tetra-PEG) gels with controlled network structures. Tetra-PEG gels were prepared by AB-type crosslink-coupling of mutually reactive tetra-arm prepolymers with different concentrations and molecular weights. This series of controlled network structures, for the first time, enabled us to quantitatively examine the Lake-Thomas model, which is the most popular model predicting fracture energies of elastomers. The experimental data showed good agreement with the Lake-Thomas model, and indicated a new molecular interpretation for the displacement length (L), the area around a crack tip within which the network strands are fully stretched. L corresponded to the three times of end-to-end distance of network strands, regardless of all parameters examined. We conclude that the Lake-Thomas model can quantitatively predict the fracture energy of polymer network without trapped entanglements, with the enhancement factor being near 3.

  14. Fracture energy of polymer gels with controlled network structures.

    PubMed

    Akagi, Yuki; Sakurai, Hayato; Gong, Jian Ping; Chung, Ung-il; Sakai, Takamasa

    2013-10-14

    We have investigated the fracture behaviors of tetra-arm polyethylene glycol (Tetra-PEG) gels with controlled network structures. Tetra-PEG gels were prepared by AB-type crosslink-coupling of mutually reactive tetra-arm prepolymers with different concentrations and molecular weights. This series of controlled network structures, for the first time, enabled us to quantitatively examine the Lake-Thomas model, which is the most popular model predicting fracture energies of elastomers. The experimental data showed good agreement with the Lake-Thomas model, and indicated a new molecular interpretation for the displacement length (L), the area around a crack tip within which the network strands are fully stretched. L corresponded to the three times of end-to-end distance of network strands, regardless of all parameters examined. We conclude that the Lake-Thomas model can quantitatively predict the fracture energy of polymer network without trapped entanglements, with the enhancement factor being near 3.

  15. Brain and cognitive reserve: Translation via network control theory.

    PubMed

    Medaglia, John Dominic; Pasqualetti, Fabio; Hamilton, Roy H; Thompson-Schill, Sharon L; Bassett, Danielle S

    2017-04-01

    Traditional approaches to understanding the brain's resilience to neuropathology have identified neurophysiological variables, often described as brain or cognitive "reserve," associated with better outcomes. However, mechanisms of function and resilience in large-scale brain networks remain poorly understood. Dynamic network theory may provide a basis for substantive advances in understanding functional resilience in the human brain. In this perspective, we describe recent theoretical approaches from network control theory as a framework for investigating network level mechanisms underlying cognitive function and the dynamics of neuroplasticity in the human brain. We describe the theoretical opportunities offered by the application of network control theory at the level of the human connectome to understand cognitive resilience and inform translational intervention.

  16. Quality of service policy control in virtual private networks

    NASA Astrophysics Data System (ADS)

    Yu, Yiqing; Wang, Hongbin; Zhou, Zhi; Zhou, Dongru

    2004-04-01

    This paper studies the QoS of VPN in an environment where the public network prices connection-oriented services based on source, destination and grade of service, and advertises these prices to its VPN customers (users). As different QoS technologies can produce different QoS, there are according different traffic classification rules and priority rules. The internet service provider (ISP) may need to build complex mechanisms separately for each node. In order to reduce the burden of network configuration, we need to design policy control technologies. We considers mainly directory server, policy server, policy manager and policy enforcers. Policy decision point (PDP) decide its control according to policy rules. In network, policy enforce point (PEP) decide its network controlled unit. For InterServ and DiffServ, we will adopt different policy control methods as following: (1) In InterServ, traffic uses resource reservation protocol (RSVP) to guarantee the network resource. (2) In DiffServ, policy server controls the DiffServ code points and per hop behavior (PHB), its PDP distributes information to each network node. Policy server will function as following: information searching; decision mechanism; decision delivering; auto-configuration. In order to prove the effectiveness of QoS policy control, we make the corrective simulation.

  17. Adaptive mechanism-based congestion control for networked systems

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Zhang, Yun; Chen, C. L. Philip

    2013-03-01

    In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.

  18. Geodetic Network For Crustal Deformation Control of Northernvictoria Land (antarctica)

    NASA Astrophysics Data System (ADS)

    Capra, A.; Bitelli, G.; Gandolfi, S.; Mancini, F.; Sarti, P.; Vittuari, L.

    VLNDEF (Victoria Land Network for DEFormation control) project started in 1999 with the aim to measure a network for the study of regional geodynamics of northern Victoria Land. In 1999-2000 and 2000-01 italian expeditions, a network of 25 stations with an average distance of 70 km covering the area from Terra Nova Bay, italian sta- tion in Antarctica, to the northern Oates Coast on Pacific ocean, about 700 km long and about 300 km large, was established and surveyed. The network design and stations location were based on principal faults of the area pointed out by most recent tecton- ics studies. The research activity is made within GIANT (Geodetic Infrastructure of ANTarctica) program and ANTEC (ANtarctic neoTECtonics) Group of Specialists of SCAR (Scientific Committee on Antarctic Research).The network coordinates are de- fined in most recent ITRF 2000 system through the emanation from GPS permanent station TNB1. TNB1 was included in SCAR GPS Epoch measurements campaigns and, consequently, connected to IGS network in 2000. VLNDEF includes the first italian reference network about 5000 square km around Terra Nova Bay, and a small network for Mt.Melbourne volcano monitoring. The reference network was surveyed three time, while the detail network was surveyed five time. The data were processed with different software, more recently with Bernese and Gipsy. The processing results and a preliminary approach for deformation analysis are presented.

  19. STIMULUS: End-System Network Interface Controller for 100 Gb/s Wide Area Networks

    SciTech Connect

    Zarkesh-Ha, Payman

    2014-09-12

    The main goal of this research grant is to develop a system-level solution leveraging novel technologies that enable network communications at 100 Gb/s or beyond. University of New Mexico in collaboration with Acadia Optronics LLC has been working on this project to develop the 100 Gb/s Network Interface Controller (NIC) under this Department of Energy (DOE) grant.

  20. Improved Stabilization Method for Lurie Networked Control Systems

    PubMed Central

    Zeng, Hong-Bing; Xiao, Shen-Ping; Yu, Fei

    2014-01-01

    The problem of stabilization of Lurie networked control systems (NCSs) is investigated in this paper. The network-induced delays in NCSs are assumed to be time-varying and bounded. By utilizing a reciprocally convex technique to consider the relationship between the network-induced delay and its varying interval, a new absolute stability condition is derived in terms of linear matrix inequalities (LMIs). Based on the obtained condition, an improved cone complementary linearisation (CCL) iteration algorithm is presented to design a state feedback controller. The effectiveness of the proposed method is verified by a numerical example. PMID:24892090

  1. Prediction and control of chaotic processes using nonlinear adaptive networks

    SciTech Connect

    Jones, R.D.; Barnes, C.W.; Flake, G.W.; Lee, K.; Lewis, P.S.; O'Rouke, M.K.; Qian, S.

    1990-01-01

    We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We then present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series, tidal prediction in Venice lagoon, finite differencing, sonar transient detection, control of nonlinear processes, control of a negative ion source, balancing a double inverted pendulum and design advice for free electron lasers and laser fusion targets.

  2. Self-organized call admission control for optical communication networks

    NASA Astrophysics Data System (ADS)

    Zuo, Bing; Liu, Lei; Wu, Jian; Lin, Jintong

    2008-11-01

    Call Admission Control (CAC) is widely used in optical communication networks to reduce network congestion. However, the conventional CAC scheme recommended by International Telecommunication Union -Telecommunication Standardization Sector (ITU-T) has a serious deficiency under high traffic load. In this paper, the disadvantage of conventional CAC scheme is analyzed in detail, and a Self-organized Call Admission Control (SCAC) scheme is proposed to solve this disadvantage. This scheme is accord with the principle of self-organization system, so it can be easily implemented in practice. Numerical results show that the proposed scheme can improve the network performance to a great extent.

  3. Vibro-acoustic control with a distributed sensor network.

    PubMed

    Frampton, Kenneth D

    2006-04-01

    The purpose of this work is to demonstrate the ability of a distributed control system, based on a smart sensor network, to reduce acoustic radiation from a vibrating structure. The platform from which control is effected consists of a network of smart sensors, each referred to as a node. Each node possesses its own computational capability, sensor, actuator and the ability to communicate with other nodes via a wired or wireless network. The primary focus of this work is to employ existing group management middleware concepts to enable vibro-acoustic control with such a distributed network. Group management middleware is distributed software that provides for the establishment and maintenance of groups of distributed nodes and that provides for the network communication among such groups. The control objective is met by designing distributed feedback compensators that take advantage of node groups in order to effect their control. The node groups are formed based on physical proximity. The global control objective is to minimize the radiated sound power from a rectangular plate. Results of this investigation demonstrate that such a distributed control system can achieve attenuations comparable to those achieved by a centralized controller.

  4. Feedback control and output feedback control for the stabilisation of switched Boolean networks

    NASA Astrophysics Data System (ADS)

    Li, Fangfei; Yu, Zhaoxu

    2016-02-01

    This paper presents the feedback control and output feedback control for the stabilisation of switched Boolean network. A necessary condition for the existence of a state feedback controller for the stabilisation of switched Boolean networks under arbitrary switching signal is derived first, and constructive procedures for feedback control and output feedback control design are provided. An example is introduced to show the effectiveness of this paper.

  5. Galileo EM-2 contributions to the lunar control network

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Colvin, T. R.; Belton, M. J. S.; Greeley, R.

    1993-01-01

    A local control network is being developed using Galileo images that cover the region north of the Apollo area and lie between 10 and 100 degrees east longitude. This network is tied to the Apollo control network and will have a positional accuracy of approximately 500-1500 m. This region has been photographed by Earth-based telescopes and the Mariner 10 and Lunar Orbiter spacecraft, but the Gallileo images are preferred for control because of their superior viewing angles, resolution, and Galileo's geometrically stable sensor. Based on Davies et al., 1987, the potential accuracy of the near-side Apollo network is estimated to be between 50 and 300 m. The laser ranging retroreflector locations at the Apollo 11, 14, and 15 sites and the Lunikhod 2 site have been determined with an accuracy of about 10 m. The locations of the ALSEP transmitters relative to the retroreflectors have also been measured. These known coordinates are used to estimate errors in the Apollo network. The telescopic control is approximately bounded by 75 degrees north and south latitude and 75 degrees east and west longitudes. The accuracy of the telescopic network is thought to be about one to two km. Thus, the Galileo network might improve coordinates in the telescopic area as well as north and east of it.

  6. Interaction Control to Synchronize Non-synchronizable Networks.

    PubMed

    Schröder, Malte; Chakraborty, Sagar; Witthaut, Dirk; Nagler, Jan; Timme, Marc

    2016-11-17

    Synchronization constitutes one of the most fundamental collective dynamics across networked systems and often underlies their function. Whether a system may synchronize depends on the internal unit dynamics as well as the topology and strength of their interactions. For chaotic units with certain interaction topologies synchronization might be impossible across all interaction strengths, meaning that these networks are non-synchronizable. Here we propose the concept of interaction control, generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may localize interactions in state space and thereby synchronize networks. Intriguingly, localizing interactions by a fixed control scheme enables stable synchronization across all connected networks regardless of topological constraints. Interaction control may thus ease the design of desired collective dynamics even without knowledge of the networks' exact interaction topology and consequently have implications for biological and self-organizing technical systems.

  7. Networked event-triggered control: an introduction and research trends

    NASA Astrophysics Data System (ADS)

    Mahmoud, Magdi S.; Sabih, Muhammad

    2014-11-01

    A physical system can be studied as either continuous time or discrete-time system depending upon the control objectives. Discrete-time control systems can be further classified into two categories based on the sampling: (1) time-triggered control systems and (2) event-triggered control systems. Time-triggered systems sample states and calculate controls at every sampling instant in a periodic fashion, even in cases when states and calculated control do not change much. This indicates unnecessary and useless data transmission and computation efforts of a time-triggered system, thus inefficiency. For networked systems, the transmission of measurement and control signals, thus, cause unnecessary network traffic. Event-triggered systems, on the other hand, have potential to reduce the communication burden in addition to reducing the computation of control signals. This paper provides an up-to-date survey on the event-triggered methods for control systems and highlights the potential research directions.

  8. Neural network based dynamic controllers for industrial robots.

    PubMed

    Oh, S Y; Shin, W C; Kim, H G

    1995-09-01

    The industrial robot's dynamic performance is frequently measured by positioning accuracy at high speeds and a good dynamic controller is essential that can accurately compute robot dynamics at a servo rate high enough to ensure system stability. A real-time dynamic controller for an industrial robot is developed here using neural networks. First, an efficient time-selectable hidden layer architecture has been developed based on system dynamics localized in time, which lends itself to real-time learning and control along with enhanced mapping accuracy. Second, the neural network architecture has also been specially tuned to accommodate servo dynamics. This not only facilitates the system design through reduced sensing requirements for the controller but also enhances the control performance over the control architecture neglecting servo dynamics. Experimental results demonstrate the controller's excellent learning and control performances compared with a conventional controller and thus has good potential for practical use in industrial robots.

  9. Topology Control within the Airborne Network Backbone

    DTIC Science & Technology

    2009-10-01

    redundancy in routing and interference minimization. To avoid co-site interference and ease of SINR maximization MAToC assigns spectro - temporal...within each other’s interference range. The number of spectro - temporal slots that can be assigned is dependent on the availability of communication...circumstances the local link repair module can opt to use a new channel provided it does not disturb the equilibrium at other nodes in the network. The

  10. A Calculator Controlled Microwave Network Analyzer System.

    DTIC Science & Technology

    1977-03-01

    A Hewlett Packard 8410S (Option 310) Microwave Network Analyzer System and the input/output interface to a Wang 600-14 Programmable Calculator are described. The original design of a digital to analog interface between the Wang 600-14 Calculator and a HP 8690B Sweep Oscillator is presented. Two system software programs which implement automatic S-parameter data collection and either external data storage or data reduction and display are described and documented. (Author)

  11. Temporal modulation of collective cell behavior controls vascular network topology.

    PubMed

    Kur, Esther; Kim, Jiha; Tata, Aleksandra; Comin, Cesar H; Harrington, Kyle I; Costa, Luciano da F; Bentley, Katie; Gu, Chenghua

    2016-02-24

    Vascular network density determines the amount of oxygen and nutrients delivered to host tissues, but how the vast diversity of densities is generated is unknown. Reiterations of endothelial-tip-cell selection, sprout extension and anastomosis are the basis for vascular network generation, a process governed by the VEGF/Notch feedback loop. Here, we find that temporal regulation of this feedback loop, a previously unexplored dimension, is the key mechanism to determine vascular density. Iterating between computational modeling and in vivo live imaging, we demonstrate that the rate of tip-cell selection determines the length of linear sprout extension at the expense of branching, dictating network density. We provide the first example of a host tissue-derived signal (Semaphorin3E-Plexin-D1) that accelerates tip cell selection rate, yielding a dense network. We propose that temporal regulation of this critical, iterative aspect of network formation could be a general mechanism, and additional temporal regulators may exist to sculpt vascular topology.

  12. Temporal modulation of collective cell behavior controls vascular network topology

    PubMed Central

    Kur, Esther; Kim, Jiha; Tata, Aleksandra; Comin, Cesar H; Harrington, Kyle I; Costa, Luciano da F; Bentley, Katie; Gu, Chenghua

    2016-01-01

    Vascular network density determines the amount of oxygen and nutrients delivered to host tissues, but how the vast diversity of densities is generated is unknown. Reiterations of endothelial-tip-cell selection, sprout extension and anastomosis are the basis for vascular network generation, a process governed by the VEGF/Notch feedback loop. Here, we find that temporal regulation of this feedback loop, a previously unexplored dimension, is the key mechanism to determine vascular density. Iterating between computational modeling and in vivo live imaging, we demonstrate that the rate of tip-cell selection determines the length of linear sprout extension at the expense of branching, dictating network density. We provide the first example of a host tissue-derived signal (Semaphorin3E-Plexin-D1) that accelerates tip cell selection rate, yielding a dense network. We propose that temporal regulation of this critical, iterative aspect of network formation could be a general mechanism, and additional temporal regulators may exist to sculpt vascular topology. DOI: http://dx.doi.org/10.7554/eLife.13212.001 PMID:26910011

  13. Visions for the future of particle accelerators

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    The ambitions of accelerator based science, technology and applications far exceed the present accelerator possibilities. Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results and visions for the future in the domain of accelerator science and technology in Europe, shown during the final fourth annual meeting of the EuCARD - European Coordination of Accelerator Research and Development. The conference concerns building of the research infrastructure, including advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution. The main subject is however the vision for the future of particle accelerators and next generation light sources.

  14. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  15. Controllability of Boolean networks via input controls under Harvey's update scheme.

    PubMed

    Luo, Chao; Zhang, Xiaolin; Shao, Rui; Zheng, YuanJie

    2016-02-01

    In this article, the controllability of Boolean networks via input controls under Harvey's update scheme is investigated. First, the model of Boolean control networks under Harvey's stochastic update is proposed, by means of semi-tensor product approach, which is converted into discrete-time linear representation. And, a general formula of control-depending network transition matrix is provided. Second, based on discrete-time dynamics, controllability of the proposed model is analytically discussed by revealing the necessary and sufficient conditions of the reachable sets, respectively, for three kinds of controls, i.e., free Boolean control sequence, input control networks, and close-loop control. Examples are showed to demonstrate the effectiveness and feasibility of the proposed scheme.

  16. Controllability of Boolean networks via input controls under Harvey's update scheme

    NASA Astrophysics Data System (ADS)

    Luo, Chao; Zhang, Xiaolin; Shao, Rui; Zheng, YuanJie

    2016-02-01

    In this article, the controllability of Boolean networks via input controls under Harvey's update scheme is investigated. First, the model of Boolean control networks under Harvey's stochastic update is proposed, by means of semi-tensor product approach, which is converted into discrete-time linear representation. And, a general formula of control-depending network transition matrix is provided. Second, based on discrete-time dynamics, controllability of the proposed model is analytically discussed by revealing the necessary and sufficient conditions of the reachable sets, respectively, for three kinds of controls, i.e., free Boolean control sequence, input control networks, and close-loop control. Examples are showed to demonstrate the effectiveness and feasibility of the proposed scheme.

  17. The use of computed radiography for routine linear accelerator and simulator quality control.

    PubMed

    Patel, I; Natarajan, T; Hassan, S S; Kirby, M C

    2009-10-01

    Computed radiography (CR) systems were originally developed for the purpose of clinical imaging, and there has been much work published on its effectiveness as a film replacement for this end. However, there has been little published on its use for routine linear accelerator and simulator quality control, and therefore we have evaluated the use of the Kodak 2000RT system with large Agfa CR plates as a replacement for film for this function. A prerequisite for any such use is a detailed understanding of the system behaviour, hence characteristics such as spatial uniformity of response, reproducibility of spatial accuracy, plate signal decay with time and the dose-response of plates were investigated. Finally, a comparison of results obtained using CR for the measurement of radiation field dimensions was made against those from radiographic film, and found to be in agreement within 0.1 mm (mean difference for high-resolution images, 0.3 mm root mean square difference) for megavoltage images and 0.3 mm (maximum difference) for simulator images. In conclusion, the CR system has been shown to be a good alternative to radiographic film for routine quality control of linear accelerators and simulators.

  18. Development of Velocity Guidance Assistance System by Haptic Accelerator Pedal Reaction Force Control

    NASA Astrophysics Data System (ADS)

    Yin, Feilong; Hayashi, Ryuzo; Raksincharoensak, Pongsathorn; Nagai, Masao

    This research proposes a haptic velocity guidance assistance system for realizing eco-driving as well as enhancing traffic capacity by cooperating with ITS (Intelligent Transportation Systems). The proposed guidance system generates the desired accelerator pedal (abbreviated as pedal) stroke with respect to the desired velocity obtained from ITS considering vehicle dynamics, and provides the desired pedal stroke to the driver via a haptic pedal whose reaction force is controllable and guides the driver in order to trace the desired velocity in real time. The main purpose of this paper is to discuss the feasibility of the haptic velocity guidance. A haptic velocity guidance system for research is developed on the Driving Simulator of TUAT (DS), by attaching a low-inertia, low-friction motor to the pedal, which does not change the original characteristics of the original pedal when it is not operated, implementing an algorithm regarding the desired pedal stroke calculation and the reaction force controller. The haptic guidance maneuver is designed based on human pedal stepping experiments. A simple velocity profile with acceleration, deceleration and cruising is synthesized according to naturalistic driving for testing the proposed system. The experiment result of 9 drivers shows that the haptic guidance provides high accuracy and quick response in velocity tracking. These results prove that the haptic guidance is a promising velocity guidance method from the viewpoint of HMI (Human Machine Interface).

  19. A unified lunar control network - The near side

    NASA Technical Reports Server (NTRS)

    Davies, Merton E.; Colvin, Tim R.; Meyer, Donald L.

    1987-01-01

    A unified lunar control network for the moon's near side, which combines all the data collected by the Lunokhod 2 and Apollo 11, 14, 15, 16, and 17 missions, is presented. Transformations involving translation, rotation, and scale were determined that adjusted the coordinates of the points of three Apollo control networks, computed previously, to the center of mass origin and the mean earth/polar axis coordinate system defined by the lunar ranging retroreflector experiment. The transformed control network computed by the Defense Mapping Agency Aerospace Center was found to be the best fit to the Apollo ALSEP antenna coordinates and was selected as a base to transform all points in Meyer's (1979) telescopic network to the new origin and coordinate system. New coordinates of 1156 of these points are given as are 10 points from a Mariner 10 solution in the north polar region.

  20. Space Network Control Conference on Resource Allocation Concepts and Approaches

    NASA Technical Reports Server (NTRS)

    Moe, Karen L. (Editor)

    1991-01-01

    The results are presented of the Space Network Control (SNC) Conference. In the late 1990s, when the Advanced Tracking and Data Relay Satellite System is operational, Space Network communication services will be supported and controlled by the SNC. The goals of the conference were to survey existing resource allocation concepts and approaches, to identify solutions applicable to the Space Network, and to identify avenues of study in support of the SNC development. The conference was divided into three sessions: (1) Concepts for Space Network Allocation; (2) SNC and User Payload Operations Control Center (POCC) Human-Computer Interface Concepts; and (3) Resource Allocation Tools, Technology, and Algorithms. Key recommendations addressed approaches to achieving higher levels of automation in the scheduling process.

  1. Goal-congruent default network activity facilitates cognitive control.

    PubMed

    Spreng, R Nathan; DuPre, Elizabeth; Selarka, Dhawal; Garcia, Juliana; Gojkovic, Stefan; Mildner, Judith; Luh, Wen-Ming; Turner, Gary R

    2014-10-15

    Substantial neuroimaging evidence suggests that spontaneous engagement of the default network impairs performance on tasks requiring executive control. We investigated whether this impairment depends on the congruence between executive control demands and internal mentation. We hypothesized that activation of the default network might enhance performance on an executive control task if control processes engage long-term memory representations that are supported by the default network. Using fMRI, we scanned 36 healthy young adult humans on a novel two-back task requiring working memory for famous and anonymous faces. In this task, participants (1) matched anonymous faces interleaved with anonymous face, (2) matched anonymous faces interleaved with a famous face, or (3) matched a famous faces interleaved with an anonymous face. As predicted, we observed a facilitation effect when matching famous faces, compared with anonymous faces. We also observed greater activation of the default network during these famous face-matching trials. The results suggest that activation of the default network can contribute to task performance during an externally directed executive control task. Our findings provide evidence that successful activation of the default network in a contextually relevant manner facilitates goal-directed cognition.

  2. On controlling networks of limit-cycle oscillators

    NASA Astrophysics Data System (ADS)

    Skardal, Per Sebastian; Arenas, Alex

    2016-09-01

    The control of network-coupled nonlinear dynamical systems is an active area of research in the nonlinear science community. Coupled oscillator networks represent a particularly important family of nonlinear systems, with applications ranging from the power grid to cardiac excitation. Here, we study the control of network-coupled limit cycle oscillators, extending the previous work that focused on phase oscillators. Based on stabilizing a target fixed point, our method aims to attain complete frequency synchronization, i.e., consensus, by applying control to as few oscillators as possible. We develop two types of controls. The first type directs oscillators towards larger amplitudes, while the second does not. We present numerical examples of both control types and comment on the potential failures of the method.

  3. Neural Network Control of a Magnetically Suspended Rotor System

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Brown, Gerald; Johnson, Dexter

    1997-01-01

    Abstract Magnetic bearings offer significant advantages because of their noncontact operation, which can reduce maintenance. Higher speeds, no friction, no lubrication, weight reduction, precise position control, and active damping make them far superior to conventional contact bearings. However, there are technical barriers that limit the application of this technology in industry. One of them is the need for a nonlinear controller that can overcome the system nonlinearity and uncertainty inherent in magnetic bearings. This paper discusses the use of a neural network as a nonlinear controller that circumvents system nonlinearity. A neural network controller was well trained and successfully demonstrated on a small magnetic bearing rig. This work demonstrated the feasibility of using a neural network to control nonlinear magnetic bearings and systems with unknown dynamics.

  4. Robust ?dynamic output feedback control of networked control systems with congestion control

    NASA Astrophysics Data System (ADS)

    Rasool, Faiz; Kiong Ngaung, Sing

    2015-07-01

    This paper investigates a robust ?dynamic output feedback controller for networked control systems (NCSs) with a simple congestion control scheme. This scheme enables the NCSs design to enjoy advantages of both time-triggered and event-triggered systems. The proposed scheme compares current measurement with last transmitted measurement. If difference between them is less than a prescribed percentage of the current measurements then no measurement is transmitted to controller and the controller always uses the last transmitted measurements to calculate feedback gains. Moreover, this technique is applied to controller output as well. The stability criteria for closed-loop system is formulated using the Lyapunov-Krasovskii functional approach. The sufficient conditions for the controller are given in terms of solvability of bilinear matrix inequalities (BMIs). These BMIs are converted into quasi-convex linear matrix inequalities that are solved using the cone complementarity linearisation algorithm. A simulation example is used to evaluate how effective the simple congestion control scheme is in reducing network bandwidth.

  5. Identifying Controlling Nodes in Neuronal Networks in Different Scales

    PubMed Central

    Tang, Yang; Gao, Huijun; Zou, Wei; Kurths, Jürgen

    2012-01-01

    Recent studies have detected hubs in neuronal networks using degree, betweenness centrality, motif and synchronization and revealed the importance of hubs in their structural and functional roles. In addition, the analysis of complex networks in different scales are widely used in physics community. This can provide detailed insights into the intrinsic properties of networks. In this study, we focus on the identification of controlling regions in cortical networks of cats’ brain in microscopic, mesoscopic and macroscopic scales, based on single-objective evolutionary computation methods. The problem is investigated by considering two measures of controllability separately. The impact of the number of driver nodes on controllability is revealed and the properties of controlling nodes are shown in a statistical way. Our results show that the statistical properties of the controlling nodes display a concave or convex shape with an increase of the allowed number of controlling nodes, revealing a transition in choosing driver nodes from the areas with a large degree to the areas with a low degree. Interestingly, the community Auditory in cats’ brain, which has sparse connections with other communities, plays an important role in controlling the neuronal networks. PMID:22848475

  6. A Hybrid Authentication and Authorization Process for Control System Networks

    SciTech Connect

    Manz, David O.; Edgar, Thomas W.; Fink, Glenn A.

    2010-08-25

    Convergence of control system and IT networks require that security, privacy, and trust be addressed. Trust management continues to plague traditional IT managers and is even more complex when extended into control system networks, with potentially millions of entities, a mission that requires 100% availability. Yet these very networks necessitate a trusted secure environment where controllers and managers can be assured that the systems are secure and functioning properly. We propose a hybrid authentication management protocol that addresses the unique issues inherent within control system networks, while leveraging the considerable research and momentum in existing IT authentication schemes. Our hybrid authentication protocol for control systems provides end device to end device authentication within a remote station and between remote stations and control centers. Additionally, the hybrid protocol is failsafe and will not interrupt communication or control of vital systems in a network partition or device failure. Finally, the hybrid protocol is resilient to transitory link loss and can operate in an island mode until connectivity is reestablished.

  7. Distributed synchronization control of complex networks with communication constraints.

    PubMed

    Xu, Zhenhua; Zhang, Dan; Song, Hongbo

    2016-11-01

    This paper is concerned with the distributed synchronization control of complex networks with communication constraints. In this work, the controllers communicate with each other through the wireless network, acting as a controller network. Due to the constrained transmission power, techniques such as the packet size reduction and transmission rate reduction schemes are proposed which could help reduce communication load of the controller network. The packet dropout problem is also considered in the controller design since it is often encountered in networked control systems. We show that the closed-loop system can be modeled as a switched system with uncertainties and random variables. By resorting to the switched system approach and some stochastic system analysis method, a new sufficient condition is firstly proposed such that the exponential synchronization is guaranteed in the mean-square sense. The controller gains are determined by using the well-known cone complementarity linearization (CCL) algorithm. Finally, a simulation study is performed, which demonstrates the effectiveness of the proposed design algorithm.

  8. Generalized synchronization of complex dynamical networks via impulsive control.

    PubMed

    Chen, Juan; Lu, Jun-An; Wu, Xiaoqun; Zheng, Wei Xing

    2009-12-01

    This paper investigates the generalized synchronization (GS) of two typical complex dynamical networks, small-world networks and scale-free networks, in terms of impulsive control strategy. By applying the auxiliary-system approach to networks, we demonstrate theoretically that for any given coupling strength, GS can take place in complex dynamical networks consisting of nonidentical systems. Particularly, for Barabasi-Albert scale-free networks, we look into the relations between GS error and topological parameter m, which denotes the number of edges linking to a new node at each time step, and find out that GS speeds up with increasing m. And for Newman-Watts small-world networks, the time needed to achieve GS decreases as the probability of adding random edges increases. We further reveal how node dynamics affects GS speed on both small-world and scale-free networks. Finally, we analyze how the development of GS depends on impulsive control gains. Some abnormal but interesting phenomena regarding the GS process are also found in simulations.

  9. Utilization of Integrated Process Control, Data Capture, and Data Analysis in Construction of Accelerator Systems

    SciTech Connect

    Bonnie Madre; Charles Reece; Joseph Ozelis; Valerie Bookwalter

    2003-05-12

    Jefferson Lab has developed a web-based system that integrates commercial database, data analysis, document archiving and retrieval, and user interface software, into a coherent knowledge management product (Pansophy). This product provides important tools for the successful pursuit of major projects such as accelerator system development and construction, by offering elements of process and procedure control, data capture and review, and data mining and analysis. After a period of initial development, Pansophy is now being used in Jefferson Lab's SNS superconducting linac construction effort, as a means for structuring and implementing the QA program, for process control and tracking, and for cryomodule test data capture and presentation/analysis. Development of Pansophy is continuing, in particular data queries and analysis functions that are the cornerstone of its utility.

  10. Control over stress accelerates extinction of drug seeking via prefrontal cortical activation

    PubMed Central

    Baratta, Michael V.; Pomrenze, Matthew B.; Nakamura, Shinya; Dolzani, Samuel D.; Cooper, Donald C.

    2015-01-01

    Extinction is a form of inhibitory learning viewed as an essential process in suppressing conditioned responses to drug cues, yet there is little information concerning experiential variables that modulate its formation. Coping factors play an instrumental role in determining how adverse life events impact the transition from casual drug use to addiction. Here we provide evidence in rat that prior exposure to controllable stress accelerates the extinction of cocaine-seeking behavior relative to uncontrollable or no stress exposure. Subsequent experimentation using high-speed optogenetic tools determined if the infralimbic region (IL) of the ventral medial prefrontal cortex mediates the impact of controllable stress on cocaine-seeking behavior. Photoinhibition of pyramidal neurons in the IL during coping behavior did not interfere with subject's ability to control the stressor, but prevented the later control-induced facilitation of extinction. These results provide strong evidence that the degree of behavioral control over adverse events, rather than adverse events per se, potently modulates the extinction of cocaine-seeking behavior, and that controllable stress engages prefrontal circuitry that primes future extinction learning. PMID:25954765

  11. Control Over Stress Accelerates Extinction of Drug Seeking Via Prefrontal Cortical Activation.

    PubMed

    Baratta, Michael V; Pomrenze, Matthew B; Nakamura, Shinya; Dolzani, Samuel D; Cooper, Donald C

    Extinction is a form of inhibitory learning viewed as an essential process in suppressing conditioned responses to drug cues, yet there is little information concerning experiential variables that modulate its formation. Coping factors play an instrumental role in determining how adverse life events impact the transition from casual drug use to addiction. Here we provide evidence in rat that prior exposure to controllable stress accelerates the extinction of cocaine-seeking behavior relative to uncontrollable or no stress exposure. Subsequent experimentation using high-speed optogenetic tools determined if the infralimbic region (IL) of the ventral medial prefrontal cortex mediates the impact of controllable stress on cocaine-seeking behavior. Photoinhibition of pyramidal neurons in the IL during coping behavior did not interfere with subject's ability to control the stressor, but prevented the later control-induced facilitation of extinction. These results provide strong evidence that the degree of behavioral control over adverse events, rather than adverse events per se, potently modulates the extinction of cocaine-seeking behavior, and that controllable stress engages prefrontal circuitry that primes future extinction learning.

  12. Emergence of complexity in controlling simple regular networks

    NASA Astrophysics Data System (ADS)

    Gao, Xin-Dong; Shen, Zhesi; Wang, Wen-Xu

    2016-06-01

    Quantifying the capacity of a given node or a bunch of nodes in maintaining a system's controllability is a crucial problem in complex networks and control theory. We give a systematic analysis of the ability of a single node or a pairs of nodes to control an undirected unweighted chain and ring. By combining algebraic theory and graph spectrum analysis, we derive analytic expressions for the control range of some given control inputs and find that complex phenomena emerge even from these simplest graph structures. Specifically, the control range is sensitive to the location of driver nodes and shows complex periodic behaviors. Our findings have implications for evaluating the control range and practically controlling complex networks.

  13. Modelling and control of Zigbee-based wireless networked control system with both network-induced delay and packet dropout

    NASA Astrophysics Data System (ADS)

    Li, Jian-ning; Su, Hong-ye; Wu, Zheng-guang; Chu, Jian

    2013-06-01

    A new stochastic switched linear model is established to describe the Zigbee-based wireless networked control system (WNCS) with both network-induced delay and packet dropout. The network-induced delay can be less or longer than one sampling period. A sufficient condition is presented for the exponentially mean square stability of the closed-loop WNCS, and corresponding state feedback controller is designed by using the augmenting technique and multi-Lyapunov approach. Then, combined with carrier sense multiple access with collision avoidance (CSMA-CA) algorithm, a method is given to choose proper parameter values. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method.

  14. FIPA agent based network distributed control system

    SciTech Connect

    D. Abbott; V. Gyurjyan; G. Heyes; E. Jastrzembski; C. Timmer; E. Wolin

    2003-03-01

    A control system with the capabilities to combine heterogeneous control systems or processes into a uniform homogeneous environment is discussed. This dynamically extensible system is an example of the software system at the agent level of abstraction. This level of abstraction considers agents as atomic entities that communicate to implement the functionality of the control system. Agents' engineering aspects are addressed by adopting the domain independent software standard, formulated by FIPA. Jade core Java classes are used as a FIPA specification implementation. A special, lightweight, XML RDFS based, control oriented, ontology markup language is developed to standardize the description of the arbitrary control system data processor. Control processes, described in this language, are integrated into the global system at runtime, without actual programming. Fault tolerance and recovery issues are also addressed.

  15. Networks Of Executive Controllers For Automation

    NASA Technical Reports Server (NTRS)

    Erickson, William K.; Cheeseman, Peter C.

    1988-01-01

    Paper discusses principal issues to be resolved in development of autonomous executive-controller shell for Space Station. Shell represents major increase in complexity of automated systems. More-complex control tasks require system that deals with different goals requiring sequences of tasks that change state of system world in complex ways. Requires integration of all functions. Applications include space station communications, tracking, life support, data processing support, navigation, and control of thermal and structural subsystems.

  16. A Network Scheduling Model for Distributed Control Simulation

    NASA Technical Reports Server (NTRS)

    Culley, Dennis; Thomas, George; Aretskin-Hariton, Eliot

    2016-01-01

    Distributed engine control is a hardware technology that radically alters the architecture for aircraft engine control systems. Of its own accord, it does not change the function of control, rather it seeks to address the implementation issues for weight-constrained vehicles that can limit overall system performance and increase life-cycle cost. However, an inherent feature of this technology, digital communication networks, alters the flow of information between critical elements of the closed-loop control. Whereas control information has been available continuously in conventional centralized control architectures through virtue of analog signaling, moving forward, it will be transmitted digitally in serial fashion over the network(s) in distributed control architectures. An underlying effect is that all of the control information arrives asynchronously and may not be available every loop interval of the controller, therefore it must be scheduled. This paper proposes a methodology for modeling the nominal data flow over these networks and examines the resulting impact for an aero turbine engine system simulation.

  17. Speech networks at rest and in action: interactions between functional brain networks controlling speech production.

    PubMed

    Simonyan, Kristina; Fuertinger, Stefan

    2015-04-01

    Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce. We combined seed-based interregional correlation analysis with graph theoretical analysis of functional MRI data during the resting state and sentence production in healthy subjects to investigate the interface and topology of functional networks originating from the key brain regions controlling speech, i.e., the laryngeal/orofacial motor cortex, inferior frontal and superior temporal gyri, supplementary motor area, cingulate cortex, putamen, and thalamus. During both resting and speaking, the interactions between these networks were bilaterally distributed and centered on the sensorimotor brain regions. However, speech production preferentially recruited the inferior parietal lobule (IPL) and cerebellum into the large-scale network, suggesting the importance of these regions in facilitation of the transition from the resting state to speaking. Furthermore, the cerebellum (lobule VI) was the most prominent region showing functional influences on speech-network integration and segregation. Although networks were bilaterally distributed, interregional connectivity during speaking was stronger in the left vs. right hemisphere, which may have underlined a more homogeneous overlap between the examined networks in the left hemisphere. Among these, the laryngeal motor cortex (LMC) established a core network that fully overlapped with all other speech-related networks, determining the extent of network interactions. Our data demonstrate complex interactions of large-scale brain networks controlling speech production and point to the critical role of the LMC, IPL, and cerebellum in the formation of speech production network.

  18. Role extraction in complex networks and its application in control of networks

    NASA Astrophysics Data System (ADS)

    Zhou, Mingyang; He, Xingsheng; Fu, Zhongqian; Zhuo, Zhao

    2016-01-01

    Given a large network, dynamics of the network are determined by both nodes' features and network connections. Some features could be extracted from node labels and other kinds of priori knowledge. But how to perform the feature classification without priori knowledge is a challenge. This paper addresses the key problem: how do we conduct role extraction in networks with only edge connections known? On the basis of behavior differences in dynamics, nodes are classified into three role groups: Leaders(L), Communicators(C) and Members(M). Unlike traditional community detections, we detect overlapping communities by link clustering first and then classify nodes according to the community entropy, which describes the disorder of how many different communities a node connects to. We propose a time saving and unsupervised learning approach for automatically discovering nodes' roles based solely on network topology. The effectiveness of this method is demonstrated on six real-world networks through pinning control. By controlling communicator nodes, the controllability is enhanced and the cost for control is reduced obviously in networks with strong community structure.

  19. A source-controlled data center network model

    PubMed Central

    Yu, Yang; Liang, Mangui; Wang, Zhe

    2017-01-01

    The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS. PMID:28328925

  20. A source-controlled data center network model.

    PubMed

    Yu, Yang; Liang, Mangui; Wang, Zhe

    2017-01-01

    The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS.

  1. Neural network payload estimation for adaptive robot control.

    PubMed

    Leahy, M R; Johnson, M A; Rogers, S K

    1991-01-01

    A concept is proposed for utilizing artificial neural networks to enhance the high-speed tracking accuracy of robotic manipulators. Tracking accuracy is a function of the controller's ability to compensate for disturbances produced by dynamical interactions between the links. A model-based control algorithm uses a nominal model of those dynamical interactions to reduce the disturbances. The problem is how to provide accurate dynamics information to the controller in the presence of payload uncertainty and modeling error. Neural network payload estimation uses a series of artificial neural networks to recognize the payload variation associated with a degradation in tracking performance. The network outputs are combined with a knowledge of nominal dynamics to produce a computationally efficient direct form of adaptive control. The concept is validated through experimentation and analysis on the first three links of a PUMA-560 manipulator. A multilayer perceptron architecture with two hidden layers is used. Integration of the principles of neural network pattern recognition and model-based control produces a tracking algorithm with enhanced robustness to incomplete dynamic information. Tracking efficacy and applicability to robust control algorithms are discussed.

  2. National Ignition Facility (NIF) Control Network Design and Analysis

    SciTech Connect

    Bryant, R M; Carey, R W; Claybourn, R V; Pavel, G; Schaefer, W J

    2001-10-19

    The control network for the National Ignition Facility (NIF) is designed to meet the needs for common object request broker architecture (CORBA) inter-process communication, multicast video transport, device triggering, and general TCP/IP communication within the NIF facility. The network will interconnect approximately 650 systems, including the embedded controllers, front-end processors (FEPs), supervisory systems, and centralized servers involved in operation of the NIF. All systems are networked with Ethernet to serve the majority of communication needs, and asynchronous transfer mode (ATM) is used to transport multicast video and synchronization triggers. CORBA software infra-structure provides location-independent communication services over TCP/IP between the application processes in the 15 supervisory and 300 FEP systems. Video images sampled from 500 video cameras at a 10-Hz frame rate will be multicast using direct ATM Application Programming Interface (API) communication from video FEPs to any selected operator console. The Ethernet and ATM control networks are used to broadcast two types of device triggers for last-second functions in a large number of FEPs, thus eliminating the need for a separate infrastructure for these functions. Analysis, design, modeling, and testing of the NIF network has been performed to provide confidence that the network design will meet NIF control requirements.

  3. Interaction Control to Synchronize Non-synchronizable Networks

    PubMed Central

    Schröder, Malte; Chakraborty, Sagar; Witthaut, Dirk; Nagler, Jan; Timme, Marc

    2016-01-01

    Synchronization constitutes one of the most fundamental collective dynamics across networked systems and often underlies their function. Whether a system may synchronize depends on the internal unit dynamics as well as the topology and strength of their interactions. For chaotic units with certain interaction topologies synchronization might be impossible across all interaction strengths, meaning that these networks are non-synchronizable. Here we propose the concept of interaction control, generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may localize interactions in state space and thereby synchronize networks. Intriguingly, localizing interactions by a fixed control scheme enables stable synchronization across all connected networks regardless of topological constraints. Interaction control may thus ease the design of desired collective dynamics even without knowledge of the networks’ exact interaction topology and consequently have implications for biological and self-organizing technical systems. PMID:27853266

  4. Interaction Control to Synchronize Non-synchronizable Networks

    NASA Astrophysics Data System (ADS)

    Schröder, Malte; Chakraborty, Sagar; Witthaut, Dirk; Nagler, Jan; Timme, Marc

    2016-11-01

    Synchronization constitutes one of the most fundamental collective dynamics across networked systems and often underlies their function. Whether a system may synchronize depends on the internal unit dynamics as well as the topology and strength of their interactions. For chaotic units with certain interaction topologies synchronization might be impossible across all interaction strengths, meaning that these networks are non-synchronizable. Here we propose the concept of interaction control, generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may localize interactions in state space and thereby synchronize networks. Intriguingly, localizing interactions by a fixed control scheme enables stable synchronization across all connected networks regardless of topological constraints. Interaction control may thus ease the design of desired collective dynamics even without knowledge of the networks’ exact interaction topology and consequently have implications for biological and self-organizing technical systems.

  5. On the control of opinion dynamics in social networks

    NASA Astrophysics Data System (ADS)

    Liu, Zhihong; Ma, Jianfeng; Zeng, Yong; Yang, Li; Huang, Qiping; Wu, Hongliang

    2014-09-01

    This paper presents a framework to analyze the controllability of opinion dynamics in social networks using DeGroot model (DeGroot, 1974). We show how the opinion, or attitude about some common questions of interest in a population can be controlled by a committed node who consistently proselytizes the opposing opinion and is immune to influence. Some criteria are established to guarantee that opinion dynamics of networks can be perfectly or partially controlled. We also find that the opinion fluctuation is determined by the smallest negative eigenvalue of an influence matrix.

  6. Output feedback sliding mode control under networked environment

    NASA Astrophysics Data System (ADS)

    Zhang, Jinhui; Lam, James; Xia, Yuanqing

    2013-04-01

    This article considers the problem of sliding mode output feedback control for networked control systems (NCSs). The key idea is to make use of not only the current and previous measurements, but also previous inputs for the reconstruction of the state variables. Using this idea, sliding mode controllers are designed for systems with constant or time-varying network delay. The approach is not only more practical but also easy to implement. To illustrate this, the design technique is applied to an inverted pendulum system.

  7. A scalable control plane for optical-packet-switched networks

    NASA Astrophysics Data System (ADS)

    Kang, J.; Reed, M. J.

    2005-02-01

    This paper describes the design considerations and architecture of a Generalized Multi-Protocol Label Switching (GMPLS)-based scalable control plane that we are prototyping for optical packet switched (OPS) networks. Functional components of the control plane include a user network interface (UNI), optical label coding, multi-layer routing/traffic engineering algorithm and integrated signaling protocol. Initial implementation and experimentation has demonstrated the feasibility of our prototype as a testbed for various control schemes for OPS networks. One key element of the architecture proposed is the use of external MPLS labeling controlled by the UNI. This proposal reduces the load on the OPS domain header processing while having little impact on the MPLS domain.

  8. Distributed Coordinated Control of Large-Scale Nonlinear Networks

    DOE PAGES

    Kundu, Soumya; Anghel, Marian

    2015-11-08

    We provide a distributed coordinated approach to the stability analysis and control design of largescale nonlinear dynamical systems by using a vector Lyapunov functions approach. In this formulation the large-scale system is decomposed into a network of interacting subsystems and the stability of the system is analyzed through a comparison system. However finding such comparison system is not trivial. In this work, we propose a sum-of-squares based completely decentralized approach for computing the comparison systems for networks of nonlinear systems. Moreover, based on the comparison systems, we introduce a distributed optimal control strategy in which the individual subsystems (agents) coordinatemore » with their immediate neighbors to design local control policies that can exponentially stabilize the full system under initial disturbances.We illustrate the control algorithm on a network of interacting Van der Pol systems.« less

  9. Distributed Coordinated Control of Large-Scale Nonlinear Networks

    SciTech Connect

    Kundu, Soumya; Anghel, Marian

    2015-11-08

    We provide a distributed coordinated approach to the stability analysis and control design of largescale nonlinear dynamical systems by using a vector Lyapunov functions approach. In this formulation the large-scale system is decomposed into a network of interacting subsystems and the stability of the system is analyzed through a comparison system. However finding such comparison system is not trivial. In this work, we propose a sum-of-squares based completely decentralized approach for computing the comparison systems for networks of nonlinear systems. Moreover, based on the comparison systems, we introduce a distributed optimal control strategy in which the individual subsystems (agents) coordinate with their immediate neighbors to design local control policies that can exponentially stabilize the full system under initial disturbances.We illustrate the control algorithm on a network of interacting Van der Pol systems.

  10. The control networks of the satellites of Jupiter

    NASA Technical Reports Server (NTRS)

    Davies, Merton E.

    1987-01-01

    Geodetic control networks are being computed photogrammetrically for the large satellites of Jupiter, using pictures from the Voyager 1 and 2 encounters. Control points have been identified on the satellites and their coordinates computed by single-block analytical triangulation. The data sets have been converted from the B1950 to the J2000 inertial coordinate system to be compatible with future flight missions.

  11. Neural network guided search control in partial order planning

    SciTech Connect

    Zimmerman, T.

    1996-12-31

    The development of efficient search control methods is an active research topic in the field of planning. Investigation of a planning program integrated with a neural network (NN) that assists in search control is underway, and has produced promising preliminary results.

  12. LPFG sensing network for distributed shape control

    NASA Astrophysics Data System (ADS)

    Ishihara, Abraham K.; Ben-Menahem, Shahar; Kazemi, Alex; Kress, Bernard; Kulishov, Mykola

    2014-09-01

    In this paper, we discuss various aspects of the control and sensing in a flexible wing aircraft using embedded LPFG (Long Period Fiber Grating). Driven by the need to improve aerodynamic efficiency and reduce fuel burn, interest in light-weight structures for next generation aircraft has been on the rise. However, in order to fully exploit novel lightweight structures, there is a critical need for distributed sensing along the entire wing span and its integration with closed-loop control systems. A model of an LPFG sensor string embedded in an Euler-Bernoulli beam is proposed along with an associated control algorithm.

  13. Neural network application to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design.

  14. GOTHIC: Gravitational oct-tree code accelerated by hierarchical time step controlling

    NASA Astrophysics Data System (ADS)

    Miki, Yohei; Umemura, Masayuki

    2017-04-01

    The tree method is a widely implemented algorithm for collisionless N-body simulations in astrophysics well suited for GPU(s). Adopting hierarchical time stepping can accelerate N-body simulations; however, it is infrequently implemented and its potential remains untested in GPU implementations. We have developed a Gravitational Oct-Tree code accelerated by HIerarchical time step Controlling named GOTHIC, which adopts both the tree method and the hierarchical time step. The code adopts some adaptive optimizations by monitoring the execution time of each function on-the-fly and minimizes the time-to-solution by balancing the measured time of multiple functions. Results of performance measurements with realistic particle distribution performed on NVIDIA Tesla M2090, K20X, and GeForce GTX TITAN X, which are representative GPUs of the Fermi, Kepler, and Maxwell generation of GPUs, show that the hierarchical time step achieves a speedup by a factor of around 3-5 times compared to the shared time step. The measured elapsed time per step of GOTHIC is 0.30 s or 0.44 s on GTX TITAN X when the particle distribution represents the Andromeda galaxy or the NFW sphere, respectively, with 224 = 16,777,216 particles. The averaged performance of the code corresponds to 10-30% of the theoretical single precision peak performance of the GPU.

  15. Controlled laser plasma wakefield acceleration of electrons via colliding pulse injection in non-collinear geometry

    NASA Astrophysics Data System (ADS)

    Toth, Csaba; Nakamura, Kei; Geddes, Cameron; Panasenko, Dmitriy; Plateau, Guillaume; Matlis, Nicholas; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2007-11-01

    Colliding laser pulses [1] have been proposed as a method for controlling injection of electrons into a laser wakefield accelerator (LWFA) and hence producing high quality electron beams with energy spread below 1% and normalized emittances < 1 micron. The. One pulse excites a plasma wake, and a collinear pulse following behind it collides with a counterpropagating pulse forming a beat pattern that boosts background electrons into accelerating phase. A variation of the original method uses only two laser pulses [2] which may be non-collinear. The first pulse drives the wake, and beating of the trailing edge of this pulse with the colliding pulse injects electrons. Non-collinear injection avoids optical elements on the electron beam path (avoiding emittance growth). We report on progress of non-collinear experiments at LBNL, using the Ti:Sapphire laser at the LOASIS facility of LBNL. New results indicate that the electron beam properties are affected by the presence of the second beam. [1] E. Esarey, et al, Phys. Rev. Lett 79, 2682 (1997) [2] G. Fubiani, Phys. Rev. E 70, 016402 (2004)

  16. A Network Access Control Framework for 6LoWPAN Networks

    PubMed Central

    Oliveira, Luís M. L.; Rodrigues, Joel J. P. C.; de Sousa, Amaro F.; Lloret, Jaime

    2013-01-01

    Low power over wireless personal area networks (LoWPAN), in particular wireless sensor networks, represent an emerging technology with high potential to be employed in critical situations like security surveillance, battlefields, smart-grids, and in e-health applications. The support of security services in LoWPAN is considered a challenge. First, this type of networks is usually deployed in unattended environments, making them vulnerable to security attacks. Second, the constraints inherent to LoWPAN, such as scarce resources and limited battery capacity, impose a careful planning on how and where the security services should be deployed. Besides protecting the network from some well-known threats, it is important that security mechanisms be able to withstand attacks that have not been identified before. One way of reaching this goal is to control, at the network access level, which nodes can be attached to the network and to enforce their security compliance. This paper presents a network access security framework that can be used to control the nodes that have access to the network, based on administrative approval, and to enforce security compliance to the authorized nodes. PMID:23334610

  17. A network access control framework for 6LoWPAN networks.

    PubMed

    Oliveira, Luís M L; Rodrigues, Joel J P C; de Sousa, Amaro F; Lloret, Jaime

    2013-01-18

    Low power over wireless personal area networks (LoWPAN), in particular wireless sensor networks, represent an emerging technology with high potential to be employed in critical situations like security surveillance, battlefields, smart-grids, and in e-health applications. The support of security services in LoWPAN is considered a challenge. First, this type of networks is usually deployed in unattended environments, making them vulnerable to security attacks. Second, the constraints inherent to LoWPAN, such as scarce resources and limited battery capacity, impose a careful planning on how and where the security services should be deployed. Besides protecting the network from some well-known threats, it is important that security mechanisms be able to withstand attacks that have not been identified before. One way of reaching this goal is to control, at the network access level, which nodes can be attached to the network and to enforce their security compliance. This paper presents a network access security framework that can be used to control the nodes that have access to the network, based on administrative approval, and to enforce security compliance to the authorized nodes.

  18. Robustness of Controllability for Networks Based on Edge-Attack

    PubMed Central

    Nie, Sen; Wang, Xuwen; Zhang, Haifeng; Li, Qilang; Wang, Binghong

    2014-01-01

    We study the controllability of networks in the process of cascading failures under two different attacking strategies, random and intentional attack, respectively. For the highest-load edge attack, it is found that the controllability of Erdős-Rényi network, that with moderate average degree, is less robust, whereas the Scale-free network with moderate power-law exponent shows strong robustness of controllability under the same attack strategy. The vulnerability of controllability under random and intentional attacks behave differently with the increasing of removal fraction, especially, we find that the robustness of control has important role in cascades for large removal fraction. The simulation results show that for Scale-free networks with various power-law exponents, the network has larger scale of cascades do not mean that there will be more increments of driver nodes. Meanwhile, the number of driver nodes in cascading failures is also related to the edges amount in strongly connected components. PMID:24586507

  19. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation

    PubMed Central

    2012-01-01

    Background The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). Methods In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Results Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Conclusions Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small

  20. Flow Control in Wireless Ad-Hoc Networks

    DTIC Science & Technology

    2009-01-01

    these mechanisms can be improved in order to fine-tune TCP under various networking environments. Low, Paganini and Doyle [36] study TCP from a control...Derivative Securities, M. A. H. Dempster and S. R. Pliska, Eds., vol. 16. Cambridge University Press , 1997, pp. 504–527. [30] KUSHNER, H. J., AND DIMASI...wireless networks: Optimality and stability. IEEE Trans- actions on Information Theory 55, 9 (Sept. 2009), 4087–4098. 76 [36] LOW, S. H., PAGANINI , F

  1. A demand assignment control in international business satellite communications network

    NASA Astrophysics Data System (ADS)

    Nohara, Mitsuo; Takeuchi, Yoshio; Takahata, Fumio; Hirata, Yasuo

    An experimental system is being developed for use in an international business satellite (IBS) communications network based on demand-assignment (DA) and TDMA techniques. This paper discusses its system design, in particular from the viewpoints of a network configuration, a DA control, and a satellite channel-assignment algorithm. A satellite channel configuration is also presented along with a tradeoff study on transmission rate, HPA output power, satellite resource efficiency, service quality, and so on.

  2. Energy management and multi-layer control of networked microgrids

    NASA Astrophysics Data System (ADS)

    Zamora, Ramon

    Networked microgrids is a group of neighboring microgrids that has ability to interchange power when required in order to increase reliability and resiliency. Networked microgrid can operate in different possible configurations including: islanded microgrid, a grid-connected microgrid without a tie-line converter, a grid-connected microgrid with a tie-line converter, and networked microgrids. These possible configurations and specific characteristics of renewable energy offer challenges in designing control and management algorithms for voltage, frequency and power in all possible operating scenarios. In this work, control algorithm is designed based on large-signal model that enables microgrid to operate in wide range of operating points. A combination between PI controller and feed-forward measured system responses will compensate for the changes in operating points. The control architecture developed in this work has multi-layers and the outer layer is slower than the inner layer in time response. The main responsibility of the designed controls are to regulate voltage magnitude and frequency, as well as output power of the DG(s). These local controls also integrate with a microgrid level energy management system or microgrid central controller (MGCC) for power and energy balance for. the entire microgrid in islanded, grid-connected, or networked microgid mode. The MGCC is responsible to coordinate the lower level controls to have reliable and resilient operation. In case of communication network failure, the decentralized energy management will operate locally and will activate droop control. Simulation results indicate the superiority of designed control algorithms compared to existing ones.

  3. Controllability of multiplex, multi-time-scale networks

    NASA Astrophysics Data System (ADS)

    Pósfai, Márton; Gao, Jianxi; Cornelius, Sean P.; Barabási, Albert-László; D'Souza, Raissa M.

    2016-09-01

    The paradigm of layered networks is used to describe many real-world systems, from biological networks to social organizations and transportation systems. While recently there has been much progress in understanding the general properties of multilayer networks, our understanding of how to control such systems remains limited. One fundamental aspect that makes this endeavor challenging is that each layer can operate at a different time scale; thus, we cannot directly apply standard ideas from structural control theory of individual networks. Here we address the problem of controlling multilayer and multi-time-scale networks focusing on two-layer multiplex networks with one-to-one interlayer coupling. We investigate the practically relevant case when the control signal is applied to the nodes of one layer. We develop a theory based on disjoint path covers to determine the minimum number of inputs (Ni) necessary for full control. We show that if both layers operate on the same time scale, then the network structure of both layers equally affect controllability. In the presence of time-scale separation, controllability is enhanced if the controller interacts with the faster layer: Ni decreases as the time-scale difference increases up to a critical time-scale difference, above which Ni remains constant and is completely determined by the faster layer. We show that the critical time-scale difference is large if layer I is easy and layer II is hard to control in isolation. In contrast, control becomes increasingly difficult if the controller interacts with the layer operating on the slower time scale and increasing time-scale separation leads to increased Ni, again up to a critical value, above which Ni still depends on the structure of both layers. This critical value is largely determined by the longest path in the faster layer that does not involve cycles. By identifying the underlying mechanisms that connect time-scale difference and controllability for a simplified

  4. Experimental Investigation of Acceleration Characteristics of a Turbojet Engine Including Regions of Surge and Stall for Control Applications

    NASA Technical Reports Server (NTRS)

    Stiglic, Paul M; Schmidt, Ross D; Delio, Gene J

    1954-01-01

    The acceleration characteristics, in the region of maximum acceleration and compressor stall and surge, of an axial-flow turbojet engine with a fixed-area exhaust nozzle were determined by subjecting the engine to fuel flow steps, ramps, and ramps with a sine wave superimposed. From the data obtained, the effectiveness of an optimalizer type of control for this engine was evaluated. At all speeds above 40 percent of rated, a maximum acceleration was not obtained until the engine reached the point of stall or surge. A sharp drop, as high as 80 percent of maximum, in acceleration then occurred as the compressor entered surge of stall. With the maximum acceleration occurring at the point of surge or stall, the optimalizer-type control could not prevent the engine from entering surge or stall. Effective operation of the control may still be possible by sensing the sharp drop in acceleration experienced at the point of stall or surge and using this signal to limit fuel flow. The success of this type of operation would depend on the magnitude of the stall-recovery hysteresis.

  5. Taking Control of Castleman Disease: Leveraging Precision Medicine Technologies to Accelerate Rare Disease Research

    PubMed Central

    Newman, Samantha Kass; Jayanthan, Raj K.; Mitchell, Grant W.; Carreras Tartak, Jossie A.; Croglio, Michael P.; Suarez, Alexander; Liu, Amy Y.; Razzo, Beatrice M.; Oyeniran, Enny; Ruth, Jason R.; Fajgenbaum, David C.

    2015-01-01

    Castleman disease (CD) is a rare and heterogeneous disorder characterized by lymphadenopathy that may occur in a single lymph node (unicentric) or multiple lymph nodes (multicentric), the latter typically occurring secondary to excessive proinflammatory hypercytokinemia. While a cohort of multicentric Castleman disease (MCD) cases are caused by Human Herpes Virus-8 (HHV-8), the etiology of HHV-8 negative, idiopathic MCD (iMCD), remains unknown. Breakthroughs in “omics” technologies that have facilitated the development of precision medicine hold promise for elucidating disease pathogenesis and identifying novel therapies for iMCD. However, in order to leverage precision medicine approaches in rare diseases like CD, stakeholders need to overcome several challenges. To address these challenges, the Castleman Disease Collaborative Network (CDCN) was founded in 2012. In the past 3 years, the CDCN has worked to transform the understanding of the pathogenesis of CD, funded and initiated genomics and proteomics research, and united international experts in a collaborative effort to accelerate progress for CD patients. The CDCN’s collaborative structure leverages the tools of precision medicine and serves as a model for both scientific discovery and advancing patient care. PMID:26604862

  6. Taking Control of Castleman Disease: Leveraging Precision Medicine Technologies to Accelerate Rare Disease Research.

    PubMed

    Newman, Samantha Kass; Jayanthan, Raj K; Mitchell, Grant W; Carreras Tartak, Jossie A; Croglio, Michael P; Suarez, Alexander; Liu, Amy Y; Razzo, Beatrice M; Oyeniran, Enny; Ruth, Jason R; Fajgenbaum, David C

    2015-12-01

    Castleman disease (CD) is a rare and heterogeneous disorder characterized by lymphadenopathy that may occur in a single lymph node (unicentric) or multiple lymph nodes (multicentric), the latter typically occurring secondary to excessive proinflammatory hypercytokinemia. While a cohort of multicentric Castleman disease (MCD) cases are caused by Human Herpes Virus-8 (HHV-8), the etiology of HHV-8 negative, idiopathic MCD (iMCD), remains unknown. Breakthroughs in "omics" technologies that have facilitated the development of precision medicine hold promise for elucidating disease pathogenesis and identifying novel therapies for iMCD. However, in order to leverage precision medicine approaches in rare diseases like CD, stakeholders need to overcome several challenges. To address these challenges, the Castleman Disease Collaborative Network (CDCN) was founded in 2012. In the past 3 years, the CDCN has worked to transform the understanding of the pathogenesis of CD, funded and initiated genomics and proteomics research, and united international experts in a collaborative effort to accelerate progress for CD patients. The CDCN's collaborative structure leverages the tools of precision medicine and serves as a model for both scientific discovery and advancing patient care.

  7. Robust nonlinear variable selective control for networked systems

    NASA Astrophysics Data System (ADS)

    Rahmani, Behrooz

    2016-10-01

    This paper is concerned with the networked control of a class of uncertain nonlinear systems. In this way, Takagi-Sugeno (T-S) fuzzy modelling is used to extend the previously proposed variable selective control (VSC) methodology to nonlinear systems. This extension is based upon the decomposition of the nonlinear system to a set of fuzzy-blended locally linearised subsystems and further application of the VSC methodology to each subsystem. To increase the applicability of the T-S approach for uncertain nonlinear networked control systems, this study considers the asynchronous premise variables in the plant and the controller, and then introduces a robust stability analysis and control synthesis. The resulting optimal switching-fuzzy controller provides a minimum guaranteed cost on an H2 performance index. Simulation studies on three nonlinear benchmark problems demonstrate the effectiveness of the proposed method.

  8. Adaptive model predictive process control using neural networks

    DOEpatents

    Buescher, Kevin L.; Baum, Christopher C.; Jones, Roger D.

    1997-01-01

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data.

  9. Adaptive model predictive process control using neural networks

    DOEpatents

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  10. Wireless Sensor/Actuator Network Design for Mobile Control Applications

    PubMed Central

    Xia, Feng; Tian, Yu-Chu; Li, Yanjun; Sun, Youxian

    2007-01-01

    Wireless sensor/actuator networks (WSANs) are emerging as a new generation of sensor networks. Serving as the backbone of control applications, WSANs will enable an unprecedented degree of distributed and mobile control. However, the unreliability of wireless communications and the real-time requirements of control applications raise great challenges for WSAN design. With emphasis on the reliability issue, this paper presents an application-level design methodology for WSANs in mobile control applications. The solution is generic in that it is independent of the underlying platforms, environment, control system models, and controller design. To capture the link quality characteristics in terms of packet loss rate, experiments are conducted on a real WSAN system. From the experimental observations, a simple yet efficient method is proposed to deal with unpredictable packet loss on actuator nodes. Trace-based simulations give promising results, which demonstrate the effectiveness of the proposed approach.

  11. Dissipative rendering and neural network control system design

    NASA Technical Reports Server (NTRS)

    Gonzalez, Oscar R.

    1995-01-01

    Model-based control system designs are limited by the accuracy of the models of the plant, plant uncertainty, and exogenous signals. Although better models can be obtained with system identification, the models and control designs still have limitations. One approach to reduce the dependency on particular models is to design a set of compensators that will guarantee robust stability to a set of plants. Optimization over the compensator parameters can then be used to get the desired performance. Conservativeness of this approach can be reduced by integrating fundamental properties of the plant models. This is the approach of dissipative control design. Dissipative control designs are based on several variations of the Passivity Theorem, which have been proven for nonlinear/linear and continuous-time/discrete-time systems. These theorems depend not on a specific model of a plant, but on its general dissipative properties. Dissipative control design has found wide applicability in flexible space structures and robotic systems that can be configured to be dissipative. Currently, there is ongoing research to improve the performance of dissipative control designs. For aircraft systems that are not dissipative active control may be used to make them dissipative and then a dissipative control design technique can be used. It is also possible that rendering a system dissipative and dissipative control design may be combined into one step. Furthermore, the transformation of a non-dissipative system to dissipative can be done robustly. One sequential design procedure for finite dimensional linear time-invariant systems has been developed. For nonlinear plants that cannot be controlled adequately with a single linear controller, model-based techniques have additional problems. Nonlinear system identification is still a research topic. Lacking analytical models for model-based design, artificial neural network algorithms have recently received considerable attention. Using

  12. Performance limitations for networked control systems with plant uncertainty

    NASA Astrophysics Data System (ADS)

    Chi, Ming; Guan, Zhi-Hong; Cheng, Xin-Ming; Yuan, Fu-Shun

    2016-04-01

    There has recently been significant interest in performance study for networked control systems with communication constraints. But the existing work mainly assumes that the plant has an exact model. The goal of this paper is to investigate the optimal tracking performance for networked control system in the presence of plant uncertainty. The plant under consideration is assumed to be non-minimum phase and unstable, while the two-parameter controller is employed and the integral square criterion is adopted to measure the tracking error. And we formulate the uncertainty by utilising stochastic embedding. The explicit expression of the tracking performance has been obtained. The results show that the network communication noise and the model uncertainty, as well as the unstable poles and non-minimum phase zeros, can worsen the tracking performance.

  13. Control of complex networks requires both structure and dynamics

    NASA Astrophysics Data System (ADS)

    Gates, Alexander J.; Rocha, Luis M.

    2016-04-01

    The study of network structure has uncovered signatures of the organization of complex systems. However, there is also a need to understand how to control them; for example, identifying strategies to revert a diseased cell to a healthy state, or a mature cell to a pluripotent state. Two recent methodologies suggest that the controllability of complex systems can be predicted solely from the graph of interactions between variables, without considering their dynamics: structural controllability and minimum dominating sets. We demonstrate that such structure-only methods fail to characterize controllability when dynamics are introduced. We study Boolean network ensembles of network motifs as well as three models of biochemical regulation: the segment polarity network in Drosophila melanogaster, the cell cycle of budding yeast Saccharomyces cerevisiae, and the floral organ arrangement in Arabidopsis thaliana. We demonstrate that structure-only methods both undershoot and overshoot the number and which sets of critical variables best control the dynamics of these models, highlighting the importance of the actual system dynamics in determining control. Our analysis further shows that the logic of automata transition functions, namely how canalizing they are, plays an important role in the extent to which structure predicts dynamics.

  14. NEMS (Nanoelectromechanicsl Systems) Networks: A Novel Validation Platform for Controlling Interconnected Dynamical Networks

    DTIC Science & Technology

    2015-08-01

    adaptive   network  topologies  (which,  for  example,  can  be  implemented  via  “ smart ”  edges  with  local  rules...16. SECURITY CLASSIFICATION OF: We review the experimental role NanoElectroMechanical System (NEMS) networks play vis a vis the MURI’s scientific...and validation goals which target new theoretical understanding of the dynamics of large-scale interconnected networks and their control. Our plans for

  15. Visual analysis and dynamical control of phosphoproteomic networks

    NASA Astrophysics Data System (ADS)

    Meyer-Bäse, Anke; Görke, Robert; Lobbes, Marc; Emmett, Mark R.; Nilsson, Carol L.

    2013-05-01

    This paper presents novel graph algorithms and modern control solutions applied to the graph networks resulting from specific experiments to discover disease-related pathways and drug targets in glioma cancer stem cells (GSCs). The theoretical framework applies to many other high-throughput data from experiments relevant to a variety of diseases. In addition to developing novel graph and control networks to predict therapeutic targets, these algorithms will provide biochemists with techniques to identify more metabolic regions and biological pathways for complex diseases, and design and test novel therapeutic solutions.

  16. Neural Networks Control of a Magnetic Levitation System

    DTIC Science & Technology

    2001-04-17

    neural networks (ANN) in conjunction of proportional-integral-derivative (PID) controllers in control of non-contacting active magnetic bearings (AMB). The objective of this technique is to reduce the effect of the unbalance on the rotor displacement without the estimating perturbation. The work consists of the following: 1) application of artificial neural networks (multi-layer perceptrons) for nonlinear model of the active magnetic bearing by using the dynamic back-propagation methods for the adjustment of parameters; and 2) application of

  17. Pinning control of complex networks via edge snapping

    NASA Astrophysics Data System (ADS)

    DeLellis, P.; di Bernardo, M.; Porfiri, M.

    2011-09-01

    In this paper, we propose a hierarchy of novel decentralized adaptive pinning strategies for controlled synchronization of complex networks. This hierarchy addresses the fundamental need of selecting the sites to pin through a fully decentralized approach based on edge snapping. Specifically, we present three different strategies of increasing complexity which use a combination of network evolution and adaptation of the coupling and control gains. Theoretical results are complemented by extensive numerical investigations of the performance of the proposed strategies on a set of testbed examples.

  18. Probabilistic Priority Message Checking Modeling Based on Controller Area Networks

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Min

    Although the probabilistic model checking tool called PRISM has been applied in many communication systems, such as wireless local area network, Bluetooth, and ZigBee, the technique is not used in a controller area network (CAN). In this paper, we use PRISM to model the mechanism of priority messages for CAN because the mechanism has allowed CAN to become the leader in serial communication for automobile and industry control. Through modeling CAN, it is easy to analyze the characteristic of CAN for further improving the security and efficiency of automobiles. The Markov chain model helps us to model the behaviour of priority messages.

  19. Artificial neural networks in Space Station optimal attitude control

    NASA Astrophysics Data System (ADS)

    Kumar, Renjith R.; Seywald, Hans; Deshpande, Samir M.; Rahman, Zia

    1992-08-01

    Innovative techniques of using 'Artificial Neural Networks' (ANN) for improving the performance of the pitch axis attitude control system of Space Station Freedom using Control Moment Gyros (CMGs) are investigated. The first technique uses a feedforward ANN with multilayer perceptrons to obtain an on-line controller which improves the performance of the control system via a model following approach. The second techique uses a single layer feedforward ANN with a modified back propagation scheme to estimate the internal plant variations and the external disturbances separately. These estimates are then used to solve two differential Riccati equations to obtain time varying gains which improve the control system performance in successive orbits.

  20. Applications of neural networks to process control and modeling

    SciTech Connect

    Barnes, C.W.; Brown, S.K.; Flake, G.W.; Jones, R.D.; O'Rourke, M.K.; Lee, Y.C.

    1991-01-01

    Modeling and control of physical processes are universal parts of modern life, from control of chemical plants to riding a bicycle. Often, an effective model of the process is not known so that traditional control theory is of little use. If a process can be represented by a set of a data which captures it behavior over a range of parameter settings, a neural net can inductively model the process and form the basis of an optimization procedure. We present a neural network architecture which is particularly effective in process modeling and control. We discuss its effectiveness in several application areas as well as some of the non-ideal characteristics present in real control problems which effect the form and style of the network architecture and learning algorithm. 8 refs., 6 figs.